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Abstract

Our Capstone project involves working with an open source distributed real time
processing system called Apache Storm, in collaboration with Cisco Systems, Inc. The term “real
time processing” in this context means that the system is able to respond within seconds or
sub-second to requests, while “distributed” means that it is running on multiple computers. The
goal of the project is to add a feature called “k-safety” to Storm. With k-safety, Storm will be
able to tolerate up to k machine failures without losing data or reducing its response time,
making the system highly available. Cisco plans to integrate our modified version of Storm into

their data processing pipeline and use it to support internal and customer-facing products.



University of California, Berkeley College of Engineering
MASTER OF ENGINEERING - SPRING 2015

Electrical Engineering And Computer Sciences
Data Science & Systems
High Availability on a Distributed Real Time Processing System

Ashkon Marco Soroudi

This Masters Project Paper fulfills the Master of Engineering degree
requirement.

Approved by:
1. Capstone Project Advisor:

Signature: Date

Print Name/Department: Michael Franklin/EECS

2. Faculty Committee Member #2:

Signature: Date

Print Name/Department: John Kubiatowicz/EECS



High Availability on a Distributed
Real-Time Processing System

Ashkon Soroudi



Problem Statement

Today, many online applications require enormous amounts of computing power to
operate. Consequently, these applications are run across many machines. Companies such as
Google, Microsoft, and Amazon use close to if not more than one million servers to support
different online services such as YouTube, Xbox Live, and online shopping (Anthony 2015).
But, as the number of machines increases, the time it takes before one of them fails also
decreases statistically. This theory in fact holds in practice: according to Google, for an
application running on 2,000 machines, the average number of machine failures per day is
greater than 10 (Twitter University 2015). Failures can be temporary, such as when a network
problem causes servers unable to communicate with each other, or permanent, such as when a
hard drive fails to read or write data.

Fortunately, online applications are often run on top of systems that are fault tolerant,
which is a property that provides guarantees on the correctness of results in spite of failures.
However, a fault tolerant system does not make any claims on response time, which means after
a failure, the system can be unresponsive for some time before being able to output results again.
The lack of guarantees on latency, the time it takes for one piece of data to be fully processed, is
undesirable, especially when the application is expected to deliver real-time information, or new
information that has just been received. In some situations, such as the last minute of an online
auction, delays can be detrimental.

Our Capstone project aims to address the problem of providing results with constant

latency even under failures. We achieve this goal by processing the same request on multiple



machines, and making sure that only one copy of the results is sent back to the user. This way, as
long as not all machines processing a particular request fail simultaneously, at least one machine
will finish processing as expected, and output with the expected latency. We implement this idea
on top of an open source stream processing system called Apache Storm (“Storm” 2014), so that

applications running on top of the system can stay responsive throughout its lifetime.



Strategy

1. Introduction

Our Capstone project involves working with an open source distributed real-time
processing system called Apache Storm (“Storm” 2014) in collaboration with Cisco Systems,
Inc. The term “real-time processing” in this context means that the system is able to respond
within seconds or sub-second to requests, while “distributed” means that it is running on multiple
computers. The goal of the project is to add a feature called “k-safety” to Storm. With k-safety,
Storm will be able to tolerate up to k machine failures without losing data or reducing its
response time. It will make the system “highly available”, which means the system is available to
serve requests most of the time. Cisco plans to integrate our modified version of Storm into their
data processing system and use it to support internal and customer-facing products.

Since Apache Storm is open source, the modifications we make will be open to public,
allowing other interested parties to also use it for their needs. However, in order to understand
our project’s impact on the community, we need to analyze the stakeholders, industry, market,
competition, as well as various trends that are taking place. We will explore these topics in this
section, providing insight to the current competitive landscape, and discussing the strategies we

are adopting to give us the best competitive edge.



2. Industry

Given that we are designing a stream processing system, we are in the Data Processing
and Hosting Services industry. This industry encompasses a wide variety of activities such as
application and web hosting, as well as data processing and management. According to the
IBISWorld industry report by Diment (2015), this industry is expected to produce a total revenue
of $118.1 billion in 2015. Additionally, it is expected to have an annual growth of 4.8% for the
next 5 years to $149.2 billion by 2020.

Diment also mentioned that the complexity of data processing systems increases rapidly,
and managing such complexity requires a high level of engineering talent. At the same time, the
demand for better technologies in this industry is continuously rising. Thus, this industry rapidly
attracts new firms, and many of them employ strategies such as outsourced labor to aggressively
innovate while keeping the costs low. Due to such competition, it is important for us to hold to a
high standard and deliver the most efficient and reliable data processing system in order to attract
users.

While there are many existing data processing systems, most of them are specialized for
certain tasks. We can differentiate ourselves from our competitors by having a system

specialized for certain needs, such as the needs of Cisco.

3. Market

Our market consists of entities that continuously process a massive amount of data as part
of their regular operations. The main market is social networking companies, which include

well-known companies such as Facebook, Twitter, and LinkedIn. Social networking companies



have a total annual revenue of more than $11 billion and growing (Kahn 2015). As their user
base grows, their needs of data processing systems increase. For example, with 86% user
penetration, Facebook needs a system capable of processing massive data traffic (Harland 2014).
Currently, it uses many open source systems combined, including Hadoop, a popular processing
system for bulk instead of real-time data (Borthakur 2010). As the demand for real-time
information goes up, it may need to adopt our highly available real-time processing system to
better tailor their real-time features. Our market also includes large firms such as Apple and
Cisco since they need a system to process a massive amount of logs for analytic purposes. In
general, companies processing a massive amount of data are within our target market as they
need a distributed data processing system to operate efficiently.

Our stakeholders are mainly large hardware or software firms, social media providers,
and end users of social media such as ourselves. Large hardware or software firms benefit from
our system when processing logs, as mentioned previously. Social networking companies can
use our system to process a massive amount of data in real-time, delivering news and posts to the
users as soon as they arrive. At the same time, the users start to demand more ways to filter and
customize the content that they see (Hulkower 2013). Social media providers and users form an
ecosystem with a massive amount of data traffic, and a distributed data processing system such

as ours has become an integral part of this ecosystem.

4. Marketing Strategy

To holistically address marketing, in this section we describe our strategies for the 4P’s:

product, price, promotion, and place (Kotler and Armstrong 2011).



