
Two Optimal Path Problems in Synthetic Biology

Matthew Fong

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-126
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-126.html

May 15, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Two Optimal Path Problems in Synthetic Biology

by Matthew Fong

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Sanjit A. Seshia

Research Advisor

(Date)

* * * * * * *

Professor J. Christopher Anderson

Second Reader

(Date)

Two Optimal Path Problems in Synthetic Biology

Matthew Fong

May 2015

Abstract

We examine two optimal path problems that arise in the context of ranking enzymatic pathways to synthesize
a target compound. First, we present a survey of exact and approximation algorithms for the multiobjective
shortest path (MOSP) problem. Second, we formalize the problem of finding stoichiometrically minimal
source pathways (SMSP), which seeks to find paths that use a non-dominated amount of native chemicals to
reach a target compound. We show that the SMSP problem is NP-complete and present two approaches to
solve it based on model checking. For both problems, we provide an experimental evaluation and discussion
of results.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Problems Studied . 3
1.3 Contributions . 3

2 Multiobjective Shortest Path 5
2.1 Introduction . 5
2.2 Martins’ exact algorithm . 6

2.2.1 Modifications for metabolic graphs . 8
2.2.2 Warburton’s approximation: scaling and rounding algorithm 8
2.2.3 Tsaggouris/Zaroliagis approximation: interval partitioning algorithm 10

2.3 Experimental Evaluation . 12

3 Stoichiometrically Minimal Source Pathways 13
3.1 Introduction . 13
3.2 Combinatorial Complexity . 14
3.3 Model checking . 14

3.3.1 Background . 14
3.3.2 Formal Model . 15
3.3.3 Transitions . 15
3.3.4 Termination . 16

3.4 Results . 16
3.4.1 Sample output . 17
3.4.2 Sample runtime . 17

3.5 Optimization . 17
3.5.1 Heuristic simplifications . 17
3.5.2 Software comparison . 19

3.6 Future Work . 21
3.7 Conclusion . 22

Bibliography 23

1

Chapter 1

Introduction

1.1 Background

As increasing amounts of data are being collected in the field of synthetic biology, the need has arisen
for graph-theoretic approaches to analyze and process them in a meaningful manner. Several problems in
synthetic biology involve systems that have a natural graph structure, such as metabolic networks, regulatory
networks, and protein-protein interaction (PPI) networks [11]. In this study, we aim to formalize and propose
solutions to solve two such problems, as well as give the biological context that they are founded upon.

Figure 1.1: Metabolic cascade to the compound isoprene.

2

This project is based upon the work from Act Ontology [16], a formalism for describing the molecular
function of any entity that participates in a biochemical reaction. One of its primary objectives is building an
enzymatic pathway synthesizer, which can construct pathways based on both naturally-known and predicted
reactions. To make this idea concrete, we present a cascade (showing multiple pathways) to isoprene in Fig
1.1 above. From this example and Fig 1.2, one can see the numerous possible pathways to a target.

To translate this biological entity into a theoretical problem, we will interpret each chemical as a vertex and
each reaction as a directed hyperedge in our metabolic network. In this work, we will specifically look at
the design and applications of graph algorithms to solve an open problem from the Act Ontology project.
More specifically, our goal is to be able to answer the following query: Given a metabolic graph and a target,
what is the best pathway to that target?. There are many possible criteria for ranking paths, such as O2

consumption, free energy change, and stoichiometric yield. Without knowing the relative importance of
these different metrics, this study investigates two optimal path algorithms aimed at solving this problem.

1.2 Problems Studied

First, the Multiobjective Shortest Path (MOSP) problem aims to find shortest paths in a graph, where
the cost of each edge is a vector, instead of a scalar. The features of these values are those criteria that
we discuss above, such as O2 consumption and free energy change. The goal is to return all non-dominated
paths, as there is no currently known order of importance for our features. As this is a NP-complete problem,
we investigate the runtime and effectiveness of exact and approximation algorithms.

Second, the Stoichiometrically Minimal Source Pathway (SMSP) [6] problem attempts to find path-
ways in a metabolic graph that use the least amount of the native (starting) compounds. This can be used
as another component of our ranking problem above, as stoichiometric yield is definitely an impactful fac-
tor in the efficiency of a metabolic pathway. We provide a formalization and an algorithm for solving this
NP-complete problem.

1.3 Contributions

We conduct a survey of three algorithms for the MOSP problem: Martins’ [10], Warburton’s [18], and
Tsaggouris’ [17]. We also implement these algorithms and discuss their results on randomly-generated test
graphs.

We propose a formalization for the SMSP problem, as well as two model-checking approaches for solving it.
We perform an extensive experimental evaluation of our model-checking algorithms and hypothesize possible
improvements in terms of their tractability using the NuSMV [4] and UCLID [2][3] model checkers.

3

Figure 1.2: Sample output from the Act [16] pathway synthesizer to the compound tryptophol. Green nodes
are chemicals, white nodes are reactions, and the blue node is the target. Nodes that are depicted as source
nodes are the native compounds. This thesis is the first effort to systematically address the problem of
ranking the possible paths to a target.

