
SJS: a Typed Subset of JavaScript with Fixed Object
Layout

Philip Wontae Choi
Satish Chandra
George Necula
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-10
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-10.html

March 6, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

SJS: a Typed Subset of JavaScript with Fixed
Object Layout

Technical Report

Wontae Choi1, Satish Chandra2, George Necula1, and Koushik Sen1

1 University of California, Berkeley
{wtchoi, necula, ksen}@cs.berkeley.edu

2 Samsung Ressearch America
schandra@acm.org

Abstract. We present a proposal for a static type system for a sig-
nificant subset of JavaScript, dubbed SJS, with the goal of ensuring
that objects have a statically known layout at the allocation time, which
in turn enables an ahead-of-time (AOT) compiler to generate efficient
code. The main technical challenge we address is to ensure fixed ob-
ject layout, while supporting popular language features such as objects
with prototype inheritance, structural subtyping, and method updates,
with the additional constraint that SJS programs can run on any avail-
able standard JavaScript engine, with no deviation from JavaScript’s
standard operational semantics. The core difficulty arises from the way
standard JavaScript semantics implements object attribute update with
prototype-based inheritance. To our knowledge, combining a fixed object
layout property with prototype inheritance and subtyping has not been
achieved previously. We describe the design of SJS, both at the type-
system level and source level, along with a local type inference algorithm.
We measured experimentally the effort required in adding the necessary
typing annotations, and the effectiveness of a simple AOT compiler that
exploits the fixed object layout property of SJS.

1 Introduction

JavaScript is the most popular programming language for writing client-side web
applications. Over the last decade it has become the programming language for
the web, and it has been used to write large-scale complex web applications
including Gmail, Google docs, Facebook.com, Cloud9 IDE. The popularity of
JavaScript is due in part to the fact that JavaScript can run on any platform that
supports a modern web browser, and that applications written in JavaScript do
not require to go through an installation process. A JavaScript web application
can readily be executed by pointing the browser to the application website.

Given the breadth of applications written nowadays in JavaScript, significant
effort has been put into improving JavaScript execution performance. Modern
JavaScript engines implement just-in-time (JIT) compilation techniques com-
bined with inline caching, which rely, among other things, on the fact that

2 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

the layouts of most JavaScript objects do not change often. These optimization
heuristics can be foiled when new fields and method are added to an object [19].
Also, JIT optimization might be an unsatisfactory solution for a resource con-
strained environment such as a mobile platform.

A promising alternative to JIT optimization is to use an ahead-of-time (AOT)
compiler backed by a static type system. asm.js [2] pioneered this direction in
the domain of JavaScript. asm.js is a statically-typed albeit low-level subset of
JavaScript designed to be used as a compiler target, not by a human program-
mer. One of the lessons learned from asm.js is that a promising strategy for
improving JavaScript is to design a subset of JavaScript that has strong type-
safety guarantees, so that it can be compiled into efficient code if a compiler is
available, and yet, in the absence of a compiler, can also be run with the same
semantics on any standard JavaScript engine.

In this paper we describe another design point for a subset of JavaScript that
can be compiled efficiently by AOT compilers. Unlike asm.js, our design includes
popular high-level features of JavaScript, such as objects with prototype-based
inheritance, structural subtyping, closures, and functions as first-class objects.
Like asm.js, we want to enable an AOT compiler to translate attribute accesses
into direct memory accesses, which requires that objects have statically known
layouts.

The main technical challenge that we address is how to ensure fixed object
layout, in the presence of a rich set of high-level language features, while also re-
taining the operational semantics as given by standard JavaScript engines. The
challenge is due in large part to the way standard JavaScript semantics imple-
ments object attribute update. JavaScript allows writing to attributes that are
unknown at object creation; a new attribute can be inserted into an object sim-
ply by writing to it, thereby altering the object’s layout. Even if we addressed
this issue, e.g. by having a type system disallow writes to unknown attributes,
the problem does not go away, due to JavaScript’s treatment of prototype inher-
itance. For read operation, an attribute that cannot be found in the object itself
is looked up recursively in the object’s prototype chain. However, when updat-
ing an attribute, a new attribute is created in the inheritor object itself, even
if the attribute is present in the prototype chain. Essentially, attribute updates
do not follow the prototype chain. This can lead to objects changing their layout
even for programs that update attributes that seemingly are already available for
reading. We elaborate in Section 2 how this particular semantics interacts with
high-level features such as structural subtyping and method updates.

Contributions. In this paper, we propose SJS, a statically-typed subset of
JavaScript, with the following main contributions:

– SJS includes many attractive and convenient high-level features, such as
prototype-based inheritance, closures, a structural subtyping, and functions
as first-class objects, and ensures that all objects have a statically known
attribute layout once initialized. This makes SJS a good candidate for AOT
compilation and optimization. As far as we know, this is the first type system

SJS: a Typed Subset of JavaScript with Fixed Object Layout 3

ensuring fixed object layout for JavaScript programs with this combination
of features.

– SJS can support AOT compilation, and can run on standard JavaScript
engines with the standard JavaScript semantics.

– The type system of SJS is described as a composition of a standard base type
system for records, along with qualifiers on object types designed to ensure
the fixed object layout. This presentation of the type system highlights the
design of the qualifiers, which is a novel contribution of this type system.

– SJS includes inference of types and object-type qualifiers. SJS can use any
standard type inference for the base record types, and adds an automatic
qualifier inference step. We describe in this paper a design based on a local
type-inference algorithm, for source programs with type annotations on func-
tion parameters. The types of local variables, object attributes, and function
return values are automatically inferred most of the time, with a few excep-
tion cases that can be easily annotated manually. The qualifiers are inferred
without any user interaction.

– Type annotations are encoded using plain JavaScript expressions, and they
do not affect the semantics of programs. This is to allow SJS to be a strict
subset of JavaScript, and a SJS program to have the same behavior regard-
less of whether it is compiled into low-level code, or it runs on an existing
JavaScript engine.

– We report a preliminary evaluation of SJS. We ported a number of JavaScript
programs to fit in the SJS type system. We measured the number of type
annotations needed, and assessed the amount of workaround needed to ac-
commodate the restrictions posed by the type system. We also implemented
a proof-of-concept AOT compiler to check the feasibility of statically com-
piling SJS programs. Our experiments show that even a fairly simple AOT
compiler can take advantage of the fixed layout property of SJS to achieve
performance that is competitive with that of state-of-the-art JIT optimizers.

Comparison with Related Designs. A number of efforts are underway to
design statically-typed languages for the web where programs could be type-
checked statically and maintained easily. TypeScript [5] is a typed superset of
JavaScript designed to simplify development and maintenance. There are two
significant differences between SJS and TypeScript: (i) TypeScript’s type sys-
tem does not guarantee the fixed object layout property. Therefore, TypeScript
programs cannot be compiled into efficient code ahead of time in the way SJS
programs can. (ii) TypeScript is a superset of JavaScript—it extends the syn-
tax of JavaScript to include type annotations. Therefore TypeScript programs
cannot be run on a JavaScript engine directly.

As mentioned earlier, asm.js [2] is a statically-typed subset of JavaScript
aimed at AOT compilation. If a program is written in asm.js, it can run effi-
ciently in the Firefox browser with performance comparable with equivalent C
programs. A key advantage of asm.js, is that being a strict subset of JavaScript,
it can run on any JavaScript engine, even if the engine is not tuned for asm.js,

4 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

1: var o1 = { a : 1, f : function (x) { this.a = 2 } }

2: var o2 = { b : 1, __proto__ : o1 }

3: o1.a = 3 //OK

4: o2.a = 2 //BAD

5: o2.f() //BAD

Fig. 1. Example JavaScript program to demonstrate dynamic object layout.

Fig. 2. Program state diagrams for Figure 1. The dotted line is the prototype reference.
The asterisk (*) is a function value

albeit at a regular JavaScript speed. However, since asm.js only supports primi-
tive types and operations, the language is not suitable for regular object-oriented
programming. SJS intends to offer the same kind of performance advantage,
while mostly retaining the expressivity of JavaScript.

RPython [9] is a typed subset of Python designed for AOT compilation to
efficient low-level code. Like SJS, RPython fixes object layouts statically in order
to enable optimization. However, RPython’s type system does not face the same
challenges that we address in SJS, because Python does not use prototype-based
inheritance. For a language not using a delegation-based prototype inheritance,
a traditional notion of object type is sufficient to ensure the fixed object layout
property. Another big difference is that RPython uses a whole-program analysis
instead of a local type inference. These two approaches have different advan-
tages: whole program analysis requires a fewer type annotations, while local
type inference provides better type errors and requires less analysis time.

