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AVOIDING COMMUNICATION IN THE LANCZOS
BIDIAGONALIZATION ROUTINE AND ASSOCIATED LEAST

SQUARES QR SOLVER

ERIN CARSON

Abstract. Communication – the movement of data between levels of memory hierarchy or
between processors over a network – is the most expensive operation in terms of both time and
energy at all scales of computing. Achieving scalable performance in terms of time and energy
thus requires a dramatic shift in the field of algorithmic design. Solvers for sparse linear algebra
problems, ubiquitous throughout scientific codes, are often the bottlenecks in application perfor-
mance due to a low computation/communication ratio. In this paper we develop three potential
implementations of communication-avoiding Lanczos bidiagonalization algorithms and discuss their
different computational requirements. Based on these new algorithms, we also show how to obtain
a communication-avoiding LSQR least squares solver.

1. Introduction. Classical implementations of Krylov methods, Lanczos bidi-
agonalization methods included, require one or more sparse matrix-vector multipli-
cations (SpMVs) and one or more inner product operations in each iteration. These
computational kernels are both communication-bound on modern computer architec-
tures. To perform an SpMV, each processor must communicate entries of the source
vector it owns to other processors in the parallel algorithm, and in the sequential
algorithm the matrix A must be read from slow memory (when it is too large to fit in
cache, the most interesting case). Inner products involve a global reduction (see [21,
§11.4]) in the parallel algorithm, and a number of reads and writes to slow memory
in the sequential algorithm (depending on the size of the vectors and the size of the
fast memory).

Thus, many efforts have focused on communication-avoiding Krylov subspace
methods (CA-KSMs), or s-step Krylov methods, which can perform s iterations with
a factor of O(s) less communication than classical KSMs; see, e.g., [3, 4, 6, 8, 9, 11,
14, 15, 22, 23]. In practice, this can translate into significant speedups for many
problems [18, 24]. In this paper, we will use the terminology ‘s-step methods’, which
was introduced in [5]. The reader should note this use of the term differs from other
works, e.g., [7, 16] and [13, §9.2.7], in which the term ‘s-step methods’ is used to refer
to a type of restarted Lanczos procedure.

In this manuscript we present three approaches to developing communication-
avoiding variants of Lanczos bidiagonalization. Each of the three approaches are used
to give both communication-avoiding upper and lower bidiagonalization routines. The
LSQR least squares solver of Paige and Saunders [19] is based on the Lanczos lower
bidiagonalization method, and we use this to derive two potential CA-LSQR methods
based on two of our approaches to communication-avoiding lower bidiagonalization.

The rest of this manuscript is organized as follows. Section 2 gives a brief overview
of the communication-avoiding approach and motivates such methods from a perfor-
mance perspective. In Section 3, we review the upper and lower Lanczos bidiago-
nalization procedures. In Section 4 we demonstrate three approaches to developing
communication-avoiding versions of the algorithms in Section 3. Section 5 first re-
views the LSQR method and then gives algorithms for two possible communication-
avoiding variants. Section 6 briefly discusses future work, namely, convergence and
performance studies to compare these new methods and determine guidelines for when
one should be used over another.
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2. Background on communication-avoiding Krylov methods. The basic
idea behind the CA-KSMs introduced by Hoemmen, Mohiyuddin, and others (see
[15]), is to unroll the iteration loop by a factor of s > 1. One first builds bases for the
Krylov subspaces known to contain the iteration vectors to be computed in the next s
iterations, computes Gram matrices to store dot products between these basis vectors,
and then subsequently performs s iterations, updating the coordinates of the iteration
vectors in the precomputed bases rather than the iteration vectors themselves. For a
thorough treatment of communication-avoiding Krylov methods, see [1].

This algorithmic change allows use of communication-avoiding kernels which can
asymptotically reduce communication cost. The matrix powers kernel optimization
fuses together a sequence of s SpMV operations into one kernel invocation. This kernel
is used to compute the O(s)-dimensional Krylov bases, which are denoted by calli-
graphic letters in this and future sections. Depending on the nonzero structure of A (or
whatever matrix we must compute a basis for), this enables communication-avoidance
in both serial and parallel implementations, as described in paragraphs below. For an
in-depth treatment of the matrix powers kernel implementation, see [10].

Serial. In serial, the matrix powers kernel reorganizes the O(s) SpMVs to max-
imize reuse of A and the vector(s). This means ideally reading A and the starting
vector only once and writing the s output vectors spanning the Krylov subspace only
once. When the communication cost of reading A dominates that of reading/writing
the vectors (a common situation), this results in an s-fold decrease in both latency
(the number of messages sent) and bandwidth (the number of words moved).

Parallel. In a parallel implementation, the matrix powers kernel reorganizes the
computation in a similar way but with a slightly different goal. In a parallel SpMV
operation, only entries of the vectors need to be communicated. The parallel matrix
powers kernel avoids interprocessor synchronization by initially storing some redun-
dant elements of A and the starting vector on different processors and performing
redundant computation to compute the s Krylov basis vectors without further syn-
chronization in between SpMVs. Provided the additional bandwidth and latency
cost to distribute the starting vector is a lower-order term (equivalently, As is well
partitioned ; see [10]) this gives an s-fold savings in latency cost.

Serial and parallel variants of the matrix powers kernel, for both structured and
general sparse matrices, are described in [17] and [1], which summarize most of [10]
and elaborate on the implementation in [18]. Within [17], we refer the reader to
the complexity analysis in Tables 2.3-4, the performance modeling in §2.6, and the
performance results in §2.10.3 and §2.11.3, which demonstrate that this optimization
leads to speedups in practice.

For example, for a 2D five-point stencil on a
√
n ×
√
n mesh with p processors,

assuming s �
√
n/p, the number of arithmetic operations grows by a factor 1 +

2s
√
p/n, the number of messages decreases by a factor of s/2, and the number of

words moved grows by a factor of 1 + (s/2)
√
p/n [17]. Therefore since the additional

arithmetic operations and additional words moved are lower order terms, we expect
to see a Θ(s) speedup when latency is the dominant cost. We note that matrix powers
kernel performance is sensitive to matrix structure and hardware parameters, making
it a good candidate for inclusion in auto-tuning libraries and specializers.

Besides SpMV operations, classical KSMs also must compute inner products in
each iteration, which incur a costly global synchronization on parallel computers. For
Lanczos-based methods like the ones in this paper, inner products are computed as
a block operation producing Gram matrices which are later used to compute dot
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products without additional communication. In parallel, this can lead to an s-fold
decrease in latency.