4.1 Product

Our product is a highly available distributed real-time processing system, which is mainly
useful to meet the demands of large firms that need to continuously process a massive amount of
data. What makes our product unique is its k-safety feature, which allows the data processing to
continue seamlessly without any pause in the event of machine failures. In contrast, other
systems might stagger for some amount of time in the event of machine failures, ranging from
milliseconds to more than 30 seconds (Hwang et al. 2003). Therefore, our product offers a
distributed real-time processing system that has a consistently low latency despite machine
failures.

4.2 Price

We plan to make our product open source so that the price is free. It is less probable to
commercialize our system, since it is more of a platform where firms can build upon rather than
a complete solution. Moreover, many of our competitors are also open source. If we were to
commercialize this system, we would adopt a variable-based pricing with no upfront costs, since
zero upfront cost is one of the most important attributes that makes data processing products
appealing (Armbrust et al. 2010). In other words, users would pay based on the amount of time
using our system or the amount of data processed. In the current situation, however, we believe
that making our product free is the most appropriate pricing strategy.

Although our product will be free, we can generate revenue by selling a proprietary
product that takes advantage of our system or by offering technical consulting regarding our

system. For example, Cisco may use our system to run one of their proprietary products and



generate revenue this way. Also, we may offer technical consulting at a premium as we are the
experts of the system.

4.3 Promotion

We plan to promote our system to software architects through engineering press releases
or conferences. The decision of whether or not a firm uses our system most likely lies in the
hands of the firm’s software architects. The best channel to reach them is presumably through
engineering press releases and engineering conferences. Such promotion often requires minimal
to no cost, but rather a working proof of the system’s success. Therefore, we have to show a
working prototype in the press in order to attract software architects to use our system.

4.4 Place

Our product will be distributed through the Internet. It will be published and can be
downloaded on the Apache Storm website (“Storm™ 2014). As an open source project, the source
code will also be published online in a public repository such as GitHub (“GitHub” 2015). Thus,

we do not need a physical medium, as everything will be distributed through the Internet.

5. Porter Five Forces Analysis

In this section, we conduct a Porter Five Forces analysis (Porter 2008) on our product’s
industry: Data Processing and Hosting Services.
5.1 Threat of New Entrants

The threat of new entrants for our industry is moderate. The primary reason that increases
the threat is that software products are in general cheap to build. In particular, for distributed

systems, there are decades of research that produced simple and proven solutions to various



problems in the field. For example, Apache Storm, the streaming system that we are working
with, was initially solely developed by its creator, Nathan Marz, over the course of 5 months
(Marz 2014). The low starting cost means that any person or research group in the short-term
future can publish a new system with better performance, and potentially take away users of our
system.

However, in the open source software community, the goal generally is to collaboratively
build systems or packages that can be easily used by anyone free of charge. Although there are
companies that offer consulting services for different open source software, these software are
not usually developed to make money. Moreover, open source software often issue “copyleft”
licenses, which seek to keep intellectual property free and available rather than private, by
requiring modified versions of the original work to be equally or less restrictive (Lerner and
Tirole 2005). These characteristics makes open source less appealing to people hoping to gain
profit from software, reducing the threat of new entrants.

5.2 Threat of Substitutes

Traditionally, users would collect data, and then run queries through them to receive
answers in batch. While this method is effective, the collection and querying take time,
producing results in a slow pace. Over time, stream processing systems were developed in
response to the increasing demanding in receiving results in shorter windows. Today, especially
in the fields of real-time analytics and monitoring, systems such as Storm are crucial to the
success of various companies. For instance, one of the biggest users of Storm is Twitter, which
runs it on hundreds of servers across multiple datacenters, performing a range of tasks from

filtering and counting to carrying out machine learning algorithms (Toshniwal et al. 2014).



Storm is crucial, because Twitter needs to produce content in real-time for their users. Therefore,
the threat of substitution in this case is low. Rather, streaming systems are substitutes of
traditional data processing systems.
5.3 Bargaining Power of Suppliers

One of the main reasons that software development has such low starting cost can be
attributed to the low bargaining power of suppliers. In this context, a supplier is any entity that
provides raw materials for us to produce our product. However, we do not require any raw
material. To make software, a programmer only needs a computer and a code editing software
that is free or can be purchased at low price. There is no need for a constant supply of goods or
services, which means that the development of Storm will likely never be hindered by problem
with suppliers.
5.4 Bargaining Power of Buyers

While customers are very important the open source community, they do not necessarily
have much bargaining power. The reason is that most open source software communities have
their own philosophies in terms of design and development, which cannot be easily changed
without agreement among the majority of the project’s key maintainers. As a result, a minority of
the users will not be able to change a certain aspect of the software if the change violates the
philosophy, because the software exists to serve the majority.

In another aspect, like with other software, software migrations are costly. In fact, there
exists software for performing such tasks (Fleurey et al. 2007). As a user continues to use Storm,
it may be increasingly more difficult to switch to another product. This phenomenon actually

motivates the users to contribute back to Storm, improving the software. Although, while users
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using Storm will not switch to another product unless they are extremely discontent, it can also
be difficult to make users of other software to adopt Storm.

5.5 Industry and Rivalry

As real-time analytics become more important to business needs, many companies such
as Microsoft (Chandramouli et al. 2014) start to develop their own stream processing systems.
However, many of these solutions are tailored to specific requirements, and are not suitable for
general use. Moreover, in order to remain competitive, many of them do not open their source
code to the public. Nevertheless, there are many competing data processing systems in the open
source community, many of which offer streaming capabilities. Some examples are Apache
Hadoop, Apache Spark, and Apache Samza. The relative strengths and weaknesses of these
systems will be discussed in the next section.

To combat intense rivalry, we are focusing on high availability. While most other stream
processors can tolerate machine failures, many of them have to recompute the non-persistent data
stored on those machines when failures occur, which can increase the system latency. Our
approach reduces this latency, by minimizing the impact of machine failures on the timeliness of
results. Due to our focus on a niche market, we rate our threat of rivalry to be moderately high

instead of high.