Organization Section 2 gives overview and rationale for SJS types and quali-
fiers with examples. Section 3 provides a formal treatment of the SJS type system
with object qualifiers. Section 4 explains an object qualifier inference algorithm.
Section 5 discusses SJS, the top level language that relies this type system. Sec-
tion 6 gives an evaluation of SJS, both in terms of its closeness to JavaScript
and feasibility of AOT compilation. Section 7 discusses related work.

2 Design Rationale for the SJS Type System

To illustrate the issues with dynamic object layout in JavaScript as well as our
proposed type system, we consider the example program shown in Figure 1.

SJS: a Typed Subset of JavaScript with Fixed Object Layout 5

In this example, in line 1 we create an object o1 with a field a and a method
f. In line 2 we create another object with a field b and with the prototype o13.
According to JavaScript semantics, the object o2 will include a reference to the
prototype object o1, as shown in Figure 2(a). The value of o2.a in this state
would be 1, which is found by searching for the nearest definition of the field
a in the prototype chain for o2. Furthermore, since the value of the field a is
aliased between o1 and o2, the update to o1.a from line 3 results in the state
shown in Figure 2(b), and is immediately visible to o2.a.

The interesting behavior in this program is in line 4. According to JavaScript
semantics, when an inherited field is updated in an object, the field is added to
the object itself, and the update happens in the newly added field, resulting in
the state shown in Figure 2(c).

Note that the same effect of object changing its layout would happen at line 5
with the method call o2.f(). This method call would first resolve the method
o2.f to the method f inherited from the prototype o1, and would then invoke
the method with the implicit parameter this set to o2. We say that o2 is the
receiver object for this method invocation.

This example illustrates that in general we cannot assign fixed offsets rela-
tive to the location of the object in memory where to find attributes (e.g. o2.a
refers to different locations at different times.) This poses challenges to efficient
execution of JavaScript. A naive implementation would use potentially multiple
memory accesses to retrieve the intended attribute value. Modern JavaScript
JIT-compilers attempt to optimize attribute lookup computation by caching
lookup computation for frequently appearing object layouts at each object op-
eration.4 Without statically known offset, an AOT compiler would have to ei-
ther generate inefficient code for attribute lookup, or encode a JIT-compiler-like
strategy at runtime.

2.1 Type System for Enforcing Static Object Layout

We propose a type system for a subset of JavaScript to ensure that well-typed
programs have the following properties (hereon, we use the term attribute to
refer to either a field or a method. In standard JavaScript, the term property is
used instead of the term attribute.):

– Prop. 1. All accesses must be to attributes that have been previously defined
(in self or in a prototype.)

– Prop. 2. The layout of objects does not change after allocation, both in
terms of the set of attributes, and in terms of their types.

– Prop. 3. Allow prototype inheritance as a language feature, as implemented
in standard JavaScript runtime systems.

3 Good programming practices of JavaScript discourage the use of non-standard
proto field; however, we use this field to keep our examples concise.

4 This representation is called hidden class representation and the caching technique is
called inline caching [15]. As noted before, this optimization can fail to apply under
certain conditions [19].

6 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

– Prop. 4. Allow subtyping in assignments, so a subtype instance can be used
in contexts in which a base type instance can be used.

In addition, primitive operations do not result in runtime type errors.
We believe that these properties are important for program maintainability,

as well as for performance on modern JavaScript runtimes. At the same time
we believe that it is important to enforce these properties without changes to
JavaScript interpreters and just-in-time compilers, so we designed SJS as a subset
of JavaScript that preserves standard behavior.

The safety of accessing an attribute (Prop. 1) can be enforced with standard
static typing techniques that assign fixed static types to variables and attributes.
The type of an object must mention the attributes inherited from the prototype
chain to allow access to them. However, such a type system would be too forgiv-
ing: it would accept the program shown in Figure 1, violating the fixed layout
requirement (Prop. 2).

To support fixed layout (Prop. 2) and prototype inheritance (Prop. 3),
while using the standard JavaScript execution model, we need to ensure that:
for any field update statement, e1.a = ..., the object denoted by e1 must define
the field a. We say that an object owns the attributes that are defined in the
object itself, as opposed to those that are inherited from a prototype. To enforce
this property, the types of objects will include the list of attributes guaranteed
to be owned by the object, in addition to the list of all attributes guaranteed to
be accessible in the object.

Returning to the example from Figure 1, the type of o1 will mention that
the field a and f are owned, while the type of o2 will mention only b as owned.
Based on these types, the assignment o2.a = 2 from line 4 will be ill-typed, as
we intended.

However, this is not enough to ensure static object layout. Consider replacing
line 4 with the method invocation o2.f(). This would also attempt to set the
field a for object o2, and should be disallowed. The problem is, however, that
the body of the method f is type checked in the context of the receiver object
o1, where it is defined, and in that context the assignment this.a is allowed.

There are several options here. One is to require that an object must own
all attributes owned by its prototype, such that a function inherited from the
prototype can assume that all attributes it may want to update are owned. In
the context of our example, this would force us to redefine the fields a and f

in o2. This is not a good option because it essentially disables completely the
prototype inheritance mechanism and the flexibility it gives.

We therefore decided to allow the set of owned attributes to be different
for an object and its prototype. The option that we propose is based on the
observation that only a subset of the owned attributes are updated in methods
using the receiver syntax, i.e., this.a. These are the only attributes that must
be owned by all inheriting objects. We therefore propose to maintain a second
set of attribute names for an object type: the subset of the owned attributes that
must be owned also by its inheritors. We call these attributes inheritor-owned
attributes. For the example in Figure 1, the attribute a of o1 is updated using

SJS: a Typed Subset of JavaScript with Fixed Object Layout 7

receiver syntax, i.e., this.a, which means that a should be an inheritor-owned
attribute of o1. This means that a should be an owned attribute for inheritors,
e.g., o2. This, in turn, means that we should disallow the definition of o2 in
line 2.

We can summarize the requirements of our type system as follows. Object
types are annotated with a set of owned attributes and a set of inheritor-owned
attributes, with the following rules:

– Rule 1: Owned attributes are defined directly in an object.
– Rule 2: Only owned attributes of an object can be updated.
– Rule 3: Methods can only update inheritor-owned attributes of their receiver

object (using this.a notation).
– Rule 4: Inheritor-owned attributes are among the owned attributes.
– Rule 5: The inheritor-owned attributes of an object include all the inheritor-

owned attributes of the prototype object.

Applying these ideas to our example program, we assign the following type
to variable o1:

o1 : {a : Int, f : Int⇒ Int}P({a,f},{a})

This type is composed of the base record type and the object-type qualifier
written as superscript. The base record type says that the attributes a and f are
all the accessible attributes. The double arrow in the type Int⇒ Int marks that
this is the type of a method (i.e., a function that takes an implicit receiver object
parameter), and distingusihes the type from Int → Int, which we reserve for
function values; we do not make the receiver type a part of the method type.5 The
object-type qualifier part of o1 says that the object is precisely typed (marked
as P, explained later), is guaranteed to own the attributes a and f, and all of
its inheritors must own at least attribute a.

In our type system line 2 is ill-typed because it constructs an object that owns
only the attribute b, yet it inherits from object o1 that has an inheritor-owned
attribute a (Rule 5). This is reasonable, because if we allow the definition of
o2, say with type {a : Int, b : Int, f : Int⇒ Int}P({b},{}), then it would be legal
to invoke o2.f(), which we know should be illegal because it causes the layout
of o2 to change. To fix this type error we need to ensure that o2 also owns a.

Note that the assignment in line 3 (o1.a = 3) is well-typed, as it should,
because a is among the owned fields mentioned in the static type of o1. Finally,
note that line 4 (o2.a = 2) is ill-typed because a is not among the owned fields
mentioned in the static type of o2.

2.2 Subtyping

Consider again the example in Figure 1 with the object layouts as shown in
Figure 2(a). The assignment o1.a = 3 from line 3 is valid, but the assignment
o2.a = 2 from line 4 is not, even though o2 inherits from its prototype o1. This

5 This is to allow comparison of method attribute types in subtyping.

8 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

shows that inheritance does not automatically create a subtype relationship when
fixed object layout is a concern.

In the spirit of a dynamic language like JavaScript, we propose to use a
structural subtyping relationship between types, generated by the structure of
the types and not by their prototype relationships.

