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Abstract

Risk Management and Combinatorial Optimization for Large-Scale Demand Response and
Renewable Energy Integration

by

Insoon Yang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

To decarbonize the electric power grid, there have been increased efforts to utilize clean
renewable energy sources, as well as demand-side resources such as electric loads. This
utilization is challenging because of uncertain renewable generation and inelastic demand.
Furthermore, the interdependencies between system states of power networks or intercon-
nected loads complicate several decision-making problems. Growing interactions between
power and energy systems and human agents with advances in sensing, computing and com-
munication technologies also increase the need for personalized operations.

In this dissertation, we present three control and optimization tools to help to overcome
these challenges and improve the sustainability of electric power systems. The first tool
is a new dynamic contract approach for direct load control that can manage the financial
risks of utilities and customers, where the risks are generated by uncertain renewable gen-
eration. The key feature of the proposed contract method is its risk-limiting capability,
which is achieved by formulating the contract design problem as mean-variance constrained
risk-sensitive control. To design a globally optimal contract, we develop a dynamic pro-
gramming solution method based on a novel dynamical system approach to track and limit
risks. The performance of the proposed contract framework is demonstrated using data from
the Electricity Reliability Council of Texas. The second tool is developed for combinatorial
decision-making under system interdependencies, which are inherent in interconnected loads
and power networks. For such decision-making problems, which can be formulated as op-
timization of combinatorial dynamical systems, we develop a linear approximation method
that is scalable and has a provable suboptimality bound. The performance of the approxima-
tion algorithm is illustrated in ON/OFF control of interconnected supermarket refrigeration
systems. The last tool seeks to provide a personalized control mechanism for electric loads,
which can play an important role in demand-side management. We integrate Gaussian
progress regression into a model predictive control framework to learn the customer’s pref-
erence online and automatically customize the controller of electric loads that directly affect
the customer’s comfort. Finally, we discuss several future research directions in the opera-
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tion of sustainable cyber-physical systems, including a unified risk management framework
for electricity markets, a selective optimal control mechanism for resilient power grids, and
contract-based modular management of cyber-physical infrastructure networks.
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Chapter 1

Introduction

1.1 Background

The legacy power grid, which is centralized and vertically integrated, is transitioning towards
a decentralized and flexible future grid in which renewable energy sources and distributed
demand-side resources are expected to be synergistically coordinated with sensing, comput-
ing and communication infrastructures. One of the most significant changes is the integration
of clean renewable energy sources such as wind, solar, hydro and geothermal generation to
decarbonize the electric power grid. Thirty three states in the US have set Renewable Port-
folio Standards that require increased the energy production from renewable energy sources
[107]. For example, California plans to increase the penetration of renewables up to 33% by
the year 2020 [22].

Advances in sensing, communication and computing technologies such as smart meters
and smart thermostats allow us to engage demand-side resources in the operation of power
systems [23, 98, 56]. For example, the Pacific Gas & Electric (PG&E) Company offers a
demand response program called “SmartAC” that pays customers certain rebates to gain the
authority to control their air conditioners a few days per year to reduce peak demand [99].
The San Diego Gas & Electric Company is running a pilot project to develop a new pricing
scheme for electric vehicles to shift customers’ charging patterns in a way that’s beneficial
to its revenue in electricity markets.

Automation and information technologies also have a significant effect on power grid
operations [37]. New sensors and power electronic actuators including micro synchrophasors
and flexible AC transmission systems operated by automated sensing and control methods
are expected to improve the resilience and efficiency of power distribution and transmission
systems [89, 144]. For example, the California Institute for Energy and Environment and
the Power Standards Laboratory are investigating the effect of micro synchrophasors on
distribution and substation automations [21].

The aforementioned changes in transitioning to the future power grid sound promising.
However, many challenges must be overcome to achieve a successful and seamless transition.
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1.2 Challenges and solutions

1.2.1 Risks generated by uncertain renewable generation

One of the most important challenges is the risk generated by uncertain wind and solar
generation. Power systems have traditionally operated in a way that balances supply and
demand at any time, guaranteeing reliability. However, the high penetration of uncertain
and intermittent solar and wind generation is expected to cause significant financial and
operational risks. In particular, the uncertainty of solar and wind generation will increase
errors in the forecast of net load, which is demand minus renewable generation. These errors
make it difficult to balance supply and demand. The variability and uncertainty of wind
and solar generation can also increase the volatility of wholesale electricity prices [135, 2].
Because of these two factors, utilities will face significant financial risks [137].

To mitigate the risks generated by renewables, it is important to balance out the un-
certainties of wind and solar generation. One supply-side solution is to use fast-ramping
generators to compensate for the variability of wind and solar generation [7]. Many re-
searchers and system operators have also proposed new electricity market mechanisms and
options to manage the risks (e.g., [81, 33, 108]). Another solution is to use demand-side
resources such as air conditioners, refrigerators and electric vehicles. A fairly new concept
called demand response aims to change electric usage by demand-side resources using incen-
tive payments or different electric pricing schemes [128]. Automated demand response takes
automatic control of the customers’ loads using advanced information technologies [98]. This
new technology significantly reduces customers’ efforts to provide services to power systems
because all control actions are automated and their comfort and service levels are guaranteed.
In most programs, customers can opt-out from the automated demand response programs
whenever they choose [34].

The first goal of this dissertation is to manage the financial risks generated by uncertain
renewables using automated demand response technology. This is a nonstandard risk man-
agement problem because of the possibly complicated dynamics of loads such as refrigerators
and air conditioners. We must take the dynamics of loads into account to guarantee cus-
tomers’ comfort. Another difficulty arises due to the customers’ aversion to financial risks.
If too many risks are transferred to customers, they may drop out of the demand response
program. To overcome these challenges, we will propose a new contract framework that
can handle complicated load dynamics and also limit the risk transferred to each customer.
This objective is achieved by combining financial contracts and stochastic optimal control of
engineered systems. More precisely, the proposed continuous-time contract framework has
a risk-limiting capability. If a load-serving entity and a customer enter into such a contract,
the load-serving entity can optimally manage its performance and risk with a guarantee that
the customer’s risk is less than or equal to a pre-specified level and that the customer’s
expected payoff is greater than or equal to another pre-specified threshold. We achieve such
risk-management capabilities by formulating the contract design problem as mean-variance
constrained risk-sensitive control. A dynamic programming-based method is developed to
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Figure 1.1: Examples of supermarket refrigerators.

solve the problem. The key idea of our proposed solution method is to reformulate the
inequality constraints on the mean and the variance of the agent’s payoff as dynamical sys-
tem constraints by introducing new state and control variables. The reformulations use the
martingale representation theorem. The proposed contract method enables us to develop
a new direct load control method that provides the load-serving entity with financial risk
management solutions in real-time electricity markets. We also propose an approximate
decomposition of the optimal contract design problem for multiple customers into multiple
low-dimensional contract problems for one customer. This allows the direct load control
program to work for a large number of customers without any scalability issues. Further-
more, the contract design procedure can be completely parallelized. The performance and
usefulness of the proposed contract method and its application to direct load control are
demonstrated using data on the electric energy consumption of customers in Austin, Texas
as well as the Electricity Reliability Council of Texas’ locational marginal price data.

1.2.2 System interdependency

The next challenge considered in this dissertation is system interdependency or coupling.
As an example of such, supermarket refrigeration systems are important demand response
resources as they represent 7% of the total commercial energy consumption in the U.S. [129].
As shown in Figure 1.1, multiple display cases are interconnected in a supermarket refriger-
ator, leading to heat transfers between neighboring display cases. There are two factors that
make it difficult to optimally control an aggregation of such refrigerators to provide services
to power systems. First is the interdependency between display case temperature dynamics.
Because of this interdependency, we cannot easily approximate or decouple the large-scale
optimization problem for demand response when the total power consumption must be reg-
ulated. Another challenge occurs due to the discrete nature of the decision variable, which
is the ON/OFF control of the expansion valve or cooling unit in each display case. The dis-
crete control variables prevent us from using well-developed continuous optimization tools.
Because of these two factors, demand response using supermarket refrigerators is a combi-
natorial decision-making problem when their total power consumption should be regulated
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to provide services to the power grid. The combinatorial optimization problems associated
with interdependent systems generally require significant computational efforts and some of
them are not computationally tractable.

As another example, the combination of Kirchhoff’s laws and Ohm’s law in power net-
works makes power system states interdependent. Due to this interdependency, several im-
portant decision-making problems are combinatorial, including unit commitment and power
network topology optimization.

To resolve computational challenges in these combinatorial optimization problems asso-
ciated with interdependent systems, we will introduce a new linear approximation approach,
which provides a fast and scalable algorithm with a provable suboptimality bound. This tool
is particularly useful for the real-time optimization of large-scale interdependent systems.
Specifically, we consider an optimization problem for a dynamical system whose evolution
depends on a collection of binary decision variables. We develop scalable approximation al-
gorithms with provable suboptimality bounds to provide computationally tractable solution
methods even when the dimension of the system and the number of the binary variables
are large. The proposed method employs a linear approximation of the objective function
such that the approximate problem is defined over the feasible space of the binary decision
variables, which is a discrete set. To define such a linear approximation, we propose two
different variation methods: one uses continuous relaxation of the discrete space and the
other uses convex combinations of the vector field and running payoff. The approximate
problem is a 0–1 linear program, which can be exactly or approximately solved by existing
polynomial-time algorithms with suboptimality bounds, and does not require the solution
of the dynamical system. Furthermore, we characterize a sufficient condition ensuring the
approximate solution has a provable suboptimality bound. We show that this condition can
be interpreted as the concavity of the objective function. The performance and utility of the
proposed algorithms are demonstrated with the ON/OFF control problems of interdependent
refrigeration systems.

1.2.3 Personalized operation for customers

There have been growing interactions between physical infrastructures, including power sys-
tems, and human agents due to advances in sensing, computing and communication tech-
nologies. Hence, it is important to address the personalized efficiency and resilience in which
the system performance level is measured by the agents’ utility functions.

However, most existing control methods do not explicitly consider the human agents’
utility functions, or the methods assume that the utility functions are given and fixed.
These conventional approaches cannot address the personalized efficiency when the agents’
utility functions vary over time and change because of adversarial events or environmental
disturbances in an unmodeled manner.

Personalized operations of customers’ loads are particularly important in demand-side
management. For example, a customer may want to frequently tune her controller to find
an optimal trade-off between energy efficiency and comfort when time-varying electricity
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pricing is applied. However, tuning the controller by herself can be cumbersome. Under the
direct load control program, in which an aggregator has the authority to control customers’
loads, neglecting a customer’s utility function can make her feel uncomfortable with and
inconvenienced by her electric loads controlled for demand side management. Direct load
control methods with a fixed utility function may result in a similar effect if the true utility
deviates from the fixed utility. The resulting dissatisfaction with the management of electric
loads by the aggregator can lead the customer to drop out of the direct load control program
and is therefore undesirable for both parties. Under the indirect load control program,
an aggregator or a load serving entity designs pricing or reward schemes to incentivize its
customers to control their loads in a way that is desirable to the aggregator. However, a
customer may not control her loads in an expected way if her true utility deviates over time
from the nominal utility function adopted in the design of the pricing or incentive schemes.

To overcome this limitation, we develop a personalized control framework that tightly
combines online learning of the agent’s utility function from data (e.g., agent’s rating of
the control performance) and the control according to real-time updates of the utility. This
new personalized control tool is called the utility learning model predictive control. This
framework is particularly useful to automatically customize the controller of electric loads
that directly affect the customer’s comfort. Because the utility function is identified and
predicted online using Gaussian process regression, the controller is capable of immediately
setting its objective function to the learned utility function and of adjusting its control
action to maximize the new objective. Furthermore, no separate training period to learn the
customer’s utility is needed. The performance of the proposed method is demonstrated by
the application to a personalized thermostat controlling indoor temperature. In particular,
the proposed integration of Gaussian progress regression into the model predictive control is
shown to robustly learn the customer’s utility and behavior from noisy data.

1.3 Organization of the dissertation

The rest of this dissertation is organized as follows.

1.3.1 Chapter 2: Risk-limiting dynamic contracts for direct load
control

In Chapter 2, we address the challenge of risks in Section 1.2.1. Specifically, we propose
a novel dynamic contract approach for direct load control that can manage the financial
risks of utilities and customers, where the risks are generated by uncertain renewable gen-
eration. The problem setting for direct load control and the definition of the risk-limiting
dynamic contract under symmetric information are presented in Section 2.2. We reformu-
late the constraint on the variance of the agent’s payoff, which is called the risk-limiting
condition, as a constraint on the compensation provided to the agent by introducing a new
control variable in Section 2.4. Using the reformulated constraint, we propose the method
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for designing a globally optimal risk-limiting dynamic contract and discuss its decentralized
implementation in Section 2.5. Finally, the performance of the proposed contract method
and its application to direct load control are demonstrated with data on the electric energy
consumption of Austin customers as well as the Electricity Reliability Council of Texas’
(ERCOT’s) locational marginal price (LMP) data in Section 2.6.

1.3.2 Chapter 3: Approximation algorithms for optimization of
combinatorial dynamical systems

In Chapter 3, we present an optimization tool developed for combinatorial decision-making
under system interdependencies, which are inherent in interconnected loads and power net-
works. The problem setting for the optimization of combinatorial dynamical systems is
specified in Section 3.2. In Section 3.3, the linear approximation approach for this prob-
lem is proposed. To achieve the linear approximation, we propose two different concepts
of the derivative of the objective function. Furthermore, for each linear approximation, we
provide a condition under which the proposed approximate problem gives a solution with a
guaranteed suboptimality bound and show that the condition can be interpreted as the con-
cavity of the objective function or that of a reformulated objective function. In Section 3.4,
algorithms to solve the approximate problems with several types of linear inequality con-
straints are suggested. In Section 3.5, the proposed conditions for the suboptimality bounds
to hold are compared with submodularity. Finally, the performance and usefulness of the
proposed approximation algorithms are demonstrated with ON/OFF control problems for
supermarket refrigeration systems in Section 3.6.

1.3.3 Chapter 4: Utility learning model predictive control for
personal electric loads

In Chapter 4, we focus on the challenges in personalized operation of electric loads for
customers. We introduce a new personalized control framework, called the utility learning
model predictive control (MPC) that can learn its user’s preference online. The setup of the
utility learning MPC is proposed in Section 4.2. We then introduce the methods for learning
the customer’s behavior and her utility online and for combining them with the MPC in
Section 4.3. The performance of the proposed method is demonstrated with numerical tests
for personalized air conditioning in Section 4.4.

In Chapter 5, the contributions of this dissertation is summarized. It concludes with a
discussion on future research directions.
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Chapter 2

Risk-Limiting Dynamic Contracts for
Direct Load Control

2.1 Electricity market risk management using

demand-side resources

To reduce the greenhouse gases caused by electricity generation, there has been growing
interest in and efforts toward integrating renewable energy sources into the electric power
grid. As mentioned in Chapter 1, California plans to use renewable resources to serve 33%
of the electricity load by 2020 [22]. In particular, the penetration of solar and wind energy
resources is expected to significantly increase. However, the utilization of these resources is
challenging because they are uncertain and intermittent. To absorb the uncertainty in solar
and wind power, for example, the reserve capacity must be sufficiently large. In California,
the increase in the reserve costs needs to be compensated by all customers and the amount
of the compensation per customer may not be negligible when California achieves its goal of
33% renewable energy penetration [130].

Supply-side approaches have been proposed to address the uncertainty of renewable re-
sources in economic dispatch and unit commitment using stochastic dynamic programming
[108], mixed-integer stochastic programming [17] and robust optimization [14], among oth-
ers. However, these aforementioned methods do not examine the potential of demand-side
resources in managing uncertain renewable generation or loads. To investigate this poten-
tial, this chapter proposes a demand-side solution that manages the uncertainty of customers’
solar and wind generation and loads. The load-serving entity or the aggregator for the cus-
tomers procures power or generation reserves in a day-ahead market and the amount of
procurement is determined based on a day-ahead load forecast. Because the actual total
load deviates from the procured power, the load-serving entity must purchase the deviated
amount of power in a real-time market to balance supply and demand. It is desirable for the
load-serving entity to minimize the real-time purchase of energy because the energy price
and the reserve cost in the real-time market are normally higher and more volatile than
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those in the day-ahead market. As the penetration of customers’ solar and wind generation
increases, however, the electricity price in the real-time market is highly volatile and the
customers’ demand is very difficult to predict. Therefore, the risk of spending a substantial
budget in the real-time market increases. If the load-serving entity bears this financial risk,
the energy price in the customers’ tariff would inevitably increase. To reduce this risk that
the load-serving entity must face, we propose a contract approach for direct load control in
which the customer transfers the authority to control his or her load to the load-serving en-
tity. Once the load-serving entity and its customer enter into the contract, the load-serving
entity can allocate a portion of the risk to the customer through the compensation scheme
and the control strategy for the customer’s load specified in the contract. A customer might
reasonably worry that such compensation and control could increase the risk for large energy
costs and a disruption of comfort. The proposed contract addresses this concern by guaran-
teeing that the risk in the customer’s payoff, a weighted sum of energy costs and discomfort
level, is limited by a pre-specified threshold and that the mean of the customer’s payoff is
greater than another pre-specified level. The former is called the risk-limiting condition,
and the latter is called the participation payoff condition. The compensation scheme and
the control strategy written in the contract must be designed such that their combination
mitigates the load-serving entity’s financial risk in the real-time market while satisfying the
risk-limiting and participation payoff conditions for the customer.

The key element of the proposed contract for such a demand-side management is direct
load control that allows the load-serving entity to actively use the customer’s load to manage
its financial risk. A number of direct control methods have been suggested for various types
of electric loads such as thermostatically controlled loads [86, 50], electric vehicles [113, 83]
and deferrable loads [97, 112]. The objectives of existing direct load control methods include
shifting demand (e.g., ‘valley-filling’), providing ancillary services (e.g., frequency regulation)
and energy arbitrage [23, 145, 88]. To the best of the authors’ knowledge, however, the
potential of direct load control for financial risk management in real-time electricity markets
has not yet been studied. We bridge the gap between direct load control and risk management
by proposing a contract-based approach.

A variety of contract methods have been suggested for demand-side management in
electric power systems. The use of contracts for reducing energy price risk in spot markets
has been investigated [67]. Interruptible service contracts have been extensively studied, in
which a customer takes risk of service interruption in return for a discount in the energy price
[24, 124, 63]. More recently, deadline-differentiated deferrable energy contracts have been
proposed to prevent the risk of a customer not receiving energy delivery by a pre-specified
deadline [15]. A different contract approach associated with durations-differentiated loads is
studied in [93]. None of the aforementioned contract methods, however, takes into account
detailed electric load dynamics, which are essential in direct load control to guarantee the
customer’s comfort and the load’s system constraints.

To incorporate dynamics of electric loads in contracts, we adopt a dynamic contract
framework, also called a continuous-time principal-agent problem [53, 28]. In such a problem,
a principal (e.g., a company) and an agent (e.g., a worker) make a contract that specifies a
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compensation scheme and a control strategy in an uncertain environment. The setting we
consider in this work is called the first-best, in which the principal and the agent have the
same information and share the risk in the principal’s revenue stream. The principal can
monitor the agent’s control or effort and, therefore, can enforce the control strategy written
in the contract. In the electricity setting, regarding a load-serving entity as the principal
and its customer as the agent, this first-best case is appropriate for direct load control
because the load-serving entity has the authority to monitor and control its customer’s
electric loads. A dynamic contract problem for the first-best case was first considered in
[90]. It uses a simple principal-agent model with exponential utility functions introduced
by Holmstrom and Milgrom for moral hazard [53]. A more general class of the first-best
case dynamic contract problems is addressed in [19] by using the martingale and convex
duality methods [105, 26, 64, 66]. However, the proposed solution approach requires that
the payoff functions be differentiable, strictly increasing and strictly concave and that the
dynamical system be a stochastic integral equation. These restrictions are acceptable in many
applications in economics and finance, but they may exclude some important engineering
problems, including direct load control, because they often require dynamical systems and
payoff functions be complicated. Furthermore, the aforementioned methods assume that the
utility function of the agent with respect to his or her payoff is given. However, in practice,
it is difficult to have complete knowledge of the agent’s utility function. In particular, if the
agent’s utility function used in designing the contract deviates from his or her actual utility,
the agent may not want to enter into the contract again.

In this chapter, we propose a novel dynamic contract method that overcomes the limita-
tions of existing methods for the first-best case (i.e., symmetric information). The proposed
method uses the variance of the agent’s payoff as the risk measure for the agent. By impos-
ing a constraint on the variance, we can limit the risk the agent needs to bear. We call this
constraint the agent’s risk-limiting condition. In addition, the proposed method guarantees
that the mean of the agent’s payoff exceeds some pre-specified threshold. From the princi-
pal’s point of view, by executing an appropriately designed compensation scheme and control
strategy specified in the contract, the principal can transfer some portion of its financial risk
to the agent, respecting the agent’s risk-limiting condition. This variance approach does
not require complete knowledge of the agent’s utility function, which is difficult to obtain
in practice. Such a risk-limiting capability distinguishes our method from existing contract
methods. To take into account the principal’s risk aversion, we formulate the contract design
problem as risk-sensitive control [60, 38]. Due to the constraints on the mean and the vari-
ance of the agent’s payoff, however, dynamic programming is not directly applicable. One
may be able to handle the constraints using the stochastic maximum principle or the duality
method [102, 66]. However, these approaches do not, in general, allow a globally optimal
solution.

The theoretic contribution of the chapter is to develop a method that gives a globally op-
timal solution of such mean-variance constrained stochastic optimal control problems. More
specifically, using the martingale representation theorem, we reformulate the constraints on
the mean and the variance of the agent’s payoff function, which are difficult to handle, as
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two new dynamical systems controlled by new control variables. The first new system state
represents the agent’s future expected payoff with a modified diffusion term. The second
new system state can be interpreted as the remaining amount of risk the agent can bear.
The former and latter systems are used to reformulate the constraint on the mean and the
variance of the agent’s payoff, respectively. It turns out that the reformulated problem is
risk-sensitive control with a stochastic target constraint in the augmented state space of
the original system and the new dynamical systems. A globally optimal solution to the
reformulated problem can be obtained by using the dynamic programming principle in the
augmented state space. The value function of the problem is computed by numerically solv-
ing an associated Hamilton-Jacobi-Bellman equation and is then used to synthesize optimal
compensation and control strategy. The proposed solution method allows more general sys-
tem models for loads and payoff functions for the principal and the agent than existing
dynamic contract methods for the first-best case. This flexibility and the risk-limiting ca-
pability of the proposed contract method make it appropriate for direct load control policy
which explicitly treats financial risk in real-time electricity markets. We also propose an ap-
proximate decomposition method for the contract design problem: the problem for n agents
can be decomposed into n optimal contract design problems each for a single agent. This
decomposition allows an approximate contract with a provable suboptimality bound. Due to
the decomposition, the computational complexity of the proposed method increases linearly
with the number of agents. Furthermore, the decomposed contract design problem for an
agent is independent of that for another agent. Therefore, the contract design procedures
for multiple customers can be completely parallelized.

2.2 Stochastic models

We consider a situation in which the load-serving entity wants to make a contract with n
heterogeneous customers to directly control each customer’s personal electric load, such as
an air conditioner or a water heater. For simplicity, we assume that each customer allows the
load-serving entity control over only one of his or her loads, although the proposed method is
also applicable to the case of multiple loads per customer. The load-serving entity’s goal is to
manage the risk of spending a substantial budget in a real-time energy market by controlling
the customers’ loads in the direct load control program. We consider a finite time horizon
contract: let [0, T ] be the period in which the contract is effective.

2.2.1 Total power consumption

Let ηit ∈ R be the energy consumption (in kWh) up to time t ∈ [0, T ] by customer i and
uit ∈ R be the power consumption (in kW) by customer i’s electric load in the direct load
control program. Note that even when uit = 0, the total power consumption by customer
i is not, in general, zero at time t due to the existence of the customer’s other loads and
possibly solar or wind generation (which can be considered as negative loads). If all the
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customers enter into the contract, the load-serving entity has the authority to determine
ui := {uit}0≤t≤T for i = 1, · · · , n. The number, n, of customers is typically in the order
of 103–105. Let u := (u1, · · · , un). The uncertainty in the customers’ loads and solar and
wind power generation causes the energy consumption process {ηt}0≤t≤T to be stochastic.
To describe the energy consumption process, we use a stochastic differential equation (SDE)
model of the form

dηit =
(
li(t) + uit

)
dt+ σ̃i(t)dW

i
t , (2.1)

where li(t) ∈ R, 0 ≤ t ≤ T , is the forecast of customer i’s loads (in kW) other than those
in the direct load control program. The effect of the load forecast error is modeled by the
diffusion term, σ̃i(t)dW

i
t , where W i := {W i

t }0≤t≤T is a one-dimensional standard Brownian
motion on a probability space (Ω,F ,P) and the diffusion coefficient σ̃i : [0, T ] → R is a
bounded function. We assume that W i and W j are independent for any i, j ∈ {1, · · · , n}
such that i 6= j. The functions li and σ̃i can be estimated from data on the electric energy
consumption of customers in Austin as explained in Section 4.4. Furthermore, the validity
of the standard Brownian motion in the model for the proposed contract framework is tested
using the data in Section 4.4.

