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Abstract

Our Capstone project involves working with an open source distributed real time
processing system called Apache Storm, in collaboration with Cisco Systems, Inc. The term “real
time processing” in this context means that the system is able to respond within seconds or
sub-second to requests, while “distributed” means that it is running on multiple computers. The
goal of the project is to add a feature called “k-safety” to Storm. With k-safety, Storm will be
able to tolerate up to k machine failures without losing data or reducing its response time,
making the system highly available. Cisco plans to integrate our modified version of Storm into

their data processing pipeline and use it to support internal and customer-facing products.
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Problem Statement

Today, many online applications require enormous amounts of computing power to
operate. Consequently, these applications are run across many machines. Companies such as
Google, Microsoft, and Amazon use close to if not more than one million servers to support
different online services such as YouTube, Xbox Live, and online shopping (Anthony 2015).
But, as the number of machines increases, the time it takes before one of them fails also
decreases statistically. This theory in fact holds in practice: according to Google, for an
application running on 2,000 machines, the average number of machine failures per day is
greater than 10 (Twitter University 2015). Failures can be temporary, such as when a network
problem causes servers unable to communicate with each other, or permanent, such as when a
hard drive fails to read or write data.

Fortunately, online applications are often run on top of systems that are fault tolerant,
which is a property that provides guarantees on the correctness of results in spite of failures.
However, a fault tolerant system does not make any claims on response time, which means after
a failure, the system can be unresponsive for some time before being able to output results again.
The lack of guarantees on latency, the time it takes for one piece of data to be fully processed, is
undesirable, especially when the application is expected to deliver real-time information, or new
information that has just been received. In some situations, such as the last minute of an online
auction, delays can be detrimental.

Our Capstone project aims to address the problem of providing results with constant

latency even under failures. We achieve this goal by processing the same request on multiple



machines, and making sure that only one copy of the results is sent back to the user. This way, as
long as not all machines processing a particular request fail simultaneously, at least one machine
will finish processing as expected, and output with the expected latency. We implement this idea
on top of an open source stream processing system called Apache Storm (“Storm” 2015), so that

applications running on top of the system can stay responsive throughout its lifetime.



Strategy

1. Introduction

Our Capstone project involves working with an open source distributed real-time
processing system called Apache Storm (“Storm”, 2014) in collaboration with Cisco Systems,
Inc. The term “real-time processing” in this context means that the system is able to respond
within seconds or sub-second to requests, while “distributed” means that it is running on multiple
computers. The goal of the project is to add a feature called “k-safety” to Storm. With k-safety,
Storm will be able to tolerate up to k machine failures without losing data or reducing its
response time. It will make the system “highly available”, which means the system is available to
serve requests most of the time. Cisco plans to integrate our modified version of Storm into their
data processing system and use it to support internal and customer-facing products.

Since Apache Storm is open source, the modifications we make will be open to public,
allowing other interested parties to also use it for their needs. However, in order to understand
our project’s impact on the community, we need to analyze the stakeholders, industry, market,
competition, as well as various trends that are taking place. We will explore these topics in this
section, providing insight to the current competitive landscape, and discussing the strategies we

are adopting to give us the best competitive edge.



2. Industry

Given that we are designing a stream processing system, we are in the Data Processing
and Hosting Services industry. This industry encompasses a wide variety of activities such as
application and web hosting, as well as data processing and management. According to the
IBISWorld industry report by Diment (2015), this industry is expected to produce a total revenue
of $118.1 billion in 2015. Additionally, it is expected to have an annual growth of 4.8% for the
next 5 years to $149.2 billion by 2020.

Diment also mentioned that the complexity of data processing systems increases rapidly,
and managing such complexity requires a high level of engineering talent. At the same time, the
demand for better technologies in this industry is continuously rising. Thus, this industry rapidly
attracts new firms, and many of them employ strategies such as outsourced labor to aggressively
innovate while keeping the costs low. Due to such competition, it is important for us to hold to a
high standard and deliver the most efficient and reliable data processing system in order to attract
users.

While there are many existing data processing systems, most of them are specialized for
certain tasks. We can differentiate ourselves from our competitors by having a system

specialized for certain needs, such as the needs of Cisco.

3. Market

Our market consists of entities that continuously process a massive amount of data as part
of their regular operations. The main market is social networking companies, which include

well-known companies such as Facebook, Twitter, and LinkedIn. Social networking companies



have a total annual revenue of more than $11 billion and growing (Kahn 2015). As their user
base grows, their needs of data processing systems increase. For example, with 86% user
penetration, Facebook needs a system capable of processing a massive amount of data traffic
(Harland 2014). Currently, it uses many open source systems combined, including Hadoop, a
popular processing system for bulk instead of real-time data (Borthakur 2010). As the demand
for real-time information goes up, it may need to adopt our highly available real-time processing
system to better tailor their real-time features. Our market also includes large firms such as
Apple and Cisco since they need a system to process a massive amount of logs for analytic
purposes. In general, companies processing a massive amount of data are within our target
market, as they need a distributed data processing system to operate efficiently.

Our stakeholders are mainly large hardware or software firms, social media providers,
and end users of social media such as ourselves. Large hardware or software firms benefit from
our system when processing logs, as mentioned previously. Social networking companies can
use our system to process a massive amount of data in real-time, delivering news and posts to the
users as soon as they arrive. At the same time, the users start to demand more ways to filter and
customize the content that they see (Hulkower 2013). Social media providers and users form an
ecosystem with massive amounts of data traffic, and a distributed data processing system such as

ours has become an integral part of this ecosystem.

4. Marketing Strategy

To holistically address marketing, in this section we describe our strategies for the 4P’s:

product, price, promotion, and place (Kotler and Armstrong 2011).



4.1 Product

Our product is a highly available distributed real-time processing system, which is mainly
useful to meet the demands of large firms that need to continuously process a massive amount of
data. What makes our product unique is its k-safety feature, which allows the data processing to
continue seamlessly without any pause in the event of machine failures. In contrast, other
systems might stagger for some amount of time in the event of machine failures, ranging from
milliseconds to more than 30 seconds (Hwang et al. 2003). Therefore, our product offers a
distributed real-time processing system that has a consistently low latency despite machine
failures.

4.2 Price

We plan to make our product open source so that the price is free. It is less probable to
commercialize our system, since it is more of a platform where firms can build upon rather than
a complete solution. Moreover, many of our competitors are also open source. If we were to
commercialize this system, we would adopt a variable-based pricing with no upfront costs, since
zero upfront cost is one of the most important attributes that makes data processing products
appealing (Armbrust et al. 2010). In other words, users would pay based on the amount of time
using our system or the amount of data processed. In the current situation, however, we believe
that making our product free is the most appropriate pricing strategy.

Although our product will be free, we can generate revenue by selling a proprietary
product that takes advantage of our system or by offering technical consulting regarding our

system. For example, Cisco may use our system to run one of their proprietary products and



generate revenue this way. Also, we may offer technical consulting at a premium as we are the
experts of the system.