4

Chapter 2

Multiobjective Shortest Path

2.1 Introduction

The multiobjective shortest path (MOSP) problem is one that has been studied extensively, with numerous
approximation algorithms devised since it was proved to be an NP-complete problem by Pierre Hansen in
in 1980 [7]. While there is a linear time solution to the single-objective shortest path problem (Djikstra’s
algorithm), there exists an instance of the bi-objective shortest path problem that has an exponential number
of possible unique solutions [7]. In other fields, the MOSP problem has been used to model situations such
as a road network (time, distance), as well as in operations research. In this study, we attempt to optimize
this problem for the use in the Act Ontology enzymatic pathway synthesizer.

As mentioned in Ch. 1, our goal is to rank pathways to a given target, in terms of how likely it is to
be successful. There are many possible criteria on which to rank pathways, such as oxygen consumption,
stoichiometric yield, and number of reactions. However, there is no widely accepted ordering of the relative
importance of these criteria. Therefore, we will represent our edges as having multi-dimensional cost and
find the set of all non-dominated paths, paths that are not strictly worse than another path to the target.

Let x = (x1, ..., xr) and y = (y1, ..., yr) represent real r-vectors, where r is the number of features.

Definition 2.1.1. We define x ≤ y, or x dominates y, if xk ≤ yk for 1 ≤ k ≤ r and xk < yk for at least
one such k.

Definition 2.1.2. We define the multiobjective shortest path problem as the following: Given a graph
G(V,E, c) with associated n vertices V , m edges E, and r-dimensional cost function c over all of the edges,
the solution to MOSP is the set of all s-t paths that are not dominated by another path, where the cost of a
path p is c(p) =

∑
e∈p c(e).

We also provide the linear programming formalization below for the 2-dimensional case (which can be easily

5

generalized to r dimensions):

min c(x) =

{
c1(x) =

∑
(i,j)∈E c1(i, j)xij

c2(x) =
∑

(i,j)∈E c2(i, j)xij
(2.1)

s.t.
∑

i:(i,j)∈E

xij −
∑

i:(j,i)∈E

xji =

1, if i = s

−1, if i = t

0, otherwise

(2.2)

xij ∈ {0, 1} ∀ (i, j) ∈ E (2.3)

Definition 2.1.3. We define an ε-approximation for MOSP equivalently, except the dominance definition
is relaxed to xk ≤ (1 + ε)yk.

2.2 Martins’ exact algorithm

The first algorithm investigated was an exact exponential algorithm, designed by Ernesto Martins in 1982
[10]. It follows a multiple labeling approach, where a label consists of the feature vector for a given edge, as
well as a pointer to the previous label from which it was extended from.

Precisely, a label is a tuple with the following fields: (costs, prevLabels, reactionID, chemicalID). Here, costs
is a r-dimensional vector, prevLabels is a set of labels that were used on the path to this current label,
reactionID represents the last reaction to this current label, and chemicalID represents the chemical for this
label. Once a label is set as permanent, it will never be deleted, while temporary labels may be removed
during the dominance test on line 13. This algorithm iterates through the entire set of temporary labels
until there are none left.

Algorithm 1 Martins’ algorithm

1: procedure MOSP(G, starting, r)
2: for all chemical ∈ starting do
3: add [(0, 0, ..., 0),null,null, chemical] to tempLabels

4: while tempLabels is not empty do
5: currentLabel← tempLabels.poll()
6: permanentLabels.add(currentLabel)
7: for all reactions from currentLabel.node with fully visited reactants do
8: for all products from reaction do
9: for all combinations ∈ cartesianProduct(reactant costs) do

10: newCosts← sum(combination) + reaction.costs
11: tempLabels.add([newCosts, currentLabel.prevLabels + currentLabel, reaction, product])
12: for all labels in tempLabels that create product do
13: if newLabel dominates label then
14: delete label
15: if label dominates newLabel then
16: delete newLabel

6

1

2 3

4

5 6

7

8 9

10

Figure 2.1: N-diamond graph, where N = 3. Edges are composed of randomly generated integers in the
range of 0 to 1000.

In this algorithm, permanentLabels is a list of labels that are marked as permanent, and tempLabels is a
priority queue of temporary labels that is ordered by the lexicographical ordering of the distances (eg. from
smallest cost vector to largest cost vector, starting with the first value and then looking at the second, third,
etc to break ties). By examining each edge in this order, we ensure that once a label is marked as permanent,
it is not possible for it to be dominated by another vector. In Alg. 1, we have made the modifications to
Martins’ algorithm that are listed in the following section.

The N-diamond graph formulation is shown in Fig 2.1, which our early benchmarking studies were performed
on. Fig 2.2 shows the performance of the exact algorithm on that graph, while plotting edges vs. time. The
feature values are generated randomly for the N-diamond graph in Fig 2.1. From these results, we can see
the worst-case exponential behavior in terms of the input size.

Figure 2.2: Edges vs time for Martins’ algorithm with N-diamond graph, with 3 features. Edge vectors are
randomly generated integers in the range of 0 to 1000.

7

2.2.1 Modifications for metabolic graphs

To ensure this algorithm’s correctness in our Act system, several modifications needed to be made to the
published algorithm. A proof to the original algorithm can be found in the Martins paper [10], and the
modifications for Act are justified below.

1. Multiple sources
Martins algorithm only addresses the single source case, but just initializing a zero-cost vector for each
native chemical keeps the key invariants true.

