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Abstract

Next-generation genomic sequencing costs are rapidly decreasing, having recently reached the $1000-
per-genome barrier, a likely tipping point for widespread clinical use. However, genomic analysis tech-
niques have failed to keep pace. In particular, the process of variant calling, or inferring a sample genome
from the noisy sequencing data, introduces major computational and statistical challenges. In this work,
we explore the feasibility of a hybrid approach that addresses these challenges by partitioning the genome
into easier and harder regions, deploying efficient algorithms on the easier regions, and relying on more
expensive and accurate technologies in the harder regions. We propose that near duplication, or sim-
ilarity, in the genome is a natural signal for identifying harder regions, and then present a large-scale
distributed clustering approach to identify these similar regions.

We perform an extensive empirical study illustrating the effectiveness of existing variant calling algo-
rithms on the easier regions and their contrasting struggles on the similar regions. We also confirm that
the similar regions are sufficiently disjoint, thus providing the opportunity for sophisticated analysis of
these regions in an embarrassingly parallel manner.

1 Introduction

Advances in DNA sequencing technologies have the potential to change the landscape of biological research
[17]. Over a decade ago, the Human Genome Project [9] sequenced the human genome on a $3B budget.
However, as a result of massively parallel sequencing machines which produce short reads, or DNA segments
of around 100 characters, sequencing costs are decreasing at a rate faster than Moore’s Law, and will soon
reach the $1000 per genome barrier. This technology has the potential for widespread clinical usage in the
near future, pending the development of short-read analysis pipelines of sufficient accuracy and efficiency.

Prior to semantic analysis, such as whether a person is likely to get cancer, short reads must be converted
to variant calls. Variant calling, which is largely statistical inference, is the process of inferring a sample
genome from the noisy short-read data. It relies on a reference genome, and its goal is to find variants
between the sample and the reference; since humans share 99.9% of their DNA, the set of variants is small
relative to the genome size. Here we focus on reference-based variant calling, rather than de novo assembly,
which accounts for a large fraction of all variant calling algorithms.

Unfortunately, existing variant calling techniques are struggling to keep pace with the growing stream
of sequence data, taking days to execute on even a single genome; this is a major obstacle in realizing the
potential of this increasingly abundant wealth of genomic information. The computational burden of variant
calling pipelines is in large part due to the genome’s structure, namely regions of duplication, both near and
exact [20]. These regions complicate the analysis because they increase uncertainty about how to process
short-read data. Thus, some regions of the genome are harder to process than others.

We can leverage this knowledge to create a hybrid system for reducing the computational demands of
variant calling, relying on an efficient tool wherever possible, and employing expensive and more accurate
techniques in the more difficult regions characterized by duplication. In order to pursue this strategy, we must
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identify the regions of the genome that can be effectively processed via existing techniques (i.e., easier regions)
vs. genome regions that require sophisticated tools (i.e., harder regions). Previous work in evolutionary
biology has made progress in characterizing the near duplication in the genome (e.g., [19]); however, these
efforts investigate duplicate regions with varying scales and complexities and therefore identify approximately
half the genome as duplicates. This broad scope is not practical for our goal of improving variant calling
efficiency, since we would like to identify harder regions that are limited to a small fraction of the genome
to achieve computational gains from a hybrid system.

The three main contributions of our work are: 1) A novel partitioning strategy for identifying the
easier and harder genomic regions. We present a new paradigm for duplication in the genome, shaped
by our focus on variant calling, in which we only consider genome substrings whose lengths match the short
reads and which exhibit a high degree of similarity to at least one other substring. We call regions built
from the overlap of these substrings similar regions.

2) An efficient algorithm to identify similar regions. The problem of detecting similar regions
can be viewed as an unsupervised learning problem, in which we have a high-dimensional dataset consisting
of three billion data points with a large (millions) but unknown number of clusters. Given the scale of
our problem, pairwise comparison approaches are infeasible, and graph-based techniques are challenging
since even representing the graph explicitly is difficult. We therefore present a distributed, MapReduce-style
clustering approach based on union-find with algorithmic optimizations that can solve this problem.