4.3 Promotion

We plan to promote our system to software architects through engineering press releases
or conferences. The decision of whether or not a firm uses our system most likely lies in the
hands of the firm’s software architects. The best channel to reach them is presumably through
engineering press releases and engineering conferences. Such promotion often requires minimal
to no cost, but rather a working proof of the system’s success. Therefore, we have to show a
working prototype in the press in order to attract software architects to use our system.

4.4 Place

Our product will be distributed through the Internet. It will be published and can be
downloaded on the Apache Storm website (“Storm™ 2014). As an open source project, the source
code will also be published online in a public repository such as GitHub (“GitHub” 2015). Thus,

we do not need a physical medium, as everything will be distributed through the Internet.

5. Porter Five Forces Analysis

In this section, we conduct a Porter Five Forces analysis (Porter 2008) on our product’s
industry: Data Processing and Hosting Services.
5.1 Threat of New Entrants

The threat of new entrants for our industry is moderate. The primary reason that increases
the threat is that software products are in general cheap to build. In particular, for distributed

systems, there are decades of research that produced simple and proven solutions to various



problems in the field. For example, Apache Storm, the streaming system that we are working
with, was initially solely developed by its creator, Nathan Marz, over the course of 5 months
(Marz 2014). The low starting cost means that any person or research group in the short-term
future can publish a new system with better performance, and potentially take away users of our
system.

However, in the open source software community, the goal generally is to collaboratively
build systems or packages that can be easily used by anyone free of charge. Although there are
companies that offer consulting services for different open source software, this software is not
usually developed to make money. Moreover, open source software often issue “copyleft”
licenses, which seek to keep intellectual property free and available rather than private, by
requiring modified versions of the original work to be equally or less restrictive (Lerner and
Tirole 2005). These characteristics makes open source less appealing to people hoping to gain
profit from software, reducing the threat of new entrants.

5.2 Threat of Substitutes

Traditionally, users would collect data, then run queries through them to receive answers
in batch. While this method is effective, the collection and querying take time, producing results
in a slow pace. Over time, stream processing systems were developed in response to the
increasing demanding in receiving results in shorter windows. Today, especially in the fields of
real-time analytics and monitoring, systems such as Storm are crucial to the success of various
companies. For instance, one of the biggest users of Storm is Twitter, which runs it on hundreds
of servers across multiple datacenters, performing a range of tasks from filtering and counting to

carrying out machine learning algorithms (Toshniwal et al. 2014). Storm is crucial, because



Twitter needs to produce content in real-time for their users. Therefore, the threat of substitution
in this case is low. Rather, streaming systems are substitutes of traditional data processing
systems.
5.3 Bargaining Power of Suppliers

One of the main reasons that software development has such low starting cost can be
attributed to the low bargaining power of suppliers. In this context, a supplier is any entity that
provides raw materials for us to produce our product. However, we do not require any raw
material. To make software, a programmer only needs a computer and a code editing software
that is free or can be purchased at low price. There is no need for a constant supply of goods or
services, which means that the development of Storm will likely never be hindered by problem
with suppliers.
5.4 Bargaining Power of Buyers

While customers are very important the open source community, they do not necessarily
have much bargaining power. The reason is that most open source software has its own
philosophies in terms of design and development, which can not be easily changed without
agreement among the majority of the project’s key maintainers. As a result, a minority of the
users will not be able to change a certain aspect of the software if the change violates the
philosophy, because the software exists to serve the majority.

In another aspect, like with other software, software migrations are costly. In fact, there
exists software for performing such tasks (Fleurey et al. 2007). As a user continues to use Storm,
it may be increasingly more difficult to switch to another product. This phenomenon actually

motivates the users to contribute back to Storm, improving the software. Although, while users



using Storm will not switch to another product unless they are extremely discontent, it can also
be difficult to make users of other software to adopt Storm.

5.5 Industry and Rivalry

As real-time analytics become more important to business needs, many companies such
as Microsoft (Chandramouli et al. 2014) start to develop their own stream processing systems.
However, many of these solutions are tailored to specific requirements, and are not suitable for
general use. Moreover, in order to remain competitive, many of them do not open their source
code to the public. Nevertheless, there are many competing data processing systems in the open
source community, many of which offer streaming capabilities. Some examples are Apache
Hadoop, Apache Spark, and Apache Samza. The relative strengths and weaknesses of these
systems will be discussed in the next section.

To combat intense rivalry, we are focusing on high availability. While most other stream
processors can tolerate machine failures, many of them have to re-compute the non-persistent
data stored on those machines when failures occur, which can increase the system latency. Our
approach reduces this latency, by minimizing the impact of machine failures on the timeliness of
results. Due to our focus on a niche market, we rate our threat of rivalry to be moderately high

instead of high.

6. Competitive Analysis

In such an attractive market, we have a lot of competition. In this section, we will focus

on our three main competitors: Apache Hadoop, Apache Spark, and Apache Samza.
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6.1 Apache Hadoop (Hadoop)

Hadoop (“Welcome to Hadoop” 2014) is an open-source framework that includes many
tools for distributed data processing and storage. The data processing component of Hadoop is
called Hadoop MapReduce, an implementation of the MapReduce programming model. The
MapReduce programming model was originally introduced by Google (Dean and Ghemawat
2004), and it enables users to easily write applications processing vast amounts of data in a
parallel and fault-tolerant manner.

However, Hadoop’s processing model is by nature very different from Storm. As
previously mentioned, Storm uses stream processing, which processes data one by one as soon as
it arrives. In contrast, Hadoop uses batch processing, which processes a large batch of data
together at the same time. While Storm processes a potentially infinite stream of data as it comes
in, Hadoop processes a finite stored data usually from a database.

To illustrate the difference between batch and stream processing, we will walk through a
few examples. Imagine that we need to compute the statistics (e.g. mean, median, and standard
deviation) of students’ exam scores. It is easier to compute such statistics if we can access the
entire data (all students’ exam scores) altogether, rather than accessing one score at a time.
Therefore, batch processing is more suitable for this task, since we need to process a finite
amount of data at once. In contrast, imagine that we need to count the number of visits to a
website and display it in real time. Since we need to process an infinite stream of data (people
can keep coming to the website forever) and update our count as soon as someone visits the
page, stream processing is definitively more suitable for this task. As can be seen from these

examples, batch processing and stream processing have their own strengths and weaknesses due
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to their different natures. This difference is the key differentiator between our project and
Hadoop.

Furthermore, the expected result of our project should perform much better than Hadoop
in terms of fault tolerance. When a machine fails, a Hadoop job will fail and needs to be
restarted. If that job has computed a lot of data before the machine crashes, the system will
unfortunately have to re-compute everything again. As we can imagine, this property will cost
time. Also, there are overheads associated with re-launching the failed job. In contrast, with our
implementation of k-safety, our system will not waste any time when some machines fail. That
is, if k (or fewer than k) machines fail, our system will continue to process data normally as if
nothing has happened. This is a major advantage that we have over Hadoop. In the world of
distributed computing, machine failures are inevitable such that an efficient fault-tolerance
mechanism is absolutely necessary. Our system guarantees a smooth performance when at most
k machines fail, which Hadoop does not offer.

