
From MetroII to Metronomy, Designing Contract-based
Function-Architecture Co-simulation Framework for

Timing Verification of Cyber-Physical Systems

Liangpeng Guo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-11
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-11.html

March 13, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

From MetroII to Metronomy, Designing Contract-based Function-Architecture
Co-simulation Framework for Timing Verification of Cyber-Physical Systems

by

Liangpeng Guo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Professor Edward A. Lee

Professor Lee W. Schruben

Spring 2015

From MetroII to Metronomy, Designing Contract-based Function-Architecture
Co-simulation Framework for Timing Verification of Cyber-Physical Systems

Copyright 2015
by

Liangpeng Guo

1

Abstract

From MetroII to Metronomy, Designing Contract-based Function-Architecture
Co-simulation Framework for Timing Verification of Cyber-Physical Systems

by

Liangpeng Guo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

As the design complexity of cyber-physical systems continues to grow, modeling the system
at higher abstraction levels with formal models of computation is increasingly appealing since
it enables early design verification and analysis. However, it is very challenging to analyze
and verify timing at the early design stages, as the design representation is still abstract and
trade-offs have to be made between the performance requirements defined in terms of system
functionality and the cost of the feasible architecture that can implement the functionality.
In this work, we present Metronomy, a function-architecture co-simulation framework that
integrates functional modeling from Ptolemy and architectural modeling from the MetroII
environment via a mapping interface. Metronomy completely separates the function and
architecture modeling. It allows the function and the architecture of the system to be
modeled in the most suitable design environments. At the same time, Metronomy allows
designers to do timing verification and design space exploration at early design stage by
exploiting contract theory and co-simulation. Two case studies on an electrical power system
and a paper-feed sub-system for a high speed printing press demonstrate the effectiveness of
our approach.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Platform-based Design of Cyber-physical Systems (CPS) 1
1.2 Related Work . 3

1.2.1 Ptolemy . 3
1.2.2 MetroII . 5
1.2.3 Other Frameworks . 5

1.3 Contributions . 8

2 Timing Verification of Cyber-physical Systems 10
2.1 Modeling Functional Model in Ptolemy . 11

2.1.1 Representation of Functional Model 11
2.1.2 Simulation of Functional Model . 12
2.1.3 Notions of Time . 13

2.2 Modeling Architectural Model in MetroII . 13
2.2.1 Representation of Architectural Model 13
2.2.2 Simulation of Architectural Model . 17
2.2.3 Notions of Time . 18

2.3 Timing Contracts Between Models . 18
2.3.1 Definition of Timing Contract . 18
2.3.2 Illustrating Example . 20

2.4 Timing Verification and Design Exploration Methodology 24

3 Metronomy Design Framework 26
3.1 Co-simulation Director . 27
3.2 Co-simulation Actor . 29

3.2.1 Atomic Co-simulation Actor and Deferred Firing 29

iii

3.2.2 Composite Co-simulation Actor and Decomposed Firing 30
3.3 Mapping Semantics . 32

4 Case Studies 34
4.1 Aircraft Electric Power System . 34

4.1.1 Functional and Architectural Models with Timing Contracts 34
4.1.2 Exploring Design Choices in Architecture 36
4.1.3 Exploring Design Choices in Function 37

4.2 Printing Press Paper Feed System . 39
4.2.1 Functional and Architectural Models with Timing Contracts 39
4.2.2 Exploring Design Choices in Architecture 43
4.2.3 Exploring Design Choices in Function 45

5 Conclusions and Future Work 47
5.1 Closing Remarks . 47
5.2 Future Work . 47

Bibliography 49

iv

List of Figures

1.1 The hierarchical Ptolemy model from [30] consists of two composite actors and
a director. The opaque actor contains a director and actors, which specify the
behaviors on the secondary level. The transparent composite actor is simply a
group of actors on the top level. 4

1.2 A simple MetroII model from [10] consists of a producer and a consumer. They
are connected by a FIFO and mapped to two tasks running on a processor. . . . 6

2.1 The typical model of a cyber-physical system. 11
2.2 A cyber-physical model in function design environment includes the model of a

physical plant, the model of sensors, and the model of a control algorithm. . . . 12
2.3 The model of implementation platform with a single-core processor and a multi-

task OS. 15
2.4 Three-phase execution in MetroII. 17
2.5 A simplified controller in a printing press paper feed system. Controllers in the

function design environment are mapped to a single processor multi-task execu-
tion platform in the architecture design environment. 21

3.1 A CPS model in Metronomy. 27
3.2 The two-phase execution semantics. 28
3.3 A simplified controller in a printing press paper feed system. Controllers in the

function design environment are mapped to a single processor multi-task execu-
tion platform in the architecture design environment. 31

4.1 The functional model of a simplified electrical power system. 35
4.2 Simulation results from an ideal functional model with zero end-to-end latency. . 35
4.3 The controller in an electrical power system. PIDController is a sampled-data

feedback controller. The PID control filter simply takes the difference between
the measured voltage and the desired one. 37

4.4 Simulation of the functional model and the architecture with a slow bus. 37
4.5 Simulation of the functional model with accelerated architecture. 38
4.6 Functional model of an electrical power system with over-voltage protection. . . 38
4.7 Simulation of the functional model with over-voltage protection. 39

v

4.8 The paper feed subsystem. 40
4.9 The functional model of a paper-feed subsystem: 1. Drive Roller; 2. Feed Roller;

3. Reserve Roller; 4. Remaining Paper Detector; 5. Tape Detector; 6. Contact
Controller; 7. Drive to Feed Tracking Controller; 8. Drive to Reserve Tracking
Controller; 9. Drive Controller; 10. Feed Controller; 11. Reserve Controller;
12. Drive Target Velocity Profile; 13. Feed Target Velocity Profile; 14. Reserve
Target Velocity Profile; The rest are monitors. 42

4.10 Design space exploration results, while minimizing both the tracking error and
the processor speed. 44

4.11 Simulation results for the paper feed system, including the target velocity (green)
of the feed roller, the actual velocity (blue), and the error (red) when Tsample =
0.1 s, fproc = 33 MHz. 44

4.12 Simulation results for the paper feed system, including the target velocity (green)
of the feed roller, the actual velocity (blue), and the error (red) when Tsample =
0.5 s, fproc = 5 MHz. 45

4.13 Simulation results for the paper feed system, including the target velocity (green)
of the feed roller, the actual velocity (blue), and the error (red) when Tsample =
0.8 s, fproc = 3.3 MHz. 45

4.14 Simulation results for the paper feed system, including the target velocity (green)
of the feed roller, the actual velocity (blue), and the error (red) when Tsample =
0.5 s, fproc = 5 MHz, but with a much slower ramp-up speed. 46

vi

List of Tables

2.1 MetroII events that indicate the beginning and ending of services. 17

3.1 The mapping configuration for the example in Figure 2.5 33

vii

Acknowledgments

I would first like to thank my advisor Alberto Sangiovanni-Vincentelli. Without his mentor-
ship, advice and support, I could have never been able to complete my PhD student career.
He is not only an incredibly knowledgeable mentor but also a great resource of new ideas
and motivations. Many of the ideas in this dissertation originated from our discussion. In
addition to that, I will never forget how I was amazed by his enthusiasm and energy from
time to time. As I go forward in my career, I will forever benefit from our interaction.

I would like to thank Prof. Edward Lee and Prof. Lee Schruben for the participation in
both my qualifying exam as well as the thesis process. I also would like to thank Prof. Jan
Rabaey for being on my qualifying exam committee. Their acute comments from various
angles helped shape this research. As a UC Berkeley graduate student I have had the pleasure
of working with some of the best professors in the world. I would like to thank Prof. Andreas
Kuehlmann, Prof. Kurt Keutzer, Prof. Jaijeet Roychowdhury, Prof. Sanjit Seshia, Prof.
George Necula, Prof. Edward Lee, and Prof. Lee Schruben for the excellent classes they
taught.

I am also fortunate to interact with a group of talented colleagues and friends I have
worked with over the past 6 years while at Berkeley. In particular Qi Zhu and Pierluigi
Nuzzo, with whom I discussed details of this research work; Patricia Derler and John Eidson
who provided the model of printing press in Ptolemy; Christopher Brooks who managed the
Ptolemy software; Marco Di Natale, Haibo Zeng, Arkadeb Ghosal, Paolo Giusto, Alessandro
Pinto, Alberto Puggelli, Alena Simalatsar, and Robert Passerone, with whom I collaborated
on a number of research works. I would also like to extend my gratitude for the support
and help from all the friends of the Donald O. Peterson (DOP) center. In particular current
and past students from Alberto’s group. They are Chung-Wei Lin, Baihong Jin, Antonio
Iannopollo, John Finn, Nikunj Bajaj, Chen Lv, Guang Yang, Mark McKelvin, Mehdi Maa-
soumy, Xuening Sun, Kelvin Lwin, Guoqiang Wang, Douglas Densmore, Abhijit Davare,
Claudio Pinello, and Mohammad Mozumdar. A special ‘thanks’ to Ruth Gjerde and Shirley
Salanio for their excellent jobs in handling all the logistics. It is impossible to list everyone
important to me here. Thank you for everything.

I have also received support from a couple of companies throughout the years as well.
In particular General Motors (GM), United Technologies Research Center (UTRC) and
National Instruments (NI), which have been open to my research and supported me during
the internships. I would like to thank the management of these companies, especially Joseph
D’Ambrosio from GM, Brian Murray from UTRC and Hugo Andrade from NI for supporting
my research.

Last but not least, I am forever indebted to my parents Siping Guo and Faying Qu, who
love me with all their hearts and always support me unconditionally. All the accomplishments
in school would not have been possible without their support. I also would like to thank
my girl friend Ying Zheng, with whom we spent all the most wonderful and difficult time
of the last few years. And I am also grateful to my friends Guojun He, Di Zeng and Bohan
Ye, who shared Apartment 5 with me. Hopefully we will one day realize what a unique and

viii

enjoyable experience it was to study and live together at Berkeley pursuing our academic
goals.

This work was partially supported by IBM and United Technologies Corporation via the
iCyPhy consortium, and by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA. A part of this work has
been published in [15].

1

Chapter 1

Introduction

1.1 Platform-based Design of Cyber-physical Systems

(CPS)

Cyber-physical systems (CPS) are integrations of computation, networking, and physical
processes. A modern cyber-physical system typically consists of sensors, actuators and
software components running on distributed networked computational elements. The soft-
ware/hardware components work together to monitor and control the physical processes.
Designing a CPS is challenging due to the complex coupling of physical processes and com-
putations. A slight change in the physical processes may affect the behaviors of the compu-
tational elements. And a slight change in the computation may affect the physical processes
as well. With safety and reliability requirements, the coupling of physical processes and com-
putations as well as the increasingly complex software/hardware architectures have made the
design of complex cyber-physical systems ever challenging.

To address the challenges, the design of a modern cyber-physical system is often carried
out by engineers from multiple domains, e.g. the control engineers and the software/hardware
engineers. The control engineers focus on the interactions between the physical processes
and computations and the software/hardware engineers focus on the correct implementa-
tions of the control algorithms. As the complexity of such systems continues to grow, it is
highly beneficial to separate the design concerns of control engineers and software/hardware
engineers and manage the complexity by a strict design methodology.

In the Platform-Based Design (PBD) methodology [32], two types of models are generally
used to represent different design aspects: the functional model defines what the design does
in terms of a set of services and the architectural model describes how these services are
implemented by a collection of architectural primitives. Specifically, for CPS control design,
the functional model is used to describe the control algorithm and its interaction with the
physical plant, captured using formal models of computation (MoCs) for system verification
and analysis. The architectural model is used to describe the implementation platform for
the control algorithm, including embedded processors, sensors, actuators, communication

CHAPTER 1. INTRODUCTION 2

primitives, as well as the operating system, firmware and drivers.
The two types of models represent the different design concerns from the perspectives of

control engineers and software/hardware engineers, who use different languages, methods and
tools to represent, analyze and optimize the design. In CPS design, the system functionality
is typically modeled in one environment (e.g. Simulink, Modelica) by control engineers, while
the system architecture is modeled in a different one (e.g. SystemC or other programming
languages) by software and hardware engineers. Since each design environment has its own
strengths, it is almost impossible in practice to force control engineers and software/hardware
engineers to use the same environment to represent, analyze and optimize the functional
model and the architectural model.

