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Abstract

Unified Multi-Cue Depth Estimation from Light-Field Images:
Correspondence, Defocus, Shading, and Specularity

by

Michael Tao

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ravi Ramamoorthi, Chair

Light-field cameras have recently become available to the consumer market.
An array of micro-lenses captures enough information that one can refocus images after
acquisition, as well as shift one’s viewpoint within the sub-apertures of the main lens,
effectively obtaining multiple views. Thus, depth cues from defocus, correspondence,
specularity, and shading are available simultaneously in a single capture. Previously,
defocus could be achieved only through multiple image exposures focused at differ-
ent depths; correspondence and specularity cues needed multiple exposures at different
viewpoints or multiple cameras; and shading required very well controlled scenes and
low-noise data. Moreover, all four cues could not easily be obtained together.

In this thesis, we will present a novel framework that decodes the light-field
images from a consumer Lytro camera and uses the decoded image to compute dense
depth estimation by obtaining the four depth cues: defocus, correspondence, specularity,
and shading. By using both defocus and correspondence cues, depth estimation is more
robust with consumer-grade noisy data than previous works. Shading cues from light-
field data enable us to better regularize depth and estimate shape. By using specularity,
we formulate a new depth measure that is robust against specularity, making our depth
measure suitable for glossy scenes. By combining the cues into a high quality depth
map, the results are suitable for a variety of complex computer vision applications.
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Chapter 1

Introduction

The dissertation introduces a new pipeline that uses light-field cameras to not only cap-
ture color information from the scene, but the 3D structure of the scene. Many re-
searchers and practitioners have used conventional cameras to achieve such tasks. Con-
ventional cameras take a snapshot of a scene. The snapshot includes the visible light
spectrum that passes through the lens. Light is represented by directional rays that come
from the scene and is recorded on the film sensor of the camera. The film of the cameras
only records the summation of the rays, causing ambiguity in distinguishing among the
rays. Light-field cameras contain extra lenses that help distinguish the rays entering the
lens. The extra lenses, called micro-lenses, are placed between the main-lens and the
sensor. The micro-lens disperses the directional rays entering the sensor, allowing us
to retrieve direction and magnitude of the rays. By retrieving the rays’ direction and
magnitude, we are able to estimate depth, which we define as the distance between a
point of the scene and the camera. The final output of our system is a depth map, which
maps the depth of each point in the scene observed by the sensor.

In this dissertation, we explain how we exploit the data from light-field cam-
eras to estimate depth. The goal of the dissertation is to demonstrate a point-and-shoot
depth acquisition pipeline suitable for multiple scenarios, including real-world scenes
using different camera parameters. We first describe how we decode the Lytro Illum
camera image file from a Lytro proprietary image file into a standard format, suitable
for our depth analysis (Chapter 2). To estimate depth, we then demonstrate how we can
use the decoded light-field image to extract the following four cues from the data: defo-
cus, correspondence, shading, and specularity. We use both defocus and correspondence
as a baseline robust depth estimation for light-field cameras. We use shading to assist us
in normal and shape estimation (explained in Chapter 3). Finally, to increase depth esti-
mation robustness in scenes with glossy objects, we reduce the effects from specularity
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by introducing a new depth metric that is robust against specular regions (explained in
Chapter 4).

The larger implication of the dissertation is creating an easy-to-use point-
and-shoot depth acquisition device, where a novice user can capture depth information
from a scene. With this depth estimation, there are countless applications in both com-
puter vision and computer graphics that enable the user to have more control of the
captured data. The control includes changing depth-of-field, focus plane, and small per-
spective views. Prior to this work, many of these applications required specialized active
depth acquisition devices or setups that are difficult for an average user.

1.1 Motivation: Depth Cues and Light-fields

Background: Depth Cues
We will first explain two different depth cues: monocular and stereo. Monocular depth
cues are cues that one viewpoint can observe (a single camera setup), while stereo depth
cues are cues that multiple different viewpoints can observe (two human eyes).

Monocular Cues. By using one camera from a single perspective, depth cues, such
as object size [72], shading, and defocus blur [52], can be obtained from the scene. In
biological sciences and psychology, many studies have shown monocular cues assist
both human and animals understand depth from a scene [30]. However, using a single
image is difficult to estimate depth [72]. The difficulties arise because most monocular
cues require training or only provide information about relative depth [49]. Therefore,
stereo or multiple images from different perspectives help with better depth estimation
of the scene.

Stereo Cues. Stereo cues have been extensively studied to improve depth estima-
tion [64, 82]. Popular stereo techniques include using two cameras to triangulate where
objects are in the scene [16]. To compute the triangulation, many techniques such as
computing displacement changes between images from different perspectives are effec-
tive [29, 48]. Because of the ability to triangulate, stereo cues compliment monocular
cues in determining absolute depth.

Combining Monocular and Stereo Cues. As described by Sousa et al. [72], combin-
ing the two cues provides more accurate depth estimations. Combining the two cues has
been the rudimentary basis of how humans perceive depth [86].



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Conventional Cameras and Recorded Rays. We have a conventional camera
taking a photo of a purple sphere scene. If the main lens is focused on the point indicated
in the scene, rays from the point enter into the main lens and converge at the sensor with
coordinates (x, y). Because the sensor only records the summation of the magnitudes
from the three rays, distinguishing among the three rays is ambiguous.

Why Light-Field Cameras
Recently, light-field cameras have become readily available for consumers. Light-field
cameras hold great promise for passive and general depth estimation and 3D reconstruc-
tion in computer vision. Light-field cameras enable us to distinguish rays coming from
the main lens. Because of their ability to distinguish each ray’s direction and magnitude,
light-field cameras provide both monocular and stereo depth cues in an easy-to-capture
method. In this work, we focus on two depth cues: defocus (monocular) and correspon-
dence (stereo) that we can extract from the light-field camera. In addition, because of
the extra ray information, we can extract both shading and specularity cues robustly.

Conventional Cameras
With conventional cameras, combining both monocular and stereo cues is difficult be-
cause, to obtain the necessary information, multiple captures or cameras are needed. In
Fig. 1.1, we have a conventional camera that has a lens and a sensor. We consider a point
in the scene and the light rays starting from that point. To simplify the visualization, we
use three rays. All three rays enter the main lens and converge to a point on the sensor,
which we call a pixel, with coordinates (x, y). The pixel just sums up the three rays.

Because of the summation, obtaining such depth cues is limited to monoc-
ular cues such as object size and defocus blur. Therefore, using a single conventional
camera limits the ability to extract stereo depth cues. Using multiple exposures or cam-
eras is needed to capture stereo information. However, for a novice user, capturing mul-
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Figure 1.2: Light-field cameras and Recorded Rays. Instead of the rays converging on
the sensor, the rays continues their path from the micro-lens to the sensor. As a result,
each sensor pixel records each of the three rays, thereby, preserving the direction and
magnitude of the light rays.

tiple exposures or using a multi-camera set up requires additional steps and is difficult.
Therefore, a simpler one-shot point-and-shoot approach is needed.

Light-Field Advantages
Light-field cameras enable the simpler one-shot point-and-shoot approach. Light-field
cameras contain additional micro-lenses between the main lens and the sensor. Instead
of the rays converging at the sensor, the rays continue their path from the micro-lens to
the sensor. The micro-lens acts as a diffuser, allowing, in this case, the three rays to dis-
perse onto three different pixel coordinates of the sensor. As a result, a different sensor
pixel records each of the three rays, thereby preserving the direction and magnitude of
the light rays, as shown in Fig. 1.2.

Because we are able to obtain both direction and magnitude of each of the
light rays, the light-field camera is able to extract stereo cues is one exposure within one
camera. With the stereo cues, the light-field camera provides four important depth cues:
multiple perspectives, refocusing, shading, and specularity.

Multiple Perspectives By extracting the direction and magnitude of each of the light
rays, each ray therefore represents a new viewpoint from the camera. In Figure 1.3, we
can see that the viewpoint changes are recorded in three different parts of the sensor.

The new perspective viewpoints then start from sampled points on the main
lens aperture and points towards the focus point in the scene. Because of the shift in
perspectives, we can then use stereo depth cues to estimate the distance between the
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Figure 1.3: Multiple Perspectives from a Light-Field Camera. Because each ray is
recorded by one sensor pixel, by observing the different sensor pixels, we can change
viewpoints as illustrated above. In this case, we can extract three different viewpoints.
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Figure 1.4: Light-Field Cameras and Defocus. By rearranging the recorded pixels, we
can synthetically change the focus plane even after the picture is taken. This enables us
to use defocus cues, or observe how refocusing changes the recorded scene, for depth
estimation.

point on the scene and the camera. We explain how exactly we shift viewpoints with
light-field cameras throughout the description of our algorithm in Chapter 3.

Defocus Another depth cue that we are able to extract from the light-field camera is
defocus. By being able to re-arrange the recorded pixels of the sensor, we are able to
simulate a new synthetic sensor plane as shown in Fig. 1.4. The rearranging then allows
us to create a new synthetic focus plane, enabling us to change the focus settings of the
camera even after the picture is taken.

By being able to create a synthetic sensor plane, we are able to change the
focus plane of the captured image. Pixel rearrangement is described in Chapter 3 of the
thesis.

Shading The third depth cue is shading. In a completely diffuse surface with no view-
point angular dependence, because all three of the rays originate from the same point of
the scene, the recorded values from the sensor should be the same. Therefore, the three
recorded pixels should also register the same shading values as shown in Fig. 1.5.

Because of the redundancy of shading information, we are able to robustly
estimate the shading values of each recorded scene point on the sensor. This is especially
important because sensors may record incorrect values due to imperfections such as
noise. Therefore, we can estimate the shading values from such consumer cameras.
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Figure 1.5: Light-Field Cameras and Shading. Since all three rays come from the same
point in the scene, all three rays should record the same pixel value, purple, which
we call photo consistency. This also translates to shading consistency, since the point
should have the same shading value. This redundancy of information becomes espe-
cially important for robustly estimating the shading values, which is described in Chap-
ter 3.

Specularity Finally, the fourth depth cue is specularity. Because we are able to extract
multiple viewpoints that are directed to the same point of the scene, we can distinguish
between diffuse and glossy regions. For diffuse regions, such as chalk or plastic sur-
faces, changing viewpoints do not affect the registered pixel values. However, for glossy
regions, such as polished surfaces or mirrors, changing viewpoints affect the registered
pixel values as shown in Fig. 1.6.

We exploit this property for glossy surfaces and formulate a new depth met-
ric that is robust against these specular regions. Moreover, because we can analyze the
change in registered color values from viewpoint changes, we are also able to estimate
the light source color, which we later describe in Chapter 4.

Summary and Challenges
The light-field camera enables us to capture enough information to extract multiple per-
spectives and refocusing capabilities– all in one capture. However, capturing such data
has its downsides. Extracting the image data from the Lytro camera is not trivial. The
Lytro camera uses a proprietary image format that encodes and compresses the image
data. In order to perform the depth analysis, we need to extract the image information
from the camera by reverse engineering the image format. Because each sensor pixel
captures one ray instead of a summation of rays, the sensor now effectively captures less
spatial resolution (which is now determined by the number of micro-lenses). Moreover,
calibration of where the micro-lenses are located becomes a challenge. Many times the
micro-lenses across the image are not placed in a uniform fashion due to imperfections
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Figure 1.6: Light-Field Cameras and Specularity. In a diffuse surface, changing view-
points that are directed to a same point on the scene should not experience changes
in the recorded pixel values. However, for a glossy surface, changing viewpoints will
affect the registered pixel values. In Chapter 4, we discuss how we use this property to
estimate the light source color and depth in such glossy surfaces.

of manufacturing. Obtaining the center of each micro-lens is important as it is necessary
for us to be able to accurately determine the rays’ directions. Therefore, even with the
factory calibration, image artifacts may result from refocusing, which we address in our
depth acquisition algorithm through using both defocus and correspondence. The per-
spective change of the light-field camera is also limited by the aperture of the main-lens.
Usually, small devices contain small aperture lenses; therefore, perspective changes are
limited. Although we are able to change viewpoints, the change is limited to the aperture
size of the lens, which is why we use both defocus and correspondence to achieve higher
quality depth. Finally, noise becomes a significant issue due to the reduced amount of
light absorbed by the sensor. Therefore, addressing robustness of our high quality depth
is pertinent throughout the thesis.

1.2 Dissertation Overview
In this dissertation, we take into account both benefits and disadvantages of using a
light-field camera to produce high quality depth estimation results. First, we show how
we extract the image data from the proprietary image format encoded by Lytro. Then,
we focus on obtaining robust and high quality depth estimation by using the four cues
that we extract from the image data: defocus, correspondence, shading, and specularity.
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Figure 1.7: Dissertation Roadmap. We first describe how we obtain the image data
from the Lytro Illum camera (Chapter 2). With the image data, we can extract four
cues: defocus, correspondence, shading, and specularity. Chapter 3 describes how
we use defocus and correspondence for estimating depth for scenes with textures. We
then incorporate the depth cues with shading to improve shape estimation. Chapter
4 describes how we reduce the effects of specular regions by introducing a new depth
estimation measure, which we call line-consistency.

We first use defocus and correspondence as our initial depth estimation and show how
the two cues can provide us robust planar depth estimation. Then we show how shading
estimation provides us better information about the normals and shape of the scene.
Finally, we describe how we minimize specularity effects that are present in scenes with
glossy surfaces.

The illustration of the dissertation roadmap is shown in Fig. 1.7. The input
of the system is an image captured by a light-field camera. The output of the system is
a depth estimation of the scene.

Dissertation Chapter Description
Chapter 2. Decoding the Lytro Illum Camera
With the Lytro Illum camera, Lytro introduced a new Lytro Image File type (.LFR).
The file contains a non-standard encoding of the image data. Before we can process
and estimate depth, we need to extract the image data from the Lytro cameras. In this
chapter, we will discuss decoding the .LFR file. We show how we locate the image data
and decode the data. We also discuss how we calibrate the color and the centers of the
micro-lenses, which are needed for our depth estimation analysis. The chapter involves
reverse engineering of the encoded proprietary file and calibrating both color and micro-
lens positions.

Chapter 3. Shape Estimation from Shading, Defocus, and Correspondence Using Light-
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Field Angular Coherence
Light-field cameras capture many nearby views simultaneously using a single image
with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus,
correspondence, and shading. In particular, apart from conventional image shading, one
can refocus images after acquisition, and shift one’s viewpoint within the sub-apertures
of the main lens, effectively obtaining multiple views. We present a principled algorithm
for dense depth estimation that combines defocus and correspondence metrics, showing
how both can be expressed as simple operators in the epipolar image. We then extend
our analysis to the additional cue of shading, using it to refine fine details in the shape.
By exploiting an all-in-focus image, in which pixels are expected to exhibit angular co-
herence, we define an optimization framework that integrates photo consistency, depth
consistency, and shading consistency. We show that combining all three sources of infor-
mation: defocus, correspondence, and shading, outperforms state-of-the-art light-field
depth estimation algorithms in multiple scenarios.

Chapter 4. Depth Estimation and Specular Removal for Glossy Surfaces Using Point
and Line Consistency with Light-Field Cameras
We have a demonstrated practical algorithm for depth recovery from a passive single-
shot capture. However, current light-field depth estimation methods are designed for
Lambertian objects and fail or degrade for glossy or specular surfaces because photo-
consistency depth measurement is a poor metric for such surfaces. In this chapter, we
present a novel theory of the relationship between light-field data and reflectance from
the dichromatic model. We present a physically-based and practical method to separate
specular regions and estimate the light source color. As opposed to most previous works,
our algorithm supports multiple lights of different colors. Our novel algorithm robustly
removes the specular component for glossy objects. In addition, our approach enables
depth estimation to support both specular and diffuse scenes. We show that our method
outperforms current state-of-the-art specular removal and depth estimation algorithms
in multiple real world scenarios using the consumer Lytro and Lytro Illum light field
cameras.