6.2 Apache Spark (Spark)

Another competitor of our project is Apache Spark (“Apache Spark” 2014). A project
that came out of the UC Berkeley AMPLab, and open-sourced in 2010, Spark has gained much
attention in the recent few years. The distinguishing feature of Spark is that it uses a novel
distributed programming abstraction called Resilient Redundant Datasets (RDDs). With this
abstraction, the application can operate on a large set of data as if they are located at the same
place, while underneath the cover, the data can be split across multiple machines.

Compared to the way Apache Hadoop processes data, RDDs offer many benefits. First,

while Hadoop MapReduce reads data from disk and writes data back to disk for each operation
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on data, RDDs allow result to be cached in the machine’s random-access memory (RAM). This
characteristic offers great performance boost, because accessing data in memory is many orders
of magnitudes faster than accessing data on disk. As a result, Spark can be used to implement
iterative (accessing the same data multiple times) or interactive (requiring response time in
seconds instead of minutes or hours) applications previously unsuitable for Hadoop. Second,
RDDs offer many more high-level operations on data than Hadoop MapReduce. As a result,
applications written using Spark tend to be much shorter than those written using Hadoop.
Finally, an RDD keeps a lineage of operations performed on it to obtain the current state, so in
the event that a machine fails, the lost data can be reconstructed from the original input. In
contrast, Hadoop MapReduce requires storing the intermediate results at every step if the
application wishes to recover from failures.

Another interesting aspect of Spark is Spark Streaming, which is an extension of Spark
that provides stream processing. The difference between Spark Streaming and traditional stream
processing systems is that instead of processing data one record at a time, it groups data into
small batches and process them together. Since each processing incurs some computation
overhead, processing more data at a time means higher throughput. However, the benefit comes
at the cost of longer latencies, usually in seconds rather than milliseconds for individual data
points.

While Spark is strong in many aspects, the winning factor of our project is its consistent
low latency. As mentioned above, since every RDD contains information on its lineage, it does
not need to be replicated in case of failures. However, the extra latency required to re-compute

data after a failure is unacceptable for some applications, while we can return results at a much
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more consistent rate. To compete against Spark’s other advantages, our system is linearly
scalable, meaning to obtain higher throughput, we can simply add more machines. As for the
programming interface, we target applications that do not contain very complex logic.

6.3 Apache Samza (Samza)

The third competition that we face is Apache Samza (“Samza” 2014). Samza is a stream
processing system developed by LinkedIn, and was open-sourced in 2013. Even though the
system is still gaining traction on the market, it has proven use cases inside LinkedIn, powering
many of its website features such as news feed. Philosophically, Samza is very similar to Storm.
It processes data a record at a time, and achieves sub-second latency with reasonable throughput.
On the design level, Samza offers features such as the ability to process input in the order they
are received, and keep metadata or intermediate data about the processed input. However, these
features are less relevant to our target applications.

Similar to other systems mentioned previously, Samza again doesn’t provide k-safety in
our manner. Its fault tolerance model is to redo the computations previously done by the failed
machine. To not lose data, it takes a similar approach to Hadoop, and writes intermediate results
to disk. This way, Samza’s authors argue, less re-computation is required after a failure.
However, in the context of latency, writing every input to disk takes time, so the overall response
time in Samza is slower than Storm. In the context of tail tolerance, our solution of duplicating
computation is also superior, since a live copy of the result can be quickly retrieved from the
backup machines. Again, while it is true that running every computation multiple times in our

system decreases the throughput in general, our goal is to be linearly scalable. Our stakeholders

14



are willing to add more machines in order to have the assurance of both consistent low latency

and high throughput even with failures.

7. Trends

Aside from understanding the industry, market, and competitors, it is also important to
observe relevant trends that can help predict the future landscape. In our case, there are several
economic and technological trends that affect our Capstone project. One major trend that affects
our project is the movement of data and services to the cloud. According to a MINTEL report on
consumer cloud computing, more than a third of Internet users are now using some form of
cloud-based service (Hulkower 2012). As more data is moved to the cloud, and more people are
using these cloud-based services, there will be a greater need for ways to process this data
efficiently. The popularity of Internet of Things is also growing, as more devices are connected
to the Internet and more information is generated. According to Gartner Inc., an information
technology research firm, information is being to reinvent and digitalize business processes and
products (Laney 2015). Businesses will need curate, manage, and leverage big data in order to
compete in the changing digital economy. Efficient data processing systems will be even more

important in the future based on these trends.

8. Conclusion

We have described the business strategy for our Capstone project; a highly available
distributed real-time processing system using Apache Storm in collaboration with Cisco
Systems, Inc. From the IBIS report (Diment 2015), it is clear that the Data Processing and

Hosting Services industry is rapidly growing. As more components in the world are connected
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through the web, the demand for real-time information will also rise accordingly. Hedging on
this trend, we are confident about our product, despite entering a competitive industry filled with
similar data processing systems.

Another contributing factor to our positive outlook is the ability of our system to deliver
results with minimal delays, despite various failures that can occur in a distributed environment.
By focusing on this niche use case, our product will likely be noticed by various high-tech, social
media firms that we are targeting, especially if they have previous experience working with
Apache Storm.

Finally, it is important to note that while we will potentially face many uncertainties, our
end goal is to make the open source project more accessible to our target customers. By this
measure, the probability of failure for the project is therefore very low. If we can even satisfy a

small fraction of total customers in the industry, we have served our purpose.

16



Intellectual Property

1. Introduction

Our capstone project, which we develop in collaboration with Cisco, aims to implement a
high availability feature on a distributed real-time processing system named Storm by using a
method known as “k-safety”, which involves creating duplicate records of data and processing
them simultaneously. However, this method has been public knowledge for a while such that our
project is not eligible for a patent, and therefore we will make our project open source instead.
This paper is divided into sections as follows. Section 2 further describes our rationale of
choosing open source as a strategy. Section 3 explains our analysis regarding open source, which
includes its benefits and risks. Section 4 describes a patent that is most closely related to our

project and how it affects us.

2. Rationale of Choosing Open Source

Our project does not have any patentable invention. According to the United States Patent
and Trademark Office, an invention has to be novel in order to obtain a patent (USPTO 2014).
However, highly available algorithms for real-time processing systems have been a research
topic for a while. Many researchers have already studied these algorithms and published papers
describing them in great detail. Hwang et al. published a paper that describes and compares the
performance of these algorithms, including the k-safety algorithm that we are implementing
(Hwang et al. 2003). Furthermore, other researchers have explored the usage of k-safety in

various fields other than data processing. For example, Kallman et al. published a paper that
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describes k-safety usage in the database context (Kallman et al. 2008). Given that k-safety for
data processing has been public knowledge, our project, which mainly relies on k-safety fails the
novelty requirement to obtain a patent, and therefore it is not patentable.