However, although the functional model and the architectural models are separated, they
rely on each other to achieve the system specification of a cyber-physical system. On the one
hand, the correct functional behaviors rely on the timing of the implementation platform. On
the other hand, non-functional properties of the implementation platform such as physical
time, power consumption rely on the functional behaviors executed on the platform. In
early design stages, the functional model is designed with explicit or implicit assumptions on
the implementation platform and the architectural model is also designed with assumptions
on the functional behaviors. For example, the sampling period of a block in the functional
model imposes an implicit assumption that the implementation of the block should have an
execution time that is less than the sampling period.

It is important to make sure the assumptions made by the functional model can be sat-
isfied by the implementation platform and vice versa. In addition to that, the assumptions
also lead to trade-offs between system performance and the cost of the implementation plat-
form. As an example, a faster control loop can provide better performance but also requires
a more expensive implementation platform; however, a slower control implementation tends
to sacrifice performance in order to achieve a cheaper solution. To facilitate the exploration
of such trade-offs, it is critical to analyze and verify the real-time performance of a system
across the boundary between the functionality and the architecture. In fact, timing proper-
ties, such as sampling periods and latencies from sensing to actuation can significantly affect
the control performance and even the functional correctness of the design. However, whether
certain sampling periods are actually allowed and what the values of the sensor-to-actuator
latencies are ultimately depend on the implementation platform.

This dissertation addresses these issues by formalizing the interactions between system
function and architecture, and by providing a framework to efficiently co-simulate and co-
analyze functional and architectural models. As a result, the design process benefits from
the following features of the proposed framework Metronomy:

• Complete separation of the functional model and the architectural model: it allows users
to model the functional model in Ptolemy and the architectural model in MetroII, which
opens the possibility of representing, analyzing and optimizing the design aspects using
different languages, methods and tools.

CHAPTER 1. INTRODUCTION 3

• Formalized timing assumptions/guarantees between the functional model and the archi-
tectural model: it exploits contract theory to formalize and organize the relationship
of the functional model and the architectural model in terms of timing.

• Co-simulation between the functional model and the architectural model: it bridges the
functional and architectural models with a co-simulation approach to allow analyzing
the system properties that are relevant to both such aspects. Co-simulation of the
functional model and the architectural model helps verify the functional behavior of
the system. It also helps evaluate non-functional properties of the implementation
platform such as physical time, power consumption, and monetary cost. Furthermore,
function-architecture co-simulation helps the designers make assumptions that lead to
better trade-offs between the system performance and the cost of the implementation
platform.

1.2 Related Work

Metronomy utilizes the Ptolemy as the front-end for designing the functional model and
MetroII as the back end for designing the architectural model. In this section, I will describe
the main aspects of Ptolemy and MetroII, along with some other related design frameworks.

1.2.1 Ptolemy

Ptolemy II is a modeling and simulation environment for heterogeneous systems, which
consists of several executable domains of computation that can be mixed in a hierarchy [7].
All models of computation are described operationally in terms of a common executable
interface.

Specifically, a model in Ptolemy consists of a set of actors and a director. Actors are
components that execute concurrently and share data with each other by sending messages
via ports. The director specifies the Model of Computation (MoC) that determines the
activation order of actors on the top level.

An actor can be atomic or composite. An atomic actor encapsulates basic computations,
from simple arithmetic operations to more complex ones like an FFT [24]. The data can
be shared between two atomic actors by sending messages via the ports and connections.
Ptolemy has two types of composite actors. A transparent composite actor is a group of
other actors. The enclosed actors are exposed to the governing director of the upper level
as if the composite actor is transparent and the actors are placed on the upper level. An
opaque composite actor is a composition of actors and a director. The enclosed actors are
governed by the enclosed director, which is activated when the composite actor is activated
on the upper level. In other words, the enclosed director and actors specify the behaviors of
the composite actor when activated by the governing director on the upper level. The data
can be shared between two levels by sending messages via the ports of the composite actor.
Figure 1.1 from [30] shows a simple hierarchical Ptolemy model.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: The hierarchical Ptolemy model from [30] consists of two composite actors and
a director. The opaque actor contains a director and actors, which specify the behaviors on
the secondary level. The transparent composite actor is simply a group of actors on the top
level.

Ptolemy has a user-friendly GUI and features a number of commonly used MoCs, in-
cluding heterogeneous modeling using continuous and discrete domains. But Ptolemy lacks
support for the integration of high-fidelity models of implementation platforms, which are
often conveniently built using domain-specific tools. In Metronomy, we bridge this gap by
supporting co-simulation with implementation platform models developed in MetroII. To
support such integration, we create a new co-simulation director CoSimDirector and ex-
tend the Ptolemy directors of the Discrete Event (DE), Synchronous Dataflow (SDF) and
Ptides [35] MoCs for co-simulation.

CHAPTER 1. INTRODUCTION 5

1.2.2 MetroII

MetroII originates from Metropolis, a design framework [4] with the aim of supporting the
platform-based design paradigm. Metropolis consists of the metamodel [34] language, a
specification language, an infrastructure, and a set of tools for various design activities. The
main features include modeling of models of computation, orthogonalization of concerns and
the support of both imperative code and declarative statements in the specification. In
Metropolis, systems can be modeled unambiguously on different abstraction levels, design
problems can be formulated mathematically, and tools can be incorporated to automatically
solve some of the problems.

MetroII [10] is the successor of the Metropolis design framework. It implements the
platform-based design methodology based on a SystemC simulation engine. MetroII allows
designers to import models developed using external, domain-specific tools. For example,
a SystemC architectural model can be imported with only minor changes to the original
model interface. Instrumental to such integration is MetroII’s rigorous and general mapping
semantics, which we use to bridge the functional and architectural views of a system.

Specifically, a model in MetroII consists of a set of MetroII components. MetroII com-
ponents are extended SystemC modules that execute concurrently and share data with each
other by sending messages via ports. The activations of MetroII components are triggered by
MetroII events. Each MetroII event is an extended SystemC event that is managed by the
MetroII simulation core. Figure 1.2 shows a simple producer-consumer model in MetroII. A
producer component is connected with a consumer component via a FIFO component. The
producer and consumer are implemented in two tasks and are mapped to a multi-task single
processor architectural model.

Since MetroII is an extension of SystemC, which is a popular system level modeling lan-
guage for hardware, it allows users to import and design sophisticated architectural models.
In addition to that, it also allows users to associate a functional model to an architectural
model via mapping. However, MetroII lacks the implementation of the most commonly used
MoCs, and it has very limited support for continuous time models, which is important for
modeling the physical processes in CPS. In Metronomy, we extend the simulation core of
MetroII to support co-simulation with functional models developed in Ptolemy and thus
provide an environment that supports commonly used model of computations, continuous
time modeling for physical processes, and mapping to high-fidelity sophisticated architectural
models.

1.2.3 Other Frameworks

The separation between functional behavior and execution platform is adopted by a number
of design frameworks. Model Driven Architecture (MDA) developed by OMG is an architec-
tural framework for software development based on UML. The focus of MDA is to separate
the system behavior from the usage of platform. The design starts from a computation
independent model (CIM), which captures detailed requirements with no functionality. A

CHAPTER 1. INTRODUCTION 6

Figure 1.2: A simple MetroII model from [10] consists of a producer and a consumer. They
are connected by a FIFO and mapped to two tasks running on a processor.

CIM is then refined into a platform independent model (PIM), which specifies the function-
ality of the system without dependencies on any particular platform. After that, a PIM is
transformed into a platform specific model (PSM) through a mapping that consists of model
transformations. And annotations and attributes are used to enrich the PSM model with
non-functional properties [8]. The main difference between MDA and Metronomy relates to
the focus on architecture exploration. MDA is mainly for software architecture while this
dissertation is more focused on hardware architecture modeling. Furthermore, Metronomy
employs a mapping that is more generic, and intended to provide performance metrics rather
than a detailed implementation. The notion of mapping in this dissertation makes it easier
to adapt to different platforms which facilitates the exploration of a large design space.

Model Integrated Computing (MIC) [19] uses domain-specific modeling languages to ex-
press the functionality, the architecture and their relation (the mapping). The models are
then used to synthesize and integrate the system. The MIC methodology is supported by
a set of tools that can create and manage the domain-specific modeling languages. Generic
Modeling Environment (GME) [22] has been designed to facilitate the construction and
the manipulation of a domain-specific modeling language, by providing a way to specify
an abstract as well as a concrete syntax (textual or graphical), including well-formedness
constraints and static semantics. MILAN [3, 21] is a verification tool which supports simu-
lator integration using model interpreters, and integrates the design space exploration tool

CHAPTER 1. INTRODUCTION 7

DESERT [25]. DESERT allows the designer to express platform flexibility by specifying
structural constraints in OCL and prune the design space based on these constraints. Unlike
GME, this work is not concerned with the design of the modeling language. Instead, we
adapt components from different MoCs to our two-phase execution semantics. In addition
to that, we are mainly focused on the timing verification in the combined semantics of differ-
ent models, instead of the relationships between their syntactic elements. Our exploration
paradigm also differs substantially from DESERTs. We employ contract theory and timing
constraints, instead of structural constraints, and thus are able to relate functionality and
architecture without resorting to low level simulators.

SystemC-H [28] is a heterogeneous extension to SystemC [14]. SystemC-H extends the
discrete event simulation kernel of SystemC to provide additional MoCs such as dataflow
and hierarchical FSMs, using similar techniques as Ptolemy II. The authors demonstrate
an increase in simulation efficiency over SystemC with MoC-specific analysis such as static
scheduling for dataflow. However, SystemC-H lacks the support from the framework to
separate the behaviors and the implementation platform.

ForSyDe [31] initially specifies the system as a deterministic network of fully synchronous
processes that communicate over sequences of events. This specification, which lacks detailed
timing, is then refined into an implementation by applying a series of network transforma-
tions, that may or may not preserve the semantics. [17] extends the basic ForSyDe model
to more MoCs and the assumption of a fully synchronous system is dropped in favor of an
untimed model similar to Kahn process networks [18]. The transformation-based refinement
in ForSyDe has clear advantages in terms of the ability to prove correctness and maintain
consistency with the original specification. However, the distinction between functionality
and architecture is lost, and a change of mapping may require substantial restructuring of
the system. Our approach to mapping, instead, makes this task simpler, since only the
mapping function must be changed.

Rosetta [1] describes a MoC declaratively as a set of assertions in a higher order logic.
Different MoCs can be obtained by extending a definition in a way similar to the sub-
classing relation of a type system. Unlike Rosetta, the relationship between the function
and the architecture in Metronomy is not described explicitly as a function, but rather as a
mapping and annotation process at the event level.

The Behavior-Interaction-Priority (BIP) framework [5] is focused on separating compu-
tation and coordination. In BIP, a system specification is divided into three layers. The first
layer describes a set of independent components. The second layer controls their activation
and interaction via connectors. The top layer overlays a set of priorities to govern compo-
nent interaction which reduce non-determinism. One of the strengths of the BIP framework
is the possibility of checking certain properties, such as deadlock-freedom, compositionally.
However, this may require a complex coordination scheme between a large set of connectors.
Unlike BIP, we utilize a centralized scheduler to accomplish similar objectives. We also sup-
port an imperative or a declarative description for the scheduler while BIP only supports
declarative specification of connectors.

Other frameworks include MAPS [9], featured with a variety of mapping heuristics,

CHAPTER 1. INTRODUCTION 8

Daedalus [26], featured with multi-level design space exploration, Spade [23], featured with
a Y-chart based approach, and Sesame [29], featured with trace-based design space explo-
ration. However, most of these frameworks only support Kahn Process Networks (KPN),
dataflow or similar MoCs. Furthermore, all previous works are based on the assumption that
functional behaviors can be pre-determined, and captured by the functional model, while
the implementation platform only affects the system performance. This assumption does not
necessarily hold in CPS design, where the function is tightly intertwined with the physical
plant (or environment). Different behavioral timings may trigger different reactions from the
environment, which result in different further behaviors of the system.

1.3 Contributions

In this dissertation, we present Metronomy, a modeling and co-simulation framework that
bridges the functional and the architectural aspects of the design. In Metronomy, the func-
tional model is captured in the Ptolemy modeling environment [30], while the architectural
model is described in the MetroII design environment [10]. Ptolemy provides a rich set of
commonly used MoCs (e.g. dataflow, state machines, discrete event, discrete time) to ef-
fectively model and simulate the system functionality and its interaction with the physical
plant. It also allows physical plant to be modeled in continuous time domain. MetroII
provides a framework for modeling high-fidelity architecture as well as interfacing functional
and architectural models. It allows the architecture to be modeled in SystemC [14]. It also
allows third-party architectural models to be imported with minor changes.