Consider, for example, a new object o3 such that the assignment o1 = o3 is
safe. The object o3 would have to contain the attributes a and f. Furthermore,
o3 must own all the attributes owned by o1, so that it can be used in all the
attribute-update operations where o1 can be used. An example of such an object
would be:

6: var o3 = { a : 11, c : 12,

f : function (x) { this.c = 13 } }

7: o1 = o3;

The type of o3 is

o3 : {a : Int, c : Int, f : Int⇒ Int}P({a,c,f},{c})

To support subtyping (Prop. 4), the general rule is that an object type A
is a subtype of B, if and only if (a) A contains all the attributes of B with the
same type (as in the usual width subtyping), and (b) the owned attributes of A
include all the owned attributes of B.

However, this is still not enough to support fixed layout (Prop. 2), in pres-
ence of prototype inheritance as implemented in JavaScript (Prop. 3), and
subtyping (Prop. 4).

Challenge: subtyping and prototype inheritance. In our example, after the as-
signment o1 = o3 the static type of o1 suggests that the set of inheritor-owned
attributes is {a}, while the true inheritor-owned attributes of the runtime object
are {c}. This suggests that it would be unsafe to use the object o1 as a prototype
in a new object creation, as in the following continuation of our example:

8: var o4 = { a : 14, __proto__ : o1 }

9: o4.f ();

If the object creation in line 8 is well typed, with the type:

o4 : {a : Int, f : Int⇒ Int}P({a},{a})

then, when executing line 9 the field c would be added to the receiver object o4.
One way to get out of this impasse is to restrict the subtype relationship to

pay attention also to the inheritor-modified attributes. In particular, to allow
the assignment o1 = o3 followed by a use of o1 as a prototype, we must ensure
that the static type of o1 includes all the inheritor-owned attributes from the
type of o3. This would mean that the inheritor-owned attributes in a supertype
must be a superset of the inheritor-owned attributes in the subtype.

However, we show next that this is not enough if we want to allow method
updates.

SJS: a Typed Subset of JavaScript with Fixed Object Layout 9

Challenge: subtyping and method update. It is common in JavaScript to change
the implementation of a method, especially on prototype objects, e.g., in order
to change the behavior of a library. This technique is sometimes called monkey
patching. Consider the following code fragment:

10: var o5 = { a : 1, b : 2,

f : function (x) { this.a = 2 } }

11: var o6 = { a : 1, b : 3,

f : function (x) { this.b = 3 } }

12: o6.f = function (x) { this.b = 4 } // OK

13: var o7 = if ... then o5 else o6

14: o7.f = function (x) { this.b = 4 } // BAD

15: console.log(o7.a); // OK

In our type system, the types of o5 and o6 can be:

o5 : {a : Int, b : Int, f : Int⇒ Int}P({a,b,f},{a})

o6 : {a : Int, b : Int, f : Int⇒ Int}P({a,b,f},{b})

The method update in line 12 is safe because it updates the method f of o6,
with a method that modifies the same set of receiver fields, which are owned by
o6 and all objects that may be inheriting from it. This can be verified statically
by comparing the receiver attributes that may be changed by the new method
(b) with the list of inheritor-owned fields listed in the type of o6.

In this example, subtyping arises in line 13. Notice that the type of o7 must
be a supertype of the type of both o5 and o6. The access in line 15 is safe.
However, the assignment in line 14 is unsafe, because it may associate with
object o5 a method that changes the field b of the receiver object. This is unsafe
since b is not listed as inheritor-owned, so the updated method is not safe for
inheritance.

This example suggests that one way to ensure soundness of the assignment
of o5 to o7 is to ensure that the inheritor-owned attributes in a supertype (e.g.,
type of o7, which is used for checking statically the safety of method update)
must be a subset of the inheritor-owned attributes in the subtype, e.g., type of
o5. In this particular case, the inheritor-owned attributes of the static type of o7
must be empty, i.e. a strict subset of that of the static types of o5 and o6. This is
exactly opposite of the inclusion direction between the inheritor-owned attributes
in a subtype relation proposed in the previous section to handle subtyping and
prototype inheritance.

Solution: subtyping with approximate types. We saw that a type system that
supports fixed layout (Prop. 2) and prototype inheritance (Prop. 3) must
reject the use of subtyping in line 13. We feel that this would be extremely
restrictive, and not fulfill subtyping (Prop. 4). Moreover, prototype inheritance,
method update, and the inheritor-owned fields, are about inheriting and sharing
implementations, while subtyping is about interface compatibility. There are
many more occurrences in practice of subtyping in assignments and method
calls than there are prototype assignments and method updates.

10 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Therefore, we propose to relax the subtyping relation to make it more flexible
and more generally usable, but restrict the contexts where it can be used. In
particular, for prototype definition or method update, we only allow the use of
objects for which we know statically the dynamic type.

To implement this strategy, we use two kinds of object types. The precise
object type that we used so far (marked as P), which includes a set of all
attributes and their types, along with a set of owned attributes, and a set of
inheritor-owned attributes. A precise object type means that the static type of
the object is the same as the dynamic type, i.e., no subtyping has been used since
the object construction. Expressions of precise type can appear in any context
where an object is expected.

We also introduce an approximate object type, written as {Attr}A({Own}),
also including a set of attributes and their types, and a set of owned attribute
names, but no inheritor-owned attributes. Approximate types allow subtyping,
and are only an approximate description of the actual dynamic type of the
object. These objects can be used for read/write attribute access and for method
invocation, but cannot be used as prototypes or for method updates. Therefore,
we do not need to track the inheritor-owned attributes for approximate types.

We can summarize the additional rules in our type system for dealing with
subtyping

– Rule 6: There is no subtyping relation on precise object types.
– Rule 7: An approximate object type is a supertype of the precise object

type with the same attributes and the same owned attributes.
– Rule 8: An approximate object type A is a subtype of another approximate

object type B as long as the subtype A has a superset of the attributes and
a superset of the owned attributes of the supertype B (as in standard width
subtyping).

– Rule 9: Only objects with precise type can be used as prototypes.
– Rule 10: Method update can only be performed on objects of precise type,

and only when the method writes only inheritor-owned attributes of the
object (extension of Rule 3)

Returning to our motivating example, both o1 and o3 have precise distinct
types, which do not allow subtyping, so the assignment o1 = o3 from line 6 is
ill-typed. However, the following assignment will be legal

16: var o8 = o3 // OK

if the static type of o8 is the following approximate type:

o8 : {a : Int, c : Int, f : Int⇒ Int}A({a,c,f})

Moreover, we can perform attribute lookup and method invocation via o8 as
shown below, because these operations are allowed on approximate types:

17: o8.f(3); // OK

18: o8.c = 2; // OK

SJS: a Typed Subset of JavaScript with Fixed Object Layout 11

e ::= n | x | x = e1 | var x : T=e1 in e2 | {a1 :e1 . . . an :en}T | e.a | e1.a=e2
| function(x : T){e} | e1(e2) | e1.a(e2) | this | {a1 :e1 . . . an :en}T prototype ep

Fig. 3. Syntax

However, it would be illegal to use o8 as prototype, as follows:

19: var o9 = { a: 14, __proto__: o8} // BAD

This is because an object with approximate type cannot be used as a proto-
type.

With approximate types, the subtyping assignment at line 13 can be well-
typed: by giving the static type of o7 the approximate type

o7 : {a : Int, b : Int, f : Int⇒ Int}A({a,b,f})

The method update from line 14 will still be ill-typed because method update
cannot be applied to an object with approximate type. This shows how the
introduction of approximate types supports subtyping in certain contexts, while
avoiding the unsoundness that can arise due to interaction of subtyping and
prototype inheritance.

We have shown informally a type system that fulfills all of access safety
(Prop. 1), fixed layout (Prop. 2), prototype inheritance (Prop. 3), and sub-
typing (Prop. 4), while placing few restrictions. We discuss this type system
formally in Section 3.

3 A Formal Account of Types and Object-Type Qualifiers

This section provides a formal definition of the type system of SJS. Through-
out this section, we use a simplified core language that is designed to capture
the essence of the prototype-based object-oriented programming in JavaScript.
The language supports mutable objects, prototype inheritance, dynamic method
updates, higher-order functions, and local variable bindings. To simplify the pre-
sentation, we do not include in the language: functions as objects, constructor
functions, accessing undefined variables, and lookup of fields by dynamic names
(e.g, obj["key"]). Furthermore, we postpone the introduction of a number of
other features until Appendix A: first-class method functions, recursive data
types, and accessing this in a non-method function.