Chapter 5. Conclusion
We then discuss the possible applications for our depth estimation and future work.
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Chapter 2

Decoding the Lytro Illum Camera

With the Lytro Illum camera, Lytro introduced a new Lytro Image File type (.LFR).
The file contains a non-standard encoding of the image data. Before we can process
and estimate depth, we need to extract the image data from the Lytro cameras. In this
chapter, we will discuss decoding the .LFR file. We show how we locate the image
data and decode the data. We also discuss how we calibrate the color and the centers
of the micro-lenses, which are needed for our depth estimation analysis. The chapter
describes reverse engineering of the encoded proprietary file and calibrating both color
and micro-lens positions.

2.1 Introduction
The first Lytro camera was introduced in 2012 [33]. The .LFR file format introduced
with the Lytro camera is .LFP. The file format is simple and the data components all have
fixed lengths [31]. Therefore, extracting the image information was trivial. However,
with the updated version of the camera, both the Lytro Illum camera and an updated
file format .LFR were introduced in 2014 [32]. The new file format introduces new
encoding, color handling, and calibration.

The file format introduces a flexible framework that allows a variable amount
of metadata and image data to be stored in one file. The flexibilities include the follow-
ing: variable amount of metadata that can be stored, variable image data that can be
stored, and encoded image data to reduce storage size. The .LFR file format is propri-
etary; therefore, obtaining the image data requires reverse engineering of its encoding.
The desktop software included with the camera does not allow us to access the raw
light-field image data, which is needed for our shape analysis.
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Figure 2.1: Decoding and Calibration Pipeline. The input of our system is the .LFR file.
Because the .LFR file format is proprietary, the image data is encoded. We show the
reverse engineering performed to extract the image data from the file and convert the
data into a standard image format. After decoding the image, we calibrate the image
color and find the center of each micro-lens.

Because of the file storage flexibility, decoding the .LFR file format is not
as trivial as its predecessor. In this work, we show two steps to the decoding of the .LFR
file: 1) find the image data block and 2) decode the image data.

The decoder has been posted publicly as one of the first open source Illum
decoders1. As a disclaimer, this work is not affiliated with or endorsed by Lytro.

2.2 Decoding
As shown in Fig. 3.1, our input is the Lytro .LFR image file and the output is the decoded
light-field image that is represented by 5368 pixels by 7728 pixels by 12-bit data. We
will first describe how we find the image data. Then we explain how we decode the
image data to extract the light-field image. Finally, we briefly describe how we interpret
the pixel value information to convert the data into a standard RGB image format.

Finding the Image Data
In Fig. 2.2, we show the .LFR file structure. The blue areas indicate variable amount
of metadata. In this section, we ignore most of the metadata, which contains all the
information about camera settings, color calibration, camera serial numbers, and other

1http://cseweb.ucsd.edu/~ravir/illum_full.zip
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Figure 2.2: .LFR File Structure. The .LFR file is read in Bytes. Because there is a
variable amount of meta-data before and after the image data, we need to first locate
the image data. To locate the image data, we first locate the file ID, which is designated
by "sha1" in ASCII. The 4 bytes immediately before the file ID store the image data size,
which is important for us to identify where the image data ends. Immediately after the
file ID, the image data is stored, which we will use to decode the image of interest.

sensor data. Our goal is to find the start and end of the image data, which will be used
for decoding.

We open the .LFR file as a "char" (8 bit) file in text format. To find the
image block, there are two important data blocks we need to locate: the image data size
and the file ID. The image data size tells us the size in Bytes of the image data, which
is needed to find the beginning and end data block of the image file size. The file ID is
sandwiched between the two; because of its unique string properties, the file ID is easier
and more consistent to locate. Our first step is to find the File ID by searching for the
string "sha1." "sha1" is a hash identification number used in all the Lytro files. The file
ID is exactly 81 Bytes which helps with identifying the starting location of the image
data.

By identifying the location of the File ID, we extract the image data size,
which is in Byte units. The 4 Bytes prior to the File ID contain the image data size.
Given the size, we then are able to extract the image data, that immediately follows after
the 81 Bytes of the file ID data block.
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Figure 2.3: Image Data Structure. The image data groups four consecutive pixels in five
Bytes to reduce storage space. The first four Bytes represent the pixel values and the last
Byte represents the logical decoder that is needed to extract the values of the pixels.

Decoding the Image Data
Now that we have located the image data block, we need to decode the image data.
The image data is encoded to reduce file size. The output of each pixel value is 12 bits.
However, the encoded image data for four pixels is grouped in 5 Bytes (40 bits); in other
words, each pixel value is encoded on average in 10 bits, reducing 2 bits of storage per
pixel. To pack the pixels in 10 bits on average, part of the 5 Bytes encodes special logic
bits. This significantly reduces data footprint especially for larger images.

The image data groups four pixels values together and a logical Byte in
groups of five Bytes, as shown in Fig. 2.3. The first four Bytes encode the encoded pixel
values in 8 bits. The fifth Byte is a logical Byte that is needed to decode the pixel values
into a standard 12 bit values.

The outline algorithm is shown in Alg. 1 and illustrated in Fig. 2.4. The
input of the system takes 5 Bytes of the image data block at a time. We do this for each
of the 5 Byte groups within the image data block.

Algorithm 1 Decoding 5-Pixel Groups
1: procedure DECODE(B1, B2, B3, B4, B5)
2: B1, B2, B3, B4, B5 = uint16(B1, B2, B3, B4, B5)
3: P1 = (B1 << 2) + (((B5)&00000011) >> 0)
4: P2 = (B2 << 2) + (((B5)&00001100) >> 2)
5: P3 = (B3 << 2) + (((B5)&00110000) >> 4)
6: P4 = (B4 << 2) + (((B5)&11000000) >> 6)
7: end procedure
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Figure 2.4: Image Data Decoder. The image decoder consists of three steps: 1) bit
shifting, 2) decode logical byte, and 3) adding. The input of the decoder is the five 1
Byte (8 bits) blocks and the output of each pixel value is 12 bits.

The decoder consists of three steps: 1) bit shifting, 2) decode logical Byte,
and 3) adding. For bit shifting, each pixel Byte block is shifted to the left by two. For
the logical Byte, we logical AND with the different binary values for each pixel and
shift to the right, which is different for each pixel value. Then, we add the shifted pixel
value block and the new logical block together.

Interpreting the Decoded Image Data
After decoding all the 5 Byte blocks in the image data, we have the pixel value for each
pixel on the sensor. To make an image file out of the file, we just remap the image data
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into a (5368× 7728) matrix for the Lytro Illum camera. We will now discuss two parts:
extracting color and calibrating the center of micro-lenses.

Color In Fig. 2.5, we show the two steps of converting grayscale to color. The first
step involves demosaicing and the second step is color correction.

Since these pixel values are just grayscale values from the sensor overlaid
with a Bayer color filter array, to obtain full color information, we need to use a demo-
saicing algorithm. A Bayer color filter array is used because, since a sensor pixel cannot
distinguish between different color wavelengths, a Bayer color filter array places a filter
on top of each sensor pixel, yielding either red, green, or blue pixels to pass through.
The Lytro Illum uses a green-red-blue-green sensor pattern (top-left, top-right, bottom-
left, and bottom-right, respectively). In order to obtain RGB information for each sensor
pixel, interpolation among the colors is needed. This interpolation is called demosaic.
After demosaicing, we can then save the RGB image file out as a standard image file
such as PNG or TIFF.

For color correction, there are two pertinent items of color correction data:
white balance gain and a color correction matrix. To get these values, by parsing through
the metadata before and after the image data, we look for two headers in ASCII: "white-
BalanceGain" and "ccm." The white balance gain gives four values in float: a multiplier
for each color filter, green-red-blue-green. After demosaicing, we then apply the color
correction matrix provided by the metadata "ccm," which is represented by a 3x3 color
matrix. For each pixel, we then compute the final RGB values as shown in Algorithm 2.

Figure 2.5: Grayscale to Color. Before demosaicing, the image sensor only stores
grayscale values. After demosaicing, we can obtain full color information. Color cor-
rection is then applied through white balancing and a color correction matrix computed
by the camera.



CHAPTER 2. DECODING THE LYTRO ILLUM CAMERA 17

Algorithm 2 Color Correction Matrix
1: procedure COLORCORRECTIONMATRIX(R,G,B,CCM )
2: R = CCM(1, 1) ∗R + CCM(2, 1) ∗G+ CCM(3, 1) ∗B
3: G = CCM(1, 2) ∗R + CCM(2, 2) ∗G+ CCM(3, 2) ∗B
4: B = CCM(1, 3) ∗R + CCM(2, 3) ∗G+ CCM(3, 3) ∗B
5: end procedure

Note: The color correction methods may differ among Lytro Illum cameras
due to changes in sensor manufacturing process or supplier.

Micro-lens Calibration To be able to register the direction of the rays for each micro-
lens, we need to find the center. Finding the centers is what we define as micro-lens
calibration. In the Lytro Illum, the micro-lens array is relatively uniform and consis-
tent throughout among cameras. We can simply overlay an evenly spaced grid across
the light-field image to locate the centers of the micro-lenses. Since the micro-lenses
are hexagons, the micro-lenses are arranged with a different starting point for even
and odd row-number pixels. In our user-defined parameters, the first odd-row pixel
is (12, 0.1412) and the first even-row pixel is (4.4892, 12) and the spacing between the
micro-lenses are 13.5108 for x and 11.8588 for y. In Fig. 2.6, we show that this simple
approach exhibits very small errors even at the corners of the image.

Figure 2.6: Micro-Lens Calibration. We calibrate the micro-lenses by finding the centers
of each micro-lens. To do so, we use an evenly-spaced grid. Because of Lytro Illum’s
uniformity in micro-lenses, the evenly-spaced grid exhibits low drifting errors even at
the corners.
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Remapping and Notation After decoding the image and calibrating the centers of
each micro-lens, we have a 2D image, which we denote as A and we have centers of
each of the micro-lenses. Currently, the light-field image is represented by an image,
A(x, y), and for each micro-lens, we have a center of c(x, y) where (x, y) denotes the
indices of each micro-lens; cx gives you the column component of A and cy gives you
the row component.

To simplify the notation, we remap A(x, y) to L(x, y, u, v) as follows,

L(x, y, u, v) = A(cx(x, y) + u, cy(x, y) + v). (2.1)

In L(x, y, u, v), throughout this dissertation, we denote (x, y) as the spatial
coordinates of the light-field and (u, v) as the angular coordinates of each (x, y).

2.3 Applications and Limitations
By calibrating the center pixels of each micro-lens, we can then modify depth-of-field
and viewpoint changes. In this section, we demonstrate how we perform the depth-of-
field and viewpoint changes. We then discuss the limitations of our approach. In this
section, we will denote L as the input light-field image, (x, y) are the spatial coordinates,
and (u, v) are the angular coordinates. The central viewpoint (micro-lens center) is
located at (u, v) = (0, 0).

Modify Depth of Field To change the depth-of-field of the image, we just integrate
all the angular pixels for each (x, y) coordinate as follows,

I(x, y) =
∑
u′,v′

M(u′, v′)L(x, y, u′, v′). (2.2)

M stores the aperture mask values, ranging from 0 to 1. We then normalize by sum of
M values. In Fig. 2.7, we first show that we first only integrate the central viewpoint
pixel and then we decrease the depth-of-field by integrating 7 × 7 angular pixels with
M(u′, v′) = 1, centered around the center viewpoint.
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Figure 2.7: Refocusing. On the left, we only use the central viewpoint to generate the
output image. By integrating a small 7 × 7 angular pixel neighborhood, we show that
we decrease the depth-of-field significantly.

Because we can change the depth-of-field of the light-field image, we are
able to obtain refocusing cues, which are described in the next chapter. In our imple-
mentation, the maximum number of angular pixels we integrate is 7× 7. If we increase
this number, we start seeing micro-lens artifacts where some pixels become dimmer or
the image exhibits patterned artifacts. This is because micro-lenses themselves have
vignetting and lens imperfections.

Viewpoint Changes To change viewpoints, we use the following equation to choose
a viewpoint,

I(x, y) = L(x, y, u, v). (2.3)

When (u, v) = (0, 0), we have the central pinhole image. In Fig. 2.8, we
show that we can extract different viewpoints from the light-field image. Because we
can change viewpoints, we are able to obtain stereo cues, which we will discuss in the
next chapter.
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Figure 2.8: Viewpoint Changes. By choosing a certain angular pixel (u, v), we are able
to change viewpoints. On the left, we have a left-bottom corner viewpoint and in the
middle, we have a right-top corner viewpoint. On the right, we overlay the two images
to visualize the viewpoint changes.

Limitations Although we are able to extract the images from the camera, the Lytro
software does more complex color correction, denoising, and super resolution for better
image quality. As noted before, the color correction methods may differ among Lytro
Illum cameras due to changes in sensor manufacturing process or supplier. The multi-
pliers or methods of multiplying the colors to obtain the final result may vary depending
on the camera used. In Fig. 2.9, we show the slight color, noise, and detail differences
between our output image and Lytro’s image.
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Figure 2.9: Decoder Limitations. Because Lytro uses complex color correction, denois-
ing, and super resolution techniques, we can see that in this image of the monkey, the
carpet exhibits higher noise, lower details, and slight color shift compared to the Lytro’s
final output image. The exact color is not important for our depth estimation.

2.4 Conclusion
In this chapter, we have discussed how to decode the .LFR file. We successfully con-
verted the .LFR information into a standard image format that is appropriate for image
depth analysis. We also show how we can change depth-of-field and viewpoints with
the calibrated light-field images. The decoder has been posted publicly as one of the
first open source Illum decoders2.

2http://cseweb.ucsd.edu/~ravir/illum_full.zip
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Chapter 3

Shape Estimation from Shading,
Defocus, and Correspondence Using
Angular Coherence

Light-field cameras capture many nearby views simultaneously using a single image
with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus,
correspondence, and shading. In particular, apart from conventional image shading, one
can refocus images after acquisition, and shift one’s viewpoint within the sub-apertures
of the main lens, effectively obtaining multiple views. We present a principled algorithm
for dense depth estimation that combines defocus and correspondence metrics, showing
how both can be expressed as simple operators in the epipolar image. We then extend
our analysis to the additional cue of shading, using it to refine fine details in the shape.
By exploiting an all-in-focus image, in which pixels are expected to exhibit angular co-
herence, we define an optimization framework that integrates photo consistency, depth
consistency, and shading consistency. We show that combining all three sources of infor-
mation: defocus, correspondence, and shading, outperforms state-of-the-art light-field
depth estimation algorithms in multiple scenarios.

3.1 Introduction
Light-fields can be used to refocus images [55]. Light-field cameras hold great promise
for passive and general depth estimation and 3D reconstruction in computer vision. As
noted by Adelson and Wang [1], a single exposure provides multiple viewpoints (sub-
apertures on the lens). However, a light-field contains more information about depth;
since we can refocus, change our viewpoint locally, and capture scene color information,
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defocus, correspondence, and shading cues are present in a single exposure. Our main
contribution is integrating all three cues as shown in Fig. 3.1.