2. Hypergraph vs simple graph
We needed to account for the fact that most of the reactions required multiple reactants and would
yield multiple products. Our edges, reactions, connect a set of reactants to a set of products. To
accommodate for this, we had to augment our algorithm in the following two ways:

(a) Reaction Filtering
For line 7 of Algorithm 1, a filtering function was used to ensure that all of the other reactants
for that reaction had already been reached. A set of reached chemicals is kept, and all of the
auxiliary reactants of a reaction must be in that set for that reaction to be considered.

(b) Cartesian Product
Because there are multiple reactants that can contribute to a reaction, all possible combinations
of those labels must be kept in mind when finding the cost of the label. Therefore, a Cartesian
product of the sets of all current cost vectors for each reactant is taken and added to the reaction
cost.

2.2.2 Warburton’s approximation: scaling and rounding algorithm

Warburton’s algorithm [18] is an example of a scaling and rounding approximation [14], in which each edge
weight is scaled to an appropriate integer and an exact algorithm is used to solve the problem. It follows an
iterated approach, where the final approximated solution is the union of all of the paths that are returned
by each of the smaller subproblems. The last index for the arrays seen in the algorithm are indexed up to
r − 1 because no rounding needs to be done on the final feature value.

Partial Solution: Approximation of CL

Given a positive integer vector L = (L1, ..., Lr−1) and a positive vector θ = (θ1, ..., θr−1), with θk > 1, we
will find CL, the set of all paths satisfying

Lk ≤ ck(P) ≤ θkLk, 1 ≤ k ≤ r − 1 (2.4)

One iteration of this algorithm will determine an ε-efficient set for CL. This set is found by scaling the arc
lengths to appropriate values, as seen below, where dk(e) is the new value for the kth feature of arc e and
ck(e) is the old cost.

dr(e) = cr(e) (2.5)

dk(e) =

⌊
ck(e)

Tk

⌋
, 1 ≤ k ≤ r − 1 (2.6)

Tk =
εLk
n− 1

, 1 ≤ k ≤ r − 1 (2.7)

8

Theorem 2.2.1. Using the new arc lengths d(e) above with an exact algorithm will find an ε-approximation
for CL.

Note: below, we will use x∗ to denote the set of all Pareto optimal members in x, and P to denote the set of
all s-t paths. When the cost operator c() or d() acts upon a set of paths, it returns a set of the corresponding
costs.

Proof From equation (2.6), we get, for any p ∈ P and arc e:

ck(e)

Tk
− 1 ≤ dk(e) ≤ ck(e)

Tk
, 1 ≤ k ≤ r − 1 (2.8)

ck(p)− (n− 1)Tk ≤ Tkdk(p) ≤ ck(p), 1 ≤ k ≤ r − 1 (2.9)

Consider the set p ∈ QL of s-t paths for which dk(p) ≤ (n − 1)
θk
ε

. Construct RL ⊂ QL such that for each

u ∈ (d(QL))∗, there is exactly one p ∈ RL satisfying d(p) = u.

Claim: RL is ε-efficient for CL.

Reasoning: (d(RL))∗ = d(RL) = (d(QL))∗, from the construction above. Therefore, c(RL) = (c(RL))∗.
Now, we just need to show that for each v ∈ CL, there is a u ∈ c(RL) that satisfies uk ≤ (1 + ε)vk.

First, let V be a path that satisfies equation (2.4), and U be a path that satisfies equation (2.9). We can
easily see that dk(U) ≤ dk(V). We also can assume cr(U) ≤ cr(V). Taking the equations above, we have

ck(U) ≤ ck(V) + (n− 1)Tk (2.10)

= ck(V) + εLk, (2.11)

≤ (1 + ε)ck(V). (2.12)

u = c(U) and v = c(V) shows what we need, concluding the proof.

We will complete the algorithm by detailing the iterative step below (lines 2-5 of the algorithm). The
decreased runtime comes from scaling the edge weights to smaller integers (and limiting the number of total
number of partial paths that need to be kept as the algorithm progresses). The extra parameter B in the
algorithm is set to be large enough to ensure that 1 ≤ ck(p) ≤ B. MOSP exact(G, r, c) is any algorithm
that solves the MOSP problem exactly.

Algorithm 2 Warburton’s algorithm

1: procedure MOSP(G(V,E), r, c, B)
2: m← dlogBe
3: I← cartesianProduct([0, 1, . . . ,m− 1])
4: for all (m1,m2, . . . ,mr−1) ∈ I do
5: L← (2m1 , 2m2 , . . . , 2mr−1)

6: Tk ←
εLk
n− 1

, 1 ≤ k ≤ r − 1

7: dk(e)←
⌊
ck(e)

Tk

⌋
, 1 ≤ k ≤ r − 1

8: dr(e)← cr(e)
9: sol←MOSP exact(G, r, d)

10: allSolutions← allSolutions ∪ sol

9

Complete solution: Iterative Step

The previous approximation now must be directly related to an ε-approximation for P∗, the Pareto-optimal
set of paths with the original edge lengths. One appropriate choice of L and θ is as follows. First, compute
B such that B is larger than the largest cost value of any possible path through the graph.

Then, let m = dlogBe and let I denote the (r − 1)-fold Cartesian product of [0, ...,m − 1]. For each
(m1, ...,mr−1) ∈ I, L = (2m1 , ..., 2mr−1) and θ = (2, ..., 2).

Theorem 2.2.2. The union of all CL that are found with the exact algorithm for each L compose an
ε−approximation for P∗.