These communication-avoiding variants can lead to speedups in practice. We
direct the reader to recent performance results in [24], which demonstrate speedups
up to 4.2 for a communication-avoiding BICGSTAB implementation with s = 4.

3. The bidiagonalization algorithm. We first review classical algorithms for
reduction of a matrix to both upper bidiagonal and lower bidiagonal form. The
original procedure given by Golub and Kahan gives the procedure as a reduction to
upper bidiagonal form [12]. With some slight modifications, Paige and Saunders [19]
showed that a similar procedure could be used to produce a reduction to lower bidi-
agonal form, and that this formulation was more amenable to solving the full-rank
least squares problem min ‖Ax− b‖2. This observation forms the basis for the LSQR
algorithm. Both methods are connected in that they both produce the same sequence
of vectors Vk that would be produced by the symmetric Lanczos method applied to
ATA.

Let A be an m-by-n matrix and b be a length-m vector. After k iterations,
the Lanczos upper bidiagonalization procedure produces the m-by-k matrix Pk ≡
[p1, p2, . . . , pk] and the n-by-k matrix Vk ≡ [v1, v2, . . . , vk] such that

Vk(θ1e1) = AT b

AVk = PkRk

ATPk = VkR
T
k + θk+1vk+1e

T
k ,

where

Rk =


ρ1 θ2

ρ2 θ3
. . .

. . .

ρk−1 θk
ρk

 ,

and in exact arithmetic, PT
k Pk = I and V T

k Vk = I. The algorithm of Golub and Kahan
for reduction to upper bidiagonal form is shown in Algorithm 1. Note that here and in
the remainder of this paper bars over variables denote intermediate quantities which
are yet to be normalized. We note that one can formulate the upper bidiagonalization
algorithm as the Lanczos reduction to tridiagonal form. Letting

Z = [z1, z2, . . . , z2k] ≡
[

0 p1 0 p2 . . . 0 pk
v1 0 v2 0 . . . vk 0

]
,

Ã ≡
[

0 A
AT 0

]
, and T̃ ≡



0 ρ1
ρ1 0 θ2

θ2 0 ρ2

ρ2 0
. . .

. . .
. . . θk
θk 0 ρk

ρk 0


,
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the procedure in Algorithm 1 is mathematically equivalent to

ÃZ = ZT̃ + θk+1z2k+1e
T
2k,

with ZHZ = I2k and ZHz2k+1 = 0. This means that, in exact arithmetic, k steps of
the upper bidiagonalization procedure applied to A with starting vector v1 produces
the same information as 2k steps of symmetric Lanczos applied to cyclic matrix Ã
with starting vector z1 as defined above.

Algorithm 1 Lanczos reduction to upper bidiagonal form

Require: m-by-n matrix A and length-n vector b
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1
2: for i = 1, 2, . . . until convergence do
3: v̄i+1 = AT pi − ρivi
4: θi+1 = ‖v̄i+1‖2
5: vi+1 = v̄i+1/θi+1

6: p̄i+1 = Avi+1 − θi+1pi
7: ρi+1 = ‖p̄i+1‖2
8: pi+1 = p̄i+1/ρi+1

9: end for

We will also consider reduction to lower bidiagonal form for the purpose of easy
connection to the LSQR method of Paige and Saunders [19]. Again, A is an m-by-n
matrix and b is a length-m vector. After k iterations, the Lanczos lower bidiagonal-
ization procedure produces the m-by-(k+1) matrix Uk+1 ≡ [u1, u2, . . . , uk+1] and the
n-by-k matrix Vk ≡ [v1, v2, . . . , vk] such that

Uk+1(β1e1) = b

AVk = Uk+1Bk

ATUk+1 = VkB
T
k + αk+1uk+1e

T
k+1,

where

Bk =



α1

β2 α2

β3
. . .

. . . αk

βk+1

 ,

and in exact arithmetic, UT
k+1Uk+1 = I and V T

k Vk = I.

Again in this case, we can formulate the lower bidiagonalization algorithm as the
Lanczos reduction to tridiagonal form. Here we define

Z = [z1, z2, . . . , z2k] ≡
[

0 v1 0 v2 . . . 0 vk
u1 0 u2 0 . . . uk 0

]
,
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Ã ≡
[

0 AT

A 0

]
, and T̃ ≡



0 α1

α1 0 β2
β2 0 α2

α2 0
. . .

. . .
. . . βk
βk 0 αk

αk 0


,

and then Algorithm 2 is mathematically equivalent to

ÃZ = ZT̃ + βk+1z2k+1e
T
2k,

with ZHZ = I2k and ZHz2k+1 = 0. Then in exact arithmetic, k steps of the lower
bidiagonalization procedure applied to A with starting vector u1 produces the same
information as 2k steps of symmetric Lanczos applied to cyclic matrix Ã with starting
vector z1 as defined above.

Algorithm 2 Lanczos reduction to lower bidiagonal form

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: for i = 1, 2, . . . until convergence do
3: ūi+1 = Avi − αiui
4: βi+1 = ‖ūi+1‖2
5: ui+1 = ūi+1/βi+1

6: v̄i+1 = ATui+1 − βi+1vi
7: αi+1 = ‖v̄i+1‖2
8: vi+1 = v̄i+1/αi+1

9: end for

4. Communication-avoiding Lanczos bidiagonalization. There are at least
three ways to derive communication-avoiding variants of Algorithms 1 and 2, each with
associated pros and cons. The correct method to choose will depend on the structure
and conditioning of the matrix, the requirements of the particular application, and
machine-specific parameters such as cache size and relative latency/bandwidth cost.
We describe the three potential communication-avoiding variants in subsections below.

4.1. Equivalent form of CA-Lanczos. As discussed in Section 3, k steps of
either bidiagonalization procedure in Algorithm 1 or 2 will produce the same infor-
mation as 2k steps of symmetric Lanczos applied to the appropriately defined cyclic
matrix Ã and appropriately chosen starting vector z1. Therefore one can simply
use an existing version of CA-Lanczos (available in, e.g., [15, 1, 2]) run on input Ã
and z1, and recover the bidiagonalization matrices, either Pk, Vk, and Rk for upper
bidiagonalization, or Uk+1, Vk, and Bk for lower bidiagonalization, from Z and T̃ .

This method is simple and allows us to use an existing communication-avoiding
method. The drawback is that the system is now twice the size, and extra work and
storage will be required unless the Lanczos method is modified to optimize for the
block non-zero structure of the matrix/vectors.