3) A quantitative study of the impact of similar regions on variant calling using both
synthetic and real datasets. We illustrate the effectiveness of embedding these similar regions into a
hybrid variant calling approach. We first present results demonstrating the adverse impact that similar
regions have on the first step of variant calling, short-read alignment. We next present extensive results
on full genomes that clearly demonstrate that i) the similar regions account for a small fraction of the full
genome (on the order of 7%), ii) standard variant callers struggle in the similar regions but perform quite
well outside of these regions, and iii) the similar regions are small and fairly uniform in size, and can thus
be naturally processed in parallel using more sophisticated and computationally expensive methods.

2 Related Work

In this section, we describe three categories of related genome partitioning strategies, which often result in
the “blacklisting” of a particular genome subset. Moreover, we provide a quantitative comparison between
various published genome blacklists and our proposed similar regions in Table 1.

The first class of genome partitions is based on the study of repeats in the human genome, often with
the goal of understanding the evolutionary biology of the genome (e.g., see [2], [8], [21], [3], [16]). One of
the most well-known repeat databases is Repbase [7], an inclusive set of repeats with sequences that span
a broad range of lengths and allow a significant degree of divergence among members of the same family.
Indeed, Repbase1 comprises 47% of the genome (see Table 1) and is thus ill-suited for a hybrid variant calling
approach due to its large size.

The second class of partitions focus on the task of identifying regions of the genome that are particularly
challenging for variant calling. However, these approaches all employ an orthogonal strategy of relying on
the short reads themselves to identify these challenging regions. Many of these strategies are complementary
to our approach, identifying regions enriched with sequencing errors, e.g., GC-rich regions, and/or sample-
specific variation that could lead to low variant calling quality.

For instance, the accessible genome [1] aims to identify “accessible” regions for variant calling by aligning
reads from many samples and developing heuristics primarily based on coverage to identify anomalous regions.
The blacklist developed by the Pritchard Lab at Stanford2 leverages a similar strategy to identify collapsed
repeats that may hinder variant calling accuracy. The sizes of the inaccessible genome (!Accessible Genome)
and the Pritchard blacklist (Pritchard) are given in Table 1.

Moreover, the ReduceReads module of GATK [5] compresses a BAM file on a per-sample basis, focusing on
regions of the genome in which variants are concentrated. Read mapping quality [14], in which a MAPQ score

1We used the version of Repbase distributed via RepeatMasker open-3.3.0 - RepeatLibrary 20120124
(http://www.repeatmasker.org/)

2http://eqtl.uchicago.edu/Masking/readme
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Blacklist Overlap Size (%) Total Size (%)
Repbase 169e6 (5.4%) 1.48e9 (47.3%)

!Accessible Genome 156e6 (5.0%) 472e6 (15.1%)
GEM Mappability 190e6 (6.1%) 266e6 (8.5%)

Pritchard 1.46e6 (0.046%) 6.47e6 (0.21%)

Table 1: Overlap between the similar regions and various blacklists, listed in descending order of size. Shown
is both the size of the overlap and the size of the blacklist, in bp and as a fraction of the genome.

The$Problem$of$Similarity$

5$

Heterozygous? Missed Variant 

Figure 1: The problem of similarity. The top line represents the reference genome, and the cyan regions
represent two similar regions. The red reads have been misaligned (they belong to the opposite similar
region). Because of this misalignment, we will have trouble with variant calling. On the left, the red read
could cause us to miss a variant; on the right, the two red reads might make us think that the sample is
heterozygous at the pink location, whereas the sample is actually homozygous there.

is assigned to each read during the alignment phase to indicate aligner confidence, is another sample-specific
metric related to our work. However, MAPQ scores are often poorly calibrated, and many practitioners do
not trust it.

The GEM suite [6] comprises the third class of partition methods, and is the most closely related to our
similar regions. GEM assesses the mappability of short reads by identifying how often each substring of
length k occurs in the reference genome with up to m mismatches, and defining mappability as the inverse of
this count. Hence, as in our work, GEM relies on the reference itself to determine the mappability of various
regions, and the size of GEM blacklist is comparable to the similar regions, as noted in Table 1.3 However,
we provide more information than mere counts of a substring’s neighbors; we provide the full set of connected
components in the genome. Indeed, as discussed in Section 5, information about the structure of similar
region families is crucial in order to disentangle the reads stemming from similar regions. Moreover, we build
upon the preliminary studies in the GEM work, providing a thorough investigation of the impact of similar
regions on variant calling and clearly demonstrating the need for alternative variant calling algorithms in
these regions.

