
Remote Pair Programming in a Visual Programming
Language

Jonathan McKinsey

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-139
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-139.html

May 15, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Remote Pair Programming in a Visual Programming Language

by Jonathan C. McKinsey

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Senior Lecturer SOE Dan Garcia
Research Advisor

(Date)

* * * * * * *

Professor Armando Fox
Second Reader

(Date)

1 Abstract

With the growing popularity and global ubiquity of massive open online
courses (MOOCS), the demand for new technology to support remote col-
laboration has similarly increased. In the domain of computer science, col-
located pair programming is common in introductory courses, but not well
studied in the remote MOOC context despite its increasing prevalence. Intro-
ductory computer science courses also employ visual programming languages
that allow students to write code by dragging and dropping blocks on the
screen. We wanted to formulate a solution that recreates the same learn-
ing experience that collocated pair programming for a visual programming
language offers.

First, we examined the remote pair programming environment in existing
MOOC edX CS169.1x: Engineering Software as a Service, which utilizes a
text-based language. Remote pair programming sessions in CS169.1 typically
consists of multiple students in a single Google Hangouts session with one
student sharing her screen and the rest giving feedback. This differs greatly
from the traditional pair programming model of a Driver who writes code and
a Navigator who reviews the code, and then switching roles after a certain
amount of time. Screen sharing also has a number of issues such as poor video
quality and lack of keyboard and mouse access, making it an insufficient tool
to support remote collaboration for a visual programming language.

Informed by the feedback in a CS169.1x survey, we designed and imple-
mented Turtle Tango, a prototype for a fully-integrated, browser-side visual
programming language development environment, featuring real-time col-
laborative editing, video and audio sharing and code execution to support
collocated and remote collaboration. We tested Turtle Tango against Blockly
Games: Turtle in a pilot study comparing the effects of collaborative edit-
ing on development speed. In the experimental scenarios, Turtle Tango had
faster completion rates (26.2 minutes) than Blockly Games: Turtle (33.3
minutes).

While Turtle Tango is still a prototype, it exemplifies the possibilities
for remote collaboration with a visual programming language. It aims to
encourage the development of new applications to support wider adoption of
remote pair programming within MOOCs and traditional classrooms alike,
and inspire new research into the realm of remote pair programming and
remote simultaneous programming.

1

2 Acknowledgements

I want to take a moment to thank everyone that made this research possible:

Teaching Professor Dan Garcia, who served as my advisor and mentor during
my time at UC Berkeley, introduced me to the visual programming language
Snap! and cultivated my passion for computer science education.

Professor Sam Joseph of Hawaii Pacific University and edX CS169.1x:Engineering
Software as a Service largely influenced my view of remote collaborative ed-
ucation, and collaborated with me on remote pair programming research.

Professor Armando Fox, who introduced me to Professor Sam Joseph and
whose feedback has been invaluable.

My wife, without whom none of this would be possible.

Lastly, my son, who brought me so much joy in his short time on this earth.

2

Table of Contents

1 Abstract 1

2 Acknowledgements 2

3 Introduction 5

4 Background 7
4.1 Pair Programming . 7

4.1.1 Pair Jelling and Debugging 8
4.1.2 Free Rider Effect . 9
4.1.3 Retention . 9

4.2 Remote Pair Programming . 10

5 Study 1: Surveying CS169.1x 10
5.1 Methodology . 11
5.2 Results . 12

6 Turtle Tango 15
6.1 Libraries . 16

6.1.1 Web Real-Time Connection and PeerJS 16
6.1.2 Blockly . 17
6.1.3 Skulpt . 19

6.2 Authorizing the Application 19
6.3 Toolbar . 19
6.4 Turtle Blocks . 20

6.4.1 Forward . 21
6.4.2 Turn . 21
6.4.3 Pen . 21
6.4.4 Defining a New Block 22

6.5 Establishing a Peer Connection 25

7 Study 2: Turtle Tango Pilot 26
7.1 Methodology . 26

7.1.1 Introduction to Turtle Tango 26
7.1.2 Introduction to Skype and Blockly Turtle 28
7.1.3 Turtle Tango Versus Blockly Turtle 28

7.2 Results . 29

3

8 Future Work 31

9 Conclusion 31

4

3 Introduction

Education has traditionally consisted of one teacher imparting knowledge to
a class, with the number of students constrained by the size of the physical
classroom. However, with the advent of free Massive Open Online Courses
(MOOCs), education evolved from catering to a relatively small percentage
of the population to being freely available to anyone with a computer and
Internet access. Traditionally, it is not uncommon for enrollment in popular
courses to exceed 1,000 students. However, MOOCs are truly massive with
an average enrollment of 43,000 students [11]. In 2014, over 400 universities
across world offered a combined 2,400 MOOCs, with 22 of the top 25 US
News & World Report ranked universities participating [20]. However, the
transition from the traditional classroom to the online one is not an easy task.
The constraints of online classroom and its massive scale force educators to
rethink their teaching methodologies and create new supporting technologies
without sacrificing their curriculum.

CS10: The Beauty and Joy of Computing, an introductory computer sci-
ence course at UC Berkeley, is on the brink of launching its MOOC instance,
but faces a major problem: how do you support pair programming for a
visual programming language online? Pair programming is a programming
practice where two programmers share one computer, continuously collabo-
rating on the same coding problem [22]. Fundamentally, pair programming is
designed for both programmers to be physically present in the same room, or
collocated. In the MOOC context, pair programming becomes a distributed
synchronous collaboration problem on a massive scale as collocation is no
longer feasible. This requires the implementation of remote pair program-
ming (RPP) technologies to support collaboration in geographically different
locations.