4.2. Forming Krylov bases. By introducing auxiliary quantities, yet another
version can be derived that works by building s-step Krylov bases with AAT and
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ATA. The benefit here is that other polynomial bases can be used in order to im-
prove numerical properties (e.g., Newton or Chebyshev). The drawbacks are that this
requires computing bases with powers of AAT and ATA, which squares the condition
number of A. Also, in order to satisfy the recurrences, we need 4s + 1 basis vectors
in each iteration, which doubles the number of SpMVs per s iterations versus the
classical method (this is assuming we form and store ATA and AAT offline; otherwise
the number of SpMVs required is 8s + 2). We note that this is equivalent (in exact
arithmetic) to the method described in the previous subsection, but takes nonzero
blocks into account and uses auxiliary quantities.

We derive this method below for both upper and lower bidiagonalization proce-
dures. Note that in communication-avoiding algorithms, we will switch from indexing
iterations by i to indexing iterations by sk + j, where s is the iteration blocking
parameter, k is the outer iteration index, and j in the inner iteration index.

4.2.1. Reduction to upper bidiagonal form. Assume we are beginning it-
eration sk + 1 of Algorithm 1, where k ∈ N and 0 < s ∈ N, so that vsk+1 and psk+1

have just been computed. Recall that

psk+j+1 ∈ Ks+1(AAT , psk+1) +Ks(AA
T , Avsk+1) and

vsk+j+1 ∈ Ks(A
TA, vsk+1) +Ks(A

TA,AT psk+1),

for j ∈ {0, . . . , s}.
We define basis matrices whose columns span these subspaces as follows. Let

Vk be a basis for Ks(A
TA, vsk+1), Ṽk a basis for Ks(AA

T , Avsk+1), Pk a basis for
Ks+1(AAT , psk+1) and P̃k a basis for Ks(A

TA,AT psk+1). Assuming these polyno-
mial bases are generated using a three-term recurrence, we can write the recurrence
relations

(AAT )[Pk, 0, Ṽk, 0] = [Pk, Ṽk]

[
[T

(P)
k , 0] 0

0 [T
(Ṽ)
k , 0]

]
and

(ATA)[Vk, 0, P̃k, 0] = [Vk, P̃k]

[
[T

(V)
k , 0] 0

0 [T
(P̃)
k , 0]

]
,

where Pk, Ṽk, Vk, and P̃k are the same as Pk, Ṽk, Vk, and P̃k, resp., but with the
last column removed, and the Tk matrices are tridiagonal matrices of the form

α̂1 β̂1

γ̂1
. . .

. . .

. . .
. . . β̂i−1
. . . α̂i

γ̂i


, (4.1)

where above i = s for T
(P)
k and i = s − 1 for T

(V)
k , T

(Ṽ)
k , and T

(P̃)
k . Note that the

entries α̂j , γ̂j , and β̂j can be set differently depending on whether we are constructing
polynomials in AAT or ATA. Also note that these recurrence coefficients could be
refined with each new outer loop. See Philippe and Reichel [20] for guidelines on
setting these entries such that the basis condition number is improved.
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To simplify notation, we will define Yk ≡ [Pk, Ṽk], Yk ≡ [Pk, 0, Ṽk, 0], Zk ≡
[Vk, P̃k], Zk ≡ [Vk, 0, P̃k, 0], and

T
(Y)
k ≡

[
[T

(P)
k , 0] 0

0 [T
(Ṽ)
k , 0]

]
, T

(Z)
k ≡

[
[T

(V)
k , 0] 0

0 [T
(P̃)
k , 0]

]
.

This lets us rewrite the recurrences as

(AAT )Yk = YkT (Y)
k and (ATA)Zk = ZkT

(Z)
k .

The recurrences do not give us a way to represent multiplication by A and AT in
these new bases, which are necessary to perform updates to the coordinate vectors
v′j+1 and p′j+1. The recurrences do however give ways to multiply by AAT and ATA,
and we introduce auxiliary quantities to make use of this. Let

p̃sk+j+1 ≡ AT psk+j+1 = AT (Avsk+j+1 − θsk+j+1psk+j)/ρsk+j+1

=
(
(ATA)vsk+j+1 − θsk+j+1p̃sk+j

)
/ρsk+j+1, and

ṽsk+j+1 ≡ Avsk+j+1 = A(AT psk+j − ρsk+jvsk+j)/θsk+j+1

=
(
(AAT )psk+j − ρsk+j ṽsk+j

)
/θsk+j+1.

Then vector updates can then be written

v̄sk+j+1 = p̃sk+j − ρsk+jvsk+j ,

ṽsk+j+1 =
(
(AAT )psk+j − ρsk+j ṽsk+j

)
/θsk+j+1, and

p̄sk+j+1 = ṽsk+j+1 − θsk+j+1psk+j

for j ∈ {1, . . . , s}, and

p̃sk+j+1 =
(
(ATA)vsk+j+1 − θsk+j+1p̃sk+j

)
/ρsk+j+1

for j ∈ {1, . . . , s− 1} (p̃sk+s+1 is not needed). As before, vsk+j+1 = v̄sk+j+1/θsk+j+1

and psk+j+1 = p̄sk+j+1/ρsk+j+1. Note that ṽsk+j+1 ∈ Yk for j ∈ {1, . . . , s} and
p̃sk+j+1 ∈ Zk for j ∈ {1, . . . , s − 1}, so no additional basis vectors are required to
represent updates to these auxiliary quantities. The classical version of this modified
upper bidiagonalization algorithm is given in Alg. 3.

We can then represent vsk+j+1, ṽsk+j+1, psk+j+1, and p̃sk+j+1 by their coordi-
nates v′j+1, ṽj+1, pj+1, and p̃j+1, resp., in Yk and Zk, i.e.,

vsk+j+1 = Zkv
′
j+1,

ṽsk+j+1 = Ykṽ′j+1, and

psk+j+1 = Ykp′j+1, for j ∈ {1, . . . , s}, and

p̃sk+j+1 = Zkp̃
′
j+1 for j ∈ {1, . . . , s− 1}. (4.2)

Note that using (4.2), in each new outer loop we initialize the coordinate vectors to
p′1 = e1, v′1 = e1, p̃′1 = es+1, and ṽ′1 = es+2, and update them in each iteration by the
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Algorithm 3 Lanczos upper bidiagonalization with auxiliary quantities

Require: m-by-n matrix A and length-n vector b
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1
2: ṽ1 = Av1, p̃1 = AT p1
3: for i = 1, 2, . . . until convergence do
4: v̄i+1 = p̃i − ρivi
5: θi+1 = ‖v̄i+1‖2
6: vi+1 = v̄i+1/θi+1