2.2.2 Energy price and load-serving entity’s revenue in real-time
markets

Let p(t) ∈ R, 0 ≤ t ≤ T , be the amount of power procured by the load-serving entity in the
day-ahead market. We assume that p(t) is given. The energy price in the real-time market is
chosen as the locational marginal price (LMP). Let λt be the LMP at time t. The dynamics
of the LMP can be modeled as the following SDE [32, 63]:

dλt = r0(ν(t)− lnλt)λtdt+ σ0(t)λtdW
0
t , (2.2)

where W 0 := {W 0
t }0≤t≤T is a one-dimensional standard Brownian motion on (Ω,F ,P) and

the price volatility σ0 : [0, T ]→ R is a bounded function. For simplicity, we assume that W 0

is independent of W i for i = 1, · · · , n, but our contract method can easily be extended to
the case in which they are dependent. This model is suitable to capture the mean-reverting
behavior of energy prices in the real-time (spot) market: when the energy price is high (resp.
low), the supply tends to increase (resp. decrease) and, therefore, causes the price to decrease
(resp. increase) [31]. Let wt := lnλt, then w := {wt}0≤t≤T satisfies

dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0
t . (2.3)

We estimate r0, ν(t) and σ0(t) using the ERCOT LMP data in Section 4.4. In principle,
the LMP is not completely exogenous because it is influenced by the power consumption of
the customers’ loads. In this work, however, we assume that this effect is negligible and,
therefore, that the LMP is exogenous.
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The load-serving entity’s revenue in the real-time market up to time t, denoted as zt ∈ R,
is given by

zt =

∫ t

0

λs

(
p(s)ds−

n∑
i=1

dηis

)
.

Note that we assume that excess power is sold as easily as deficits are procured. This
stochastic integral can be rewritten as the following SDE:

dzt = λt

(
p(t)−

n∑
i=1

(li(t) + uit)

)
dt−

n∑
i=1

λtσ̃i(t)dW
i
t . (2.4)

The load-serving entity’s revenue is affected by the control u of the customers’ loads in the
direct load control program. The set of feasible controls is chosen as Ui := {ui : [0, T ] →
U i | ui progressively measurable with respect to F (i)

t }, where U i is a compact set in R and

{F (i)
t }0≤t≤T is the filtration generated by the two dimensional Brownian motion W (i) :=

(W 0,W i). We also let U := U1 × · · · × Un.

2.2.3 Customers’ loads

Consider customer i’s load in the direct load control program, and let xit ∈ R be the system
state at time t ∈ [0, T ]. If the load is an air conditioner unit, then xit would represent the
indoor temperature; if the load is a water heater, it would represent the water temperature.
Then, the system dynamics can be modeled as the following stochastic differential equation:

dxit = fi(x
i
t, u

i
t)dt (2.5)

with the initial condition xi0 = x0i for i = 1, · · · , n, where the control uit is a stochastic
process. Although our contract method can handle stochastic system models with a diffusion
term, we use the model (2.5) for simplicity. Here, we assume that fi : R × U i → R is
continuous and that fi(x,u) is differentiable in x for any u ∈ U i. We further assume that
there exists a constant K such that for all (x,u) ∈ R× Ui∣∣∣∣∂fi(x,u)

∂x

∣∣∣∣ ≤ K,

|f(x,u)| ≤ K(1 + |x|+ |u|).

Then, there exists a unique solution xi := {xit}0≤t≤T ∈ L2(0, T ) for i = 1, · · ·n, where
L2(0, T ) denotes the space of all real-valued, progressively measurable stochastic processes

x such that E
[∫ T

0
x2
tdt
]
<∞. See [39] for the proof.
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Example 1. Let xit denote the indoor temperature of customer i at time t, and let Θi(t) rep-
resent the corresponding outdoor temperature. Then, the dynamics of the indoor temperature
can be described as the following equivalent thermal parameter (ETP) model [120]:

dxit = [αi(Θi(t)− xit)− κiuit]dt (2.6)

for i = 1, · · · , n. Here, αi = R1,i/R2,i, where R1,i denotes the thermal conductance between
the outdoor air and indoor air and R2,i is the thermal conductance between the indoor air
and the thermal mass for customer i’s room. The positive constant κi converts an increase
in energy (kWh) to a reduction in temperature (◦C) for customer i’s air conditioner.

2.2.4 Payoff functions

Load-serving entity’s payoff

The load-serving entity’s payoff function is chosen as its profit in the direct load control
program. Let Ci ∈ R be the end-time compensation paid to customer i in the direct load
control program and µi(t) be the energy price per unit kWh at time t specified in customer
i’s electricity tariff. We assume that µi : [0, T ] → R is bounded. The load-serving entity’s
total payoff in real time, i.e., neglecting the cost of power procured in the day-ahead market,
which is its revenue obtained from the customers, is then given by∫ T

0

dzt +
n∑
i=1

∫ T

0

µi(t)dη
i
t −

n∑
i=1

Ci

=
n∑
i=1

∫ T

0

[
(µi(t)− λt)

(
li(t) + uit

)
+ λtpi(t)

]
dt+

n∑
i=1

∫ T

0

(µi(t)− λt)σ̃i(t)dW i
t −

n∑
i=1

Ci,

where {p1(t), · · · , pn(t)} is a set satisfying
∑n

i=1 pi(t) = p(t) and the set of feasible compen-

sation values is chosen as Ci := {Ci ∈ R | Ci is F (i)
T -measurable}. Let C := C1 × · · · × Cn.

We define the payoff function of the load-serving entity as

JP [C, u] :=
n∑
i=1

(∫ T

0

rPi (t, wt, x
i
t, u

i
t)dt+

∫ T

0

σPi (t, wt)dW
i
t − Ci

)
, (2.7)

where rPi : [0, T ]× R× R× R→ R and σPi : [0, T ]× R→ R are such that

rPi (t, wt, x
i
t, u

i
t) := (µi(t)− ewt)(uit + li(t)) + ewtpi(t),

σPi (t, wt) := (µi(t)− ewt)σ̃i(t)
(2.8)

for i = 1, · · · , n. The superscript ‘P ’ represents the fact that the load-serving entity plays
the role of the principal in the contract. Note that in the direct load control application
rPi is independent of xit. We use the models (2.8) for direct load control but the proposed
contract design method is applicable to more general models of running payoff and volatility.
For notational simplicity, we will suppress the dependency of the functions on time.
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Customer’s payoff

Each customer’s total payoff depends on (i) his or her economic profit and (ii) his or her
comfort level. Customer i’s profit can be computed as the compensation received minus the
energy costs, i.e.,

Ci −
∫ T

0

µi(t)dη
i
t

= −
∫ T

0

µi(t)(li(t) + uit)dt−
∫ T

0

µi(t)σ̃i(t)dW
i
t + Ci.

Customer i’s payoff function can be represented as

JAi [Ci, ui] :=

∫ T

0

rAi (xit, u
i
t)dt+

∫ T

0

σAi (t)dW i
t + Ci, (2.9)

where rAi : [0, T ]× R× R→ R and σAi : [0, T ]→ R are such that

rAi (t, xit, u
i
t) := −µi(t)(li(t) + uit) + ri(x

i
t, u

i
t),

σAi (t) := −µi(t)σ̃i(t)
(2.10)

for i = 1, · · · , n. Here, ri(x
i
t, u

i
t) represents customer i’s comfort level given the system state

xit and control uit. The superscript ‘A’ represents the fact that the customer is the agent in the
contract. We assume that there exist constants B0 and B1 such that |rAi (x,u)| ≤ B0 +B1|x|
for all x ∈ R given any u ∈ U i.

Example 2. Customer i’s discomfort level is zero if the indoor temperature, xit, is within a
desirable temperature range, [Θ,Θ]. The discomfort level increases as the indoor temperature
increases above Θ or drops below Θ. If we set the comfort level as the negative value of the
discomfort level, then we can model customer i’s comfort level as

ri(x
i
t, u

i
t) = −ωi

[
(xit −Θ)+ + (Θ− xit)+

]
, (2.11)

where the constant parameter ωi represents the customer i’s valuation of comfort and (a)+ :=
a if a > 0 and (a)+ := 0 otherwise for any a ∈ R.

2.3 Risk-limiting dynamic contracts

The load-serving entity (principal) offers customer i a contract that specifies the compen-
sation scheme, Ci, and its control strategy, ui := {uit}0≤t≤T for i = 1, · · · , n. The contract
is dynamic in the sense that the load-serving entity uses the state feedback control strategy
written in the contract to dynamically choose the control action each customer must follow.
Customer i (agent i) accepts the contract only if



CHAPTER 2. RISK-LIMITING DYNAMIC CONTRACTS FOR DIRECT LOAD
CONTROL 15

1. (participation-payoff condition) the mean of customer i’s payoff is greater than or equal
to some threshold, bi ∈ R, i.e.,

E[JAi [Ci, ui]] ≥ bi, (2.12)

and

2. (risk-limiting condition) the variance of customer i’s payoff is less than or equal to
some threshold, Si ∈ R, i.e.,

Var[JAi [Ci, ui]] ≤ Si. (2.13)

Note that variance is used as the risk measure of the customer’s payoff. We call bi and Si
the participation payoff and the risk share of customer i, respectively.

Let Λ := {(b1,S1), · · · , (bM ,SM)} be a set of given pairs of participation payoffs and risk
shares. These pairs are designed by the load-serving entity and provided to the customers.
Customer i selects a pair (bi, Si) ∈ Λ and the contract determined from this pair. Once each
customer enters into a contract, the load-serving entity directly controls each customer’s load
following the control strategy specified in the contract. At the end of the contract period,
the load-serving entity compensates each customer according to the compensation scheme
specified in the contract.

More specifically, once customer i agrees to enter into the contract, the load-serving
entity company has the authority to control customer i’s load for maximizing the load-
serving entity’s expected payoff under the constraints 1) and 2). Taking into account the
risk of the load-serving entity’s payoff being small as well, we formulate the problem of
designing such a dynamic contract (C, u) as the following constrained risk-sensitive control
problem:

max
C∈C,u∈U

− 1

θ
logE

[
exp(−θJP [C, u])

]
(2.14a)

subject to dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0
t (2.14b)

dxit = fi(x
i
t, u

i
t)dt (2.14c)

E[JAi [Ci, ui]] ≥ bi (2.14d)

Var[JAi [Ci, ui]] ≤ Si, (2.14e)

where θ ∈ R \ {0} is a constant, called the coefficient of load-serving entity’s risk-aversion.
When θ is positive, the risk-sensitive objective function penalizes the risk of the load-serving
entity’s payoff being small because − exp(−θJP ) is concave increasing in JP . Therefore, the
load-serving entity can make a risk-averse decision by solving (3.32). If θ < 0, the load-
serving entity is risk-seeking. For intuition, note that the risk-sensitive objective function is
well approximated by a weighted sum of the mean and the variance of the payoff when |θ|
is small because the Taylor expansion of the risk-sensitive objective function is given by

− 1

θ
logE

[
exp(−θJP )

]
= E[JP ]− θ

2
Var[JP ] +O(θ2) (2.15)
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as θ → 0. Note that the variance of the payoff is penalized when θ > 0.
The solution, (COPT, uOPT), to this problem is said to be the optimal risk-limiting dy-

namic contract for direct load control. This problem of risk-limiting dynamic contract design
is a mean-variance constrained-stochastic optimal control problem that is not directly solv-
able via dynamic programming. In the following sections, we carefully characterize the
necessary and sufficient conditions for the constraints on the mean and the variance of the
customers’ payoff functions. The characterizations allow us to show that the contract design
problem can be reformulated as a risk-sensitive control problem with a stochastic target
constraint that can be solved by dynamic programming.

The information availabilities to the load-serving entity and the customers in the direct
load control program are symmetric, as opposed to the case of indirect load control, in which
the load-serving entity has limited observation capability (e.g., [138]). More specifically, in
the proposed framework, the load-serving entity can monitor the control and state of the
customers’ loads in the direct load control program as well as the energy price in the real-
time market. Furthermore, the load-serving entity has all the parameters and functions
needed to design an optimal contract. That is, it has the information of p, li, σ̃i, µi, r0, σ0,
ν, which can be estimated from data as shown in Section 4.4, and the customers’ comfort
functions ri and load models for i = 1, · · · , n. In practice, the comfort functions and load
models can be identified using a training period. Each customer, in principle, can have the
same information. However, customer i needs to know only p, li, σ̃i, µi, r0, σ0, ν, his or her
own comfort function and load model. The proposed framework assumes that each customer
can monitor the control and state of his or her load in the direct load control program
and the energy price in the real-time market. Another important feature of the proposed
contract method is that the interactions between the load-serving entity and its customers
can be decoupled from each other because one customer’s load does not affect those of other
customers and the participation payoff and risk-limiting conditions are personalized. This
feature will allow us to decentralize the control of loads as shown in Section 2.5.2.

We assume that the contract period [0, T ] is a time interval within 24 hours, but the
proposed method can handle arbitrary finite time horizons. Therefore, the customers and the
load-serving entity, in principle, can renew the contracts every day. However, it may not be
convenient for each customer to choose a contract or, equivalently, a participation payoff and
a risk share pair every day. This issue can be resolved by automatically choosing the contract
for the current day as that for the previous day unless the customer explicitly wants to change
it. Daily contracts have a practical advantage: the day-ahead forecasts of the LMP model
parameters and demand uncertainty (and outdoor temperature in the case of air conditioners)
can be incorporated into the contracts. Therefore, the contracts can be designed using
accurate models. We also assume that each customer does not strategically control other
loads to modify the forecasted σ̃i by the load-serving entity. This assumption can be justified
in two ways. First, the load-serving entity can make a contract to control multiple loads
of a customer so that the customer has little flexibility to change σ̃i. Second, even if the
customer strategically affects σ̃i in one day, the customer’s gain in the next day is marginal
because the contract is renewed with a new estimate σ̃i that incorporates any strategic
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behavior. Formally, this problem can be formulated as a Stackelberg differential game, in
which the the load-serving entity chooses the estimates of li and σ̃i for the contract period
[0, T ] assuming that the customer has no incentive to deviate from σ̃i in the contract period.
A similar problem is considered in our previous work [138]. This Stackelberg differential
game problem is out of the scope of this chapter and will be addressed in our future work
on risk-limiting dynamic contracts for indirect load control.

2.4 Risk-limiting compensation

The risk-limiting condition (2.13) is an inequality constraint on the variance of each agent’s
payoff. This constraint hinders us from using the dynamic programming principle to solve the
contract design problem (3.32). In this section, we characterize a condition on the end-time
compensation, which is equivalent to the risk-limiting condition. It turns out that the new
equivalent condition allows us to formulate the contract design problem as a risk-sensitive
control problem that can be solved by dynamic programming.

We begin by defining the following set of stochastic processes: let Γi be the set of processes
ξi := {ξit}0≤t≤T , ξit = (ξi,1t , ξ

i,2
t ) ∈ R1×2 such that

(i) ξit is F (i)
t -progressively measurable;

(ii) E
[∫ T

0
‖ξit‖2dt

]
<∞

for i = 1, · · · , n. We also let Γ := Γ1×· · ·×Γn. In the next lemma, we show that there exists
a unique process in this set such that its integral over the Brownian motion W (i) := (W 0,W i)
corresponds to the difference between the agent’s payoff and its mean value.

Lemma 1. Fix i ∈ {1, · · · , n}. Given Ci ∈ Ci and ui ∈ Ui, there exists a unique (up to a
set of measure zero) stochastic process ξi = {ξit}0≤t≤T ∈ Γi such that

JAi [Ci, ui]− E[JAi [Ci, ui]] =

∫ T

0

ξitdW
(i)
t . (2.16)

Proof. Fix Ci ∈ Ci and ui ∈ Ui. We introduce a new process

qit := E
[∫ T

t

rAi (xis, u
i
s)ds+ Ci

∣∣∣∣ F (i)
t

]
.

Here, the expectation is conditioned over the filtration {F (i)
t }0≤t≤T generated by the Brow-

nian motion W (i) = (W 0,W i). We notice that the process

qit +

∫ t

0

rAi (xis, u
i
s)ds = E

[∫ T

0

rAi (xis, u
i
s)ds+ Ci

∣∣∣∣ F (i)
t

]
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is martingale. Recall that there exist constants B0 and B1 such that∣∣rAi (x,u)
∣∣ ≤ B0 +B1|x|

for all x ∈ R and u ∈ U i. Therefore, we have(∫ t

0

rAi (xis, u
i
s)ds

)2

≤
∫ t

0

(B0 +B1|xis|)2ds,

which implies that for t ∈ [0, T ]

E

[(∫ t

0

rAi (xis, u
i
s)ds

)2
]
<∞ (2.17)

because xi ∈ L2(0, T ). From the definition of qit, we deduce that

E
[
(qit)

2
]
<∞. (2.18)

Due to the inequalities (2.17) and (2.18), we obtain

E

[(
qit +

∫ t

0

rAi (xis, u
i
s)ds

)2
]
<∞.

The Martingale representation theorem (e.g., [65, 73]) suggests that there exists a unique
(up to set of measure zero) process ξ̄i = {ξ̄it}0≤t≤T ∈ Γi such that

qiT +

∫ T

0

rAi (xit, u
i
t)dt = qi0 +

∫ T

0

ξ̄itdW
(i)
t .

We also note that

qiT = Ci,

qi0 = E[JAi [Ci, ui]].

Therefore, we obtain

JAi [Ci, ui] = E[JAi [Ci, ui]] +

∫ T

0

σAi (t)dW i
t +

∫ T

0

ξ̄itdW
(i)
t .

Set ξ1,i
t := ξ̄1,i

t and ξ2,i
t := ξ̄2,i

t + σAi (t), then ξi is in Γi and satisfies (2.16).

This lemma represents the agent’s payoff as the sum of its mean value and the Itô integral
of the new process ξi along the Brownian motion W (i). The following theorem suggests that
this representation allows reformulation of the risk-limiting condition (2.13).
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Theorem 1. Fix i ∈ {1, · · · , n} and ui ∈ Ui. The risk-limiting condition holds, i.e.,

Var[JAi [Ci, ui]] ≤ Si (2.19)

if and only if there exists a unique (up to set of measure zero) γi ∈ Γi such that

Ci = E[JAi [Ci, ui]]−
∫ T

0

rAi (xit, u
i
t)dt−

∫ T

0

σAi (t)dW i
t +

∫ T

0

γitdW
(i)
t (2.20)

and

E
[∫ T

0

‖γit‖2dt

]
≤ Si. (2.21)

Proof. Suppose that there exists γi ∈ Γi such that (2.20) and (2.21) hold. Then,

JAi [Ci, ui]− E[JAi [Ci, ui]] =

∫ T

0

γitdW
(i)
t .

Due to the Itô’s isometry, we have

Var[JAi [Ci, ui]] = E
[∫ T

0

‖γit‖2dt

]
.

Combining this equality and (2.21), we obtain the risk-limiting condition (2.19).
Suppose now that the risk-limiting condition (2.19) holds. Lemma 2 suggests that there

exists ξi ∈ Γi such that

JAi [Ci, ui]− E[JAi [Ci, ui]] =

∫ T

0

ξitdW
(i)
t .

The variance of agent i’s payoff is given by

Var[JAi [Ci, ui]] = E
[∫ T

0

‖ξit‖2dt

]
.

Due to the risk-limiting condition (2.19), we have

E
[∫ T

0

‖ξit‖2dt

]
≤ Si.

Therefore, ξi ∈ Γi satisfies both (2.20) and (2.21). Such a process must be unique up to a
set of measure zero due to Lemma 2.

The next corollary suggests a way to construct the end-time compensation given u ∈ U
and γ ∈ Γ.
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Corollary 1. Fix u ∈ U and γ ∈ Γ such that

E
[∫ T

0

‖γit‖2dt

]
≤ Si (2.22)

for i = 1, · · · , n. The risk-limiting condition (2.13) holds if and only if the end-time com-
pensation, C ∈ C, satisfies

Ci = E[JAi [Ci, ui]]−
∫ T

0

rAi (xit, u
i
t)dt−

∫ T

0

σAi (t)dW i
t +

∫ T

0

γitdW
(i)
t

for i = 1, · · · , n.

Theorem 1 and Corollary 4 imply that, given ui ∈ Ui, determining Ci ∈ Ci is equivalent
to choosing γi ∈ Γi such that it satisfies (2.22). In the next section, we consider γi ∈ Γi

as a two-dimensional decision variable and then construct the end-time compensation using
an optimal γi. We also show that the mean of agent i’s payoff is given by the participation
payoff bi if an optimal contract is chosen. However, even if we reformulate the contract design
problem (3.32) as a stochastic optimal control in which the decision variables are ui and γi,
i = 1, · · · , n, the integral constraint (2.22) prohibits us from using dynamic programming to
solve the reformulated problem. We resolve this issue in the following section by introducing
new state and control variables.

2.5 Optimal contract design

We now propose the solution method for risk-limiting dynamic contract design problem (3.32)
given (bi, Si) ∈ Λ for i = 1, · · · , n. Recall that the principal’s objective is to maximize its risk-
sensitive payoff with a guarantee that the participation payoff and risk-limiting conditions
for all the agents are satisfied. The risk of each agent’s payoff being too small is limited
by the variance constraint (2.14e), which is the risk-limiting condition. On the other hand,
small values of the principal’s payoff are penalized by maximizing the risk-sensitive objective
function (3.2a) when the risk-aversion coefficient θ is positive. In other words, if the principal
is risk-averse, she transfers her financial risk to the agents as long as the agents’ risk-limiting
conditions are respected.

The contract design problem (3.32) is a constrained stochastic optimal control problem
that cannot be directly solved by dynamic programming [10]. The stochastic maximum prin-
ciple approach may be used to handle the constraints [102, 20]. However, it is not capable
of finding a globally optimal solution unless the problem is concave in both C and u. To
obtain a globally optimal solution, we reformulate the problem as a risk-sensitive control
problem that can be solved by dynamic programming. The key idea is to introduce two new
state variables. The first state variable’s value at the terminal time allows us to construct
the end-time compensation using Theorem 1. The second variable is used to reformulate the
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constraint (2.21) on the new decision variable, γ, as an SDE. However, the dynamic program-
ming approach, in general, has an inherent scalability issue: the computational complexity
exponentially increases as the system dimension increases (e.g., [12]). We overcome this
scalability issue by proposing an approximate decomposition of the contract design problem
for all agents into n lower-dimensional contract design problems, each for a single agent,
where n is the number of agents.

2.5.1 Dynamical system approach to limit risks

We show that the solution of the contract design problem (3.32) can be obtained by solving
the following risk-sensitive control problem:

max
u∈U,γ∈Γ,ζ∈Γ

− 1

θ
logE

[
exp

(
−θJ̄P [u, γ, ζ]

)]
(2.23a)

subject to dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0
t (2.23b)

dxit = fi(x
i
t, u

i
t)dt (2.23c)

dvit = −rAi (xit, u
i
t)dt+ γi,1t dW

0
t + (γi,2t − σAi (t))dW i

t (2.23d)

vi0 = bi (2.23e)

dyit = −‖γit‖2dt+ ζ itdW
(i)
t (2.23f)

yi0 = Si (2.23g)

yiT ≥ 0 a.s., (2.23h)

where J̄P is the reformulated principal’s payoff given by

J̄P [u, γ, ζ] :=
n∑
i=1

(∫ T

0

rPi (wt, x
i
t, u

i
t) +

∫ T

0

σPi (wt)dW
i
t − viT

)
.

Note that we now view γ ∈ Γ as a decision variable instead of C ∈ C. This is feasible due
to Theorem 1 and Corollary 4. The new state yi and new decision variable ζ i handle the
integral constraint (2.21) in Theorem 1. Intuitively speaking, the first new state variable vit
represents agent i’s expected future payoff with a modified diffusion term. The second new
state yit can be interpreted as the remaining amount of risk that agent i can bear from time
t. Having these interpretations, we can show that the terminal value of the first new state
variable can be used to construct an optimal end-time compensation and that of the second
new state variable must be greater than or equal to zero to satisfy agent i’s risk-limiting
condition. These two claims are shown in Theorem 2.

Another important observation is that the problem is now defined in the augmented
state space of wt, xt := (x1

t , · · · , xnt ) ∈ Rn, vt := (v1
t , · · · , vnt ) ∈ Rn and yt := (y1

t , · · · , ynt ) ∈
Rn. Therefore, the total system dimension is 3n + 1. This reformulated problem can be
decentralized into n three dimensional risk-sensitive control problems, as shown in Section
2.5.2.