3 Methods

In our work, we consider reference-based variant calling approaches. This problem would be straightforward
if the genome were a random string, since identical 100-base substrings within the human reference would
occur with extremely low probability. Alas, the genome actually has both exact and near duplication. Exact
duplicate regions are easy to locate, and if reads align against them, they may be flagged as impossible
to uniquely align. However, as Figure 1 illustrates, near-duplicate regions are difficult not only to identify
but also to process, since it is possible that many reads mapping to near-duplicate regions may be uniquely
aligned to one of them. In what follows, we will discuss our solution for locating the near-duplicate, or
similar, regions.

3.1 Detecting Similar Regions with SiRen

Our goal is to find similar regions whose characteristics are driven by the short reads themselves. To do
so, we begin by creating a similarity graph to represent the genome. In our graph, there is a node for each
overlapping substring of length R, where R is the length of the short reads of interest; we have approximately

3We used k = 100, m = 1, and disabled the approximation.
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Figure 2: Schematic of SiRen algorithm. (a) We represent the genome as a graph, where each node is a length
R substring of the reference and edges are based on the Hamming distance threshold h. (b) We locate the
connected components in the genome graph. Singletons are discarded. (c) We merge the similar substrings
to create similar regions (denoted by the red horizontal bars). Note that each of the similar regions is
obtained by taking the overlap of similar substrings, colored according to their connected component.

three billion nodes. There is an edge between any two nodes for which the Hamming distance between the
two substrings is less than or equal to a given threshold h. We then locate the connected components of this
graph and discard any singletons.

Next, we identify similar regions from our similarity graph using the SiRen algorithm, which Figure 2
illustrates. We first map the substrings corresponding to nodes that belong to connected components back
to the reference. If one or more of these substrings are found to overlap, we merge them. We refer to the
resulting longer substring as a similar region; for clarity, we call a genome substring that does not contain
any similar regions a unique region.

While this algorithm appears straightforward, näıve implementations, in particular for finding the edges
of this graph, are intractable due to computation and storage costs. In the rest of this section, we present
algorithms for improved efficiency that enable us to handle the scale of this problem (both in terms of
computation and storage). The two main improvements are due to indexing and parallelization.

3.2 Index-Augmented Union-Find Algorithm

Given the nature of our problem, we identified the union-find algorithm as a promising approach. Union-find
is a simple, well-known algorithm for finding the connected components in a graph [4]. Initially, each node is
assigned to its own component, or cluster. Given a list of all the edges in the graph, we traverse each edge,
and if the nodes connected by a given edge are not in the same cluster, we merge them.

Of course, we must first identify the edges in our graph before applying the union-find algorithm. A
näıve approach is to compare each substring to each of the other three billion substrings. This comparison
would be prohibitively expensive, however. Shrinking the runtime of this process is important to simplify
development, parameter selection, and finding new similar regions whenever read lengths change or the
reference is updated. Also, even if it were computationally feasible, we would perform many unnecessary
comparisons since the adjacency matrix is likely to be sparse.

To avoid this wasted work, we build an index of the reference genome, where the key is a seed of length
20 bases, and the value is a list of locations in the reference at which that seed is found. We set the seed
length equal to 20 because this value has been empirically determined to achieve a good tradeoff in the space
of seed length versus number of hits; shorter seeds lead to excessive hits, while longer seeds lead to too few
hits [22].
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After building the index, we then scan over the substrings. For each substring s, we look up its non-
overlapping seeds of length 20 in the index; since our read length is 100, we have 5 seeds. Each seed gives us
a list of positions in the genome whose corresponding substrings are potentially similar to s. After looking
up each of s’s 5 seeds in the index, we obtain a list of all substrings potentially similar to s. The list length
is orders of magnitude less than three billion, which is the number of comparisons we would have to perform
under a näıve approach. Algorithm 1 describes this process.