3.1 Syntax

The syntax definition of the core language expressions is shown in Figure 3.
We are going to use the metavariables e for an expression, n for an integer
number, x for a variable identifier, and a for an attribute identifier. A few ex-
pression types have type annotations in order to simplify type checking. The
expression {a1 :e1, . . . , an :en}T defines a new object with attributes a1, . . . , an

12 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Type T ::= Int | O | T → T | T ⇒ T | >

ObjTy O ::= ρ
q

ObjBase ρ ::= {. . . ai : Ti . . . }
RcvTy R ::= > | O
TyEnv Γ ∈ Var→ Type

ObjQual q ::= P(own, iown) | A(own)

OwnSet own ⊆ Attr
ModSet iown ⊆ Attr

Attr set of atributes (a,b . . .)
Var set of variables (x,y . . .)

Fig. 4. Types

initialized with expressions e1, . . . , en, respectively. T is the type of the result-
ing object. The expression e1.a=e2 updates attribute a of the object e1 with
the value of e2. The expression e1.a(e2) invokes method a of object e1 with
argument e2. The expression this accesses the receiver object. The expression
{a1 :e1, . . . }T prototype ep creates a new object with prototype ep. T is the
expected type of the resulting object.

3.2 Types and Qualifiers

Figure 4 defines the types. The novel elements in this type system are the object-
type qualifiers (q). If we erase the object-type qualifiers we are left with a stan-
dard object type system [6] with few modifications. Object-type qualifiers track
the layout information required to constrain object operations in order to guar-
antee the fixed layout property in the presence of the JavaScript operational
semantics.

Types (T) include the integer type (Int), object types (O), function types
(T → T), method types (T ⇒ T), and the top type (>). A receiver type (R) is
either the top type, when typing a non-method function, or an object type, when
typing a method function. A type environment (Γ) is a map from variables to
types. Object types are composed of a base object type (ρ) and an object-type
qualifier (q). Object types can have either a precise qualifier (P(own, iown)) or
an approximate qualifier (A(own)). Owned attribute sets (own), and inheritor-
owned attribute sets (iown) are subsets of corresponding objects’ attributes.

Operations on object types. dom(ρ) denotes all attributes of the base object
type ρ. We write own(q) to denote the owned attribute set of the qualifier q
We similarly define iown(q) to denote the inheritor-owned attribute set of the
qualifier q when q is precise. We are also going to use ρ(a) to denote the type of
attribute a in ρ.

3.3 Well-formed Types

Figure 5 defines the rules to check well-formedness of a type, especially for
object types. An object type with a precise qualifier is well-formed if all the
inheritor-owned attributes are among the owned attributes, all owned attributes
are among the attributes, and all attributes have well-formed types. The well-
formedness check for an object type with an approximate qualifier is similarly
defined without the check for inheritor-owned attributes.

SJS: a Typed Subset of JavaScript with Fixed Object Layout 13

Well-formed Types

[TW-EObj]

∀a ∈ dom(ρ) ` ρ(a)

iown ⊆ own own ⊆ dom(ρ)

` ρ
P(own, iown)

[TW-AObj]

∀a ∈ dom(ρ) ` ρ(a)

own ⊆ dom(ρ)

` ρ
A(own)

[TW-Fun]
` T1 ` T2

` T1 → T2

[TW-Method]
` T1 ` T2

` T1 ⇒ T2

[TW-Top]` >

Fig. 5. Well-formed types. The highlighted items are specific to our object-type qual-
ifiers.

Subtyping

[ObjPA<:]
∀dom(ρ2).ρ1(a) ≡ ρ2(a) dom(ρ1) = dom(ρ2) own1 = own2

ρ
P(own1, iown1)

1 <: ρ
A(own2)
2

[ObjAA<:]
∀a ∈ dom(ρ2).ρ1(a) ≡ ρ2(a) dom(ρ2) ⊆ dom(ρ1) own2 ⊆ own1

ρ1
A(own1)

<: ρ2
A(own2)

[Trans<:]

T1 <: T2

T2 <: T3

T1 <: T3

[Refl<:]
T <: T

[Fun<:]
T3 <: T1 T2 <: T4

T1 → T2 <: T3 → T4

[Top<:]
T <: >

Fig. 6. Subtyping. The highlighted items are specific to object-type qualifiers.

3.4 Subtyping and Type Equality

Figure 6 defines the subtyping relation.There is no subtyping between precise
objects. However, precise objects can be relaxed to an approximate object having
the same base object type and owned set ([ObjPA<:]). This ensures that any read
and write operation that is allowed by a precise type is still available after relaxed
to an approximate type. Subtyping between approximate objects ([ObjAA<:]) is
defined as a traditional width-subtyping extended with an additional inclusion
check between own sets: a subtype should own strictly more than a supertype.
This ensures that any read and write operation allowed by a supertype can
be safely performed on an object with a subtype. We also have transitivity
([Trans<:]), function ([Fun<:]).We do not need subtyping among method types
because that method types only appears as an attribute type (we will see this
in the type system section), and only the equivalence of attributes are checked.
Type equivalence (≡) is a syntactic equivalence check.

3.5 Typing Rules

The static typing rules are defined in Figure 7. The type system is composed
of two kinds of rules: expression typing judgment and attribute-update typing
judgment.

14 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Expression Typing

[T-Var]
Γ (x) = T

R, Γ ` x : T
[T-VarUpd]

Γ (x) = T1 R,Γ ` e :T2 T2 <: T1

R,Γ ` x = e : T1

[T-LetVar]

R,Γ ` e1 :T1 ` T T1 <: T
R, Γ [x 7→ T] ` e2 : T2

R,Γ ` var x :T=e1 in e2 : T2

[T-This]
ρq, Γ ` this : ρq

[T-Fun]
>, Γ [x 7→ T1] ` e : T2 ` T1

R,Γ ` function(x : T1){e} : T1 → T2

[T-FCall]

R,Γ ` e1 : T1 → T2

R,Γ ` e2 : T3 T3 <: T1

R,Γ,` e1(e2) : T2

[T-Attr]

ρ = {. . . a : T . . . }
R,Γ ` e : ρq T 6= T1 ⇒ T2

R,Γ ` e.a : T
[T-AttrUpd]

R,Γ ÀU ρ
q.a=e2

a ∈ own(q) R,Γ ` e1 : ρq

R,Γ ` e1.a=e2 : >

[T-MCall]
R,Γ ` e1 : ρq ρ = {. . . a : T1 ⇒ T2 . . . } R,Γ ` e2 : T3 T3 <: T1

R,Γ ` e1.a(e2) : T2

[T-Obj]
` ρq dom(ρ) = {a1 . . . an} ∀i ∈ [1, n].R, Γ ÀU ρ

q.ai=ei q = P(own, iown)

R,Γ ` {a1 : e1 . . . an : en}ρq : ρq

[T-Proto]

` ρq R,Γ ` ep : ρp
qp dom(ρ) = dom(ρp) ∪ {a1, . . . , an}

∀i ∈ [1, n].R, Γ ÀU ρ
q.ai=ei ∀a ∈ dom(ρp).ρ(a) ≡ ρp(a) iownp ⊆ iown

q = P(own, iown) qp = P(ownp, iownp) own = {a1, . . . , an}

R,Γ ` {a1 : e1 . . . an : en}ρq prototype ep : ρq

Attribute-Update Typing

[T-AttrUpdV]
ρ = {. . . a : T . . . } T 6= T1 ⇒ T2 R,Γ ` e : T ′ T ′ <: T

R, Γ ÀU ρ
q.a=e

[T-AttrUpdM]

O = ρq ρ = {. . . a : T1 ⇒ T2 . . . } ρq
′
, Γ [x 7→ T1] ` e : T2

q = P(own, iown) q′ = A(own′) own
′ = iown

R,Γ ÀU O.a=function(x : T1){e}

Fig. 7. Type system (syntax-directed definition). The highlighted items are specific to
object-type qualifiers.

Expression Typing. The expression typing judgment R,Γ ` e : T means that
expression e under receiver type R and type environment Γ has type T .

Variables and Functions. Rules [T-Var], [T-VarUpd], and [T-LetVar] handle
variable lookup, variable update, and local binding. [T-This] applies to the
this expression when the current receiver type is an object type. this cannot
be used when the current receiver type is >.

Functions. [T-Fun] extends the traditional typed lambda calculus with a re-
ceiver type in the context. Since functions, unlike methods, are invoked without

SJS: a Typed Subset of JavaScript with Fixed Object Layout 15

a receiver object, the function body is type checked with the receiver type set
to the top type (>). As a consequence, accessing the this variable within a
function is not allowed.