Metronomy is a natural framework for multi-domain system engineering and integration.
Control engineers can leverage the plethora of MoCs made available by Ptolemy to cap-
ture the functionality of their controller; software/hardware engineers can benefit from the
flexibility of MetroII and SystemC to design the architectural platform; system engineers
can effectively combine the two aspects in a co-simulation environment to explore the whole
design space and verify correctness and performance of their design.

To support multi-domain system engineering and integration, we exploit contract-based
design theory [33] to facilitate timing verification and design space exploration using co-
simulation. A timing contract can be seen as a set of timing assumptions and guarantees
that are agreed upon by the control engineers, who develop the functional model, and the
software/hardware engineers, who design the architectural platform for implementation. We
implement timing checkers in Metronomy to monitor whether both the functional and ar-
chitectural timing assumptions and guarantees are satisfied during co-simulation.

A preliminary attempt at integrating Ptolemy and MetroII was presented in [20]. How-
ever, the integrated design framework in [20] is only able to support a simple Model of
Computation (MoC), which schedules actors periodically, and lacks the capability of han-
dling heterogeneous MoCs (e.g. continuous time, discrete time). With respect to [20], this
dissertation offers a formalization of the interactions between functional and architectural
models in terms of contracts for timing verification and system integration. The use of con-

CHAPTER 1. INTRODUCTION 9

tracts to analyze the complex coupling of timing and behaviors has been first advocated
in [33]. However, while a few rigorous contract theories have been developed over the years
(e.g. see [6, 2]), the concrete application of contracts for timing verification in CPS has not
been throughly explored. In [11] different types of timing contracts, such as the Logical
Execution Time (LET) [16, 13] and Bounded Execution Time (BET) contracts, denoted
as “design contracts”, are informally presented as a mean to facilitate the independent re-
finement of functionality and architecture. In this dissertation, based on the theoretical
foundations in [6], we propose a formalization of the timing constraints of a design in terms
of assume-guarantee contracts, expressed as assertions on system traces, i.e. sequences of
events. Such a formalization is general enough to encompass different kinds of design con-
tracts, and suitable for building monitors to validate them via co-simulation.

The contribution of this dissertation is threefold: (a) we formalize the interactions be-
tween the functional model and the architectural model via the concept of timing contract;
(b) we propose a methodology for timing contract verification and design space exploration
through co-simulation; (c) we implement a function-architecture co-simulation framework
that supports the methodology, based on the Ptolemy and MetroII design environments.

The rest of this dissertation is organized as follows. Chapter 2 formalizes the concept of
timing contract between functional and architectural models and presents the methodology
for timing verification and design space exploration using Metronomy. Chapter 3 describes
several key aspects of the implementation of Metronomy. Chapter 4 shows its application to
the design of an aircraft electrical power system and a paper-feed subsystem of a high-speed
printing press. Finally, Chapter 5 presents the conclusions.

10

Chapter 2

Timing Verification of Cyber-physical
Systems

A modern cyber-physical system typically consists of a number of complex subsystems. For
example, a vehicle includes a powertrain system, starting and charging system, steering
system, suspension system, braking system, etc. Many of these systems are intrinsically
heterogeneous. To design such systems, the design team typically consists of engineering
members from multiple domains. The control engineers focus on the interactions between
the physical processes and computations and the software/hardware engineers focus on the
correct implementations of the control algorithms.

Although the design concerns of control engineers and software/hardware engineers
should be completely separated, their designs still have impacts on each other in many
aspects. Among these aspects, timing is one of the most important aspects. A slight change
in timing of the implementation platform may affect the control of physical processes. And
the change in the physical processes may in turn affect the behaviors of the implementation
platform. The complex interplay across domains not only challenges the engineers but also
the design tools that engineers use to analyze and verify the timing of the system. On the
one hand, the design tools used by control engineers and software/hardware engineers are
completely different. On the other hand, the impacts of timing that couple the function and
the implementation platform should be captured, especially in early design stage since these
impacts greatly affect the design choices. A strict and general design framework that bridges
function and the implementation platform is still missing in the current design process.

In this chapter, we will present a general framework for timing verification that bridges
the design tools used by control engineers and software/hardware engineers. Specifically,
the control function is modeled in Ptolemy and the implementation platform is modeled in
MetroII. We exploit the contract theory to bridge the two aspects and allows engineers to
analyze the timing properties of the system. In Section 2.1 and Section 2.2 of this chapter,
we briefly discuss how the control function and the implementation platform are modeled.
In Section 2.3, we focus on the interactions between the two models and present the timing
verification framework. In Section 2.4, we present the methodology for timing verification

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 11

Continuous Discrete

Figure 2.1: The typical model of a cyber-physical system.

and design space exploration using Metronomy.

2.1 Modeling Functional Model in Ptolemy

2.1.1 Representation of Functional Model

For a CPS control design, the functional model is used to describe the control algorithm and
its interaction with the physical plant. Due to the intrinsic concurrency of the CPS control
model, the actor-oriented modeling is a popular choice in both academia and industry. In an
actor-oriented model, each component of the system is implemented as an actor. The actors
execute concurrently and exchange data by sending messages via ports.

Figure 2.1 shows the top level of a typical CPS model in Ptolemy. It includes a model
of physical plant and a model of controller. The model of physical plant describes the
dynamics of physical processes in terms of differential equations and is typically represented
in a continuous domain where the time is a continuum. The model of controller describes
the control algorithm and is typically represented in a discrete domain where the behaviors
of the control algorithm can be captured by timed events.

Figure 2.2 shows an example of such a CPS model in Ptolemy with more details. The
model is a simplified controller in a paper feed subsystem of a printing press (see also Sec-
tion 4.2 for further details). The controller regulates the surface velocity of a roller by
adjusting the drive voltage of a motor. The controller has four inputs: tv, ev,mv, ct, and
one output cv. Input tv is the profiled target velocity, ev is a real-time adjustment on the
profiled target velocity based on the state of the other rollers, mv is the measured velocity
of the roller, ct is a signal that turns off the motor, and cv provides the drive voltage to
the motor. The controller tries to minimize the error between the measured velocity mv
and the target velocity tv + ev. When a sporadic signal ct occurs, the controller outputs 0.
p1, p2, p3, p4 are the execution paths from ev, tv, mv, ct to cv, respectively.

Following the semantics of Ptolemy, each component of the functional model in Figure 2.2
is implemented as an actor. A path in the model consists of a cascade of a sensor actor, a
series of interconnected execution actors and an actuator actor.

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 12

Plant

Other

Controller

Sensor Hold

Control

Algorithm

Sensor

ev

tv

mv

ct

cv

Figure 2.2: A cyber-physical model in function design environment includes the model of a
physical plant, the model of sensors, and the model of a control algorithm.

2.1.2 Simulation of Functional Model

The execution of the functional model is based on its Model of Computation (MoC), which
is implemented as a director in Ptolemy. For a CPS, the most commonly used directors
for modeling the controller are based on discrete events. Each event has a time tag when
it is generated. And all the events are ordered and processed chronologically. The director
processes the oldest event first and the model time advances to the time tag of the event
processed. The processing of an event could trigger an actor to fire. And the firing of an
actor may generate more events. From the perspective of an actor, the execution of a model
is a process that consists of a series of firings. In each firing, the actor reacts to the events
that occur between the previous firing and the current firing, and generate more events. In
particular, each message sent between actors is an event which could trigger the firings of
actors who receive the message. In Ptolemy, the message is also referred to as token. The
firing is hierarchical if an actor is a composite actor. The firing of the composite actor will
trigger the execution of the enclosed director that fires the enclosed actors according to the
MoC defined by the director.

For example, in Figure 2.2, a token received at input port ev will trigger the firing
of Register2. The firing of Register2 will generate a token that triggers AddSubtract.
The firing of AddSubtract will generate a token that triggers PID (Proportional-Integral-
Derivative). And the firing of PID will generate a token that triggers Select. The firing
of Select will generate a token that triggers TimedDelay. The firing of TimedDelay will
generate a token that will be sent to output port cv. Note the time maintained by the
director is advanced only when TimedDelay is fired. In other words, during the series of
firings above, only the token generated by TimedDelay has a time tag that is greater than

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 13

the triggering token at input ev.

2.1.3 Notions of Time

In this work, we capture three different notions of time in a CPS model: physical time,
logical time, and platform time. Physical time represents the idealized time throughout the
system. It is the time notion in the model of physical plant to describe the dynamics of
physical processes. Physical time is also used in the model of sensors and actuators to
capture the interaction between the controller and the plant. Logical time is a time notion
first introduced in distributed system to achieve deterministic system behaviors. It gives the
order of two events without binding with specific points of physical time. In other words,
logical time defines the relationship of “happened before” between events. Platform time
is based on the clock on the implementation platform that measures the physical time and
thus is subject to a clock drift.

In the environment where the functional model is developed, designers have the notions
of physical and logical time. Specifically, in Ptolemy, the physical time and logical time
are realized by DEDirector and PtidesDirector respectively. A typical pattern is two-
layer structure. On the top level of a Ptolemy model, we use a DEDirector that maintains
physical time to capture the interactions between controllers and physical plants. And inside
each composite actors that represents a controller, we use a PtidesDirector that maintains
logical time to capture the event order in the control algorithm. The conversion between
physical time and logical time is handled by input and output ports of the composite actor
that represents the controller. For example, the top level in Figure 2.1 uses a DEDirector
and the controller modeled in Figure 2.2 uses a PtidesDirector.

Modeling the controller in logical time gives the flexibility for software/hardware engineer
to realize the design. If physical time is used in modeling the controller, the design of
controller is essentially tied to detailed timed behaviors. The software/hardware engineers
then have no choice but to precisely implement the detailed timed behaviors without any
flexibility. We argue that this would result in inefficient implementation. The physical time
should only be used in modeling the physical plant and sensors/actuators.

2.2 Modeling Architectural Model in MetroII

2.2.1 Representation of Architectural Model

In Platform-based Design (PBD), the functional model defines what the design does in terms
of a set of services and the architectural model describes how these services are implemented
by a collection of architectural primitives. In this work, the implementation platform is the
architecture that realizes the controllers in a cyber-physical system. It describes how the
services used to describe control algorithms are implemented in terms of a set of architec-
tural primitives. More specifically, for a CPS model in Ptolemy, the control algorithm is

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 14

implemented in terms of actors from the Ptolemy library, where each actor can be seen as a
service. The model of implementation platform describes how these services are implemented
on a particular platform in terms of software/hardware. For example, for the control algo-
rithm shown in Figure 2.2, the model of implementation platform should at least describe
the implementations of actors Register, Const, AddSubtract, PID, Select, etc in terms of
software/hardware.

Furthermore, the way to implement a control algorithm is not unique. The soft-
ware/hardware engineers should have the freedom to choose the appropriate granularity.
Specifically, for a CPS model in Ptolemy, the service implemented on the particular plat-
form could realize an atomic actor or a composite actor. For example, for the controller
in Figure 2.2, instead of implementing actors Register, Const, AddSubtract, PID, Select,
the software/hardware engineers may choose to implement the control algorithm as a single
service on the implementation platform.

The main use of the architectural model of this work is to give the detailed timing
information of the behaviors of the functional model on a particular implementation platform.
It can be as simple as a lookup table or as complex as a sophisticated simulator. For example,
if the services of Register, Const, AddSubtract, PID, and Select are implemented on an
architecture, the architectural model for the functional model in Figure 2.2 could be seen as
a function as follows:

f(Serv, Arch) (2.1)

where Arch is the architecture and Serv is the service that executes on the archi-
tecture. f(Register, Arch), f(Const, Arch), f(AddSubtract, Arch), f(PID,Arch), and
f(Select, Arch) represent the execution time of the services that implement the correspond-
ing actors. When the functional model co-simulated with the architectural model, timed
behaviors can be obtained.

However, on most realistic architectures, the execution time is not constant. It is deter-
mined by the state of the architecture that keeps changing. The more details we include in
the architectural model, the more accurate the architectural model is. In our framework,
the execution time of a service could be determined by the following factors:

• The execution time is determined by the services on the lower level. For example, the
execution time of AddSubtract is determined by the design of the processor, which
relies on the circuits that carries on the operation. From the perspective of Platform-
based Design, AddSubtract is the function, which is implemented by the services on the
lower-level architecture. The lower levels we go to, the more accurate our architectural
model is.