Our approach for edge identification is a parametric one, where the parameter is the merge distance
h. Moreover, since we require exact matches via seed lookups, our index-based algorithm may miss some
potential edges if our merge threshold is greater than or equal to the number of seeds. In practice, we observe
that a merge distance of 1 performed best in our experiments (see Section 4.3.3 for details), and thus we
avoid the issue of missed edges.

Algorithm 1 Union-find with index optimization

R = read length, h = merge threshold, N = number of substrings in genome
Input: an index I, where the key is a 20-base seed, and the value is a list of all positions at which the seed
occurs
Initialize: parent, an array of length N , where parent(i) = i = cluster ID of the ith substring
for all genome substrings s of length R do

for all seeds s′ in s do
hits = I(s′)
for all sh ∈ hits do

if Hamming(sh, s) ≤ h then
Update parent(sh) = parent(s)

end if
end for

end for
end for
return parent

3.3 Efficient Parallel Implementation

Despite the dramatic reduction in comparisons, our index-based algorithm remains quite expensive given the
scale of our data. Our goal is therefore to develop a parallel implementation of our approach. To facilitate
parallelization, we use Spark, a MapReduce-like framework for distributed computing [23]. Moreover, we
divide our index-based approach into subproblems, each of which solves an index-based union-find problem
on a partition of the complete dataset, and merge the results of the subproblems on-the-fly as they complete.

The first step of our parallel, distributed algorithm involves partitioning the adjacency matrix so that
each distributed task is allocated one partition. In our study, we use grid partitioning based on exploratory
analysis with various partitioning schemes. Each partition has two ranges: one for the rows and one for the
columns. The row range determines which positions should be included in the index as seeds. The column
range determines which positions should be scanned as substrings. We scan each substring in the column
range, and whenever we locate an edge (i.e., we find that two substrings are similar), we merge the two
substrings’ clusters. Therefore, we are able to combine the edge location and merging into a single pass,
avoiding the need to store the edges. This one-pass approach is important since this is already a memory-
intensive process. Figure 3(b) illustrates this step. We also use the standard union-find optimizations of
union by rank and path compression.

The cluster results from each partition are merged on the master node. Initially, the master node stores
each substring as its own global cluster. Once a worker node computes the clusters for a single partition,
the master updates the global clusters for the genome by merging any of the global clusters whose points
appear together in the partition’s clusters. This process is illustrated in Figure 3(c). Since each partition
is independent, our approach is embarrassingly parallel and therefore exhibits strong scaling, since adding
more machines to a fixed-size problem shrinks the runtime. See Algorithm 2 for a formal description of this
process.
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Algorithm 2 Parallelization of union-find

Initialize: parent(i) = i, where length(parent) = N
Partition the adjacency matrix according to a grid scheme, with dimension G
for all grid cells g with row range r and column range c do

Initialize: parentg(i) = i, where length(parent) = |c|
Create a seed index I with the portion of the genome indicated by r
for all genome substrings s beginning with positions in c do

Find the neighbors of s using index I
Update parentg

end for
return parentg

end for
if task corresponding to grid cell g completes then

for all pairs (s1, s2) s.t. parentg(s1) = parentg(s2) do
if parent(s1) 6= parent(s2) then

Update parent(s1) = parent(s2)
end if

end for
end if
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Figure 3: Parallelization of union-find. (a) In the global clusters, the red and purple points are initially
in their own clusters. (b) To make union-find work at scale, we partition the genome in a grid fashion.
Worker tasks process different partitions in parallel and identify the clusters within each partition. The
green partition yields three clusters, with the red and purple points grouped together. (c) The master task
then merges each partition’s clusters into the global clusters. The global state is updated so that the red
and purple points are in the same cluster.

4 Results

We begin by briefly explaining how we ran the similar region detection. Then, we provide three sets of
experiments. First, we explore the relationship between alignment errors and reads that hit similar regions.
Next, we provide an end-to-end analysis that looks at how the alignment errors impact the downstream stage
of variant calling in similar regions. Third, we likewise perform an end-to-end analysis of variant calling with
a mouse genome. Our goal for the three sets of experiments is both to show that similar regions affect the
pipeline at each stage, as well as to show the robustness with which they detect an important signal in the
data.