7: ṽi+1 = (AAT pi − ρiṽi)/θi+1

8: p̄i+1 = ṽi+1 − θi+1pi
9: ρi+1 = ‖p̄i+1‖2

10: pi+1 = p̄i+1/ρi+1

11: p̃i+1 = (ATAvi+1 − θi+1p̃i)/ρi+1

12: end for

formulas

v̄′j+1 = p̃′j − ρsk+jv
′
j ,

v′j+1 = v̄′j+1/θsk+j+1,

ṽ′j+1 =
(
T

(Y)
k p′j − ρsk+j ṽ

′
j

)
/θsk+j+1,

p̄′j+1 = ṽ′j+1 − θsk+j+1p
′
j , and

p′j+1 = p̄′j+1/ρsk+j+1,

for j ∈ {1, . . . , s}, and

p̃′j+1 =
(
T

(Z)
k v′j+1 − θsk+j+1p̃

′
j

)
/ρsk+j+1,

for j ∈ {1, . . . , s− 1}.
Now, it remains to determine how to compute the inner products θsk+j+1 and

ρsk+j+1. We can write

θsk+j+1 = (v̄Tsk+j+1v̄sk+j+1)1/2

= ((Zkv̄
′
j+1)T (Zkv̄

′
j+1))1/2

= (v̄′Tj+1ZT
k Zkv̄

′
j+1)1/2 (4.3)

and

ρsk+j+1 = (p̄Tsk+j+1p̄sk+j+1)1/2

= ((Ykp̄′j+1)T (Ykp̄′j+1))1/2

= (p̄′Tj+1YT
k Ykp̄′j+1)1/2. (4.4)

Defining the Gram matrices

G
(Y)
k = YT

k Yk and G
(Z)
k = ZT

k Zk,

we can compute (4.3) and (4.4) by the formulas

θsk+j+1 = (v̄′Tj+1G
(Z)
k v̄′j+1)1/2 and ρsk+j+1 = (p̄′Tj+1G

(Y)
k p̄′j+1)1/2.
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The resulting communication-avoiding version of Algorithm 3 is shown in Algo-
rithm 4. Note that in lines 19 and 20 of Algorithm 3, we have shown how to recover all
vectors that would be computed in the s iterations. For correctness of the algorithm
as shown, only the vectors for the most recent iteration need be recovered for use in
the next outer loop.

Algorithm 4 Communication-avoiding Lanczos upper bidiagonalization with auxil-
iary quantities

Require: m-by-n matrix A and length-n vector b
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1
2: ṽ1 = Av1, p̃1 = AT p1
3: for k = 0, 1, . . . until convergence do
4: Compute Vk, a basis for Ks(A

TA, vsk+1), Ṽk, a basis for Ks(AA
T , Avsk+1),

Pk, a basis for Ks+1(AAT , psk+1), and P̃k, a basis for Ks(A
TA,AT psk+1). Let

Yk = [Pk, Ṽk], Zk = [Vk, P̃k].

5: G
(Y)
k = YT

k Yk G
(Z)
k = ZT

k Zk

6: v′1 = e1, p′1 = e1, ṽ′1 = es+2, p̃′1 = es+1.
7: for j = 1, . . . , s do
8: v̄′j+1 = p̃′j − ρsk+jv

′
j

9: θsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
10: v′j+1 = v̄′j+1/θsk+j+1

11: ṽ′j+1 = (T
(Y)
k p′j − ρsk+j ṽ

′
j)/θsk+j+1

12: p̄′j+1 = ṽ′j+1 − θsk+j+1p
′
j

13: ρsk+j+1 =
(
p̄′Tj+1G

(Y)
k p̄′j+1

)1/2
14: p′j+1 = p̄′j+1/ρsk+j+1

15: if j < s then

16: p̃′j+1 = (T
(Z)
k v′j+1 − θsk+j+1p̃

′
j)/ρsk+j+1

17: end if
18: end for
19: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v

′
s+1]

20: [psk+2, . . . , psk+s+1] = Yk[p′2, . . . , p
′
s+1]

21: end for

4.2.2. Reduction to lower bidiagonal form. Now assume we are beginning
iteration sk + 1 of Algorithm 2, where k ∈ N and 0 < s ∈ N, so that usk+1 and vsk+1

have just been computed. Recall that

usk+j+1 ∈ Ks(AA
T , Avsk+1) +Ks(AA

T , usk+1) and

vsk+j+1 ∈ Ks+1(ATA, vsk+1) +Ks(A
TA,ATusk+1),

for j ∈ {0, . . . , s}.
We then define basis matrices whose columns span the desired subspaces as fol-

lows. Let Uk be a basis for Ks(AA
T , usk+1), Ṽk a basis for Ks(AA

T , Avsk+1), Vk a
basis for Ks+1(ATA, vsk+1) and Ũk a basis for Ks(A

TA,ATusk+1). Assuming these
polynomial bases are generated using a three-term recurrence, we can write the re-

9



currence relations

(AAT )[Uk, 0, Ṽk, 0] = [Uk, Ṽk]

[
[T

(U)
k , 0] 0

0 [T
(Ṽ)
k , 0]

]
and

(ATA)[Vk, 0, Ũk, 0] = [Vk, Ũk]

[
[T

(V)
k , 0] 0

0 [T
(Ũ)
k , 0]

]
,

where Uk, Ṽk, Vk, and Ũk are the same as Uk, Ṽk, Vk, and Ũk, resp., but with the
last column removed, and the Tk matrices are tridiagonal matrices of the form given

in (4.1) with i = s for T
(V)
k and i = s − 1 for T

(U)
k , T

(Ṽ)
k , and T

(Ũ)
k . As before the

entries α̂j , γ̂j , and β̂j can be different depending on whether we are constructing
polynomials in AAT or ATA and could be refined with each new outer loop.

To simplify notation, we will define Yk ≡ [Uk, Ṽk], Yk ≡ [Uk, 0, Ṽk, 0], Zk ≡
[Vk, ŨZ ], Zk ≡ [Vk, 0, Ũk, 0], and

T
(Y)
k ≡

[
[T

(U)
k , 0] 0

0 [T
(Ṽ)
k , 0]

]
, T

(Z)
k ≡

[
[T

(V)
k , 0] 0

0 [T
(Ũ)
k , 0]

]
.

This lets us rewrite the recurrences as

(AAT )Yk = YkT (Y)
k and

(ATA)Zk = ZkT
(Z)
k .