Since getting a patent is not an option, we turn to open source, as it seems to be the
natural choice for our project. The reason is because our project relies on an open source system
— Storm — as we are building k-safety on top of it. The Storm project already has a considerably
large community of programmers. By keeping our project open source and committing our
modifications as a contribution to Storm, we can join the existing community and gain their
support. Furthermore, there are many benefits of open source, which we will describe in the next
section. The opposite strategy that we can adopt is trade secret. However, there is nothing that
we can hide as a secret, since the algorithm that we are implementing is already well known to
the public. Therefore, we believe that it is best to choose open source as our intellectual property
(IP) strategy by contributing our code to Storm.

Additionally, our project will implicitly obtain a trademark and a copyright, though these
rights are not an important concern of ours. Storm is copyrighted and trademarked by the Apache
Software Foundation (ASF) (Storm 2014). As we are contributing to Storm, our project will be a
part of Storm, and it will automatically inherit the trademark of Storm. Although not necessary,
we can write our copyright notice for each piece of the code that we write. Storm as a whole,
however, is copyrighted by ASF. Nonetheless, our names will be recorded when we submit our
code to Storm, thus people will know our contribution. In general, we permit anyone to develop,
modify, and redistribute our code in the spirit of open source. As such, we do not worry much

about trademark and copyright, since Storm has been set up to manage both rights appropriately.
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3. Analysis of Open Source

In this section, we describe our analysis regarding the benefits and risks of implementing
open source strategy for our project. We begin with mentioning all of the benefits, followed by
all of the risks.

First, open source makes development faster. An article published by the Harvard
Business Review (HBR) states that open source accelerates the software’s rate of improvement,
because it can acquire many more developers to work on the project than any payroll could
afford (Wilson and Kambil 2008). By contributing to Storm’s open source project, we gain the
support of Storm’s large community of developers without having to pay them, thus allowing
development to accelerate faster with less financial burden.

The nature of open source projects usually nurtures innovation. According to the book
Innovation Happens Elsewhere: Open Source As Business Strategy (IHE), the unlimited size of
the open source community makes it more likely for people to come up with new innovative
features that the original developers may not have considered (Goldman and Gabriel 2005). For
example, we can add a new k-safety feature to Storm because it is open source. In general, open
source tends to encourage new innovative features that will further improve the overall quality of
the project.

Open source increases the size of the market. According to HBR, closed companies have
smaller market opportunity than open companies (Wilson and Kambil 2008). According to IHE,
open source increases market size by building a market for proprietary products or by creating a
marketplace for add-ons, support, or other related products and services (Goldman and Gabriel

2005). Cisco owns a proprietary product that uses our project as its foundation. In this case, [HE
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suggests that by making our project open source, it builds awareness of Cisco’s proprietary
product, or it may even persuade some customers to upgrade and try the proprietary product.
Therefore, open source can help increase the market size of our product and Cisco’s proprietary
product.

Additionally, HBR suggests that companies often pay a reputational price for being
closed, as the market tends to advocate open source (Wilson and Kambil 2008). This is
especially true in our situation. Making our project proprietary may damage Cisco’s and our
reputation significantly given that Storm was originally open source. Thus, being open source
avoids the risk of damaging our reputations.

From the individual perspective, contributing to an open source project offers two main
benefits: building a better resume and obtaining technical support from experts. Previous studies
showed that contributing to an open source project can lead to a higher future earning and helps
solve individuals’ programming problems (Lerner and Tirole 2005). In our case, our names will
gain more exposure, and we can acquaint ourselves with experts in the data processing industry.
Thus, open source benefits not only the project, but also the individuals.

Although open source offers many benefits, there are some risks associated with it. First,
according to HBR, open source projects have a greater risk of IP infringements (Wilson and
Kambil 2008). The reason is because open source projects are developed by an amorphous
community of unknown people. They are less controlled compared with homegrown software
engineers. In order to mitigate this risk, every code submission must be reviewed seriously,
which incurs additional efforts. However, this is a concern of ASF instead of ours, since ASF

(the owner of Storm) controls the code repository. Our responsibility is to make sure that our
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code does not infringe any IP. Thus, although IP infringement is a general risk in open source
projects, we are not in position to worry about it.

Open source projects tend to risk the quality. IHE states that open source projects may
have issues in the design level and in the code level (Goldman and Gabriel 2005). The founders
may not have the same design mindset with the open source community, and the code quality
written by the community has no guarantee, since there is no way to impose a strict management
to the community as in a company. IHE suggests that a careful code review is required to
mitigate this risk (Goldman and Gabriel 2005). Again, since ASF controls Storm’s code
repository, this issue is not our concern, as we do not have control over code submissions.
Fortunately, the current repository technology tracks every code submission such that we can
choose the version that we desire. When there is an unsatisfactory update, we can revert to a
previous version while submitting a ticket requesting a fix. Therefore, we can mitigate the risk of
low quality for our purposes, but ASF may be more concerned about the overall quality of Storm
over time.

There are some risks of “free riders”. According to the National Bureau of Economic
Research, the open source system has the opposite effect from the patent system (Maurer and
Scotchmer 2006). That is, while the patent system incentivizes racing to be the first one, the open
source system incentivizes waiting to see if others will do the work. Thus, there will be entities
that do not contribute anything while taking advantage of the open source project, and they are
called “free riders”. Unfortunately, this is a drawback of the open source system that currently

does not have any solution.
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Finally, the obvious risk of open source is losing competitive advantage. Open source
allows anyone to see the source code of the project, which allows competitors to see what we are
doing or even steal it. In fact, HBR suggests that the risk of losing competitive advantage must
be seriously considered before committing to open source (Wilson and Kambil 2008). However,
as previously mentioned, we do not have anything to hide since the algorithm that we implement
has been known to the public for a while. Cisco uses our system to run their proprietary product,
and they can maintain their competitive advantage by simply keeping their product proprietary.
Therefore, although the risk of losing competitive advantage is a serious matter, it does not
necessarily apply to Cisco or us.

We have described our analysis regarding open source in relation to our project. Open
source have some significant benefits and risks, but we believe that the overall benefits

overweigh the risks for our particular case.

4. Closely Related Patent

There is an existing patent for a distributed stream processing method and system. This
method involves splitting data into real-time and historical data streams. Data that comes in will
be split into a system that processes real-time data, a system that processes data created within 2
to 30 days, and a system that processes data exceeding thirty days based on timestamps (Zhang
et al. 2013). Each system can process data differently. For example, the historical data processing
may require more precision can be done offline. The real-time processing system is further split
into different modules depending on the type of data, and these modules are further split into

data units for parallelization (Zhang et al. 2013). This is similar to components and tasks in
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Apache Storm. Finally the output from the historical and real-time systems are integrated for a
final result.