6. Competitive Analysis

In such an attractive market, we have a lot of competition. In this section, we will focus

on our three main competitors: Apache Hadoop, Apache Spark, and Apache Samza.
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6.1 Apache Hadoop (Hadoop)

Hadoop (“Welcome to Hadoop” 2014) is an open-source framework that includes many
tools for distributed data processing and storage. The data processing component of Hadoop is
called Hadoop MapReduce, an implementation of the MapReduce programming model. The
MapReduce programming model was originally introduced by Google (Dean & Ghemawat
2004), and it enables users to easily write applications processing vast amounts of data in a
parallel and fault-tolerant manner.

However, Hadoop’s processing model is by nature very different from Storm. As
previously mentioned, Storm uses stream processing, which means input is processed one by one
as soon as it arrives. In contrast, Hadoop uses batch processing, which processes a large batch of
data together at the same time. While Storm processes a potentially infinite stream of data as it
comes in, Hadoop processes a finite stored data usually from a database.

To illustrate the difference between batch and stream processing, we will walk through a
few examples. Imagine that we need to compute the statistics (e.g. mean, median, and standard
deviation) of students’ exam scores. It is easier to compute such statistics if we can access the
entire data (all students’ exam scores) altogether, rather than accessing one score at a time.
Therefore, batch processing is more suitable for this task, since we need to process a finite
amount of data at once. In contrast, imagine that we need to count the number of visits to a
website and display it in real time. Since we need to process an infinite stream of data (people
can keep coming to the website forever) and update our count as soon as someone visits the
page, stream processing is definitively more suitable for this task. As can be seen from these

examples, both batch and stream processing have their strengths and weaknesses due to their
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different natures. This difference is the key differentiator between our project and Hadoop
MapReduce.

Furthermore, the expected result of our project should perform much better than Hadoop
in terms of fault tolerance. When a machine fails, a Hadoop job will fail and needs to be
restarted. If that job has computed a lot of data before the machine crashes, the system will
unfortunately have to recompute everything again. As we can imagine, this property will cost
time. Also, there are overheads associated with relaunching the failed job. In contrast, with our
implementation of k-safety, our system will not waste any time when some machines fail. That
is, if k (or less than k) machines fail, our system will continue to process data normally as if
nothing has happened. This is a major advantage that we have over Hadoop. In the world of
distributed computing, machine failures are inevitable such that an efficient fault-tolerance
mechanism is absolutely necessary. Our system guarantees a smooth performance when at most
k machines fail, which Hadoop does not offer.

6.2 Apache Spark (Spark)

Another competitor of our project is Apache Spark (“Apache Spark” 2014). A project
that came out of the UC Berkeley AMPLab, and open-sourced in 2010, Spark has gained much
attention in the recent few years. The distinguishing feature of Spark is that it uses a novel
distributed programming abstraction called Resilient Redundant Datasets (RDDs). With this
abstraction, the application can operate on a large set of data as if they are located at the same
place, while underneath the cover, the data can be split across multiple machines.

Compared to the way Apache Hadoop processes data, RDDs offer many benefits. First,

while Hadoop MapReduce reads data from disk and writes data back to disk for each operation
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on data, RDDs allow result to be cached in the machine’s random-access memory (RAM). This
characteristic offers great performance boost, because accessing data in memory is many orders
of magnitudes faster than accessing data on disk. As a result, Spark can be used to implement
iterative (accessing the same data multiple times) or interactive (requiring response time in
seconds instead of minutes or hours) applications previously unsuitable for Hadoop. Second,
RDDs offer many more high-level operations on data than Hadoop MapReduce. As a result,
applications written using Spark tend to be much shorter than those written using Hadoop.
Finally, an RDD keeps a lineage of operations performed on it to obtain the current state, so in
the event that a machine fails, the lost data can be reconstructed from the original input. In
contrast, Hadoop MapReduce requires storing the intermediate results at every step if the
application wishes to recover from failures.

Another interesting aspect of Spark is Spark Streaming, which is an extension of Spark
that provides stream processing. The difference between Spark Streaming and traditional stream
processing systems is that instead of processing data one record at a time, it groups data into
small batches and process them together. Since each processing incurs some computation
overhead, processing more data at a time means higher throughput. However, the benefit comes
at the cost of longer latencies, usually in seconds rather than milliseconds for individual data
points.

While Spark is strong in many aspects, the winning factor of our project is its consistent
low latency. As mentioned above, since every RDD contains information on its lineage, it does
not need to be replicated in case of failures. However, the extra latency required to recompute

data after a failure is unacceptable for some applications, while we can return results at a much
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more consistent rate. To compete against Spark’s other advantages, our system is linearly
scalable, which means that in order to obtain higher throughput, we can simply add more
machines. As for the programming interface, we target applications that do not contain very
complex logic.

6.3 Apache Samza (Samza)

The third competition that we face is Apache Samza (“Samza” 2014). Samza is stream
processing system developed by LinkedIn, and was open-sourced in 2013. Even though the
system is still gaining traction on the market, it has proven use cases inside LinkedIn, powering
many of its website features such as news feed. Philosophically, Samza is very similar to Storm.
It processes data a record at a time, and achieves sub-second latency with reasonable throughput.
On the design level, Samza offers features such as the ability to process input in the order they
are received, and keep metadata or intermediate data about the processed input. However, these
features are less relevant to our target applications.

Similar to other systems mentioned previously, Samza again doesn’t provide k-safety in
our manner. Its fault tolerance model is to redo the computations previously done by the failed
machine. To not lose data, it takes a similar approach to Hadoop, and writes intermediate results
to disk. This way, Samza’s authors argue, less recomputation is required after a failure.
However, in the context of latency, writing every input to disk takes time, so the overall response
time in Samza is slower than Storm. In the context of tail tolerance, our solution of duplicating
computation is also superior, since a live copy of the result can be quickly retrieved from the
backup machines. Again, while it is true that running every computation multiple times in our

system decreases the throughput in general, our goal is to be linearly scalable. Our stakeholders
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are willing to add more machines in order to have the assurance of both consistent low latency

and high throughput even with failures.