Note that these are the same recurrences used in the communication-avoiding upper
bidiagonalization method of the previous subsection, but with different definitions of
Yk, Zk, Ỹk, and Z̃k. Again, we introduce auxiliary quantities. Let

ũsk+j+1 ≡ ATusk+j+1 = AT (Avsk+j − αsk+jusk+j)/βsk+j+1

=
(
(ATA)vsk+j − αsk+j ũsk+j

)
/βsk+j+1, and

ṽsk+j+1 ≡ Avsk+j+1 = A(ATusk+j+1 − βsk+j+1vsk+j)/αsk+j+1

=
(
(AAT )usk+j+1 − βsk+j+1ṽsk+j

)
/αsk+j+1.

Then the vector updates become

ūsk+j+1 = (ṽsk+j − αsk+jusk+j),

ũsk+j+1 =
(
(ATA)vsk+j − αsk+j ũsk+j

)
/βsk+j+1, and

v̄sk+j+1 = (ũsk+j − βsk+j+1vsk+j),

for j ∈ {1, . . . , s}, and

ṽsk+j+1 =
(
(AAT )usk+j+1 − βsk+j+1ṽsk+j

)
/αsk+j+1,

for j ∈ {1, . . . , s − 1}. As before, usk+j+1 = ūsk+j+1/βsk+j+1 and vsk+j+1 =
v̄sk+j+1/αsk+j+1. The classical version of this modified lower bidiagonalization al-
gorithm is given in Algorithm 5.

Note that in Algorithm 5, ũsk+j+1 ∈ Zk for j ∈ {0, . . . , s}, and ṽsk+j+1 ∈ Yk for
j ∈ {0, . . . , s− 1}. Then we can represent usk+j+1, ũsk+j+1, vsk+j+1, and ṽsk+j+1 by

10



Algorithm 5 Lanczos lower bidiagonalization with auxiliary quantities

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1
3: for i = 1, 2, . . . until convergence do
4: ūi+1 = ṽi − αiui
5: βi+1 = ‖ūi+1‖2
6: ui+1 = ūi+1/βi+1

7: ũi+1 = (ATAvi − αiũi)/βi+1

8: v̄i+1 = ũi+1 − βi+1vi
9: αi+1 = ‖v̄i+1‖2

10: vi+1 = v̄i+1/αi+1

11: ṽi+1 = (AATui+1 − βi+1ṽi)/αi+1

12: end for

their coordinates u′j+1, ũj+1, vj+1, and ṽj+1, resp., in Yk and Zk, i.e.,

usk+j+1 = Yku′j+1,

ũsk+j+1 = Zkũ
′
j+1, and

vsk+j+1 = Zkv
′
j+1 for j ∈ {1, . . . , s}, and

ṽsk+j+1 = Ykũ′j+1 for j ∈ {1, . . . , s− 1}. (4.5)

Note that using (4.5), in each new outer loop we initialize the coordinate vectors to
u′1 = e1, v′1 = e1, ũ′1 = es+2, and ṽ′1 = es+1, and update them in each iteration by the
formulas

ū′j+1 = ṽ′j − αsk+ju
′
j ,

u′j+1 = ū′j+1/βsk+j+1,

ũ′j+1 =
(
T

(Z)
k v′j − αsk+j ũ

′
j

)
/βsk+j+1,

v̄′j+1 = ũ′j+1 − βsk+j+1v
′
j , and

v′j+1 = v̄′j+1/αsk+j+1,

for j ∈ {1, . . . , s}, and

ṽ′j+1 =
(
T

(Y)
k u′j+1 − βsk+j+1ṽ

′
j

)
/αsk+j+1,

for j ∈ {1, . . . , s− 1}.
Now, it only remains to determine how to compute the inner products βsk+j+1

and αsk+j+1. We can write

βsk+j+1 = (ūTsk+j+1ūsk+j+1)1/2

= ((Ykū′j+1)T (Ykū′j+1))1/2

= (ū′Tj+1YT
k Ykū′j+1)1/2 (4.6)

and

αsk+j+1 = (v̄Tsk+j+1v̄sk+j+1)1/2

= ((Zkv̄
′
j+1)T (Zkv̄

′
j+1))1/2

= (v̄′Tj+1ZT
k Zkv̄

′
j+1)1/2. (4.7)

11



Defining the Gram matrices

G
(Y)
k = YT

k Yk and G
(Z)
k = ZT

k Zk,

equations (4.6) and (4.7) become

βsk+j+1 = (ū′Tj+1G
(Y)
k ū′j+1)1/2 and αsk+j+1 = (v̄′Tj+1G

(Z)
k v̄′j+1)1/2.

The resulting communication-avoiding version of Algorithm 5 is shown in Algorithm 6.
Again note that in lines 19 and 20 of Algorithm 5, we show recovery of all vectors
that would be computed in the s iterations, although only the vectors from the most
recent iteration need be recovered for correctness.

Algorithm 6 Communication-avoiding Lanczos lower bidiagonalization with auxil-
iary quantities

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1
3: for k = 0, 1, . . . until convergence do
4: Compute Uk, a basis for Ks(AA

T , usk+1), Ṽk, a basis for Ks(AA
T , Avsk+1),

Vk, a basis for Ks+1(ATA, vsk+1), and Ũk, a basis for Ks(A
TA,ATusk+1). Let

Yk = [Uk, Ṽk], Zk = [Vk, Ũk].

5: G
(Y)
k = YT

k Yk G
(Z)
k = ZT

k Zk

6: u′1 = e1, v′1 = e1, ũ′1 = es+2, ṽ′1 = es+1.
7: for j = 1, . . . , s do
8: ū′j+1 = ṽ′j − αsk+ju

′
j

9: βsk+j+1 =
(
ū′Tj+1G

(Y)
k ū′j+1

)1/2
10: u′j+1 = ū′j+1/βsk+j+1

11: ũ′j+1 = (T
(Z)
k v′j − αsk+j ũ

′
j)/βsk+j+1

12: v̄′j+1 = ũ′j+1 − βsk+j+1v
′
j

13: αsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
14: v′j+1 = v̄′j+1/αsk+j+1

15: if j < s then

16: ṽ′j+1 = (T
(Y)
k u′j+1 − βsk+j+1ṽ

′
j)/αsk+j+1

17: end if
18: end for
19: [usk+2, . . . , psk+s+1] = Yk[u′2, . . . , u

′
s+1]

20: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v
′
s+1]

21: end for

4.3. Alternating matrix powers. Another communication-avoiding variant
can be derived which builds two coupled Krylov bases, where basis vectors are com-
puted by alternating between multiplication by A and by AT . We still need to obtain
4s+1 basis vectors in order to take s steps of the algorithm, but in this case we do not
need to construct or multiply by ATA and AAT . It is less clear how to choose poly-
nomial basis parameters (entries of Tk) in this case. Numerical and performance com-
parisons between these versions and the communication-avoiding versions discussed
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in Section 4.2 remains future work. Note, as before, in both algorithms derived below
we show recovery of all iteration vectors after each inner loop, although only the last
vectors are needed to begin the next outer loop.