We make the common assumption of Lambertian surfaces under general
(distant) direct lighting. We differ from previous works because we exploit the full
angular data captured by the light-field to utilize defocus, correspondence, and shading
cues. Our algorithm is able to use images captured with the Lytro cameras. We compare
our results both qualitatively and quantitatively against the Lytro Illum software and
other state of the art methods (Figs. 3.10, 3.11, 3.12, and 3.14), demonstrating that our
results give accurate representations of the shapes captured.

We describe a first approach to extract defocus and correspondence cues
using contrast detection from the light-field data as shown in Fig. 3.2. We exploit the
epipolar image (EPI) extracted from the light-field data, which we will describe later
in this Chapter [10, 15]. The illustrations in the chapter use a 2D slice of the EPI
labeled as (x, u), where x is the spatial dimension (image scan-line) and u is the angular
dimension (location on the lens aperture); in practice, we use the full 4D light-field
EPI. We shear to perform refocusing as proposed by Ng et al. [55]. For each shear
value, we compute the defocus cue response by considering the spatial x (horizontal)
variance, after integrating over the angular u (vertical) dimension. The defocus response
is computed through the Laplacian operator, where high response means the point is in
focus. The defocus measure is equivalent to finding the highest contrast given a refocus
setting. In contrast, we compute the correspondence cue response by considering the
angular u (vertical) variance. The correspondence measure is equivalent to finding the
lowest variance across the angular pixels, achieving photo-consistency. Using contrast
techniques for defocus and correspondence cue measurements is suitable in scenes with
high textures and edges (Fig. 3.4). However, in scenes with low textures that rely on
shading estimation, using such contrast techniques is more prone to instabilities in both
depth and confidence measurements due to calibration problems, micro-lens vignetting,
and high frequencies introduced from the shearing techniques (described in Chapter 3.3
and Fig. 3.7)

We overcome the shortcomings by improving our cue measures. Specifi-
cally, we use angular coherence to significantly improve robustness. When refocused
to the correct depth, the angular pixels corresponding to a single spatial pixel repre-
sent viewpoints that converge on one point on the scene, exhibiting angular coherence.
Angular coherence means the captured data would have photo consistency, depth con-
sistency, and shading consistency, shown in Fig. 3.5. We extend the consistency ob-
servations from Seitz and Dyer [69] by finding the relationship between refocusing and
achieving angular coherence. The extracted central pinhole image from the light-field
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Figure 3.1: Light-field Depth Estimation Using Shading, Defocus, and Correspondence
Cues. In this work, we present a novel algorithm that estimates shading to improve depth
recovery using light-field angular coherence. Here we have an input of a real scene with
a shell surface and a camera tilted slightly toward the right of the image (a). We ob-
tain improved defocus (b) and correspondence (c) depth cues for depth estimation (d,e).
However, because local depth estimation is only accurate at edges or textured regions,
depth estimation of the shell appears regularized and planar. We use the depth estima-
tion to estimate shading, which is S, as shown in (f), the component in I = AS, where I
is the observed image and A is the albedo (g). With the depth and shading estimations,
we can refine our depth to better represent the surface of the shell (h,i). Throughout this
chapter, we use the scale on the right to represent depth.

data helps us enforce the three properties of angular coherence.

To utilize the shading cue, we first estimate the shading component of the
image by extending a standard Retinex image decomposition framework introduced by
Zhao et al. [94] enforces albedo and shading constraints. By using the full light-field
4D EPI and angular coherence, our method is robust against noisy and imperfect data
(Fig. 3.8). The robustness allows us to accurately estimate lighting (Chapter 3.6) and
estimate normals (Chapter 3.6). The angular coherence and combination of defocus,
correspondence, and shading cues provide robust constraints to estimate the shading
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normal constraints, previously not possible with low-density depth estimation.

In this chapter, our main contributions are

1. Analysis of defocus and correspondence.
We extract defocus and correspondence from a light-field image and show why using
both cues is important.
2. Depth cues with angular coherence.
We show the relationship between refocusing a light-field image and angular coherence
to formulate improved defocus and correspondence measures and shading estimation
constraints.
3. Shading estimation constraints.
We formulate a new shading constraint, that uses angular coherence and a confidence
map to exploit light-field data.
4. Depth refinement with the three cues.
We design a novel framework that uses shading, defocus, and correspondence cues to
refine shape estimation.
5. Quantitative and Qualitative Dataset.
We quantitatively and qualitatively assess our algorithm with both synthetic and real-
world images (Figs. 3.10, 3.11, 3.12, and 3.14).

3.2 Previous Work

Shape from Defocus and Correspondence
Depth from Defocus. Depth from defocus has been achieved either through using multi-
ple image exposures or a complicated apparatus to capture the data in one exposure [68,
73, 85]. Defocus measures the optimal contrast within a patch, where occlusions may
easily affect the outcome of the measure, but the patch-based variance measurements
improve stability over these occlusion regions. However, out-of-focus regions, such as
certain high frequency regions and bright lights, may yield higher contrast. The size of
the analyzed patch determines the largest sensible defocus size. In many images, the
defocus blur can exceed the patch size, causing ambiguities in defocus measurements.
Our work not only can detect occlusion boundaries, we can provide dense stereo.

Depth from Correspondences. Extensive work has been done in estimat-
ing depth using stereo correspondence, as the cue alleviates some of the limitations of
defocus [53, 67]. Large stereo displacements cause correspondence errors because of
limited patch search space. Matching ambiguity also occurs at repeating patterns and
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noisy regions. Occlusions can cause non-existent correspondence. Optical flow can also
be used for stereo to alleviate occlusion problems since the search space is both hor-
izontal and vertical [29, 48], but the larger search space dimension may lead to more
matching ambiguities and less accurate results. Multi-view stereo [45, 57] also alle-
viates the occlusion issues, but requires large baselines and multiple views to produce
good results.

Combining Defocus and Correspondence. Combining both depth from de-
focus and correspondence has been shown to provide benefits of both image search
reduction, yielding faster computation, and more accurate results [41, 74]. However,
complicated algorithms and camera modifications or multiple image exposures are re-
quired. In our work, using light-field data allows us to reduce the image acquisition
requirements. Vaish et al. [81] also propose using both stereo and defocus to com-
pute a disparity map designed to reconstruct occluders, specifically for camera arrays.
This chapter shows how we can exploit light-field data to not only estimate occlusion
boundaries but also estimate depth by exploiting the two cues in a simple and principled
algorithm.

Shape from Shading and Photometric Stereo
Shape from shading has been well studied with multiple techniques. Extracting geom-
etry from a single capture [28, 93] was shown to be heavily under constrained. Many
works assumed known light source environments to reduce the under constrained prob-
lem [19, 20, 26, 93]; some use partial differential equations, which require near ideal
cases with ideal capture, geometry, and lighting [11, 42, 94]. In general, these ap-
proaches are especially prone to noise and require very controlled settings. Recently,
Johnson and Adelson [37] described a framework to estimate shape under natural illu-
mination. However, the work requires a known reflectance map, which is hard to obtain.
In our work, we focus on both general scenes and unknown lighting, without requiring
geometry or lighting priors. To relax lighting constraints, assumptions about the geome-
try can be made such as faces [9, 75] or other data-driven techniques [5]. The method by
Barron and Malik [4, 6] works for real-world scenes and recovers shape, illumination,
reflectance, and shading from an image. However, many constraints, such as shape pri-
ors, are needed for both geometry and illumination. In our framework, we do not need
any priors and have fewer constraints.

A second set of works focuses on using photometric stereo [8, 17, 20, 26,
88, 87]. These works are not passive and require the use of multiple lights and captures.
In contrast, shape from shading and our technique just require a single capture.
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Shape from Depth Cameras and Sensors
Work has been done using Kinect data [22]. Barron and Malik [5] introduce SIRFS
that reconstructs depth, shading, and normals. However, the approach requires multiple
shape and illumination priors. Moreover, the user is required to assume the number of
light sources and objects in the scene. Chen and Koltun [13] introduce a more gen-
eral approach to perform intrinsic image decomposition. However, the method does not
optimize depth and, given sparse input depth with poor normal estimations at smooth
surfaces, their shading estimation is poor and unsuitable for refining depth. Other
works [54, 89] introduce an efficient method to optimize depth using shading informa-
tion. The limitations of these approaches are that they require very dense and accurate
depth estimation, achieved by active depth cameras. Even in non-textured surfaces,
these active systems provide meaningful depth estimations. With passive light-field
depth estimation, the local depth output has no or low-confidence data in these regions.

Shape from Modified Cameras
To achieve high quality depth and reduce algorithmic complexity, modifying conven-
tional camera systems such as adding a mask to the aperture has been effective [43, 46].
The methods require a single or multiple masks to achieve depth estimation. The gen-
eral limitation of these methods is that they require modification of the lens system of
the camera, and masks reduce incoming light to the sensor.

Shape from Light-Fields and Multi-View Stereo
Hasinoff and Kutulakos [25] explain how focus and aperture provide shape cues and
Van Doorn et al. [18] explain how light-fields provide useful shading information. To
estimate these depth cues from light-field images, Perwass and Wietzke [61] propose
correspondence techniques, while others [1, 44] have proposed using contrast measure-
ments. Kim et al. and Wanner et al. [39, 83] propose using global label consistency
and slope analysis to estimate depth. Their local estimation of depth uses only a 2D EPI
to compute local depth estimates, while ours uses the full 4D EPI. Because the confi-
dence and depth measure rely on ratios of tensor structure components, their result is
vulnerable to noise and fails at very dark and bright image features.

Since light-fields and multi-view stereo are passive systems, these algo-
rithms struggle with the accuracy of depth in low-textured regions [39, 65, 80, 79, 83]
because they rely on local contrast, requiring texture and edges. With traditional regular-
izers [35] and light-field regularizers, such as one proposed by Wanner et al. [23], depth
labeling is planar in these low-textured regions. In this chapter, we show how the angu-
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lar coherence of light-field data can produce better 1) depth estimation and confidence
levels, and 2) regularization.

Figure 3.2: Defocus and Correspondence Framework. This setup shows three different
poles at different depths with a side view of (a) and camera view of (b). The light-field
camera captures an image (c) with its epipolar image (EPI). By processing each row’s
EPI (d), we shear the EPI to perform refocusing. Our contribution lies in computing
both defocus analysis (e), which integrates along angle u (vertically) and computes the
spatial x (horizontal) gradient, and correspondence (f), which computes the angular u
(vertical) variance. The response to each shear value is shown in (g) and (h). By com-
bining the two cues through regularization, the algorithm produces high quality depth
estimation (i). In Sections 3.4 and 3.5, we refine the defocus and correspondence mea-
sure and incorporate shading information to our regularization to produce better shape
and normal estimation results by using angular coherence. With angular coherence, our
defocus and correspondence measures are more robust in scenes with less texture and
fewer edges.

3.3 Defocus and Correspondence
By using both defocus and correspondence depth cues for local depth estimation, the
algorithm benefits from the advantages of each cue, shown in Fig. 3.3. Defocus cues are
better with occlusions, repeating patterns, and noise; but correspondence is more robust
in bright/darker features of the image and has more defined depth edges.

We first present a simple contrast-based approach to compute the response
of both cues. The contrast-based approach gives us a better insight on how to extract the
cues. However, because of the limitations of the contrast-based methods in scenes with
low texture and edges, in Chapter 3.4, we refine the measures to mitigate the limitations.
Throughout this chapter, we refer to the contrast-based depth measure as the contrast
based method in our comparison figures.
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Figure 3.3: Defocus and Correspondence Strengths and Weaknesses. Each cue has
its benefits and limitations. Most previous work use one cue or another, as it is hard
to acquire and combine both in the same framework. In this chapter, we exploit the
strengths of both cues. Additionally, we provide further refinement, using the shading
cue.

For easier conceptual understanding, we use the 2D EPI in this section, con-
sidering a scan-line in the image, and angular variation u, i.e. an (x-u) EPI where x
represents the spatial domain and u represents the angular domain as shown in Fig. 3.2.
This approach provides insight on how to utilize both cues. Ng et al. [55] explain how
shearing the EPI can achieve refocusing. For a 2D EPI, we remap the EPI input as
follows,

Lα(x, u) = L(x+ u(1− 1

α
), u), (3.1)

where L denotes the input EPI and Lα denotes the EPI sheared by a value
of α. We extend the refocusing to 4D in Eq. 3.7.

Defocus
Light-field cameras capture enough angular resolution to perform refocusing, allowing
us to exploit the defocus cue for depth estimation. We find the optimal αwith the highest
contrast at each pixel as shown in Fig. 3.2e. The first step is to take the sheared EPI and
integrate across the angular u dimension (vertical columns),

L̄α(x) =
1

Nu

∑
u′

Lα(x, u′) (3.2)

where Nu denotes the number of angular pixels (u). L̄α(x) is simply the refocused
image for the shear value alpha. Finally, we compute the defocus response by using a
measure:



CHAPTER 3. SHAPE ESTIMATION FROM SHADING, DEFOCUS, AND
CORRESPONDENCE USING ANGULAR COHERENCE 30

Dα(x) =
1

|WD|
∑
x′∈WD

|∆xL̄α(x′)| (3.3)

where WD is the window size around the current pixel (to improve robustness) and ∆x

is the horizontal (spatial) Laplacian operator, using the full patch. For each pixel in the
image, we now have a measured defocus contrast response for each α. (We improve
upon this measure in Eq. 3.16, where the actual algorithm compares the contrast to
the central pinhole image instead. The improved measure gives us better depth and
confidence measures in low textured regions.)

Correspondence
Light-field cameras capture enough angular information to render multiple pinhole im-
ages from different perspectives in one exposure. Consider an EPI as shown in Fig. 3.2d.
For a given shear α (Fig. 3.2f), we consider the angular (vertical) variance for a given
spatial pixel.

σα(x)2 =
1

Nu

∑
u′

(Lα(x, u′)− L̄α(x))2 (3.4)

For each pixel in x, instead of just computing the pixel variance, we need to compute
the patch difference. We average the variances in a small patch for greater robustness,

Cα(x) =
1

|WC |
∑
x′∈WC

σα(x′) (3.5)

where WC is the window size around the current pixel to improve robustness. For each
pixel in the image, we now have a measured correspondence response for each α. (We
improve upon the correspondence measure in Eq. 3.17, where the actual algorithm com-
pares the central pinhole image color value instead of the mean.)

Depth and Confidence Estimation
We seek to maximize spatial (horizontal) contrast for defocus and minimize angular
(vertical) variances for correspondence across shears. We find the α value that maxi-
mizes the defocus measure and the α value that minimizes the correspondence measure.



CHAPTER 3. SHAPE ESTIMATION FROM SHADING, DEFOCUS, AND
CORRESPONDENCE USING ANGULAR COHERENCE 31

Figure 3.4: Contrast-Based Defocus and Correspondence Results. Defocus consistently
shows better results at noisy regions and repeating patterns, while correspondence pro-
vides sharper results. By combining both cues, our method provides more consistent
results in real world examples. The two low light images on the top show how our algo-
rithm is able to estimate depth even at high ISO settings. The flowers (bottom left and
right) show how we recover complicated shapes and scenes. By combining both cues,
our algorithm still produces reasonable results. However, we can see that the contrast-
based defocus and correspondence measures perform poorly in scenes where textures
and edges are absent (Figs. 3.10, 3.11, 3.12, and 3.14). Therefore, we develop more
robust cue measurements with angular coherence in Chapter 3.5.