Like our project, the system described in this patent also deals with distributed stream
processing, but we are not concerned about it. Our project does not specifically deal with
splitting data by time values. In some way, our system does overlap with the patent. Apache
Storm can be used as the real-time processing component of the patent’s system, as it is capable
of processing data into modules (bolts) and splitting the data to process it in parallel (task
parallelization). Also, Apache storm, and therefore our system, can somewhat imitate the full
function of this patent’s system by simply creating a topology involving splitting the data into
different bolts based on timestamps, although it would not be capable of the more precise and
time-consuming calculation that could be done on an offline system. However, this approach is
simply a topology that a user would create using Storm, as Storm itself is not designed with that
purpose in mind. As such, we would not have to worry about licensing fees regarding this patent,

as our system does not directly infringe on the patent.

5. Conclusion

This paper describes our IP strategy. Since our project does not contain any patentable
idea, we opted for open source. We described several reasons for choosing open source strategy,
and we analyzed its benefits and risks. Overall, the benefits of choosing open source strategy
overweigh its risks. Finally, we researched related patents, and we described one that we believe
is most related to our project. While there are some similarities, we believe that our project will

not infringe any of its IP. With the benefits offered by open source and the lack of prior patents
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protecting the ideas used in our project, we believe that our project can reach its maximum

potential.
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Technical Contributions

1. Overview

This section describes the technical contributions to the capstone project that I have been
working in collaboration with Ashkon Soroudi and Jianneng Li. The project is supervised by
Zhitao Shen from Cisco Systems, Inc. and Professor Michael Franklin.

The project aims to implement a variation of k-safety on an open source distributed
real-time stream processing system, namely Apache Storm (“Storm” 2015). A stream processing
system allows applications to execute continuous queries over an infinite stream of data
(formatted as tuples), and there have been many different implementations of such systems since
more than a decade ago (Babcock et al. 2002; Carney et al. 2002; Madden and Franklin 2002;
Abadi et al. 2003; Chandrasekaran et al. 2003). We define a stream processing system to be
k-safe if it is capable of tolerating k£ machine failures at a time, where & is a predefined parameter.
Storm was designed with fault tolerance as one of its goals; hence it already has k-safety
(Toshniwal et al. 2014). However, its performance degrades when machines fail. Our goal is to
make the system capable of running normally without stopping or having a delay when at most &
machines fail.

In order to successfully create the system, there are three main components that we need
to implement. First, we need to implement tuple duplication, which creates replicas of a tuple
and sends them to different machines, followed by deduplication, which eliminates duplicated

tuples to ensure that all tuples are processed exactly once. Second, we need a scheduler that
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allocates tasks to machines. In order to enforce the k-safety that we desire, the scheduler needs to
ensure that duplicate tuples are directed to different machines. We must design the scheduler
carefully as its decisions impact performance (Rychly et al. 2014). Third, we need to implement
a recovery method to resurrect the correct state for any machine that has just come back from a
failure (Koo and Toueg 1987). These three components are equally important for the success of
the entire system.

Furthermore, there are some rudimentary tasks that are nonetheless essential and need to
be performed. In order to test our system, we need to set up Storm to run correctly on a cluster of
machines. We also need to create Storm topologies (applications that use Storm) that concretely
utilize k-safety for demo as well as testing.

To cover the entire project, we divide the discussion as follows. I discuss the tuple
duplication and deduplication aspect of our system and the Storm topologies that we created.
Soroudi discusses the scheduler, and Li discusses the recovery solution. This division closely
resembles how we divide the task in reality.

The rest of the paper is organized as follows. I begin with analyzing related work in
Section 2. I discuss the duplication and deduplication technique that our system uses in Section
3. I describe the Storm topologies that we created in Section 4. Finally, I present the results in

Section 5, followed by a summary in Section 6.

2. Related work

Fault tolerance, which is the ability to continue operating in the event of some failures, is
commonly implemented in systems. The first fault tolerance technique was introduced in 1951

for memory error detection (Siewiorek 1982). All fault tolerance techniques involve redundancy
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in some way (Cristian 1991). The Google File System, for example, uses both checksums and
data duplication (Ghemawat et al. 2003). Different fault tolerance methods are tailored for
different purposes. Our project focuses on fault tolerance that emphasizes high-availability. In
our context, high-availability refers to the ability of a system to operate continuously in almost
all of the times. Duplicating the data is generally required to achieve high-availability because it
enables a fast recovery time on failures (Hwang et al. 2003). This section focuses on analyzing
data duplication and deduplication from prior art in stream processing.

Hwang et al. provided a nice comparison of techniques used to achieve fault tolerance
that emphasize high-availability (2003; 2005). These techniques were discussed in the context of
tolerating a single machine failure, but they can be extended to tolerate & machine failures.
Figure 1 provides a high-level summary of these techniques. Diagram (A), (B), and (C) depict
previous techniques called passive standby, upstream backup, and active standby respectively,
while diagram (D) depicts our technique.

Figure 1 illustrates a simple k-safe topology with k=1 that uses four nodes. For the
purpose of this discussion, assume that Node 1 and Node 3 are always available (a common
assumption in many related literatures, as these nodes can be made k-safe using the same
techniques described in this paper). Also, assume that the connections between nodes are reliable
(such as TCP connection) so there will be no packet loss unless the machine fails (Postel 1981).
Node 1 takes input from the outside world, such as the Internet or sensors. Node 1 sends tuples to
Node 2-1 and in some cases to Node 2-2 as well, which is the backup node for Node 2-1. Finally,

Node 2-1 (and/or Node 2-2) sends tuples to Node 3, and Node 3 outputs the results. Assume that

27



Node 2-1 is the primary node and Node 2-2 is the backup node, although in reality they are

interchangeable.
(A)
Node 2-1
Input —>»
h 4
Node2-2 [~
(B)
/ Node 2-1
Input ——2> Node | 7.
A Node22 7
(C)
Node 2-1
Input —2 Node |
Node 2-2 |7
(D)
Node 2-1
Input —» Node |
Node 2-2

Node 3

—>  Active stream

-=---=2 Stream only during failures

— Output

—> Output

—> Output

—> Output

Figure 1. Comparison between high-availability techniques in stream processing
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Passive standby, which is pictured in Figure 1 diagram (A), was originally designed with
the idea of having process pairs where multiple processes work together and complement each
other to provide fault-tolerance (Bartlett, Gray, and Horst 1987). For example, the primary node
in the diagram above, Node 2-1, is paired with a backup node, Node 2-2. The primary node
periodically transfers a replica of its state to the backup node called a checkpoint (the arrow from
Node 2-1 to Node 2-2). The source node (Node 1) stores its output tuples in a buffer until they
have been checkpointed. When the primary node (Node 2-1) fails, the backup node (Node 2-2)
takes over from the last checkpoint, and the backup node then becomes the primary node. In this
technique, the duplication occurs when the primary node sends a checkpoint to the backup node.
When the primary node fails, the backup node may output tuples that have previously been
outputted by the primary node because the source node replays every tuple from the last
checkpoint. Thus, the next node (Node 3) needs to perform tuple deduplication.