7. Trends

Aside from understanding the industry, market, and competitors, it is also important to
observe relevant trends that can help predict the future landscape. In our case, there are several
economic and technological trends that affect our Capstone project. One major trend that affects
our project is the movement of data and services to the cloud. According to a MINTEL report on
consumer cloud computing, more than a third of internet users are now using some form of
cloud-based service (Hulkower 2012). As more data is moved to the cloud, and more people are
using these cloud-based services, there will be a greater need for ways to process this data
efficiently. The popularity of Internet of Things is also growing, as more devices are connected
to the internet and more information is generated. According to Gartner Inc., an information
technology research firm, information is being to reinvent and digitalize business processes and
products (Laney 2015). Businesses will need curate, manage, and leverage big data in order to
compete in the changing digital economy. Efficient data processing systems will be even more

important in the future based on these trends.

8. Conclusion

We have described the business strategy for our Capstone project, a highly available
distributed real-time processing system using Apache Storm in collaboration with Cisco
Systems, Inc. From the IBIS report (Diment 2015), it is clear that the Data Processing and

Hosting Services industry is rapidly growing. As more components in the world are connected
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through the web, the demand for real-time information will also rise accordingly. Hedging on
this trend, we are confident about our product, despite entering a competitive industry filled with
similar data processing systems.

Another contributing factor to our positive outlook is the ability of our system to deliver
results with minimal delays, despite various failures that can occur in a distributed environment.
By focusing on this niche use case, our product will likely be noticed by various high-tech, social
media firms that we are targeting, especially if they have previous experience working with
Apache Storm.

Finally, it is important to note that while we may potentially face many uncertainties, our
end goal is to make the open source project more accessible to our target customers. By this
measure, the probability of failure for the project is therefore very low. If we can even satisfy a

small fraction of total customers in the industry, we have served our purpose.
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Intellectual Property

1. Introduction

Our capstone project, which we develop in collaboration with Cisco, aims to implement a
high availability feature on a distributed real-time processing system named Storm by using a
method known as “k-safety”, which involves creating duplicate records of data and processing
them simultaneously. However, this method has been public knowledge for a while such that our
project is not eligible for a patent, and therefore we will make our project open source instead.
This paper is divided into sections as follows. Section 2 further describes our rationale of
choosing open source as a strategy. Section 3 explains our analysis regarding open source, which
includes its benefits and risks. Section 4 describes a patent that is most closely related to our

project and how it affects us.

2. Rationale of Choosing Open Source

Our project does not have any patentable invention. According to the United States Patent
and Trademark Office, an invention has to be novel in order to obtain a patent (USPTO 2014).
However, highly available algorithms for real-time processing systems have been a research
topic for a while. Many researchers have already studied these algorithms and published papers
describing them in great detail. Hwang et al. published a paper that describes and compares the
performance of these algorithms, including the k-safety algorithm that we are implementing
(Hwang et al. 2003). Furthermore, other researchers have explored the usage of k-safety in

various fields other than data processing. For example, Kallman et al. published a paper that
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describes k-safety usage in the database context (Kallman et al. 2008). Given that k-safety for
data processing has been public knowledge, our project, which mainly relies on k-safety, fails the
novelty requirement to obtain a patent, and therefore it is not patentable.

Since getting a patent is not an option, we turn to open source as it seems to be the natural
choice for our project. The reason is because our project relies on an open source system — Storm
— as we are building k-safety on top of it. The Storm project already has a considerably large
community of programmers. By keeping our project open source and committing our
modifications as a contribution to Storm, we can join the existing community and gain their
support. Furthermore, there are many benefits of open source, which we will describe in the next
section. The opposite strategy that we can adopt is trade secret. However, there is nothing that
we can hide as a secret, since the algorithm that we are implementing is already well known to
the public. Therefore, we believe that it is best to choose open source as our intellectual property
(IP) strategy by contributing our code to Storm.

Additionally, our project will implicitly obtain a trademark and a copyright, though these
rights are not an important concern of ours. Storm is copyrighted and trademarked by the Apache
Software Foundation (ASF) (“Storm™ 2014). As we are contributing to Storm, our project will be
a part of Storm, and it will automatically inherit the trademark of Storm. Although not necessary,
we can write our copyright notice for each piece of the code that we write. Storm as a whole,
however, is copyrighted by ASF. Nonetheless, our names will be recorded when we submit our
code to Storm, thus people will know our contribution. In general, we permit anyone to develop,
modify, and redistribute our code in the spirit of open source. As such, we do not worry much

about trademark and copyright, since Storm has been set up to manage both rights appropriately.
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3. Analysis of Open Source

In this section, we describe our analysis regarding the benefits and risks of implementing
open source strategy for our project. We begin with mentioning all of the benefits, followed by
all of the risks.

First, open source makes development faster. An article published by the Harvard
Business Review (HBR) states that open source accelerates the software’s rate of improvement,
because it can acquire many more developers to work on the project than any payroll could
afford (Wilson and Kambil 2008). By contributing to Storm’s open source project, we gain the
support of Storm’s large community of developers without having to pay them, thus allowing
development to accelerate faster with less financial burden.

The nature of open source projects usually nurtures innovation. According to the book
Innovation Happens Elsewhere: Open Source As Business Strategy (IHE), the unlimited size of
the open source community makes it more likely for people to come up with new innovative
features that the original developers may not have considered (Goldman and Gabriel 2005). For
example, we can add a new k-safety feature to Storm because it is open source. In general, open
source tends to encourage new innovative features that will further improve the overall quality of
the project.

Open source increases the size of the market. According to HBR, closed companies have
smaller market opportunity than open companies (Wilson and Kambil 2008). According to IHE,
open source increases market size by building a market for proprietary products or by creating a
marketplace for add-ons, support, or other related products and services (Goldman and Gabriel

2005). Cisco owns a proprietary product that uses our project as its foundation. In this case, [HE
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suggests that by making our project open source, it builds awareness of Cisco’s proprietary
product, or it may even persuade some customers to upgrade and try the proprietary product.
Therefore, open source can help increase the market size of our product and Cisco’s proprietary
product.

Additionally, HBR suggests that companies often pay a reputational price for being
closed, as the market tends to advocate open source (Wilson and Kambil 2008). This is
especially true in our situation. Making our project proprietary may damage Cisco’s and our
reputation significantly given that Storm was originally open source. Thus, being open source
avoids the risk of damaging our reputations.

From the individual perspective, contributing to an open source project offers two main
benefits: building a better resume and obtaining technical support from experts. Previous studies
showed that contributing to an open source project can lead to a higher future earning and helps
solve individuals’ programming problems (Lerner and Tirole 2005). In our case, our names will
gain more exposure, and we can acquaint ourselves with experts in the data processing industry.
Thus, open source benefits not only the project, but also the individuals.