Proof From above, we find all efficient sets of paths that meet this criteria:

Lk ≤ ck(p) ≤ θkLk, 1 ≤ k ≤ r − 1 (2.13)

Given our definitions of L and θ, it is easy to see that the smallest value of Lk is 0, and the largest value
of Lkθk is B, which is the largest cost value. Because we are taking a Cartesian product, every possible
combination of Lk and Lkθk will be taken, ensuring that all paths are considered. Therefore, the union of
all efficient sets of CL will include every efficient path with the original path lengths. We can simply do a
dominance check after the union to find the ε-approximate Pareto optimal solutions.

Theorem 2.2.3. The runtime of this algorithm is O(rn3(
n2dlogBe

ε
)r−1).

Proof Details can be found in Warburton’s paper [18].

2.2.3 Tsaggouris/Zaroliagis approximation: interval partitioning algorithm

The algorithm designed by Tsaggouris and Zaroliagis [17] is an example of an interval partitioning approxi-
mation [14], in which there is only one path kept per defined interval of features, so that the number of paths
retained is not bounded exponentially by the problem size. The (r − 1)-dimensional arrays Πi

v are used to
store these paths, and the function pos(p) below is used to index appropriately into the arrays.

cmini = min
e∈E

ci(e) cmaxi = max
e∈E

ci(e) (2.14)

Ci =
cmaxi

cmini

(2.15)

Definition 2.2.1. P i(s, v) denotes the set of all s− v paths in G with no more than i edges.

The algorithm proceeds in rounds. For each round i and for each node v the algorithm computes a set of
labels Πi

v, which is an ε-approximation of all possible P i(s, v) paths. We implement these sets of labels by
using (d− 1)-dimensional arrays Πi

v, where the bounds for each dimension are

blog1+ε(nCi)c 1 ≤ i ≤ r − 1 (2.16)

and index these arrays using (d−1)-vectors. This is done with a pos(p) function, which gives us the position
in Πi

v corresponding to p (essentially, which interval it is in):

pos(p) = [log1+ε

c1(p)

cmin1

, log1+ε

c2(p)

cmin2

, ..., log1+ε

cr−1(p)

cminr−1
] (2.17)

10

From this pos(p) function, we can see why the bounds in Equation 2.16 apply – Ci is the biggest possible
cost ratio. The resulting paths stored in Πn−1

target are the final possibilities for the approximated set (because
the longest path will be at most length n − 1). After removing any dominated sets from that matrix, we
are left with the solution to this problem. The runtime improvement from this algorithm comes from the
discretization of the state space (from continuous to discrete intervals), meaning that we do not need to store
an exponential number of paths.

Theorem 2.2.4. For all v ∈ V and for all i ≥ 0, after the i-th round, Πi
v is an ε-approximation for P i(s, v).

Proof We can prove this theorem by showing that for all p ∈ P i(s, v), there exists q ∈ Πi
v such that

ck(q) ≤ (1 + ε)ck(p) for 1 ≤ k ≤ r. We will use a proof by induction.

For the base case, consider a path with only one edge. After the first round, the position pos(p) of Π1
v will

contain a path q for which pos(q) = pos(p) and cr(q) ≤ cr(p). That first condition implies that

log1+ε
ck(q)

cmink

− 1 ≤ log1+ε
ck(p)

cmink

for 1 ≤ k ≤ r. Therefore, this implies that we have ck(q) ≤ (1 + ε)ck(p) for

1 ≤ k ≤ r.

Now, we want to look at the inductive step. Consider a path p = (e1, e2, . . . , ek) ∈ P i(s, v), with k ≤ i.
If we look at subpath p′ with the first k − 1 edges of p, we know there exists a path q′ ∈ Πi−1

u such that
ck(q′) ≤ (1 + ε)ck(p′) for 1 ≤ k ≤ r.

Now, let q∗ be the addition of edge ek to path q′. We have ck(q∗) ≤ (1 + ε)ck(p) for 1 ≤ k ≤ r. Then, similar
to the base case, position pos(q∗) of Πi

v will contain a path q that has pos(q) = pos(q∗) and cr(q) ≤ cr(q
∗).

This implies that log1+εck(q)− 1 ≤ log1+εck(q∗) for all 1 ≤ k ≤ r, which brings us to the statement that we
are trying to prove.

Theorem 2.2.5. The runtime of this algorithm is O(nm
∏r−1
j=1(blog1+ε(nCj)c+ 1)).

Proof This algorithm terminates after at most n − 1 rounds, because there can be at most n − 1 edges
in a path. In each round, all m edges are examined and an ExtendMerge operation is performed. The
ExtendMerge operation runs in time proportional to the size of the arrays, which is

∏d−1
j=1(blog1+ε(nCj)c+1).

Combining these observations leads to our desired runtime.

Algorithm 3 Tsaggouris’ algorithm

1: procedure MOSP(G(V,E), r, c)
2: for all v ∈ V do
3: {Π0

v = ∅}
4: Π0

s[0] = {(0, null, null)}
5: for i = 1 to n− 1 do
6: for all v ∈ V do
7: Πi

v = Πi−1
v

8: for all e = (u, v) ∈ E do
9: Πi

v = ExtendMerge(Πi
v,Π

i−1
u , e)

10: procedure ExtendMerge(R, Q, e)
11: for all p ∈ Q do
12: q = (c(p) + c(e), p, e)

13: pos(q) = [blog1+ε

c1(q)

cmin1

c, blog1+ε

c2(q)

cmin2

c, ..., blog1+ε

cr−1(q)

cminr−1
c]

14: if R[pos(q)] = null or cd(R[pos(q)]) > cd(q) then
15: R[pos(q)] = q

11

2.3 Experimental Evaluation

Figure 2.3: Edges vs time for MOSP algorithms, with 3 features and ε=0.1.