With upstream backup, the input tuples are saved in a buffer until all nodes downstream
have finished processing them. Figure 1 diagram (B) pictures this technique. Node 1 saves the
tuples in a buffer even after it sends them to Node 2-1, until Node 3 says that it is safe to discard
them. When a failure occurs, a backup node takes over and the source replays all tuples in the
buffer to the backup node. That is, when Node 2-1 fails, Node 1 resends all tuples in its buffer to
Node 2-2, and Node 2-2 then becomes the new Node 2-1. In this situation, the source (Node 1)
may resend a tuple that has actually been processed by all nodes downstream (though this
depends on the actual implementation), in which case the downstream nodes (for example, Node
3) have to perform deduplication. Overall, this technique uses the minimum amount of

duplication and deduplication.
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The active standby technique involves process pairs as well (Hwang et al. 2005; Shah et
al. 2003). Pictured in Figure 1 diagram (C), this technique essentially makes the source node
sends the same tuples to the primary and backup nodes at once. Both primary and backup nodes
process the tuples even when their partner is alive. Then, only the primary node emits the output,
while the backup node saves the output to its output buffer. Each tuple received by the
downstream node is acknowledged (acked). The downstream node sends this ack to the backup
node so that it knows that it is safe to discard the tuple from its output buffer. When there is no
ack, it indicates that the primary node is dead, so the backup node begins emitting the tuples in
its output buffer. In the diagram, Node 1 sends the tuples to Node 2-1 and Node 2-2
simultaneously, and both Node 2-1 and Node 2-2 process the tuples. However, only Node 2-1
emits the output to Node 3. Upon receiving a tuple, Node 3 sends an ack to Node 2-2 to inform
that it is safe to discard the tuple. Depending on the actual implementation, Node 3 may receive
duplicate tuples when a failure occurs such that it needs to perform deduplication. Hwang et al.
showed that this technique has the fastest recovery time on a failure (since the backup node has
the output tuples ready to be emitted at any time) at the cost of having the most redundancy
compared with the two techniques mentioned above (2003).

These different techniques have different strengths and weaknesses. The upstream
backup technique involves the least amount of overhead, but when a machine fails, the system
needs some time to re-compute the failed tuples. The active standby technique involves more
data overhead and more processing power but it has a faster recovery time due to having multiple
nodes executing the same stream of tuples. The passive standby technique is the middle solution.

Popular distributed systems (not limited to stream processing systems) have implemented these
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techniques. Apache Hadoop and Apache Spark use the upstream backup technique (Borthakur
2007; Zaharia et al. 2012). Researchers have explored the passive standby technique using
Hadoop as well (Wang et al. 2009). A model called Flux illustrates the usage of the active
standby technique (Shah, Hellerstein, and Brewer 2004).

Our work is most similar to the active standby approach. The difference is that we do not
use acks in our system, and both primary and backup nodes emit the output regardless of
situation. Thus, the downstream node needs to perform deduplication at all times. In the example
of our system portrayed in Figure 1 diagram (D), Node 1 sends the same tuples to Node 2-1 and
Node 2-2, and Node 2-1 and Node 2-2 both process all incoming tuples and both emit their
outputs to Node 3. Thus, Node 3 has to deduplicate the tuples. As can be seen, we involve more
duplication and deduplication compared to the previous three techniques, which can be
approximately visualized by the amount of red color in the diagrams. However, this allows us to
have zero recovery time when a machine fails. For example, when Node 2-1 fails, it does not
affect the system at all since Node 2-2 continues to operate as a replica of Node 2-1. In summary,
our technique is not necessarily better than the previous techniques, but rather it offers a solution
for those who demand high-availability with zero recovery time at the expense of having more

network traffic.

3. Our approach

Duplication
To accomplish k-safety, our system duplicates every tuple such that there will be £ + 1

replicas of it on k + 1 different machines. Thus, the system is able to run normally when at
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most k& machines fail. All £ + 1 replicas are treated like regular tuples and are processed in
parallel on k£ + 1 machines. As a result, there will be k£ + 1 replicas of the same output that
will be emitted to the next node. Hence, the downstream node must perform a deduplication.

Storm provides many methods to describe where the tuples should be sent. One of these
methods is called “fields grouping”. With fields grouping, the user can specify what fields in the
tuple that they want to use as a key. Tuples with the same key are sent to the same machines.
This is typically useful for aggregation operations. For example, if we want to create a word
count application, we want the same words to go to the same machines so that each machine can
completely compute the word count for a particular set of words.

We create our own grouping method called “k-safe fields grouping”. While Storm’s
fields grouping guarantees that tuples with the same key are sent to the same machine, our k-safe
fields grouping guarantees that tuples with the same key are sent to the same set of & + 1
machines. This set of machines is determined by the hash value of the key. To properly send the
tuples to these machines, a correct scheduler is required, which is discussed in depth in Soroudi’s
paper (2015). Note that we do not need to send all tuples to a single set of £ + 1 machines. We
just need to ensure that tuples with the same key are sent to the same set of machines. It is
important for correctness especially when performing aggregations. As mentioned earlier, word

count may rely on having the same set of words on the same machines.
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Deduplication

Node 2-1 Node 3

Input ——> Node | Output

Node 2-2

Figure 2. A closer look at diagram (D) in Figure 1

Deduplication can be performed upstream (without sending duplicate outputs) or
downstream (after sending duplicate outputs). A system using the active standby approach such
as Flux performs the deduplication upstream (Shah, Hellerstein, and Brewer 2004). In contrast,
our system performs the deduplication downstream. Figure 2 shows that our system performs the
deduplication downstream inside Node 3. For comparison, a system using the active standby
approach usually performs the deduplication upstream, specifically in Node 2-2 (by avoiding
sending its output unless Node 2-1 fails). By performing the deduplication downstream, our
system burdens the network with a higher traffic, since Node 2-1 and Node 2-2 both send their
outputs to Node 3. However, unlike active standby systems, our system benefits from not
requiring heartbeats or acks. Furthermore, it has zero recovery time. This is because the upstream
nodes continuously produce outputs and send them downstream regardless of situation. In the
illustration above, Node 2-1 and Node 2-2 continuously send their outputs to Node 3, thus when
either one of Node 2-1 or Node 2-2 fails, Node 3 still receives incoming tuples from the other
node. Therefore, we chose this deduplication strategy to achieve the fastest recovery time

possible at the cost of higher network traffic.
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As can be seen in Figure 2, the deduplication (pictured by the oval labeled dedup) occurs
before running the user or application code. Thus, the stream of tuples sent to the application
code is guaranteed to be duplicate-free. As such, developers can write application code without
worrying about duplicate tuples.

To uniquely identify each tuple and deduplicate, our system automatically adds three
additional fields to each tuple: seqnum, source, and primary.