Although open source offers many benefits, there are some risks associated with it. First,
according to HBR, open source projects have a greater risk of IP infringements (Wilson and
Kambil 2008). The reason is because open source projects are developed by an amorphous
community of unknown people. They are less controlled compared with homegrown software
engineers. In order to mitigate this risk, every code submission must be reviewed seriously,
which incurs additional efforts. However, this is a concern of ASF instead of ours, since ASF

(the owner of Storm) controls the code repository. Our responsibility is to make sure that our
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code does not infringe any IP. Thus, although IP infringement is a general risk in open source
projects, we are not in position to worry about it.

Open source projects tend to risk the quality. IHE states that open source projects may
have issues in the design level and in the code level (Goldman and Gabriel 2005). The founders
may not have the same design mindset with the open source community, and the code quality
written by the community has no guarantee, since there is no way to impose a strict management
to the community as in a company. IHE suggests that a careful code review is required to
mitigate this risk (Goldman and Gabriel 2005). Again, since ASF controls Storm’s code
repository, this issue is not our concern as we do not have control over code submissions.
Fortunately, the current repository technology tracks every code submission such that we can
choose the version that we desire. When there is an unsatisfactory update, we can revert to a
previous version while submitting a ticket requesting a fix. Therefore, we can mitigate the risk of
low quality for our purposes, but ASF may be more concerned about the overall quality of Storm
over time.

There are some risks of “free riders”. According to the National Bureau of Economic
Research, the open source system has the opposite effect from the patent system (Maurer and
Scotchmer 2006). That is, while the patent system incentivizes racing to be the first one, the open
source system incentivizes waiting to see if others will do the work. Thus, there will be entities
who do not contribute anything while taking advantage of the open source project, and they are
called “free riders”. Unfortunately, this is a drawback of the open source system that currently

does not have any solution.
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Finally, the obvious risk of open source is losing competitive advantage. Open source
allows anyone to see the source code of the project, which allows competitors to see what we are
doing or even steal it. In fact, HBR suggests that the risk of losing competitive advantage must
be seriously considered before committing to open source (Wilson and Kambil 2008). However,
as previously mentioned, we do not have anything to hide since the algorithm that we implement
has been known to the public for a while. Cisco uses our system to run their proprietary product,
and they can maintain their competitive advantage by simply keeping their product proprietary.
Therefore, although the risk of losing competitive advantage is a serious matter, it does not
necessarily apply to us or Cisco.

We have described our analysis regarding open source in relation to our project. Open
source have some significant benefits and risks, but we believe that the overall benefits

overweigh the risks for our particular case.

4. Closely Related Patent

There is an existing patent for a distributed stream processing method and system. This
method involves splitting data into real-time and historical data streams. Data that comes in will
be split into a system that processes real-time data, a system that processes data created within 2
to 30 days, and a system that processes data exceeding thirty days based on timestamps (Zhang
et al. 2013). Each system can process data differently. For example, the historical data processing
may require more precision can be done offline. The real-time processing system is further split
into different modules depending on the type of data, and these modules are further split into

data units for parallelization (Zhang et al. 2013). This is similar to components and tasks in
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Apache Storm. Finally the outputs from the historical and real-time systems are integrated for a
final result.

Like our project, the system described in this patent also deals with distributed stream
processing, but we are not concerned about it. Our project does not specifically deal with
splitting data by time values. In some way, our system does overlap with the patent. Apache
Storm can be used as the real-time processing component of the patent’s system, as it is capable
of processing data into modules (bolts) and splitting the data to process it in parallel (task
parallelization). Also, Apache storm, and therefore our system, can somewhat imitate the full
function of this patent’s system by simply creating a topology involving splitting the data into
different bolts based on timestamps, although it would not be capable of the more precise and
time-consuming calculation that could be done on an offline system. However, this approach is
simply a topology that a user would create using Storm, as Storm itself is not designed with that
purpose in mind. As such, we would not have to worry about licensing fees regarding this patent,

as our system does not directly infringe on the patent.

5. Conclusion

This paper describes our IP strategy. Since our project does not contain any patentable
idea, we opted for open source. We described several reasons for choosing open source strategy,
and we analyzed its benefits and risks. Overall, the benefits of choosing open source strategy
overweigh its risks. Finally, we researched related patents, and we described one that we believe
is most related to our project. While there are some similarities, we believe that our project will

not infringe any of its IP. With the benefits offered by open source and the lack of prior patents
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protecting the ideas used in our project, we believe that our project can reach its maximum

potential.
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Technical Contributions

1. Overview

This project involves implementing a version of k-safety in Apache Storm, an
open-source distributed stream processing system (“Storm” 2014). We are working with Cisco
Systems, who suggested this project. Distributed streaming systems are built to process large
amounts of real-time data, or data that has just been created, in a distributed parallel
environment. Many such systems have been developed and used recently in the past such as
Aurora, Borealis, Storm, S4, and Truviso. (Abadi et al. 2003, 2005; Neumeyer et al. 2010;
Kamburugamuve et al. 2013; Krishnamurthy et al. 2010). In these processing systems, data
safety, availability and distribution are crucial factors in ensuring an effective system
(Stonebraker et al. 2005). By duplicating data during processing, we can allow the processing to
continue unhindered in the presence of failures. The idea of keeping a number of copies of data
is called k-safety, in which we have k + 1 instances of the data. While duplicating data will
increase network traffic, it will ensure that data does not need to be replayed if there is a copy of
it being processed. By eliminating the need for data replay that Storm uses for fault tolerance,
we can have lower latency during processing when a failure occurs.

In order to implement k-safety in Storm, there are a number of parts that we have to build
and combine. We need a way to duplicate the data, and figure out where to duplicate it. After
data is duplicated, we then need a way to ultimately remove duplicates. This is necessary in
order to maintain the correct results. For example, if we are counting words, we do not want to

incorrectly over-count. We need to make sure that the duplicate records actually provide us with
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fault tolerance, which is the guarantee correctness in the event of failures. This means, among
other things, that we need to make sure that the duplicates are created on different machines.
Lastly, we need a way to handle the process of recovery after a failure has occurred.