CHAPTER 2. RISK-LIMITING DYNAMIC CONTRACTS FOR DIRECT LOAD
CONTROL 22

Theorem 2. Let (uOPT, γOPT, ζOPT) be the solution to (2.23). We also let xOPT, vOPT and
yOPT denote the processes driven by (2.23c), (2.23d) and (2.23f) with (uOPT, γOPT, ζOPT),
respectively. Define

COPT,i := vOPT,i
T (2.24)

for i = 1, · · · , n. Then, (COPT, uOPT) is an optimal risk-limiting dynamic contract, i.e., it
solves (3.32).

Proof. We first observe that

JAi [COPT,i, uOPT,i] =

∫ T

0

rAi (xOPT,i
t , uOPT,i

t )dt+

∫ T

0

σAi (t)dW i
t + vOPT,i

T

= bi +

∫ T

0

γOPT,i
t dW

(i)
t

(2.25)

due to the SDE (2.23d) with the initial condition (2.23e). Therefore, we have

E[JAi [COPT,i, uOPT,i]] = bi, (2.26)

which implies that the participation payoff condition (2.14d) holds. Furthermore, the vari-
ance of agent i’s payoff with (COPT,i, uOPT,i) is given by

Var[JAi [COPT,i, uOPT,i]] = E
[∫ T

0

‖γOPT,i
t ‖2dt

]
due to the Itô’s isometry. We also notice that

yOPT,i
T = Si −

∫ T

0

‖γOPT,i
t ‖2dt+

∫ T

0

ζOPT,i
t dW

(i)
t ,

which suggests that

Var[JAi [COPT,i, uOPT,i]] = E
[
Si − yOPT,i

T +

∫ T

0

ζOPT,i
t dW

(i)
t

]
.

Hence, if yOPT,i
T ≥ 0 a.s., the risk-limiting condition (2.14e) also holds. Therefore, (COPT, uOPT)

is a feasible dynamic contract.
Suppose that (COPT, uOPT) is not a solution of (3.32) and select a solution, (Ĉ, û), of

(3.32). Theorem 1 suggests that there exists a unique (up to set of measure zero) γ̂ ∈ Γ such
that

Ĉi = E[JAi [Ĉi, ûi]]−
∫ T

0

rAi (x̂it, û
i
t)dt−

∫ T

0

σAi (t)dW i
t +

∫ T

0

γ̂itdW
(i)
t
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and

E
[∫ T

0

‖γ̂it‖2dt

]
≤ Si. (2.27)

We claim that (û, γ̂) satisfies all the constraints of (2.23) with the stochastic process v̂ :=
{v̂t}0≤t≤T defined as

v̂it := v̂i0 −
∫ t

0

rAi (x̂is, û
i
s)ds+

∫ t

0

(γ̂is − σAi (s))dW i
s

for some initial value v̂i0 ∈ R such that

v̂iT = Ĉi. (2.28)

It is clear that the process v̂i satisfies the SDE (2.23d) for i = 1, · · · , n by definition. Addi-
tionally, note that

E[JAi [Ĉi, ûi]] = v̂i0.

Suppose that v̂ does not satisfy the initial condition (2.23e). We first assume that there
exists j ∈ {1, · · · , n} such that v̂j0 > bj. Define a new end-time compensation C ′ as

C ′i :=

{
Ĉj − (v̂j0 − bj) if i = j

Ĉi otherwise.

We then have

E[JAj [C ′j, ûj]]− C ′j = E[JAj [Ĉj, ûj]]− Ĉj

= v̂j0 − Ĉj,

which implies that
E[JAj [C ′j, ûj]] = bj.

Therefore, (C ′, û) satisfies the participation payoff condition (2.14d) for all i = 1, · · · , n. The
risk-limiting condition also holds with (C ′, û) because the difference between C ′ and Ĉ is
deterministic. On the other hand, we notice that

JP [C ′, û] > JP [Ĉ, û]

because C ′j < Ĉj and C ′i = Ĉi for i 6= j. The contract (C ′, û) satisfies all the constraints
of (3.32) and is strictly better than (Ĉ, û). This is a contradiction because (Ĉ, û) solves the
contract design problem (3.32). Therefore, v̂i0 must be equal to the participation payoff bi
for i = 1, · · · , n. Hence, (û, γ̂) satisfies all the constraints of (2.23) with the processes ŷ and
x̂, where x̂ solves (2.23c) with the control û.

We define a stochastic process ỹi := {ỹit}0≤t≤T as

ỹit := E
[∫ T

t

‖γ̂is‖2ds

∣∣∣∣ F (i)
t

]
.
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Note that

ỹit +

∫ t

0

‖γ̂is‖2ds = E
[∫ T

0

‖γ̂it‖2dt

∣∣∣∣ F (i)
t

]
is martingale. Furthermore, E

[(
ỹit +

∫ t
0
‖γ̂is‖2ds

)2
]
< ∞ because γ̂i ∈ Γi. Therefore, the

martingale representation theorem suggests that there exists a unique (up to a set of measure
zero) ζ̂ i ∈ Γi such that

ỹit +

∫ t

0

‖γ̂it‖2dt = ỹi0 +

∫ t

0

ζ̂ itdW
(i)
t .

Therefore, the process ỹi solves (2.23f) with (γ̂, ζ̂). Due to (2.27), we also have

ỹi0 ≤ Si

and hence the constraint (2.23g) is satisfied. We define another stochastic process ŷi :=
{ŷit}0≤t≤T as

ŷit := ỹit + Si − ỹi0
for t ∈ [0, T ]. Therefore, we have ŷi0 = Si and ŷiT ≥ 0 because ỹiT = 0 by definition. Hence,
ŷi satisfies the constraints (2.23g) and (2.23h).

Since (Ĉ, û) solves (3.32), while (COPT, uOPT) does not, the following inequality holds:

E[− exp(−θJP [Ĉ, û])] > E[− exp(−θJP [COPT, uOPT])].

This inequality can be rewritten as

E

[
− exp

(
−θ

n∑
i=1

(∫ T

0

rPi (wt, x̂
i
t, û

i
t)dt+

∫ T

0

σPi (wt)dW
i
t − v̂iT

))]

> E

[
− exp

(
−θ

n∑
i=1

(∫ T

0

rPi (wt, x
OPT,i
t , uOPT,i

t )dt+

∫ T

0

σPi (wt)dW
i
t − vOPT,i

T

))]

due to (2.28) and (2.24). This is contradictory to the fact that (uOPT, γOPT, ζOPT) is a
solution to (2.23). Therefore, (COPT, uOPT) should solve (3.32) and hence an optimal risk-
limiting dynamic contract.

We observe that the agents’ expected payoff must be equal to their participation payoffs
from (2.26), i.e., the inequalities (2.14d) for the participation payoff are always binding at
an optimal contract. Intuitively speaking, if the agent’s expected payoff is strictly greater
than his or her participation payoff, the principal has an incentive to decrease the end-time
compensation for the agent. The equality (2.25) also suggests that each agent’s payoff can
be completely characterized by his or her participation payoff and the new control variable
γ if an optimal contract is executed.
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Corollary 2. Agent i’s payoff with an optimal risk-limiting dynamic contract (COPT, uOPT)
is given by

JAi [COPT,i, uOPT,i] = bi +

∫ T

0

γOPT,i
t dW

(i)
t

for i = 1, · · · , n. Therefore,
E
[
JAi [COPT,i, uOPT,i]

]
= bi.

2.5.2 Decoupled contract design and decentralized control

We propose an approximate decomposition of the contract design problem (3.32) into n low
dimensional problems using the fact that the system dynamics (2.14c), the participation pay-
off condition (2.14d) and the risk-limiting condition (2.14e) for one agent are decoupled from
those for other agents and that W 1, · · · ,W n are mutually independent. The approximate
solution obtained using this decomposition has a guaranteed suboptimality bound. This
decomposition enables the direct load control program with the proposed dynamic contracts
to handle a large population of agents without scalability issues.

More specifically, for each i ∈ {1, · · · , n}, the approximate risk-limiting dynamic contract
for agent i can be obtained by solving the following risk-sensitive control problem:

max
ui∈Ui,

γi∈Γi,ζi∈Γi

− 1

θ
logE

[
exp

(
−θJ̄Pi [ui, γi, ζ i]

)]
subject to dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0

t

dxit = fi(x
i
t, u

i
t)dt

dyit = −‖γit‖2dt+ ζ itdW
(i)
t

yi0 = Si

yiT ≥ 0 a.s.,

(2.29)

where

J̄Pi [ui, γi, ζ i] := −bi +

∫ T

0

(rPi (wt, x
i
t, u

i
t) + rAi (xit, u

i
t))dt

+

∫ T

0

(σPi (wt) + σAi (t))dW i
t −

∫ T

0

γitdW
(i)
t .

Note that the system for vi is absorbed into the modified payoff function J̄Pi . It is clear that
this decomposition is exact when σ0 ≡ 0 due to the mutual independence of {W 1, · · · ,W n}.
In addition, the following proposition suggests that the approximate contract obtained using
the proposed decomposition has a provable suboptimality bound, which can be computed a
posteriori.
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Proposition 1. Let (uOPT, γOPT, ζOPT) and (u∗i, γ∗i, ζ∗i) be the solutions to (3.32) and
(2.29), respectively. We also let ūi be the solution to

max
ui∈Ui

E[J̄Pi [ui, 0, 0]]

subject to dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0
t

dxit = fi(x
i
t, u

i
t)dt.

(2.30)

Suppose that E[J̄P [u, 0, 0]] > 0, where ū := (ū1, · · · , ūn). Set

ρ :=
−1
θ

logE
[
exp

(
−θJ̄P [u∗, γ∗, ζ∗]

)]
E[J̄P [ū, 0, 0]]

.

Then, the following suboptimality bound holds:

ρ

(
−1

θ
logE

[
exp

(
−θJ̄P [uOPT, γOPT, ζOPT]

)])
≤ −1

θ
logE

[
exp

(
−θJ̄P [u∗, γ∗, ζ∗]

)]
(2.31)

for θ > 0.

Proof. Using Jensen’s inequality, we have

−1

θ
logE

[
exp

(
−θJ̄P [uOPT, γOPT, ζOPT]

)]
≤ −1

θ
log exp

(
−θE[J̄P [uOPT, γOPT, ζOPT]]

)
= E[J̄P [uOPT, γOPT, ζOPT]].

When the principal is risk-neutral, the principal’s payoff is independent of (γ, ζ) and set-
ting (γ, ζ) = (0, 0) always satisfies the risk-limiting condition. From this observation, we
claim that (ū, 0, 0) solves the problem (3.32) when θ = 0, i.e., the objective function is re-
placed with E[J̄P [u, γ, ζ]]. We first note that (ū, 0, 0) satisfies all the constraints in (3.32).
Suppose that (ū, 0, 0) does not solve (3.32) and choose a solution, (û, γ̂, ζ̂), of (3.32). Be-
cause E[J̄Pi [ûi, γ̂, ζ̂]] = E[J̄Pi [ûi, 0, 0]] and û satisfies the constraint of (2.30), the following
inequality holds:

E[J̄Pi [ûi, γ̂i, ζ̂ i]] = E[J̄Pi [ûi, 0, 0]] ≤ E[J̄Pi [ūi, 0, 0]].

Therefore, we have

E[J̄P [û, γ̂, ζ̂]] =
n∑
i=1

E[J̄Pi [ûi, γ̂i, ζ̂ i]]

≤
n∑
i=1

E[J̄Pi [ūi, 0, 0]] = E[J̄P [ū, 0, 0]].

This inequality is contradictory to the fact that (ū, 0, 0) does not solve (3.32). Therefore,

E[J̄P [uOPT, γOPT, ζOPT]] ≤ E[J̄P [ū, 0, 0]].

As a result, the suboptimality bound (2.31) holds.
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Note that the suboptimality bound can be computed by solving (2.29) and (2.30) for each
i while it is not feasible to directly solve (3.32) for n > 1. This proposition implies that the
proposed decomposition tends to be exact as the coefficient θ of the principal’s risk aversion
goes to zero because ρ → 1 as θ → 0. Furthermore, the approximate contract (C∗, u∗)
satisfies the participation-payoff condition (2.12) and the risk-limiting condition (2.13).

Due to this decomposition, the contract design for agent i only requires the state space,
R3, of (wt, x

i
t, y

i
t) rather than the full joint state space, R3n+1, of (wt, xt, vt, yt). Therefore, the

computational complexity of designing a risk-limiting contract for an agent is independent
of the total number of agents. The decomposed problem for agent i is solved via dynamic
programming over the reduced state space, R3, of (wt, x

i
t, y

i
t) as follows. We set the feasible

set of control as
Ωi := {(ui, γi, ζ i) ∈ Ui × Γi × Γi | yiT ≥ 0 a.s.}.

To synthesize a risk-limiting dynamic contract for agent i, we first define the value function
of (2.29) associated with agent i as

φi(w,xi,yi, t) := max
(ui,γi,ζi)∈Ωi

−1

θ
logEw,xi,yi,t[

exp

(
−θ
(∫ T

t

Ri(ws, x
i
s, u

i
s)ds+

∫ T

t

Gi(ws, γ
i
s)dW

(i)
s − bi

))]
,

(2.32)

where Ew,xi,yi,t[A] denotes the expectation of A conditioned on (wt, x
i
t, y

i
t) = (w,xi,yi), and

Ri(w,xi,u) := rPi (w,xi,u) + rAi (xi,u),

Gi(t,w,γ) :=
[
−γ1 −γ2 + σPi (w) + σAi (t))

]
.

To handle the constraint yiT ≥ 0 a.s., which is often called the stochastic target constraint, we
use the Hamilton-Jacobi-Bellman (HJB) characterization proposed in [16]. This character-
ization converts the target constraint into a ‘classical’ state constraint using the geometric
dynamic programming principle [121]. The reformulated constraint is embedded in an auxil-
iary value function. This auxiliary value function is a viscosity solution of an HJB equation.
Applying the dynamic programming principle on the original value function (2.32), one can
derive a constrained-HJB equation in which the stochastic target constraint is reformulated
as the constraints on the auxiliary value function and the control. In our case, the auxiliary
value function is a zero function. Let

Ui(yi) := {(u,γ, ζ) ∈ U i × R2 × R2 | γ = ζ = 0 if yi ≤ 0}.

Then, the stochastic target constraint is simply incorporated into the following constrained-
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HJB equation:

∂φi
∂t

+ max
(u,γ,ζ)
∈Ui(yi)

{
(Fi(w,xi,u,γ)− θΣ(ζ)Gi(w,γ)>)>Dφi

+Ri(w,xi,u)− θ

2
‖Gi(w,γ)‖2 − θ

2
‖Σ(ζ)>Dφi‖2 +

1

2
tr(Σ(ζ)Σ(ζ)>D2φi)

}
= 0,

φi(w,xi,yi, T ) = −bi,
(2.33)

whose viscosity solution corresponds to the value function (2.32) [27, 39, 16], where

Fi(t,w,xi,u,γ) :=

r0(ν(t)−w)
fi(xi,u)
−‖γ‖2

 ,
Σ(t, ζ) :=

σ0(t) 0
0 0
ζ1 ζ2

 .
2.5.3 Optimal contract as a state feedback strategy

In general, an analytic solution of the HJB equation (2.33) is not available. Therefore, we
grid up the state space, which corresponds to the domain of the PDE, and numerically
evaluate the solution at the grid points using convergent schemes, e.g., [9, 77]. After solving
the HJB equation, we can use the value function to construct an optimal contract (C∗i , u

∗
i )

as the following state feedback strategy:

1. set (w0, x
∗i
0 , y

∗i
0 ) = (lnλ0, x0i, Si);

2. given x∗is := (w∗s , x
∗i
s , y

∗i
s ) ∈ R3 for s ∈ [0, t], determine an optimal control action

(u∗it , γ
∗i
t , ζ

∗i
t ) as an element of the arg max in the HJB equation (2.33) at (w∗t , x

∗i
t , y

∗i
t );

3. the processes (w∗, x∗i, y∗i) are evolved with the optimal (u∗it , γ
∗i
t , ζ

∗i
t ) for (t, t+ dt] (the

agent performs u∗it );

4. repeat 2) and 3) until t = T .

5. the agent is paid by C∗i = v∗iT .

Note that this rule, the value function φ and the initial values (lnλ0, x0i, Si) must be spec-
ified in the contract. The agent must follow u∗ in the proposed contract under symmetric
information. The auxiliary control variables γ∗ and ζ∗ are used to satisfy the agent’s partic-
ipation payoff and the risk-limiting conditions. A more detailed discussion regarding how to
synthesize an optimal control using a viscosity solution of an associated HJB equation can
be found in [8] even when the viscosity solution is not differentiable.



CHAPTER 2. RISK-LIMITING DYNAMIC CONTRACTS FOR DIRECT LOAD
CONTROL 29

Load
serving
entity
(LSE)

Customer Load1

...

1

Customer Load nn

W 1
t

Wn
t

C⇤1

C⇤n

u⇤1
t

u⇤n
t

local
controller

x1
t , u

⇤1
t

xn
t , u⇤n

t

Figure 2.1: Implementation of the proposed contracts: the controls of loads can be decentral-
ized with a broadcast of price (LMP) information, while a centralized monitoring is required.
The compensations are provided at the end of the contract period.

Note that the control action for one load does not affect the state of another load.
Furthermore, the optimal control for a load is given as state feedback, where the state
variables only require the energy price in the real-time market and the local information of
the load. Therefore, the proposed control can be decentralized with a broadcast of the price
information, i.e., the local controller in which the optimal control strategy is programmed
is sufficient for the implementation of the contract as depicted in Figure 2.1. On the other
hand, the load-serving entity still needs to monitor the state, the control and the forecast
error for each customer to ensure that each customer follows the optimal control strategy
written in the contract. The total power consumption of each customer monitored by a
smart meter can be used to compute the forecast error. In addition, the sensors for loads
such as thermostats provide the state and control information. The monitored information
could be transferred to the load-serving entity through a one-way data connection such as the
Internet. The information gathered by the monitoring is also used to compute the optimal
compensation provided to each customer at the end of the contract period.

2.6 Application to direct load control for financial

risk management

In this section, we apply the proposed risk-limiting dynamic contracts to direct load control.
The performance and usefulness of the novel direct load control program for financial risk
management are demonstrated using the data of LMPs in the Electricity Reliability Council
of Texas (ERCOT) and the electric energy consumption of customers in Austin, Texas.
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Figure 2.2: (a) Locational marginal price (LMP) in Austin, Texas, from July 1, 2013 to July
10, 2013. (b) Ten sampled trajectories of LMP, {λt}0≤t≤T , generated by our identified price
model (2.2).

2.6.1 Data assimilation

We consider a scenario in which each customer provides one air conditioner for the proposed
direct load control program. We use the ETP model (2.6) for the customer’s indoor tempera-
ture dynamics given in Example 1. The set of feasible control values is chosen as U i := {0, 2},
assuming that customer i’s air conditioner consumes 0kW in its OFF state and 2kW in its
ON state. The model parameters are chosen as αi = 0.1 and κi = 1.5, which are calculated
based on the Residential module user’s guide from GridLAB-D and are physically reasonable
[46]. Customer i’s comfort level is chosen as (2.11) in Example 2, with ωi = 0.15. We set
the customer’s desirable indoor temperature range, [Θ,Θ], as [20◦C, 22◦C]. We choose the
contract period as [10h, 18h].

We use customers’ electric energy consumption data in Austin, Texas [134] to estimate
the load profile li(t) and the diffusion coefficient σ̃i(t) in (2.1). The load li(t) is chosen as the
mean value of the customer i’s power consumption at t other than the air conditioner. For the
estimation of σ̃i, we apply the Kalman filter [62, 76] over the data set for the summer period,
from June to September 2013, assuming that customer i’s energy consumption profile other
than the air conditioner for one day in the period represents one sampled trajectory. We then
scale the estimated diffusion coefficient by a constant factor such that

∫ T
0
σ̃i(t)

2dt is equal to
the variance of the energy consumption data. This scaling guarantees that Var[JAi [0, 0]] is
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Figure 2.3: Outdoor air temperature, Θ(t), in Austin, Texas, on July 5, 2013.

equal to the variance of the customer’s energy cost.
The price model (2.2) is identified using the ERCOT LMP data at the settlement point,

AUSTIN PLANT, from July 1, 2013 to July 10, 2013 [35]. We estimate the parameters, r0,
ν(t) and σ0(t), by applying the Kalman filter on the transformed linear model (2.3). The
LMP data and samples of the price profile generated by the identified model are shown in
Figure 2.2.

We use the National Oceanic and Atmospheric Administration Quality Controlled Local
Climatological Data in Austin, Texas for the outdoor temperature profile [92]. The outdoor
temperature, Θ(t), at time t ∈ [10h, 18h] is chosen as the temperature on July 5, 2013, at
time t ∈ [10h, 18h] and is shown in Figure 2.3.

2.6.2 Comparison to optimal load control by customers

Suppose that customer i does not participate in the direct load control program and has the
following payoff:

ĴAi [ui] :=

∫ T

0

rAi (xit, u
i
t)dt+

∫ T

0

σAi (t)dW i
t , (2.34)

where rAi and σAi are given by (2.10). The solution of the following optimal control problem
maximizes customer i’s expected payoff:

max
ui∈Ui

E[ĴAi [ui]] :=

∫ T

0

rAi (xit, u
i
t)dt

subject to dxit = fi(x
i
t, u

i
t)dt.

(2.35)

The optimal control can be obtained using the viscosity solution of the following HJB equa-
tion [8]:

∂φ̂i(xi, t)

∂t
+ max
u∈U i
{f(xi,u)Dxiφ̂i(xi, t) + rAi (xi,u)} = 0,

φ̂i(xi, T ) = 0.
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Figure 2.4: The simulation results with the contract: (a) variance of the load-serving entity’s
payoff. (b) variance of the customer’s payoff and the risk limit Si = ρS̄i.

Let û∗i be an optimal control, i.e., a solution to (2.35). We let b̄i := E[ĴAi [û∗i]] and

S̄i := Var[ĴAi [û∗i]] =
∫ T

0
σAi (t)2dt be the nominal expected payoff and risk of customer i,

respectively.
We now compare the performance of the proposed contracts to that of this optimal load

control without a contract. We choose the customer’s electricity price as the flat price,
µi ≡ µ̄ = $0.11, specified in Austin Energy’s electricity tariff for summer [5]. In the absence
of a contract, the mean and variance of customer i’s payoff are b̄i and S̄i, respectively. We
set bi = b̄i and Si = ρS̄i and vary ρ from 0 to 0.3. If customer i enters into the contract,
which is the solution of (2.29), then the mean value of the customer’s payoff is guaranteed
to be greater than or equal to b̄i, and the variance of the customer’s payoff is guaranteed to
be less than or equal to ρS̄i.

The results of numerical experiments presented in Figure 2.4 verify the performance of
the proposed contract. The coefficient of load-serving entity’s risk aversion is chosen as
θ = 10−2. As shown in Figure 2.4 (a), The variance of the load-serving entity’s payoff
decreases as the ratio ρ of the amount of the risk that the customer is willing to bear to
the customer’s nominal risk increases. On the other hand, the variance of the customer’s
payoff (blue) increases as the ratio ρ of the amount of the risk that the customer is willing to
bear to the customer’s nominal risk increases, as shown in Figure 2.4 (b). More importantly,
it is less than or equal to the risk limit Si = ρS̄i (red). Therefore, we confirm that the
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risk-limiting condition is satisfied.
When the customer does not enter into in the contract, the variance of the load-serving

entity’s payoff is

Var[ĴPi [û∗i]] := Var

[∫ T

0

rPi (wt, x̂
∗i
t , û

∗i
t )dt+

∫ T

0

σPi (wt)dW
i
t

]
= 0.0108.

By comparing this variance with the variance of the load-serving entity’s payoff when the
contract is executed (Figure 2.4 (a)), we note that the contract reduces the load-serving
entity’s risk by more than 50% even when the customer is extremely risk-averse, i.e., Si = 0.
If the customer chooses Si ≥ 0.2S̄i in the contract, the load-serving entity’s risk is decreased
by more than 95%.

The mean values of the load-serving entity’s payoff with and without the contract are
given by

E[JPi [C∗i, u∗i]] = 1.324, E[ĴPi [û∗i]] = 1.297,

respectively. Therefore, the load-serving entity can pay $0.027 more for the customer without
reducing its mean payoff if the customer enters into a contract. In other words, the load-
serving entity can incentivize the customer to enter into the contract by increasing the
customer’s expected payoff by $0.027.

Figure 2.5 shows the effect of the contract on the control and the indoor temperature. In
this set of experiments, we set Si = 0.1S̄i and θ = 10−2. When the customer does not enter
into the contract, the customer regularly turns on and off the air conditioner such that the
indoor temperature is kept near 22◦C. This is because the customer wants to save the energy
cost by only taking into account the energy price µi, which is fixed for all time. On the other
hand, if the customer enters into the contract, the room is pre-cooled before 12:30pm when
the LMP λt is low and not volatile. Another pre-cooling interval is from 3pm to 4pm. This
pre-cooling allows to save energy purchase in the real-time market from 4pm to 5pm when
the LMP is highly volatile. In other words, the contract properly manages the price risk in
the spot market.