We first approached non-collocated pair programming problem for CS10
by surveying remote pair programmers in an existing MOOC, CS169.1x:
Engineering Software as a Service, using Ruby. CS169.1x students predomi-
nately use screen sharing technologies where one user shares all or part of her
computer desktop as a video stream to another user. Existing communication
products such as Google Hangouts and Skype that package webcam video and
audio sharing with screen sharing were used. However, these products have
many limitations, including: poor video quality, high resource consumption,
and the lack of ability for keyboard and mouse sharing. Despite these short-
comings, CS169.1x students embraced Google Hangouts and Skype, because

5

they were sufficient for the modified form of pair programming prevalent in
CS169.1x.

Students in CS169.1x treated these remote pairing sessions like group
study sessions, with one person presenting her homework solution and the
rest of the students reviewing it without any keyboard or mouse access to the
presenter’s computer. This contrasts with CS10 pair programming, which is
closer to the traditional definition where each programmer alternates between
acting as the Driver — developing code — or as the Navigator — reviewing
the code as it is written. When the pair switches roles, there needs to be a
seamless transition, or pair programmers could become less efficient or even
abandon pair programming all together. In a screen sharing only environ-
ment, students have to transfer the code from one computer to the other and
deal with the pitfalls of screen sharing. A better solution is to have both
members of the pair edit shared code stored in the cloud, commonly known
as collaborative editing.

Another consideration is that video and audio sharing technologies like
Google Hangouts and Skype require client-side installation and setup, which
increases the time startup cost of RPP. Google Hangouts and Skype are also
not cross compatible with each other, meaning students will probably end
up setting up both applications eventually. It would be easier to directly
integrate video and audio sharing into an entirely browser-based application
with no setup or installation required.

Ultimately, transitioning pair programming with a visual programming
language into the distributed MOOC context requires more than just reliance
on an off-the-shelf screen sharing technology for the most optimal learning
experience for the student. We bundled the essential features needed to suc-
cessfully enable RPP with a visual programming language and created an
all-in-one solution combining collaborative editing, video and audio sharing
as well as code execution in an integrated development environment proto-
type called Turtle Tango. We deployed Turtle Tango in a small pilot study
where we measured the effect of collaborative editing for a visual program-
ming language on the completion time of drawing activities. Finally, we
examine the results and suggest what additional studies should be done in
the future.

6

4 Background

RPP is an effort to recreate the pair programming environment with part-
ners at two different locations instead of one. The CS169.1x survey touches
on more than just the common off-the-shelf technologies used during RPP
sessions, but also on how these all-purpose technology affect the behavior of
students during sessions. To best understand the context and findings of our
two RPP studies is to first look at the existing research in pair programming.

4.1 Pair Programming

The typical response when one confronts a problem that cannot be solved
alone is to go consult with a peer close by. In pair programming that peer
is continuously available and the communication is structured in such a way
that both partners benefit. Each programmer alternates between acting as
the Driver or as the Navigator. The Navigator is not a passive observer,
but is instead actively participating in the development process by looking
for defects, considering alternatives and determining code coverage. Both
Driver and Navigator work together to produce one artifact and, thus, share
equal ownership of the code, regardless of which role she was in when the
code was written. Even if one programmer is significantly more experienced
than the other, it is important to take turns “driving” so that neither partner
becomes complacent in her role. Pair programming can also help a program-
mer alleviate self-doubt about her own programming skills, because she can
improve by constantly observing and obtaining feedback from her partner
[22].

Pair programming in the professional world was initially popularized by
eXtreme Programming (XP), one of many Agile software development pro-
cesses. Created by Kent Beck, Ward Cunningham and Ron Jeffries, XP
emphasizes a collaborative team environment with continuous informal and
immediate communication. In XP, all production code must be continuously
reviewed, or, in other words, written while pair programming [21].

It may seem initially counter-intuitive that assigning two people on the
same task could be more efficient than putting them on separate tasks. How-
ever, existing research already shows that this real-time exchange of ideas
between partners significantly decrease the probability of proceeding with
an inferior design, and that continuous code reviews reduce the number of
code defects [22]. Moreover, collaborative programming is an outlet for each

7

member of the group to contribute her own unique prior experiences and
task relevant knowledge producing more diverse approaches and thus more
likely to generate the best solution [12]. In an experiment at Temple Uni-
versity, 15 professional programmers were separated into 5 individuals and 5
pairs and then asked to solve a problem for 45 minutes. The solutions were
then assessed in terms of readability — how easily problem solving strategy
could be deduced from the code — and functionality — how well the solu-
tion addresses the objectives in the problem statement. The pairs completed
the task in an average of 30 minutes compared individuals who took an av-
erage of 42 minutes. The pairs also significantly outperformed individuals
in terms of readability and functionality and also report greater satisfaction
and confidence in their solutions [19].

4.1.1 Pair Jelling and Debugging

While the groups in the Temple University study were able to complete
their assignments faster than individuals working alone, because the groups
were comprised of a pair of programmers, the groups still took 18 more
programmer minutes over individuals [19]. This additional time difference
may be because pairs that are unaccustomed to working with one another
still need to adjust to each other’s work habits, programming styles and even
ego. This transition period as known as pair jelling typically takes between a
few hours to several days, depending on the individuals. A University of Utah
study measuring the effectiveness of pair programming with senior software
engineering students discovered that while 60% more programmer hours were
spent by the pairs on the first assignment, the adjustment period decreased
to 15% for the second assignment [21]. Also, because both partners are
expecting continuous contribution and input, each partner is far less likely
to go off task. Pair programming keeps each participant more productive
offsetting the initial startup cost of pair jelling.