In order to meet all of these requirements, we split the tasks up and assigned them to
different people. Enrico Tanuwidjaja handled duplication and removing duplicates. I created the
scheduler to ensure that duplicated data was on different machines and handled load balancing
among the machines. Jianneng Li handled the implementation of recovery. The scheduler is an
integral part of the system. It integrates with the duplication mechanism to ensure that
duplicated data resides on different machines, and helps reassign tasks during machine recovery.

In addition to these tasks, significant time was spent on deployment and setting up Storm.
All of us had to get up to speed on Storm’s implementation and install and provision Storm set
up on our personal machines. We could not begin brainstorming ideas until we all had a deep
understanding of Storm’s design. Another very time consuming task was setting up Storm on a
distributed cluster. Finally, we created several topologies and a benchmarking method to test
and benchmark our system.

In this paper, I discuss our implementation of the scheduler, including an overview of
how Storm works, as this is crucial to understanding the reasoning behind our scheduler
implementation. The primary goal of the scheduler is to ensure that duplicated data resides on
different machines. I discuss related works that deal with scheduling as well as load balancing,
which is an important part of any scheduler. Finally I reflect upon the results of our project as a

whole.

27



2. Related Work

Scheduling and load balancing are topics that apply to a wide range of different systems,

including operating systems, database systems, and distributed processing systems. There has
been much research in these fields as well. As we are dealing with a distributed stream
processing system, we are more interested in previous work in this area. Distributed processing
systems will distribute data to different processes on machines to process data in parallel, and it
is necessary to distribute data and tasks in a balanced and efficient manner. For example, S4 is
another distributed streaming platform that uses entities called processing elements that do some
processing on data and send output to other processing elements in a distributed environment
(Neumeyer et al. 2010). S4 handles its load balancing and scheduling with the use of Apache
Zookeeper, a service used for coordinating processes at scale in a distributed environment (Hunt
et al. 2010).

There has been work by Rychly et al. on an offline scheduling approach that schedules
according to resource requirements (Rychly et al. 2014). For example, there could be some
resources or machines that require more memory compared to others, and some that require more
CPU power compared to others (Rychly et al. 2014). In order to efficiently schedule processing
for a particular application, they would first run the application on that cluster and run
benchmark performance tests on each resource, or machine type. Using that information, they
are able to make appropriate scheduling choices for each resource, such as storing data on
memory optimized machines, or processing more data on computation optimized machines. This
can be a good strategy for targeted applications, but requires tuning to work for a specific

application.
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Fischer et al. investigate improving the throughput of a linked data stream processing
system, similar to Storm, which takes in RDF triples and outputs them into a data stream
(Fischer et al. 2013). RDF triples are way of modeling entity-relationship information. The
system is made out of a series of nodes in the shape of a graph, where each node takes in and
outputs data. This type of system can be used to implement SPARQL algebra to perform RDF
queries, where each node uses some algebra operator (Fischer et al. 2013). In their research, they
propose that graph partitioning algorithms can be used to optimize traffic sent between machines,
or across networks. Ghaderi et al. also explore the idea of using balanced graph partitioning to
balance a scheduler for stream processing (Ghaderi et al. 2015). Each node’s data processing is
partitioned into several tasks and computed in parallel, similar to tasks in Storm.

There has also been research on creating an adaptive online scheduler for Storm. Aniello
et al. developed two different schedulers for Storm with the goal of reducing overall latency
through reduced transfer time (Aniello et al. 2013). The first scheduler is an offline scheduler
that schedules executors based on the topology structures, where a topology is a set of
components that send data to each other. For two components ¢;and c;, they define a ¢; <¢; if ¢;
emits a tuple that is received by ¢; (Aniello et al. 2013). The dependency relationships among
the components form a directed graph. The scheduler iterates through the components in order
based on the topology of this graph. For any component ¢;, the scheduler attempts to schedule
each executor of this component on the same supervisor as executors of components c; that this
component ¢; receives tuples from. When scheduled this way, tuples that are sent from one task

to another will not have to travel across machines, lowering overall processing latency.
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The second scheduler Aniello et al. created is an adaptive online scheduler, which
schedules based on the traffic of a Storm topology at runtime. This scheduler takes into account
the computational power of each node and also seeks to minimize transfer time as in the first
scheduler. This is accomplished by measuring CPU utilization on each node, and also measuring
the rate at which tuples are sent at from one executor to another. Their results show that the
offline scheduler produces lower latency than Storm’s typical scheduler, while the online
scheduler produced the lowest latency (Aniello et al. 2013). In the following section, we discuss

the possibility of using these ideas in our scheduler.

3. Methods and Materials

In order to describe how we implement a scheduler that guarantees that duplicated data is

sent to different machines, and to discuss the reasoning behind the implementation, we first need
to describe the design of Storm. A Storm topology consists of components called spouts and
bolts. Data in the form of tuples originates from spouts, which gets passed to bolts, which do
some form of processing on the data. After processing, the bolts potentially send the data to
other bolts for more processing, and the tuples eventually arrive at an end bolt where the data is
output. Internally, each spout and bolt can contain multiple tasks, which all do some processing.
When data is sent from one bolt to the other, data will be sent from tasks on the sending bolt to
tasks on the receiving bolt. When a component, a spout or a bolt, is sending data to another bolt,
the decision of what task to send to on that bolt is decided by one of many different grouping

strategies that Storm provides.
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One of these grouping strategies is called FieldsGrouping, which decides the task to send
to based on a defined key from the tuple being sent (Storm 2014). As an example, if boltl is
sending words to bolt2, which counts words, we want to ensure that all instances of a given word
are always sent to the same task to have one complete count for that word. Storm’s fields
grouping can ensure this by using the word as a key, and deciding which task of bolt2 to send
this word to based on the hash value of the word. Our duplication strategy involves using a
k-safety FieldsGrouping, which is similar to the normal FieldsGrouping, but sends the tuple to
multiple tasks, with the number depending on the value of k. While this strategy provides a
simple and easy method of duplicating the data, it is possible that the duplicated data does not
provide fault tolerance depending on what machines these tasks are running on.