α?D(x) = argmax
α

Dα(x)

α?C(x) = argmin
α

Cα(x)
(3.6)

Defocus and correspondence cues might not agree on the optimal shear; we
address this using our confidence measure and global step. To measure the confidence
of α?D(x) and α?C(x), we found Attainable Maximum Likelihood (AML), explained in
Hu and Mordohai [34], to be the most effective.

Regularization and Results

To combine the two responses and propagate the local depth estimation,
we used the same optimization scheme, which is later described in Chapter 3.5. In
Fig. 3.4, we show four depth estimation results using the contrast based depth cue mea-
surement. We captured the images in three different scenarios (indoors and outdoors,
low and high ISO, and different focal lengths). Throughout the examples, defocus is
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less affected by noise and repeating patterns compared to correspondence while corre-
spondence provides more edge information compared to defocus. Our combined results
perform consistently and are robust in high texture situations.

Discussion
By using both defocus and correspondence, we are able to improve robustness of the
system as shown in Fig. 3.4. However, using these measures is not ideal for scenes
where the object is mainly textureless. Some of the factors include:

Shearing to refocus may introduce high frequencies. This can be due to
miscalibration of micro-lenses, vignetting (lens imperfect where edges of the image are
darker than the center), and other lens imperfections. In Fig. 3.7, we can see this effect
on the top with the dinosaur example.

Noise and spots create low-confidence measures. This is especially promi-
nent in smooth regions, which is not ideal for our depth results. In Fig. 3.7, we can see
that angular variance measures fail.

Using these measures without shading constraints are not suitable for mea-
suring normals as they introduce errors in smooth regions, as seen in Figs. 3.11 and 3.12.
The depth and confidence of the contrast-based measures result in inconsistent regular-
ization. Therefore, we use angular coherence to improve robustness in such scenes.

3.4 4D Angular Coherence and Refocusing
Angular coherence plays a large role in our algorithm to establish formulations for both
the improved defocus-correspondence depth estimation and shading constraints. Our
goal is to solve for 1) depth map, α∗, and 2) shading in P = AS, where P is the central
pinhole image of the light-field input L, A is the albedo, and S is shading. In order to
address the limitations of light-field cameras, we exploit the angular resolution of the
data.

Here, we explain why a light-field camera’s central pinhole image provides
us with an important cue to obtain angular coherence. To shear the full 4D light-field
image, the EPI remapping is as follows,
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Lα(x, y, u, v) = L(xf (α), yf (α), u, v)

xf (α) = x+ u(1− 1

α
)

yf (α) = y + v(1− 1

α
)

(3.7)

where L is the input light-field image, Lα is the refocused image, (x, y) are the spatial
coordinates, and (u, v) are the angular coordinates. The central viewpoint is located at
(u, v) = (0, 0).

Given the depth α∗(x, y) for each spatial pixel (x, y), we calculate Lα∗ by
refocusing each spatial pixel to its respective depth. All angular rays converge to the
same point on the scene when refocused at α∗, as shown in Fig. 3.5. We can write this
observation as
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Figure 3.5: Angular Coherence and Refocusing. In a scene where the main lens is fo-
cused to pointX with a distance α∗ from the camera, the micro-lenses enable the sensor
to capture different viewpoints represented as angular pixels as shown on the bottom.
As noted by Seitz and Dyer [69], the angular pixels exhibit angular coherence, which
gives us photo, depth, and shading consistency. In our chapter, we extend this analysis
by finding a relationship between angular coherence and refocusing, as described in
Chapter 3.4. In captured data, pixels are not guaranteed to focus at α (shown on the
top). Therefore, we cannot enforce angular coherence on the initial captured light-field
image. We need to shear the initial light-field image using Eq. 3.7, use the angular co-
herence constraints, and remap the constraints back to the original coordinates using
Eq. 3.13.
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Lα∗(x, y, u, v) = L(xf (α∗(x, y)), yf (α∗(x, y)), u, v). (3.8)

We call this equation the angular coherence equation. Effectively, Lα∗ represents the
remapped light-field data of an all-in-focus image. However, utilizing this relationship
is difficult because α∗ is unknown. From Eq. 3.7, the center pinhole image P , where
the angular coordinates are at (u, v) = (0, 0), exhibits a unique property: the sheared
xf (α), yf (α) are independent of (u, v). At every α,

Lα(x, y, 0, 0) = P (x, y). (3.9)

The central angular coordinate always images the same point in the scene, regardless
of the focus. This property of refocusing allows us to exploit photo consistency, depth
consistency, and shading consistency, shown in Fig. 3.5. The motivation is to use these
properties to formulate depth estimation and shading constraints.

Photo consistency. In Lα∗ , since all angular rays converge to the same point
in the scene at each spatial pixel, the angular pixel colors converge to P (x, y). In high
noise scenarios, we use a simple median filter to de-noise P (x, y). Therefore, we repre-
sent the photo consistency measure as

Lα∗(x, y, u, v) = P (x, y). (3.10)

Depth consistency. Additionally, the angular pixel values should also have
the same depth values, which is represented by

ᾱ∗(x, y, u, v) = α∗(x, y) (3.11)

where ᾱ∗ is just an up-sampled α∗ with all angular pixels, (u, v), sharing the same depth
for each (x, y). (Although depths vary with the viewpoint, (u, v), we can assume the
variation of depths between angular pixels is minimal since the aperture is small and our
objects are comparatively far away.)

Shading consistency. Following from the photo consistency of angular pix-
els for each spatial pixel in Lα∗ , shading consistency also applies, since shading is view-
point independent for Lambertian surfaces. Therefore, when solving for shading across
all views, shading consistency gives us
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S(xf (α∗(x, y)), yf (α∗(x, y)), u, v) = S(x, y, 0, 0). (3.12)

Inverse Mapping
For all three consistencies, the observations only apply to the coordinates inLα∗ . To map
these observations back to the space of L, we need to use the coordinate relationship
between Lα∗ and L, as shown in Fig. 3.5 on the bottom.

L(xi(α∗), yi(α∗), u, v) = Lα∗(x, y, u, v)

xi(α) = x− u(1− 1

α
) yi(α) = y − v(1− 1

α
)

(3.13)

We use this property to map depth and shading consistency to L.

3.5 Algorithm
Our algorithm is shown in Algorithm 3 and Fig. 3.6. We discuss local estimation using
angular coherence (3.5) and regularization (3.5), corresponding to lines 2 and 3 of the
algorithm. Section 3.6 describes shading and lighting estimation and the final optimiza-
tion.

Depth Cues using Angular Coherence [Line 2]
We start with local depth estimation, where we seek to find the depth α∗ for each spatial
pixel. We improve the robustness of the defocus and correspondence cues. We use photo

Algorithm 3
Depth from Shading, Defocus, and Correspondence

1: procedure DEPTH(L)
2: Z,Zconf = LocalEstimation(L)
3: Z∗ = OptimizeDepth(Z,Zconf)
4: S = EstimateShading(L)
5: l = EstimateLighting(Z∗, S)
6: Z∗ = OptimizeDepth(Z∗, Zconf, l, S)
7: return Z∗

8: end procedure
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consistency (Eq. 3.10) to formulate an improved metric for defocus and correspondence.
From angular coherence (Eq. 4.11), we want to find α∗ such that

α∗(x, y) = argmin
α

|L(xf (α), yf (α), u, v)− P (x, y)|. (3.14)

The equation enforces all angular pixels of a spatial pixel to equal the center
view pixel color, because regardless of α the center pixel color P does not change.
We will now reformulate defocus and correspondence to increase robustness of the two
measures.

Defocus. Instead of using a spatial contrast measure to find the optimal
depth as shown in Eq. 3.5, we use Eq. 3.14 for our defocus measure. The first step is to
take the EPI and average across the angular (u, v) pixels (instead of just the 2D EPI in
Eq. 3.2),

L̄α(x, y) =
1

N(u,v)

∑
(u′,v′)

Lα(x, y, u′, v′), (3.15)

Figure 3.6: Pipeline. The pipeline of our algorithm contains multiple steps to estimate
the depth of our input light-field image (a). The first is to locally estimate the depth (line
2), which provides us both confidence (b) and local depth estimation (c). We use these
two to regularize depth without shading cues (d) (line 3). The depth is planar, which
motivates us to use shading information to refine our depth. We first estimate shading (e)
(line 4), which is used to estimate lighting (f) (line 5). We then use the lighting, shading,
initial depth, and confidence to regularize into our final depth (g) (line 6).
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where N(u,v) denotes the number of angular pixels (u, v). Finally, we compute the defo-
cus response by using a measure:

Dα(x, y) =
1

|WD|
∑

(x′,y′)∈WD

|L̄α(x′, y′)− P (x′, y′)| (3.16)

where WD is the window size (to improve robustness). For each pixel in the image, we
compare a small neighborhood patch of the refocused image and its respective patch at
the same spatial location of the center pinhole image.

Even with refocusing artifacts or high frequency out-of-focus blurs, the mea-
sure produces low values for non-optimal α. In Fig. 3.7, we can see that the new measure
responses are more robust than simply using the contrast, as in Eq. 3.3 in Chapter 3.3.
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Figure 3.7: Depth estimation using angular coherence. On the top, we have a scene
with a dinosaur. Even refocused to an non-optimal depth, not equal to α∗, high contrast
still exists. By using a contrast based defocus measure, the optimal response is hard
to distinguish. On the bottom, we have a scene with a black dot in the center. When
refocused at a non-optimal depth, the angular pixels may exhibit the same color as the
neighboring pixels. Both the optimal and non-optimal α measures would have low vari-
ance. However, by using angular coherence to compute the measures, we can see that,
in both cases, the resulting measure better differentiates α∗ from the rest, giving us bet-
ter depth estimation and confidence (also in Fig. 3.10). Note: For defocus measurement,
we inverted the contrast-based defocus response for clearer visualization.

Correspondence. By applying the same concept as Eqn. 3.14, we can also
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formulate a new correspondence measure. To measure photo consistency, instead of
measuring the variance of the angular pixels as shown in Eq. 3.5, we measure the differ-
ence between the refocused angular pixels at α and their respective center pixel. This is
represented by

Cα(x, y) =
1

N(u′,v′)

∑
(u′,v′)

|Lα(x, y, u′, v′)− P (x, y)|. (3.17)

The previous correspondence measure only considers the variance in Lα directly, while
we also compare to the intended value. The advantage is the measurement is more
robust against small angular pixel variations such as noise. See Fig. 3.7 bottom, where
at an incorrect depth, the angular pixels are similar to neighboring pixels. Measuring
the variance will give an incorrect response as opposed to our approach of comparing
against the center view.

Regularization w/ Confidence Measure [Line 3]
Similar to Chapter 3.3, α?D(x) and α?C(x) are the minimum of the defocus and correspon-
dence responses. To measure the confidence of α?D(x) and α?C(x), we use Attainable
Maximum Likelihood (AML).

Up to this point, we have obtained a new local depth estimation. Now the
goal is to propagate the local estimation to regions with low confidence. To combine
the two responses, for each spatial pixel, we use a simple average of the defocus and
correspondence responses weighted by their respective confidences. To find the optimal
depth value for each spatial pixel, we use the depth location of the minimum of the
combined response curve, which we will label as Z. We used the same AML measure
for the new combined response to compute the overall confidence level for local depth
estimation, which we then label as Zconf. Z and α are in the same scale; therefore, all
equations above can be used with Z.

In our optimization scheme, given Z, the local depth estimation, and its
confidence, Zconf, we want to find a new Z∗ that minimizes

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) (3.18)

where Z∗ is the optimized depth, Ed is our data constraint, and Ev is our smoothness
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constraint. In our final optimization, we also use Es, our shading constraint (line 6). In
our implementation, we used λd = 1 and λv = 4.

Data constraint (Ed). To weight our data constraint, we want to optimize
depth to retain the local depth values with high confidence. Note that since we use light-
field data, we have a confidence metric from defocus and correspondence. Therefore,
we can establish the data term as follows,

Ed(x, y) = Zconf(x, y) · ||Z∗(x, y)− Z(x, y)||2. (3.19)

Smoothness constraint (Ev) The smoothness term is the following:

Ev(x, y) =
∑
i=1,2,3

||(Z∗ ⊗ Fi)(x, y)||2. (3.20)

In our implementation, we use three smoothness kernels,

F1 =

 0 −1 0

−1 4 −1

0 −1 0

F2 =
[
−1 0 1

]
F3 =

−1

0

1

 (3.21)

where F1 is the second derivative and F2 and F3 are horizontal and vertical first deriva-
tives respectively.

3.6 Finding Shading Constraints
The problem with just using the data and smoothness terms is that the smoothness terms
do not accurately represent the shape (Fig. 3.6d). Since smoothness propagates data with
high local confidence, depth regularization becomes planar and incorrect (See Fig. 3.1).
Shading information provides important shape cues where our local depth estimation
does not. Before we can add a shading constraint to the regularizer, we need to estimate
shading and lighting.

Shading w/ Angular Coherence [Line 4]
The goal of the shading estimation is to robustly estimate shading with light-field data.
We use the standard decomposition, P = AS, where P is the central pinhole image,
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A is the albedo, and S is the shading. However to improve robustness, we extend the
Retinex image decomposition framework [94] to use the full light-field data L = AS by
introducing a new angular coherence term. The new angular coherence term increases
robustness against noise as shown in Fig. 3.8.

Our optimization solves for S(x, y, u, v). In this section, to simplify our
notation, we use I to denote L, following the standard intrinsic image notation. We use
the log space log I = log (A · S). We also use a = i − s where the lower case (i, a, s)
terms are the log of (I, A, S) RGB values. We solve for s by using the following error
metric,

E(s) =
∑

t=(x,y,u,v)

Els(t) + Ela(t) + Ens(t) + Ena(t) + Eac(t). (3.22)

We use a least squares solver to optimize for s(x, y, u, v). To map to s(x, y) (the shading
decomposition of P ), we take the central viewpoint, s(x, y, 0, 0). We use the shading
component of P for lighting and depth refinement.

Depth propagation. Since the shading constraints depend on normals of the
entire (x, y, u, v) space, we need to propagate depth and constraints from Z∗(x, y) to
Z∗(x, y, u, v). By looking at Fig. 3.5, we need to map Z∗(x, y) to Z̄∗(x, y, u, v) by
using Eq. 3.12. To map Z̄∗(x, y, u, v) back to the inverse coordinates, we use

Z∗(xi(α∗), yi(α∗), u, v) = Z̄∗(x, y, u, v). (3.23)

Local shading and albedo constraint (Els, Ela). To smooth local shading,
we look at the 4-neighborhood normals. If the normals are similar, we enforce smooth-
ness.

Els(t) = wls(t) · ||(s⊗ F1)(t)||2

Ela(t) = wla(t) · ||((i− s)⊗ F1)(t)||2
(3.24)

where wls is the average of the dot product between normal of p and wla is the average of
the dot product between the pairwise center pixel’s and its neighbors’ RGB chromatici-
ties. F1 is the second derivative kernel from Eqn. 3.21.
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Nonlocal shading and albedo constraint (Ens, Ena). To smooth nonlocal
shading, we search for the global closest normals and enforce smoothness. For the
pixels with similar normals, we enforce similarity.

Ens(t) =
∑

p,q∈ℵns

wns(p, q) · ||s(p)− s(q)||2

Ena(t) =
∑

p,q∈ℵna

wna(p, q) · ||(i− s)(p)− (i− s)(q)||2
(3.25)

where p and q represent two unique (x, y, u, v) coordinates within ℵns and ℵna, the top
10 pixels with nearest normal and chromaticity respectively. wns and wna are the dot
product between each pairwise normals and chromaticities.