Also the Temple University study did not measure the time spent de-
bugging the programs, but found that code produced by individuals had
more errors than code produced while pair programming [19]. Similarly, in
the University of Utah study, pairs had on average 15% fewer defects than
individuals [21]. These studies suggest that the initial time cost of pair pro-
gramming greatly decreases the time cost of debugging later on.

Despite research indicating pair programming has a positive impact on
code readability, functionality and quality, even extending to student enjoy-

8

ment and confidence, instructors still continue to require students to complete
programming assignments independently [17]. The reliance of individual pro-
gramming largely stems from the difficulty instructors face with measuring
accountability and learning in pair programming situations. Essentially, in-
structors and students alike are concerned if collaboration will give rise to
free riders who receive equal credit for work without contributing equally to
the task.

4.1.2 Free Rider Effect

There are two types of reasons why groups do not achieve their maximum
potential productivity: coordination loss, when a group fails to optimally
coordinate or combine the contributions of individual members, and moti-
vation loss, or social loafing, when group members do not exert maximum
or equal effort [15]. According to Kerr and Bruun, the free rider effect is
largely a motivational issue stemming from self-perception that one’s work
is unnecessary towards group success and thus people are less motivated to
contribute.

To alleviate the free rider problem when assignments are completed col-
laboratively, each partner must also be tested solo to isolate individual un-
derstanding. A study of 86 pair and 141 individuals conducted at UC Santa
Cruz measured the effects of pair programming on code quality and indi-
vidual course mastery. Students were asked to make a list of 3 peers and
then randomly assigned a partner. Pairs alternated between driver and nav-
igator roles every hour working on projects. The non-pairing group were
required to complete assignments independently. Overall, the pairing group
outperformed the non-pairing group significantly on homework assignments
in terms of grades [16]. Final examination scores between the pairing and
non-pairing groups were comparable, indicating that pair programming does
not inherently generate free riders and negatively impact individual learning.

4.1.3 Retention

At first glance, the UC Santa Cruz study seems to conclude that students
who pair program master the course materials at least as well as those who
program individually. However, the retention rate of pairing section (92%)
was dramatically greater than the non-pairing section (76%) and also bet-
ter than previous semesters that only had non-pairing sections (85%) [16].

9

McDowell et al. suggest that the difference in attrition rates may have at-
tributed to higher final exam scores for the non-pairing section. If the weaker
students in the non-pairing class dropped the course, while their counterparts
in the pairing section stayed, the weaker students would have dragged down
the final exam average in the non-pairing section.

Retention benefits of pair programming also extended beyond the current
course and into the subsequent courses. Both men and women who had pair
programmed were significantly more likely to declare a computer science
related major [17].

4.2 Remote Pair Programming

Pair programming is typically done as collocated activity with both program-
mers sharing control of a single physical computer, keyboard and mouse.
Remote pair programming (RPP) brings pair programming to the geograph-
ically distributed environment where collocated collaboration is not feasible.
RPP is supported by technologies such as screen and desktop sharing as well
as collaborative editors over the internet. In desktop sharing, all users, not
only share a single screen, but also have simultaneous keyboard and mouse
access. Collaborative editors support synchronous read and write operations
on shared files. RPP has already been proven to have the same benefits of
collocated pair programming citing greater satisfaction of the communication
and cooperation within the group [10].

5 Study 1: Surveying CS169.1x

edX CS169.1x: Engineering Software as a Service is a MOOC course in-
spired by UC Berkeleys upper-division software engineering course. CS169.1x
teaches the fundamentals of software engineering by employing Agile tech-
niques to develop Software as a Service (SaaS) using Ruby on Rails. Be-
cause students are encouraged to collaborate using pair programming on
their homework assignments, CS169.1x was one of the early adopters of re-
mote pair programming in the MOOC world [13].

To take part in a pair programming session, CS169.1x students first join
the Google+ edX SaaS community [5] composed of current students, alumni
and community teaching assistants. Then the student may either join an
existing event or create a new Google Hangouts On Air event at a time of

10

Figure 1: Heatmap of students taking edX CS 169 who responded to a survey
on remote pair programming

their choosing. Students may then chose their own sharing technology for
the session, but most pick a technology that integrates easily with Google
Hangouts (see Table 1). While CS169.1x does not impose a limit on how
many people may join a session at any one time, Hangouts On Air can only
support up to 10 participants at a time.

5.1 Methodology

In Fall 2013, we sent an informal RPP survey to the Google+ edX SaaS
community soliciting feedback on the geographical location of remote pair
programmers, the technology used and qualitative feedback on RPP sessions:

• Which Country do you spend most of your time in?

• Which State/Region do you spend most of your time in?

• Which City do you spend most of your time in?

• Please describe your first remote pair programming experience in as
much detail as possible.

• Describe a typical remote pair programming session.

11

• Do you prefer pair programming over individual programming? Why
or why not?

• Do you prefer remote pair programming over in-person pair program-
ming? Why or why not?

• What technologies do you use to do remote pair programming?

• Any other thoughts on remote pair programming sessions and how they
are connected to MOOCs like edX 169?