6



4.1 Similar Region Detection with SiRen

We ran SiRen on the human reference genome hg19, or GRCh37, which was released in February of 2009.4

To do so, we used a node with a dual-socket Intel E5-2670 2.6 GHz processor with 16 cores and 128 GB of
DDR3-1600MHz RAM. We allocated all 16 cores as well as 100 GB of memory to the tool. It takes about a
week to run, given this setup; for smaller merge distances, it takes less time, and for longer merge distances,
the runtime increases. For instance, with a merge distance of 4, the tool ran for 126 hours (approximately
5 days) of wall clock time, or 2016 CPU-hours. We note that without the optimizations described above, it
was infeasible to run on the configuration described, since the memory demands were too great.

4.2 Impact on Alignment

We begin by focusing on alignment, which is the first step of most variant calling pipelines. Our goal is to
use alignment to evaluate the similar regions that we find via SiRen. To do so, we have devised a method
of generating labels for aligned data whereby we categorize each read on a spectrum from easy to hard.
Our method is based on consensus across four alignment algorithms, or aligners, and yields labels with four
gradations of easier or harder to align; i.e., if all four aligners agree on a read’s alignment location, we count
it as easy, while if no aligners agree on a read’s alignment location, we count it as hard. The other labels
are obtained when two or three aligners agree. We selected this ensemble-style approach of label generation
to avoid overfitting to any particular aligner; we picked these aligners because together, they are a good
representation of the accuracy and efficiency spectrum.

Given a labeling scheme, we can now evaluate whether the regions we have obtained can explain our
labeled data. We will judge the similar regions to be correlated with read difficulty if a high fraction of hard
reads align to similar regions, while a low fraction of easy reads align to similar regions.

In what follows, we will show the correlation between aligner agreement and similar regions for both
simulated and real data. The simulated data consists of 5 million pairs of reads generated from hg19 by
the Mason simulator v.1.3.1.5 The real data consists of 2 million pairs of reads sampled from the Illumina
Platinum Genome Project’s NA12878 genome.6 The length of both the simulated and real reads is 100 bases.
We aligned each dataset with four aligners: Bowtie2 v. 2.1.0 [10], BWA v. 0.7.4 [12], Novoalign v. 3.0.3,
and SNAP v. 0.16alpha.6 [22].

We first describe how we evaluated the aligners on the simulated data. After aligning the reads with all
four aligners, we assigned a label to each read based on the number of aligners that agreed on its location,
where we determine agreement within a tolerance of 100 bases. We then segmented the reads according to
their labels, and then for each label, we assessed how many of the reads hit similar regions. Figure 4(a)
shows the results. We observe that almost all of the hard reads are in similar regions, while very few of
the easy reads are in similar regions; therefore, we have achieved a close correlation between our labeled
data and our similar regions. We provide these results for two merge distances, 1 and 10. We also obtained
results for 2, 4, 6, and 8; as they follow the same pattern, we omit them here. Since more of the genome is
contained in similar regions when the merge distance is large (see Figure 5), it is logical that more reads of
each label would fall in clusters with a larger merge distance. However, since we still obtain a high fraction
of the harder reads in clusters using 1 for the merge distance, while including much less of the genome in
similar regions, we prefer 1. We provide further discussion of selecting the merge distance in Section 4.3.3.

We carried out a similar analysis for the real data, to avoid overfitting to simulated data. The results,
which are shown in Figure 4(b), are very similar to the results for simulated data. Again, reads that are hard
to align are overwhelmingly in similar regions, while easy reads are not. We also observe the same trends
regarding the merge distance.

These results demonstrate that one of the main reasons for alignment difficulty is the similar regions. We
have shown this without overfitting to a single alignment algorithm or dataset; rather, we have shown that
this holds for different aligners and for both simulated and real data.

4http://hgdownload.cse.ucsc.edu/downloads.html#human
5http://www.seqan.de/projects/mason/
6http://www.ebi.ac.uk/ena/data/view/ERP001229
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Figure 4: Aligner agreement, correlated with cluster membership. For both simulated (a) and real (b) data,
hard reads coincide with high membership in similar regions, while easy reads fall in unique regions. These
results are provided for two merge distances, 1 and 10, to illustrate that though a higher merge distance
results in more hard reads appearing in similar regions, it also results in more easy reads being in similar
regions. Therefore, we prefer a lower merge distance.