• The execution time is determined by the shared computation/communication resources
and the scheduling mechanism on the implementation platform. With limited re-
sources, many behaviors that appear to be concurrent in functional model are imple-
mented by sequential executions of services in the architectural model. The way how

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 15

the shared resources are scheduled greatly affects whether certain concurrent behaviors
can be implemented or how fast a control algorithm is.

• The execution time is determined by the input of the service. For example, if a service
computes the following function

f(n) =

{
true if n is a prime number
false otherwise

the execution of the service greatly depends on the input n.

In Metronomy, the characteristics of the lower level services are captured by a timing contract
that will be discussed in Section 2.3. The shared resources and the scheduling mechanism
are captured by the architectural model. And input of the service can be also captured by a
general contract [33]. In addition to that, a good architectural modeling framework should
allow engineers to build a detailed architectural model that is close to the real implemen-
tation but still easy to connect to the functional model. MetroII is a suitable candidate
because: 1) it is built based on SystemC, an industrial standard for system level modeling
of software/hardware. This allows software/hardware engineers to work in the most nat-
ural environment; 2) MetroII natively supports structural mapping, which connects to the
functional model.

Task1 Task2 TaskN

Operating System

Processor

Profiled Service

Performances

Ready Tasks Waiting Tasks

Service Performance Model

Scheduler

1. Task provides

services that

match atomic

actors in the

functional model.

2. OS schedules

tasks that are

ready to run by

their priorities.

3. Processor (single

core) models the

service performance

Figure 2.3: The model of implementation platform with a single-core processor and a multi-
task OS.

Figure 2.3 shows an example of architectural model in MetroII which has the three layers.
On the task layer, each task is a MetroII component that is driven by a SystemC thread.

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 16

And the services that implements the atomic actors of the functional model are provided
in the task. For example, for the functional model in Figure 2.2, a task can execute one of
the firings of Register, Const, AddSubtract, PID, and Select at a time. A task serves as
a mapping target for the composite or atomic actor in the functional model. And each task
can be blocked by other tasks that have higher priorities or the Operating System.

The Operating System is also a MetroII component driven by a SystemC thread. In
this model, it serves as an explicit, imperative program for managing processor resource,
scheduling and assigning tasks to the processor. It maintains a list of tasks that are ready
to run and a list of tasks that are waiting. When a waiting task has a service ready to run,
the task is inserted into the list of tasks that are ready to run. When a task has no more
service ready, it is moved back to the list of waiting tasks. When the processor is available,
the OS determines which process will run in the next time slot from the ready list by the
task priority. The OS programs the Programmable Interrupt Timer (PIT) to generate an
interrupt after N cycles. The task is executed. After N clock cycles, an interrupt occurs
and the OS gets a chance to schedule the tasks again. The execution of OS itself also takes
certain cycles of the processor.

The processor is also a MetroII component. It is the actual processing element that fulfills
the service requests from OS and tasks. In this architectural model, each atomic actor in the
Ptolemy is fulfilled by a service. And the OS layer is also fulfilled by a set of services. The
processor has a service performance model and a library where precomputed performance
metrics are stored for lookup. Similar to Equation 2.1, the performance metrics in the library
represent the performance model of the lower level services. When the OS or task indicates
which service is requested, the performance model performs a table lookup and triggers a
performance metric computation. A performance metric computation at processor level can
be seen as the following function:

g(Serv, Proc) =

wreg Serv = Register
wcon Serv = Const
wadd Serv = AddSubtract
wpid Serv = PID
wsel Serv = Select

(2.2)

where Proc is the processor and Serv is the service that executes on the processor. The
performance metrics (i.e. wreg, wcon, wadd, wpid, wsel) are computed by one of the following
method: 1) a constant number from profiling; 2) a mathematical calculation based on the
current state of the processing element; 3) a runtime processing where the pre-compiled code
is loaded and executed at runtime which returns the cycle requirements for that code.

To sum up, this example of architectural model gives the performance estimation of the
services on task level by a simulation that uses the performance estimation of the services on
processor level. The relationship between two levels is summarized in the following formula:

f(Serv, Arch) = g(Serv, Proc) + wblocking + woverhead (2.3)

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 17

Table 2.1: MetroII events that indicate the beginning and ending of services.

Service Beginning Event Ending Event
Register reg.b reg.e
Const con.b con.e

AddSubtract add.b add.e
PID pid.b pid.e

where wblocking is the time of the service being blocked by tasks with higher priorities and
woverhead includes the overheads of the OS and the context switching. They are obtained
from the simulation.

2.2.2 Simulation of Architectural Model

Phase 1 Phase 2 Phase 3

Functional Model

Architectural Model

Annotator

Events annotation with

physical quantities

Mapping

Constraint

Solver Scheduler

1. Block Processes and Propose MetroII Events 2. Annotate Events

3b. Enable Some Events

3a. Schedule

Resolution

Figure 2.4: Three-phase execution in MetroII.

The execution of MetroII model is based on a simulation core that extends SystemC
engine. The MetroII framework wraps interfaces in SystemC and intercepts all the messages
about events from SystemC threads before they are sent to SystemC simulation engine.
An event has to go through three phases shown in Figure 2.4. In the first phase, the
MetroII component executes until it has to trigger an event. This is also referred to as
proposing events. The MetroII component is blocked and the message of the proposed event
is intercepted by MetroII. In the second phase, MetroII framework annotates time tags to
proposed events, which are obtained from the performance model (e.g. Equation 2.3). In the
third phase, the proposed events are filtered by a set of constraints and schedulers, a subset
of the proposed events are allowed to execute and committed to the SystemC simulation
engine.

For example, a task in Figure 2.3 implements services of Register, Const, AddSubtract,
PID, and Select. The architectural model defines two MetroII events for each service as
follows: where the beginning event indicates the beginning of execution of the service and

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 18

the ending event indicates the end of the execution. In the first phase, when the task starts
to execute, it proposes the beginning events of all the services it implements: reg.b, con.b,
add.b, and pid.b. The task is then blocked. In the second phase, MetroII annotates time
tags to these proposed events. In the third phase, after resolving all the constraints about
the mapping, one event (for instance, pid.b) is allowed to execute. Then it is notified and
committed to SystemC engine. In the next iteration, the service of PID will begin executing
on the architecture. Note that the task is scheduled by OS. When the task is blocked, no
more events in Table 2.1 will be proposed until the current service is executed.

2.2.3 Notions of Time

As discussed in 2.1.3, three different notions of time are captured in a CPS model: physical
time, logical time, and platform time. An architectural model typically maintains physical
time and platform time, where physical time represents the idealized time throughout the
system and platform time is the clock on the implementation platform that measures the
physical time. For example, in Figure 2.3, the physical time is the idealized time and
platform time is the clock of the processor. Logical time is sometimes used internally in the
architectural model and is mapped to physical time.

2.3 Timing Contracts Between Models

As discussed in Section 2.1 and Section 2.2, in our co-simulation framework, a system model
includes a higher-level functional model, a lower-level architectural model and a mapping
function. The functional and architectural models provide two different representations of
the system at different levels of abstraction, and can possibly cover different design aspects
or viewpoints. The mapping function links how the behaviors of the functional model are
mapped into behaviors of the architecture during co-simulation.

2.3.1 Definition of Timing Contract

We define a timing contract as a tuple C = (E , T ,A,G), where E is a set of events, T is
a set of time tags, A is a set of assumptions, and G is a set of guarantees. We can then
denote the interface between the functional model and the architectural model by specifying
a functional contract Cf = (Ef , T ,Af ,Gf), an architectural contract Ca = (Ea, T ,Aa,Ga),
and a mapping function M.
Ef is a set of events capturing the activity in the functional model, Ea is a set of events

capturing the activity in the architectural model, T is a set of time tags that define a common
notion of time shared by the two models. For each event e (e ∈ Ea or e ∈ Ef), te ∈ T is its
time tag.

An event in the functional model e ∈ Ef is represented by a tuple e = (fun.id, k), where
id is the identifier of the event, which specifies, for instance, the arrival of sensing data, the

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 19

beginning or the ending of a computation process, or the application of a certain action; k
is an integer index denoting the k-th instance of the event. Similarly, each event e ∈ Ea is
a tuple e = (arch.id, k). When there is no confusion, we will abbreviate all the events as
(id, k).
Af and Gf are, respectively, the set of assumptions made by the functional model, and the

set of guarantees provided by the model under the assumptions. Following the formulation
in [6], in our framework, both Af and Gf are sets of behaviors over Ef . A behavior is defined
as a trace, i.e. a sequence of events. Sets of traces are captured using assertions including
constraints on their event time tags. Similarly, Aa and Ga represent, respectively, the sets
of assumptions and guarantees related to the architectural model, and can also be expressed
as assertions on the time tags of the events in Ea.

More specifically, both assumptions and guarantees can be expressed using first order
logic formulas defined as follows. A linear inequality defined on a set of event time tags te
and other variables is a formula. If α is a formula, then ¬α is a formula. If α1 and α2 are
formulas, then α1 ∧α2 (α1 ∨α2, α1 → α2) is a formula. If α is a formula and x is a variable,
then ∀x, α (∃x, α) is a formula.

Finally, M maps events in the functional model into events in the architectural model.
For a pair of events e1 ∈ Ef and e2 ∈ Ea, if M(e1) = e2, then te1 = te2 .

Examples of assertions used to express assumptions and guarantees are provided below:

• End-to-end path latency:
∀k, t(p.e,k) − t(p.b,k) ≤ d (2.4)

where (p.b, k) is the beginning event corresponding to the k-th computation of path p,
(p.e, k) is the ending event corresponding to the k-th computation of path p, and d is
the deadline for the path latency.

• Periodic events:
∀k, t(id,k+1) − t(id,k) = T (2.5)

where T is the period.

• Sporadic events:
∀k, t(id,k+1) − t(id,k) ≥ Ts (2.6)

where Ts is the minimum interval of two consecutive events with the same id.

• Partial order of events:
te1 < te2 , (2.7)

which can be used to encode several type of constraints such as the amount of requested
computation or data dependencies.

As an example, for a functional model, Af could be (2.4), while Gf could be a conjunction
of assertions in (2.5), (2.6) and (2.7). Since we only focus on timing assertions, we assume
that the available architecture platform can implement any behavior (Aa = True) at possibly

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 20

different costs. On the other hand, Ga is a set of performance guarantees from the services
implemented on the architecture. A typical architecture guarantee on the execution of a
service could be

t(id.e,k) − t(id.b,k) ≤ w (2.8)

as in (2.4), where w is now the execution time for service id. In a simple contract, the
parameters (e.g. w) in the assertions above could be the worst execution time of the service.
In a complex contract, the parameters are not necessarily constants but can be variables that
dynamically change during the simulation. Generally, w depends on processor speed, bus
speed, cache size and cache strategy etc. And if the execution of the service on the platform
is not atomic, it also depends on preemptions of other tasks with higher priorities.

2.3.2 Illustrating Example

To illustrate how timing contracts can be applied to a control system, we consider the
system in Figure 2.5 again, which is a simplified controller in a paper feed subsystem of a
printing press (see also Section 4.2 for further details). The controller regulates the surface
velocity of a roller by adjusting the drive voltage of a motor. The controller has four inputs:
tv, ev,mv, ct, and one output cv. Input tv is the profiled target velocity, ev is a real-time
adjustment on the profiled target velocity based on the state of the other rollers, mv is the
measured velocity of the roller, ct is a signal that turns off the motor, and cv provides the
drive voltage to the motor. The controller tries to minimize the error between the measured
velocity mv and the target velocity tv+ ev. When a sporadic signal ct occurs, the controller
outputs 0. p1, p2, p3, p4 are the execution paths from ev, tv, mv, ct to cv, respectively. By
following the semantics of Ptolemy, each component of the functional model in Figure 2.5
is implemented as an actor. Strictly speaking, a path in the model consists of a cascade of
a sensor actor, a series of interconnected execution actors and an actuator actor. In this
example, we assume the delays of the sensor and the actuator are zero for simplicity and
thus the end-to-end latency is the sum of delays due to the execution actors along the path.

We denote the beginning event and the ending event of the k-th computation of path pi
as (pi.b, k) and (pi.e, k) respectively. If an output is generated in the k-th computation, the
output occurs at time tpi.e,k. l represents the latency between the activation of the controller
and the output. Different l may deliver different control performances.

Events (c.b, k) and (c.e, k) are the beginning event and the ending event of the k-th firing
of the controller, which carries on the computation of its paths. Note that one firing of the
controller may carry on the computations of multiple paths. The firing of the controller
is triggered by the events at the input ports. Between (c.b, k) and (c.e, k), there are also
events indicating the beginnings or the endings of the firings of internal actors. For example,
(c.pid.b, k) and (c.pid.e, k) indicate the beginning and the ending of one firing of the internal
actor PID (Proportional-Integral-Derivative).