Angular coherence constraint (Eac). So far, we are operating largely similar
to shape from shading systems in a single (non light-field) image. We only constrain
spatial pixels for the same angular viewpoint. Just like our depth propagation, we can
enforce shading consistency. We do this by the constraints represented by Eq. 3.12, as
shown in Fig. 3.5. For each pair of the set of (x, y, u, v) coordinates, we impose the
shading constraint as follows,

Eac(t) =
∑

p,q∈ℵac

||s(p)− s(q)||2 (3.26)

where p, q are the coordinate pairs (x, y, u, v) in ℵac, all the pixels within the shad-
ing constraint. The term plays a large role in keeping our shading estimation robust
against typical artifacts and noise associated with light-field cameras. Without the
term, the shading estimation becomes noisy and creates errors for depth estimation
(Figs. 3.8, 3.9).

Lighting Estimation [Line 5]
With shading, S, we use spherical harmonics to estimate general lighting as proposed
by Ramamoorthi and Hanrahan [63] and Basri and Jacobs [7] as follows,

P = A(x, y)
8∑

k=0

lkHk(Z
∗(x, y)). (3.27)
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Figure 3.8: Angular Coherence and Robust Shading. From the shading image we gen-
erate (a), without angular coherency causes noise and unwanted artifacts (b). With an-
gular coherence, the noise reduces. Quantitatively, we can see these effects in Fig. 3.9.

where P is the central pinhole image, A is the albedo, l are the spherical harmonic
coefficients of the lighting, and Hk are the spherical harmonics basis functions that take
a unit surface normal (nx, ny, nz) derived from Z∗(x, y).

We have computed S. A is estimated as P = AS. Therefore, l is the only
unknown and can be estimated from these equations using a linear least squares solver.

Regularization w/ Shading Constraints [Line 6]
With both shading S and lighting l, we can regularize with the shading cue. The new
error metric is

E(Z∗) =
∑
(x,y)

λdEd(x, y) + λvEv(x, y) + λsEs(x, y) (3.28)

where Ed and Ev are the same as Eq. 3.27 and Es is our shading constraint. We use
λs = 2 in our implementation. We use a non-linear least squares approach with a 8
nearest-neighbors Jacobian pattern to solve for the minimization.

Shading constraint (Es). To constrain the depth with shading, we want Z∗

to satisfy
8∑

k=0

lkHk(Z
∗(x, y)) = S. Hence, the error term is
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Figure 3.9: Qualitative and quantitative synthetic measurement. We have a simple dif-
fuse ball lit by a distant point light-source (a). With just regularization without shading
information, our depth estimation does not represent the shape (b,c). With our shading
image (d), our depth estimation recovers the ball’s surface (e,f). We added Gaussian
noise with a variable variance. Without the shading constraint, the RMSE (root mean
squared error) against ground truth shading and depth are high. Angular coherence
results lower RMSE for both shading and depth.

Es(x, y) = ws(x, y) · ||
8∑

k=0

lkHk(Z
∗(x, y))− S||2 (3.29)

where ws(x, y) = (1 − Zconf(x, y)) to enforce the shading constraint where our local
depth estimation is not confident.

3.7 Results and Validation
We validated our algorithm (depth regularized without shading constraints, shading es-
timation, and depth regularized with shading constraints) using a synthetic light-field
image (Fig. 3.9), and we compare our depth results to the state-of-the-art methods by
the Lytro Illum Software and Wanner et al. [83] (Figs. 3.10, 3.11, 3.12, 3.14). We quan-
titively evaluated both uniform and non-uniform albedo examples on real images. To
capture all the natural images in the chapter, we reverse engineered the Lytro Illum
decoder (see Chapter 2) and used varying camera parameters to capture scenes under
different lighting conditions.

Quantitative Analysis
Synthetic: Noise

To validate the depth and shading results of our algorithm, we compare our results to the
ground truth depth and shading for a synthetic light-field image of a Lambertian white
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sphere illuminated by a distant point light source. We added Gaussian noise (zero mean
with variance from 0 to 0.03) to the input image. In Fig 3.9, we see that using shading
information helps us better estimate the shape of the sphere. With angular coherence
constraints on our shading, both depth and shading RMSE are reduced, especially with
increased noise.

Lytro Illum Images

Approach. In Figures 3.10, 3.11, and 3.12, we first 3D scanned all four figurines (cup-
cake, flat cat, standing dog, and standing cat), using the NextEngine 3D scanner. We
used the three-bracket mode with 40 points per square inch. For each of the algorithms,
we used an iterative closest point (ICP) approach to map the depth maps to the ground
truth scan [14]. We compute the point-to-point error for each point of the ground-truth
scan points, as well as the root-mean-squared error (RMSE). The parameters we used
for the ICP are point-to-point minimization metric, Euclidean distance tolerance of 0.01,
Radian distance tolerance of 0.009, and maximum of 100 iterations. We will release both
the dataset and code to generate the RMSE and visualizations.
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Figure 3.10: Uniform Albedo Comparisons. We compare qualitative and quantitative
measures with two different examples against Lytro Illum Software, Wanner and Gold-
luecke [83], contrast-based defocus and correspondence from Chapter 3.3, and angular
coherence based defocus and correspondence from Chapter 3.5. On the top, we have
an example of a cupcake, where our algorithm is able to estimate the contours of the
cupcake decorations. On the bottom, we have an image of a flat cat figurine. We can
see that our algorithm is able to recover the curvature of the body and face. For com-
parison against ground truth, we use the NextEngine 3D scanner to obtain the ground
truth and align each of the resulting depth maps using the iterative closest point (ICP)
algorithm. The color diagram shows the Euclidean distance of each ground truth point
to the closest point after the ICP transformation for each algorithm. We can see that we
align closely with the ground truth with the lowest RMSE.
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Figure 3.11: Varying Albedo Comparisons: Cat. In this figure, we took two pictures
of the same figurine of the standing cat. Starting from the uniform albedo results, our
algorithm is able to recover the contours of the cat, with nice side curvature. Our
point-to-point errors also show low errors across the cat. On the bottom, we painted
the cat with different colors. Our algorithm was able to recover a reasonable shading
estimation from the image. We can also see that our depth estimation can still resolve
the contours of the cat with low RMSE.
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Figure 3.12: Varying Albedo Comparisons: Dog. In this figure, we took two pictures of
the standing dog, both without or with varying albedo. Starting from the uniform albedo
results, our algorithm is able to recover the contours of the dog. Our point-to-point
errors also show low errors across the dog. On the bottom, we painted the dog with
different colors. Our algorithm was able to recover a reasonable shading estimation
from the image. We can also see that our depth estimation can still resolve the contours
of the dog with low RMSE. With the contrast based method, we can see instabilities
of regularization when no texture is present, resulting in high RMSE; however, RMSE
reduces significantly when albedo changes are present. With angular coherence, we see
over-smoothing after regularization due to lack of texture, causing larger errors than
Lytro and Wanner and Goldluecke; but the depth result also significantly improves with
albedo changes.
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Analysis. The plot below each example shows the point-to-point error of each point of
the ground truth scan and RMSE.

For the uniform albedo results in Fig. 3.10, on the top, we have an input
image of the cupcake with decorations. We can see that our shape estimation captures
the curvature of the cupcake. Our defocus and correspondence using angular coherence
from Chapter 3.5 gives a flatter result, but an improvement over using the contrast based
defocus and correspondence from Chapter 3.3, which shows noisier results; Wanner and
Goldluecke [83] also shows high errors in smooth regions; and the Lytro Illum software
shows noisier results that are not suitable for estimating normals. Quantitatively, these
observations are consistent with the point-to-point error, where our method shows low
errors for the cupcake with a low RMSE. We observe the same on the bottom rows with
the cat example. Although all examples show difficulties resolving the shape of the
nose, our shape estimation still performs better with a low RMSE.

For non-uniform albedo results in Figs. 3.11 and 3.12, we have two differ-
ent captured images: one for uniform albedo and one with varying albedo, painted on
the figurines. In these figures, we gain a better understanding how albedo impacts the
results. With the cat example, we can see that our algorithm is robust, even with the
painted colors. Because of our shading estimation, we are still able to retain the curva-
ture of the cat. Although some errors are introduced in the shading result, our RMSE
is still lower than the other methods’ RMSE. Note that contrast-based methods run into
regularization errors, due to low confidence regions. In Fig. 3.12, we observe the same
behavior and we are able to extract a reasonable shading and albedo result to reduce the
impact of the albedo changes.

Qualitative Analysis
3D Printing. In Fig. 3.13, we qualitatively assess our shape estimation by comparing the
three printed objects (standing cat, flat cat, and cupcake) against the original figurines.
We first converted our depth estimation to a 3D point cloud and then used MeshLab
to compute the normals for the set of points. We then created the mesh using Poisson
Surface Reconstruction [38], and used the Makerbot Replicator Z18 3D printer to print
the figurines. We scale our prints such that they can fit in a 50mm cube. We can see
with the three prints, given the limited spatial resolution (430x539) of the Lytro Illum
Camera and 0.2mm printing precision, we are able to print low resolution 3D prints of
the original figurines. Therefore, the surfaces still look smooth. However, with higher
spatial resolution cameras, more points can result in higher quality prints. For normals
computation, we used 10 neighbors with 0 smooth iterations. For the surface recon-
struction, we used the Poisson method with an octree depth of 6, solver divide of 6, 1
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Figure 3.13: 3D Printing. We 3D printed the standing cat, flat cat, and cupcake exam-
ples. The printed examples showcase the capability of using passive camera systems
with a single exposure to capture shape for 3D printing. Note that we scaled the printed
figurines to fit in a 50mm cube with 0.2mm precision.

sample per node, and 1 surface offset distance, which all are defined in [38].

Natural Images. In Fig. 3.14, we show that our algorithm works with natural images
across different camera settings. On the top, we have an orange plastic shell, illuminated
by indoor lighting. The Illum software produces noisy results. Wanner and Goldlucke’s
regularization propagates errors in regions where local estimation fails. In the contrast-
based results, we see stronger fluctuations in the defocus and correspondence confidence
measure, causing depth blockiness in some areas. Even without shading constraints, we
produce a less noisy result. Our depth estimation recovers the shell shape, including the
ridges and curvature. In the middle, we have an example of a dinosaur toy with varying
albedo. The dinosaur teeth, claws, and neck ridges are salient in our results, while
other algorithms have trouble recovering these shapes. Using shading gives a significant
benefit in recovering the object shapes. On the bottom, we have an outdoor image of
leaves. Our algorithm captures the shapes of the leaves while other algorithms produce
noise and spikes.
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Figure 3.14: More Natural Image Examples. On the top, we have an indoor picture of a
shell. We can see that with our final result, we are able to recover the ridges of the shell.
Without shading information, the shell is rendered as flat. Contrast based and Wanner
and Goldluecke show errors where not enough texture is present on the shell. The Lytro
Illum gives noisy results. We observe similar patterns with the dinosaur example where
we have non-uniform albedo. We can see that our shading estimation shows the shadows
of the dinosaur and folds of the background cloth. On the bottom, we have an outdoors
example, capturing a leaf. Again, we see that our depth estimation closely represents
the surface of the leaf.
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3.8 Conclusion and Future Work
We have proposed and provided quantitative validation for a new shape estimation
framework that uses just a single-capture passive light-field image. Our optimization
framework can be used for consumer grade light-field images to incorporate all three
cues: defocus, correspondence, and shading.

For future work, more robust approaches could be used for scenes with more
varying albedos and occlusions. Additionally, as seen in Fig. 3.9, image noise still cor-
rupts both our depth and shading estimations; more advanced de-noising could be used
in the future. Our shape-from-shading technique does not account for inter-reflections
and shadows; therefore, future work includes incorporating better occlusion detection.

In summary, we have proposed a shape estimation algorithm for light field
cameras that incorporates defocus, correspondence, and shading, suitable for passive
point-and-shoot acquisition from consumer light-field cameras. In this chapter, we as-
sume Lambertian surfaces. The following chapter describes a new method that estimates
depth of scenes with glossy regions.
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Chapter 4

Depth Estimation and Specular
Removal for Glossy Surfaces Using
Point and Line Consistency

We have a demonstrated practical algorithm for depth recovery from a passive single-
shot capture. However, many light-field depth estimation methods are designed for
Lambertian objects and fail or degrade for glossy or specular surfaces because photo-
consistency depth measurement is a poor metric for such surfaces. In this chapter, we
present a novel theory of the relationship between light-field data and reflectance from
the dichromatic model. We present a physically-based and practical method to separate
specular regions and estimate the light source color. As opposed to most previous work,
our algorithm supports multiple lights of different colors. Our novel algorithm robustly
removes the specular component for glossy objects. In addition, our approach enables
depth estimation to support both specular and diffuse scenes. We show that our method
outperforms current state-of-the-art specular removal and depth estimation algorithms
in multiple real world scenarios using the consumer Lytro and Lytro Illum light field
cameras.

4.1 Introduction
In the previous chapter, we have shown that light-field cameras enable effective passive
and general depth estimation. This makes light-field cameras point-and-capture devices
to recover shape. However, in the previous chapter, our depth estimation algorithms
support only Lambertian surfaces, making them ineffective for glossy surfaces, which
have both specular and diffuse reflections. In this chapter, we present the first light-
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Figure 4.1: Depth Estimation for Glossy Surfaces. Our input is a light-field image. We
use PBRT (physically based ray tracer) [62] to synthesize a red wood textured glossy
sphere with specular reflectance Ks = [1, 1, 1] and roughness = 0.001 with four light
sources of different colors (a). We use two photoconsistency metrics: point-consistency
and line-consistency. By using point-consistency, we obtain depth measures suitable
for diffuse only surfaces, but exhibit erroneous depth (b) and high confidence (c) at
glossy regions due to overfitting data. By using the light-source color estimation (d), we
seek a depth where the colors from different viewpoints represent a line, with direction
corresponding to light-source color, which we call line-consistency. The new depth mea-
surement gives correct depths at specular edges (e), but exhibits low confidence values
everywhere else. We highlighted the difference of the edges by highlighting in white. The
comparison between the two can be seen in Fig. 4.3. We use both of the cues to perform
a depth regularization that produces an optimal result by exploiting the advantages of
both cues (g). With the analysis, we can also extract a specular-free image (h) and an
estimated specular image (i). In this chapter, we provide the theoretical background
of using the two metrics. Note: The specular colors are enhanced for easier visibility
throughout the chapter. For depth maps, cool to warm colors represent closer to farther
respectively, and for confidence maps, less confident to more confident respectively, with
a scale between 0 and 1.

field camera depth estimation algorithm for both diffuse and specular surfaces using the
consumer Lytro and Lytro Illum cameras (Fig. 4.1).

We build on the dichromatic model introduced by Shafer [71], but extend
and apply it to the multiple views of a single point observed by a light field camera. Since
diffuse and specular reflections behave differently in different viewpoints, we first dis-
cuss four different surface cases (general dichromatic, general diffuse, Lambertian plus
specular, Lambertian only). We show that different cases lead to different structures in
RGB space, ranging from a convex cone (for the general dichromatic case), a line pass-
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ing through the origin (for the general diffuse case), a general line (for the Lambertian
plus specular case), to the standard single point (for the Lambertian only case). Notice
that standard multi-view stereo typically measures the variance of different views, and is
accurate only when the data is well modeled by a point as for Lambertian diffuse reflec-
tion. We refer to this as point-consistency since we measure consistency to the model
that all views correspond to a single point in RGB space; this distinguishes from the
line-consistency condition we develop in conjunction with the dichromatic model. The
dichromatic model lets us understand and analyze higher-dimensional structures involv-
ing specular reflection. In practice, we focus on Lambertian plus specular reflection,
where multiple views correspond to a general line in RGB space (not passing through
the origin, see Fig. 4.2 (c)).