For our evaluation of these algorithms, we again generate an N-diamond graph with randomly chosen feature
values in the range of 0 to 1000. We looked specifically at ε = 0.1, with three features in the cost vector.

Fig 2.3 shows the results of all three algorithms on the graph described above. Although Warburton’s
algorithm does not perform significantly better than the exact algorithm, Tsaggouris’ algorithm definitely
shows major improvement. The one downside with the Tsaggouris algorithm is that its implementation is
memory intensive - it runs out of memory with 5 features and 180 edges. Both approximations, without
additional modifications, are intractable for these parameters with more than 5 features, as both of their
runtimes are exponential in the number of features.

Because the actual metabolic graphs will not necessarily have the same exponential structure of the N-
diamond graph, the approximation results are a promising sign that we can still make a good tractable
approximation to the problem. However, optimization would be needed to fit in the Tsaggouris algorithm
with its large memory footprint. While the proper weightings of the feature values are not known, the best
approach would probably be a combination of heuristic and shortest path search methods.

12

Chapter 3

Stoichiometrically Minimal Source
Pathways

3.1 Introduction

We formulate the problem of finding stoichiometrically minimal source pathways (SMSPs) in biochemical
metabolic graphs and present a model checking approach to solve it. SMSPs are paths that, when flattened up
to the source nodes corresponding to native compounds, use a non-dominated amount of those compounds.
Our approach allows one to eliminate inefficient pathways when selecting the best path to a target. We also
investigate the impact of the choice of model checking technique on the runtime for our procedure.

Definition 3.1.1. We define a metabolic graph as G = (V,E,U, t), where V is the set of all chemicals,
U ⊆ V is the set of native chemicals (also called starting or source chemicals), t is the target, and E is the
matrix expressing the coefficients of the reactions, where Eji is the coefficient for chemical i in reaction j.

Let |V | = n and |U | = k. The cost vector c = [c1, . . . , ck, . . . , cn] represents the amount of each chemical
that is used (positive) or produced (negative) in any path. For each hyperedge j that is traversed, increment
ci by Eji.

Definition 3.1.2. We define a final cost vector as the vector c = [c1, . . . , ck, 0, . . . , 0], which must have a
zero entry for all indices that refer to non-native chemicals.

Definition 3.1.3. Path x dominates path y for cost vector c if for all i ∈ U , c
(x)
i ≤ c

(y)
i and c

(x)
i < c

(y)
i

for at least one such i. c
(x)
i and c

(y)
i are the costs for the ith chemical in paths x and y respectively.

Definition 3.1.4. We define the SMSP problem as follows: Given a metabolic graph, find all U -t paths
that are non-dominated for their final cost vectors.

As this graph is completely connected, there is some ordering of reactions that can force the cost vector to
be zero for the non-native chemicals. We define the problem in terms of the final cost vector so that we can
compare the costs of different pathways relative to the native chemicals.

Finding SMSPs can easily be shown to be NP-complete with a reduction from the set partition problem, as
seen in the next section, so we take a model checking approach to solve this SMSP problem. We will also
outline the results from an E. coli system, provided by the Act Ontology pathway synthesizer [16].

13

3.2 Combinatorial Complexity

Definition 3.2.1. The decision version of the SMSP problem is as follows: Given a metabolic graph
G(V,E,U, t), is there a reaction pathway that utilizes less than x1, x2, . . . , xk units of the corresponding
chemical in U to reach the target t?

Theorem 3.2.1. Decision-SMSP is NP-complete.

Proof We will prove that the SMSP problem is NP-hard by showing a reduction from the bicriterion
shortest path (BSP) problem, and then showing a reduction from the partition problem to the bicriterion
shortest path problem.

In the BSP problem, we are given a graph G(V,E) with positive integer weights and lengths of each edge.
We then try to solve the problem, “Does there exist an s− t path with weight ≤W and length ≤ L?”

There is a straightforward encoding of the BSP problem as an SMSP problem. Each of the two criteria
are represented by one starting chemical (for instance, X and Y). Each edge in the BSP problem can be
encoded as one extra reaction in the SMSP system, by treating every non-s,t node in my BSP graph as an
intermediate chemical in my SMSP system. For example, if we have two nodes A and C connected by an
edge with weight 5 and length 2, we can write the equation 5 X + 2 Y + A −−→ C. Then, the solution to the
BSP problem is any path that uses less than W units of X and L units of Y. Therefore, there is a reduction
from the BSP problem to the SMSP problem.

For the second half of this proof, we will use a reduction from the partition problem, which asks, “Given
a mulitset S of positive integers with total sum s, can it be partitioned into two subsets S1 and S2 so that
the sum of numbers in S1 equals the sum of numbers in S2?” We can encode this into a BSP instance. If
there are n integers in the original multiset, construct a linear graph with n+ 1 nodes. For each integer xi
in S, connect nodes i and i+ 1 with two edges: one with weight xi and length 0, and one with weight 0 and
length xi. Then, finding a path from node 1 to node n + 1 with weight ≤ s/2 and length ≤ s/2 will be a
solution to the partition problem.