5.2 Results

The 225 responses on the RPP survey serve as an initial look at the current
MOOC RPP landscape from which to elaborate upon or address for CS10
[14]. The heatmap of survey respondent physical locations (see Figure 1)
highlights the geographical disparition between MOOC students and neces-
sity of implementing a viable methodology for these students to collaborate
[18]. Pair programming events are predominately initiated with one student
serving as the organizer creating the event. These student-led sessions allow
pairings to be organic and flexible as sessions can be created with little to no
notice and with little involvement from the course staff. However, the success
of student-led sections is strongly dependent on the organizer to coordinate
the attendees and the willingness of the organizer and attendees to assume
the respective Driver and Navigator roles. A pair programming event could
attract multiple attendees leaving it up to the organizers or the attendees
themselves to separate into pairs. The large sessions may quickly dissolve
due to lack of coordination or result in few active participants with numerous
passive observers. Here are some student comments from the survey:

“When I joined the first session there were already 7 people in the
session but 2 people were really the only ones working/contributing.
I tried to get some people to break out into another session but
frankly there wasn’t a good or easy way to do that. I ended up
leaving after 5 mins and decided to create an event of my own for
the next day.”

“5 or 6 people dropping in and out, some lurking while two [pro-
gram] and I was able to get a helpful screenshot or two as they

12

progressed. Even though I was not at their point in the hw, and
their code was not done, it helped to have something to look at
later.”

“Pair programming on the SaaS homework’s was a little frustrat-
ing, especially in the early homeworks, because many students
drop into public ’on air’ hangouts, take a screenshot of your code
and then disappear. I can only assume they are attempting to
get a passing grade on the AutoGrader without doing any work.
Also in pairing sessions with more than 3 programmers, a few
observers tend to lurk silently without contributing or offering to
drive, I find this off-putting.”

These free-riding observers may resort to taking passive screenshots —
capturing screenshots of source code without actively contributing to its cre-
ation. These students may believe that merely attending the session enti-
tles them access to the source code. In the extreme case, students commit
passive screenshot drive-bys — joining multiple sessions, obtaining several
screenshots and quickly exiting without participation. Presumably, passive
screenshot drive-bys afford the offender the ability to piece together a so-
lution from different groups, and thus, committing a new form of cheating
that could implicate multiple unwitting participants. This type of behavior
has led some students to indicate that pair programming is incompatible
with the course honor code. Some students have already discovered a work-
around to protecting themselves against others who take passive screenshots
and passive screenshot drive-bys, by using a private Hangout event instead:

“When we were using public Google Hangout sessions, the result
was typically chaotic. Until recently (in part 2 of the course we
have switched to a private hangout with just 2 of us), it was quite
distracting as different people would come and go with different
levels of concerns (ranging from clueless to already completed the
assignment and just wanting to help). In fact, it was more of a
group study (programming) session than actual pair program-
ming. Often productive and interesting, but not actually pair
programming (until our recent switch to a private hangout). ”

However, private Google Hangout events are only available to known partici-
pants and is not a viable options for individuals unfamiliar with their cohort
or have unpredictable schedules:

13

“I have a very young family with 3 small children and I found
that I could not allocate time blocks for working on the course.
When I had the chance to get something done I grabbed it”

“I find it extremely hard to schedule time where I can commit to
working on the assignments because I have to fit it in with work,
family, etc. It is also incredibly difficult being in a timezone much
different to most others.”

Google Hangout with Screenshare 65.3%
Skype Screenshare 33.3%
TeamViewer 29.9%
Cloud9 11.1%
Other 11.1%
Google Hangout + Floorbits 7.6%
Google Hangout + MadEye 4.9%
GNU Screen 4.2%
ScreenHero 4.2%
Tmux 4.2%

Table 1: Prevalence of RPP Technologies in CS169.1x

For some survey respondents, the barrier to entry into remote pair pro-
gramming is lacking the requite hardware such as webcam or microphone.
For others it is the unfamiliarity with the collaborative technology for screen
or desktop sharing. One student mentioned the sheer amount of new soft-
ware tools and concepts required in the curriculum alone was overwhelming.
After adding on new RPP technology, there was too much new information
to absorb. Modern screen and desktop sharing technology are still limited
in the quality of the images produced. Depending on the screen resolution
of the computer of the student sharing her desktop and the computer of the
students watching the feed as well as the technology used to share the video
feed (e.g. Skype, Google Hangouts), the video image can be blurry and inde-
cipherable. In text-based languages, students can use a collaborative editor
such as Floorbits or MadEye instead of using screen or desktop sharing.

When students get over the initial growing pains with sharing technology
and scheduling, they quickly discover RPP has the same benefits as collocated
pair programming with the added benefit of interacting with peers on a global
scale where in-person collaboration would not be possible:

14

Figure 2: The Turtle Tango interface.

“I prefer pair programming since it helps in building global con-
tacts interacting with peers all around the world accomplishing a
task in good time efficiently and helps making our code univer-
sally understandable.”

“During one of the early homeworks I worked with a Spanish guy
living in Finland....I enjoyed seeing someone else’s approach and
definitely learned some new tricks from it. ”

6 Turtle Tango

Turtle Tango (see Figure 2) is a browser-side real-time collaborative devel-
opment environment with integrated video and audio for Logo-style turtle
drawing. It uses cloud storage to enable simultaneous collaboration without
the blurriness and choppiness of the tools used in CS169.1x (Google Hang-
outs and Skype). Students are able to move a single turtle sprite around the
screen. Because the turtle has a little pen on its belly, it draws a line as it
walks. Students can control the pen color and line width, and even retract

15

the pen so that no line is drawn. Turtle Tango can be used to draw anything
from simple shapes to complex fractals.