- Segnum: the sequence number of this tuple. Each source node should assign a
monotonically increasing sequence number to every tuple that it produces. This is useful
to differentiate different tuples from the same source.

- Source: the source node that created this tuple. This allows differentiating tuples that
have the same sequence number but come from different sources. Tuples coming from
different sources should not be considered duplicates, as different sources are assumed to
generate different data.

- Primary: the primary node for this tuple, which is the node that processes this tuple if

k= 0. This field gets updated at every step. That is, after processing a tuple, a node must

update this field in that tuple. This is described in a greater detail below.

To perform deduplication, each node (except source nodes) inspects the values of
(segnum, source, primary). Tuples with the same (seqnum, source, primary) are considered
duplicates. Since each source generates a monotonically increasing segnum, each node stores the
maximum segnum that it has seen for each (source, primary). Each node expects that tuples will

arrive with increasing seqnums. Thus, if a tuple has a segnum lower than or equal to the
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maximum seqnum, it will be removed from the stream. Table 1 provides some examples to

illustrate this concept.

Current state (source, primary, seqnum) Deduplicate
(source, primary) — max seqnum of the arriving tuple tuple
(1,1,5) Yes
(1,1)—5
(1a196) No
(1,2) >3 (1.2.2) Yes
(1,2,4) No

Table 1. Examples of deduplication decisions

The primary field is necessary because Storm does not guarantee the global ordering of
tuples, although it guarantees that tuples will arrive in order when sent between two nodes.
Figure 3 illustrates this concept. In the figure, the source generates four tuples with sequence
numbers 1, 2, 3, and 4 with £ =0 (no duplication). Suppose that the source sends tuples 1 and 2
to Node A and tuples 3 and 4 to node B. Storm guarantees that Node A will receive tuples 1 and
2 in order and Node B will receive tuple 3 and 4 in order. However, Node B may finish
processing tuple 3 before Node A finishes processing tuple 1. Thus, it is possible for Node C to
receive tuple 3 before receiving tuple 1. In this case, even though tuple 1 has a lower sequence
number than tuple 3, it should not be removed. The value of primary in tuple 1 is “Node A”,
while the value of primary in tuple 3 is “Node B”. Since the two tuples have different primary
values, they will not be removed. On the other hand, if tuple 2 arrives at Node C before tuple 1,

then tuple 1 will be removed since it has a lower seqnum than tuple 2 and the same primary
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value with tuple 2 (“Node A”). However, this scenario is impossible because Storm guarantees

that tuples come in order between two direct nodes.

Order of arriving tuples:
1.2

Tuples Order of
generated: Node A arriving tuples:

|

3

2 Source 1

3 2
4

Node B 4

Order of arriving tuples:
3.4

Figure 3. Example of tuples arriving out of order

For the system to deduplicate correctly and produce the correct output, aggregations must
be executed carefully. The timing of emitting aggregation results must be determined by the
tuples. A common mistake is to emit aggregations at a predetermined time interval, such as every
five minutes or every hour. However, this approach would not work with our system because it
emits aggregations not based on the tuple, but based on an outside source (system time) instead.

Figure 4 illustrates this problem. Suppose that we have two nodes, Node A and Node B,
and suppose that they are a backup of each other such that they receive and process the same
tuples. The goal of these nodes is to compute the sum of the values in the tuples that they
receive. Suppose that the user programs this application such that these nodes emit the sum every
second. However, these nodes do not receive the tuples at exactly the same time. Node A
receives the tuples with values 2, 3, 3, and 5 within the first second, so it outputs 13. However,
Node B only receives the tuples with values 2, 3, and 3 within the first second, so it outputs 8.

These outputs are supposed to be the same, but they are different. They are supposed to be
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duplicates, but now they are not, and they will not be deduplicated correctly. In the next round,
these two nodes emit different sums again. Node A emits 23 whereas Node B emits 28. As can
be seen, the result becomes erroneous. This can be easily avoided if the timing of emitting
aggregations is determined by the tuples, such as by using the tuples’ timestamps or sequence
numbers. For example, if we make Node A and Node B emit the sum whenever the sequence
number of an incoming tuple is divisible by 5, then they will deterministically aggregate the
same tuples and emit the same sums all the time. It is important to ensure that the timing of

emitting aggregations is based on the tuple, not based on an external source such as system time.

13 23
A A
~ | 7 ™,
2 3 3 5 ] 7 2 9 4 6 8 L
Node A » Time
8 28
A e
I ™y I ™y
2 3 3 3 1 7 2 9 4 6 8 L
Node B > Time
Emit Emit
results results

Figure 4. Illustration of a problem that occurs when aggregations is not deterministic

Finally, when performing aggregations, our system uses the (seqnum, source, primary) of
the last tuple that a node has received, which should be the tuple that causes that node to emit the
aggregation result (since the timing of emitting aggregations is based on a tuple). With this,
deduplication can be performed correctly regardless of number of nodes, &, and aggregation

behavior.
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4. Useful topologies for demo and testing

There are two topologies that we consider useful for demo and testing, one with stateless
nodes and one with stateful nodes. Nodes without states, such as those that only perform map
and filter operations, are much easier to implement. Nodes with state, such as those that store any
information in memory (for example, a counter), introduce new complications, especially when

the node fails, since we need to recover its previous state.

Node 2-1
Text file:
“apple Console:
——2> apple: 2
banana Node 1 bapnana: 1
apple”
Node 2-2

Figure 5. Example topology with stateless nodes

Figure 5 shows a simple but useful topology to test our system with stateless nodes with
k = 1 (Node 1 and Node 3 are stateful, but again we assume that they are always up). The goal
is to count the words in a text file and print the results to the console. In this setup, Node 1 reads
a text file and splits the words into individual tuples. When it reaches the end of file, it emits an
EOF tuple, and it starts reading the same file again from the beginning. Each tuple is given a
monotonically increasing sequence number (seqgnum), which is always the first field in the tuple
and underlined (primary and source are emitted from the figure for simplicity). Node 2-1. Given

k = 1, Node 1 emits the same tuples to Node 2-1 and Node 2-2. Then, Node 2-1 and Node 2-2

simply append a 1 to each tuple, which is the starting count. Node 3 performs deduplication and
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aggregates the word count. Upon receiving an EOF tuple, it prints the word count to the console
and clears its state. Using a text file containing “apple banana apple”, this topology guarantees
that Node 3 will continuously print apple: 2 and banana: 1 to the console, even if we shut
down either one of Node 2-1 or Node 2-2. This is useful for demo and testing because it enables

us to detect if there is something wrong with our system.