4.3.1. Reduction to upper bidiagonal form. Another version can be derived
by using coupled recurrences to generate bases for vsk+j+1 and psk+j+1. Recall that
for j ∈ {0, . . . , s},

psk+j+1 ∈ Ks+1(AAT , psk+1) +Ks(AA
T , Avsk+1) and

vsk+j+1 ∈ Ks(A
TA, vsk+1) +Ks(A

TA,AT psk+1).

Then assume that we have a 2s dimensional basis Zk such that vsk+j+1 = Zkv
′
j+1

and a 2s+ 1 dimensional basis Yk such that psk+j+1 = Ykp′j+1 for j ∈ {1, . . . , s}, and
that these bases satisfy the recurrences

AZk = YkTk and ATYk = ZkT̃k,

where Zk and Yk are the same as Zk and Yk, resp., but with the last column removed.

The matrices Tk and T̃k are tridiagonal matrices of the form given in (4.1). Given
z1 ≡ vsk+1 and y1 ≡ psk+1, the columns of Zk and Yk can be generated by, e.g.,
computing

y2 = (Az1 − α̂1y1)/γ̂1,

z2 = (AT y1 − α̂1z1)/γ̂1, and

y`+1 = (Az` − α̂`y` − β̂`−1y`−1)/γ̂` for ` ∈ {2, . . . , 2s+ 1},

z`+1 = (AT y` − α̂`z` − β̂`−1z`−1)/γ̂` for ` ∈ {2, . . . , 2s},

where z` and v` denote the `th columns of Zk and Yk, respectively. Note that above,
the coefficients α̂`, β̂`, and γ̂` could be different for computation of y`+1 and z`+1.

Then

v̄sk+j+1 = AT psk+j − ρsk+jvsk+j

Zkv̄
′
j+1 = ATYkp

′
j − ρsk+jZkv

′
j

= ZkT̃kp
′
j − ρsk+jZkv

′
j

and

p̄sk+j+1 = Avsk+j+1 − θsk+j+1psk+j

Ykp̄′j+1 = AZkv
′
j+1 − θsk+j+1Ykp′j

= YkTkv′j+1 − θsk+j+1Ykp′j .

Therefore in the inner loop we can update

v̄′j+1 = T̃kp
′
j − ρsk+jv

′
j and

p̄′j+1 = Tkv
′
j+1 − θsk+j+1p

′
j ,

and recover the iteration vectors by

vsk+j+1 = Zkv
′
j+1 and psk+j+1 = Ykp′j+1,
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for j ∈ {1, . . . , s}.
The scalars required for normalization can be computed by

θsk+j+1 = ‖v̄sk+j+1‖2 =
(
v̄′Tj+1(ZT

k Zk)v̄′j+1

)1/2 ≡ (v̄′Tj+1G
(Z)
k v̄′j+1

)1/2
and

ρsk+j+1 = ‖p̄sk+j+1‖2 =
(
p̄′Tj+1(YT

k Yk)p̄′j+1

)1/2 ≡ (p̄′Tj+1G
(Y)
k p̄′j+1

)1/2
,

and then

v′j+1 = v̄′j+1/θsk+j+1 and

p′j+1 = p̄′j+1/ρsk+j+1.

The resulting communication-avoiding upper bidiagonalization algorithm is shown
in Algorithm 7.

Algorithm 7 Communication-avoiding upper bidiagonalization with alternating ma-
trix powers

Require: m-by-n matrix A and length-n vector b
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1
2: for k = 0, 1, . . . until convergence do
3: Compute Zk and Yk such that AZk = YkTk and ATYk = ZkT̃k.

4: G
(Z)
k = ZT

k Zk, G
(Y)
k = YT

k Yk
5: v′1 = e1, p′1 = e1
6: for j = 1, . . . , s do
7: v̄′j+1 = T̃kp

′
j − ρsk+jv

′
j

8: θsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
9: v′j+1 = v̄′j+1/θsk+j+1

10: p̄′j+1 = Tkv
′
j+1 − θsk+j+1p

′
j

11: ρsk+j+1 =
(
p̄′Tj+1G

(Y)
k p̄′j+1

)1/2
12: p′j+1 = p̄′j+1/ρsk+j+1

13: end for
14: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v

′
s+1]

15: [psk+2, . . . , psk+s+1] = Yk[p′2, . . . , p
′
s+1]

16: end for

4.3.2. Reduction to lower bidiagonal form. Now we derive a version of
lower bidiagonalization using coupled recurrences to generate bases for usk+j+1 and
vsk+j+1. Recall that for j ∈ {0, . . . , s},

usk+j+1 ∈ Ks(AA
T , Avsk+1) +Ks(AA

T , usk+1) and

vsk+j+1 ∈ Ks+1(ATA, vsk+1) +Ks(A
TA,ATusk+1).

Then assume that we have a 2s dimensional basis Yk such that usk+j+1 = Yku′j+1

and a 2s+ 1 dimensional basis Zk such that vsk+j+1 = Zkv
′
j+1 for j ∈ {1, . . . , s}, and

that these bases satisfy the recurrences

AZk = YkTk and ATYk = ZkT̃k,
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where Zk and Yk are the same as Zk and Yk but with the last column removed.
Given usk+1 and vsk+1, the columns of Yk and Zk can be generated by computing

y2 = (Az1 − α̂1y1)/γ̂1,

z2 = (AT y1 − α̂1z1)/γ̂1, and

y`+1 = (Az` − α̂`y` − β̂`−1y`−1)/γ̂` for ` ∈ {2, . . . , 2s},

z`+1 = (AT y` − α̂`z` − β̂`−1z`−1)/γ̂` for ` ∈ {2, . . . , 2s+ 1},

where z` and v` denote the `th columns of Zk and Yk, respectively. Note that above,
as in the upper bidiagonalization case, the coefficients α̂`, β̂`, and γ̂` can be different
for computation of y`+1 and z`+1.

Then

ūsk+j+1 = Avsk+j − αsk+jusk+j

Ykū′j+1 = AZkv
′
j − αsk+jYku′j

= YkTkv′j − αsk+jYku′j

and

v̄sk+j+1 = ATusk+j+1 − βsk+j+1vsk+j

Zkv̄
′
j+1 = ATYku

′
j+1 − βsk+j+1Zkv

′
j

= ZkT̃ku
′
j+1 − βsk+j+1Zkv

′
j .