2.6.3 Validation of the Brownian motion model using data in
terms of the closed-loop performance

The energy consumption process of a customer is modeled by the SDE (2.1). In practice,
the load forecast error may not be exactly captured by the diffusion term, σ̃i(t)dW

i
t , with a

standard Brownian motion. We test the robustness of the proposed contract method with
respect to the deviation of the demand forecast errors in the data from the Brownian motion
model. More specifically, we execute the optimal contract synthesized using the Brownian
motion model over the data. Then, we compute how much the load-serving entity’s and the
customer’s resulting payoffs differ from their optimal payoffs obtained under the Brownian
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Figure 2.5: The simulation results without and with the contract (three samples are pre-
sented in the case with the contract): (a) control (gray: ON, white: OFF); and (b) indoor
temperature.

motion assumption. Setting Si = ρS̄i, we averaged the percentage deviations over ρ = [0, 1].
The average deviations in the mean of the load-serving entity’s and the customer’s payoffs
are 0.010% and 0.012%, respectively. Furthermore, the risk-limiting condition is not violated
for ρ > 0.14; furthermore, for ρ ≤ 0.14, the condition is never violated by more than 12%
[137]. This preliminary test of the proposed contract framework with respect to errors in the
Brownian motion model suggests that the framework is robust to load model errors, however
more data is need for accurate approximations of the mean and variance values. Further
experiments will be performed in the future to rigorously test the validity of Brownian motion
model in the proposed contracts.

2.6.4 Real-time pricing in retail tariff

We now consider the case in which the energy price in the customer’s electric tariff is chosen
as

µ(t) = ewt + µ0,

where µ0 = µ̄−E
[

1
T

∫ T
0
ewtdt

]
= 0.0692. This real-time pricing scheme gives E

[
1
T

∫ T
0
µ(t)dt

]
=

µ̄. In this case, the customer’s optimal control needs to take into account the LMP ewt even
when there is no contract. The optimal control, denoted as ũ∗i, can be obtained as the
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Figure 2.6: (a) Optimally controlled indoor temperatures without any contract in the case of
flat price (blue) and real-time pricing (RTP) (black, red, cyan), and (b) optimally controlled
indoor temperatures with the contract.

solution to

max
ui∈Ui

E[J̃Ai [ui]]

subject to dwt = r0(ν(t)− wt)dt+ σ0(t)dW 0
t

dxit = fi(x
i
t, u

i
t)dt,

where

J̃Ai [ui] :=

∫ T

0

−(ewt + µ0)(li + uit) + ri(x
i
t, u

i
t)dt−

∫ T

0

(ewt + µ0)σ̃idW
i
t . (2.36)

As shown in Figure 2.6 (a), the customer’s optimal control does take into account the LMP
dynamics even without any contract. In particular, the customer infrequently uses the air
conditioner from 4:10 pm to 5:20 pm when the LMP is high (see Figure 2.2) as in the case
under the contract. However, without a contract overall shifting of the consumption pattern
from the flat price case is less significant than the case in which the contract is executed
(Figure 2.6 (b)). This difference occurs because the risk-limiting dynamic contract takes into
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Figure 2.7: The simulation results with the contract in the case of real-time pricing: (a)
variance of the load-serving entity’s payoff, (b) variance of the customer’s payoff and the risk
share Si = ρSi.

consideration the mean and variance of the customer’s payoff and those of the load-serving
entity’s payoff, while the customer’s optimal control only maximizes the mean value of the
customer’s payoff.

As before, we set b̄ := E[J̃Ai [ũ∗i]] = −1.5050 and S̄ := Var[J̃Ai [ũ∗i]] = 0.0273 as the
customer’s nominal expected payoff and risk, respectively. When pi ≡ li, the load-serving
entity’s risk is given by Var[JPi [0, ũ∗i]] = 0.0107. Note that this variance value can be further
reduced by carefully choosing the procured power pi other than the load forecast li. When the
risk-limiting dynamic contract is executed, the load-serving entity’s risk is efficiently managed
even in the case of real-time pricing as shown in Figure 2.7. Furthermore, the customer’s
risk-limiting condition is satisfied. Under real-time pricing, the variance of the customer’s
payoff depends highly on the price volatility σ0. Therefore, the customer may face high risk
when the LMP is extremely volatile. The proposed contract framework complements the
real-time pricing by explicitly limiting the customer’s risk by a pre-specified level.
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Chapter 3

Approximation Algorithms for
Optimization of Combinatorial
Dynamical Systems

3.1 Optimization of large-scale interdependent

systems

The dynamics of critical infrastructures and their system elements—for instance, electric grid
infrastructure and their electric load elements—are interdependent, meaning that the state
of each infrastructure or its system elements influences and is influenced by the state of the
others [111]. Such dynamic interdependencies can be classified as follows: (i) infrastructure–
infrastructure interdependency; (ii) infrastructure–system interdependency; and (iii) system–
system interdependency. All three classes of interdependencies must be addressed when
making decisions that improve the performance metrics, such as efficiency, resilience and
reliability, of infrastructures and their system elements. For an example of (i), consider
the placement of power electronic actuators, such as high-voltage direct current links, on
transmission networks. Such placement requires consideration of the interconnected swing
dynamics of transmission grid infrastructures. As an example of (ii), it is important to
consider the interdependency between the dynamics of grid frequency and those of (aggre-
gate) loads when selecting the set of loads for frequency regulation service. Furthermore,
the ON/OFF control of a large population of electric loads whose system dynamics are
coupled with each other, e.g., supermarket refrigeration systems, must take into account
their system-system interdependency (iii). These decision-making problems under dynamic
interdependencies combine the combinatorial optimization problems of network actuator
placement, load subset selection and ON/OFF control with the time evolution of continu-
ous system states. Therefore, we seek decision-making techniques that unify combinatorial
optimization and dynamical systems theory.

This chapter examines a fundamental problem that supports such combinatorial decision-



CHAPTER 3. APPROXIMATION ALGORITHMS FOR OPTIMIZATION OF
COMBINATORIAL DYNAMICAL SYSTEMS 38

making involving dynamical systems. Specifically, we consider an optimization problem asso-
ciated with a dynamical system whose state evolution depends on binary decision variables,
which we call the combinatorial dynamical system. In our problem formulation, the binary
decision variables do not change over time, unlike in the optimal control or predictive con-
trol of switched systems [18, 136, 131, 11]. Our focus is to develop scalable methods for
optimizing the binary variables associated with a dynamical system when the number of the
variables is too large to enumerate all possible system ‘modes’ and when the dimension of
the system state is large. However, the optimization problem for combinatorial dynamical
system presents a computational challenge because: (i) it is a 0–1 nonlinear program, which
is generally NP-hard [100]; and (ii) it requires the solution of a system of ordinary differ-
ential equations (ODEs). To provide a computationally tractable solution method that can
address large-scale problems, we propose scalable approximation algorithms with provable
suboptimality bounds.

The key idea of the proposed methods is to linearize the objective function in the feasible
space of binary decision variables. Our first contribution is to propose a linear approximation
method for nonlinear optimization of combinatorial dynamical systems. The approximate
0–1 optimization can be efficiently solved because it is a linear 0–1 program and it does
not require the solution of the dynamical system. The proposed approximation method
allows us to employ polynomial-time exact or approximation algorithms including those
for problems with l0-norm constraints or linear inequality constraints. In particular, the
proposed algorithms for an l0-norm constrained problem are computationally more efficient
than a greedy algorithm for the same problem because our algorithms are one-shot, i.e., do
not require multiple iterations.

The proposed linear approximation approach requires the derivative of the objective
function, but this is nontrivial to construct because the function’s domain is a discrete
space, in general. The second contribution of this work is to propose two different derivative
concepts. The first concept uses a natural relaxation of the discrete space, whereas for the
second concept a novel relaxation method in a function space using convex combinations of
the vector fields and running payoffs is developed. We refer to the former construction as
the standard derivative because it is the same as the derivative concept in continuous space,
and the latter as the nonstandard derivative. We show the existence and the uniqueness of
the nonstandard derivative, and provide an adjoint-based formula for it. The nonstandard
derivative is well-defined even when the vector field and the payoff function are undefined on
interpolated values of the binary decision variables. Because the two derivatives are different
in general, we can solve two instances of the approximate problem (if the problem is well-
defined on intermediate values in addition to a 0–1 lattice), one with the standard derivative
and another with the nonstandard derivative and then choose the better solution. If the
problem is defined only on a 0–1 lattice, we can utilize the nonstandard derivative.

The third contribution of this chapter is to characterize conditions under which the pro-
posed algorithms have guaranteed suboptimality bounds. We show that the concavity of
the original problem gives a sufficient condition for the suboptimality bound to hold if the
approximation is performed using the standard derivative. On the other hand, the same
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concavity condition does not suffice when the nonstandard derivative is employed in the
approximation. To resolve this difficulty, we propose a reformulated problem and show that
its concavity guarantees the suboptimality bound to hold. We validate the performance of
the proposed approximation algorithms by solving ON/OFF control problems of commer-
cial refrigeration systems, which consume approximately 7% of the total commercial energy
consumption in the United States [129].

In operations research, 0–1 nonlinear optimization problems have been extensively studied
over the past five decades, although the problems are not generally associated with dynam-
ical systems. In particular, 0–1 polynomial programming, in which the objective function
and the constraints are polynomials in the decision variables, has attracted great attention.
Several exact methods that can transform a 0–1 polynomial program into a 0–1 linear pro-
gram have been developed by introducing new variables that represent the cross terms in
the polynomials (e.g., [133, 42]). Roof duality suggests approximation methods for 0–1 poly-
nomial programs [48]. It constructs the best linear function that upperbounds the objective
function (in the case of maximization) by solving a dual problem. Its size can be significantly
bigger than that of the primal problem because it introduces O(mk) additional variables,
where m and k denote the number of binary variables and the degree of polynomial, respec-
tively. This approach is relevant to our proposed method in the sense that both methods
seek a linear function that bounds the objective function. However, the proposed method
explicitly constructs such a linear function without solving any dual problems. Furthermore,
whereas all the aforementioned methods assume that the objective function is a polynomial
in the decision variables, our method does not require a polynomial representation of the
objective function. This is a considerable advantage because constructing a polynomial rep-
resentation of a given function, J : {0, 1}m → R, generally requires 2m calculations (e.g., via
multi-linear extension [49]). Even when the polynomial representations of the vector field
and the objective function in the decision variables, α ∈ {0, 1}m, are given, a polynomial
representation of the objective function in α is not readily available because the state of a
dynamical system is not, in general, a polynomial in α with a finite degree. For more gen-
eral 0–1 nonlinear programs, branch-and-bound methods (e.g., [78]) and penalty/smoothing
methods (e.g., [91]) have been suggested. However, the branch-and-bound methods cannot,
in general, find a solution in polynomial time. The penalty and smoothing methods do not
provide any performance guarantee although they perform well in many data sets, whereas
our proposed methods guarantee suboptimality bounds.

An important class of 0–1 nonlinear programs is the minimization or the maximization
of a submodular set-function, which has the property of diminishing returns. Unconstrained
submodular function minimization can be solved in polynomial time using a convex extension
(e.g., [47]) or a combinatorial algorithm (e.g., [116, 58]). However, constrained submodular
function minimization is NP-hard in general, and approximation algorithms with perfor-
mance guarantees are available only in special cases (e.g., [43, 59, 61]). On the other hand,
our proposed method can handle a large class of linear constraints with a guaranteed sub-
optimality bound. In the case of submodular function maximization, a greedy algorithm
can obtain a provably near-optimal solution [95]. As mentioned, our proposed algorithm
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for l0-norm constrained problems has, in general, lower computational complexity than the
greedy algorithm. We also show that the concavity conditions for our proposed suboptimality
bounds to hold are not equivalent to submodularity nor does either imply the other.

3.2 Problem statement

Consider the following dynamical system in the continuous state space X ⊆ Rn:

ẋ(t) = f(x(t), α), x(0) = x ∈ X , (3.1)

where the vector field depends on anm-dimensional binary vector variable α := {α1, · · · , αm}
∈ {0, 1}m and f : Rn × Rm → Rn. We call (3.1) a combinatorial dynamical system with
a binary vector variable α. We later view α as a decision variable that does not change
over time in a given time interval [0, T ]. Let xa := (xa1 , · · · , xan) denote the solution of the
ordinary differential equation (3.1) given a ∈ Rm. We consider the following assumptions on
the vector field.

Assumption 1. For each α ∈ {0, 1}m, f( · , α) : Rn → Rn is twice differentiable, has a
continuous second derivative and is globally Lipschitz continuous in X .

Assumption 2. For any x ∈ X , f(x, · ) : Rm → Rn is continuously differentiable in [0, 1]m.

Under Assumption 1, the solution of (3.1) satisfies the following property (Proposition
5.6.5 in [106]): for any α ∈ {0, 1}m,

‖xα‖2 :=

(∫ T

0

‖xα(t)‖2dt

) 1
2

<∞.

In other words, xα : [0, T ]→ Rn is such that xα ∈ L2([0, T ];Rn). Furthermore, Assumption 1
guarantees that the system admits a unique solution, which is continuous in time, for each
α ∈ {0, 1}m.

3.2.1 Optimization of combinatorial dynamical systems

Our aim is to determine the binary vector α ∈ {0, 1}m that maximizes the payoff (or utility)
function, J : Rm → R, associated with the dynamical system (3.1). More specifically, we
want to solve the following combinatorial optimization problem:

max
α∈{0,1}m

J(α) :=

∫ T

0

r(xα(t), α)dt+ q(xα(T )) (3.2a)

subject to Aα ≤ b, (3.2b)
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where xα is the solution of (3.1) and r : Rn × Rm → R and q : Rn → R are running and
terminal payoff functions, respectively. Here, A is an l × m matrix, b is an l-dimensional
vector and the inequality constraint (3.32b) holds entry-wise.

This optimization problem, in general, presents a computational challenge because (i)
it is NP-hard; and (ii) it requires the solution to the system of ODEs (3.1). Therefore, we
seek a scalable approximation method that gives a suboptimal solution with a guaranteed
suboptimality bound. The key idea of our proposed method is to take a first-order linear
approximation of the objective function (3.2a) with respect to the binary decision variable
α. This linear approximation should also take into account the dependency of the state
on the binary decision variable. If the payoff function in (3.2a) is replaced with its linear
approximation, which is linear in the decision variable, the approximate problem is a 0–1 lin-
ear optimization. Therefore, existing polynomial-time exact and approximation algorithms
for 0–1 linear programs can be employed, as shown in Section 3.4. To obtain the linear
approximations of the payoff function J , in the following section we formulate two different
derivatives of J with respect to the discrete decision variable. Furthermore, we suggest a
sufficient condition under which the approximate solution has a guaranteed suboptimality
bound in Section 3.3.3.

3.3 Linear approximation for optimization of

combinatorial dynamical systems

Suppose for a moment that the derivative of the objective function with respect to the
binary decision variable is given, and that the derivative is well-defined in {0, 1}m, which is
the feasible space of the decision variable. The derivative can be used to obtain the first-order
linear approximation of the objective function, i.e., for α ∈ {0, 1}m,

J(α) ≈ J(ᾱ) +DJ(ᾱ)>(α− ᾱ). (3.3)

If the objective function in (3.32) is substituted with the right-hand side of (3.3), then we
obtain the approximate problem:

max
α∈{0,1}m

DJ(ᾱ)>α (3.4a)

subject to Aα ≤ b. (3.4b)

This approximate problem is a 0–1 linear program, which can be solved by several polynomial-
time exact or approximation algorithms (see Section 3.4). We characterize a bound on the
suboptimality of the approximate solution in Section 3.3.3.

We propose two different variation approaches for defining the derivatives in the dis-
crete space {0, 1}m. The first uses the variation of the binary decision variable in a relaxed
continuous space (Figure 3.1 (a)); the second uses the variation of the vector field of dy-
namical systems (Figure 3.1 (b)). The first and second concepts of the derivatives are
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Figure 3.1: Two variation methods: (a) the variation (1 − ε)ᾱ + εα of the binary variable
produces the trajectory x(1−ε)ᾱ+εα(t), t ∈ [0, T ]; and (b) the variation f ε(ᾱ,α) of the vector
field, to be defined, generates another trajectory xε(ᾱ,α)(t), t ∈ [0, T ]. These two new system
trajectories are used to define the standard and nonstandard derivatives, respectively.

called the standard and nonstandard derivatives, respectively. It is advantageous to have
two different derivative concepts: we solve the approximate problem (3.4) twice, one with
the standard derivative DSJ and another with the nonstandard derivative DNSJ and then
choose the better solution. The one of two approximate solutions that outperforms another
is problem-dependent, in general. We also show that the nonstandard derivative requires
fewer assumptions than the standard derivative.

Remark 1. As we will see in the following subsection, the nonstandard derivative requires
less restrictive assumptions than the standard derivative. One important distinction is that
the nonstandard derivative can be well-defined even when the problem is only defined on the 0–
1 lattice {0, 1}m, i.e., f : Rn×{0, 1}m → Rn and J : {0, 1}m → R (i.e., r : Rn×{0, 1}m → R).
However, we can use the standard derivative only if the problem is well-defined on the relaxed
space [0, 1]m.

3.3.1 Standard and nonstandard derivatives

We first define the derivative of the payoff function, J , with respect to discrete variation of
the decision variable by relaxing the discrete space {0, 1}m into the continuous space Rm.
This definition of derivatives in discrete space is exactly the same as the standard definition
of derivatives in continuous space. Therefore, it requires the differentiability of the vector
field and the running payoff with respect to α.
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Assumption 3. The functions r( · , α) : Rn → R and q : Rn → R are continuously differen-
tiable for any α ∈ {0, 1}m.

Assumption 4. For any x ∈ X , r(x, · ) : Rm → Rn is continuously differentiable in [0, 1]m.

More precisely, Assumptions 3 and 4 are needed for the standard derivative while the
nonstandard derivative does not require Assumption 4. Throughout this chapter, we let 1i
denote the m-dimensional vector whose ith entry is one and all other entries are zero. For
notational convenience, we introduce a functional, J : L2([0, T ];Rn)× Rm → R, defined as

J (z, β) :=

∫ T

0

r(z(t), β)dt+ q(z(T )). (3.5)

Note that J(α) = J (xα, α), where xα is defined as the solution to the ODE (3.1) with α.

Definition 1. Suppose that Assumptions 1, 2, 3 and 4 hold. Given ᾱ ∈ {0, 1}m, the standard
derivative, DSJ : {0, 1}m → Rm, of the payoff function J in (3.2a) is defined as

[DSJ(ᾱ)]i := lim
ε→0

1

ε

[
J (xᾱ+ε1i , ᾱ + ε1i)− J (xᾱ, ᾱ)

]
for i = 1, · · · ,m, where the functional J : L2([0, T ];Rn) × Rm → R is defined in (3.5) and
xᾱ is the solution of (3.1) with ᾱ.

The standard derivative can be computed by direct and adjoint-based methods [72, 106].
We summarize the adjoint-based method in the following proposition.

Proposition 2. Suppose that Assumptions 1, 2, 3 and 4 hold. The derivative in Definition 1
can be obtained as

DSJ(ᾱ) =

∫ T

0

(
∂f(xᾱ(t), ᾱ)

∂α

>

λᾱ(t) +
∂r(xᾱ(t), ᾱ)

∂α

>
)
dt,

where xᾱ is the solution of (3.1) with ᾱ and λᾱ solves the following adjoint system:

−λ̇ᾱ(t) =
∂H(xᾱ(t), λᾱ(t), ᾱ)

∂x

>

λᾱ(T ) =
∂q(xᾱ(T ))

∂x

> (3.6)

with the Hamiltonian H : Rn × Rn × {0, 1}m → R,

H(x,λ, α) := λ>f(x, α) + r(x, α).
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We now define the derivative of the payoff function using variations in vector fields
and running payoffs. The proposed nonstandard definition of derivatives does not require
Assumptions 2 and 4, i.e., the differentiability of the vector field and the running payoff with
respect to α. Furthermore, the nonstandard derivative is well-defined even when the vector
field and the payoff function are not defined on the interpolated values of the binary decision
variable, i.e., f(·, α) and r(·, α) are defined only at α ∈ {0, 1}m. This is a practical advantage
of the nonstandard derivative over the standard derivative. The proposed variation procedure
is as follows.

(i) The 0–1 vector variable ᾱ in the discrete space {0, 1}m is mapped to xᾱ in the continuous
metric space L2([0, T ];Rn) via the original dynamical system (3.1);

(ii) In L2([0, T ];Rn), we construct a new state xε(ᾱ,α) as the solution to the ε-variational
system associated with (ᾱ, α) for ε ∈ [0, 1],

ẋ(t) = f ε(ᾱ,α)(x(t)), x(0) = x ∈ X , (3.7)

where the new vector field is obtained as the convex combination of the two vector
fields with ᾱ and α, i.e.,

f ε(ᾱ,α)( · ) := (1− ε)f( · , ᾱ) + εf( · , α).

Set the distance between α and its ε-variation ε(ᾱ, α) as ε; and

(iii) The nonstandard derivative of J is defined in the following:

Definition 2. Suppose that Assumptions 1 and 3 hold. Given ᾱ ∈ {0, 1}m, we define the
(nonstandard) derivative, DNSJ : {0, 1}m → Rm of J as

[DNSJ(ᾱ)]i :=

{
lim
ε→0+

1
ε

[
J ε(ᾱ,ᾱ+1i)(xε(ᾱ,ᾱ+1i))− J (xᾱ, ᾱ)

]
if ᾱi = 0

lim
ε→0+

1
ε

[
J (xᾱ, ᾱ)− J ε(ᾱ,ᾱ−1i)(xε(ᾱ,ᾱ−1i))

]
if ᾱi = 1,

(3.8)

where J : L2([0, T ];Rn)×Rm → R is given by (3.5) and J ε(ᾱ,α) : L2([0, T ];Rn)→ R is given
by

J ε(ᾱ,α)( · ) := (1− ε)J ( · , ᾱ) + εJ ( · , α). (3.9)

Here, xᾱ is the solution of (3.1) with ᾱ and xε(ᾱ,α) is the solution of (3.7).

Note that we separately consider the cases with ᾱi = 0 and ᾱi = 1. This is because ᾱ+ 1i is
out of the feasible space of the binary decision variable when ᾱi = 1 and similarly for ᾱ− 1i
when ᾱi = 0. Unlike a classical derivative with respect to continuous variable, the allowed
directions for discrete variation depend on the base point ᾱ. Here, the new payoff functional
uses the convex combination of the running payoff because

J ε(ᾱ,α)(z) =

∫ T

0

(1− ε)r(z, ᾱ) + εr(z, α)dt+ q(z(T )).
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The ε-variational system is used as a continuation tool of the discrete variation from one
decision variable to another. The properties of its solution are discussed in our previous
work [142] and summarized in Appendix A.

This nonstandard definition of derivatives raises the two following questions: (i) is the
nonstandard derivative well-defined? ; and (ii) is there a method to compute the nonstandard
derivative? We answer these two questions using the adjoint system (3.6) associated with
the combinatorial optimization problem (3.32).

Theorem 3. Suppose that Assumptions 1 and 3 hold. The nonstandard derivative DNSJ :
{0, 1}m → Rm satisfies

[DNSJ(ᾱ)]i :=

∫ T

0

(f(xᾱ(t), ᾱ + 1i)− f(xᾱ(t), ᾱ))
>
λᾱ(t) + r(xᾱ(t), ᾱ + 1i)− r(xᾱ(t), ᾱ)dt

if ᾱi = 0 and

[DNSJ(ᾱ)]i :=

∫ T

0

(f(xᾱ(t), ᾱ)− f(xᾱ(t), ᾱ− 1i))
>
λᾱ(t) + r(xᾱ(t), ᾱ)− r(xᾱ(t), ᾱ− 1i)dt

if ᾱi = 1. Here xᾱ and λᾱ are the solutions of (3.1) and (3.6) with ᾱ, respectively. The
derivative uniquely exists and is bounded.

The proof of Theorem 3 is contained in Appendix B. The detailed comparisons between
the standard and nonstandard derivative concepts are provided in Appendix C.