The CS169.1x survey responses indicate a number of possible considera-
tions for RPP adoption with CS10.:

1. Collaborative editing with video and audio sharing. Desktop
and screen sharing are needlessly resource-intensive processes and can
be blurry or choppy depending on the screen resolution of the group
members and the internet speed. Instead, students should be using a
collaborative editor for a visual programming language with video and
audio support, where the video is optional rather than pivotal to the
RPP experience.

2. Server-side technology with small learning curve. When a stu-
dent is already overwhelmed with the new concepts and technologies
needed for the existing curriculum, the RPP technology should be
seamlessly integrated. There should be little to no setup on individual
clients, with the bulk of the work handled on the server side.

3. Groups of two only. To reap the full benefits of pair programming
and to discourage free riders, group programming sessions must be
limited to two participants.

These are all issues that Turtle Tango will address.

6.1 Libraries

Turtle Tango is supported by three main libraries: PeerJS, Blockly and
Skulpt.

6.1.1 Web Real-Time Connection and PeerJS

Web Real-Time Connection (WebRTC) is World Wide Web Consortium
(W3C) draft API for browser-to-browser applications enabling voice calling,
video chat and peer-to-peer file sharing without installing additional add-ons
or plugins. WebRTC standardizations are implemented in Mozilla Firefox,
Google Chrome and Opera browsers as well as Android and iOS mobile plat-
forms. PeerJS is a Javascript library that wraps WebRTC API into a simple
peer-to-peer connection API [7]. Each peer is distinguished by an unique

16

Figure 3: The PeerServer only brokers a connection between the users. Ac-
tual data exchange is entirely peer-to-peer.

peer identifier assigned by the brokering PeerServer. The brokering server
only helps establish the peer-to-peer connection. No peer-to-peer data passes
through the connection broker. The PeerJS team provides a PeerServer that
supports up to 25 simultaneous connections per API key. See Figure 3 above.

6.1.2 Blockly

Blockly is a Javascript library for creating visual block-based programming
editors capable of translating from visual blocks to a text-based programming
language such as Javascript or Python [3]. Each Blockly block must be
mapped with an equivalent translation in each supported language, which is
useful in obscuring the language’s syntax from the end user.

17

Figure 4: The progression from Blockly block to Python code to turtle draw-
ing

Unlike integrated development environments (IDEs), the Blockly frame-
work does not provide a run environment. It is up to the implementing
application or end user to execute the code in their own environment.

Blockly is integrated with Google’s Realtime API [6], which enables a
shared workspace between browser sessions. Google’s Realtime API utilizes
Google’s Drive API [4] and currently requires implementing applications to
ask users to provide a Google account for access. An additional requirement
is that applications that interact with the Google Drive API must be hosted
on Google App Engine [2].

18

6.1.3 Skulpt

Skulpt is an entirely browser-side Javascript implementation of the Python
programming language [8]. This translation from Python to Javascript allows
Python to be run within any Javascript-supported browser. Thus Skulpt
enables Blockly blocks to indirectly manipulate the built-in Python turtle
library to draw on the screen as shown in Figure 4.

6.2 Authorizing the Application

When a student first enters the Turtle Tango website [9], she is assigned a
peer identifier, which will be used to broker a connection between two peers.
The student then will give permission to share her webcam and microphone.
It is also possible to chose not to share the devices, but some built-in func-
tionalities will be disabled when the session is shared with a peer. If webcam
is enabled, the video automatically start to stream at the bottom of the page.

The student then authorizes this application by logging into her Google
account and providing her login credentials. This triggers Turtle Tango to
load the Blockly workspace as well as populate the appropriate blocks. A
shared text chat box at the bottom of the page also becomes enabled. Anyone
with access to this page will be able to see and edit the contents of the chat
box.

6.3 Toolbar

Turtle Tango has four buttons on its toolbar as shown in Figure 5: pen,
add-a-friend, generate code and camera. When the pen button is clicked, it
triggers a translation of each Blockly block to its Python equivalent code.
These definitions are mapped manually per block within the source code.
The Python code is then executed by the Skulpt library, which dynamically
renders the image.

The add-a-friend button opens a modal dialog (See Figure 6) where a
student can enter the id of another student. Clicking the Ok button will
establish a media connection between the two peers and allow webcam video
and audio to be shared across that connection.

The generate code button, like the pen button, triggers a translation from
blocks to Python. However, instead of running the Python code through
Skulpt, the code is displayed in a modal dialog (see Figure 7) for a student

19

Figure 5: The Turtle Tango toolbar.

to review or save. Running the generated Python code in a Python 2.7
interpreter will produce the same drawing as Turtle Tango.

Lastly, the camera button displays an image of the current turtle drawing
(see Figure 8). This version of the drawing will not display the actual turtle,
only the turtle pen lines. The drawing can be saved by right-clicking on the
image.

6.4 Turtle Blocks

Google Blockly provides a number of built-in blocks for operations such as
those involving logic, math and iteration. Turtle Tango defines several turtle
blocks designed specifically for drawing on the canvas. There are two types of
inputs to turtle blocks, regular and advanced (see Figure 10). Regular inputs
are designed for beginners by providing default values or selection menus.
Advanced inputs have connectors to other blocks which enable dynamic val-
ues from nested blocks. Because using outputs of one function as an input
to another function requires an understanding of return values and types,
beginners are encouraged to start with regular input version of blocks first
before moving on to advanced blocks. Regular input blocks are found within
the Turtle category in the workspace, while advanced input blocks are in the
Adv Turtle category.