We show that our algorithm works robustly across many different light-field
images captured using the Lytro light-field camera, with both diffuse and specular re-
flections. We compare our specular and diffuse separation against Mallick et al. [50],
Yoon et al. [92], and Tao et al. [79], and our depth estimation against Tao et al. [80, 79],
Wanner et al. [24], and Lytro software (Figs. 4.11 and 4.12). Our main contributions
are:

1. Dimensional analysis for the dichromatic model
We investigate the structure of pixel values of different views in the color space. We
show how different surface models will affect the structure, when focused to either the
correct or incorrect depth.

2. Depth estimation for glossy surfaces.
For glossy surfaces, using the point-consistency condition to estimate depth will give us
wrong depth. We introduce a new photo-consistency depth measure, line-consistency,
which is derived from our dichromatic model analysis. We also show how to combine
both point-consistency and line-consistency cues providing us a robust framework for
general scenes. Our method is based on our initial work (Tao et al. [79]), but we have
more robust and better results, and there is no iteration involved.

3. Color estimation and generating a specular-free image.
We perform the multiple viewpoint light source analysis by using and rearranging the
light-field’s full 4D epipolar plane images (EPI) to refocus and extract multiple-viewpoints.
Our algorithm (Algorithm 4) robustly estimates light source color, and measures the
confidence for specular regions. The framework distinguishes itself from the traditional
approach of specular and diffuse separation for conventional images by providing bet-
ter results (Figs. 4.8, 4.9, 4.10, 4.11, 4.12) and supporting multiple light source colors
(Figs. 4.5, 4.11).
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4.2 Related Work
Depth estimation and specularity removal have been studied extensively in the computer
vision community. In our work, we show that light fields give us more information to
remove specularities. We generalize the photo-consistency measure, introduced by Seitz
and Dyer [70], to both point and line consistency, which supports both diffuse and glossy
surfaces. Our algorithm is able to robustly estimate depth in both diffuse and specular
regions.

Defocus and correspondence depth estimation.
Depth estimation has been studied extensively through multiple methods. Depth from
defocus requires multiple exposures [85, 90]; stereo correspondence finds matching
patches from one viewpoint to another viewpoint(s) [29, 59, 48, 53]. The methods
are designed for Lambertian objects and fail or degrade for glossy or specular surfaces,
and also do not take advantage of the full 4D light-field data.

Multi-view stereo with specularity.
Exploiting the dichromatic surface properties has also been studied through multi-view
stereo. Lin et al. [47] propose a histogram based color analysis of surfaces. However, to
achieve a similar surface analysis, accurate correspondence and segmentation of spec-
ular reflections are needed. Noise and large specular reflections cause inaccurate depth
estimations. Jin et al. [36] propose a method using a radiance tensor field approach to
avoid such correspondence problems, but real world scenes do not follow their tensor
rank model. In our implementation, we avoid the need for accurate correspondence for
real scenes by exploiting the refocusing and multi-viewpoint abilities in the light-field
data.

Diffuse-specular separation and color constancy.
Separating diffuse and specular components by transforming from the RGB color space
to the SUV color space such that the specular color is orthogonal to the light source
color has been effective; however, these methods require an accurate estimation of or
known light source color [50, 51, 58]. Without multiple viewpoints, most diffuse and
specular separation methods assume the light source color is known [92, 50, 3, 76, 78,
91, 40]. As noted by Artusi et al. [2], these methods are limited by the light source
color, prone to noise, and work well only in controlled or synthetic settings. To alleviate
the light source constraint, we use similar specularity analyses as proposed by Sato and
Ikeuchi and Nishino et al. [66, 56]. However, prior to our work, the methods require
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multiple captures and robustness is dependent on the number of captures. With fewer
images, the results become prone to noise. We avoid both of these problems by using the
complete 4D EPI of the light-field data to enable a single capture that is robust against
noise. Estimating light source color (color constancy) exhibits the same limitations and
does not exploit the full light-field data [21, 77]. Since we are estimating the product
of light source color and the albedo for each pixel independently, we can estimate more
than just one light source color.

Light-field depth estimation.
More recent work has exploited the light-field data by using the epipolar images [80,
83, 24, 84, 39, 12, 79, 65]. Because all these methods assume Lambertian surfaces,
glossy or specular surfaces pose a large problem. In our work, we use the full 4D
light-field data to perform specular and diffuse separation and depth estimation. Using
our line-consistency measure, we directly address the problem of estimating depth for
specular regions. In our comparisons, we show that specularities cause instabilities in
the confidence maps computed in the previous chapter. The instabilities result from high
brightness in specular regions and lower brightness in diffuse regions. Even at the most
point-consistent regions, the viewpoints do not exhibit the same color. However, because
of the large contrast between the neighborhood regions, these regions still register as
high confidence at wrong depths. The incorrect depth and high confidence cause the
regularization step by Markov random fields (MRF) to fail or produce incorrect depth
propagation in most places, even when specularities affect only a part of the image
(Figs. 4.1, 4.11, and 4.12).

We described a preliminary version of our algorithm in [79]. We built upon
a theoretical foundation as described in Chapter 4.2 to justify our algorithm. Based on
the theory, we improved results and removed the necessity of an iterative approach.

In this section, we explain the dichromatic model and its induced color sub-
space from multiple views of a point, imaged by a light field camera. By analyzing the
pixel values in color space, we can get the type of BRDF of the point. Unlike previous
dichromatic analyses, we consider multiple views of a single point, that allows us to
estimate multiple light sources over the entire object. We show how to use the insights
from our color analysis to develop algorithms for depth estimation from light fields.

Dichromatic Reflection Model
We first analyze the color values at multiple views from a point/pixel on the object.
The dichromatic BRDF model [71] states that light reflected from objects has two inde-
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pendent components, light reflected from the surface body and at the interface, which
typically correspond to diffuse and specular reflection. The observed colors among the
viewpoints are then a part of the span between the diffuse and specular components,

I(λ,n, l,v) = Id(λ,n, l,v) + Is(λ,n, l,v) (4.1)

where I is the radiance, λ is the wavelength of light (in practice, we will use red, green
and blue, as is conventional), n is the surface normal, and v indicates the viewing direc-
tion. We assume a single light source with l being the (normalized) direction to the light.
Since our analysis applies separately to each point/pixel on the object, we can consider
a separate light source direction and color at each pixel, which in practice allows us to
support multiple lights. As is common, we do not consider interreflections or occlusions
in the theoretical model. Next, each component of the BRDF ρ can be decomposed into
two parts [71]:

ρ(λ,n, l,v) = kd(λ)ρd(n, l,v) + ks(λ)ρs(n, l,v) (4.2)

where kd and ks are diffuse and specular spectral reflectances, which only depend on
wavelength λ, ρd and ρs are diffuse and specular surface reflection multipliers, which
are dependent on geometric shapes and independent of color. Now, consider the light
source L(λ), which interacts with diffuse and specular components of the BRDF:

I(λ,n, l,v) = L(λ) ∗ ρ(λ,n, l,v) · (n · l) (4.3)
= L(λ) ∗ [(kd(λ)ρd(n, l,v) + ks(λ)ρs(n, l,v)] · (n · l).

Here we use ∗ to represent component-wise multiplication for different wave-
lengths, usually represented by color channels (R,G,B), and where · indicates a dot
product with a scalar (or vector).

Now we consider images taken by light-field cameras. For each point on
the object, we can get color intensities from different views. In other words, for a given
pixel, n and l are fixed while v is changing. Therefore, we can simplify ρd(n, l,v) and
ρs(n, l,v) as ρd(v) and ρs(v). Furthermore, we encapsulate the spectral dependence
for diffuse and specular parts as L̄d(λ) and L̄s(λ):
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Type of BRDF General diffuse plus specular General diffuse

Dimension analysis
Convex cone (on a plane) Line passing through the origin

[L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) L̄d(λ)ρd(v) · (n · l)
Type of BRDF Lambertian diffuse plus specular Lambertian diffuse

Dimension analysis
Line not passing the origin Point

[c · L̄d(λ) + L̄s(λ)ρs(v)] · (n · l) c · L̄d(λ) · (n · l)

Table 4.1: Dimension analysis of different types of BRDF with one light source.

I(v) = L(λ) ∗ [(kd(λ)ρd(v) + ks(λ)ρs(v)] · (n · l)

= [L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) (4.4)

where

L̄d(λ) = L(λ) ∗ kd(λ)

L̄s(λ) = L(λ) ∗ ks(λ).

Type of BRDF and Dimension Analysis
Assuming the object surface fits the dichromatic reflection model, we can use Eq. 4.4 to
analyze pixel values from multiple views. Now we discuss how those pixel values lie in
RGB color space, for various simplifying assumptions on the BRDF. Table 4.1 shows
a summary. In addition, we use a synthetic sphere to verify the analysis, as shown in
the top two rows of Fig. 4.2. In practice, we use the common Lambertian plus specular
assumption, but the theoretical framework applies more generally, as discussed below.

I(v) = [L̄d(λ)ρd(v) + L̄s(λ)ρs(v)] · (n · l) (4.5)

General Diffuse plus Specular. For the general dichromatic case, the color intensity
is governed by the general equation above. The color of diffuse component L̄d(λ) is in
general different from the specular component L̄s(λ). In addition, ρd(v) and ρs(v) are
scalars that vary with viewpoint. Therefore, the pixel value is a linear combination of
its diffuse color and specular color. Pixel values from different views of a point will lie
on a convex cone, a plane spanned by diffuse and specular colors. The synthetic result
is shown in Fig. 4.2(a). Since the variance of the diffuse component is usually much
smaller than the specular component, most of the variation is dominated by the effect of
specular color. When the viewing direction changes and the specular component is no
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Figure 4.2: Synthetic data for dimension analysis of different types of BRDF with one
light source. The synthetic data is generated by PBRT [62] to simulate the Lytro camera.
Note that for the general diffuse surface, we use a view-dependent spectral reflectance
kd for the sphere. The center images are linearly scaled for display. The scatter plots
are pixel intensities in RGB color space from 49 different views, imaging the location
where the red arrow points. All pixel values are scaled to [0, 1]. Synthetic data shows
that when the light field image is refocused to the correct depth, the result corresponds
to our dimension analysis (Table 4.1).

longer dominant, the pixel values will be closer to the diffuse color (around the dashed
line), but still on the convex cone.

I(v) = L̄d(λ)ρd(v) · (n · l) (4.6)

General Diffuse. If the object surface does not have a specular component, the dichro-
matic model can be simplified as Eq. 4.6. When there is only one light source, L̄d(λ)
is fixed and ρd(v) · (n · l) is a scalar. Thus, all possible values will lie on a line, which
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passes through the origin. Figure 4.2(b) shows the result.

I(v) = [c · L̄d(λ) + L̄s(λ)ρs(v)] · (n · l) (4.7)

Lambertian Diffuse plus Specular. Now we consider the most common case, where
the diffuse component is modeled as Lambertian as in most previous work, and there is
a specular component. This is the case we will consider in our practical algorithm.

In other words, ρd(v) is now a constant (replaced by c here), independent of
the viewing angle. Under this assumption, the dichromatic model becomes Eq. 4.7. For
different views, L̄d(λ) is a constant and L̄s(λ)ρs(v) is a line passing through the origin.
Combining the two components, pixel values in color space will be a line not passing
through the origin. Figure 4.2(c) shows the result.

A further simplification is achieved for dielectric materials, where the spec-
ular reflection takes the light source color, or ks(λ) is a constant, independent of wave-
length. In this case, L̄s(λ) corresponds directly to the light source color, and our prac-
tical algorithm is able to estimate the color of the light. In fact, we can handle multiple
light sources, since we can assume a separate light affects the specular component for
each pixel or group of pixels. Note that the common dielectric assumption is not funda-
mental to our algorithm, and is needed only to relate the light source color to that of the
highlight.

Lambertian Diffuse

I(v) = c · L̄d(λ) · (n · l) (4.8)

Next, we consider the BRDF with Lambertian diffuse component only. In Eq. 4.7, c
and (n · l) are all constants. Therefore, all the color intensities should be the same for
different views of a point. Indeed, this is just re-stating the notion of diffuse photo-
consistency. In effect, we have a single point in RGB space, and we call this point-
consistency in the rest of the chapter, to distinguish from the line-consistency model we
later employ for Lambertian plus specular surfaces.

Depth Estimation
Figures 4.2(a-d) verify the dichromatic model applied to light field data, considering
multiple views of a single point. However, this analysis assumes we have focused the
light field camera to the correct depth, when in fact we want to estimate the depth of a
glossy object. Therefore, we must conduct a novel analysis of the dichromatic model,
where we understand how multiple views behave in color space, if we are focused at the
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incorrect depth. This is shown in the bottom row of Fig. 4.2, and to our knowledge has
not been analyzed in prior work.

For a depth estimation method to be robust, the structure when focused to the
incorrect depth must be intrinsically different from that at the correct depth; otherwise
depth estimation is ambiguous. Indeed, we see in Fig. 4.2(e-h) that pixel values when
focused at incorrect depth usually either lie in a higher-dimensional space or have higher
variance.

General Diffuse plus Specular
When the image is refocused to the incorrect depth, different views will actually come
from different geometric locations on the object. Since our test image is a sphere with a
point light, each point has a different value for ρd(v) and (n · l). In addition, some of the
neighboring points have only the diffuse component (since ρs(v) is close to 0). There-
fore, the pixel values have a wider span on the convex cone, as shown in Fig. 4.2(e),
where fitting a line will result in larger residuals.

General Diffuse
Since each view has a different intensity due to different (n · l) and ρd(v), pixel values
from different views will usually span a wider section of a line, as shown in Fig. 4.2(f).

Lambertian Diffuse plus Specular
The specular color component at neighboring points will have differing ρs(v), similar
to the case when focused at the correct depth. However, the variations are larger. The
diffuse color component also now varies in intensity because of different (n · l) values
at neighboring points.

When focused at the correct depth, the points lie in a line, which we call
line-consistency. At an incorrectly focused depth, the RGB plot diverges from a line.
However, as seen in Fig. 4.2(g), this signal is weak; since the diffuse intensity variation
is much less than the specular component, different views still lie almost on a line in
RGB space for incorrect depth, but usually with a larger variation than when focused to
the correct depth. Therefore, we need to combine point-consistency for Lambertian-only
regions. We will use this observation in our practical algorithm.

Lambertian Diffuse
Different views have different values for the (n · l) fall-off term (the sphere in Fig. 4.2 is
not textured). However, all the points have the same diffuse color. Thus, pixel values lie
on a line passing through the origin, as shown in Fig. 4.2(h). Again, point-consistency is
a good photo-consistency measure for Lambertian diffuse surfaces, since it holds when
focused at the correct depth and not at incorrect depths.
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Figure 4.3: Point-Consistency versus Line-Consistency. For point-consistency, diffuse
edges exhibit high confidence and meaningful depth. However, for specular regions, the
error is large with high confidence. With line-consistency, diffuse regions register depth
values that are noisy and lower confidence. For specular regions, line-consistency is
accurate at the edges with high confidence. For both, it is important to note that the
metrics have high confidence where edges are present. Therefore, saturated pixels, often
observed in large specular patches, and smooth surfaces require data propagation. Al-
though saturated specular regions still have high errors, we can see that line-consistency
has a much lower confidence than the point-consistency metric.