3.3.2 Complexity of computing derivatives

To solve the 0–1 linear program (3.4), we first need to compute the standard derivative
DSJ(ᾱ) or the nonstandard derivative DNSJ(ᾱ). Recall that the dimensions of the system
state and the binary decision variable are n and m, respectively. Let NT be the number
of time points in the time interval [0, T ] used to integrate the dynamical system (3.1) and
the adjoint system (3.6). Then the complexity of computing the trajectories of xᾱ and
λᾱ is O(nNT ) if the first-order forward Euler scheme is employed (e.g., [1]). Note that the
computation of the adjoint state trajectory λᾱ requires the state trajectory xᾱ in [0, T ]. Given
xᾱ and λᾱ, calculating all the entries of either the standard derivative or the nonstandard
derivative requires O(mnNT ) if a first-order approximation scheme for the integral over time
is used. Therefore, the total complexity of computing either the standard derivative or the
nonstandard derivative is O(mnNT ). Note that the complexity is linear in the dimension,
m, of the decision variable α.

3.3.3 Suboptimality bounds

We now characterize the condition in which the solution to the approximate problem (3.4)
has a guaranteed suboptimality bound. The suboptimality bound is obtained by showing
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that the optimal value of the payoff function is bounded by an affine function of the solution
to the approximate problem (3.4). This motivates the following concavity-like assumption:

Assumption 5. Let ᾱ ∈ {0, 1}m be the point at which the original problem (3.32) is lin-
earized. The following equality holds

DJ(ᾱ)>(α− ᾱ) ≥ J(α)− J(ᾱ) ∀α ∈ {0, 1}m. (3.10)

Here, DJ represents DSJ if the standard derivative used in the approximate problem,
and it represents DNSJ if the nonstandard derivative is adopted in (3.4).

For notational convenience, we let A denote the feasible set of the optimization problem
(3.32), i.e.,

A := {α ∈ {0, 1}m |Aα ≤ b}.
By subtracting J(ᾱ) from the payoff function, we normalize the payoff function such that,
given ᾱ ∈ {0, 1}m at which the original problem (3.32) is linearized,

J(ᾱ) = 0.

Note that J(αOPT) ≥ 0, where αOPT is a solution of the original optimization problem (3.32),
if ᾱ ∈ A.

Theorem 4 (Performance Guarantee). Suppose that Assumption 5 holds. Let

αOPT ∈ arg max
α∈A

J(α),

α∗ ∈ arg max
α∈A

DSJ(ᾱ)>α,

α̂∗ ∈ arg max
α∈A

DNSJ(ᾱ)>α.

(3.11)

If DSJ(ᾱ)>(α∗ − ᾱ) 6= 0 and DNSJ(ᾱ)>(α̂∗ − ᾱ) 6= 0, set

ρ :=
J(α∗)

DSJ(ᾱ)>(α∗ − ᾱ)
,

ρ̂ :=
J(α̂∗)

DNSJ(ᾱ)>(α̂∗ − ᾱ)
.

(3.12)

and we have the following suboptimality bounds for the solutions of the approximate problems,
i.e., α∗ and α̂∗:

ρJ(αOPT) ≤ J(α∗),

ρ̂J(αOPT) ≤ J(α̂∗).
(3.13)

Otherwise,
J(αOPT) = J(ᾱ) = 0,

i.e., ᾱ is an optimal solution.
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Proof. Due to Assumption 5, we have

J(αOPT) = J(αOPT)− J(ᾱ) ≤ DSJ(ᾱ)>(αOPT − ᾱ). (3.14)

On the other hand, because α∗ ∈ arg maxα∈A DSJ(ᾱ)>α and αOPT ∈ A,

DSJ(ᾱ)>αOPT ≤ DSJ(ᾱ)>α∗. (3.15)

Suppose that DSJ(ᾱ)>(α∗ − ᾱ) 6= 0. Combining (3.14) and (3.15), we obtain the first
inequality in (3.13); the second inequality can be derived using a similar argument. If
DSJ(ᾱ)>(α∗ − ᾱ) = 0 or DNSJ(ᾱ)>(α̂∗ − ᾱ) = 0, we have

J(αOPT) ≤ 0 = J(ᾱ).

Due to the optimality of αOPT, the inequality must be binding.

The coefficients ρ and ρ̂ must be computed a posteriori because they require the solutions,
α∗ and α̂∗, respectively, of the approximate problems. They do not require the solution,
αOPT, of the original optimization problem. Note that ρ is, in general, different from ρ̂. If
ᾱ is feasible, i.e., ᾱ ∈ A, then we can improve the approximate solution by a simple post-
processing that replaces it with ᾱ if it is worse than ᾱ. The payoff functions evaluated at
the post-processed approximate solutions are guaranteed to be greater or than equal to zero
because J(ᾱ) = 0.

Corollary 3 (Post-Processing). Suppose that Assumption 5 holds and ᾱ ∈ A. Let αOPT, α∗

and α̂∗ be given by (3.11). Assume that DSJ(ᾱ)>(α∗ − ᾱ) 6= 0 and DNSJ(ᾱ)>(α̂∗ − ᾱ) 6= 0.
Define

α∗ = arg max{J(α∗), J(ᾱ)},
α̂∗ = arg max{J(α̂∗), J(ᾱ)}. (3.16)

and

ρ∗ := max{ρ, 0},
ρ̂∗ := max{ρ̂, 0}, (3.17)

where ρ and ρ̂ are given by (3.13). Then, we have the following suboptimality bounds for α∗
and α̂∗:

ρ∗J(αOPT) ≤ J(α∗),

ρ̂∗J(αOPT) ≤ J(α̂∗).
(3.18)

The complexity of checking (3.10) in Assumption 5 for all α ∈ {0, 1}m increases ex-
ponentially as the dimension of the decision variable α increases. Therefore, we provide
sufficient conditions, which are straightforward to check in some applications of interest, for
Assumption 5. Note that the inequality condition (3.10) with DJ = DSJ is equivalent to
the concavity of the payoff function at ᾱ if the space in which α lies is [0, 1]m instead of
{0, 1}m. This observation is summarized in the following proposition.
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Proposition 3. Suppose that Assumption 1, 2, 3 and 4 hold. We also assume that the
payoff function J : Rm → R in (3.2a) with xα defined by (3.1) is concave in [0, 1]m, i.e.,

J(α) :=

∫ T

0

r(xα(t), α)dt+ q(xα(T )),

with xα satisfying
ẋα(t) = f(xα(t), α), xα(0) = x ∈ X ,

is concave for all α ∈ [0, 1]m. Then, the inequality condition (3.10) with DJ = DSJ holds
for any ᾱ ∈ {0, 1}m.

Recall that we view xα as a function of α. Therefore, the concavity of J is affected by
how the system state depends on α.

The inequality condition (3.10) with DJ = DNSJ is difficult to interpret due to the non-
standard derivative. We reformulate the dynamical system and the payoff function such that
(i) the standard derivative of the reformulated payoff function corresponds to the nonstan-
dard derivative of the original payoff function and (ii) the reformulated and original payoff
functions have the same values at any α ∈ {0, 1}m. Then, the concavity of the reformulated
payoff function guarantees the inequality (3.10). To be more precise, we begin by considering
the following reformulated vector field and running payoff :

f̂( · , α) := f( · , 0) +
m∑
i=1

αi(f( · ,1i)− f( · , 0)),

r̂( · , α) := r( · , 0) +
m∑
i=1

αi(r( · ,1i)− r( · , 0)).

(3.19)

In general, f̂( · , α) (resp. r̂( · , α)) and f( · , α) (resp. r( · , α)) are different even when α is
in the discrete space {0, 1}m. One can show that they are the same when α ∈ {0, 1}m if the
following additivity assumption holds.

Assumption 6. The functions f(x, · ) and r(x, · ) are additive in the entries of α for all
x ∈ X , i.e.,

f( · , α) = f( · , 0) +
m∑
i=1

(f( · , αi1i)− f( · , 0)),

r( · , α) = r( · , 0) +
m∑
i=1

(r( · , αi1i)− r( · , 0)).

Note that these additivity conditions are less restrictive than the conditions that both of
the functions are affine in α as shown in Example 7 in Appendix C.

This reformulation and Assumption 6 play an essential role in interpreting the nontrivial
inequality condition (3.10) (with DJ = DNSJ) as the concavity of a reformulated payoff
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function, Ĵ , defined in the next theorem. The standard derivative of the reformulated payoff
function is equivalent to the nonstandard derivative of the original payoff function under
Assumption 6, i.e.,

DSĴ ≡ DNSJ.

Furthermore, the two payoff functions have the same values when α is in the discrete space
{0, 1}m, i.e.,

J |{0,1}m ≡ Ĵ |{0,1}m .
Therefore, the inequality condition (3.10) with nonstandard derivative can be interpreted as
the concavity of the reformulated payoff function.

Theorem 5. Suppose that Assumptions 1, 3 and 6 hold. Define the reformulated payoff
function Ĵ : Rm → R as

Ĵ(α) :=

∫ T

0

r̂(yα(t), α)dt+ q(yα(T )), (3.20)

with yα satisfying
ẏα(t) = f̂(yα(t), α), yα(0) = x ∈ X ,

where f̂ and r̂ are the reformulated vector field and running payoff, respectively, given in
(3.19). If the reformulated payoff function Ĵ is concave in [0, 1]m, then the inequality condi-
tion (3.10) with DJ = DNSJ holds for any ᾱ ∈ {0, 1}m.

Proof. Fix x ∈ Rn and i ∈ {1, · · · ,m}. If αi = 0, then

αi(f(x,1i)− f(x, 0)) = 0 = f(x, αi1i)− f(x, 0).

If αi = 1, then
αi(f(x,1i)− f(x, 0)) = f(x, αi1i)− f(x, 0).

On the other hand, due to Assumption 6, we have

f(x, α) = f(x, 0) +
m∑
i=1

(f(x, αi1i)− f(x, 0)).

Therefore, f̂(x, α) = f(x, α) for any α ∈ {0, 1}m. Using a similar argument, we can show
that r̂(x, α) = r(x, α) for any α ∈ {0, 1}m. These imply that

Ĵ(α) = J(α) ∀α ∈ {0, 1}m. (3.21)

Furthermore, using the adjoint-based formula in Proposition 2 for the standard derivative of
the reformulated payoff function Ĵ , we obtain

[DSĴ(α)]i :=

∫ T

0

(f(xα(t),1i)− f(xα(t), 0))> λα(t) + r(xα(t),1i)− r(xα(t), 0)dt. (3.22)
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On the other hand, under Assumption 6, the adjoint-based formula for the nonstandard
derivative of the original payoff function J can be rewritten as

[DNSJ(α)]i :=∫ T

0

(f(xα(t), (αi + 1)1i)− f(xα(t), αi1i))
> λα(t) + r(xα(t), (αi + 1)1i)− r(xα(t), αi1i)dt

if αi = 0 and

[DNSJ(α)]i :=∫ T

0

(f(xα(t), αi1i)− f(xα(t), (αi − 1)1i))
> λα(t) + r(xα(t), αi1i)− r(xα(t), (α− 1)1i)dt

if αi = 1. Plugging αi = 0 and αi = 1 into the two formulae, respectively and comparing
them with (3.22), we conclude that

DSĴ(α) = DNSJ(α) ∀α ∈ {0, 1}m. (3.23)

Suppose now that Ĵ is concave in [0, 1]m. Then, for any ᾱ, α ∈ {0, 1}m,

DSĴ(ᾱ)>(α− ᾱ) ≥ Ĵ(α)− Ĵ(ᾱ).

Combining this inequality with (3.21) and (3.23), we confirm that the inequality condition
(3.10) with DJ = DNSJ holds for any ᾱ ∈ {0, 1}m.

3.4 Algorithms

We now propose approximation algorithms for the optimization of combinatorial dynamical
systems (3.32) using the linear approximation proposed in the previous section. Formulating
the approximate problem (3.4) only requires the computation of the standard or nonstandard
derivative with computational complexity O(mnNT ) as suggested in Section 3.3.2, i.e., it is
linear in the dimension of the decision variable. Because the approximate problem (3.4)
is a 0–1 linear program, several polynomial time exact or approximation algorithms can
be employed. Another advantage of the proposed approximation is that the approximate
problem no longer depends on the dynamical system. Therefore, we do not need to compute
the solution of the dynamical system once the derivative has been calculated.

We begin by proposing an efficient algorithm for the l0-norm constrained problem. We
then consider linear constraints (3.32b). Depending on the types of the linear constraints,
several exact and approximation algorithms can be employed to solve the derivative-based
approximate problem (3.4), which is a 0–1 linear program.
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3.4.1 l0-norm constraints

An important class of combinatorial optimization problems relevant to (3.32) is to maxi-
mize the payoff function, given that the l0-norm of the decision variable is bounded. More
specifically, instead of the original linear constraint (3.32b), we consider the constraint,

K ≤ ‖α‖0 ≤ K, (3.24)

where K and K are given constants. We consider the following first-order approximation of
the combinatorial optimization problem:

max
α∈{0,1}m

DJ(ᾱ)>α

subject to K ≤ ‖α‖0 ≤ K.
(3.25)

A simple algorithm to solve (3.25) can be designed based on the ordering of the entries of
DJ(ᾱ), where DJ is equal to either DSJ or DNSJ . Let d(·) denote the map from {1, · · · ,m}
to {1, · · · ,m} such that

[DJ(ᾱ)]d(i) ≥ [DJ(ᾱ)]d(j) (3.26)

for any i, j ∈ {1, · · · ,m} such that i ≤ j. Such a map can be constructed using a sorting
algorithm with O(m logm) complexity (e.g., [117]). Note that such a map may not be
unique. We let αd(i) = 1 for i = 1, · · · , K. We then assign 1 on αd(i) if [DJ(ᾱ)]d(i) > 0 and
K + 1 ≤ i ≤ K. Therefore, the total computational complexity to solve the approximate
problem (3.25) requires O(mnNT ) + O(m logm). A more detailed algorithm to solve the
l0-norm constrained problem (3.25) is presented in Algorithm 1.

3.4.2 Totally unimodular matrix constraints

A totally unimodular (TU) matrix is defined as an integer matrix for which the determinant
of every square non-singular sub-matrix is either +1 or −1. TU matrices play an important
role in integer programs because they are invertible over the integers (e.g., Chapter III.1.
of [94]). Suppose that A is TU and b is integral. Let

Ā :=

[
A

Im×m

]
and b̄ :=

[
b
1

]
,

where 1 is the m-dimensional vector whose entries are all 1’s. The new matrix Ā is also TU.
The approximate optimization problem is equivalent to the following integer linear program:

max
α∈Zm

DJ(ᾱ)>α

subject to Āα ≤ b̄.



CHAPTER 3. APPROXIMATION ALGORITHMS FOR OPTIMIZATION OF
COMBINATORIAL DYNAMICAL SYSTEMS 52

Algorithm 1: Algorithm for the l0-norm constrained problem (3.25)

1 Initialization:

2 Given ᾱ,K,K;
3 α← 0;

4 Construction of d:
5 Compute DJ(ᾱ);
6 Sort the entries of DJ(ᾱ) in descending order;
7 Construct d : {1, · · · ,m} → {1, · · · ,m} satisfying (3.26);

8 Solution of (3.25):
9 for i = 1 : K do

10 αd(i) ← 1;
11 end
12 i← K + 1;

13 while [DJ(ᾱ)]d(i) > 0 and i ≤ K do
14 αd(i) ← 1;
15 i← i+ 1;

16 end

Because Ā is TU and b is integral, the solution of this problem can be obtained as the
solution to the linear program, whose feasible region is relaxed to Rm, of the form

max
α∈Rm

DJ(ᾱ)>α

subject to Āα ≤ b̄.
(3.27)

The proof of the exactness of this continuous relaxation can be found in [94]. The linear
program (3.27) can be solved by a simplex algorithm (e.g., [29]), interior-point methods
(e.g., [96]), and several others. Note that this approach does not require any rounding or
thresholding of the solution because the solution of the relaxed problem lies in the original
feasible space {0, 1}m.

3.4.3 General linear constraints

Suppose that l = 1, i.e., A ∈ R1×l is a vector and b ∈ R is a scalar and that all the entries of A
and [DJ(ᾱ)]i are non-negative.1 In this case, the approximate problem (3.4) is a 0–1 knapsack
problem, which has been extensively studied in the past six decades. A popular solution
method is the greedy algorithm based on the linear programming (LP) relaxation proposed by
Dantzig [30], which replaces the feasible region {0, 1}m with [0, 1]m. A simple post-processing
on the solution of the LP gives a 0.5-approximate solution of the knapsack problem. Such

1The latter non-negativity assumption can easily be relaxed by fixing αj = 0 for j such that [DJ(ᾱ)]j < 0.
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an approximate solution can be computed with complexity of O(m) + O(m logm) using
a greedy algorithm (e.g., pp. 28–29 of [85]). Other approximation algorithms have been
proposed including a polynomial time approximation [57]. 0-1 knapsack problems with a
large number of variables can be exactly solved by branch-and-bound algorithms (e.g., [54],
[6]). Another classic exact method for knapsack problems is via dynamic programming
(e.g., [127]). Several other algorithms and computational experiments can be found in the
monograph [85] and the references therein. If l > 1 and Ai,j ≥ 0 (and [DJ(ᾱ)]j ≥ 0) for
i = 1, · · · , l and j = 1, · · · ,m, then the approximate problem is called the multidimensional
0–1 knapsack problem. Several exact and approximation algorithms have been developed and
can be found in the review [40], as well as among the references therein. If no assumptions
are imposed, i.e., the approximate problem (3.4) with general linear inequality constraints is
considered, then successive linear or semidefinite relaxation methods for a 0–1 polytope can
provide approximation algorithms with suboptimality bounds [82, 119, 80].

Remark 2. Note that our proposed 0–1 linear program approximation does not have any
dynamical system constraints, while the original problem (3.32) does. This is advantageous
because the approximate problem does not require any computational effort to solve the dy-
namical system once the standard or nonstandard derivative is calculated. In other words,
the complexity of any algorithm applied to the approximate problem is independent of the
time horizon [0, T ] of the dynamical system or the number, NT , of discretization points in
[0, T ] used to approximate DJ(ᾱ).

3.5 Comparison with submodularity

Submodularity of a set function has attracted significant attention due to its usefulness in
combinatorial optimization. As summarized in Section 3.1, several algorithms have been pro-
posed for minimizing or maximizing a submodular function. Its application includes sensor
placement [74, 75], actuator placement (based on the controllability Grammian) [123], net-
work inference [44], dynamic state estimation [84], and leader selection under link noise [25].

Consider a set Ω with m elements, Ω := {1, · · · ,m}. We define a set indicator function
I : 2Ω → {0, 1}m as

[I(X)]i :=

{
0 if i /∈ X
1 if i ∈ X.

The set function J(I(·)) : 2Ω → R is said to be submodular provided that for any X ⊂ Y ⊆ Ω
and any s ∈ Ω \ Y

J(I(X ∪ {s}))− J(I(X)) ≤ J(I(Y ∪ {s}))− J(I(Y )).

If, in addition, it is monotone, i.e., for any X ⊂ Y ⊆ Ω

J(I(X)) ≤ J(I(Y )),
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then the problem of maximizing (3.2a) with l0-norm constraint (3.24) admits a (1 − 1/e)
approximation algorithm [95]. Minimizing (3.2a) with the l0-norm constraint is NP-hard,
while several polynomial time algorithms can solve unconstrained submodular minimization
problems as mentioned in Section 3.1.

Recall that the concavity of J (resp. Ĵ) guarantees the suboptimality bound to hold if
the standard (resp. nonstandard) derivative is employed (see Proposition 3 and Theorem
5). We investigate sufficient conditions for the concavity of J and Ĵ and the submodularity
of J(I(·)). It turns out that the concavity of J or Ĵ does not imply the submodularity of
J(I(·)); furthermore, the submodularity of J(I(·)) does not imply the concavity of J or Ĵ .

3.5.1 Conditions for concavity and submodularity

We begin by providing examples to show that concavity and submodularity do not imply
one another.

Example 3 (Concavity does not imply submodularity). Consider the following vector field
and running payoff:

f(x, α) = (x1 + α1 + 2,x2 + α2),

r(x, α) = −(x1 − x2)2.

Then, we have r(xα(t), α) = −
(∫ t

0
et−τ (α1 − α2 + 2)dτ

)2

. The terminal payoff is set to

q ≡ 0. Since the following equalities hold

J(I({2}))− J(I(∅)) = 3

(∫ t

0

et−τdτ

)2

,

J(I({1, 2}))− J(I({1})) = 5

(∫ t

0

2et−τdτ

)2

,

J(I(·)) is not submodular. On the other hand, J = Ĵ is concave in α ∈ [0, 1]2.

Example 4 (Submodularity does not imply concavity). Suppose that all the assumptions in
previous example hold except that the running payoff is given by

r(x, α) = (x1 − x2)2.

In this case, J = Ĵ is not concave in α, while J(I(·)) is submodular.

For comparison, we consider the case in which the vector field is linear in state and
decision variable and the payoff function has a particular structure. In this case, the solution
of the dynamical system is affine in the decision variable.
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Proposition 4. Suppose that r is separable as

r(x, α) = r1(x) + r2(α).

Consider the vector field of the form

f(x, α) = Ax+Bα,

where A is an n× n matrix and B is an n×m matrix. Then,

1. J is concave if r1, r2 and q are concave;

2. Ĵ is concave if r1 and q are concave;

3. J(I(·)) is submodular if: r2(I(·)) is submodular; r1 and q are separable such that r1(x) =∑m
i=1 r1,i(xi) and q(x) =

∑m
i=1 qi(xi) with r1,i and qi concave for all i; and given i, for

any X ⊂ Y ⊆ Ω, either

x
I(X)
i (t) ≤ x

I(Y )
i (t) ∀t ∈ [0, T ],

or
x
I(X)
i (t) ≥ x

I(Y )
i (t) ∀t ∈ [0, T ].

Proof. The ODE (3.1) admits a unique solution,

xα(t) = eAtx +

∫ t

0

eA(t−τ)Bαdτ.

Therefore, xα(t) is affine in α for all t ∈ [0, T ]. This implies that r1(xα(t)) and q(xα(t)) are
concave in α. Furthermore, because r2 is concave in α, so is J .

In this linear system case, the reformulated vector field f̂ in (3.19) is equivalent to f and
therefore the reformulated ODE admits the same solution, i.e., yα ≡ xα for all α ∈ [0, 1].
The reformulated running payoff in (3.19) is given by

r̂(yα(t), α) = r(yα(t), 0) +
m∑
i=1

αi(r(y
α(t),1i)− r(yα(t), 0))

= r(yα(t), 0) +
m∑
i=1

αi(r2(1i)− r2(0)).

Therefore, it is concave in α and so is Ĵ . Note that it does not require the concavity of r2.
Given i ∈ {1, · · · , n}, we notice that for any X ⊂ Y ⊆ Ω and for any s ∈ Ω \ Y , either

x
I(X∪{s})
i − xI(X)

i = x
I(Y ∪{s})
i − xI(Y )

i ≥ 0, x
I(X)
i ≤ x

I(Y )
i
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or
x
I(X∪{s})
i − xI(X)

i = x
I(Y ∪{s})
i − xI(Y )

i ≤ 0, x
I(X)
i ≥ x

I(Y )
i

For both cases, the concavity of r1,i implies that

r1,i(x
I(X∪{s})
i )− r1,i(x

I(X)
i ) ≥ r1,i(x

I(Y ∪{s})
i )− r1,i(x

I(Y )
i ).

A similar inequality holds for q1,i. Since r2 is submodular, we also have for any X ⊂ Y ⊆ Ω
and for any s ∈ Ω \ Y

r2(I(X ∪ {s}))− r2(I(X)) ≥ r2(I(Y ∪ {s}))− r2(I(Y )).

Therefore, we obtain that for any X ⊂ Y ⊆ Ω and for any s ∈ Ω \ Y
J(I(X ∪ {s}))− J(I(X))

=

∫ T

0

r(xI(X∪{s}), I(X ∪ {s}))− r(xI(X), I(X))dt+ q(xI(X∪{s}))− q(xI(X))

≥
∫ T

0

r(xI(Y ∪{s}), I(Y ∪ {s}))− r(xI(Y ), I(Y ))dt+ q(xI(Y ∪{s}))− q(xI(Y ))

= J(I(Y ∪ {s}))− J(I(Y )),

which implies that J(I(·)) is submodular.

Note that these are not necessary but sufficient conditions. We observe that the concav-
ity of Ĵ does not require the concavity of r2. However, a sufficient condition proposed in
Theorem 5 for Assumption 5, which is essential for the suboptimality bound, requires the
additivity of r2 (Assumption 6) in addition to the concavity of Ĵ . In Section 4.4, the payoff
function of the proposed direct load control problem satisfies all the conditions and therefore
it is both concave and submodular. In nonlinear system cases, we admit that it is nontriv-
ial to check the concavity of J or Ĵ and the submodularity of J(I(·)) unless an analytical
solution of the system is available. Further studies on characterizing the conditions for the
concavity and the submodularity in the case of nonlinear systems will be performed in the
future.