20

Figure 6: The Add a Friend modal dialog.

6.4.1 Forward

The forward block moves the turtle a specified number of steps. If the turtle
pen is down, the turtle will leave behind a pen trail as it walks. If a positive
number of steps is given then the turtle moves forward. Conversely, if a
negative number is given the turtle will walk backwards without changing its
heading.

6.4.2 Turn

The turn block changes the direction the turtle currently faces as known as
the turtle’s heading. The turn left block changes the turtle’s heading 90
degrees to the left where the turn right block changes it 90 degrees to the
right. The regular input turn block allows a student to select an angle using
a visual selector (see Figure 11).

6.4.3 Pen

The pen blocks govern whether the turtle leaves a pen trail when it moves,
the width of the pen trail and the pen color. The pen up block disables the
turtle pen trail. Conversely, the pen down block enables it. By default, the
turtle starts with its pen down. The thickness of the pen trail can be modified
by using the set pen thickness block. Finally, the set pen color blocks
change the color of the turtle pen trail. Students are able to click on the
default color provided with the regular input set pen color block and select
a new color from 70 available. Using the advanced input version of the same

21

Figure 7: The Generate Code modal dialog displaying Python equivalent of
sample program shown in Figure 9.

block and a block from the built-in color category, students can also create
their own pen trail colors.

6.4.4 Defining a New Block

Because Blockly is a general-purpose visual editor, custom blocks must be
mapped to each supported language for translation. For instance, consider
the source code to create a forward block with advanced input:

Blockly.Blocks[’turtle_forward_adv’] = {

init: function () {

this.setColour(120);

22

Figure 8: The Camera modal dialog displaying image drawn by sample pro-
gram shown in Figure 9.

this.appendValueInput("DISTANCE")

.setCheck("Number")

.appendField("forward");

this.setPreviousStatement(true);

this.setNextStatement(true);

this.setTooltip(’turtle walks forward certain paces’);

}

};

First, define a Blockly block with physical color green. Then specify a single
input variable DISTANCE, which must be a Number type. Both
setPreviousStatement and setNextStatement are true indicating that the
forward block is a statement that can have statements before and after it
with no restrictions on type. The setTooltip function labels the forward

23

Figure 9: Sample program.

block with a mouse-over tooltip.
Then, implement a mapping from the forward block to Python:

Blockly.Python[’turtle_forward_adv’] = function(block) {

var value_distance = Blockly.Python.valueToCode(block,

’DISTANCE’, Blockly.Python.ORDER_ATOMIC);

var code = ’t.forward(’ + value_distance + ’)\n’;

return code;

};

value_distance represents the input DISTANCE, which may be a single value
or a function that eventually evaluates to a Number. code is the Python
translation incorporating the input variable value_distance.

24

Figure 10: regular and advanced input versions of forward blocks

Figure 11: turn block degree visual selector

6.5 Establishing a Peer Connection

First, the student should share the URL of her current session with her
peer. To connect to the peer, click on the add-a-friend button on the toolbar
(see Figure 5). In the add-a-friend dialog box (see Figure 6), the student
specifies the peer identifier of her friend which signals the PeerServer to start
brokering the connection. Only one person needs to start the connection.
Once the PeerServer successfully brokers the connection, both students will
automatically begin receiving their partner’s media stream which is displayed
in a second window at the bottom of the screen.

The actions of one student in the Turtle Tango workspace is automati-
cally propagated to her peer and vice versa. When a block is selected and
dropped in a new location, the peer will see the final location updated on
her screen, but the intermediate positions of the block with not be rendered.
Workspace and collaborative text box syncing is supported by Google’s Re-
altime API. Through this API, the students are able to both manipulate a
shared resource hosted on Google Drive in near real time. However, because

25

the turtle canvas is actually drawn by Skulpt, each turtle drawing instance is
rendered independently on each student’s local browser. When one student
clicks on the pen button on the toolbar, it triggers the turtle to draw on her
local canvas, but also sends a draw message through the PeerJS peer-to-peer
connection. On receiving a draw message, her peer’s Turtle Tango applica-
tion will also trigger the turtle to draw, thus syncing the draw event between
peers.

7 Study 2: Turtle Tango Pilot

After Turtle Tango was publicly deployed on Google AppEngine and had
under gone extensive development testing, it was ready to be used to test the
effect of collaborative editing in the context of RPP and visual programming
languages. Because collaborative editing could also support simultaneous
editing without the roles defined in pair programming, remote simultaneous
programming (RSP) was also tested.

7.1 Methodology

Six developers at a major corporation, all holding MS degrees in computer
science, volunteered to beta test the Turtle Tango prototype after work. Two
different development setup were used: Blockly Games: Turtle [1] with Skype
and Turtle Tango. Blockly Games: Turtle, or Blockly Turtle, is an imple-
mentation of turtle graphics in Blockly, but without real-time collaborative
editing and video and audio built-in.

First, developers were separated into three pairs of two. These pair-
ing remained consistent throughout the entire experiment. Then each team
completed two initial assignments designed to familiarize them with the tech-
nology used for the experiment, and completed some pair programming chal-
lenges.