The assumptions of the functional contract Cf are specified by the conjunction of asser-
tions on the end-to-end latencies of paths. For example,

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 21

Plant

Other

Controller

Sensor Hold

Control

Algorithm

Function Design Environment

Architecture Design Environment

Operating System

Processor

Execution

Platform

Model

Sensor

ev

tv

mv

ct

cv

Task1 Task2

Shared

resources

impact the

timing.

Figure 2.5: A simplified controller in a printing press paper feed system. Controllers in the
function design environment are mapped to a single processor multi-task execution platform
in the architecture design environment.

• End-to-end latency of path p1:

∀k, t(p1.e,k) − t(p1.b,k) = l ≤ d1
∀k1, k2, t(p1.b,k1) = t(c.b,k2) → t(p1.e,k1) = t(c.e,k2)

End-to-end latency of path p2:

∀k, t(p2.e,k) − t(p2.b,k) = l ≤ d2
∀k1, k2, t(p2.b,k1) = t(c.b,k2) → t(p2.e,k1) = t(c.e,k2)

End-to-end latency of path p3:

∀k, t(p3.e,k) − t(p3.b,k) = l ≤ d3
∀k1, k2, t(p3.b,k1) = t(c.b,k2) → t(p3.e,k1) = t(c.e,k2)

End-to-end latency of path p4:

∀k, t(p4.e,k) − t(p4.b,k) = l ≤ d4
∀k1, k2, t(p4.b,k1) = t(c.b,k2) → t(p4.e,k1) = t(c.e,k2)

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 22

which state that the execution time l of the controller that carries the computations of
one or multiple paths must complete before the deadlines d1, d2, d3, and d4. d1, d2, d3,
and d4 represent the requirements on end-to-end latencies of paths p1, p2, p3, and p4.
These requirements are typically associated with the requirements from the physical
plant.

The guarantees of the functional contract Cf are also specified by a conjunction of asser-
tions. Examples of assertions are

• Controller activation:
∀k, t(p1.b,k) = t(ev,k)
∀k, t(p2.b,k) = t(tv,k)
∀k, t(p3.b,k) = t(mv,k)

∀k, t(p4.b,k) = t(ct,k)

guarantee that computation of paths p1, p2, p3 and p4 are triggered by input signals
ev, tv, mv, and ct.

∀k1,∃k2, t(p1.b,k1) = t(c.b,k2)
∀k1,∃k2, t(p2.b,k1) = t(c.b,k2)
∀k1,∃k2, t(p3.b,k1) = t(c.b,k2)
∀k1,∃k2, t(p4.b,k1) = t(c.b,k2)

guarantee that there is always a firing of the controller that carries on the computation
of path p1, p2, p3 and p4.

• Periodic event tv, ev, and mv:

∀k, t(ev,k+1) − t(ev,k) = Tev
∀k, t(tv,k+1) − t(tv,k) = Ttv
∀k, t(mv,k+1) − t(mv,k) = Tmv

guarantee that ev,tv, and mv are periodic inputs.

• Sporadic event ct: ∀k, t(ct,k+1) − t(ct,k) ≥ Tct guarantees that the minimal interval of
two consecutive ct is Tct.

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 23

• Amount of requested computation:

∀k,∀j1, j2, (t(c.b,k) ≤ t(c.reg.b,j1) ∧ t(c.reg.e,j1+r1−1) ≤ t(c.e,k)
∧t(c.b,k) ≤ t(c.reg2.b,j2) ∧ t(c.reg2.e,j2+r2−1) ≤ t(c.e,k))
→ r1 + r2 ≤ rc.reg

∀k,∀j3, (t(c.b,k) ≤ t(c.add.b,j3) ∧ t(c.add.e,j3+r3−1) ≤ t(c.e,k))
→ r3 ≤ rc.add

∀k,∀j4, j5, (t(c.b,k) ≤ t(c.con.b,j4) ∧ t(c.con.e,j4+r4−1) ≤ t(c.e,k)
∧t(c.b,k) ≤ t(c.con2.b,j5) ∧ t(c.con2.e,j5+r5−1) ≤ t(c.e,k))
→ r4 + r5 ≤ rc.con

∀k,∀j6, (t(c.b,k) ≤ t(c.pid.b,j6) ∧ t(c.pid.e,j6+r6−1) ≤ t(c.e,k))
→ r6 ≤ rc.pid

∀k,∀j7, (t(c.b,k) ≤ t(c.sel.b,j7) ∧ t(c.sel.e,j7+r7−1) ≤ t(c.e,k))
→ r7 ≤ rc.sel

where rc.reg specifies the bound for the number of firings of the Register actors (in-
cluding Register and Register2 in Figure 2.5). Similarly, rc.add, rc.con, rc.pid and rc.sel
specify the bounds for the number of firings of each type of actor during one firing of
the controller.

Finally, the guarantees of the architectural contract Ca are specified by the conjunction of
assertions on the execution time of services. The assertions on the computations of Register,
AddSubtract, Const, PID and Select would be:

t(task2.reg.e,k) − t(task2.reg.b,k) ≤ wreg

t(task2.add.e,k) − t(task2.add.b,k) ≤ wadd

t(task2.con.e,k) − t(task2.con.b,k) ≤ wcon

t(task2.pid.e,k) − t(task2.pid.b,k) ≤ wpid

t(task2.sel.e,k) − t(task2.sel.b,k) ≤ wsel

where wreg, wadd, wcon, wpid and wsel are variables depending on the processor speed and the
state of the cache. If the service is not an atomic operation on the platform, it also depends
on possible preemptions of Task1 which has a higher priority.

The architecture assumption is True in the example because the guarantees do not rely
on any assumption on the functional model.

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 24

2.4 Timing Verification and Design Exploration

Methodology

Metronomy can be used for timing verification as well as design space exploration. We denote
the functional component (model) Func as the set of all the possible traces {trf1, trf2, ...}
defining its behavior, where each trace trfi is an infinite sequence of events (efi1 , efi2 , . . .).
Similarly, the architectural component Arch can be seen as a set of traces. Then, the
mapping function M corresponds to a set of rendezvous constraints on events in the two
models: tef = tea if M(ef) = ea.

Given the timing contracts Cf and Ca, and a system level specification in the form of
a contract Cs, the timing verification problem translates into checking whether Cs and the
composition of Cf and Ca are satisfied by the behaviors of the mapped model Func×Arch|M,
i.e. the system model obtained by mapping function behaviors into architecture behaviors.
Formally,

Func× Arch|M |= Cf ⊗ Ca
Func× Arch|M |= Cs

(2.9)

where Func × Arch|M is a set of traces including both function and architecture events.
Each trace is, in general, an infinite sequence of events, obtained by merging a trace in Func
and a trace in Arch that satisfy the rendezvous constraints specified by M. A component
(or a system) satisfies a contract (denoted by |= in (2.9)) when its event time tags satisfy
the guarantees in the context of the assumptions, i.e., for the functional model,

Func ∩ Af ⊆ Gf , (2.10)

where Func ∩ Af represent the function behaviors that satisfy the assertions of Af .
As in [6], the assumptions and guarantees of the composite contract Cf⊗Ca can be defined

as follows:
G⊗ = Gf ∩ Ga
A⊗ = Af ∩ Aa ∪ ¬G⊗,

where ¬ denotes the complement of a set, and all the assumptions and guarantees are
assumed to be extended to the same set of variables including both function and architecture
events, via a reverse projection operation. If (2.9) hold then we can also conclude that Cf
and Ca are consistent, i.e. there exists an implementation that satisfies both contracts. In
Metronomy, we check all the assertions of the composite contracts using monitors during
co-simulation of the functional and the architectural models.

In addition to timing verification, we can use Metronomy to perform design space explo-
ration, by using timing checkers in an optimization loop, where an objective function (or a
set of objectives) is optimized. As an example, if Func, Arch, Cf , or Ca are expressed in

CHAPTER 2. TIMING VERIFICATION OF CYBER-PHYSICAL SYSTEMS 25

parametric form, the design space exploration problem can be formulated as follows:

min
xf ,xa,xc

J(Func(xf), Arch(xa))

s.t.

Func(xf)× Arch(xa)|M |= Cf (xf , xc)⊗ Ca(xa, xc)
Func(xf)× Arch(xa)|M |= Cs(xf , xc)
xf ∈ Xf , xa ∈ Xa, xc ∈ Xc

where xf and xa are sets of parameters that encode design choices in the functional and the
architectural model, respectively; xc are parameters of the contracts (e.g. see d, rc.reg, rc.pid
in the illustrating example) which allow relaxing or tightening design requirements; J is cost
function. The models obtained from the optimization process, Func∗ and Arch∗, can then
be provided as specifications to be independently implemented (refined) by the control and
the embedded system engineers.

26

Chapter 3

Metronomy Design Framework

Metronomy is a co-simulation framework that integrates Ptolemy and MetroII. It benefits
from the heterogeneous modeling and simulation from Ptolemy as well as the multi-level
architecture mapping and evaluation from MetroII. In this chapter, we will discuss the im-
plementation of Metronomy.

As shown in Figure 3.1, a Metronomy model includes three components, i.e. the functional
model, the architectural model and the mapping. At the top level, the functional model
and the architectural model are composite actors governed by the co-simulation director
CoSimDirector, which extends the execution semantics of MetroII. The mapping is a set of
mapping constraints specified in a file that configures the CoSimDirector.

The functional model is an actor-based hierarchical model inside a composite actor. For
CPS, a discrete event director CoSimDEDirector is used to govern the execution of the
functional model. Under CoSimDEDirector, the physical plant is modeled using directors
from continuous-time domain (e.g.Continuous Director), while the controller is modeled
discrete MoCs (e.g.CoSimPtidesDirector), which is adapted to the co-simulation execution
semantics.

The architecture is a MetroII model, which is based on a SystemC simulation engine. The
model is compiled with SystemC and MetroII libraries into an executable, which then runs
in a separate process during co-simulation. The running model is wrapped by a composite
actor using inter-process communication. The architectural model also has a configuration
file that contains the its parameters.

The mapping function M is implemented as a set of mapping constraints used by the
co-simulation director. A mapping constraint is a rendezvous constraint on a pair of events,
where each event is specified by its name. Figure 3.1 also shows examples of mapping
constraints, in which the beginning and the ending of firings of PID and AddSubtract
actors in the functional model are mapped to the beginning and the ending of the PID and
AddSubtract services of Task1 in the architecture.

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 27

Executable

Model

MetroII

Model
SystemC

Lib

MetroII

Lib

Config

File

Compile

Continuous Discrete

Mapping Constraint Examples:

(FunctionalModel.Controller.PID.FireBegin,

Task1.PID.Begin)

(FunctionalModel.Controller.PID.FireEnd,

Task1.PID.End)

(FunctionalModel.Controller.AddSubtract.FireBegin,

Task1.AddSubtract.Begin)

(FunctionalModel.Controller.AddSubtract..FireEnd,

Task1.AddSubtract..End)

Figure 3.1: A CPS model in Metronomy.

3.1 Co-simulation Director

Each actor under the co-simulation director is either a functional model or an architectural
model, which consists of a set of concurrent processes from the perspective of co-simulation
director. The simulation progress of each model is controlled by the co-simulation director
via events.

An event e = (id, k) is associated to a tuple (id, t, s, V), where id is the event
identifier, t ∈ T is its time tag (particularly, t = null for un-timed events), s ∈
{proposed, waiting, notified} is the state of the event, and V is a set of additional val-
ues that can be used for passing messages between actors (models). Each event marks the
beginning or the ending of an activity (e.g. the arrival of sensing data, the beginning or the
ending of a computation process, or the application of a certain action). When the event is
passed from an actor to the co-simulation director, the state is set to proposed, represent-
ing an activity “may happen” in the functional or architectural model. The co-simulation
director processes the proposed events, updates the state to either notified or waiting, and
passes the event back to the actor. The states notified and waiting represent whether the
activity associated with the event can proceed or not. Multiple events can be proposed by

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 28

Phase 1 Phase 2

Functional Model

Architectural Model

Mapping

Constraint

Solver Scheduler

1. Block and Propose Events

2b. Enable Some Events

2a. Schedule,

Resolution

Figure 3.2: The two-phase execution semantics.

one actor to represent the concurrency.
For example, Task2 in Figure 3.3 in architectural model may propose events task2.reg.b,

task2.add.b, task2.con.b, task2.pid.b, and task2.sel.b because any of them may happen.
Then, if the proposed event task2.pid.b is notified, the associated activity, service PID,
will begin executing if it is allowed by the OS. And other proposed events are set to waiting
by the co-simulation director, the associated activity will have to wait.