Objects. [T-Obj] types an object literal without inheritance. The created object
has a well-formed type ρq as annotated in the expression. Each attribute of ρq

should be an owned attribute and should appear in the object literal expression.
The safety of initialization expressions and initialization operations are delegated
to the attribute-update typing judgments, [T-AttrUpdV] and [T-AttrUpdM] de-
scribed in the next section. [T-Attr] types an attribute read access. The rule
restricts the reading of a method attribute. It is well-known that subtyping along
with escaping methods can break the soundness of a type system [6]. [T-MCall]
handles method calls. The rule checks only the parameter type and the return
type since the safety of passing the receiver object is already discharged when the
method is attached. [T-AttrUpd] types an attribute update. The rule requires
the target attribute to be owned by the base object type. The determination
of the type and type safety of the attribute-update operation is delegated to
the attribute-update typing judgments. Note that the attribute-update typing
judgment does not provide a type for the assignment result to prevent methods
from escaping an object.

Inheritance. [T-Proto] types an object literal with inheritance. The rule is ba-
sically an extension of [T-Obj], with the following new checks: (1) attributes
should be either owned fields of ρq or fields inherited from ρ

qp
p , (2) the type of

an attribute defined in prototype should remain the same in the newly defined
object, and (3) inheritor-owned attributes of the newly defined object should
include all the inheritor-owned attributes of the prototype object. The rule also
requires ρ

qp
p to be a precise object type. Like in [T-Obj], the type safety of initial-

ization expressions and initialization operations are delegated to the attribute-
update typing rules.

Attribute-Update Typing. Attribute updates are handled by a different set of
judgment rules. The attribute-update typing judgment R,Γ ÀU O.a=e means

that “expression e is well typed under receiver type R (for the current method
or function body) and type environment Γ , and the value of e can be safely
assigned to attribute a of an object of type O. The judgment has two rules.

Field update. If a non-method attribute is updated ([T-AttrUpdV]), the rule
just typechecks the expression e.

Method update. The method-update rule ([T-AttrUpdM]) requires the right-
hand side expression to be a function literal and the base object type to be
a precise object type (we can only perform method update on objects whose
type is known precisely, and in particular whose inheritor-owned set is known).
This rule addresses the situations when the method is inherited and the receiver

16 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

object is some subtype of the receiver type O. The method body is checked with
an approximate version of the receiver type O whose owned attributes set is
restricted to the inheritor-owned attributes of O. This ensures that the function
body can only update the iown attributes of the receiver object.

4 Qualifier Inference

The type inference problem for a SJS program can be solved by first inferring
base types (i.e, types without qualifiers), followed by inferring the object-type
qualifiers. The reader can inspect the typing rules to see that if we eliminate the
highlighted elements, what is left is a standard type system for record types, for
which the base type inference can be achieved by adopting existing constraint
based type inference algorithms [7, 23]. Hence, in this paper, we focus on the
problem of the object-type qualifier inference.

The qualifier inference problem again can be staged into preciseness inference
and owned-set inference. The preciseness inference determines whether a quali-
fier is precise (P) or approximate (A). The owned-set inference determines the
contents of own and iown of each qualifier. Next, we are going to demonstrate
how the inference algorithm works using the following example program:

var x = {a : 1, f : function}(z){ this.a = z } }
var y = x

var z = { a : 2, proto : y}

Setup. Given the input program, the inference algorithm first performs a base
type inference, annotates the input program with the inferred base types, and
then populates the type annotations with fresh qualifier variables (κ) in the
object-type qualifier positions. After applying these steps, the input program
becomes:

var x : ρκ1 = { a : 1, f : function(z:Int){ this.a = z } }ρκ2
var y : ρκ3 = x

var z : ρκ4 = { a : 2, proto : y }ρκ5

where ρ = {a : Int, f : Int⇒ >}
and this : ρκ6

Preciseness inference. The preciseness of object types can be obtained by
backward program analysis. According to the type system definition, any ob-
ject value used as a prototype ([T-Prototype]) or being a target of a method
update operation ([T-AttrUpdMethod]) should have a precise object type. There-
fore, starting from these sink points, by backward propagating the preciseness
requirement toward sources, we can tell exactly which object-type qualifiers have
to be precise. All the other qualifiers become approximate by default.

In the above example, the preciseness analysis starts by setting the object-
type qualifiers κ2, κ5 to be precise, because they occur in object literals. Next,
the type of variable y should be precise because it is used as a prototype. Hence,

SJS: a Typed Subset of JavaScript with Fixed Object Layout 17

κ3 is precise. Then, the preciseness of κ3 is backward propagated to the type
of variable x. Therefore, qualifier κ1 become precise. The preciseness inference
computes the following result:

Precise Qualifiers {κ1, κ2, κ3, κ5}
Approximate Qualifiers {κ4, κ6}

Owned and inheritor-owned set inference. Once we know the preciseness
of the qualifier variables, we can traverse the typing derivation tree of the pro-
gram to collect constraints on the owned and inheritor-owned sets. Note that
the preciseness information is important in order to know which of the rules
[ObjAA<:] and [ObjPA<:] to use for subtyping object types. The collected con-
straints consist of set equality and set inclusion constraints. Constraints of this
form are then solved using existing techniques [8].

In the above example, we generate the following set constraints on object-
type qualifiers and compute the following minimal solution:

Constraint =

a ∈ own(κ2), f ∈ own(κ2), a ∈ iown(κ6),
iown(κ2) = iown(κ1), own(κ2) = own(κ1), own(κ6) ⊆ iown(κ2),
iown(κ3) = iown(κ2), own(κ3) = own(κ2), iown(κ5) ⊆ own(κ5),
iown(κ3) ⊆ iown(κ5), own(κ5) = own(κ4)

Solution =

(
own(κ1), own(κ2), own(κ1) = {a, f}
own(κ4), own(κ6), iown(κ1), iown(κ2), iown(κ3), iown(κ5) = {a}

)
Combining the solution with the preciseness analysis result, we get the following
qualifiers:

Qualifiers =

κ1, κ2, κ3 = P({a, f}, {a})
κ4, κ6 = A({a})
κ5 = P({a}, {a})

5 Top-Level Language SJS

In SJS, qualifiers are inferred automatically; however, inference of base types
require a small amount of user-provided type hints. Specifically, the base type in-
ference algorithm requires type hints for every function parameters including the
implicit receiver parameter (this). Types of local variables, object attributes,
and function return values are inferred automatically most of the time. In order
to avoid any special extension to JavaScript, SJS uses JavaScript expressions
to provide type hints. These hint expressions do not perform any computation.
Therefore, they will be optimized away by a modern JIT compiling JavaScript
engine. Once base types are inferred using the type hints, object-type qualifiers
can be inferred automatically using the algorithm described in Section 4.

Type Hints in SJS. We next explain the SJS type-hinting mechanism using
the following example:

18 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

1: function Point(x,y){

2: Point.instance = this;

3: Hint.sameType(x,0);

4: Hint.sameType(y,0);

5: this.x = x;

6: this.y = y;

7: }

8: function dist(p){

9: Hint.sameType(p, Point.instance);

10: var v = p.x*p.x + p.y*p.y;

11: return Math.sqrt(v);

12: }

13: var o1 = {x:1, a:"surprise", y:1};

14: dist(o1);

15: var o2 = {x:1, y:1};

16: o2 = Hint.dynCast(o2, o1);

17: var o3 = null;

18: Hint.sameType(o1, Point.instance);

Equating types. Hint.sameType is a special no-op function that is used to com-
municate to the type system that the two argument expressions are of the same
type. For example, Hint.sameType(x,0) specifies that x is of type integer (which
is the type of the literal 0).

Constructors and type names. In SJS, we assume that every constructor function
has a special attribute called instance and the constructor assigns this to
this attribute at the beginning of the body of the constructor. This special
assignment directs the type system to treat the function as a constructor. The
special assignment also ensures that the special instance attribute has the same
type as any object created by the constructor. Therefore, the instance attribute
of a constructor can be used as a name of the type of an object created by the
constructor (see line 9).

Object types. The type system requires that all attributes of an object get defined
within its constructor. Once an object escapes its constructor, new attributes
cannot be added to an object. Therefore, a syntactic scan of the body of a
constructor enables us to infer the type of objects constructed by the constructor.
Similarly, for object literals, the type system enforces that all attributes are
defined in the literal itself.

Function parameters. The type system requires hints for the types of function
parameters (line 3, 4, and 9). This requirement enables function-local type in-
ference, which makes the inference result easier to understand. If a function is
a method, the type hint for the receiver parameter (this) should be provided
explicitly. Receiver type hints can be omitted when a method is directly assigned
to an object attribute (e.g, x.a = function(){...}).