4.3 End-to-End Analysis: Variant Calling

We have shown that alignment, which is a key stage in the genomic processing pipeline, is strongly affected
by the similar regions. However, this is an intermediate stage; ultimately, we care about variant calling, so in
this section, we explore the impact of similar regions on variant calling accuracy. Our hypothesis is that due
to alignment errors, variant calling will be more difficult in the similar regions than in the unique regions.
In what follows, we validate this hypothesis using both simulated and real data.

4.3.1 Experimental Data

For this analysis, we used the SMaSH benchmarking suite [18]. SMaSH provides read datasets for both
synthetic and real data, as well as labeled variants obtained from orthogonal sequencing technologies. Lever-
aging this labeled data, SMaSH also offers an evaluation tool to determine the accuracy, measured in both
precision and recall, for variant calls made for the datasets. For both datasets, we consider both single
nucleotide polymorphisms (SNPs) and short indels.

The synthetic human data from SMaSH is based on the variants detected in the Venter dataset [11].
These variants are inserted into the human reference genome hg19, and then simulated reads of length 100
bases with a coverage of 30× are produced via the simNGS tool [15]. Since all the variants are known, a
comprehensive evaluation is possible; i.e., we can report both precision and recall for the variant calls on
this dataset.
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Dataset Tool Variant Merge Distance
Similar Regions Unique Regions Overall

Precision Recall Precision Recall Precision Recall

Venter

mpileup

SNPs
1 93.8 78.6 99.0 98.5

98.7 97.0
10 96.4 91.6 99.5 99.0

Indels
1 83.8 54.2 88.7 73.9

88.5 73.1
10 86.8 64.1 89.4 78.6

GATK

SNPs
1 97.9 55.7 99.3 94.6

99.3 91.7
10 98.4 80.0 99.5 96.0

Indels
1 86.1 67.5 91.6 90.5

91.5 89.5
10 90.0 85.9 92.1 91.6

NA12878

mpileup SNPs
1 - 22.5 - 99.1

- 98.8
10 - 82.8 - 99.3

GATK SNPs
1 - 22.9 - 99.2

- 98.8
10 - 83.0 - 99.4

Table 2: Variant calling accuracy (in both precision and recall) for both simulated data & real data. Indels
are omitted for NA12878 because SMaSH lacks indel validation data for this dataset.

The real human data from SMaSH is 64× coverage reads for the NA12878 sample. 7. The reads are 101
bases long. Since this is real data, we do not know the types or locations of the true variants. However,
SMaSH provides labeled variants from two SNP chips for this dataset. Note, however, that these labeled
variants are not comprehensive; they are available only for the sections of the genome that the SNP chips
were designed to interrogate. Therefore, we cannot determine the precision of variant calls, since precision
depends on knowing the number of false positives. Hence, we report only recall for this dataset.

4.3.2 Experimental Setup

Our procedure for both datasets is as follows. Again using EC2, we begin by aligning each set of reads with
BWA v. 0.6.1. We chose BWA due to its popularity among practitioners. Then, given the aligned reads,
we produced variant calls with both mpileup (from SAMtools v. 0.1.19) [13] and GATK v. 2.6 [5]. We
chose these tools because mpileup is known to be a very simple variant caller, while GATK is considered the
state-of-the-art and is widely used by practitioners. We wanted to see how both a simple and a complicated
tool would handle the similar regions.

Once we had obtained variant calls from both tools, we segmented all three variant call format (VCF)
files for each dataset (one for the true variants, from SMaSH; one from mpileup; and one from GATK)
according to which variants appeared in similar regions and which appeared in unique regions. Then, we
used SMaSH’s evaluation tool to determine the accuracy of the called variants both in and out of the similar
regions.