3.5.2 Computational complexity

We now compare our proposed algorithm (Algorithm 1) for the l0-norm constrained problem
with the greedy algorithm for maximizing a submodular function with the same constraint,
assuming that the payoff function is submodular and satisfies Assumption 5. Our algorithm
is one-shot in the sense that, after computing the derivative and ordering its entries only
once, the solution is obtained. On the other hand, the greedy algorithm chooses a locally
optimal solution at each stage. In other words, this iterative greedy choice approach requires
one to find an entry that maximizes the increment in the current payoff at every stage. Its
complexity is O(m2nNT ), quadratic in m. Therefore, our proposed algorithm is computa-
tionally more efficient as the number m of binary decision variables grows because it requires
O(mnNT ) +O(m logm) calculations.
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3.6 Application to real-time regulation of

supermarket refrigeration systems

Commercial refrigeration systems account for approximately 7% of the total commercial
energy consumption in the United States [129]. With this high power consumption capac-
ity of commercial refrigeration systems, such as supermarket refrigeration systems, there
have been growing efforts toward engaging their aggregations in the operation of the elec-
tric grid [118, 101]. We propose a new optimization-based control approach for aggregate
supermarket refrigeration systems to provide real-time services to the grid. We formulate
the real-time regulation problem as a centralized one-step look-ahead optimization problem
explicitly taking into account the interdependency of refrigerator display case temperatures.
The formulation generates ON/OFF control signals for all the refrigerator evaporators in the
aggregation to achieve the following two objectives: (i) to minimize the deviation of each
display case temperature from a desirable range, and (ii) to satisfy the real-time request
of a system operator. The proposed ON/OFF control approach has a fixed duty cycle and
is thus easy to implement compared with other methods that control duty cycles [115] or
temperature set points and cooling capacities [36, 55, 118].

The optimization program formulated in Section 3.6.2 is combinatorial because the dis-
play case temperature dynamics are interdependent and the total power consumption is
limited by the real-time regulation signal. This problem presents computational challenges
because it is NP-hard in general and requires repeated simulation of the temperature dy-
namic model. The most relevant formulations to our problem are the model predictive
control (MPC)-based methods in [79] and [101]. Because the control variables are binary
(ON or OFF), these MPC problems are combinatorial and NP-hard. [79] uses a hybrid
MPC scheme that does not scale well with the number of control variables. [101] proposes
a heuristic algorithm that gives an approximate solution, which shows good performance
in the simulation results. However, the approximate solution does not have a guaranteed
suboptimality bound. To overcome the computational challenges, we utilize the proposed
algorithm.

3.6.1 Supermarket refrigeration systems

We consider an aggregation of supermarket refrigerators in which multiple display cases are
interconnected with one another. For example, Figure 3.2 shows two refrigerators, each
of which has 10 display cases. The temperature of each display case is controlled by an
evaporator unit, where the refrigerant evaporates absorbing heat from the display case. Let
evaporator i be in charge of display case i for i = 1, · · · , n, where n is the number of
display cases in all the refrigerators. Expansion valve i controls the refrigerant injection into
evaporator i and decreases the pressure of the refrigerant if it is open, as shown in Figure
3.3. We say that evaporator i is in the ON state when expansion valve i is open; otherwise,
we say that it is in the OFF state.
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Figure 3.2: Two supermarket refrigerators, each of which has 10 evaporators. Evaporator i
controls the temperature of display case i.

Evaporators and display case temperatures

Let xi(t), θi(t) and ui(t) be the temperature of display case i, the ambient temperature near
display case i and the ON/OFF control signal of evaporator i at time t, respectively. More
precisely, we set ui(t) = 0 if evaporator i is OFF at time t and ui(t) = 1 otherwise. The
temperature of display case i can be modeled as the following first-order differential equation:

ẋi =


−aii(xi − θi)−

n∑
j=1

aij(xi − xj)− bi if ui = 1

−aii(xi − θi)−
n∑
j=1

aij(xi − xj) if ui = 0.
(3.28)

The thermal parameters are chosen as aii = Ūi−amb
MiCi

, aij =
Ūij
MiCi

, bi =
Ūi−ref
MiCi

b̄, where Mi and Ci
denote the mass and heat capacity of the goods in display case i, respectively, and Ūi−amb,
Ūij and Ūi−ref are the coefficients of the heat transfer between display case i and ambient
air, the heat transfer between display cases i and j and the heat transfer between display
case i and its refrigerant, respectively. Higher-order models can be employed for detailed
description of display case temperature dynamics [115, 55]. Let A be an n× n connectivity
matrix, whose (i, j)–th entry is given by

[A]ij :=

{
−∑n

k=1 aik if i = j
aij otherwise,

B be an n× n diagonal matrix, whose ith diagonal element is given by −bi, and Θ be an n
dimensional vector, whose ith element is given by aiiθi. Then, the display case temperature
dynamics of multiple refrigerators can be compactly written as

ẋ = Ax+Bu+ Θ,

where x := (x1, · · · , xn) and u := (u1, · · · , un).
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Figure 3.3: Schematic diagram of the supermarket refrigerators.

Compressors and power consumptions

As shown in Figure 3.3, the evaporated refrigerant with low pressure from the outlet of the
evaporator is compressed by the electric motors in the compressor bank. Each refrigerator
could have multiple compressors and each compressor is switched ON or OFF. For example,
all the compressors are turned ON when maximal compression is needed. We assume that
the number of compressors that are ON is approximately proportional to the total mass
flow of incoming refrigerants. Conventionally, the compressor bank is controlled by a PI
controller to maintain the suction pressure within a bandwidth [115]. Our assumption is a
good approximation of this conventional PI control when the pressure bandwidth is small.
The compressors of a refrigerator account for a major portion of its power consumption.
Therefore, modeling the power consumption of all the refrigerators, as in the following, is
reasonable:

∑nc
j=1 c̄jūj, where nc is the number of compressors in all the refrigerators, and

c̄j and ūj denote the power consumption and the ON/OFF control signal of compressor j,
respectively, for j = 1, · · · , nc. Under our assumption that the number of ON compressors is
proportional to the number of ON evaporators in the same refrigerator, we can approximate
the power consumption of all the refrigerators as

P (u) :=
n∑
i=1

ciui, (3.29)
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where the coefficient ci can be interpreted as the contribution of evaporator i on the aggregate
power consumption. In Section 3.6.2, we propose an optimization-based algorithm to regulate
the aggregate power consumption P (u) in real time.

The compressed refrigerant flows to the condenser and is liquified by generating heat, as
shown in Figure 4.1. The liquified refrigerant flows to the expansion valve, and as a result,
the refrigeration circuit is closed.

Conventional control

Conventionally the following set-point based control is used for evaporators:

ui(t) :=

 0 if xi(t) > θi
1 if xi(t) < θi
ui(t

−) otherwise,
(3.30)

where [θi, θi] is the desirable temperature range for display case i. Note that this control
approach is decentralized: the control decision for evaporator i depends only on its local
temperature. Intuitively, this decentralized control is suboptimal because it does not ac-
tively consider the heat transfer between neighboring display cases. This inefficiency of the
conventional control approach has motivated us to develop a new optimization-based control
method that takes into account the interdependency of display case temperature dynamics.

Another disadvantage of conventional control is that it is inappropriate for the real-time
regulation of the total power consumption of aggregate refrigeration systems. To provide
services to the electric grid, such as peak demand reduction and spinning reserve, an ag-
gregator may want to limit the total power consumption P (u) in (3.29) with a real-time
regulation signal provided by a system operator. For real-time regulations, we propose a
one-step look-ahead optimization program that explicitly constrains P (u) with a regulation
signal.

As mentioned, each compressor is conventionally controlled by a PI controller. Advanced
approaches, such as MPC, have been recently proposed to reduce the number of compressor
switchings [115]. In this study, we do not design a new controller for compressors, but the
proposed method can be extended to an optimization-based control of compressors. We
assume that a PI controller is employed for compressors with a small pressure bandwidth,
so (3.29) is a good approximation of the aggregate power consumption.

3.6.2 Real-time regulation

Direct Load Control Setting

We consider an aggregator or a utility, one of whose demand response (DR) programs is to
use aggregate refrigeration systems for providing services to the electric grid. The aggregator
receives a regulation signal, yk, from a system operator at time step k, i.e., at time t = kh
for k = 0, · · · , K − 1, where h denotes the duration of the time step. The regulation signal
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yk may be unavailable before time step k. Our setup assumes that all the temperatures
of the display cases are measured at time t = kh for k = 1, · · · , K and provided to the
aggregator. The task of the aggregator at time t = kh is then to determine the ON/OFF
control decision, αk := (αk1, · · · , αkn) ∈ {0, 1}n, of the evaporators. The control ui(t) is chosen
as αki for t ∈ [kh, (k+1)h). The aggregator has the following two objectives: (i) each display
case maintains the freshness of its goods, such as fruits, vegetables, eggs and dairy products,
by minimizing the deviation of each display case temperature from its desirable range, and
(ii) the total power consumption (3.29) is limited by yk, i.e., P (αk) ≤ yk. If ci ≡ c̄ for all i,
then this constraint can be rewritten as

n∑
i=1

αki = ‖αk‖0 ≤
yk

c̄
=: zk. (3.31)

One-step look ahead optimization

To achieve these objectives of the aggregator, we propose the following binary optimization
program whose solution is employed as the control signal for [kh, (k + 1)h):

max
αk∈{0,1}n

J(αk) := −
∫ (k+1)h

kh

n∑
i=1

Pi(xi(t))dt (3.32a)

subject to ‖αk‖0 ≤ zk (3.32b)

ui(t) = αki , t ∈ [kh, (k + 1)h) (3.32c)

ẋ = Ax+Bu+ Θ, t ∈ [kh, (k + 1)h) (3.32d)

x(kh) = xkmeas, (3.32e)

where Pi(xi) := (θi−xi)2 + (xi− θi)2. The function Pi(xi) can be interpreted as the penalty
for the temperature deviation from [θi, θi]. In other words, we use a soft constraint for the
desirable temperature range. The constraint (3.32b) guarantees that the aggregate power
consumption respects the system operator’s regulation signal. In (3.32e), xkmeas represents
the display case temperature vector measured at time t = kh. Note that the proposed
control method has a fixed duty cycle and is therefore very easy to implement. By choosing
a large enough h, we can decelerate the mechanical wear of the compressors. The proposed
method is applicable to the practical situation in which only a subset of the refrigerators
is available to provide services at any given time, if the control laws (e.g., set-point based
control) for unavailable refrigerators are known. This case can be handled by choosing the
decision variable αk as the ON/OFF control decision of the evaporators only in available
refrigerators at time t = kh.

Given the information yk and xkmeas at time t = kh, we solve (3.32) and immediately use
its solution as the control signal for [kh, (k+1)h). Therefore, it is important to solve (3.32) in
a very fast way such that the computational time is negligible compared with the duration
h. However, the combinatorial optimization problem (3.32) presents two computational
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challenges. First, it is NP-hard in general. Second, it requires us to repeatedly solve the
dynamical system (3.32d). Suppose that there are 25 supermarkets in the aggregation and
each supermarket has four refrigerators. If each refrigerator has 10 evaporator units, then
n = 25 × 4 × 10 = 1000, i.e., (3.32) has 1,000 binary decision variables and depends on
a 1,000-dimensional dynamical system. Furthermore, this problem cannot be decoupled as
multiple lower-dimensional problems, each of which is associated with one supermarket, due
to the power consumption constraint (3.32b). To rapidly solve this large-scale combinatorial
optimization problem, we develop a scalable approximation algorithm.

3.6.3 Simulation results: performance validation

Case I: target profile

At the beginning of time step k (i.e., at time t = (k − 1)h), the aggregator is requested by
the SO to maintain the total power consumption by the n refrigerator units in the target
range [yk, yk] (kW) for h = 15 minutes. In other words, the following inequality must be
guaranteed:

yk ≤
n∑
i=1

ciα
k
i ≤ yk,

where ci is the power consumption (kW) by refrigerator unit i when it is in the ON state.
To reduce the energy consumption during the period of high demand, the profile is chosen as
yk = 5500kW for k = 9, · · · , 16; and yk = 5000kW otherwise in the numerical experiments.

Taking into account the penalty for temperature deviation and the constraint on the
refrigerators’ total power consumption, the aggregator determines the ON/OFF control for
time step k as the solution of the following combinatorial optimization problem:

max
αk∈{0,1}m

Jk(α
k) := −

∫ kh

(k−1)h

n∑
i=1

Pi(xi(t))dt (3.33a)

subject to yk ≤
n∑
i=1

ciα
k
i ≤ yk (3.33b)

u(t) = αk, t ∈ [(k − 1)h, kh). (3.33c)

Remark 3. The inequality constraint (3.33b) cannot be decomposed. Therefore, although we
can decompose the full n-dimensional system into N subsystems such that any two subsystems
are independent of each other, the optimization problem (3.33) cannot be decomposed into N
subproblems such that each subproblem is associated only with one of the subsystems.

Remark 4. Since the dynamical system (3.28) is defined only at u(t) ∈ {0, 1}m, the stan-
dard derivative is ill-defined. Therefore, we use the nonstandard derivative in the linear
approximation of (3.33). We can prove that the reformulated payoff function, Ĵk, defined in
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Figure 3.4: The simulation results with approximate solution αk∗, k = 1, · · · , 32 for 1000
units: (a) control signals, αk∗i, i = 1, · · · , 5 (grey: ON, white: OFF) (b) controlled display
case temperatures, xi, i = 1, · · · , 5.

(3.20), is concave. Therefore, the proposed suboptimality bound holds. Furthermore, Jk(I(·))
is submodular due to Proposition 4.

We first set the number of evaporator units to m = 1000 and every 10 units have the
configuration in Figure 3.2. This problem approximately takes into account 25 supermarket
stores. The model parameters of the first 10 units are selected as the nominal parameter
set. The model parameters of the remaining 990 units are chosen by perturbing the nominal
parameter set by ±10% with a uniform random distribution. The power consumption by
unit i is set as ci = 10kW. We solve the approximate problem of (3.33) for k = 1, · · · , 32
using the proposed algorithm. The first five entries of the approximate solution are shown
in Figure 3.4 (a), in which we linearize the objective function at ᾱk = 0. The alternating
pattern of the control induces that the display case temperatures do not deviate significantly
from [0◦C, 4◦C] as shown in Figure 3.4 (b). The suboptimality bound, ρ∗, provided in Corol-
lary 3 is computed at k = 1, · · · , 32. The computed values suggest that the approximate
solution is at least 0.7-optimal solution for all time as shown in Figure 3.5 (a). This subopti-
mality bound is better than that of the multi-linear relaxation-based local search algorithm
in [132] for non-monotone submodular maximization with knapsack constraints, which gives
at least a (3 −

√
5)/2 ≈ 0.309-optimal solution. Note that the optimization problem (3.33)

can also be considered as a quadratic knapsack problem, whose objective function can be
formulated as (αk)>Qαk for a profit matrix Q. When all the entries of Q are nonnegative,
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Figure 3.5: (a) The suboptimality bound ρ∗ = ρ̂∗ in the simulation with m = 1000; and the
performance comparison of the proposed algorithm and the greedy algorithm to the oracle
when m = 20; (b) Robustness test for the performance of the proposed algorithm with
respect to the linearization point ᾱ1 (with m = 20).

several upper bounds have been studied (see [104] and the references therein). In our case,
however, Q contains negative entries. For such a general case, semidefinite programming
(SDP) relaxation approaches have provided powerful tools for computing upper bounds for
quadratic knapsack problems (e.g., [52]). We use the SDP relaxation (SQK3) in [52], which
is shown to be tight [52, 104]. As it provides an upper bound of the objective function,
given a feasible solution we can compute a suboptimality bound. Note that the solution α̂k∗
obtained by our linear approximation method is feasible. We use this solution to compute
the suboptimality bound ρSDP of the SDP relaxation for m = 1000. The calculated ρSDP is
approximately 0.6, which suggests that our proposed approach gives a tighter suboptimality
bound than the SDP relaxation method.

To compute the actual suboptimality, we compare the approximate solution with the
optimal solution by considering a problem with 20 refrigerator evaporator units. As shown
in Figure 3.5 (a), the performance of the proposed approximation algorithm is greater than
95% of the oracle’s performance. In this case, the greedy algorithm performs optimally;
however, we will see in the next subsection that it can get stuck at a local optimum in the
presence of a more complicated constraint. The proposed algorithm takes 0.015 seconds to
solve this problem while the greedy algorithm and exhaustive search take 0.57 seconds and
3112 seconds, respectively.
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Figure 3.6: The simulation results with approximate solution αk∗, k = 1, · · · , 32 for 1000
units with TU constraints: (a) control signals, αk∗i , i = 1, · · · , 5 (grey: ON, white: OFF) (b)
controlled display case temperatures, xi, i = 1, · · · , 5.

Considering 10 refrigerator evaporator units with a single time step, i.e., m = 10 and
k = 1, we compare the performance of the proposed algorithm and that of the greedy
algorithm with 410 initial values such that xi = 2, · · · , 5 for i = 1, · · · , 10. The ratio,
(J(α∗)− J(0))/(J(αgreedy)− J(0)), is within [0.99, 1.01] for over 99% of the initial values.
Lastly, we confirm that the performance of the proposed algorithm is robust with respect to
the linearization point ᾱ1 as shown in Figure 3.5 (b) by solving the approximate problem
for m = 20 and k = 1 with all possible 220 values of ᾱ1.

Case II: customized operation

In practice, a customer may specify constraints on the operation of the refrigerators. We
consider the situation in which the constraint can be represented as

Q̄αk ≤ r̄, (3.34)

where Q̄ is an m×n totally unimodular (TU) matrix and r̄ is an m dimensional vector with
integer entries. The usefulness of TU constraints is demonstrated in the following example.

Example 5. Suppose that the power consumption by unit 1 is comparable to the sum of the
power consumptions by units 2 and 3. The customer has a limited budget to operate the
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Figure 3.7: a) The suboptimality bound ρ∗ = ρ̂∗ in the simulation with m = 1000; and the
performance comparison of the proposed algorithm and the greedy algorithm to the oracle
when m = 20; (b) Robustness test for the performance of the proposed algorithm with
respect to the linearization point ᾱ1 (with m = 20).

refrigerators and therefore requests the following constraints to the aggregator:

αk1+10(l−1) + αk2+10(l−1) ≤ 1, αk1+10(l−1) + αk3+10(l−1) ≤ 1,

αk10l + αk9+10(l−1) ≤ 1, αk10l + αk8+10(l−1) ≤ 1

for l = 1, · · · , 100. The rest of the units satisfy the following constraint:

100∑
l=1

7∑
j=4

αkj+10(l−1) ≤ z̄k,

where z̄k is an integer. Note that these constraints can be formulated as the inequality (3.34)
with a TU matrix Q̄ and a integer vector r̄.

We now consider the optimization problem (3.33) with TU constraint (3.34) instead of
(3.33b). The decomposability of the problem depends on that of the TU constraint (3.34).
We use the same system model as that of Case I and impose the TU constraint in Example 5
with z̄k = 2500 for k = 9, · · · , 16 and z̄k = 2000 otherwise. As shown in Figure 3.6 (a),
the constraints specified on units 1, 2 and 3 are satisfied by the solution of the approximate
problem. We also note that unit 1 is used less frequently than in the previous case because if
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unit 1 is OFF, then units 2 and 3 can be used. On the other hand, the greedy algorithm uses
unit 1 frequently whenever the gain obtained by turning on unit 1 is greater than that by
turning on unit 2 or unit 3. This behavior is not desirable because units 2 and 3 cannot be
used when unit 1 is ON. Therefore, the proposed algorithm outperforms the greedy algorithm
as shown in Figure 3.7 (a). We compute the suboptimality bound, ρ∗, provided in Corollary
3 for k = 1, · · · , 32 as shown in Figure 3.7 (a). The calculated values suggest that the
approximate solution is at least 0.64-optimal solution for all time.

We again consider the problem with 20 units to compare the approximate solution with
the optimal solution. As shown in Figure 3.7, the performance of the proposed approxi-
mation algorithm is at least 90% of the oracle. On the other hand, the greedy algorithm
achieves only 70 − 85% of the oracle 7 times out of 32. To compare their performances
with multiple initial values, we solve the problem using the proposed approximation algo-
rithm and the greedy algorithm for one time step, i.e., K = 1, with 410 initial values such
that xi = 2, · · · , 5 for i = 1, · · · , 10 considering 10 refrigerator evaporator units. The ratio,
(J(α∗) − J(0))/(J(αgreedy) − J(0)), is greater than 1.1 for over 99% of the initial values,
i.e., the proposed algorithm performs at least 10% better for over 99% of the initial values.
Furthermore, the average performance of the proposed algorithm is twice as high as that of
the greedy algorithm. Finally, we perform the robustness test for the proposed algorithm
with respect to the liberalization point ᾱ1 as in the previous subsection by solving the prob-
lem with all possible 220 values of ᾱ1. As shown in Figure 3.7 (b), the performance does not
deviate more than 15% from its average.

Comparison of standard and nonstandard derivatives

We now compare the performance of approximation methods based on the standard and
nonstandard derivatives. For comparison purpose, we assume that the dynamical system is
given by (3.28) for i ∈ I1 := 2, 4, 6, 8, 12, 14, 16, 18 and

ẋi = −aii(xi − θi)−
n∑
j=1

aij(xi − xj)− bie−ξi(1−ui)t (3.35)

for i ∈ I2 := {1, 2, · · · , 20} \ I1, where we set ξi = 100. The modified term in the dynamical
system (3.35) models transient shutdown behavior of refrigerators after the OFF control
signal is given. For i ∈ I2, the standard and nonstandard derivatives are given by

[DSJ(ᾱ)]i = −biξi
∫ T

0

te−ξi(1−ᾱi)tλᾱi (t)dt,

[DNSJ(ᾱ)]i = −bi
∫ T

0

(1− e−ξit)λᾱi (t)dt,

respectively. Setting m = 20 and k = 1, we solve the the approximation problems based on
the two derivatives with all possible 220 values of the linearization point. Recall that α̂∗ and
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(per supermarket) energy (8h) peak load reserve arbitrage
conventional 784kWh 200kW N/A N/A

proposed 752kWh 94kW 60kW $35.08

Table 3.1: Summary of the simulation results per supermarket: conventional control is not
applicable to a spinning reserve service or energy arbitrage.

α∗ denote the solution of the approximate problems based on the nonstandard and standard
derivatives, respectively. The average of J(α̂∗)−J(0) over all the linearization points solving
the approximate problem using the nonstandard derivative is 13.87, which is greater than
the average 13.68 of J(α∗) − J(0) obtained using the standard derivative. Therefore, the
approximation algorithm using the nonstandard derivative performs better than that using
the standard derivative on average in this problem. This result can be explained as follows.
Intuitively, the optimal solution should preferentially turn on refrigerator units in I1 because
the transient behavior of refrigerator unit i ∈ I2 provides a refrigeration even when it is OFF.
Note that the approximate solution using the nonstandard derivative preferential selects to
turn on refrigerators in I1 because [D̂J(ᾱ)]i for i ∈ I2 is deflated from the case of Section
3.6.3. However, the standard derivative [DJ(ᾱ)]i is inflated for i ∈ I2 and, therefore, its
approximate solution preferentially turns on refrigerators in I2. As a result, the approximate
solution using the nonstandard derivative slightly outperforms the standard derivative. In
general, the one of two approximate solutions that outperforms another is problem-dependent
(see also Appendix C.2).

3.6.4 Simulation results: demand response

We consider the situation in which 25 supermarkets are enrolled in a direct load control
program provided by an aggregator. Each supermarket has four refrigerators and each
refrigerator contains 10 evaporator units. Therefore, the number of control variables or
display cases is n = 25 × 4 × 10 = 1000. The aggregator receives a real-time regulation
signal yk every h = 15 minutes from a system operator. We use the following parameters
in the simulations: aii = 0.5 for display cases in the two ends of each refrigerator, aii = 0.3
for the rest of the display cases, aij = 1.5 for i 6= j for the first 10 display cases and aij’s
of the remaining 990 display cases are chosen by perturbing the nominal parameter set by
±10%. Furthermore, we set bi = 12, ci ≡ c̄ = 5kW, θ = 0◦C, θ = 4.5◦C and θi = 20◦C.
We use Algorithm 1 to generate the control signals. The linearization point is chosen as
ᾱ = 0. All tests were performed on a 2.3GHz Intel Core i7 processor with 16GB RAM. The
computational time of the proposed algorithm for n = 1000 display cases is 0.81 seconds
with its MATLAB implementation. In all the simulations below, the suboptimality bound
ρ of the proposed method is greater than 0.65.
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Figure 3.8: Temperature profiles of display cases 1, · · · , 5 controlled by (a) the conventional
set-point based control; (b) the proposed optimization-based control; and (c) total power
consumption profiles.