We can show that the SMSP decision problem is in NP because you can verify in polynomial time whether
the returned path is an s-t path, as well as whether each value is smaller than the x1, x2, . . . xn limits that
were set in the original problem.

Thus, we prove that the SMSP decision problem is NP-complete with a reduction from the partition problem
and the BSP problem.

3.3 Model checking

3.3.1 Background

Model checking is a method for formally verifying whether a system satisfies a specification expressed in
temporal logic [5]. It is effective in systems that have extremely large state spaces, and symbolic model
checking can be used to explore many states efficiently. In this work, we utilize bounded model checking,
which is a variant that only extends the state space search to a limited number of steps. We also express
our specifications as linear temporal logic (LTL) [13], which has modalities referring to time. For example,
there are operators such as G (for always, or globally) and F (for eventually, or in the future) which are used
in conjunction with a prepositional clause to verify whether a certain property holds true over an execution
trace.

14

3.3.2 Formal Model

For model checking, the state of the system is defined by [N1, . . . , Nn, rxn], which is a vector S ∈ [N x
. . . x N x RXN T] where RXN T is an enum type whose elements are all possible reactions. Informally, Ni
represents the net number of units produced of compound i, and rxn represents the reaction in the metabolic
graph that was previously traversed (“fired”). The transition system is defined as (V, δ, I), where V is the
set of state variables, δ is the transition relation, and I is the set of initial states.

I = [0, . . . , 0], where the last 0 denotes that no previous reaction was traversed. The edges of the graph
define the transition relation δ, which increments Ni when compound i is produced and decrements Ni when
compound i is consumed in the reaction rxn. The target t defines the entry of S which must become positive
within a finite number of steps (eg. it is reached).

There are limits on each of the Ni variables, where M is set to be the maximum number of units of a
compound (and should be large enough so that it is never reached). On each step of the transition system,
rxn is non-deterministically assigned the value of any reaction.

No precautions need to be taken for possible cycles in the reaction pathway that the model checker returns.
All that matter is the net consumption and not whether the pathway is actually viable independent of other
reactions. For example, the pathway below (with A, B being native compounds, and G being the target) is
valid:

1. A + D −−→ C

2. B + C −−→ D + G

This is equivalent to a pathway that also reduces to A + B −−→ G, even though there is no ordering of those
reactions that could produce G independently.

3.3.3 Transitions

Chemical coefficients (N1, . . . , Nn) will increase when a reaction is fired that produces the chemical, and
will decrease when a reaction uses the chemical. Below, we define E, U , and t for a simple example (refer to
Section 3.1 for the formal problem statement and definitions of these variables):

2A + B → C (rxn1) B + 2C → D (rxn2)

U = {A, B}, t = {D}, E =

[
2 1 −1 0
0 1 2 −1

]

The number of units of A, B, C, D are denoted by N1, N2, N3, N4, respectively. We encode this transition
relation in the input language of NuSMV, a symbolic model checker [4].

This is the corresponding transition relation for N3 (we flip the signs of the coefficients in the E matrix so
we can have a positive coefficient when we produce the product). The first three clauses stop our search
once N3 goes beyond its bounds, or if the target is already produced. The next two clauses represent how
N3 changes in reaction 1 and 2. Otherwise, N3 stays the same.

15

next(N3):=

case

N3 > M : N3; //stop if at upper bound

N3 < -M : N3; //stop if at lower bound

N4 > 0 : N3; //stop if target is produced

rxn = 1 : N3 + 1; //transition for rxn1

rxn = 2 : N3 - 2; //transition for rxn2

TRUE : N3 //stays the same, otherwise

esac;

3.3.4 Termination

An appropriate linear temporal logic (LTL) [13] specification must then be checked to generate a counterex-
ample that will provide one possible path. We iteratively add a constraint to the LTL formula to eliminate
this generated counterexample and generate a new counterexample that is not dominated by this original
one (or it will return “no counterexample found”).

1. Positive coefficient for target

2. Non-negative coefficients for all non-starting chemicals

3. Better than any previously generated counterexample

Here is an example on another small graph, with target N51. This first LTL specification has characteristics
(1) and (2), and is the initial specification that is evaluated.

G (N51 = 0 | (N51 = 0 | (N7 < 0) | (N20 < 0) | (N28 < 0)))

The following counterexample is found: N3 = -1, N5 = -1, N51 = 1, implying that one unit each of Chemicals
3 and 5 can be consumed to produce one unit of 51. The next specification is then:

G (N51 = 0 | (N51 = 0 | (N7 < 0) | (N20 < 0) | (N28 < 0)) | (N3 <= -1 & N5 <= -1))

This continues until no further counterexamples are found.

3.4 Results

First, we will examine a concrete solution to this problem. We are using an Act-generated metabolic graph
for E. coli, which has the characteristics below. A pair of possible targets at different depths will be analyzed
in the following section, one that is at depth 4 and one that is at depth 7.

Total reactions 1253
Balanced 1154

Total chemicals 762
Starting compounds 131
Reachable chemicals 175
Reachable reactions 196

Max depth 10

Table 3.1: Metrics for metacyc ecol316407c network

16

3.4.1 Sample output

In Figure 3.1, we see an example of one non-dominated pathway to d-allose-6-phosphate. Although this
example only has compounds with coefficient 1, our system accounts for non-unitary coefficients as well. In
this case, the cost of this pathway would be the total of the compounds in red on the reactants side. All
other reactants in this pathway come from the products of some other reaction in the pathway.