In a Storm cluster, each machine used will run either a Nimbus process or a Supervisor
process. The goal of the Nimbus process is to coordinate the Supervisors and schedule Storm
tasks. The Supervisors handle data processing and have multiple worker slots. Executors can be
assigned to these slots, where each executor runs one or more tasks from Storm components.
When creating a spout or bolt, the user can decide how many executors and tasks to create.
Typically, the number of tasks and executors will be equal, as this is the most efficient way to
process data. This is because executors run tasks serially, so having more than one task on a
single executor is less efficient than running only one task per executor(Storm 2014). For our
implementation, we require that the user has one task per executor, so we can treat tasks and
executors as the same thing for the purposes of the scheduler. This is a fair requirement,
because each executor is essentially a thread, so having more than one task scheduled to a single

executor would be less efficient as those tasks would be run serially (Storm 2014).
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The primary goal of the scheduler is to enable the use of k-safety. Given that data is
duplicated on multiple tasks in a bolt, we need to make sure that these tasks are running on
different machines to achieve k-safety. If these tasks with duplicated data were running on the
same machine, then one machine failure would cause the tuples to be lost without any other
copies being processed. There are several possible strategies we could take here. One possible
strategy, without actually needing a scheduler, would be to decide which tasks to duplicate to
based on the machines that are running these tasks. However, this approach would not work
very well, because we would be no guarantee that there are enough tasks of the destination bolt
that are running on different machines.

A better possible strategy involving a scheduler is to keep track of which tasks have
duplicated data, and make sure that these tasks are always scheduled to run on different
machines. This strategy would require constant maintenance and updating based on the Storm
topology. However, because of our duplication strategy, each task will have duplicates stored on
up to k+2 other tasks, where k is the number of duplicates. There would be a fair amount of
overhead, and the end result would often be that every task on a bolt is required to be scheduled
on a different machine. Given this fact, we can take a much simpler approach.

The strategy we decided to use was to schedule the tasks of every bolt such that all tasks
in any one bolt are running on different machines. The benefit of this strategy is that it is a very
simple and efficient approach that also simplifies the duplication process, as we don’t have to
keep track of which specific bolts have duplicated data. By ensuring this condition, duplicated
data can simply be duplicated to k tasks without having to worry about which machines are

running these tasks. We also would not have to reschedule while the topology is running.
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However, this strategy does require that the number of tasks on any single spout or bolt are
greater than the number of available machines or supervisors. This is a fair requirement, as
Storm typical usage of Storm will already follow this requirement.

We used Storm’s custom scheduler interface to implement our scheduler. The scheduler
code is run by Nimbus every 10 seconds to check for any scheduling that needs to be done.
Storm’s Cluster class provides a function that returns a mapping from component (spout or bolt)
to a list of executors of that component, one per task, that need to be scheduled. Using this
mapping, we created a method that returns a new mapping from component to a list of
supervisors that this component has tasks already scheduled on. With this mapping, the
algorithm works as follows. It iterates through each component, finding the tasks that need to be
scheduled. Then, it finds the list of supervisors that already have tasks of this component
scheduled on them. Based on this list, it creates a list of supervisors that it can schedule to and
schedules each remaining task one by one. This method ensures the correctness of k-safety, but
we also need to consider load balancing so that our scheduler does not have a negative effect on
overall latency.

The simple way to load balance is to spread out the tasks evenly on machines. This is
how Storm’s default scheduler works. If we have multiple choices for where to schedule a task,
we schedule the task on the supervisor with the most worker slots available. This is a simple and
easy approach to ensure each machine is roughly running an equal amount of tasks. The
downside of this approach is that it does not account for the structure of the topology being run

and does not account for the volume of data being processed and transferred at run time.
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We chose to implement the simple strategy of evenly distributing tasks on each machine
to handle load balancing. We chose this strategy is because of our k-safety and time constraints.
We need to ensure that all tasks from a specific bolt are running on different machines, which
limits our options. The strategy used in the offline scheduler by Aniello et al to reduce network
traffic requires assigning tasks on the same machine if their bolts communicate with each other
(Aniello et al. 2014). However, this strategy will not work for us, as we cannot schedule more
than one task from the same bolt on one machine. If we violate this constraint, we would not be
able to guarantee that copies of data reside on different machines, and thus would not have
k-safety. Fortunately scheduling each task on a separate machine does, on average, also lower
inter-network traffic when compared with the typical storm scheduler, similar to the first
scheduler created by Aniello et al (2014). This is because tasks in a single bolt will never send
tuples directly to each other, so enforcing this constraint allows more opportunity for other tasks
to be scheduled. Thus, the simple even distribution strategy, while not optimal, is still quite

effective, and also allows us to satisfy the constraints to make k-safety work.

4. Results

In order to test the performance of our system, we created several Storm topologies to test
both stateless and stateful processing. We ran Storm on a cluster of 8 virtual machines, each
having 4 cores, 8GB of memory, and running CentOS 6. We used one Nimbus instance on one
machine and 6 supervisors with 4 worker slots each on 6 other machines. We also created a data
server application to communicate with the topologies. The data server sends timestamps to the

spout, and each timestamp is attached to a tuple. When the tuples reach the final bolt, the
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timestamps are sent back to the data server, which then computes the time difference to get the
latency of the tuple. The data server controls the tuple emission rate by changing the rate at
which it sends timestamps.

Our first set of topologies test stateless processing. These topologies simply have one
spout and two bolts, where the spout outputs 256 byte strings along with a timestamp per tuple.
Each tuple is then passed on to a middle bolt and then a final bolt. Two of the topologies use
normal storm with the default scheduler, and one of them uses storm’s acking system, while the
other doesn’t. By using Storm’s acking system, tuples will be replayed if they fail to be acked
for any reason after a timeout. The third topology uses our k-safety implementation to duplicate
the data sent to the second bolt, and de-duplicate the data sent to the final bolt. Testing for
correctness, we found that our k-safety version with at least k=1 would produce the correct
results after a machine failure, while the normal storm version without acking would be missing

tuples. The topology design is shown below, where nodes represent spout or bolt tasks.
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Figure 1: Benchmark Topologies

Figure 1 shows the topology design. The base topology x1 uses one spout task, 2 middle

bolt tasks, and one final bolt tasks. The x2 and x3 have 2 times and 3 times the amounts of tasks

for each component respectively. We measured both throughput and latency with 50th and 95th

percent quantiles, using a method for computing biased quantiles for efficiency (Cormode et al.