2
= ‘9-0,0
Node 2-1 [\,
Text file: b )
“apple > Console:
banana Node 1 Node 3 > apple: 2
apple” 2
Node 2-2 [(3 ¥ 5 AV
1:"3 3{\3
il'OB“

Figure 6. Example topology with stateful nodes

Figure 6 shows a similar topology with & = 1, but now the nodes have state. That is,
Node 2-1 and Node 2-2 now compute the word count instead of simply appending a 1 to each
tuple; hence they are stateful. These nodes send the word count to Node 3 upon receiving an
EOF tuple. Node 3 performs deduplication and prints the word with the highest count to the
console. As such, the output should always be apple: 2. Again, we can run experiments such
as shutting down Node 2-1 or Node 2-2, and we expect that Node 3 will still continue to print
apple: 2. If we find a different output, then we know that our system is erroneous. Therefore,
this simple topology is useful for demo or testing, especially to show whether or not state

recovery works.
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Both of the two topologies mentioned above can be used to show the difference between
our system and the original Storm. The difference will become apparent when we shut down

either one of Node 2-1 or Node 2-2 when the system is running.

5. Results

We created a benchmark to evaluate the performance of our system and to compare it
with other systems. Similar with other benchmarks for stream processing systems, such as Linear
Road (Arasu et al. 2004) and IBM Streams (Nabi et al. 2014), the goal of our benchmark is to
measure the maximum throughput that the system can sustain and the latency of processing each
tuple.

We benchmarked our system along with other systems on a stateless topology and a

stateful topology. In both scenarios, we used the following configurations:

There are eight virtual machines (provided by Cisco), each having four cores, 8 GB of

memory, and running CentOS 6.

- The number of machines that are actually used varies depending on the benchmark
scenario.

- One of the machines are used solely for Storm’s Nimbus, which is a master node that
runs the scheduler and monitors the system.

- Each machine is set to have four worker slots, since it has four cores.

- The topology is shown in Figure 7. We use the topology labeled (default) unless “x2” is

mentioned, in which case we use the topology labeled (x2).

- Each tuple contains a payload of 256 bytes.
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- We measure the system’s performance over a period of 60 seconds.

(default)
Node 2-1
> Node 1 Node 3
Node 2-2
Benchmark |
Program =
(x2)
Node 2-1
> Node 1-1 | Node 3-1
> Node 1-2 | Node 3-2

Benchmark
Program

Figure 7. Benchmark topologies

First, we benchmarked our system on a stateless topology that does nothing but
forwarding tuples. The goal of using this topology is to test the pure capabilities of our system

not specific to any particular application.
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Figure 8 shows the results, comparing our system with the original Storm with and
without acking. Storm with acking guarantees a reliable delivery because the system acks every
tuple, and a tuple that is not acked will be replayed. Storm without acking does not have this
guarantee, but it has a lower amount of overhead. With k=1, our system was able to sustain a
throughput of about 65,000 tuples per second. Given more than 65,000 tuples per second as
input, our system was not able to keep up, causing the latency to increase significantly at that
rate of input. On the other hand, Storm without acking was able to sustain about 100,000 tuples
per second. Cisco suggested us to increase the amount of machines proportionally with &£ because
this is how they intend to use the system in real life. The rationale is to provide enough
computing power to handle the increased amount of traffic. Therefore, we benchmarked our
system again with k=1 but using twice the amount of computing power. For this purpose, we
used the topology labeled (x2) in Figure 7, and the result is shown with the label "x2" in Figure
8. With double the computing power, our system is able to match the throughput and the latency
of Storm without acking. This is expected because our system has some overhead due to
duplication and deduplication. As described in previous sections, our system adds an additional
data to every tuple and performs a deduplication check for every tuple. Storm without acking
does not have any fault tolerance, which allows it to run very fast due to having no overhead.

Note that there are nine nodes in the (x2) topology, but we only had seven available
virtual machines. Thus, some machines acted like more than one nodes. This should not cause a
significant performance impact because each machine had four cores so that those nodes can be

run in parallel.
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Figure 8. Benchmark Results on a Stateless Topology

Next, we tested our system on a stateful topology that runs a word count application.
Figure 9 shows the results, comparing our system with Trident. Trident is an abstraction built on

top of Storm that provides transactional support, which guarantees correct stateful computations
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despite machine failures ("Trident Tutorial" 2015). Thus, Trident is commonly used for stateful
applications. As seen in Figure 9, our system has a lower throughput than Trident even if we
double the computing power (labeled "x2"). This is reasonable because Trident automatically
optimizes batch computations. That is, Trident aggregates some tuples into mini batches before
sending them to the network. Thus, it creates less network traffic. For example, in the word count
application, Trident may aggregate 1,000 tuples having the same word, and then it sends the
value "1,000" to the downstream node, telling it to increase the word count of that word by
1,000. With this, it saves network traffic, since it does not send the 1,000 tuples individually. For
the latency graph in Figure 9, Trident’s latency is measured as the latency per mini batch. It is
expected that Trident has a higher latency than our system, since it does not immediately output
tuples individually as soon as they arrive.

Finally, we simulated machine failures by shutting down some of the machines. This is
where our system showcases its strength. When a machine fails, our system continues to run
without affecting performance, while Storm or Trident must wait for a certain period of time
before it can continue running, depending on the configuration. For example, the default timeout
for Storm is 30 seconds; hence when a machine fails, Storm must wait for 30 seconds before it
replays any tuple. Therefore, upon a failure, our system continues to operate normally, while

Storm or Trident has some delay depending on the configuration.
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Figure 9. Benchmark Results on a Word Count Topology

6. Conclusion

In this section, I describe the technical aspect of our capstone project with a focus on

duplication and deduplication design. To achieve k-safety, our system involves the most
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duplication and deduplication compared with similar systems from previous work. As a result,
our system incurs more network traffic and requires more computing power. On the bright side,
our system does not incur any delay when at most &£ machine fails. In conclusion, our system
excels in terms of high-availability, providing a new alternative for those who demand minimum

latency upon failures at the cost of increased network traffic.
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Concluding Reflections

We have implemented a fault tolerant method that enables a distributed stream processing
system to tolerate machine failures without having any impact on performance at the time of
failure. In other words, we have created a highly available system that processes data with low
latency at all times. The drawback of our design is that it requires more computing power in
order to handle the extra traffic due to data duplication. However, given enough computing
power, our system is capable of operating smoothly with consistent low latency even in the event
of machine failures.

There are still many rooms for improvements. First, it is important to reduce the
duplication overhead if at all possible. For example, combined with a machine learning
algorithm, we may be able to create a system that predicts when a machine will fail, such that it
only starts duplicating data when it expects that a machine will fail in the near future. Next, it
may be very useful to create a higher-level abstraction that can automatically create k-safe
topologies without having the developers manually craft the topology components from scratch,
since it is difficult to program the components given that so much parallelism and duplication are
happening simultaneously. There are also many possible improvements to the current scheduler
and recovery technique.

Nevertheless, the current trend is in our favor. The data processing industry has been
rapidly growing in the past few years and is expected to grow at a similar rate over the
foreseeable future. The market creates more and more applications with real time functionalities,

demanding distributed systems in the back end that can process data in a low latency at all times.
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With this trend, if given the right strategy and technical directions, it is possible to develop and
expand this capstone project into something much bigger that can fulfill the real time processing

demands of the current data-driven world.
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