7.1.1 Introduction to Turtle Tango

Two laptops in two conference rooms on separate floors were used. A new
Google account was created prior to the experiment and shared with the
participants. In each pair, one participant was assigned the role of Leader
and given the following instructions:

26

1. Navigate to https://tango-with-code.appspot.com in Google Chrome

2. Enable mixed content by clicking the shield icon in the address bar and
selecting “Load unsafe scripts”

3. Authorize the application and sign-in with the provided Google account
and password.

4. Share webcam and microphone with the application.

5. Email the complete URL in the address bar to other participant.

6. In the chat box, provide your peer ID.

The other participant was given these instructions:

1. Wait until you get an email from your collaborator. Then, in Google
Chrome, navigate to address provided.

2. Enable mixed content by clicking the shield icon in the address bar and
selecting “Load unsafe scripts.”

3. Authorize the application and sign-in with the provided Google account
and password.

4. Share webcam and microphone with the application.

5. Look for your collaborator’s peer id in the chat box and use the add-
a-friend button to start a session.

After the peer connection was successfully brokered, each participant was
verbally informed of the definition of pair programming and randomly as-
signed a starting role by a coin toss. The pairs were instructed to explore
the Turtle Tango interface and to switch roles every 15 minutes, which was
enforced by the moderator who observed the session. Each pairing session
only lasted 30 minutes. Directly after the pairing session, each participant
was interviewed individually for 10 minutes for their feedback.

27

7.1.2 Introduction to Skype and Blockly Turtle

The same laptops and conference rooms from Introduction to Turtle Tango
were used. Two new Skype accounts were created prior to the experiment
and both machines were logged into Skype. The toss of a coin determined
which participant would take the role of Leader and be given the following
instructions:

1. In Skype contact list, right-click on the only contact in your list and
select

Share Your Screen -> Share Full Screen

2. In Google Chrome, navigate to https://blockly-games.appspot.

com/turtle?lang=en&level=10

The other participant was given these instructions:

1. Wait until you get a Skype call. Click Accept to answer the call and
then click Accept to start the video call.

When the call connected, the pairs were instructed to explore the Blockly
Turtle interface and to switch roles every 15 minutes, which was enforced by
the moderator who observed the session. The Leader who started the screen
sharing session acted as the Driver first. Because Blockly Turtle does not
have collaborative editing support, when it was time to switch roles, the
participants would physically switch rooms. This simulates the interruption
necessary to exchange code between programmers using this method. Each
pairing session only lasted 30 minutes, which did not include the switching
time. Directly after the pairing session, each participant was interviewed
individually for 10 minutes for their feedback.

7.1.3 Turtle Tango Versus Blockly Turtle

Now the participants had to solve three fractal drawing problems, each in a
different scenario (see Table 2):

1. Skype and Blockly Turtle. Same instructions as Introduction to Blockly
Turtle portion.

28

2. Turtle Tango Remote Pair Programming (RPP). Same instructions as
Introduction to Turtle Tango portion.

3. Turtle Tango Remote Simultaneous Programming (RSP). Similar in-
structions to Introduction to Turtle Tango portion, but both can code
at the same time.

Each team member was handed a copy of the fractal drawing to replicate.
All three teams solved the same problem number at the same time, but
in different conference rooms. Three moderators facilitated the experiment
by starting the stopwatch and announcing when to switch roles. Aside for
the teams under the RSP scenario, pairs were asked to switch roles every 10
minutes instead of 15 minutes to ensure each participant at least experienced
each role once. When the team believed they had the solution, the moder-
ator stopped the stopwatch and checked the solution. If the solution was
incorrect, the moderator started the timer again and the team worked until
they reached the solution. If the solution was correct, the scenario ended and
the moderator recorded the time on the stopwatch. The participants were
asked to complete a questionnaire after they completed all of the scenarios.

1. Rank the Turtle Blockly, Turtle Tango RPP, Turtle Tango RSP sce-
narios from favorite to least favorite.

2. Order fractal problems 1, 2 and 3 in difficulty from high to low.

Group A Group B Group C Average Time (min)
Fractal 1 BT TT RPP TT RSP 32
Fractal 2 TT RPP TT RSP BT 29
Fractal 3 TT RSP BT TT RPP 24.7
Average (min) 28.7 29 28

Table 2: Fractal and scenario assignments per group and average completion
time. BT = Blockly Turtle and TT = Turtle Tango

7.2 Results

In general, the initial feedback from the pairs was very positive after Intro-
duction to Turtle Tango exercise:

29

“This would be good for my kids. Seems like I am playing a game
rather than coding.”

“Turtle Tango is a novel and interactive way to teach basic pro-
gramming concepts to students especially those who learn visu-
ally.”

“I can’t believe I was writing programs in Python in less than 30
minutes.”

Some of the pairs mentioned that a tutorial video would be helpful in getting
started:

“There were just so many categories of blocks. I didn’t know
what to start with.”

The feedback from Introduction to Skype and Blockly Turtle was negative
about the screen clarity:

“The resolution was just eye wrecking.”

“I found myself asking my partner to tell me what blocks he was
picking up, because I couldn’t read them.”

Participants also felt that having to physically switch rooms to simulate
code transfer process that would have to occur without collaborative editing
support was having them take a step backwards:

“Showing me Turtle Tango first and then having me use Skype
and some bad quality screen sharing is like giving me a car, then
taking it away and asking me to take a bus. I am used to using
Google Docs to write papers with other people, and I will not
willingly go back to the days of emailing drafts back and forth.”