Figure 3.2 shows the execution semantics of the co-simulation director, which is articu-
lated into two phases:

• Phase 1: Base Model Execution. Each top-level actor (functional or architectural
model) executes until it blocks after proposing events. After all the top-level actors
block the simulation transitions to phase 2.

• Phase 2: Scheduling or Constraint Solving. The states of the proposed events are
updated based on the resolution of the mapping constraints. A subset of the proposed
events are enabled and their states are updated to notified, which simultaneously
allows their associated composite actors to resume. The rest of the events remain
suspended, i.e. their states are updated to waiting.

Inside a composite actor, the internal actors are organized hierarchically and each actor
is seen as a separate process which is scheduled by the governing MoC director as well as
the co-simulation director. In phase 1, an actor has a chance to propose events only when
the actor is scheduled by the governing MoC director; an actor can proceed to the phase 1
of the next round only when the proposed events are notified in phase 2.

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 29

3.2 Co-simulation Actor

To adapt the function-architecture co-simulation, we have to also change the implementa-
tion of actors. Because as explained in 3.1, the firings of the actors in the functional model
are governed by not only the director on the same level but also the co-simulation direc-
tor. In order to achieve this without changing the internal code of each actor, we create
a wrapper for each actor. The wrapper exchanges messages with the director that governs
the actor in terms of events. Each message contains one or multiple events with states
({proposed, waiting, notified}). For a particular event, its state can be accessed by the di-
rector that directly governs the associated actor as well as CoSimDirector on the top level.
If the event is allowed to take place by the implemented MoC of the governing director,
it is passed to co-simulation director. Based on the event state given by the co-simulation
director, the wrapper of each actor controls the firing of the actor.

We implement two types of wrappers. One is for atomic actor. The other is for composite
actor. For an atomic actor, the wrapper allows the actor to be mapped to a service on the
architecture. For a composite actor, the wrapper not only allows the composite actor to be
mapped but also allows the actors enclosed in the composite actor to be mapped if they are
wrapped as well.

3.2.1 Atomic Co-simulation Actor and Deferred Firing

A wrapped atomic actor in the functional model that is allowed to be mapped to the archi-
tectural model is an atomic co-simulation actor. As explained in 3.1, the firing of an atomic
co-simulation actor is initiated by the governing director on the same level but needs to be
approved by the co-simulation director. So the firing in the co-simulation is often deferred in
terms of physical time, compared to the firing in a purely functional model without interfer-
ences of the architectural model. Because the mapped service on the architecture might be
blocked due to preemption or shortage of computing resources. Even with enough priority
and computing resources, the firing of an atomic co-simulation actor can still be deferred
because it takes time to execute a service on the architecture. The firing in the functional
model can only take place when the execution on the architecture completes.

The deferred firing of atomic actor exposes a possible semantic difference between the
functional model and the architectural model. If the atomic actor is scheduled by a director
with physical time, it has to fire at exactly the point of physical time it is scheduled to. Any
deferred firing will violate the semantics of the functional model.

However, this issue can be resolved by scheduling the actors with logical time. Even a
firing is deferred in terms of physical time, the deferred firing can still appear to take place
at the same logic time it is scheduled to. In Metronomy, we always map the atomic co-
simulation actors scheduled by the director with logic time, i.e. PtidesDirector. If we map
an atomic co-simulation actor scheduled by a director with physical time, we will instantly
get an error unless the architecture can execute the mapped service at the scheduled physical
time with no time elapsed.

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 30

Scheduling actors by logic time implicitly introduces timing assertions in functional as-
sumption Af as the logic time has to be mapped to physical time ultimately. We will discuss
in more details in 3.2.2.

3.2.2 Composite Co-simulation Actor and Decomposed Firing

A wrapped composite actor that allows its enclosed actors to be mapped to the architectural
model is a composite co-simulation actor. Ptolemy has two types of composite actors. If
the composite actor does not enclose any director, the enclosed actors are governed by the
governing director of the composite actor. If the composite actor encloses a director, the
enclosed actors are governed by the enclosed director. Since the composite actor without
enclosed director is only a structure that does not carry any semantics, we only discuss the
composite actor that encloses a director.

Without any architectural model, the firing of the composite actor is a sequence of firings
of the enclosed actors that follows the semantics of the enclosed director. Suppose all the
enclosed actors are atomic co-simulation actors. With an architectural model, the enclosed
actors are mapped to the services on the architecture and thus the firings of the enclosed
actors are deferred by the execution of the services. Different atomic actors may be deferred
by the different amount of time. Consequently, one firing of the composite actor in purely
functional model is decomposed into multiple firings of the composite co-simulation actor in
the mapped model that follow not only the semantics of the enclosed director but also the
execution of services on the architecture.

We use the same example in Figure 3.3 to illustrate the firing of the composite co-
simulation actor. The controller is a composite co-simulation actor inside which the enclosed
actors are mapped to the services of Task2 on the architecture. Suppose one firing of the
composite actor is triggered by signals ev, tv and mv simultaneously at time t0. Without
mapping to any architectural model, the firing of the composite actor in the purely functional
model is as follows:

• At physical time t0 (logical time t0), the firing of the composite actor consists of a
sequence of firings of Register2, Register, AddSubtract, PID, Select, TimeDelay.

• At physical time t0 + d (logical time t0 + d), the firing of the composite actor gives the
output signal.

where d is the time interval specified in TimeDelay.
With the architecture in Figure 2.5, the same firing in the purely functional model is

decomposed into five firings of the composite co-simulation actor in the mapped model:

• At physical time t1 (logical time t0), the firing of the composite co-simulation actor
consists of the firing of Register2;

• At physical time t2 (logical time t0), the firing of the composite co-simulation actor
consists of the firing of Register;

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 31

Plant

Other

Controller

Sensor Hold

Control

Algorithm

Function Design Environment

Architecture Design Environment

Operating System

Processor

Execution

Platform

Model

Sensor

ev

tv

mv

ct

cv

Task1 Task2

Shared

resources

impact the

timing.

Figure 3.3: A simplified controller in a printing press paper feed system. Controllers in the
function design environment are mapped to a single processor multi-task execution platform
in the architecture design environment.

• At physical time t3 (logical time t0), the firing of the composite co-simulation actor
consists of the firing of AddSubtract;

• At physical time t4 (logical time t0), the firing of the composite co-simulation actor
consists of the firing of PID;

• At physical time t5 (logical time t0), the firing of the composite co-simulation actor
consists of the firing of Select and TimeDelay.

• At physical time t0 + d (logical time t0 + d), the firing of the composite actor gives the
output signal.

where t1 − t0 is the sum of the execution time of Register service in Task2, the possible
blocking time of Task2 and overheads of the OS. Similarly, t2− t1 (t3− t2, t4− t3, and t5− t4)
is the sum of execution time of corresponding service, the possible blocking time of Task2
and overheads of the OS.

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 32

As shown in the above example, the logical time is employed by the enclosed director
in the composite co-simulation actor to avoid the semantic difference between the purely
functional model and the function-architecture mapped model. No matter how many times
the composite co-simulation actor fires, the logical clock only advances when the actor of
TimeDelay is fired. When TimeDelay is fired, the logical time is advanced by d that is
specified by the actor of TimeDelay. And at the output port cv, the logical time is mapped
back to physical time and the output signal cv is not given until physical time t0 + d. As
a result, no matter how many times the composite co-simulation actor fires, the behavior
of the controller in the purely functional model is preserved since it is triggered at physical
time t0 for the first time and gives the output signal at physical time t0 + d.

The mapping of the logical time to physical time essentially applies implicit constraints
in the contract. In this example, the TimeDelay implies that t5 < t0 + d. In other words,
it implies that all the end-to-end latencies of paths p1 (from ev to cv), p2 (from tv to cv),
p3 (from mv to cv) and p4 (from ct to cv) must be less than d. Metronomy automatically
checks these implicit constraints in the co-simulation.

In Metronomy, the user can also choose to give the output signal of a composite actor
as soon as the computation is complete. If this option is chosen, the controller in the above
example will give the output signal at physical time t5. But this option will no longer
guarantee the mapped model (the functional model and architectural model) keeps the same
behaviors as that of the purely functional model. The functional behaviors of the mapped
model depends on the performance of the architecture. Because the timing of output signal
will affect the physical processes, which ultimately affects the future input and behaviors of
the controller. The case study in Section 4.1 demonstrates the use of this option.

3.3 Mapping Semantics

Metronomy uses rendezvous constraints and event synchronization to implement the mapping
M between functional and architectural models, a powerful and flexible mechanism, which
allows mapping constraints to be established between arbitrary pairs of events.

Let ef and ea be two events in the functional and architectural models, respectively, and
such that ea =M(ef). A rendezvous constraint on ef and ea requires that both of them be
in the proposed state when the constraint is resolved in phase 2. Events ef and ea will then
be set to notified only when both of them are in the proposed state in the same round; if
only one of them is proposed, it will be just set to waiting.

Particularly, as an example, if we assume ea is proposed by the architectural model in
each round, it will only be notified when the mapped event ef is also proposed, which implies
the activity in the architectural model is “driven” by the functional model. Symmetrically,
if ef is proposed by the functional model in each round, it will only be notified once ea
gets proposed, meaning that the execution of the functional model is now “driven” by the
architectural model.

CHAPTER 3. METRONOMY DESIGN FRAMEWORK 33

Table 3.1: The mapping configuration for the example in Figure 2.5

Event in the Functional Model Event in the Architectural Model
FunctionalModel.Controller.Register2.FireBegin Task2.Register.Begin
FunctionalModel.Controller.Register2.FireEnd Task2.Register.End
FunctionalModel.Controller.Register.FireBegin Task2.Register.Begin
FunctionalModel.Controller.Register.FireEnd Task2.Register.End

FunctionalModel.Controller.AddSubtract.FireBegin Task2.AddSubtract.Begin
FunctionalModel.Controller.AddSubtract.FireEnd Task2.AddSubtract.End

FunctionalModel.Controller.PID.FireBegin Task2.PID.Begin
FunctionalModel.Controller.PID.FireEnd Task2.PID.End

FunctionalModel.Controller.Select.FireBegin Task2.Select.Begin
FunctionalModel.Controller.Select.FireEnd Task2.Select.End

Table 3.1 shows the mapping configuration for the example in Figure 2.5. Each actor in
the controller is mapped to a service in a task by mapping the beginning and ending events
of the actor to the beginning and ending events of the corresponding service. Each event is
referred to by its full name in the mapping configuration.

The full name of an event in the functional model is defined as follows:
{ActorFullName}.{EventType}, where {ActorFullName} includes the names of all enclos-
ing composite actors and the name of the actor that is mapped. And {EventType} is either
FireBegin or FireEnd.

The full name of an event in the architectural model is defined as follows:
{ServiceName}.{EventType}, where the service name is a unique string that identifies the
service and {EventType} in is either Begin or End.

34

Chapter 4

Case Studies

We demonstrate our methodology and the use of our co-simulation framework on design
examples of embedded controllers for an aircraft electric power system and a printing press
paper feed system.

4.1 Aircraft Electric Power System

4.1.1 Functional and Architectural Models with Timing
Contracts

Due to the increase in electrification of modern aircraft, the design of the electrical power
distribution system has become very challenging because of the safety-critical nature of the
system, subject to tight reliability constraints [27].

Figure 4.1 shows a simplified functional model of a power system, including a composite
GeneratorContactorLoad actor, modeling the power system plant, and a hierarchical con-
troller, built out of two composite actors, the Supervisor and the Controller. The power
system plant consists of a set of power sources (generators), loads and electromechanical
switches (contactors), all lumped into the continuous-time actor GeneratorContactorLoad.
We assume that the Supervisor is a fixed, pre-designed finite state machine which configures
the power plant by actuating the contactors to connect the power sources to the loads in
each aircraft operation mode.

Our goal is to explore the trade-offs involved in the design of the Controller that regulates
and stabilizes the amplitude of the voltage on the power network, which is required to never
exceed 120 V to prevent any damage in the loads. To do so, our simulation setup includes
a SingleEvent actor modeling the insertion of a new load in the system at time 15 s.

Figure 4.2 shows the result of a purely functional simulation where the ideal controller
undergoes zero end-to-end latency. The controller outputs its drive voltage (represented in
blue in the figure) by instantly reacting to the voltage level sensed on the power network.
The requirement is always satisfied.