SJS: a Typed Subset of JavaScript with Fixed Object Layout 19

var get = function(){ this.a };

function F(x){this.a = x;}

F.prototype = {a:0, get:get};

var o = new F(2);

var get = function(){ this.a };

var p = {a:0, get:get};

var F = function(x,p){ {a:x} prototype p }

var Fcon = {f:F, p:p};

var o = Fcon.f(2, Fcon.p);

(a) JavaScript version (b) the core language version

Fig. 8. Emulating JavaScript constructors in SJS

Local variables, function returns, and attributes. Types of local variables, func-
tion returns, and object attributes are often inferred automatically using avail-
able information (line 5, 6, 10, 11, and 12). However, a user needs to provide
type hints in cases where exact type information is not available. For example,
the type of a variable initialized with a (null) value cannot be determined be-
cause null can have any object type (line 17 and 18). Similarly if an array is
initialized with an empty array ([·]), its element type cannot be determined.

Type coercion. In SJS, a type coercion can be performed explicitly using the
expression Hint.dynCast(e1, e2) (line 16), where the type of e1 is a subtype
of the type of e2. The function returns the value of e1, but the type system
considers the return type to be equal to the type of e2. Note that SJS only
allows explicit up-casting coercions because it is difficult, if not impossible, to
check the safety of down-casting at runtime given the limited amount of runtime
type information we have during an execution. The only exception is for DOM
objects because subtyping between DOM objects can be checked dynamically in
most JavaScript engines. Implicit type coercion is only allowed when an expres-
sion is passed as an argument to a function or a method (line 14). Note that
implicit type coercion during argument passing does not pose any problem in
type inference as types of function parameters are inferred within the body of a
function.

Constructors. The biggest difference between the formalism introduced in the
previous section and JavaScript lies in the handling of constructor functions. In
JavaScript, prototype inheritance is implemented through constructor functions
while the core language has a dedicated prototype expression. Most JavaScript
constructor functions can be desugared into the prototype expressions, as long
as the following two restrictions are met. First, all attributes must be defined at
the beginning of the constructor. Second, the prototype attribute of a construc-
tor must be initialized immediately after the constructor definition. This is to
prevent a situation where a constructor is invoked before a prototype is fully ini-
tialized. Figure 8 shows an example of desugaring JavaScript constructors using
a prototype expression.

20 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Name Kind #Line #Param #Var #Attribute #Return #Dyncast #Total

richards simulation 539 88 0 (31) 6 (56) 0 (41) 0 (7) 94 (135)
raytracer rendering 789 124 0 (74) 5 (32) 0 (50) 5 (3) 134 (160)
annex game 1319 145 1 (198) 8 (153) 0 (96) 21 (97) 175 (544)

hangonman game 1868 111 7 (253) 7 (48) 0 (121) 13 (86) 138 (508)

Table 1. Number of lines of type hints added

6 Evaluation

We have implemented a proof-of-concept type checker and compiler for SJS
to evaluate the language. We evaluate the usability of the language and the
feasibility of type-based compilation. The programs used in this section can be
found at http://goo.gl/nBtgXj.

6.1 Usability of SJS

We ported a number of JavaScript programs to SJS to evaluate the usability of
the language. The goal of this effort is to answer the following two questions. (1)
How many type hints do we need to port a JavaScript program to SJS?, and (2)
How restrictive is the type system? To answer the latter question we discuss the
cases where we needed to modify a program to work around the type checker.

We considered two programs from the octane benchmark suite [3] (richards
and raytracer) and two webapps from 01.org [1] (annex and hangonman). We
selected JavaScript programs that are moderate-sized (about 500 to 2000 lines of
code) and that use objects extensively. We managed to fully typecheck richards

and raytracer after adding suitable type hints. In order to typecheck annex

and hangonman, we had to comment out small portions of code handling Ajax
communication, because we do not have enough contextual information to decide
the types for this part.

Number of type hints. Table 1 summarizes the number of type hints we
added for each benchmark program. Columns Kind and #Line describe the kind
and the number of lines of code of each benchmark program, respectively.

SJS requires a programmer to provide type hints for all function parameters.
#Param column shows the number of type hints added for function parameters.
We believe that adding these kind of type hints will not pose a significant cog-
nitive burden to programmers once they become familiar with our language.

SJS also requires a programmer to provide type hints for a small fraction of
local variables, object attributes, function return values, and type casts. #Var
column shows the number of type hints used for local variables, with the num-
ber of local variables without type hints in the parenthesis. #Attribute shows
the number of type hints used for object attributes, with the number of object
attributes without type annotations in the parenthesis. #Return shows the num-
ber of type hints used for function return values, with the number of functions

SJS: a Typed Subset of JavaScript with Fixed Object Layout 21

without return type hints in the parenthesis. From the table, we can see that
type hints of these kinds can be omitted most of the time because they can be
inferred from the context. The exceptional cases also can be easily recognized
and handled as described in Section 5.

#Dyncast column shows the number of explicit upcasting (dynCast), with
the number of implicit upcasting listed in the parenthesis. These kind of hints
are usually not required by a statically-typed object-oriented programming lan-
guage. The numbers in this column show that significant number of upcasts do
not require type hints, because SJS allows implicit upcasting at function call
boundaries.

Restrictiveness of SJS. Next, we discuss the challenges we faced while fitting
the benchmark programs to SJS.

Fixing constructors. The first important step necessary to port any program
is to identify the set of attributes that belongs to each object in the program.
After this step, the constructors of the objects are modified to initialize the
corresponding attributes at the beginning of the constructor body with suitable
initial values. If an attribute is initialized with null, we provide a type hint for
the attribute.

Temporary attributes. In some JavaScript programs, we observed a common
idiom where a new attribute is temporarily attached to an object to keep track of
the course of computation. This cannot be supported in SJS because temporary
attributes change the layout of an object. Moreover, we cannot simply promote
a temporary attribute to a permanent one, because the program execution could
check the existence of the attribute and make a decision based on the outcome.
In these situations we rewrote parts of the program depending on temporary
attributes. We observed the usage of this idiom in annex.

Evidence values. One limitation of the type naming idiom (e.g. MyConstructor.instance
= this) used in SJS is that it cannot be used for objects not created by a con-
structor, such as arrays and objects created by literal expressions. To handle
these cases, we found that it is convenient to create a dummy evidence object,
to assign the object to a type hint variable, and to use the variable as a repre-
sentative of all other objects having the same type. The following is an example
where we use the variable hintIntArrArr to specify that the parameter of the
function has type array of arrays of integers:

1: var hintIntArrArr = [[0]];

2: function sumAA(arg){

3: Hint.sameType(arg, hintIntArrArr);

4: //do something

5: }

22 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

name #line #fun node.js (sec.) SJS (sec.) ratio

matmul 76 3 362.30 415.90 0.87
spectral 98 6 107.21 164.64 0.65
huffman 295 17 0.59 0.48 1.25

bh 332 15 109.60 83.47 1.31
simplex 373 21 21.67 21.39 1.02
tsp-ga 442 18 2157.37 1745.45 1.23
bdd 479 40 12.99 5.19 2.56

raytracer 789 50 10.99 6.37 1.58

Table 2. Experiment summary

Other issues. Among the remaining cases unrelated to objects, we want to em-
phasize the following two cases. First, some functions can take arguments that
have multiple types and take different branches inside the function body based on
runtime type analysis (using typeof operator) of the arguments. We split such
a function into multiple monomorphic functions. Second, SJS does not support
downcasting: sound type checking at runtime without instrumentation or change
to a JavaScript engine would require us to figure out the owned, inheritor-owned,
and the attribute sets of an object inside the downcast function, and this is not
possible to do since JavaScript has non-enumerable hidden properties. Therefore,
we rewrote any code fragment involving a downcast.

6.2 Feasibility of Ahead of Time Compilation

We have implemented a proof-of-concept compiler for SJS programs. The com-
piler first translates from SJS to C without any high-level optimizations. The
compiler uses a flat object representation, which ensures at most 2 indirections
when accessing an object attribute. Then it invokes an off-the-shelf C compiler
(LLVM 5.1 with -O3 option) to emit a binary. We use Boehm’s conservative
garbage collector [11] to perform garbage collection during the execution of a
compiled program. We remark that our goal is not to outperform modern JIT
compilers. Rather, it is to show that this statically typed subset enables AOT
compilers to offer performance that is roughly comparable to JIT compilers.

Benchmarks. We used eight programs to evaluate the feasibility of ahead-
of-time compilation. We obtained three of these programs from existing bench-
marks [3,4], and the rest were created by implementing textbook algorithms. We
could not use the benchmarks for the usability evaluation (except raytracer),
because most of them use string operations, which is currently not supported by
the prototype compiler. Table 2 lists the benchmark programs. Columns #line
and #fun report the number of lines of code and the number of functions present
in each of these programs, respectively.