Figure 3.1: Sample pathway to C6H13O9P. Red compounds are native.

3.4.2 Sample runtime

For our first implementation of this model, we used NuSMV, a symbolic model checker [4]. In Figure 3.2,
we see how the runtime of this SMSP algorithm scales with the maximum reaction depth. Unfortunately,
it appears to grow exponentially, and runs for nearly 8 hours when the maximum depth is set to 12. In
addition, we will see in Table 3.2 that there are still paths that are found at those depths. From these
preliminary results, we can definitely see a need for improving the runtime of this algorithm.

To frame this idea of increasing the maximum depth more concretely, we will look at the some of the costs
found at different bounds.

Maximum Depth Non-dominated cost
4 1 C5H6O5, 2 H2O, 1 CH4NO5P, 2 C4H8N2O3

5 1 C5H6O5, 1 H2O, 1 CH4NO5P, 2 C4H8N2O3

10 1 C4H6O4, 1 CH4NO5P, 2 C4H8N2O3, 2 C5H6O5

11 1 C4H9NO3, 1 C5H6O5, 1 H2S, 1 CH4NO5P, 2 C4H8N2O3

Table 3.2: Various source node costs for SMSP with different maximum depths, for production of C3H5O6P.

3.5 Optimization

3.5.1 Heuristic simplifications

From looking at the previous example, we see that the algorithm returns still-improving pathways as the
bound is increased past length 10, but the runtime of larger bounds causes the algorithm to be infeasible if

17

Figure 3.2: Runtime vs. max depth for finding paths for C3H5O6P with NuSMV using the simple model.

running on many targets. Our first attempt to reduce the runtime was with heuristic simplifications, which
all served to decrease the state space of the model. We describe two of them below.

1. Do not allow regeneration of native compounds

Although this problem aims to find the paths that use up the least amounts of the native compounds, there
are certain reactions that regenerate chemicals in this starting set. By allowing native chemicals to be the
product of a reaction, we are artificially increasing the search space of this problem by returning extra paths
that are not biochemically interesting. For example, if one possible path requires 2 A, 2 B, and 2 C (and
there is a reaction A + B → C), then another originally returned path is 3 A, 3 B and 1 C (as well as 4
A, 4 B, and 0 C). These additional paths are not as interesting because they contain additional reactions
that solely manipulate the counts of the native chemicals. One possible downside however, is a reaction
that produces an intermediate as well as a native compound as a side product - those reactions do not get
the added benefit of producing the native compound in this scheme. We can balance these two concerns by
preventing reactions that only generate native compounds.

2. Limit constant M to be the maximum coefficient in the metabolic graph

There is no need for any chemical to be allowed to have a value greater than the maximum coefficient in
the metabolic graph. If a particular reaction needs to be fired multiple times, then the counterexample can
order itself in a way such that the reactions can occur without needing to maintain a value larger than the
maximum coefficient. However, this change must also be combined with more careful logic in the transition
statements to prohibit a reaction from taking place if one if its reactants or products is already at the
minimum or maximum value that it can attain.

18

Figure 3.3: Runtime vs. max depth for finding paths for C3H5O6P with NuSMV and the modifications
above. Notice that the runtimes are still in the range of 104, even after the heuristic modifications.

3.5.2 Software comparison

As mentioned earlier, we first encode our model with NuSMV. There are two important points to note in
this analysis. First, we must impose a maximum search depth for our model checker. In practice, the most
interesting (and best) paths occur within a relatively low maximum depth, slightly greater than the depth of
the target to account for pathways that are not completely in series. The main tradeoff that we work with
is the exponential nature of runtime vs. search depth, as we can see in Figures 3.2 and 3.3. In addition, we
report the amount of time that it takes for a given model to reach a result of “no counterexample found”,
as that signifies the end of the search of the entire state space.

19

Figure 3.4: Runtime vs. max depth for finding paths for C6H13O9P

With the slow performance of NuSMV at bounds greater than 10, we attempted to use other model checking
techniques to solve this problem. In particular, we used UCLID [2][3][9], a model checker based on satisfiabil-
ity modulo theories (SMT) solving [1]. As shown in Figure 3.4, UCLID dramatically improved the runtime.
Moreover, UCLID can be used with any back-end Boolean satisfiability (SAT) solver, and varying the SAT
solver paired with UCLID yields further improvements in runtime as shown in Figure 3.5.

Figure 3.5: Comparison of SAT solvers after encoding with UCLID, depth 11 (targets: (1) C5H11O7P, (2)
C7H5NO4, (3) C3H7O6P).

20

NuSMV average 2048s
UCLID (w/ MiniSAT) average 161s

average speedup 24.9x
best speedup 59x

worst speedup 8.1x

Table 3.3: Comparison of NuSMV to UCLID (with MiniSAT) for 19 targets with a maximum depth of 11.

We have run this procedure on 19 different targets with UCLID, and for a bound of 11, the average runtime for
these is 161 seconds, with a minimum of 11 seconds. Other metrics can be seen in Table 3.3. Some examples
of other chemical targets we analyzed are d-glucosamine-6-phosphate and 3-hydroxypropionaldehyde, which
is a component of the antimicrobial compound Reuterin. We are further investigating the quality of pathways
past a certain reaction threshold, as well as other methods to speed up our runtime.