4.3 Algorithm
We now describe our practical algorithm, which builds on the theoretical model. We
assume Lambertian plus specular materials, as in most previous work. The photo-
consistency condition can be generalized to line-consistency, which estimates a best
fit line. This provides a better measure than the point-consistency or simple variance in
the Lambertian case. We then use a new regularization scheme to combine both photo-
consistency measures, as seen in Fig. 4.1. We show how point and line-consistency can
be combined to obtain robust depth estimation for glossy surfaces. If we want higher
order reflection models, we can use best-fit elements at higher dimensions for the anal-
ysis.

We will also assume dielectric materials, where the specular component is
the color of the light source, for most of our results, although it is not a limitation of our
work, and Eq. 4.7 is general. The assumption is needed only for relating light source
color to that of the highlight, and does not affect depth estimation. In Tao et al. [79], we
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used an iterative approach of estimating the light source color line direction to generate
the specular free and specular images and depth estimation just using Lambertian point-
consistency. This iterative approach may lead to convergence problems in some images
and artifacts associated with specular removal affect depth results. In this chapter, we
introduce our new algorithm that uses both light source color estimation and depth es-
timation that exploits photo-consistency. We show that this eliminates the need for an
iterative approach and achieves higher quality results in Figs. 4.10 and 4.11.

Since we now use the generalized photo-consistency term for specular edges,
the new depth-error metric is as follows:

• For Lambertian only surfaces, the error metric is the variance across the viewpoints
(point-consistency measure).1

• For Lambertian plus specular surfaces, the error metric is the residual of the best fit
line, where the slope of the line represents the scene light source chromaticity (line-
consistency measure).

The depth metrics have strengths and weaknesses, as summarized in Fig. 4.3.
For point-consistency, diffuse edges exhibit high confidence and meaningful depth.
However, for specular edges, the error is large with high confidence. The high confi-
dence is caused by the fact that the specular regions are much brighter than the neigh-
borhood pixels. Although true point-consistency does not exist, the point-consistency
metric between close to point-consistency and otherwise is large among depths. There-
fore, incorrect high confidence is common. With line-consistency, the measure is accu-
rate at specular edges with high confidence. But, with the line-consistency measure, the
depth estimation for diffuse regions is unstable. Even at incorrect depth (Fig. 4.2(h)), the
points lie in a line. The line-consistency measure will register both correct and incorrect
depth as favorable due to the low residuals of a best fit line. Texture also will introduce
multiple lines since different colors from neighborhood pixels may register new best-
fit-lines. Therefore, depth values are noisy and confidence is lower. For both point and
line-consistency, it is important to note that more prominent edges yield higher confi-
dence and meaningful depth estimations. Therefore, saturated pixels, often observed in
large specular patches, and smooth diffuse surfaces require data propagation.

Our algorithm addresses the following challenges of using the two metrics:
1In our implementation, we used both the Lambertian photo-consistency and defocus measure from

the previous chapter. We then combine the two as a measure by using the depth values with maximum con-
fidence. This provided us cleaner results. For simplicity, we will still call the measure point-consistency.
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Algorithm 4 Depth Estimation with Specular Removal

1: αp, Cp = PointConsistency(I)
2: L∗ = LightSourceColor(I, αp)
3: αl, C l = LineConsistency(I, L∗)
4: Z∗ = DepthRegularization(αp, Cp, αl, C l)
5: D,S = SpecularFree(I, L∗)

• Identifying Diffuse Only and Glossy Surfaces. We need to identify which pixels are
part of a diffuse only or glossy surface to determine which depth-error metric better
represents each surface or region.

• Combining the Two Measures. Point-consistency is a good measure for diffuse sur-
faces and line-consistency is a good measure for specular surfaces. We need to com-
bine the two measures effectively.

• Angularly Saturated Pixels. Because of the small base-line of light-field cameras, at
specular regions, surfaces with all view points saturated are common. We mitigate
this problem through hole-filling.

Algorithm Overview

Our algorithm is shown in Algorithm 4. The input is the light-field image
I(x, y, u, v) with (x, y) spatial pixels and, for each spatial pixel, (u, v) angular pixels
(viewpoints). The output of the algorithm is a refined depth, Z∗, and specular S and
diffuse D components of the image, where I = D + S.

The algorithm consists of five steps:

1. Point-consistency measure. We first find a depth estimation using the point-consistency
measure for all pixels. For diffuse surfaces, this error metric will give us accurate
depth to distinguish between Fig. 4.2(d and h) (line 1).

2. Estimate light-source color. For specular surfaces, analyzing the angular pixels (u, v)
allows us to estimate the light-source color(s) of the scene and determine which pix-
els are specular or not. (line 2, Chapter 4.3).

3. Line-consistency measure. Given the light-source color, we then find a depth estima-
tion using the line-consistency measure for all pixels. For specular edges, we will
then obtain the correct depth to distinguish between Fig. 4.2(c)(g) (line 3).
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4. Depth regularization. We then regularize by using the depth and confidences com-
puted from steps 1 and 3 (line 4).

5. Separate specular. Because we are able to identify the light-source color, we are able
to estimate the intensity of the specular term for each pixel. We use this to estimate
a specular-free separation (line 5).

Point-consistency Depth Measure [Line 1]
Given the input image I(x, y, u, v), with (x, y) spatial pixels and (u, v) angular pixels,
as an initial depth estimation, we use the point-consistency metric that measures the
angular (viewpoint) variance for each spatial pixel. We first perform a focus sweep by
shearing. As explained by Ng et al. [55], we can remap the light-field input image given
the desired depth as follows:

Iα(x, y, u, v) = I(x′, y′, u, v)

x′ = x+ u(1− 1

α
)

y′ = y + v(1− 1

α
)

(4.9)

where α is proportional to depth. We take α = 0.2 + 0.007 ∗ Z where Z is a number
from 1 to 256.

We compute a point-consistency measure for each spatial pixel (x, y) at each
depth α by computing the variance across the angular viewpoints, (u, v) as follows,

Ep(x, y, α) = σ2
(u,v)(Iα(x, y, u, v)) (4.10)

where σ2
(u,v) is the variance measure among (u, v). To find αp(x, y), we find the α that

corresponds to the lowest Ep for each (x, y). The confidence Cp(x, y) of αp(x, y) is the
Peak Ratio analysis of the responses [27]. However, the point-consistency error metric
is a poor metric for specular regions because point-consistency cannot be achieved with
the viewpoint dependent specular term, as shown in Eq. 4.7 and Figs. 4.2 and 4.3.
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Estimating Light Source Chromaticity, L∗ [Line 2]
Before we can use the line-consistency depth measure in Line 3, we need to reduce
overfitting by finding the light source color from point-consistency depth, and then op-
timizing the depth for line-consistency with the estimated light source color.

Although point-consistency does not provide us a correct depth measure for
specular edges, the small variance in the (u, v) provides us enough information to esti-
mate a line, as shown in Fig. 4.4. At a depth that is far from the point-consistency depth,
the viewpoints contain neighboring points with different albedo colors (Fig. 4.4(d)).
This throws off light source color estimation. By using the viewpoints from a point-
consistency depth, the influence from neighboring points is reduced and we get a line
with a slope that is very close to the true light source color (Fig. 4.4(c)).
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Figure 4.4: Line Estimation. With the same input image scene as Fig. 4.1 and sampled
point (a), we plot the the angular pixels at the point-consistency depth, Iαp(u,v) (b). By
using the angular pixels, we can estimate the light source color (estimated line shown
in blue) accurately (ground truth shown in red). With point-consistency, we reduce the
influence of colors from neighboring points but still have enough color variation to
estimate the light-source color (c). Without using the point-consistency set of angular
pixels, we can see that neighborhood pixels from the sphere throw off the line estimations
(shown in dotted green lines) (d).
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Figure 4.5: Estimating Multiple Light-Sources. By using our L∗ estimation on the scene
with two highly glossy cans with two light sources (a), we can see that the estimated RGB
values in L∗ (b) is consistent with the ground truth (e). The RMSE for the green and red
light-sources are 0.063 and 0.106 respectively. Even with semi-glossy crayons (c), the
light source estimation is consistent (d). The RMSE for the green and red light-sources
are 0.1062 and 0.0495 respectively. We took photos directly of the light sources for
ground truth.

To find the set of angular pixels that represent αp, we use the following
remapping,

Iαp(x, y, u, v) = I(x′(αp(x, y)), y′(αp(x, y)), u, v). (4.11)

We estimate Li, where i represents each color channel (R,G, or B). For a
spatial pixel (x, y), we estimate the slope of the RGB line formed by Iαp(u, v). For each
(x, y), we find the direction of the best fit line by using the SVD of the color values
across (u, v) for each (x, y). The first column of the right singular vector contains the
RGB slope. Since we are interested in just the line direction, we measure the chromatic-
ity, Li = Li/(L1 + L2 + L3).

L now gives us the light source chromaticity measure for each spatial pixel,
(x, y) in the image. Theoretically, we are now able to estimate N light source colors
given N spatial pixels in the image. However, in most cases, such estimation tends to be
noisy in real data. We perform k-means clustering to the number of light sources, which
is set by the user. For simplicity, we will use L∗ as one light-source color. In Fig. 4.5,
we show two real-world examples where we have two light sources. In both scenarios,
our algorithm estimates L∗ that is very similar to the ground truth. In Fig. 4.6, we can
see that the four light source colors are estimated from the sphere input.
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Line-Consistency Depth Measurement [Line 3]
Given the chromaticity of the light source, L∗(x, y), we can then compute the line-
consistency measure. For each α, we have two steps for computing the error metric:
first, is to find depths that have angular pixels that observe the same L∗ chromaticity and
second, is to find the residual of the estimated line.

We compute a light-source similarity metric to prevent other lines, such as
the diffuse only line, occlusions, and neighborhood points from influencing our depth
measurement. We first compute the estimated light-source color at α to compare against
our estimated L∗. To do so, we use the same formulation as in Chapter 4.3, where
we used SVD to estimate the line direction. Given the estimated L∗, we compute the
measure,

ELs Similarity = ||Lα(x, y)− L∗(x, y)|| (4.12)

For each (x, y) and α, we then compute the residual of the line defined by
Lα, where smaller residuals represent better line fitting:

Eres =
∑
i=(u,v)

r2i (4.13)

where ri is the residual of each angular pixel in (u, v).

Given the two measures, we can then compute the line-consistency error
metric:

El(x, y) = ELs Similarity · Eres. (4.14)

To find αl(x, y), we find the α that corresponds to the lowest El for each (x, y). The
confidence C l(x, y) of αl(x, y) is the Peak Ratio analysis of the responses.

Depth Regularization [Line 4]
Given the two depth estimations from point-consistency, αp, and line-consistency, αl,
and their respective confidences, Cp and C l, we need to combine the two depth mea-
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Figure 4.6: Light-Source Estimation. With input image (a), we estimate the light-source
color, L, for each pixel as shown in (b). We use the k-means clustering method to
estimate the light-source colors, L∗ of the scene (c). The light source colors match
the ground-truth, starting from top left to bottom right, with RMSE of 0.0676, 0.0790,
0.0115, and 0.0555. In Chapter 4.3, we show how we measure the specular intensity (d)
of each pixel to estimate specular-free images.

sures. We use these confidences in a Markov Random Field (MRF) propagation step
similar to the one proposed by Janoch et al. [35]:

Z∗ = argmin
Z

λp

∑
i

Cp|Z(i)− αp(i)|

+λl

∑
i

C l|Z(i)− αl(i)|

+λflat

∑
i

(∣∣∣∣∂Z(i)

∂x

∣∣∣∣
(x,y)

+

∣∣∣∣∂Z(i)

∂y

∣∣∣∣
(x,y)

)
+λsmooth

∑
i

|(∆Z(i))|(x,y)

(4.15)

where i ∈ (x, y). Given the confidences, we are able to propagate two data terms.
The MRF enables us to retain the benefits of both depth measures and mitigate the
disadvantages, as shown in Fig. 4.3. Cp is high and C l is low in diffuse regions, giving
us the advantages of the point-consistency measure. However, C l is high in specular
regions, giving us the advantages of the line-consistency measure. After combining the
two measures, in Fig. 4.1, we show that depth estimation artifacts from glossy regions
are reduced.
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In our implementation, we use λp = λl = 1, λflat = 2, and λsmooth = 1.

Estimating Specular Free Image [Line 5]
So far we have light source chromaticity and depth estimation. Separating diffuse and
specular components is useful in some applications but not required for depth. To sepa-
rate the two components, we need to estimate the specular intensity to separate diffuse
and specular. From Eq. 4.7, for each (u, v),

IZ∗ = [c · L̄d(λ) + L∗i ρs(v)] · (n · l)
= [c · L̄d(λ) · (n · l) + L∗i · w]

(4.16)

where IZ∗ is the light-field image mapped to Z∗, L∗i is the light-source chromaticity and
w is the specularity intensity measure dependent on (u, v). The L∗i takes place of the
L̄s(λ) term in Eq. 4.7. The goal is to estimate w, as shown in Fig. 4.6.

Estimating Specular Intensity, w

A straightforward way to estimate specular intensity is to use the fitted-line with L∗ and
subtract each (u, v) based on their position on the line. However, the results become
noisy and introduce artifacts. To alleviate the artifacts, we categorize each (u, v) pixel
in IZ∗ as diffuse only or diffuse plus specular angular pixels. We used a conservative
approach by clustering the pixels on the line into two groups. From Eq. 4.1, for each
spatial pixel (x, y), we categorize the pixels as

〈c · L̄d(λ) · (n · l)〉(u, v) = min IZ∗(u, v)

〈L̄s(λ)ρs(v) · (n · l)〉(u, v) = w(u, v) · L∗
(4.17)

where 〈.〉 denotes the expected value operator. To estimate the specular intensity, we
compute w as follows,

w(u, v) = (IZ∗(u, v)−min IZ∗(u, v))/L∗ (4.18)

In a Lambertian diffuse plus specular case, (u, v) pixels that deviate more from the
minimum will have a higher w(u, v). In a diffuse only case, since all the spatial pixels
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Figure 4.7: Specular removal. With just using the angular information, we are able
to reduce specularity. However, with large specular regions such as the one from the
sphere, the specular removal from angular information can only remove the specular
component partially (reducing the size of the specular highlight). Therefore, spatial
Poisson reconstruction hole filling is needed to completely remove large saturated spec-
ular regions.

have point-consistency, w(u, v) = 0. In Fig. 4.6, we show that our method estimates
both the light source colors and the specular intensity.

Removing specularities angularly

We want to average diffuse pixels in (u, v) to replace the specularity pixels, while pre-
serving the diffuse pixels. To remove specularities, we use a weighted average approach
by averaging angular pixels (u, v) within the same spatial coordinate (x, y).

D(x, y, u, v) =
1

||W ||
∑
(u,v)

W (x, y, u, v) · IZ∗(x, y, u, v)

W (x, y, u, v) = 1− w(x, y, u, v)

S(x, y, u, v) = IZ∗(x, y, u, v)−D(x, y, u, v)

(4.19)

where D is diffuse and S is specular.

Hole Filling: Removing specularities angularly only works for local esti-
mation (edges of specular and diffuse regions). This method does not support angularly
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saturated pixels, where change in light-field viewpoints is ineffective towards distin-
guishing pixels with both terms or just the diffuse term. Since the baseline of a light-
field camera is small, angularly saturated specular terms happen often. Therefore, to
remove specularities entirely, we used simple hole filling methods, as shown in Fig. 4.7.