Therefore in the inner loop we can update

ū′j+1 = Tkv
′
j − αsk+ju

′
j and

v̄′j+1 = T̃ku
′
j+1 − βsk+j+1v

′
j ,

and recover the iteration vectors by

usk+j+1 = Yku′j+1 and vsk+j+1 = Zkv
′
j+1,

for j ∈ {1, . . . , s}.
The scalars required for normalization can be computed by

βsk+j+1 = ‖ūsk+j+1‖2 =
(
ū′Tj+1(YT

k Yk)ū′j+1

)1/2 ≡ (ū′Tj+1G
(Y)
k ū′j+1

)1/2
and

αsk+j+1 = ‖v̄sk+j+1‖2 =
(
v̄′Tj+1(ZT

k Zk)v̄′j+1

)1/2 ≡ (v̄′Tj+1G
(Z)
k v̄′j+1

)1/2
,

and then

u′j+1 = ū′j+1/βsk+j+1 and

v′j+1 = v̄′j+1/αsk+j+1.

The resulting communication-avoiding lower bidiagonalization algorithm is shown
in Algorithm 8.
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Algorithm 8 Communication-avoiding lower bidiagonalization with alternating ma-
trix powers

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: for k = 0, 1, . . . until convergence do
3: Compute Zk and Yk such that AZk = YkTk and ATYk = ZkT̃k.

4: G
(Z)
k = ZT

k Zk, G
(Y)
k = YT

k Yk
5: v′1 = e1, u′1 = e1
6: for j = 1, . . . , s do
7: ū′j+1 = Tkv

′
j − αsk+ju

′
j

8: βsk+j+1 =
(
ū′Tj+1G

(Y)
k ū′j+1

)1/2
9: u′j+1 = ū′j+1/βsk+j+1

10: v̄′j+1 = T̃ku
′
j+1 − βsk+j+1v

′
j

11: αsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
12: v′j+1 = v̄′j+1/αsk+j+1

13: end for
14: [usk+2, . . . , usk+s+1] = Yk[u′2, . . . , u

′
s+1]

15: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v
′
s+1]

16: end for

5. Communication-avoiding LSQR. Paige and Saunders [19] showed that
the quantities generated by the lower bidiagonalization procedure in Algorithm 2 can
be used to solve the least-squares problem min ‖b − Ax‖2. We briefly review the
rationale behind the LSQR algorithm given by Paige and Saunders. For some vector
yi, define the quantities

xi = Viyi,

ri = b−Axi, and

ti+1 = β1e1 −Biyi.

Since for the lower bidiagonalization procedure we have Ui+1(β1e1) = b and AVi =
Ui+1Bi, it follows that ri = Ui+1ti+1, and since Ui+1 is orthonormal, this suggests
choosing yi such that ‖ti+1‖2 is minimized, which gives the least-squares problem
min ‖β1e1 −Biyi‖2.

This problem is solved by updating the QR factorization of Bi in each iteration,
given by

Qi[Bi β1e1] =

[
Ri fi

φ̃i+1

]
,

where Ri is the upper bidiagonal matrix produced by Algorithm 1. (Coinciden-
tally, this factorization provides a link between the two bidiagonalization proce-
dures; see [19]). Above, Qi is the product of a series of plane rotations, i.e., Qi ≡
Qi,i+1 · · ·Q2,3Q1,2. We then have

xi = ViR
−1
i fi ≡ Difi,
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where the columns of Di can be found successively by forward substitution on the
system RT

i D
T
i = V T

i . This gives

di = (1/ρi)(vi − θidi−1) and

xi = xi−1 + φidi,

where d0 = x0 = 0.
The QR factorization is determined by constructing the ith plane rotation Qi,i+1

to operate on rows i and i+ 1 of the transformed [Bi β1e1] and eliminate βi+1. This
recurrence relation can be written[

ci si
si −ci

] [
ρ̄i 0 φ̄i
βi+1 αi+1 0

]
=

[
ρi θi+1 φi
0 ρ̄i+1 φ̄i+1

]
,

where ρ̄1 ≡ α1, φ̄1 ≡ β1, and ci and si are the elements of Qi,i+1. Note that s
without a subscript still denotes the iteration blocking factor. In the algorithm,
vectors wi ≡ ρidi are computed instead of di. As in the previous section, quantities
with bars denote intermediate variables.

Thus, the LSQR algorithm proceeds as follows. One begins by setting

φ̄1 = β1, ρ̄1 = α1, w1 = v1, and x1 = 0n,1,

and proceeds with the Lanczos lower bidiagonalization process (Algorithm 2). In each
iteration, after βi+1, αi+1, and vi+1 have been computed via the bidiagonalization
process, one updates

ρi = (ρ̄2i + β2
i+1)1/2,

ci = ρ̄i/ρi,

si = βi+1/ρi,

θi+1 = siαi+1,

ρ̄i+1 = −ciαi+1,

φi = ciφ̄i,

φ̄i+1 = siφ̄i,

xi+1 = xi +
φi
ρi
wi,

wi+1 = vi+1 −
θi+1

ρi
wi, and

ri+1 = ‖b−Axi+1‖2.

The resulting algorithm is shown in Algorithm 9. Any of the communication-avoiding
variants of the lower bidiagonalization algorithm given in Section 4 can be adapted
to give a communication-avoiding version of LSQR. In Algorithm 11 we show a CA-
LSQR method based on the implementation in Algorithm 6. For reference, we give the
intermediate step in obtaining this new method, a classical LSQR algorithm which
uses auxiliary quantities, in Algorithm 10. In Algorithm 12, we give a CA-LSQR
method using the alternating matrix powers approach of the bidiagonalization in
Algorithm 8.

Note that in Algorithm 11 and 12, as in the previous section, although we have
shown the recovery of all iteration vectors for all s iterations at the end of each outer
loop, only iteration vectors for the last of the s iterations need be computed.