3.6 Future Work

From our early experiments, we already see what a large impact our software choices have on the runtime of
the problem, which indicates that further optimization could make greater depths more tractable. The main
topic of focus is now the variance among the average runtimes for different targets, and what causes such
wide differences between them. In addition, it is interesting to consider limiting the expansions of certain
chemicals. For many targets, the bulk of the complexity of the model comes from having thousands of ways
of creating an early, precursor compound. For example, in Figure 3.6 below, three non-dominated pathways
to producing (2Z)-2-hydroxypenta-2,4-dienoate are displayed. These generated minimal pathways involve
reactions that actually produce a water molecule, and they are treated as non-dominated pathways because
they don’t involve the use of water as a starting cost. This doesn’t just apply for water, but other small
(and common) products as well.

Figure 3.6: Pathway to produce (2Z)-2-hydroxypenta-2,4-dienoate. Native compounds boxed in red.

Non-dominated cost
1 C9H11NO3, 1 C5H6O4, 1 O2, 1 H2O
1 C9H11NO3, 1 C5H6O4, 2 O2, 4 H+

1 C9H11NO3, 1 C5H6O4, 1 O2, 1 C6H12O6

Table 3.4: Non-dominated costs from the pathways depicted in Fig 3.6.

21

3.7 Conclusion

We have shown a viable method of finding SMSPs, with the important distinction of generating all possible
SMSPs (bounded by an input search depth). This differs from previous works which only take into account
carbon flux [12], provide a subset of “good” paths with a genetic algorithm [15], or focus on just modeling
the pathway [8]. Although runtime is currently the biggest concern with this algorithm, we suggest many
directions in which this procedure may be modified to help alleviate the problem. Overall, we have provided
the first formalization of the SMSP problem, as well as a complete algorithm, utilizing model checking, to
solve it.

22

Bibliography

[1] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere,
H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[2] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of counter
arithmetic with lambda expressions and uninterpreted functions. In CAV, LNCS 2404, pages 78–92,
July 2002.

[3] R. E. Bryant and S. A. Seshia. UCLID. http://uclid.eecs.berkeley.edu/index.html.

[4] A. Cimatti, E. M. Clarke, E. Giunchiglia, and et al. NuSMV 2: An opensource tool for symbolic model
checking. In CAV, pages 359–364, 2002.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA, USA,
1999.

[6] M. Fong and S. A. Seshia. Stoichiometrically minimal source pathways via model checking. Manuscript
submitted for publication, August 2015.

[7] P. Hansen. Bicriterion path problems. Multiple Criteria Decision Making Theory and Application,
177:109–127, 1990.

[8] I. Koch, B. H. Junker, and M. Heiner. Application of petri net theory for modelling and validation of
the sucrose breakdown pathway in the potato tuber. Bioinformatics, 21(7):1219–1226, 2005.

[9] S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. LNCS 3114, pages 475–478. Springer-
Verlag, July 2004.

[10] E. Martins. On a multicriteria shortest path problem. European Journal of Operational Research,
16:236–245, 1984.

[11] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida, J. Aerts, R. Schneider,
P. G. Bagos, et al. Using graph theory to analyze biological networks. BioData mining, 4(1):10, 2011.

[12] J. Pey, J. Prada, J. E. Beasley, and F. J. Planes. Path finding methods accounting for stoichiometry in
metabolic networks. Genome Biol, 12(5):R49, 2011.

[13] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations
of Computer Science (FOCS), pages 46–57, 1977.

[14] L. T. Rosario Garroppo, Stefano Giordano. A survey on multi-constrained optimal path computation:
Exact and approximate algorithms. Computer Networks, 54:3081–2107, 2010.

[15] A. Seressiotis and J. E. Bailey. MPS: an artificially intelligent software system for the analysis and
synthesis of metabolic pathways. Biotechnology and bioengineering, 31(6):587–602, 1988.

[16] S. Srivastava, J. Kotker, S. Hamilton, and et al. Pathway synthesis using the Act ontology. In Proceedings
of the 4th International Workshop on Bio-Design Automation (IWBDA), June 2012.

23

http://uclid.eecs.berkeley.edu/index.html

[17] G. Tsaggouris and C. Zaroliagis. Multiobjective optimization: Improved FPTAS for shortest paths and
non-linear objectives with applications. Algorithms and Computation, 4288:389–398, 2006.

[18] A. Warburton. Approximation of pareto optima in multiple-objective, shortest-path problems. Opera-
tions Research, 35:70–79, 1987.

24

	Introduction
	Background
	Problems Studied
	Contributions

	Multiobjective Shortest Path
	Introduction
	Martins' exact algorithm
	Modifications for metabolic graphs
	Warburton's approximation: scaling and rounding algorithm
	Tsaggouris/Zaroliagis approximation: interval partitioning algorithm

	Experimental Evaluation

	Stoichiometrically Minimal Source Pathways
	Introduction
	Combinatorial Complexity
	Model checking
	Background
	Formal Model
	Transitions
	Termination

	Results
	Sample output
	Sample runtime

	Optimization
	Heuristic simplifications
	Software comparison

	Future Work
	Conclusion

	Bibliography