4.3.3 Results

Table 2 displays the results. For the Venter dataset, which is synthetic, both mpileup and GATK perform
worse in the similar regions than in the unique regions; this is more dramatic for the recall. For the NA12878
dataset, which is the real dataset, the difference in recall between the similar regions and the unique regions
is much more pronounced. One likely cause is alignment errors, leading to reads being aligned to the wrong
similar region, as Figure 1 depicts. Therefore, these results validate our hypothesis that variant calling is
much harder in the similar regions than in the unique regions. These results are particularly interesting
given that variant calling for SNPs and short indels is often regarded to be a solved problem, due to the
high rates of overall precision and recall. However, we see that there is still a lot of work to do to achieve
satisfactory accuracy in the similar regions. We suggest that developers of new variant callers concentrate

7It is available from http://smash.cs.berkeley.edu/datasets.html
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Figure 5: Percent of the genome in similar regions for different values of the merge distance. As we increase
the merge distance, a greater fraction of the genome lies in similar regions.

on the similar regions rather than the unique regions, as the similar regions are clearly where the challenges
lie.

Table 2 also gives us insight into how to choose the merge distance. The table presents results for merge
distances 1 and 10; we also obtained results for merge distances 2, 4, 6, and 8 but omitted them for the sake
of brevity. We observe that when we increase the merge distance from 1 to 10, the accuracy in the similar
regions increases substantially, while the accuracy in the unique regions is barely impacted. The reason for
this is that when you increase the merge distance and therefore also increase the fraction of the genome
that lies in similar regions, you include some easier regions. Likewise, when you restrict the merge distance,
you achieve a tighter correspondence between the hard regions and the similar regions. Therefore, we prefer
a smaller merge distance, in this case 1, since we greatly reduce the size of the similar regions—from 22%
at merge distance 10 to 7% at distance 1—without significantly impacting the performance of the variant
calling algorithms in the unique regions. We will speak more about the desirability of limiting the size of
the similar regions in Section 5.

Figure 6 illustrates a more subtle point. This figure compares, for our selected merge distance of 1, the
fraction of variants (true, called by mpileup, and called by GATK) in similar regions. We observe that while
Venter’s true variants are distributed fairly evenly, NA12878 has few true variants in the similar regions.
Since the Venter validation data is comprehensive while the NA12878 data is partial, we conjecture that the
SNP chips used to obtain the NA12878 variants are biased against the similar regions, potentially because
this data is more difficult to gather. Since SNP chips provide few variants in these regions, variant databases,
which are largely based on SNP chips, likely also have relatively few variants in these regions. GATK, which
is a much more sophisticated tool than mpileup, relies on assumptions about where variants are likely to
appear based on databases of previously-detected variants. These factors may combine to make GATK
discount SNPs that it identifies in these regions and may also explain why GATK underperforms mpileup
on the Venter dataset, while it matches or exceeds mpileup’s performance on the NA12878 dataset.

4.4 Variant Calling on Mouse Data

Since the SMaSH benchmark [18] also contains mouse data, we investigated whether our techniques would
apply beyond human data. The mouse data has an attractive property in that it provides access to both real
short-read data along with a comprehensive set of validated variants. Thus, we are able to state accuracy in
both precision and recall.

To repeat the variant calling experiment with mouse data, we had to run the similar region detection
tool on the mouse reference genome. As in Section 4.3, we tried a variety of merge distances to identify
similar regions, aligned the mouse reads with BWA, and then ran mpileup and GATK on the aligned reads.
We then segmented the true, mpileup, and GATK VCF files according to the similar regions.

Table 3 shows the results for merge distance 1. The results for the other merge distances, as in the case
of the human data, showed improved performance in the similar regions without significant change in the
unique regions. However, as this improved performance comes at the cost of increasing the percentage of
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Figure 6: Fraction of SNPs in similar regions, for merge distance 1. For Venter, GATK vastly under-calls
variants in similar regions. For NA12878, the true variants are underrepresented in similar regions, possibly
due to bias in the chips made for detecting these variants. Since GATK relies heavily on prior knowledge
about where variants are likely to be concentrated, the under-representation of variants in similar regions
may explain its poor performance in those regions.