2005).
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Figure 2: Benchmark results for stateless topologies

Figure 2 shows the benchmarking results for the stateless topologies. We can see that
basic storm without acking can sustain around 100,000 tuples per second with one spout, while
using acking severely reduces the throughput down to around 15,000 tuples per second. For our
k-safe version with k=1, we can sustain about 65,000 with the same amount of tasks, 100,000
with twice the amount, and 135,000 with three times the amount. Our k-safe implementation
scales well with more tasks being used, and requires roughly 2 times the tasks to perform equally
with normal storm without acking. However, when taking fault tolerance into account, our
implementation has a clear advantage, as Storm’s implementation of fault tolerance, the use of
acking, drastically lowers its throughput. In terms of latency, we observed that all versions of
storm would have slightly increased latency as throughput is increased, then a large increase
when it hits its bandwidth limit. We would expect the latency to remain constant until the
topology hits its bandwidth limit. It is likely that the issue lies with the Java Virtual Machine,

mostly with garbage collection. The 50th percentile and 95th percentile have similar shapes,
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with 95th percentile latencies being higher due to the fact that some tuples, especially those
running right when the topology starts, have higher latency than others.

Our second set of topologies test stateful processing through a word count. Our k-safe
implementation uses k=1 and has a spout that outputs words as tuples, a subsequent bolt that
keeps the word counts, and a final bolt for emission that de-duplicates as well. The second
topology is created using Trident, an abstraction built on top of storm which processes tuples in
batches and allows for high-throughput stateful processing and distributed querying (Trident
2014). The trident topology outputs words to an Apache Cassandra database to store the counts
persistently (Cassandra 2015). The words being processed are 256 bytes long, with 26 different

words being counted. Here are the results for these topologies.
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Figure 3: Benchmark results for stateful topologies

Figure 3 shows our benchmarking results for stateful topologies. Our stateful topology’s

throughput limit with k-safety is 55,000 tuples per second with 3 spouts, which is a little less
than half than that of our stateless topology with an equivalent number of tasks. This is due to
the overhead required for our window recovery strategy, as well as the constant state updates

after each tuple. Trident with one spout is roughly equivalent to our k-safe system with three
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spouts, while Trident with 3 spouts can handle 120,000 tuples per second. In the latency graphs,
Trident’s latency is measured per batch. Similar to the stateless topologies, the latency rises
slowly with increased throughput, with a large increase when hitting its bandwidth limit.
Additionally, the 95th percentile latencies are much higher than that of the 50th percentiles, with
fairly large increase even before hitting the throughput limit. This can be attributed to the
increased delay between the starting of the topology and the outputting of tuples caused by our
initial word construction. While Trident performs better in terms of throughput, our
implementation has better per-tuple latency until hitting its throughput limit. This makes our
version a better choice when per-tuple latency is important.

Our system produced the correct results in all situations. In all cases tested, after a
supervisor went down, the scheduler successfully reassigned the task to another supervisor as
long as there were still available supervisors unused by the component. Otherwise, the scheduler
would wait until the supervisor came back up, then reschedule back onto the supervisor. When
we tested our stateless topology, we found that without k-safety, part of the count output would
be missing some data if a supervisor went down, as expected. When we had data duplicated at
least once, the process would output the correct results even with a machine down, as each count
was present on 2 different machines. When we tested the topology that stores state at the
counting bolt, the behavior was identical to the stateless topology, even after a machine failure,
due to our window recovery strategy.

To test recovery, we took down a machine and observed the effect on latency. We made
sure to only take down a machine that was running one of the middle bolt tasks, as these are the

machines that have duplicated data. When testing any of our topologies with k-safety, the
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latency would not increase and would actually slightly decrease the latency by about 5%. The
decrease is likely due to the decrease in work that the de-duplication bolts need to do when
receiving less tuples. Normal Storm and Trident have large delays for some tuples or batches
when machines fail, due to the fact that these tuples or batches have to be replayed after a

timeout.

5. Conclusion

In this section, we discussed our implementation of k-safety into Storm, focusing on the
task scheduling aspect of the system. We covered related work dealing with scheduling in
distributed systems, and analyzed whether we could potentially use these ideas. While the
requirements and constraints of our k-safety implementation make scheduler optimizations
difficult, the evenly balanced scheduling distribution still allows us to achieve k-safety without a
large loss in processing speed. Our system is capable of running stateless and stateful topologies
with k-safety. The performance of our system is roughly equivalent to a normal Storm topology
without acking when our system uses 2 times the amount of tasks than that of the Storm
topology. When comparing to Trident, our system requires about 3 times the amount of tasks to
have equivalent, but we have lower per tuple latency as well. When taking fault tolerance into
account, our implementation has a clear advantage, as our k-safe version does not stop
processing and has no latency increase when a machine fails. As such, our version of Storm with
k-safety is well suited for applications that need to maintain low latency without gaps when

machines fail.
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Concluding Reflections

We implemented a version of k-safety into Apache Storm, a distributed stream
processing system that processing real-time data. The addition of k-safety allows the system to
have fault-tolerance without the presence of delays or latency drops when machines fail. While
this also increases the network traffic, we show that increasing the number of machines in
proportion to the level of duplication lets us match the current version of Storm in terms of
performance. Our system is particularly suited for applications that prioritize low latency and no
delays.

There is still work that can be done to further improve our system. We can explore
alternative de-duplication mechanisms to reduce the overhead required for removing duplicates.
Additionally, we can explore alternative recovery schemes, such as transferring state between
tasks after failures. There are many optimizations we can try on to add to our scheduler
implementation as well. While our main goal with the scheduler was to guarantee fault tolerance
and an even distribution of work across machines, there are other scheduling techniques, such as
those discussed earlier, that we could potentially use to further reduce latency. Online
schedulers, or schedulers that make scheduling decisions based on the topology while it is
running, may prove particularly useful in this regard.

As the number of online services and users increase, there will also be demand for new
and efficient methods of processing data. Additionally, with the growth of the data processing
industry, more companies will be looking for different systems to satisfy their needs. By making

our system open source, we can allow a wide range of people to benefit from it, while also
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opening possibilities for improvement from the community. More and more services require
processing real-time data, and our system a great solution for processing this data with low

latency and no delays.
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