CHAPTER 4. CASE STUDIES 35

Plant

Figure 4.1: The functional model of a simplified electrical power system.

Voltage < 120V

End-to-end delay = 0

Figure 4.2: Simulation results from an ideal functional model with zero end-to-end latency.

On the other hand, in Figure 4.3, we represent a more realistic, composite Controller
actor, where blocks SensingComm and ActuatingComm capture the effects of communication
between the PID controller and the plant via sensors and actuators. Sensing and actuation
delays are not always available while prototyping the control algorithm at the functional
level. Therefore, instead of delving into the implementation details and the specific delay
breakdown between computation and communication, the control designer may conveniently
rely on a simpler interface, defined by a timing contract. In such a contract, an assumption
can be made on the whole end-to-end latency between sensing and actuation, which can be
captured by the following assertion:

t(ActuatingComm.e,k) − t(SensingComm.b,k) ≤ d, (4.1)

where d represents both the communication (e.g. bus) and computation (e.g. proces-
sor) delays related to the implementation architecture. Under the assumption in (4.1),

CHAPTER 4. CASE STUDIES 36

the functional model guarantees that the Controller is triggered every 1 second: ∀k,
t(SensingComm.b,k) = k. Moreover, the amount of computation in each activation is bounded.
For example, PID needs to compute at most once whenever PIDController is triggered:

∀k,∀j,
(t(PIDController.b,k) ≤ t(PIDController.PID.b,j)

∧t(PIDController.PID.e,j+r−1) ≤ t(PIDController.e,k))→ (r = 1).

The functional model is then accompanied by an architectural model, including a proces-
sor, a sensor, an actuator, a bus and a simple OS layer that supports the following services:
reading values from the sensor, writing values to the actuator, arithmetic computations and
PID computation. In its contract, the architecture guarantees that the delay of each service
is bounded.

To provide realistic worst case estimations of the end-to-end delays, we co-simulate the
composition of the functional model with the architectural model, where firing events of
SensingComm, ActuatingComm and Controller are mapped to “service” events in the archi-
tecture. As stated earlier, such a mapping mechanism allows accounting for the impact of
architectural choices on the system functionality, while keeping the details of the architecture
“hidden” from the pure functional model. We perform verification of the timing contract by
checking that for each event arriving at port2 in Figure 4.3 the end-to-end timing assump-
tion is satisfied, i.e. it is discharged by the architecture guarantees. If this is not the case, a
timing violation exception will be thrown.

4.1.2 Exploring Design Choices in Architecture

As an example, we investigate the impact of the latency assumptions on the final controller
design, a crucial parameter for the development of this system. A pessimistic latency bound
d may end up with a degraded controller performance, while an optimistic bound at the func-
tional level may require a fast and expensive architecture to be supported. In Figure 4.4, we
prototype a controller by assuming a loose assumption on the end-to-end latency (d = 0.3 s).
Such an assumption is compatible with an inexpensive architecture, with high (pessimistic)
sensing and actuation delays, and a “slow” communication bus. However, the mapped con-
troller violates our requirement since an overdrive voltage exceeding 120 V is observed at
time 24 s and 25 s. We can then overcome this issue by either providing a “faster” bus,
or modifying the functional architecture in the first place to accommodate any impairments
related to the implementation platform.

The results obtained after implementing the former solution are visualized in Figure 4.5,
where the functional model is now assuming d = 0.09 s, albeit at additional architecture-
related costs.

CHAPTER 4. CASE STUDIES 37

Figure 4.3: The controller in an electrical power system. PIDController is a sampled-data
feedback controller. The PID control filter simply takes the difference between the measured
voltage and the desired one.

Voltage > 120V

End-to-end delay

Figure 4.4: Simulation of the functional model and the architecture with a slow bus.

4.1.3 Exploring Design Choices in Function

On the other hand, Figure 4.6 shows how the functional model can be modified when the
latter approach is adopted. To avoid over-voltage problems, the functional model is equipped
with an additional voltage protection mechanism for the loads. Whenever the voltage level
exceeds 119 V, the voltage protection kicks in and disconnects the loads from the power
network until the desired voltage is restored on the line. By utilizing the additional voltage

CHAPTER 4. CASE STUDIES 38

Voltage < 120V

End-to-end delay

Figure 4.5: Simulation of the functional model with accelerated architecture.

Plant

Voltage Protection

Figure 4.6: Functional model of an electrical power system with over-voltage protection.

protection, a looser bound is acceptable for the architecture contract, which allows leveraging
cheaper solutions.

Figure 4.7 shows the simulation result of the mapped model with voltage protection. At
time 24 s, the protection circuit detects that the voltage exceeds 119 V and disconnects the
loads, which will be reconnected later on, when the voltage stabilizes. Different solutions
result in different timing contracts (d = 0.3 s or d = 0.09 s) between function and architecture
designers, which in turn restrict the further refinement of both function and architecture.

CHAPTER 4. CASE STUDIES 39

Voltage protection kicks in:

loads are disconnected

Figure 4.7: Simulation of the functional model with over-voltage protection.

4.2 Printing Press Paper Feed System

4.2.1 Functional and Architectural Models with Timing
Contracts

Figure 4.8 shows the paper feed system of a high-speed printing press. The system consists
of three types of rollers: two drive rollers, a feed roller, and a reserve roller. A roll of paper
is driven by the feed roller to feed the printing machine. When the radius of the feed roll
becomes lower than a first threshold, a signal is sent to bring up the reserve roller and its
velocity will eventually match that of the drive roller. When the radius of the feed paper roll
is lower than a second threshold, a tape detector begins sensing the tape on the reserve roll.
When the presence of a strip of tape on the reserve roll is detected, the contact controller
computes when the strip of tape will be directly opposite the contact actuator and prior to
this point of time, it sends a signal to the contact actuator, which forces contact between
the active and reserve paper so that they are attached by the tape. Right after that, the
cutter actuator cuts the paper from the feed roller so that the reserve roll continues to feed
the printing machine. The most critical scenario for timing requirements occurs when the
contact actuator reacts after the radius of the feed roll falls below the second threshold and
the tape is detected.

Figure 4.9 shows the functional model of the paper feed subsystem, which consists of the
following modules:

CHAPTER 4. CASE STUDIES 40

Contact

Actuator

Cut

Actuator

Reserve Roller

Feed Roller

Dancer

Drive

Roller

Tape

Detector

Tape

Reserve

Paper Roll

Active

Paper Dancer

Figure 4.8: The paper feed subsystem.

• 1 DriveRoller, 2 FeedRoller, and 3 ReserveRoller model the paper rollers driven by
motors. The motor operates in a continuous-time domain and each motor is controlled
by a drive voltage. The drive voltage is a continuous-time signal. In each roller
model, a hold actor in each of the roller models converts the discrete control signal
into continuous-time signal by keeping the value constant until it receives a new input.
And a sample actor models the sensor that measures the surface velocity of the paper
roll. In addition to the surface velocity of the paper roll, on the feed roller and reserve
roller, a sample actor also measures the radius of the paper roll left on the roller. The
hold and sample actors interface between continuous-time plant model and discrete
controller.

• 4 RemainingPaperDetector is a digital sensor that monitors the radius of the feed
paper roll is lower than given thresholds.

• 5 TapeDetector is an analog sensor that sends a pulse signal when detecting a tape
on the paper roll.

• 6 ContactController takes two inputs: the pulse signal (armContact) indicating the
paper roll left on Feed Roller is nearly empty and the pulse signal (tapeDetector) indi-

CHAPTER 4. CASE STUDIES 41

cating the a tape is detected. When armContact is received, Contact Controller start
waiting for tapeDetection. Once the tape is detected, ContactController calculates
how long it would take for the strip of tape to rotate to the position that is directly
opposite the contact actuator. It then schedules a timer and when the timer expires, a
pulse signal is sent to Contact Actuator to make the contact so that the paper of the
active roll is attached to the reserve roll. ContactController also sets another timer for
the cut signal. When the timer expires, a cut signal is sent to Cut Actuator so that
the paper from FeedRoller is detached. The cut signal also notifies FeedController to
stop the FeedRoller.

• 7 DtFTrackingController (Drive to Feed Tracking Controller) takes the measured
velocity of DriveRoller and the measured velocity of FeedRoller as its inputs. It com-
putes a tracking error between the two velocities. Similarly, 8 DtRTrackingController
(Drive to Reserve Tracking Controller) takes the measured velocity of DriveRoller and
the measured velocity of ReserveRoller as its inputs and computes a tracking error
between the two velocities. The tracking errors are used to adjust the target velocities
in DriveController, FeedController, and ReserveController.

• 9 DriveController, 10 FeedController, and 11 ReserveController are feedback con-
trollers that tries to minimize the “error” between the target velocities and the mea-
sured velocities by adjusting the drive voltage of the rollers. One output signal is
generated in one sampling period (Tsampling), which updates the drive voltage at the
hold actor.

• 12 DriveTargetVelocityProfile, 13 FeedTargetVelocityProfile, and 14 ReserveTar-
getVelocityProfile computes the profiled target velocities of the drive roller, the feed
roller, and the reserve roller respectively.

The controller consists of nine composite actors, numbered from 6 to 14. We assume that
the controller senses and actuates the plant with a sampling period Tsample ∈ T which is a
design choice, with T = {0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} s. The archi-
tectural model Arch is a single processor multi-task platform. To implement the mapping
function M, each of the actors 6-14 in Figure 4.9 is mapped to a task, nine in total, which
implies that all the “begin” and “end” events of the atomic actors enclosed in the composite
actors are mapped to the “begin” and “end” events of the corresponding services of the
tasks. These tasks are scheduled by a priority-based operating system supporting preemp-
tion. The priorities are given from high to low in the following order: 6,7,8,12,13,14,9,10,11.
The processor is connected to sensors and actuators via Ethernet. End-to-end latency mea-
surements consist of the following contributions: sensor and actuator delay, communication
delay, processor execution delay. We assume that the sensing, actuation and communication
delays are constants. The frequency of the processor fproc ∈ F is a design choice, with
F = {3.3, 5, 10, 16.6, 20, 33.3, 50, 100, 133} MHz; faster processors are more expensive.

CHAPTER 4. CASE STUDIES 42

1
2

3

4
5

6

7

8

9
1
0

1
1

1
2

1
3

1
4

F
ig

u
re

4.
9:

T
h
e

fu
n
ct

io
n
al

m
o
d
el

of
a

p
ap

er
-f

ee
d

su
b
sy

st
em

:
1.

D
ri

ve
R

ol
le

r;
2.

F
ee

d
R

ol
le

r;
3.

R
es

er
ve

R
ol

le
r;

4.
R

em
ai

n
in

g
P

ap
er

D
et

ec
to

r;
5.

T
ap

e
D

et
ec

to
r;

6.
C

on
ta

ct
C

on
tr

ol
le

r;
7.

D
ri

ve
to

F
ee

d
T

ra
ck

in
g

C
on

tr
ol

le
r;

8.
D

ri
ve

to
R

es
er

ve
T

ra
ck

in
g

C
on

tr
ol

le
r;

9.
D

ri
ve

C
on

tr
ol

le
r;

10
.

F
ee

d
C

on
tr

ol
le

r;
11

.
R

es
er

ve
C

on
tr

ol
le

r;
12

.
D

ri
ve

T
ar

ge
t

V
el

o
ci

ty
P

ro
fi
le

;
13

.
F

ee
d

T
ar

ge
t

V
el

o
ci

ty
P

ro
fi
le

;
14

.
R

es
er

ve
T

ar
ge

t
V

el
o
ci

ty
P

ro
fi
le

;
T

h
e

re
st

ar
e

m
on

it
or

s.

CHAPTER 4. CASE STUDIES 43

A key performance metric in this system is the tracking error between the paper velocity
of the feed (reserve) roller and the one of the drive roller. Although the two dancers shown
in Figure 4.8 help compensate the difference in the velocities of the drive roller and the feed
roller, a controller is still needed to minimize the tracking error, especially when the drive
roller accelerates soon after the system starts. Since the radius of paper roll is also changing,
the drive signal to the feed roller has to be dynamically adjusted to maintain a proper surface
velocity. We add monitors to the functional model to measure the RMS tracking error εRMS

using the following formula:

εRMS =

√√√√Tmon

Tsim

Tsim/Tmon∑
i=0

(
V iTmon
drive − V

iTmon
feed

)2
,

where Tmon is the sampling period of the monitor, V t
drive and V t

feed are the velocities of
the drive roller and the feed roller at time t respectively, and Tsim is the duration of the
simulation.