Tool Variant Type
Similar Regions Unique Regions Overall

Runtime (h)
Precision Recall Precision Recall Precision Recall

mpileup
SNPs 87.8 61.4 98.5 87.6 98.4 87.3

6
Indels 60.4 39.3 83.2 81.3 83.1 81.1

GATK
SNPs 80.9 67.7 98.0 95.2 97.8 94.9

107
Indels 41.2 49.7 86.3 93.8 86.0 93.6

Table 3: Variant calling accuracy (in both precision and recall) for mouse data, with merge distance 1.

the genome in similar regions, we again identify 1 as the optimal merge distance. Given our choice of merge
distance, we observe that both GATK and mpileup perform worse, in both precision and recall, in the similar
regions than in the unique regions. Therefore, we conclude that our techniques apply not only to the human
genome but to other genomes as well.

5 Discussion

Recall that our overall goal is to find easier and harder regions so that we can employ a hybrid approach to
short-read processing, where simple techniques are used on the easier regions and sophisticated techniques
are used only on the harder regions. In this section, we reflect on how the similar regions we identified
facilitate this goal.

A good easier/harder partitioning strategy will have two characteristics: first, we should identify a small
portion of the genome as harder, and second, the harder regions should contain many short segments, so that
we can launch parallel tasks, one per harder region, where no task is prohibitively expensive. To understand
the first characteristic, consider that if we identify a large portion of the genome as harder, we have to
run the sophisticated algorithm on a large portion of the genome, so we will not achieve much savings over
running the sophisticated algorithm on the entire genome. The second characteristic is important because
consider that if we identify just a few, long harder regions, it will limit the degree of parallelism that we can
achieve.

Let us consider whether a partitioning scheme based on the similar regions achieves our two criteria.
First, regarding the fraction of the genome in similar regions, we see in Figure 5 that with merge distance 1,
which is our selected merge distance, only 7% of the genome lies in similar regions. Thus, with only 7% of
the genome marked as harder, we will achieve an order of magnitude savings over running a sophisticated
technique on the whole genome.
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Figure 7: Quantiles of interest for lengths of similar regions, for different merge distances.

Second, regarding the size of the partitions, consider Figure 7. We observe that for our desired merge
distance of 1, even at the 99th percentile, the similar regions are only a few thousand bases long. Figure
8 shows that at merge distance 1, there are approximately 600,000 of these partitions. Therefore, since we
have identified many short partitions, we can obtain a high degree of parallelism.
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Figure 8: The number of similar regions, for different merge distances.

A straightforward technique for variant calling in the similar regions would be to approach each similar
region in isolation. However, since similar regions are hotspots for alignment errors, we would likely suffer
the same errors that mpileup and GATK make. Therefore, we are developing a strategy in which we consider
similar region families (see Figure 9). In our graph representation, each node is a similar region, which is
represented by a list of the components to which its substrings belong. Then, an edge connects any two nodes
that share a component. We use a version of our union-find algorithm to find the connected components of
this new graph; each component is a similar region family. An obvious concern with this strategy is that we
will find large families for which disentangling the reads that originate from each region is too formidable a
challenge. However, we have implemented this for chromosome 22 of the human reference genome, and we
found that 81% of families are of size 2. Thus, we expect that when this is generalized to the whole genome,
the vast majority of families will be suitable for disentangling.

6 Conclusions & Future Work

As the price of short-read sequencing continues to drop, the need to efficiently and accurately process the
resulting genome data becomes ever greater. An intuitive approach to increasing the efficiency of variant
calling without sacrificing the accuracy is to employ a hybrid scheme, in which simple and inexpensive
techniques are applied to the easier genome regions, while expensive techniques are applied only where
necessary. We have proposed that similar regions in the genome provide a natural basis for an easier/harder
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Figure 9: (a) When we locate the connected components in the substring graph, we give them each an ID.
(b) Each similar region is made up of substrings from different components. (c) We group similar regions
into families if they share at least one component.

partitioning scheme, and we have validated that the similar regions that we have identified correlate well
with quantitative measures of difficulty in genome processing. We have also established that our similar
regions possess characteristics that will facilitate parallelization in a hybrid approach.

Moving forward, we plan to design and build a hybrid variant calling pipeline, partitioning the genome
based on the similar regions, and using sophisticated techniques to improve variant calling in the harder
regions.
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