Evaluation. We performed our experiments on a dual core Intel Core I5 1.6Ghz
(2467M) OSX machine with 4GB RAM. We report the execution time of these

SJS: a Typed Subset of JavaScript with Fixed Object Layout 23

compiled programs in Table 2. We also ran the original programs in node.js

(0.10.28), a Google’s V8 based JavaScript engine, and report their execution
times in the same table.6 We report the ratio of the times taken by node.js

relative to SJS in the last column of the table.
To keep the implementation effort low, we ended up using a garbage collector

different from that used in node.js. To factor out this difference, and to focus
on the computation time, the running times reported in the table exclude the
time spent on garbage collection.7

In our experiment, the binaries generated by the SJS compiler showed no-
tably better performance (1.5-2.5x) on programs (e.g. bdd and raytracer) using
prototype-based inheritance and subtyping. Because of subtyping, several object
attribute accesses in these programs required polymorphic inline caches [21] in
the node.js engine. For programs using objects without prototype-based inheri-
tance and subtyping (e.g. huffman, bh, simplex, tsp-ga), the binaries generated
by the SJS compiler showed some improvement (1.02-1.25x). Our conjecture is
that in these programs most of object attribute accesses can be resolved using
a monomorphic inline cache.

Finally, node.js showed better performance on small programs with mostly
numeric and array operations (e.g. matmul and spectral). This slowdown is
attributed to the fact that our prototype compiler does not perform any mean-
ingful optimizations for these operations compared to node.js.

Considering the fact that the prototype SJS compiler does not perform any
high-level optimization, we believe that the results show the feasibility of the
ahead-of-time compilation of JavaScript.

7 Related Work

Inheritance Mechanism and Object Layout. There is a strong connection
between the inheritance mechanism a language uses and the way a language
ensures a fixed object layout property, which enables static compilation. Com-
mon inheritance mechanisms include class-based inheritance (e.g., SmallTalk,
C++, Java, and Python), cloning-based prototype inheritance (Cecil [14])8, and
delegation-based prototype inheritance (e.g., Self [15], JavaScript, and Cecil).

Plain object types can be used to ensure fixed object layout property for a
language using either class-based inheritance or cloning/sharing-based prototype
inheritance. In both cases, it is impossible to change the offset of an attribute

6 The latest V8 compiler runs slightly faster than the version in node.js, but we could
not find a way to break out GC time and computation time with V8.

7 Since Boehm’s garbage collector is conservative and type agnostic, it runs signifi-
cantly slower than V8’s generational garbage collector on our programs.

8 A cloning-based inheritance approach populates inherited attributes to an inheritor
object when extending the inheritor object with a prototype. After that, all read and
write operations are performed local to the inheritor object, without consulting the
prototype object. This approach has an effect of fixing object layout at the object
creation time.

24 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

of an object once it is computed. Therefore, the type system only needs to
ensure the following two requirements: (i) all objects generated using the same
constructor should have the same layout, and (ii) an attribute cannot be added
or removed once an object is created. Indeed, statically-typed languages in this
category exactly implements these restrictions through their type system. Even
static type systems proposed to enable static compilation of dynamic languages,
such as StrongTalk [13] and RPython [9], impose these requirements.

However, these requirements are not enough to ensure fixed object layout for
a language using a delegation-based inheritance mechanism, as we discussed in
Section 2. Cecil solved this problem by letting programmers select what to dele-
gate. When inheritance is used, the inheritor object can select which attributes
to delegate to the prototype by using the keyword share. Then, updating an
delegated attribute of an inheritor object changes the original owner of the at-
tribute, rather than adding the attribute to the inheritor object. This make sense
because delegation in Cecil is explicit and intentional, unlike JavaScript and Self.

Object Calculus. Our base type system borrows several ideas from the typed
imperative object calculus of Abadi and Cardelli [6], especially subtyping of
object types and how to handle method detachment in the existence of sub-
typing. Unfortunately, we could not use the type system as is because it uses
cloning-based inheritance rather than prototype-based inheritance. Our notion
of method type is also different from theirs in that ours exclude a receiver type
from attached method types to have a simple formalism at the cost of not sup-
porting recursive data types. We refer to the appendix for an extension of SJS
to support recursive data types.

The type system proposed by Bono and Fisher [12], based on Fisher et al.’s
earlier work [17], separates objects into prototype objects and proper objects sim-
ilar to precise objects and approximate objects in SJS. Prototype/proper objects
are similar to precise/approximate objects except in the context of subtyping.
Despite the similarity, the two systems achieve opposite goals: Bono and Fisher’s
calculus is designed to support extensible (i.e., flexible) objects, while our type
system tries to ensure that objects have a fixed layout. Moreover, their notion
of prototyping is not based on delegation. Thus, the calculus is not suitable for
JavaScript programs.

Type Systems for Dynamically Typed Language. Several static type sys-
tems for dynamically typed languages have been proposed [9, 13, 18, 26, 27] as
well as for JavaScript [2, 5, 10, 16, 20, 22, 24, 25]. However, only asm.js [2] and
RPython [9], which we already discussed in Section 1, have the same goals as
SJS: to define a typed subset of the base language, which can be compiled ef-
ficiently. Other type systems are designed to provide type safety and often to
retrofit an existing code base. Therefore, it is difficult to compare them directly
with SJS type system.

Some proposed type systems support desirable features that are currently
lacking in SJS. For example, type systems for JavaScript proposed by Thie-

SJS: a Typed Subset of JavaScript with Fixed Object Layout 25

mann [25] and Politz et al. [24], support accessing an object using a dynamically
computed string as a key. Currently, SJS allows an object access only using a
statically fixed string key. Another example is occurrence typing [27], which al-
lows to locally refine type information at a branch using an associated branch
condition as a hint. We conjecture that these two features and object-type qual-
ifiers are orthogonal, so they can be added to SJS. However, not every type
system can be combined with SJS, especially the ones requiring flow-sensitive
reasoning [10, 16, 20], because those type systems could conflict with the fixed
layout property requirement.

8 Acknowledgement

The work of the first author is supported in part by a research internship at
Samsung Research America. The work of the last author is supported in part by
Samsung Research America. This research is supported in part by NSF Grants
CCF-0747390, CCF-1018729, CCF-1423645, and CCF-1018730.

References

1. 01.org. https://01.org/html5webapps/webapps/
2. asm.js. http://asmjs.org/
3. Octane Benchmarks. https://developers.google.com/octane/
4. The Benchmarks Game. http://benchmarksgame.alioth.debian.org/
5. TypeScript. http://www.typescriptlang.org
6. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag New York, Inc.
7. Agesen, O., Palsberg, J., Schwartzbach, M.I.: Type inference of self. In: ECOOP

1993
8. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput.

Program. (Nov 1999)
9. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.D.: Rpython: A step towards rec-

onciling dynamically and statically typed oo languages. In: DSL 2007
10. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for javascript.

In: ECOOP 2005
11. Boehm, H., Demers, A., Weiser, M.: A garbage collector for c and c++ (2002)
12. Bono, V., Fisher, K.: An imperative, first-order calculus with object extension. In:

ECCOP 1998
13. Bracha, G., Griswold, D.: Strongtalk: Typechecking smalltalk in a production en-

vironment. In: OOPSLA 1993
14. Chambers, C., Group, T.C.: The cecil language – specification and rationale (2004)
15. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for self,

a dynamically-typed object-oriented programming language. In: PLDI 1989
16. Chugh, R., Herman, D., Jhala, R.: Dependent types for javascript. In: OOPSLA

2012
17. Fisher, K., Honsell, F., Mitchell, J.C.: A lambda calculus of objects and method

specialization. Nordic J. of Computing 1(1), 3–37 (Mar 1994)
18. Furr, M., An, J.h.D., Foster, J.S., Hicks, M.: Static type inference for ruby. In:

SAC 2009

26 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

19. Gong, L., Pradel, M., Sen, K.: Jitprof: Pinpointing jit-unfriendly javascript
code. Tech. Rep. UCB/EECS-2014-144, EECS Department, University of Califor-
nia, Berkeley (Aug 2014), http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-2014-144.html

20. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
ECOOP 2010

21. Hoelzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In: ECOOP 1991

22. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: Retrofitting type
systems for JavaScript. In: DLS 2013

23. Oxhøj, N., Palsberg, J., Schwartzbach, M.I.: Making type inference practical. In:
ECOOP 1992

24. Politz, J.G., Guha, A., Krishnamurthi, S.: Semantics and types for objects with
first-class member names. In: FOOL 2012

25. Thiemann, P.: Towards a type system for analyzing javascript programs. In: ESOP
2005

26. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
scheme. In: POPL 2008

27. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: ICFP
2010

SJS: a Typed Subset of JavaScript with Fixed Object Layout 27

A Type System Extensions

We introduce a number of extensions to SJS that we found useful to type real-
world programs. The extensions include recursive object types, first class meth-
ods, global objects, DOM objects, and pure prototype objects. All these ex-
tensions are orthogonal to the qualifier part of the type system. Therefore, the
constraint based qualifier inference algorithm can be reused unchanged. The only
exception is the pure prototype object extension, for which we describe a modi-
fied inference algorithm. We describe the extensions informally by modifying the
original definitions. The modified parts are highlighted in gray.