We cast the design space exploration problem as a multi-objective optimization problem
subject to timing contracts; we aim to minimize:

minTsample,fproc (εRMS, fproc)

s.t.

Func(Tsample)× Arch(fproc)|M
|= (Af ,Gf (Tsample))⊗ (True,Ga(fproc))
Func(Tsample)× Arch(fproc)|M |= Cs
Tsample ∈ T , fproc ∈ F

(4.2)

where both the functional and architectural contracts have been concisely denoted as pairs
of assumptions and guarantees, by dropping the set of events and time tags. Af , Gf (Tsample)
and Ga(fproc) are obtained by composition of the contracts of all the controllers, among which
the contract for the Feed Controller has been illustrated as an example in Section 2.3.2. Cs
is the contract that specifies the system level requirements (e.g. the timing requirements on
the contact actuator and the cut actuator).

4.2.2 Exploring Design Choices in Architecture

The tracking error εRMS depends on the sampling period Tsample and the end-to-end latency
l of the feedback controller (l ≤ Tsample). As shown in Figure 4.10, as the sampling period
increases, the tracking error (in blue) significantly increases. In addition, the velocity of the
paper roll becomes unstable when Tsample ≥ 0.6. Figure 4.13 shows the linear velocity of the
feed roller, the target velocity, and the error between them when the sampling rate is 0.8 s,
which causes the system to fail.

In Figure 4.10, the curve in red shows the tracking error εRMS versus fproc Pareto front.
Given a processor speed fproc we can find the sampling period Tsample that minimizes the
tracking error while satisfying all the timing constraints. For example, when fproc = 10 MHz,

CHAPTER 4. CASE STUDIES 44

0 20 40 60 80 100 120 140

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6

Processor Speed (MHz)

R
M

S
 o

f
D

ri
v

e
 t

o
 F

e
e

d
 T

ra
ck

in
g

 E
rr

o
r

(m
/s

)

Sampling Period (s)

Figure 4.10: Design space exploration results, while minimizing both the tracking error and
the processor speed.

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in seconds

V
e

lo
ci

ty
 m

/s

Figure 4.11: Simulation results for the paper feed system, including the target velocity
(green) of the feed roller, the actual velocity (blue), and the error (red) when Tsample = 0.1 s,
fproc = 33 MHz.

the optimal εRMS is 3.1 m/s, as obtained from the red curve in Figure 4.10. This corresponds
to an optimal sampling period of Tsample = 0.3 s, as obtained from the blue curve in Fig-
ure 4.10. Any point below the εRMS-versus-fproc Pareto front is an infeasible design due to
timing violations (e.g. fproc = 10 MHz, Tsample = 0.2 s). Any point above the Pareto front
is instead non-optimal; e.g. Tsample = 0.4 s is not an optimal choice for a 10-MHz frequency
since the point (10, 3.46) is dominated by (10, 3.1), obtained for Tsample = 0.3 s.

CHAPTER 4. CASE STUDIES 45

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
Time in seconds

V
e

lo
ci

ty
 m

/s

Figure 4.12: Simulation results for the paper feed system, including the target velocity
(green) of the feed roller, the actual velocity (blue), and the error (red) when Tsample = 0.5 s,
fproc = 5 MHz.

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
Time in seconds

V
e

lo
ci

ty
 m

/s

Figure 4.13: Simulation results for the paper feed system, including the target velocity
(green) of the feed roller, the actual velocity (blue), and the error (red) when Tsample = 0.8 s,
fproc = 3.3 MHz.

4.2.3 Exploring Design Choices in Function

Given an architecture, we can also explore the design space at the functional level. For
example, Figure 4.14 shows that with an economic processor (5 MHz) and a slow sampling
rate (0.5 s) it is still possible to satisfy our tracking error requirement, but at the cost of a
smaller roll acceleration. The compromise at the functional level enables us to use inexpensive
platforms. Once that sampling period and the processor speed are decided, the functional
and architectural timing contracts are also defined, and can be used for the next steps in
the design process. Therefore, while the two models are kept separated, their interaction is
still captured by the timing contract, which, together with co-simulation, makes it easier to
verify the impact of different choices and explore trade-offs across the function/architecture

CHAPTER 4. CASE STUDIES 46

-50

0

5 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in seconds

V
e

lo
ci

ty
 m

/s

Figure 4.14: Simulation results for the paper feed system, including the target velocity
(green) of the feed roller, the actual velocity (blue), and the error (red) when Tsample = 0.5 s,
fproc = 5 MHz, but with a much slower ramp-up speed.

boundary.

47

Chapter 5

Conclusions and Future Work

5.1 Closing Remarks

We have proposed a methodology for the verification and design space exploration of cyber-
physical systems subject to real time constraints. In our framework, co-simulation of a high-
level, functional model together with a lower-level, architectural model is used to accurately
capture the effects of the implementation platform and the physical plant on the system
functionality. Assumption-guarantee contracts are used to rigorously formalize the timing
requirements at different levels of abstractions and generate simulation monitors.

To support our methodology, we have implemented Metronomy, a versatile co-simulation
framework that enables the integration of the most suitable modeling environments to cap-
ture both the functional and architectural aspects of a design. In Metronomy, the functional
aspect is captured by exploiting the variety of models of computation made available by the
Ptolemy environment and its intuitive graphical user interface. The architectural aspect is
captured within the MetroII environment, capable of modeling implementation platforms to
a greater level of detail. Models in the two environments are co-simulated based on a rigor-
ous mapping semantics. The effectiveness of our approach is demonstrated on the design of
embedded controllers for an aircraft electrical power system and a paper-feed sub-system of
a high-speed printing press.

5.2 Future Work

The future work mainly includes standardizing the interactions between the functional model
and the architectural model as well as the mapping and the timing contract between them.
In recent years, Functional Mock-up Interface (FMI) [12] has become an industrial standard
to support model exchange and co-simulation of dynamic models via a combination of xml-
files and compiled C-code. We believe that Metronomy can be further extended to support
function-architecture co-simulation using FMI, which would open up new possibilities of
integrating models from other tools. And the extension would also contribute back to FMI

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 48

standard and ultimately provides a function-architecture co-simulation standard with focus
on timing verification and design space exploration, where the contract theory would play a
more important role.

49

Bibliography

[1] Perry Alexander. System Level Design with Rosetta. Elsevier, 2006.

[2] Luca de Alfaro and Thomas A. Henzinger. “Interface Automata”. In: Proceedings of
European Software Engineering Conference. ESEC/FSE-9. 2001, pp. 109–120.

[3] A. Bakshi and A. Ledeczi. “MILAN: A Model Based Integrated Simulation Framework
for Design of Embedded Systems”. In: ACM SIGPLAN Notices. 2001, pp. 82–93.

[4] F. Balarin et al. “Metropolis: an integrated electronic system design environment”. In:
Computer 36.4 (2003), pp. 45–52.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous Real-time
Components in BIP”. In: Proceedings of the Fourth IEEE International Conference on
Software Engineering and Formal Methods. SEFM ’06. 2006, pp. 3–12.

[6] Albert Benveniste et al. “Formal Methods for Components and Objects”. In: ed. by
Frank S. Boer et al. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. Multiple View-
point Contract-Based Specification and Design, pp. 200–225.

[7] Christopher Brooks et al., eds. Heterogeneous concurrent modeling and design in Java
(Volume 1: Introduction to Ptolemy II). Tech. rep. UCB/ERL M05/21, University of
California, Berkeley, 2005.

[8] D. Cancila et al. “Toward Correctness in the Specification and Handling of Non-
Functional Attributes of High-Integrity Real-Time Embedded Systems”. In: IEEE
Transactions on Industrial Informatics 6.2 (May 2010), pp. 181–194.

[9] J. Castrillon, R. Leupers, and G. Ascheid. “MAPS: Mapping Concurrent Dataflow
Applications to Heterogeneous MPSoCs”. In: IEEE Transactions on Industrial Infor-
matics 9.1 (2013), pp. 527–545.

[10] Abhijit Davare et al. “MetroII: A design environment for cyber-physical systems”. In:
ACM Transactions on Embedded Computing Systems 12.1s (2013), 49:1–49:31.

[11] Patricia Derler et al. “Cyber-physical system design contracts”. In: Proc. International
Conference on Cyber-Physical Systems. Philadelphia, Pennsylvania, 2013, pp. 109–118.

[12] Functional Mock-up Interface @ONLINE. url: http://www.fmi-standard.org/.

[13] Arkadeb Ghosal et al. “A hierarchical coordination language for interacting real-time
tasks”. In: Proc. International Conference on Embedded Software. 2006, pp. 132–141.

BIBLIOGRAPHY 50

[14] Thorsten Grötker et al. System Design with SystemC. Springer, 2002.

[15] Liangpeng Guo et al. “Metronomy: A Function-architecture Co-simulation Framework
for Timing Verification of Cyber-physical Systems”. In: Proceedings of the 2014 Inter-
national Conference on Hardware/Software Codesign and System Synthesis. CODES
’14. ACM, 2014, 24:1–24:10.

[16] T.A. Henzinger et al. “From control models to real-time code using Giotto”. In: IEEE
Control Systems 23.1 (2003), pp. 50–64.

[17] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and Time in Mod-
els of Computation. Morgan Kaufmann Publishers Inc., 2003.

[18] Gilles Kahn. “The Semantics of a Simple Language for Parallel Programming”. In:
IFIP Congress (1974).

[19] G. Karsai et al. “Model-integrated development of embedded software”. In: Proceedings
of the IEEE 91.1 (Jan. 2003), pp. 145–164.

[20] Hokeun Kim et al. “A tool integration approach for architectural exploration of aircraft
electric power systems”. In: Proceedings of International Conference on Cyber-Physical
Systems, Networks, and Applications. 2013, pp. 38–43.

[21] Akos Ledeczi et al. “Modeling Methodology for Integrated Simulation of Embedded
Systems”. In: ACM Transactions on Modeling and Computer Simulation (TOMACS)
13.1 (Jan. 2003), pp. 82–103.

[22] Akos Ledeczi et al. “The generic modeling environment”. In: Workshop on Intelligent
Signal Processing, Budapest, Hungary. Vol. 17. 2001.

[23] Paul Lieverse, Pieter van der Wolf, and Ed Deprettere. “A trace transformation tech-
nique for communication refinement”. In: Proceedings of International Symposium on
Hardware/Software Codesign. 2001, pp. 134–139.

[24] Jie Liu et al. “Actor-oriented control system design: a responsible framework per-
spective”. In: IEEE Transactions on Control Systems Technology 12.2 (Mar. 2004),
pp. 250–262.

[25] Sandeep Neema, Janos Sztipanovits, and Gabor Karsai. “Constraint-based design-
space exploration and model synthesis”. In: Proceedings of International Conference
on Embedded Software, EMSOFT’03, Volume 2855 of LNCS. Springer, 2003, pp. 290–
305.

[26] H. Nikolov et al. “Daedalus: toward composable multimedia MP-SoC design”. In: Proc.
Design Automation Conference. 2008, pp. 574–579.

[27] P. Nuzzo et al. “A Contract-Based Methodology for Aircraft Electric Power System
Design”. In: IEEE Access 2 (2014), pp. 1–25.

[28] H.D. Patel, S.K. Shukla, and R. Bergamaschi. “Heterogeneous Behavioral Hierarchy
Extensions for SystemC”. In: Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on 26.4 (Apr. 2007), pp. 765–780.

BIBLIOGRAPHY 51

[29] A.D. Pimentel, C. Erbas, and S. Polstra. “A systematic approach to exploring em-
bedded system architectures at multiple abstraction levels”. In: IEEE Transactions on
Computers 55.2 (2006), pp. 99–112.

[30] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014. url: http://ptolemy.org/books/Systems.

[31] I Sander and A Jantsch. “System modeling and transformational design refinement in
ForSyDe [formal system design]”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 23.1 (Jan. 2004), pp. 17–32.

[32] Alberto Sangiovanni-Vincentelli. “Defining Platform-Based Design”. In: EEdesign
(2002).

[33] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. “Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems”. In: European Jour-
nal of Control (2012).

[34] The Metropolis Project Team. The Metropolis Meta Model Version 0.4. September 14,
2004.

[35] Yang Zhao, Jie Liu, and Edward A. Lee. “A Programming Model for Time-
Synchronized Distributed Real-Time Systems”. In: Proceedings of Real Time and Em-
bedded Technology and Applications Symposium. 2007, pp. 259–268.