Comparison with conventional control

We compare the proposed optimization-based control with the conventional set-point based
control (3.30). We use θ = 1.5◦C in the simulation for conventional control because of the
strong temperature undershoot of the conventional control approach. Figure 3.8 (a) and (b)
show the temperatures for the first five display cases controlled by the conventional control
and the proposed control, respectively. Because our method actively takes into account
the heat transfer between neighboring display cases, it achieves a better energy efficiency
(saves 4.5% of energy) than the conventional control approach. Our result confirms a well-
known fact that the conventional approach induces the synchronization of evaporators and
therefore causes high peak power consumption as shown in Figure 3.8 (c). By contrast, the
proposed method induces the desynchronization of evaporators and therefore flattens power
consumption profile. The simulations are summarized in Table 3.1.
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Figure 3.9: (a) A real-time regulation signal for a spinning reserve; and (b) temperature
profiles of display cases 1, · · · , 5 controlled by the proposed algorithm.

Real-time regulation I: power system resilience

We study the potential of using supermarket refrigeration systems as a spinning reserve (e.g.,
[69]) for power system resilience. In particular, we consider a scenario in which supply short-
age occurs because of an incorrect forecast of renewables, a cyber-attack to the supervisory
control and data acquisition systems for the electric grid, or a deceptive manipulation of
electricity markets. By providing the real-time regulation signal yk in Figure 3.9 (a), the
system operator requests the aggregation of supermarkets to serve as a spinning reserve of
1,500kW capacity for 45 minutes. To meet this request, we assume that the supermarkets
use display case covers, which are normally utilized during off-hours. If the covers are used,
the heat transfer between each display case and its ambient air is reduced: we set aii = 0.3
for display cases in the two ends of each refrigerator and aii = 0.2 for the rest. In this setting,
the aggregation can work as the requested spinning reserve of 15kW per refrigerator and the
temperature deviation is less than 0.5◦C (see Figure 3.9 (b)).

Real-time regulation II: energy arbitrage

We now consider the case of energy arbitrage (e.g., [87]). Based on the energy price in
a 15 minute-ahead wholesale electricity market, the system operator provides a real-time
regulation signal that induces the aggregator to buy energy when its price is low and to sell
it when the price is high. Figure 3.10 (a) shows the 15 minute-ahead wholesale electricity
market at the Austin node in ERCOT [35], and Figure 3.10 (b) shows the base-line power
procured by the aggregator in a day-ahead market or through a long-term contract and the
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Figure 3.10: (a) Locational marginal price on July 3, 2013 at the Austin node in the ERCOT;
(b) a real-time regulation signal for energy arbitrage; and (c) temperature profiles of display
cases 1, · · · , 5 controlled by the proposed algorithm.

real-time regulation signal yk provided by the system operator from 10 am to 6 pm. The
controlled temperatures for the first five display cases are presented in Figure 3.10 (c). The
temperature deviation from [θ, θ] is less than 0.6◦C because right after the reduction in total
power consumption, the regulation signal encourages enough cooling to recover the desired
temperature levels. The profit of the aggregator through this arbitraging is $877.36, i.e.,
$8.77 per refrigerator.
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Chapter 4

Utility Learning Model Predictive
Control for Personal Electric Loads

4.1 Personalized control for electric loads and

demand-side management

One of the major changes expected for the future electric power grid is a transition towards
demand side management, with objectives including (i) the enhancement of energy efficiency
of a customer’s electric loads and (ii) the guiding of a customer’s electricity usage patterns
or flexibility via energy pricing and/or incentive payment schemes [122]. The latter is also
called demand response. Increasing controllability of a customer’s loads with appropriate
control schemes is expected to play a key role in achieving these objectives [23]. A number
of sophisticated control and scheduling methods have been proposed for various types of per-
sonal loads, such as electric vehicles [113, 83], deferrable loads [41, 112] and thermostatically
controlled loads [86, 51, 139, 141]. In addition to achieving good energy efficiency or demand
response, a main task of the control method is to ensure that each customer’s comfort does
not deteriorate. Personalized control of loads taking into account the customer’s satisfaction
has recently shaped up as a successful concept for addressing this goal. The Nest smart
thermostat [56] can be taken as one example.

This work proposes a novel personalized control framework that is suitable for customer’s
electric loads. The proposed method has the capability of learning online the customer’s
utility function that represents her satisfaction (e.g., comfort and energy saving) with the
controlled personal loads. More specifically, the customer reports her satisfaction with the
control performance, e.g., in the form of a simple rating, say a number between 1 and 5,
through a given interface between the customer and the controller at any convenient time.
For example, the customer can rate the controller of her air conditioner judging from the
amount of energy savings and her comfort with the indoor temperature and report it to
the controller via her smartphone. Using the satisfaction data, the proposed method infers
the customer’s utility function that is used to automatically customize the controller for the
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customer.
In the proposed framework, the customer’s utility is learned online from her satisfaction

data and the control objective is changed accordingly. The approach is suitable even for the
situation in which the customer’s behavior affects the system controlled by her loads. For
example, opening a window affects the indoor temperature controlled by the customer’s air
conditioner. To achieve online learning of the customer’s utility and behavior in this setting,
we propose a system manager, which is interfaced with the customer and the electric load.
The system manager consists of a behavior learning module, a controller and a utility learning
module. Intuitively speaking, the behavior and utility learning modules infer the customer’s
behavior and utility from the state measurements and the satisfaction data, respectively, and
deliver the inferred values to the controller that uses them to compute personalized control
actions. More specifically, the behavior learning module estimates and predicts online the
effect of the customer’s behavior, which is not known a priori or cannot be modeled explicitly,
on the system state controlled by her loads, e.g., indoor temperature. A Gaussian process
(GP) model is used to learn the effect from online state measurements and construct a
stochastic prediction [110, 103, 70]. The prediction of the customer’s behavior enhances
the performance of the model predictive control (MPC) [71, 45, 3, 125], which is used as
a controller in the proposed framework. The objective of the MPC controller is chosen
as the customer’s utility function, which is inferred by the utility learning module. The
identification of the customer’s utility is performed online by solving a convex optimization
problem whenever the customer reports a new satisfaction data to the system manager.
Furthermore, the module provides an option to learn the user’s utility online as a time-
varying function using GP regression and therefore to generate an estimate of the utility
at all sampling times, i.e., also when no satisfaction data is available. The MPC controller
immediately sets the updated customer’s utility as its objective function and thereby modifies
the resulting control law according to her preferences. We call this framework the utility
learning model predictive control.

The most distinctive feature of the proposed framework is that the customer’s utility is
learned online during closed-loop control. Therefore, (i) the controller is capable of immedi-
ately updating its objective function as the identified or predicted customer’s utility and of
controlling the system to maximize the new objective, and (ii) no separate training period
to learn the customer’s utility is needed. These are advantages of the proposed framework,
which tightly integrates the utility learning and system control, over offline utility learning
approaches (e.g., [68, 13]).

4.2 The setup

We begin by describing the setting of the utility learning model predictive control framework,
which consists of the customer, the load (and the system controlled by the load), and the
system manager.
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Figure 4.1: Information flow among the customer, the system/load and the system manager.

4.2.1 System model

Consider an electric load of a customer, e.g., a water heating system, an air conditioner or
a CO2 controller. Let xτ ∈ Rn be the system state, e.g., the water temperature, the indoor
temperature, or the indoor CO2 level, at time τ∆t, τ = 0, 1, · · · for some positive time step
∆t. We let uτ ∈ Rm be the control input, e.g., the power consumption by the load, and
assume that the system can be represented or at least well approximated by linear system
dynamics of the form

xτ+1 = Axτ +Buτ + zτ + wτ , (4.1)

where wτ ∈ Rn models the exogenous (or environmental) uncertainty (with a known prob-
ability distribution) that affects the system. Here, zτ ∈ Rn represents an unknown effect
of the customer’s behavior on the system dynamics. The customer’s behavior is assumed
to be independent of the system state but to be dependent on time. This effect can make
the system model arbitrarily wrong if we do not have good knowledge (or estimation) of
the customer’s behavior. Neglecting this effect can cause a significant model mismatch and
deteriorate the closed-loop performance of the MPC controller.
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4.2.2 Customer’s utility function

The customer has multiple objectives to control her load. Most commonly, she wants to
maximize her utility associated with energy savings and, at the same time, maximize her
utility associated with her comfort/convenience. To mathematically model the ith objective
of the customer, we choose a basis utility function, βi : Rn×Rm → R, for each i = 1, · · · , K.
Then, the total utility function of the customer (at time τ∆t) can be modeled as the weighted
sum of the basis utility functions, i.e.,

J(xτ , uτ ; θ) :=
K∑
i=1

θiβi(xτ , uτ ),

where θi ∈ R is the weight of the ith basis. The vector of weights is denoted by θ ∈ RK .
Here, the basis functions are assumed to be concave. This assumption is valid in many
practical problems.

Example 6. Let xτ and uτ be the indoor temperature and the power consumption by the
customer’s air conditioner at time τ∆t, respectively. Let cτ (dollar/kWh) be the energy
price; then, the customer’s utility function with respect to energy costs can be modeled as the
negative value of energy costs, i.e., β1(xτ , uτ ) := −cτuτ∆t. Assuming that the user feels most
comfortable at the temperature x̄, the customer’s utility function with respect to her comfort
can be formulated as β2(xτ , uτ ) := −(xτ − x̄)2∆t. This is a modified version of the comfort
metric defined in terms of temperature deviation proposed in the ANSI/ASHRAE standards
[126]. Note that these two basis utility functions are concave. These basis functions are
employed in the numerical tests in Section 4.4.

The task is then to learn the weights to identify and infer the customer’s utility. Learning
the weights online from appropriate data is essential to align the system manager’s objective
with the customer’s actual objective. Given the basis weights, the system manager synthe-
sizes a controller that maximizes the utility function in a receding horizon approach as will
be shown in Section 4.3.

4.2.3 Information flow

The information flow between the customer, the system controlled by the load, and the
system manager is depicted in Figure 4.1. The customer’s behavior affects the system state
(e.g., indoor temperature) and this effect is represented by z as proposed. The system is also
perturbed by the exogenous disturbance or noise, w, and the current state information, x,
is delivered to all three modules of the system manager: (i) the behavior learning module;
(ii) the controller; and (iii) the utility learning module.

In the behavior learning module, the customer’s effect, z, is learned by Gaussian process
(GP) regression. The inferred value of z is denoted as ẑ. Weakly periodic behavior of the
customer is informative when designing a kernel of the GP model with good performance.



CHAPTER 4. UTILITY LEARNING MODEL PREDICTIVE CONTROL FOR
PERSONAL ELECTRIC LOADS 76

s1

time

satisfaction

· · ·

sj�1 sj

0 ⌧1 ⌧j�1 ⌧j

Figure 4.2: The satisfaction data, sj ∈ RK , is provided at tj := τj∆t to the system manager.

Judging from the system state and control during (τj−1∆t, τj∆t] (and/or even before the
interval), the customer can report her satisfaction, sj ∈ R, to the system manager, where
τj−1∆t is the time at which satisfaction was last reported and τj∆t is the current time as
illustrated in Figure 4.2. Therefore, {τj}j=1,··· is a subsequence of the MPC sampling time
steps τ = 0, 1, · · · . Note that the reporting time can be arbitrarily chosen by the customer.
For example, the user rates the performance of her smart thermostat as a number, sj,
between 1 and 5 based on the amount of energy saving and her comfort with the indoor
temperature during (τj−1∆t, τj∆t] and reports it to the thermostat via her smartphone.
The utility learning module then identifies the basis weights given the satisfaction data
{sj, sj−1 · · · , sj−M+1}, where M can be chosen by the customer. The identified basis weight
vector is denoted as θ∗. The module also provides an option to learn the basis weight vector
as a function in time using GP regression. The inferred value of θ is denoted as θ̂. The
utility identification and learning procedures will be discussed in Section 4.3.3.

The controller of the system manager receives the information on the system state, x,
the inferred behavioral effect, ẑ, and the identified (or inferred) basis weights, θ∗ (or θ̂). It
then generates a control signal u using an MPC approach that maximizes the updated user’s
utility.

4.3 Utility learning model predictive control

We now propose the utility learning model predictive control method under the setting
described in the previous section. The proposed method builds on the three main building
blocks: the controller, and the behavior and utility learning modules. The details for each
of these components are discussed in the following.

4.3.1 Model predictive control interfaced with learned
customer’s utility function and behavior

A model predictive control scheme is proposed, which allows to tightly couple the three blocks
and compute a control input minimizing the cost (or maximizing the utility) obtained from
the utility learning module, subject to the imposed system constraints and the prediction of
the model dynamics inferred in the behavior learning module. The system (4.1) is stochastic
due to the uncertain customer’s effect as well as the exogenous uncertainty. To take into
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account the stochastic dynamics, a stochastic MPC problem is formulated:

min
uτ∈RmN

−
τ+N−1∑
l=τ

E[J(xl, ul; θ̂)]

subject to xτ = x∗τ
xτ+i+1 = Axτ+i +Buτ+i + ẑτ+i + wτ+i,

uτ+i ∈ U , i = 0, · · · , N − 1,

(4.2)

where x∗τ is the system state measured/estimated at time step τ , uτ := {ul}τ+N−1
l=τ is the

sequence of control inputs and N is the prediction horizon. U is a compact set, defining the
set of admissible control values. It should be noted that state constraints are not explicitly
incorporated in the MPC problem. In the application context of electric loads, it is assumed
that state constraints are introduced as soft constraints and included as a basis function.
Note that with a slight abuse of notation we use θ̂ in the MPC cost as the weight provided
by the utility learning module for both updating strategies proposed in Section 4.3.3.

By using the mean and variance of ẑτ+i over the prediction horizon provided by the
behavior learning module (see Section 4.3.2) and the given probability distribution of wτ+i,
the stochastic MPC problem can be reduced to a deterministic formulation. In the case of
a quadratic stage cost on the states and inputs, for instance, the stochastic MPC problem
corresponds to employing the expected values z̄τ+i = E[ẑτ+i], w̄τ+i = E[wτ+i] in the dynamics.
This can be easily seen from E[x>l Qxl] = tr(QVar[xl]) + E[xl]

>QE[xl] and the fact that
Var[xl] = Var[ẑl]+Var[wl] is known or provided by the prediction and hence a given constant
at the time of computation. Let u∗τ be the solution to the optimization problem at time step
τ . The MPC control law, κ : Rn × R → Rm, is defined in a receding horizon fashion by
applying the first control input, i.e., κ(x, τ) = u∗τ .

4.3.2 Learning the customer’s behavior

The effect of the customer’s behavior is learned from data collected during online control.
We make use of a Gaussian process model, providing a general non-parametric modeling
framework and a posterior uncertainty description. Informally, a Gaussian process (GP) can
be thought of as describing a probability distribution over functions. Due to the fact that
human behavior generally follows a daily routine, the customer’s effect can be assumed to
exhibit dynamics with periodic characteristics, which may, however, change over multiple
period lengths. A GP model for capturing ‘locally periodic’ dynamical effects has been
recently proposed and incorporated in an MPC controller in [70]. A function g is here said
to be ‘locally periodic’ provided that g(t) ≈ g(t + nω) if nω � l but g(t) 6≈ g(t + nω) if
nω � l, where ω is the period length, l is a measure of locality and n = 1, 2, · · · . An example
is shown in Figure 4.3. This approach can be directly employed to learn the customer’s effect
online as described in the following. We only discuss the main steps of GP regression, more
details about Gaussian processes can be found in [110], see also [103] for a more general
overview of kernel methods for system identification.
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Figure 4.3: An example of quasi-periodic human effect.

Consider the case of learning a scalar function gi : R → R for ziτ = gi(τ∆t), where ziτ
denotes the ith element of the vector z. A Gaussian process model is defined by a mean
function µ : R→ R and a covariance function k : R× R→ R, which together form the GP
prior. The choice of this prior is an important modeling assumption as it determines the
properties of the functions considered for ziτ and in turn affects convergence and extrapolation
properties. In the particular case of time varying functions, extrapolation is crucial because
future function values have to be predicted from past observations.

A prior covariance function focusing probability mass on periodic functions has been
recently presented in [70], which is composed of a square exponential kernel kSE(t, t′) and a
periodic kernel kP (t, t′) for t, t′ ∈ R:

k(t, t′) = σ2 · kSE(t, t′) · kP (t, t′), (4.3)

where kSE(t, t′) = exp(−(t− t′)2/2l2SE) with length scale lSE, kP (t, t′) = exp(−2 sin2(π
ω

(t −
t′))/l2P ) with length scale lP and period length ω, and σ2 is the signal variance. Intuitively
speaking, this kernel considers two input times similar if they are similar under both the
square exponential and the periodic kernel. The square exponential kernel admits the func-
tion to be not strictly periodic and for lSE � ω to vary over a longer time scale. As shown in
[70], this kernel has the significant advantage that it offers good extrapolation properties for
functions with this property. A function drawn from a GP with this kernel is shown for the
application example in Figure 4.7, a more detailed discussion and illustration of the different
parameters can be found in [70]. The role of the mean function is less critical. Since no prior
hypothesis about the mean of the customer behavior is available, the mean function is here
chosen to zero.

After choosing the prior hypothesis class, GP regression is performed by inferring the
function from observed data. Samples of the customer effect zτ are obtained from the
dynamical model in (4.1) by measuring the state xτ at two consecutive sampling times. We
denote by z̃iT ∈ RD the vector of observations at time points T ∈ RD. If data points are
observed with Gaussian noise εz ∼ N (0, σ2

z), i.e., z̃iτ = ziτ + εz, i = 1, · · · , n, then, given the
Gaussian process prior, the posterior distribution is also Gaussian [110]. For a given test
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point t = j∆t, the resulting predictive distribution with mean z̄ij and variance V(zij) is given
by:

z̄ij = µ(t) +K(t, T )>(K(T, T ) + σ2
zI)−1(z̃T − µ̄(T )), (4.4a)

V(zij) = K(t, t)−K(t, T )>(K(T, T ) + σ2
zI)−1K(T, t), (4.4b)

where [K(T, T ′)]mn := k(Tm, T
′
n), [µ̄(T )]m := µ(Tm). The posterior mean and variance

completely characterize the inferred value, ẑij, of zij. By means of (4.4), a prediction of
the mean and variance of ẑij, j = τ, · · · , τ + N − 1, is constructed for i = 1, . . . , n and is
incorporated in the MPC problem.

The covariance function has several free hyperparameters, which may be difficult to
choose in practice. While in the case of human behavior the period length can be chosen
from intuition as 24h, choosing good values for the remaining hyperparameters is important
to provide a good model. In GP regression, hyperparameters are often inferred from the
available training data. In the considered case of online learning, inference is performed
recurrently during closed-loop operation, after a new batch of L data points has been col-
lected, where L is a tuning parameter. Different techniques for hyperparameter inference are
available, see [110] for a detailed discussion, or [70] for a customized approach for periodic
kernels.

4.3.3 Learning the customer’s utility

As proposed in Section 4.2.3, the customer can provide the satisfaction data to the system
manager at any sampling time. We propose two techniques for utility learning in the follow-
ing. The first approach is based on an immediate identification of the weights as soon as new
satisfaction data is available, after which the weight is kept constant until the next update.
The second approach additionally learns time varying functions for the basis weights, which
are used to predict the weights in the future and are updated with every new satisfaction
data point. As shown in Figure 4.2, let sj ∈ R be the customer’s satisfaction with the system
operation during (tj−1, tj] = (τj−1∆t, τj∆t]. We also denote

dj :=

∑τj
τ=τj−1+1(β1(x∗τ , u

∗
τ ), · · · , βK(x∗τ , u

∗
τ ))

τj − τj−1 − 1
. (4.5)

In other words, dj ∈ RK represents the averaged basis function with the MPC control over
(tj−1, tj].

At time step τj, the system manager considers the following data:

{(dj−M+1, sj−M+1), · · · , (dj, sj)}, (4.6)

where the parameter M determines how many data points in the past are taken into account,
which can be chosen by the customer. If the customer wants the system manager to consider
her most recent previous satisfaction data and the current satisfaction data, for example,
then she should choose M = 2.
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Online identification of the customer’s utility

From the data, the system manager estimates the basis weights θ∗ at time step τj by solving
the following optimization problem:

θ∗τj = arg min
θ∈RK

j∑
i=j−M+1

(d>i θ − si)2 +R(θ)

subject to θL ≤ θ ≤ θU,

(4.7)

where the lower and upper bounds θL and θU of the basis weights, respectively, can be chosen
by the customer. Here, R : RK → R is a strictly convex function, which can be interpreted
as a regularizer to guarantee the uniqueness of the solution. Let D := (dj−M+1, · · · , dj)> ∈
RM×K , and s := (sj−M+1, · · · , sj) ∈ RM . Then, the cost function can be rewritten as

j∑
i=j−M+1

(d>i θ − si)2 +R(θ) = ‖Dθ − s‖2 +R(θ).

If rank(D) ≥ K, then the optimization problem (4.7) has a unique solution even if R ≡ 0.
However, the rank condition is not guaranteed, even when M ≥ K, because of the possibility
that the linearly independent data in (4.6) are less than K. Therefore, an appropriate strictly
convex function R needs to be chosen to guarantee the uniqueness of the solution to (4.7).
In the examples in Section 4.4, we choose R as a ‘smoothness-inducing function’. More
specifically, set

R(θ) = λ‖θ − θ∗τj−1
‖2,

where θ∗τj−1
indicates the basis weight vector identified at the last utility learning time, i.e.,

τj−1∆t, and λ is a positive constant. This regularization function encourages the smooth-
ness in the variation of the basis weights, i.e., it discourages abrupt jumps in the objective
(utility) function in the MPC module. It is important to note that the utility identification
is performed online. Therefore, the proposed method is ideal when the customer’s utility
function changes over time and these changes are critical in controlling the load.

Online learning of the customer’s utility

Using the identified weights, a time-varying function for θ can be learned online, which
allows to predict the weight vector for all time points, i.e., even when no satisfaction data
is available. A GP model as described in Section 4.3.2 is employed, where the observed
data points in this case are given by the identified weight vectors, {θ∗iτ1 , · · · , θ∗iτj}, defined
in (4.7). Due to the overall periodicity of human behavior, the customer’s preference can
again be assumed to vary periodically and the kernel in (4.3) is employed. All weights
are initially assumed to be equivalently important by choosing a constant mean equal to
one, i.e. µ(t) = 1,∀t. Let Tj := (t1, · · · , tj) ∈ Rj, where tl := τl∆t, l = 1, 2, · · · . For
i = 1, · · · , K, let θ̃∗ij ∈ Rj denote the vector of observations for the ith weight at times Tj,
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Figure 4.4: The identified basis weights θ∗iτj ’s (red dots) can be obtained by solving (4.7).

The prediction, θ̄iτj , (blue dot), is taken as the mean value of θ̂iτj inferred from the data

{θ∗iτ1 , · · · , θ∗iτj}. At step τj+l, {θ̄iτj+l, · · · , θ̄iτj+l+N−1} is used as the basis weight in the objective

function of the MPC (4.2) for the prediction horizon.

i.e., θ̃∗ij := (θ∗iτ1 , · · · , θ∗iτj). We also assume that θ∗iτl = θiτl+ε
i, l = 1, 2, · · · , where εi ∼ N (0, σ2

i ).
An estimation of the weight vector at time t = (τj + l)∆t ∈ R, l = 0, 1, 2, · · · is obtained by

using the mean predictive equation for the inferred value θ̂iτj+l:

θ̄iτj+l =Ki(t, Tj)
>(Ki(Tj, Tj) + σ2

i I)−1(θ̃∗ij − µ̄(Tj))

+ µ(t), (4.8)

where ki(·, ·) is the covariance function in (4.3), µ(t) is the mean function of θi, [Ki(Tj, T
′
j)]mn :=

ki(tm, t
′
n) and µ̄m(Tj) := µ(tm). Equation (4.8) is used to generate the predictions, θ̄iτj+l’s,

and the GP model is updated whenever a new satisfaction data is reported. At each
sampling time, τj + l, we use the basis weight in the MPC objective function (4.2) as
{θ̄iτj+l, · · · , θ̄iτj+l+N−1} for the prediction horizon, provided that τj + l < τj+1, as shown
in Figure 4.4.

4.3.4 Algorithm

We summarize the description of the proposed utility learning model predictive control in
Algorithm 2. The behavior learning module generates the forecast of the customer’s effect at
N − 1 future time points by performing the Gaussian process regression discussed in Section
4.3.2. The prediction of the customer’s behavior is used in the MPC (4.2) to compute the
control signal in a receding horizon fashion. As soon as the customer reports her satisfaction,
the utility learning module kicks in and solves the problem (4.7) to identify the customer’s
utility. The identified basis weights are used in the MPC from the next time step until a
new satisfaction data point is provided if the prediction of the weights is not employed. If
the basis weight vector is learned as a time-varying function by GP regression (optional),
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Algorithm 2: Utility learning model predictive control

1 Initialization:

2 θ∗ ← θ0;

3 L,N,M selected by the customer;

4 for τ = 0, 1, · · · do

5 x∗τ ← current measured/estimated state

6 Behavior learning module:
7 if mod(τ, L) = 0 then
8 Perform hyperparameter estimation;
9 end

10 {ẑτ , · · · , ẑτ+N−1} ← prediction of the customer’s effect from GP model (4.4);

11 Controller:

12 u∗τ := {u◦i }τ+N−1
i=τ ← solution of the MPC (4.2);

13 u∗τ ← u◦τ ;

14 Utility learning module:
15 if the customer reports the jth satisfaction, sj, at time τ∆t then
16 τj ← τ ;

17 dj ← averaged basis function data (4.5);

18 θ∗τj ← solution of the utility identification (4.7);

19 end
20 (optional) {θ̄τ , · · · , θ̄τ+N−1} ← prediction of the basis weights from GP model

(4.8);

21 end

on the other hand, the predicted basis weight vector, {θ̄τ , · · · , θ̄τ+N−1}, which is the mean
of the inferred value θ̂τ , is computed at each sampling time step (line 21) and used as the
weights in the MPC objective function (4.2) as shown in Figure 4.4.