17



Algorithm 9 LSQR

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ū1 = ATu1, v̄1 = Av1
3: φ̄1 = β1 ρ̄1 = α1 w1 = v1 x1 = 0n,1
4: for i = 1, 2, . . . until convergence do
5: ūi+1 = Avi − αiui

6: βi+1 =
(
ūTi+1ūi+1

)1/2
7: ui+1 = ūi+1/βi+1

8: v̄i+1 = ATui+1 − βi+1vi

9: αi+1 =
(
v̄Ti+1v̄i+1

)1/2
10: vi+1 = v̄i+1/αi+1

11: ρi = (ρ̄2i + β2
i+1)1/2

12: ci = ρ̄i/ρi, si = βi+1/ρi
13: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1

14: φi = ciφ̄i, φ̄i+1 = siφ̄i
15: xi+1 = xi + (φi/ρi)wi

16: wi+1 = vi+1 − (θi+1/ρi)wi

17: end for

Algorithm 10 LSQR with auxiliary quantities

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1
3: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
4: for i = 1, 2, . . . until convergence do
5: ūi+1 = ṽi − αiui

6: βi+1 =
(
ūTi+1ūi+1

)1/2
7: ui+1 = ūi+1/βi+1

8: ũi+1 = (ATAvi − αiũi)/βi+1

9: v̄i+1 = ũi+1 − βi+1vi

10: αi+1 =
(
v̄Ti+1v̄i+1

)1/2
11: vi+1 = v̄i+1/αi+1

12: ṽi+1 = (AATui+1 − βi+1ṽi)/αi+1

13: ρi = (ρ̄2i + β2
i+1)1/2

14: ci = ρ̄i/ρi, si = βi+1/ρi
15: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1

16: φi = ciφ̄i, φ̄i+1 = siφ̄i
17: xi+1 = xi + (φi/ρi)wi

18: wi+1 = vi+1 − (θi+1/ρi)wi

19: end for

6. Future work. In this manuscript, we have derived three communication-
avoiding variants of both upper and lower Lanczos bidiagonalization procedures, and
have given two corresponding versions of communication-avoiding LSQR solvers. Fu-
ture work involves evaluation of both the convergence and stability problems of the
various communication-avoiding methods presented here for a variety of different prob-
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Algorithm 11 CA-LSQR

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1
3: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
4: for k = 0, 1, . . . until convergence do
5: Compute Uk, a basis for Ks(AA

T , usk+1), Ũk, a basis for Ks(A
TA,ATusk+1),

Vk, a basis for Ks+1(ATA, vsk+1), and Ṽk, a basis for Ks(AA
T , Avsk+1). Let

Yk = [Uk, Ṽk], Zk = [Vk, Ũk].

6: G
(Y)
k = YT

k Yk, G
(Z)
k = ZT

k Zk

7: u′1 = e1, v′1 = e1, ũ′1 = es+2, ṽ′1 = es+1.
8: w′1 = [01,2s+1, 1]T , x′1 = 02s+2,1

9: for j = 1, . . . , s do
10: ū′j+1 = ṽ′j − αsk+ju

′
j

11: βsk+j+1 =
(
ū′Tj+1G

(Y)
k ū′j+1

)1/2
12: u′j+1 = ū′j+1/βsk+j+1

13: ũ′j+1 = (T
(Z)
k v′j − αsk+j ũ

′
j)/βsk+j+1

14: v̄′j+1 = ũ′j+1 − βsk+j+1v
′
j

15: αsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
16: v′j+1 = v̄′j+1/αsk+j+1

17: ṽ′j+1 = (T
(Y)
k u′j+1 − βsk+j+1ṽ

′
j)/αsk+j+1

18: ρsk+j = (ρ̄2sk+j + β2
sk+j+1)1/2

19: csk+j = ρ̄sk+j/ρsk+j , ssk+j = βsk+j+1/ρsk+j

20: θsk+j+1 = ssk+jαsk+j+1, ρ̄sk+j+1 = −csk+jαsk+j+1

21: φsk+j = csk+j φ̄sk+j , φ̄sk+j+1 = ssk+j φ̄sk+j

22: x′j+1 = x′j + (φsk+j/ρsk+j)w
′
j

23: w′j+1 = [v′Tj+1, 0]T − (θsk+j+1/ρsk+j)w
′
j

24: end for
25: [usk+2, . . . , usk+s+1] = Yk[u′2, . . . , u

′
s+1]

26: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v
′
s+1]

27: [xsk+2, . . . , xsk+s+1] = [Zk, wsk+1][x′2, . . . , x
′
s+1] + xsk+111,s

28: [wsk+2, . . . , wsk+s+1] = [Zk, wsk+j ][w
′
2, . . . , w

′
s+1]

29: end for

lems (and different s values), as well as a performance study for both sequential and
parallel versions. It is not clear from the derivations whether one method will always
win over the others in terms of best speed per iteration or best convergence rate. The
correct method to choose will depend on the structure and conditioning of the matrix,
the requirements of the particular application, and machine-specific parameters such
as cache size and relative latency/bandwidth cost.
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Algorithm 12 CA-LSQR with alternating matrix powers

Require: m-by-n matrix A and length-n starting vector b
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
3: for k = 0, 1, . . . until convergence do
4: Compute Zk and Yk such that AZk = YkTk and ATYk = ZkT̃k.

5: G
(Z)
k = ZTZ, G

(Y)
k = YTY

6: v′1 = e1, u′1 = e1
7: w′1 = [01,2s+1, 1]T , x′1 = 02s+2,1

8: for j = 1, . . . , s do
9: ū′j+1 = Tkv

′
j − αsk+ju

′
j

10: βsk+j+1 =
(
ū′Tj+1G

(Y)
k ū′j+1

)1/2
11: u′j+1 = ū′j+1/βsk+j+1

12: v̄′j+1 = T̃ku
′
j+1 − βsk+j+1v

′
j

13: αsk+j+1 =
(
v̄′Tj+1G

(Z)
k v̄′j+1

)1/2
14: v′j+1 = v̄′j+1/αsk+j+1

15: ρsk+j = (ρ̄2sk+j + β2
sk+j+1)1/2

16: csk+j = ρ̄sk+j/ρsk+j , ssk+j = βsk+j+1/ρsk+j

17: θsk+j+1 = ssk+jαsk+j+1, ρ̄sk+j+1 = −csk+jαsk+j+1

18: φsk+j = csk+j φ̄sk+j , φ̄sk+j+1 = ssk+j φ̄sk+j

19: x′j+1 = x′j + (φsk+j/ρsk+j)w
′
j

20: w′j+1 = [v′Tj+1, 0]T − (θsk+j+1/ρsk+j)w
′
j

21: end for
22: [usk+2, . . . , usk+s+1] = Yk[u′2, . . . , u

′
s+1]

23: [vsk+2, . . . , vsk+s+1] = Zk[v′2, . . . , v
′
s+1]

24: [xsk+2, . . . , xsk+s+1] = [Zk, wsk+1][x′2, . . . , x
′
s+1] + xsk+111,s

25: [wsk+2, . . . , wsk+s+1] = [Zk, wsk+j ][w
′
2, . . . , w

′
s+1]

26: end for
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