In our implementation, we used a Poisson reconstruction method, proposed
by Perez et al. [60]. We seek to construct a diffuse only image in Eq. 4.20. The gradient
of the final diffuse image is the following:

∇D(x, y, u, v) = (1− w(x, y, u, v)) · ∇I(x, y, u, v). (4.20)

4.4 Results
We verified our results with synthetic images, where we have ground truth for the light
source, and diffuse and specular components. For all real images in the chapter, we used
both the Lytro classic and Illum cameras. We tested the algorithms across images with
multiple camera parameters, such as exposure, ISO, and focal length, and in controlled
and natural scenes.

Quantitative validation
We use PBRT [62] to synthesize a redwood textured glossy sphere with specular re-
flectance Ks = [1, 1, 1] and roughness 0.001 and four different colored light sources. In
Fig. 4.8, we added Gaussian noise to the input image with mean of 0 and variance be-
tween 0 and 0.02. Our depth RMSE shows significant improvement over Tao et al. [79].
We can see that the other methods are prone to both noise, especially Wanner et al. [83]
and glossy surfaces. For the diffuse RMSE, we can see that although noise does affect
the robustness of our separation result, we still outperform previous work. The quan-
titative validation is reflected by the qualitative results, where we see that both depth
and diffuse and specularity separation is robust across noise levels, even at high noise
variance, 0.02.

In Figs. 4.5 and 4.6, we computed the RMSE against the ground truth light
source colors. In both real world scenes with the glossy cans and semi-glossy crayons,
the light-source estimation exhibits low RMSE. The RMSE for the green and red light-
sources with the glossy cans are 0.063 and 0.106 respectively. The RMSE for the green
and red light sources with the semi-glossy crayons are 0.1062 and 0.0495. We computed
the difference between our estimated light source color and the ground truth synthetic
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Figure 4.8: Qualitative and Quantitative Synthetic Results. We added Gaussian noise
with zero mean and the variance as the variable parameter to the input image of Fig. 4.1.
We compute the RMSE of our results against the ground truth diffuse image and depth
map. On the left, even with high noise, we can see that our diffuse and specular separa-
tion closely resembles the ground truth. In both cases, the algorithm is able to extract
all four specular regions. For depth maps, we can see that the depth estimation in the
presence of high noise still reasonably resembles the ground truth sphere. On the right,
we can see that these qualitative results reflect the quantitative result. We see that our
results outperform prior works by a significant margin.

image in Fig. 4.6. The four estimated light source colors match the ground-truth, starting
from the top left to bottom right, with RMSE of 0.0676, 0.0790, 0.0115, and 0.0555.

In Fig. 4.9, we have a flat glossy surface that is perpendicular to the camera.
The ground truth depth is flat. With our method, the depth estimation resembles the
ground truth with an RMSE of 0.0318. With the line-consistency measure, we can see
that diffuse areas cause unevenness in the depth estimation with an RMSE of 0.0478.
With the point-consistency measure, because of the specularities, we can see strange
patterns forming along the specularities with an RMSE of 0.126. This result is similar
to the Lytro depth estimation, where the RMSE is also high at 0.107.

Depth Map Comparisons
We show our depth estimation result in Figs. 4.10, 4.11, and 4.12. To qualitatively
assess our depth estimation, we compare our work against Lytro software, Tao et al.
(13,14) [80, 79], and Wanner et al. [83]. We tested our algorithm through multiple
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Figure 4.9: Flat Glossy Surface Results. We have a completely flat glossy surface that
we placed directly perpendicular to the camera (a). For the ground truth, the depth
should be flat (b). We can see that our final result is also smooth and flat (c). The line-
consistency provides the smoothness, but has some errors in the non-glossy regions (d).
The point-consistency is thrown off by some of the glossy regions of the image (e). With
the Lytro’s depth estimation, we also see that the specular regions throw off the depth
estimation (f).

scenarios involving specular highlights and reflections.

In Fig. 4.10, we show three diverse examples of typical glossy surfaces.
On the top, we have a smooth cat figurine with generally small glossy speckles. The
paw is the most noticeable feature where the specularity affects depth estimations that
assume Lambertian surfaces. Our depth estimation preserves the details of the glossy
paw, whereas the other methods show strange paw shapes. In the princess example,
we have several area light sources which produce large glossy highlights. We can see
our depth result does not contain erroneous depth registrations at these specular regions,
especially at the bow. In the Lytro depth estimation, we can see that the large patches
of specularities affect the result on the bow and face. We also can resolve the contours
of the dress and that the left arm is behind the body. Lytro and the previous works
fail to resolve the change in depth, misrepresenting the glossy figurine. We observe
similar results with the Chip and Dale figurine with multiple colors. Our depth result is
not thrown off by the specular regions and is able to recover the shape of the figurine
(as shown in the feet on the right). Other methods show incorrect depths for the large
specular regions. In the Lytro depth estimation, we can see large patches of depth errors
on the face.

In Fig. 4.11, we show more difficult examples of shooting through glare on
glass. We can see that in both examples, we are able to recover clean depth results,
whereas the other algorithms exhibit spikes and errors throughout the image. In the
mouse example, our method is able to estimate the outline of the mouse without the
glare affecting regularization results. We can see all previous results have non-plausible
depth estimations. In the figurine of the couple, we observe the same result. Notice on
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the left side of the image where there are bright glare and reflections. In previous works’
and Lytro’s depth estimation, large patches of errors exist in the specular regions.
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Figure 4.10: Our Results. We compare depth results against Lytro software, Tao et al.
14 [79], Tao et al. 13 [80], and Wanner et al. [83]; and specular removal results against
Tao et al. 14 [79], Yoon et al. [92], and Mallick et al. [50]. On the top, we have a smooth
cat with texture and speckles. Our final depth has plausible paw details. In the second
example, we have a princess figurine. Our depth estimation exhibits fewer errors at the
large patches of specularities. With the Chip and Dale, we show that our depth result
resembles the shape of the figurine.
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Figure 4.11: Scenes with Glare. We have a different scenario where we took photos
through a window glass, where glare becomes a prominent problem (highlighted in
green). Our algorithm is robust against glare from the glass, while regularization from
other algorithms propagates inconsistent results. We also see that our algorithm re-
moves specularities on the figurines while reducing the glare on the glass (although, the
algorithm does not completely remove the glare), while Mallick et al. and Yoon et al.
struggle due to multiple colors associated with the glass. The results are made possible
because we are able to estimate multiple light-source colors, up to the number of spatial
pixels in the image; whereas traditional specular removal algorithms can only remove a
small set number of light source colors, not suitable for glare cases. In both examples,
we show the six most prominent L∗ estimates. The estimation closely resembles the glare
from the window. Because we are using a gradient integration for hole filling, bleeding
effects may appear.
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Figure 4.12: Limitations. Here is an image of plastic wrapped yoga mats with a glass
window in the background. There are large specular regions in the background and also
on top of the closer yoga mat. Although our depth estimation is more correct compared
to other methods, the specular-free image exhibits a huge smooth patch removed from
the glass and the yoga mat. This is because there is not enough information behind the
specular reflection.

Specular-free Image Comparisons
We compare our specular and diffuse separation against the ground truth in Fig. 4.8.
We also show that our results accurately estimate multiple light sources of real scenes in
Fig. 4.5. We compare our specular removal result against Tao et al. [79], Yoon et al. [92]
Mallick et al. [50] in Figs. 4.10, 4.11, and 4.12. With one light-source color examples of
Fig. 4.10, we can see that our specularity removal accurately removes specular regions.
In both the small speckle glossy regions (cat) and large specular regions (princess and
Chip and Dale) examples, Mallick et al. fail to remove many parts of the small speckles,
Yoon et al. incorrectly remove most of the image colors, and Tao et al. observe strange
artifacts and struggle with large specularities. Both Yoon et al. and Mallick et al. incor-
rectly estimate the light source color as [111], which becomes problematic with scenes
with non-white light source colors. The results are very distinguishable with the exam-
ples that were shot through glass in Fig. 4.11. We are able to mitigate the glare from
the glass and remove the specularities from the figurines (coin from the mouse and the
reflective speckles on the couple). In both examples, we can see that our most promi-
nent L∗ estimations resemble the glare observed through the window. Even though we
cannot remove large patches of specularities such as on the Yoga mats in Fig. 4.12, we
generate reasonable results that can be fixed through better hole-filling.
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Limitations and Discussion
Although glossy edges should give different pixel values for different views while dif-
fuse edges do not, it is still hard to separate them practically because of the small-
baseline nature of light-field cameras as well as the noise. Second, saturated highlights
cannot be distinguished from a diffuse surface with large albedo value. In addition,
the specular components of saturated specular regions cannot be completely removed.
However, our confidence measure for specular regions and specular removal help al-
leviate those effects. In some cases, especially scenes with large specular patches or
saturated color values, the specularity-removal is not able to recover the actual texture
behind the specular regions. We show this with an example of a glossy plastic wrapping
around a yoga mat (Fig. 4.12). The diffuse output is flat. However, this does not affect
the quality of our depth result, which still outperforms previous methods. Future work
includes supporting more complex BRDF models and better hole filling techniques.

4.5 Conclusion
In this chapter, we first investigate the characteristics of pixel values from different view
points in color space for different BRDFs. We then present a novel and practical ap-
proach that uses light-field data to estimate light color and separate specular regions.
We introduced a new depth metric that is robust for specular edges and show how we
can combine the traditional point-consistency and the new line-consistency metrics to
robustly estimate depth and light source color for complex real world glossy scenes.
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Chapter 5

Conclusion

In this thesis, we have demonstrated how to decode the image data from the Lytro cam-
eras and use the following four depth cues: defocus, correspondence, shading, and spec-
ularity. By using the four cues, we introduce a robust and easy way for an average user
to capture and acquire depth information from a consumer camera. With the defocus
and correspondence cues using angular coherence and specularity, we demonstrated a
method that enables users to capture planar depth estimation of scenes that is suitable
for multiple scenarios and camera settings. With the shading cue, we demonstrated a
method that enables users to capture shape information, suitable for applications such
as low resolution 3D printing.

For decoding, we show how we reverse engineered the encoder, color cal-
ibration, and micro-lens calibration, all of which is needed for our depth analysis. For
defocus and correspondence, we show both an intuitive contrast-based method and a
more robust method for general scenes. We have proposed and provided quantitative
validation for a new shape estimation framework that uses just a single-capture passive
light-field image. Our optimization framework can be used for consumer grade light-
field images to incorporate all three cues: defocus, correspondence, and shading. For
glossy scenes, we show a principled new line-consistency metric for specular regions of
the scene to reduce depth errors introduced by specularities. We investigate the charac-
teristics of pixel values from different view points in color space for different BRDFs.
We then present a novel and practical approach that uses light-field data to estimate
light color and separate specular regions. We introduced a new depth metric that is ro-
bust for specular edges and show how we can combine the traditional point-consistency
and the new line-consistency metrics to robustly estimate depth and light source color
for complex real world glossy scenes.
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Prior to this work, these applications require difficult set-ups or capturing
techniques. Our new depth pipeline for depth estimation on light-field cameras takes
average users’ needs into account and simplifies the process. Because of the robustness
and low user involvement, incorporating the cues is a gateway for users to easily acquire
and utilize many computer vision and graphics applications. These applications includ-
ing fast matting, 3D printing, changing depth-of-field, and many other applications that
were difficult with traditional 2D images.

5.1 Application Examples
We show that our algorithm produces high quality depth maps that can be used for
depth-of-field manipulation, matting and selection, and surface reconstruction.

Depth-of-Field Modifying depth-of-field has been a topic of significant interest with
light-field data and cannot be achieved with current commercial software, which can
only perform refocusing. Using our depth estimation, we simulate both lens aperture
and refocusing (Fig. 5.1 Top). We use the depth map and a user input desired focus
plane depth value. Regions with depth values farther from the input depth will have
larger blurs. In the figure, we can see that the flowers and background foliage are blurred
naturally.

Matting and Selection Current matting and selection graph-cut methods use only
color information. Instead of using RGB, we use RGBD, where D is our depth esti-
mation. With just a simple stroke, we can select out objects of similar colors, where
previous color techniques fail (Fig. 5.1 Middle).

Surface Reconstruction One common use of depth-maps is to reconstruct surfaces,
which goes beyond the limited parallax shift in Lytro’s software. We remap the pixels
with respect to our depth-map Z buffer into 3D space with mesh interpolation (Fig. 5.1
Bottom). This enables the users to explore surface shapes and bumps. Our results show
that the perspective can be changed drastically and realistically. As shown in Chapter
3, we have printed three examples. The current Lytro Illum is ideal for low resolution
prints, given the limited spatial resolution (430x539).
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Figure 5.1: Applications. With our extracted depth maps, synthetic adjustment of both
depth of field and refocusing is possible (top). For selection and matting, objects with
similar color but different depths can be selected with depth information (middle). By
using the depth map as the z-buffer, we can change perspective of the image, producing
a 3D look (bottom).
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5.2 Future Work
Optimization of the techniques will be a priority to provide real-time depth estimation
experience to users. Although our techniques for defocus and correspondence run at 12
seconds per light-field image, further optimization by, for example, implementing the
algorithms on graphic processing units (GPU), may reduce computation time signifi-
cantly. Optimization could be more effective for estimating shading and specularity, as
the algorithms take about 20 minutes to compute a result. The algorithms can be easily
parallelized due to the minimal dependencies among subroutines. Moreover, most of
the code is in MATLAB and significant speed-ups can be obtained simply by porting
to C/C++. We can also work on reducing memory footprint to improve performance in
smaller devices.

To improve depth estimations, as noted in Chapter 2, one area to examine
further is our decoder. With better calibration of both color and center of micro-lenses,
we may achieve higher quality depth estimation and shading/specular separation results.
We could also investigate pre-processing techniques such as higher quality denoising or
demosaicing techniques to improve input sharpness and details.

At a user-standpoint, an outstanding limitation is that the user needs to un-
derstand when the depth estimation works or does not work. For example, when the
objects in the scenes are far away from the camera, the light-field cameras resolve depth
very poorly. Investigating ways to automatically guide or educate the users on taking
images that perform well with our depth estimation is pertinent for making our algorithm
suitable for every-day users.

Applying the same technique to active stereo systems such as the Kinect will
improve depth estimation results from the devices. For future studies, we can transfer
the same insights about the four cues and investigate their limitations in systems that are
not light-field based. In combination with active systems such as Kinect or laser scan-
ners, light-field cameras may improve results significantly by taking advantage of each
system’s strengths and weaknesses. Such advantages from the active systems include
more precise and denser depth acquisition than passive systems like the Lytro Illum.
However, the dense angular information provided by Lytro Illum can provide refocus-
ing and small perspective viewpoint cues. We can also combine these techniques with
other passive systems such as a high resolution camera. With higher resolution cameras
and the depth benefits from the light-field cameras, we may reduce the effects of noise
and exploit the higher spatial resolution.

Light-field videos or image sequences have been of interest in the next gen-
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eration of light-field cameras. Combining the cues for videos, such as temporally consis-
tent depth estimation throughout frames and registration of depth between video frames,
can improve results. For example, stitching multiple light-field images may assist in 3D
surface reconstruction. By using image registration among different captures, stitch-
ing both 2D image information and depth may improve current shape acquisition tech-
niques.

Finally, applications in other fields such as medial image processing for dis-
ease diagnosis in neuroimaging and cardiovascular imaging may benefit from the ex-
tended depth of field and depth acquisition. The benefit may include reducing x-ray
sample CT scans, improving camera systems in surgical processes, and improving visi-
bility through depth and view-point changes.
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