4.4 Application to personalized air conditioning

We consider the application of the proposed utility learning MPC scheme to the personalized
thermostat that controls the customer’s room temperature. In this scenario, the thermostat
plays the role of the system manager.

4.4.1 Indoor temperature dynamics and utility functions

Let xτ ∈ R be the indoor room temperature at time τ∆t, τ = 0, 1, · · · . We set uτ ∈ R to be
the ratio between the duration in which the air conditioner (AC) is ON and the period ∆t.



CHAPTER 4. UTILITY LEARNING MODEL PREDICTIVE CONTROL FOR
PERSONAL ELECTRIC LOADS 83

0 5 10 15 2010

20

30

40

time (h)

te
m

pe
ra

tu
re

 (°
C

)

0 5 10 15 20 0.1

0.15

0.2

0.25

pr
ic

e 
(d

ol
la

r/k
W

h)

Figure 4.5: The profiles of outdoor temperature (blue) and time-of-use energy price (red).

By definition, 0 ≤ uτ ≤ 1, i.e., U = [0, 1]. Frequent ON/OFF switching of the AC is not
desirable because (i) it can result in physical damage to the AC; and (ii) each switching ON
of the AC generates a transient spike of power consumption, which is higher than steady state
power consumption [4]. To avoid frequent switching, the time step is chosen as 20 minutes,
i.e., ∆t = 1/3 h in our numerical tests. Given the (forecasted) outdoor temperature Θτ ∈ R,
τ = 0, 1, · · · , the indoor temperature dynamics can be modeled as

xτ+1 = xτ + [α(Θτ − xτ )− κuτ + zoτ + woτ ]∆t,

where α(Θτ−xτ ) and woτ ∈ R model the temperature fluctuation due to the heat transfer from
outside and the effect of forecast error, respectively. Here, zoτ ∈ R represents an unknown
effect from the customer’s behavior on temperature, which will be learned. As explained in
[120], α := R/C, where R is the conductance between the outdoor air and indoor air and C
is the conductance between the indoor air and the thermal mass. Furthermore, the positive
constant κ depends on the efficiency of the AC.

We assume that the customer’s objective for the AC operation is twofold: (i) to maximize
the energy cost savings and (ii) to minimize the discomfort level that is affected by the indoor
temperature. Therefore, we use the basis utility functions in Example 6.

The profiles of the time-of-use energy price cτ and the outdoor temperature Θτ used in
the simulation are shown in Figure 4.5. We assume that the forecast error w̄τ is distributed
with N (0, 0.032) and that the customer reports her satisfaction every two hours. We choose
α = 0.4834, κ = 2.5, x̄ = 22, λ = 10−10, θ1

L = θ2
L = 0, θ1

U = θ2
U = 2 and θ0 = (1, 1). The

hyperparameter estimation for the GP is performed every five steps, i.e., L = 5 using the
GPML toolbox [109]. The MPC prediction horizon, N , is chosen as 20 and the number of
data used in the utility learning module is set to M = 2.

4.4.2 Numerical tests

To test the performance of the proposed utility learning model predictive control, we consider
the case in which the profiles of the ground truth basis weights in the customer’s utility
function are given by the step functions (blue) in Figure 4.6 (a) and (b). The weights
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(red) θ∗1 and θ∗2 optimized by solving (4.7) well identify the ground truth values after 12h.
However, their accuracy is poor at some points in which there is a step change in the ground
truth values. This inaccurate identification undesirably generates sharp temperature peaks
as shown in Figure 4.6 (c).

We then apply the GP learning module to learn and predict the basis weights, whose
mean predictive equation is given by in (4.8). As shown in Figure 4.6 (a) and (b), it rejects
the outliers produced by the optimization-based identification. This outlier rejection is due
to the fact that our Gaussian process is designed to adapt a quasi-periodic change of the
basis weights by setting the prior covariance function as the ‘locally periodic’ kernel given by
(4.3). This result validates the usefulness of the sophisticatedly designed kernel in learning
a quasi-periodic utility function. As a result, by using the predicted weights in the MPC
module, we can remove the temperature peaks occurred by the outliers in the optimized
weights as shown in Figure 4.6 (c). Further simulation results can be found in [140].

The predicted effect of the customer’s behavior by the GP regression is shown in Figure
4.7. The true effect is shown together with the noisy samples and the mean prediction of the
customer effect over the prediction horizon obtained from the GP model at every sampling
time. After having collected (noisy) data of the human behavior for only about 24h, the GP
prediction already provides a very good estimate of the customer effect. Furthermore, the
prediction accuracy increases as time goes by.
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Figure 4.6: Ground truth basis weights in the customer’s utility function (blue); optimized
basis weights (red); and predicted (learned) basis weights (green) for (a) θ1 and (b) θ2. (c)
the indoor temperature controlled by the optimized basis weights (black) and the predicted
weights (red).
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Chapter 5

Conclusion

5.1 Summary and contributions

This dissertation presented three new control mechanisms that can improve the sustainability
of power and energy systems. These mechanisms also contribute to (dynamic) contract
theory, stochastic control, combinatorial optimization and learning-based control.

The first proposed mechanism is a new continuous-time dynamic contract framework
that has a risk-limiting capability. The key feature of the proposed contract is that the
variance of the agent’s payoff is bounded by a threshold specified in the contract. This
feature enables the contract framework, by combining with direct load control, to provide
financial risk management solutions for real-time electricity markets. To obtain a globally
optimal contract, a dynamic programming-based method is developed. Difficulty arises in
dealing with the constraints on the mean and the variance of the agent’s payoff. We resolve
this issue by developing a dynamical system approach to track and limit risks. We also
proposed an approximate decomposition of the contract design problem for n agents into
n low-dimensional problems for each agent. The approximate contract obtained using the
proposed decomposition has a guaranteed suboptimality bound. This decomposability allows
the direct load control program based on this contract framework to handle a large number
of customers without any scalability issue. Using the data of the ERCOT LMPs and electric
energy consumption by customers in Austin, Texas, we perform numerical experiments to
validate the performance and usefulness of the proposed contracts. The numerical experiment
results suggest that the proposed contract reduces the utility’s financial risks by more than
58%.

The second tool is developed to optimize large-scale interdepedent systems in real time.
We have proposed approximation algorithms for optimization of combinatorial dynamical
systems, in which the decision variable is a binary vector and the cost is evaluated along
the solution of the systems. The key idea of the approximation is to linearize the objective
function using its derivative, which is well-defined in the feasible space of the binary decision
variable. We proposed two different variation methods to define such derivatives. The
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approximate problem has three major advantages: (i) the approximate problem is a 0–1
linear program and, therefore, can be exactly or approximately solved by polynomial time
algorithms with suboptimality bounds; (ii) it does not require us to repeatedly solve the
dynamical system; and (iii) its solution has a provable suboptimality bound under certain
concavity conditions. In our numerical experiments in direct load control, the suboptimality
bound is greater than 74% though in practice the performance of the proposed approximation
algorithm is greater than 90% of the oracle’s performance.

The third proposed mechanism is a novel personalized control framework, called the
utility learning model predictive control. It integrates online learning of the customer’s utility
into the control of the customer’s electric loads taking into account real-time updates of the
utility. The proposed method is suitable to automatically customize the controller when the
customer’s utility associated with the controlled system changes over time. The numerical
experiment results suggest the proposed Gaussian process regression approach with a locally
periodic kernel is effective to learn a quasi-periodically changing utility function by rejecting
outliers occurred in a convex optimization-based approach.

We believe that these control mechanisms can play a critical role in the seamless transition
from the centralized and vertically integrated legacy power grid to a decentralized and flexible
future grid in which distributed renewable energy sources and electric loads are synergistically
coordinated with sensing, computing and communication infrastructures.

5.2 Future work

5.2.1 Unified risk management frameworks for electricity
markets

To simultaneously manage risks in the real-time markets for multiple distribution systems
(nodes), we must properly take into account the coupling between the locational marginal
prices (LMPs) at the nodes: the price volatility at one node can influence and be influenced
by those of other nodes. The interdependent LMP dynamics increase the size of contract
design problems and hinder us from employing dynamic programming if the dimension of
the system state is large. To overcome this scalability issue, we will pursue an approach
using a grid-free Monte Carlo method for evaluating the value function of stochastic optimal
control, combined with an efficient sampling technique called implicit sampling [143]. To
build a unified risk management framework for day-ahead and real-time electricity markets,
we will develop optimal dispatch and unit commitment methods for the aforementioned
contract frameworks jointly with system operators. To this end, we will rigorously project
the long-term impact of the proposed frameworks on system operators and electricity markets
through risk analytics using societal-scale data. We eventually aim to implement these risk
management tools to facilitate the integration of renewable energy sources and demand-
side resources into the electric grid, which in turn contributes to improve power system
sustainability.
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5.2.2 Foundational optimization and control tools for resilient
infrastructures

When undesirable and malicious events occur, resilient infrastructures should recover ac-
ceptable performance levels given a limited amount of recovery resources. This resource
constraint motivates selective control, which optimally targets the points of control where
the resources are invested. This new automatic control algorithm unifies combinatorial opti-
mization and optimal control theory. For example, such a method can optimally select and
control flexible alternating current transmission systems and loads to mitigate cascading fail-
ures, such as blackouts, in a power transmission system and to recover from them as quickly
as possible. The performance of such a selective control strategy can be enhanced by allowing
the selection to change over time. We will explore theoretic and algorithmic developments for
this advanced selective control method with application to dynamic load/customer targeting
for services to the electric grid in the event of supply shortages, cyber-attacks and electricity
market manipulations.

To handle large-scale infrastructures, such as the electric grid, we will propose a novel
contract-based modular management framework utilizing the contract methods in Chapter
2. This contract-based incentive mechanism will enhance the resilience of multi-scale infras-
tructure networks in both reactive and proactive ways. Successful implementation of the
incentive mechanism will be supported by my research program on the estimation of util-
ity functions in Chapter 4. We expect that this modular approach will play a critical role
in the operation of micro-grids. It seeks a mechanism such that each micro-grid operates
with a desired performance level which is measured by reliability, resilience and economic
efficiency while each micro-grid operation is beneficial to the system operator. To make a
societal impact that contributes to achieving resilient and sustainable power systems, I aim
to implement the aforementioned control and optimization tools and operational strategies
into the electric grid and demand-side resources in collaboration with utility companies and
system operators.

5.3 Concluding remark: towards sustainable

cyber-physical systems interfaced with human

decision-makers

The control, computing, sensing and communication capabilities of cyber-physical systems
(CPS) enable us to engage human agents in the system operations as shown in the example
of automated demand response for power systems. Many modern infrastructure systems are
CPS including power grids, home energy management systems, water grids, transportation
networks and health care systems. As sensor and communication networks are pervasive in
physical infrastructures that affect our daily lives, the sustainable interaction between CPS
and human agents are becoming more important than ever before. On one hand, we can
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customize the system operation for the human agents by learning their behaviors and prefer-
ences. On the other hand, we can incentivize the human agents to cooperate for the system
operation. The control and optimization tools produced in my future research programs
will enable the sustainable feedback loop between human agents and CPS. Therefore, the
control mechanisms will contribute to sustainable CPS which can be interfaced with human
decision-makers.
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Appendix A

The ε-variational systems

For given ᾱ, α ∈ {0, 1}m, the ε-variational system associated with (ᾱ, α) is defined as (3.7),
where its vector field is given by the convex combination of the two vector fields with ᾱ and
α. The state trajectory of (3.7) is unique for given ᾱ, α ∈ {0, 1}m and is bounded on a finite
time interval by Theorem 5.5 in [8], as shown in the following lemma.

Lemma 2. Suppose that Assumption 1 holds. For any ε ∈ [0, 1] and any ᾱ, α ∈ {0, 1}m,
the ε-variational system (3.7) associated with (ᾱ, α) admits a unique solution, xε(ᾱ,α). In
addition, ‖xε(ᾱ,α)(t)‖ is bounded by some constant independent of ε for all t ∈ [0, T ].

To use the ε-variational system for defining the derivative of the payoff function, it is
important to address how the ε-variational system behaves as ε tends to zero compared to the
original dynamical system. The following lemma shows that the difference xε(ᾱ,α)(t)− xα(t)
is Lipschitz continuous in ε ∈ [0, 1] for any ᾱ, α ∈ {0, 1}m (e.g., Lemma 5.6.7 in [106]).

Lemma 3. Suppose that Assumption 1 holds. For any ε ∈ [0, 1] and any ᾱ, α ∈ {0, 1}m,
there exists a constant L independent of ε such that for all t ∈ [0, T ]

‖xε(ᾱ,α)(t)− xᾱ(t)‖ ≤ Lε.

Combining the two lemmas and the dominated convergence theorem (e.g., [114]), we have
the following corollary.

Corollary 4. Suppose that Assumption 1 holds. For any ᾱ, α ∈ {0, 1}m, the following
equality holds:

lim
ε→0+

1

ε

∫ T

0

‖xε(ᾱ,α)(t)− xᾱ(t)‖2dt = 0.

This corollary is essential to show that our proposed nonstandard derivative is well-
defined and can be computed using an adjoint-based formula.
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Proof of Theorem 3

We will show a more general equality,

lim
ε→0+

1

ε

[
J ε(ᾱ,α)(xε(ᾱ,α))− J (xᾱ, ᾱ)

]
=∫ T

0

(f(xᾱ(t), α)− f(xᾱ(t), ᾱ))
>
λᾱ(t) + r(xᾱ(t), α)− r(xᾱ(t), ᾱ)dt.

(B.1)

Substituting α = ᾱ + 1i and α = ᾱ − 1i into the above equality, we obtain the formulae in
Theorem 3 for ᾱi = 0 and ᾱi = 1, respectively.

Proof. Fix ᾱ, α ∈ {0, 1}m. For notational simplicity, we let x̂(·) := xε(ᾱ,α)(·) − xᾱ(·). Then,
it satisfies the following ODE:

˙̂x(t) = f(x̂(t) + xᾱ(t), ᾱ)− f(xᾱ(t), ᾱ) + ε(f(x̂(t) + xᾱ(t), α)− f(x̂(t) + xᾱ(t), ᾱ))

with x̂(0) = 0. The dynamical system can be rewritten as

˙̂x(t) =
∂f(xᾱ(t), ᾱ)

∂x
x̂(t) + ε(f(x̂(t) + xᾱ(t), α)− f(x̂(t) + xᾱ(t), ᾱ)) + σ(x̂(t), xᾱ(t)), (B.2)

where σ := (σ1, · · · , σn) is given by

σi(x̂,x) := Hi(x̂,x, ᾱ) + ε

(
∂fi(x, α)

∂x
− ∂fi(x, ᾱ)

∂x

)
x̂+ ε(Hi(x̂,x, α)−Hi(x̂,x, ᾱ))

and Hi(x̂,x, α) denotes the higher-order terms in the Taylor expansion of fi(x̂+x, α) at x,

i.e., by applying the mean value theorem, Hi(x̂,x, α) :=
∫ 1

0
(1 − s)x̂>D2

xfi(x + sx̂, α)x̂ds.
Due to Lemma 3 or Corollary 4, for all t ∈ [0, T ],

lim
ε→0+

1

ε
σi(x̂(t), xᾱ(t)) = 0.
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We now consider the difference

J ε(ᾱ,α)(xε(ᾱ,α))− J (xᾱ, ᾱ)

=

∫ T

0

r(xε(ᾱ,α)(t), ᾱ)− r(xᾱ(t), ᾱ) + ε(r(xε(ᾱ,α)(t), α)− r(xε(ᾱ,α)(t), ᾱ))dt

+ q(xε(ᾱ,α)(T ))− q(xᾱ(T )).

The difference can be rewritten as

J ε(ᾱ,α)(xε(ᾱ,α))− J (xᾱ, ᾱ)

=

∫ T

0

∂r(xᾱ(t), ᾱ)

∂x
x̂(t) + ε(r(xᾱ(t), α)− r(xᾱ(t), ᾱ))dt+

∂q(xᾱ(T ))

∂x
x̂(T ) + η(x̂, xᾱ),

where

η(x̂, x) :=

∫ T

0

I(x̂(t), x(t), ᾱ) + ε

(
∂r(x(t), α)

∂x
− ∂r(x(t), ᾱ)

∂x

)
x̂(t)

+ ε(I(x̂(t), x(t), α)− I(x̂(t), x(t), ᾱ))dt+ J(x̂(T ), x(T ))

and I(x̂,x, α) and J(x̂,x) denote the higher-order terms in the Taylor expansions of r(x̂+

x, α) and q(x̂+ x) at x, respectively, i.e., I(x̂,x, α) :=
∫ 1

0
(1− s)x̂>D2

xr(x+ sx̂, α)x̂ds and

J(x̂,x) :=
∫ 1

0
(1− s)x̂>D2

xq(x+ sx̂)x̂ds. Due to Lemma 3 or Corollary 4, we have

lim
ε→0+

1

ε
η(x̂, xᾱ) = 0.

Adding the inner product between the adjoint state and the system (B.2), which is zero, to
the difference, we have

J ε(ᾱ,α)(xε(ᾱ,α))− J (xᾱ, ᾱ) =∫ T

0

(
∂r(xᾱ(t), ᾱ)

∂x
x̂(t) + ε(r(xᾱ(t), α)− r(xᾱ(t), ᾱ))

)
dt+

∂q(xα(T ))

∂x
x̂(T )

+

∫ T

0

(λᾱ(t))>
(
− ˙̂x(t) +

∂f(xᾱ(t), ᾱ)

∂x
x̂(t) + ε(f(x̂(t) + xᾱ(t), α)− f(x̂(t) + xᾱ(t), ᾱ))

)
dt

+ Θ(x̂, xᾱ),

(B.3)

where Θ(x̂, xᾱ) :=
∫ T

0
(λᾱ)>σ(x̂(t), xᾱ(t))dt+ η(x̂, xᾱ). Using integration by parts, we have∫ T

0

(λᾱ)> ˙̂xdt = λᾱ(T )>x̂(T )− λᾱ(0)>x̂(0)−
∫ T

0

(λ̇ᾱ(t))>x̂(t)dt

=
∂q(xᾱ(T ))

∂x
x̂(T )−

∫ T

0

(λ̇ᾱ(t))>x̂(t)dt.

(B.4)
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Combining (B.3) and (B.4), we obtain

J ε(ᾱ,α)(xε(ᾱ,α))− J (xᾱ, ᾱ)

=

∫ T

0

(
(λᾱ(t))>

∂f(xᾱ(t), ᾱ)

∂x
+
∂r(xᾱ(t), ᾱ)

∂x
+ (λ̇ᾱ(t))>

)
x̂(t)dt

+ ε

∫ T

0

r(xᾱ(t), α)− r(xᾱ(t), ᾱ) + (λᾱ(t))>(f(xᾱ(t), α)− f(xᾱ(t), ᾱ))dt

+ Θ(x̂, xᾱ),

where the first integral term on the right-hand side is equal to zero due to the definition of
the adjoint system (3.6). Since

lim
ε→0

1

ε
Θ(x̂, xᾱ) = 0,

we obtain (B.1) as desired.
The existence and the uniqueness of the state xᾱ(t) and the adjoint state λᾱ(t) guarantee

the existence and uniqueness of the nonstandard derivative. Furthermore, the boundedness
of xᾱ(t) and λᾱ(t) for t ∈ [0, T ] imply that the nonstandard derivative is bounded.



95

Appendix C

Comparison of standard and
nonstandard derivatives

We first characterize a condition under which both derivatives are the same.

Proposition 5. Suppose that Assumptions 1, 2, 3 and 4 hold. If f(x, · ) : Rm → Rn

and r(x, · ) : Rm → R are affine functions, then the two derivatives, DSJ and DNSJ , are
equivalent to each other.

Proof. Since f(x, · ) and r(x, · ) are differentiable and affine, we have ∂f(x,α)
∂αi

= f(x,1i).

A similar inequality holds for r. Comparing the adjoint-based formulae for DSJ and DNSJ
in Proposition 2 and Theorem 3, respectively, with the assumption that f(x, α) and r(x, α)
are affine in α, we deduce that the two derivatives are equivalent to each other.

In general, DSJ and DNSJ are different from each other because they use different vari-
ation methods in their definitions. We present a concrete example in which the standard
derivative is different the nonstandard derivative.

Example 7. Suppose that n = 1, m > 1, f(x, α) = x +
∑m

i=1 e
−αi, r(x, α) = x and the

terminal payoff q is set to be zero. Note that the vector field is not affine but additive in α.
Then, the standard and nonstandard derivatives are given by

[DSJ(ᾱ)]i = −
∫ T

0

λᾱ(t)e−ᾱidt

[DNSJ(ᾱ)]i =

∫ T

0

λᾱ(t)(e−1 − e0)dt,

respectively. We notice that [DSJ(ᾱ)]i and [DNSJ(ᾱ)]i are not equal to each other.
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C.1 Differentiability issue

Recall that the standard derivative DSJ requires the differentiability of f(x, · ) and r(x, · ),
which can be restrictive in many applications. One can reformulate f(x, · ) and r(x, · ) as
the following polynomials in α using the multi-linear polynomial extension:

f̃(x, α) =
∑
V⊆Ω

f(x, I(V ))
∏
i∈V

αi
∏
i∈Ω\V

(1− αi),

r̃(x, α) =
∑
V⊆Ω

r(x, I(V ))
∏
i∈V

αi
∏
i∈Ω\V

(1− αi),

where Ω := {1, · · · ,m} and I : 2Ω → {0, 1}m is the set indicator function. However, each
of these representations requires 2m calculations in the worst case. Therefore, it is not
computationally tractable to construct the multi-linear polynomial representations of f and
r.

The nonstandard derivative DNSJ is a good alternative to resolve this differentiability
issue. Note that this nonstandard derivative fully takes advantage of the fact that the prob-
lem is associated with a dynamical system: the construction of the nonstandard derivative
is possible because we are able to utilize the vector field of the dynamical system as a relax-
ation tool. This convex combination approach for vector fields and running payoffs naturally
resolves the differentiability issue.

C.2 Performance comparison

As suggested in Section 3.3, we solve the approximate problem (3.4) twice: once using the
standard derivative DSJ and again using the nonstandard derivative DNSJ . Between the two
approximate solutions, the solution that gives a larger payoff is chosen. Despite this practical
advantage of using the two derivative concepts, it is still valuable to have an insight on the
comparison of their effects on the proposed approximation. We consider a simple example,
where n = 1, m = 2, and the vector field and the running payoff are given by

f(x, α) = x+ α3
1 + 2α2, r(x, α) = x2

and the terminal payoff is set to be zero. The solutions of the primal and adjoint systems
are given by xα(t) = etx +

∫ t
0
et−τ (α3

1 + 2α2)dτ and λα(t) =
∫ T−t

0
eT−t−τ2xα(T − t − τ)dτ ,

respectively. Suppose that the initial value x is positive. Then, xα(t) is positive for any
t ∈ [0, T ] and for any α ∈ {0, 1}2 and, therefore, so λα(t) is. The adjoint-based formulae in
Proposition 2 and Theorem 3 for the two derivatives imply that

DSJ(ᾱ) =

∫ T

0

[
3ᾱ1

2

]
λᾱ(t)dt,

DNSJ(ᾱ) =

∫ T

0

[
1
2

]
λᾱ(t)dt.
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Suppose that the constraint ‖α‖0 ≤ 1 is imposed. In this case, the optimal solution is (0, 1).
If we linearize the optimization problem at ᾱ = (1, 1), then the approximate solution based
on DJ(ᾱ) is (1, 0), while that based on D̂J(ᾱ) is (0, 1), which corresponds to the optimal
solution. The reason why the first derivative gives a wrong solution is that it introduces
a ‘bias’ in its first entry due to the cubic term in α1. Here, we do not overstate that the
second derivative performs better than the first because this bias might help find an optimal
solution in other cases. Nevertheless, it is worth noting that the second derivative does not
introduce this bias. We believe that this observation can stimulate further research on the
performance comparison of the two derivatives and theoretic investigation on this bias in the
future.
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