In the experimental scenarios of Blockly Turtle and Turtle Tango, Tur-
tle Tango had faster average completion rates (26.2 minutes) than Blockly
Turtle (33.3 minutes) as show in Table 7.2. Turtle Tango RSP (24 minutes)
was dramatically faster than RPP (28.3 minutes). 100% of the participants
ranked Blockly Turtle as their least favorite scenario, while 67% ranked RSP
as their favorite. 67% thought Fractal 3 was the hardest and the other prob-
lems tied at 50%.

30

Scenario Average
BT 33.3
TT RPP 28.3
TT RSP 24

Table 3: Average time in minutes to complete by scenario. BT = Blockly
Turtle and TT = Turtle Tango

8 Future Work

The results of the Turtle Tango pilot were promising, indicating it is a strong
candidate technology for remote collaboration. The success of RSP over RPP
seems to indicate that simultaneous editing might be more efficient than
traditional pair programming, but further study is warranted to measure its
long term effectiveness.

While Turtle Tango exemplifies the possibilities for remote collaboration
with visual programming, it is not without limitations. The Turtle Tango
prototype ultimately focuses only on turtle drawing exercises, but foreshad-
ows the potential for an all-purpose collaborative browser-based development
environment. UC Berkeley’s Snap! development team plans to debut shared
file access on its cloud infrastructure in Summer 2015 and be the first vi-
sual programming language to integrate Turtle Tango’s collaborative editing
approach.

9 Conclusion

Turtle Tango is a prototype that demonstrates how to build an easy-to-use,
collaborative blocks-programming editor with video and audio sharing. It
aims to encourage the development of new applications to support wider
adoption of RPP within MOOCs and traditional classrooms alike. However,
even Turtle Tango is a mere subset of a full-fledged development environment
and requires further enhancement to be a more general purpose collaborative
visual programming language editor.

RPP in MOOCs is still a very novel idea with little existing research. Cur-
rent pair programming research have yet to uncover the unusual phenomenon
of passive screenshot drive-bys, which suggests strongly that further study is
needed. RPP with a visual programming language is still a vastly unexplored

31

topic, but becoming more and more relevant as the introductory computing
classroom expands to the global scale.

32

References

[1] Blockly Games: Turtle. https://blockly-games.appspot.com/

turtle.

[2] Google App Engine. https://cloud.google.com/appengine/.

[3] Google Blockly. https://developers.google.com/blockly/.

[4] Google Drive API. https://developers.google.com/drive/.

[5] Google+ edX Software as a Service Community. https://plus.

google.com/communities/101007836695292894562.

[6] Google Realtime API. https://developers.google.com/drive/

realtime/.

[7] PeerJS. http://peerjs.com.

[8] Skulpt. http://www.skulpt.org.

[9] Turtle Tango. https://tango-with-code.appspot.com.

[10] Baheti, P., Gehringer, E. F., and Stotts, P. D. Exploring the
efficacy of distributed pair programming. In Proceedings of the Second
XP Universe and First Agile Universe Conference on Extreme Program-
ming and Agile Methods - XP/Agile Universe 2002 (London, UK, UK,
2002), Springer-Verlag, pp. 208–220.

[11] Ferenstein, G. Study: Massive online courses enroll an average of
43,000 students, 10% completion. TechCrunch (2014).

[12] Flor, N., and Hutchins, E. Analyzing Distributed Cognition in
Software Teams: A Case Study of Team Programming During Perfective
Software Maintenance. In Empirical Studies of Programmers: Fourth
Workshop, Papers. 1991, pp. 36–64.

[13] Joseph, S. Pair Programming on Air. https://

courses.edx.org/courses/BerkeleyX/CS_CS169.1x/1T2014/

77935ad32a3943d6b7a177065233358d.

33

[14] Joseph, S., and McKinsey, J. Remote Pair Program-
ming Survey Analysis. http://www.agileventures.org/

remote-pair-programming/analysis/.

[15] Kerr, N. L., and Bruun, S. E. Dispensability of member effort and
group motivation losses: Free-rider effects. Journal of Personality and
Social Psychology 44, 1 (1983), 78–94.

[16] McDowell, C., Werner, L., Bullock, H., and Fernald, J. The
effects of pair-programming on performance in an introductory program-
ming course. SIGCSE Bull. 34, 1 (Feb. 2002), 38–42.

[17] McDowell, C., Werner, L., Bullock, H. E., and Fernald, J.
The impact of pair programming on student performance, perception
and persistence. In Proceedings of the 25th International Conference on
Software Engineering (Washington, DC, USA, 2003), ICSE ’03, IEEE
Computer Society, pp. 602–607.

[18] McKinsey, J., Joseph, S., Fox, A., and Garcia, D. D. Remote
pair programming (RPP) in massively open online courses (moocs) (ab-
stract only). In The 45th ACM Technical Symposium on Computer
Science Education, SIGCSE ’14, Atlanta, GA, USA - March 05 - 08,
2014 (2014), p. 725.

[19] Nosek, J. T. The case for collaborative programming. Commun. ACM
41, 3 (Mar. 1998), 105–108.

[20] Shah, D. MOOCs in 2014: Breaking Down the Numbers. EdSurge
(2014).

[21] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries,
R. Strengthening the case for pair programming. IEEE Softw. 17, 4
(July 2000), 19–25.

[22] Williams, L. A., and Kessler, R. R. All I really need to know
about pair programming I learned in kindergarten. Commun. ACM 43,
5 (May 2000), 108–114.

34