A.1 Recursive Object Types

To support recursive data types, the SJS type system can be modified to access
the information about an object via an object name (sl) and an object definition
table (∆) as in Java and C++:

ObjTy O ::= sl
q

ObjRef ∆ ::= {sl : ρ . . . } (∈ SLoc→ ObjTy)
SLoc sl

We need three modifications to the SJS type system to accomodate object names
and the object definition table. First, typing rules and companion rules (subtyp-
ing, etc.) need to pass and to consult the object definition table ∆. Second,
every usage of a base object type needs to be replaced by a corresponding object
type definition lookup (∆(sl)). Third, type equality rules need to track a list of
equalities inferred so far in order to avoid infinite recursion:

[Obj≡-1]
sl1 ≡ sl2 ∈ Φ q1 = q2

Φ `∆ slq11 ≡ sl
q2
2

[Obj≡-2]

sl1 ≡ sl2 6∈ Φ Φ′ = Φ ∪ {sl1 ≡ sl2} ρ1 = ∆(sl1) ρ2 = ∆(sl2)

∀a ∈ dom(ρ2).Φ′ `∆ ρ1(a) ≡ ρ2(a) dom(ρ1) = dom(ρ2) q1 = q2

Φ `∆ slq11 ≡ sl
q2
2

Φ is the set of equalities inferred so far. Note that the equality check works
differently depending on whether the equality is already present in Φ or not.
Subtyping rule are also modified similarly.

A.2 First Class Methods

In order allow methods to behave as first class values, we introduce free method
types.

Type T ::= . . . | [T]T ⇒ T

ObjTy ρ ::= {a : A . . . }
AttrTy A ::= O | T → T | T ⇒ T

28 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

A free method type is the type of a method yet to be attached to an object. Once
attached, the corresponding attribute in the object will have a usual method
type, and an attached method is still not allowed to escape its object. Note that
an object attribute is not allowed to have a free method type. We modify the
syntax of a function to have a receiver type hint.

e ::= . . . | function [T] (x : T){e}

We need the following modifications to the type system to accomodate free
method types. First, we need to add the method expression typing rule. Second,
the attribute-update typing judgment needs to expose the type of the argument
expression (R,Γ ` O.a = e : T). Moreover, the method update rule need not
require to have a function expression on the righthand side. The righthand side
can be any free method type expression satisfying the contravariant subtyping
requirements (including the receiver type).

[T-Method]
T, Γ [x 7→ T1] ` e : T2 ` T1

R,Γ ` function[T](x : T1){e} : [T]T1 ⇒ T2

[T-AttrUpdM]

O = ρq ρ = {. . . a : T1 ⇒ T2 . . . } R,Γ ` e : [O′]T ′1 ⇒ T ′2

O′ = ρ′q
′

q = P(own, iown) q′ = A(own′) own
′ ⊆ iown

ρ <: ρ′ T1 <: T ′1 T ′2 <: T2

R,Γ ` O.a=e : [O′]T ′1 ⇒ T ′2

The attribute-update rule ([T-AttrUpd]) needs to be modified to take the
result type of the attribute-update typing as the return type of the expression
instead of >. Finally, the type equivalence and subtyping definitions need to be
extended with the case for free method types. For the subyping rule, the receiver
type need to be considered as a contravariant argument.

A.3 The Global Object

In the non-strict mode of JavaScript, the this variable returns the global object
(e.g., the window object) instead of the undefined value inside a non-method
function . This can be supported by passing the global object type in type
checking and by using it as a receiver object when a function is invoked.

A.4 Pure Prototype Objects

A common pattern in JavaScript is to create an object which is used only as
a prototype. Such objects, which we call as pure prototype objects, can have
methods that modify attributes not owned by the object. This is legal as long
as all the inheriting objects own the attributes being modified and the methods
are not called on the prototype object itself. For example, consider the following
program:

SJS: a Typed Subset of JavaScript with Fixed Object Layout 29

1: var Animal = { mute:function(){ this.sound = ""; } };

2: function Cat(){

3: this.sound = "Meow";

4: }

5: Cat.prototype = Animal;

6: var cat = new Cat();

7: cat.mute();

In this example, Animal is a pure prototype object.
The SJS type system can support pure prototype objects by introducing

corresponding pure prototype object-type qualifiers: PP(own, iown) . Pure pro-

totype objects need to be restricted in two ways. First, since pure prototype ob-
jects are not required to own all inheritor owned attributes, invoking a method
on them could be unsafe. Therefore, the type system needs to prevent this. Sec-
ond, pure prototype objects cannot be relaxed through subtyping, because a
method can be invoked on the relaxed value, which is still illegal. These restric-
tions can be imposed by not defining a subtyping rule involving a pure prototype
object except for a identity subtyping rule. Apart from these two restrictions,
pure prototype objects are first-class values and their methods can be updated
because they are not going to be used with subtyping. In the above example,
objects Animal and cat have following types:

Animal : {mute : > ⇒ String}PP({mute},{sound})

cat : {mute : > ⇒ String, sound : String}P({sound},{sound})

Note that the Animal object has a pure prototype qualifier, and its inheritor
owned attribute set is not a subset of its own attribute set. This is safe because
methods of a pure prototype object cannot be invoked. On the contrary, the
object cat, inheriting Animal, meets the usual requirements (i.e, iown(cat) ⊆
own(cat)) of a precise object. Therefore, methods of this object can be invoked.

With a simple modification to the preciseness analysis algorithm, the qual-
ifier inference algorithm can support pure prototype qualifiers. The preciseness
analysis now need to track preciseness and impurity of object-type qualifiers. In
this setting, a qualifier is precise if it can be used as a prototype object and if
its methods can be updated, and it is impure if it can appear on either sides
of a proper subtyping relation or if its method can be invoked. After obtain-
ing a solution from the analysis, we can determine the kind of qualifier for each
object as follows: precise and impure objects get precise qualifiers, remaining im-
pure objects get approximate qualifiers, and remaining precise objects get pure
prototype qualifiers.

B Dynamic Semantics and Type Safety

This section provides a dynamic semantics of the core language introduced in
Section 3, then sketches soundness of the type system with respect to the dy-
namic semantics.

30 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Operational Semantics: Expression

[E-Var]
E(x) = l S(l) = v

r, E, S ` x ⇓ v, S
[E-VarUpd]

r, E, S ` e ⇓ v, S1

E(x) = l S2 = S1[l 7→ v]

r, E, S ` x=e ⇓ v, S2

[E-LetVar]
r, E, S ` e1 ⇓ v1, S1 r, E[x 7→ l], S1[l 7→ v1] ` e2 ⇓ v2, S2

r, E, S ` var x : T=e1 in e2 ⇓ v2, S2

l ∈ SLoc\dom(S1)

[E-This]
r, E, S ` this ⇓ r, S

[E-Fun]
S′ = S[l 7→ fun(x, e, E)]

r, E, S ` function(x : T){e} ⇓ l, S′
l ∈ HLoc\dom(S)

[E-FCall]

r, E, S ` e1 ⇓ l1, S1

r, E, S1 ` e2 ⇓ v, S2 S2 ` app(und, l1, v) ⇓ v′, S′

r, E, S ` e1(e2) : v′, S′

[E-Obj]

r, E, S ` e1 . . . en ⇓ v1 . . . vn, S′

o
let
= obj([a1 7→ v1, . . . an 7→ vn], und)

r, E, S ` {a1 : e1 . . . an : en}O ⇓ l, S′[l 7→ o]
l ∈ HLoc\dom(S′)

[E-Attr]
r, E, S ` e ⇓ l, S′ lookup(S′, S′(l), a) = v

r, E, S ` e.a ⇓ v, S′

[E-AttrUpd]

r, E, S ` e1 ⇓ l, S1 S2(l) = o
a ∈ own(o) r, E, S1 ` e2 ⇓ v, S2

r, E, S ` e1.a=e2 ⇓ v, S2[l 7→ o[a 7→ v]]

[E-MCall]

r, E, S ` e1 ⇓ l1, S1 r, E, S1 ` e2 ⇓ v, S2

lookup(S2, S2(l1), a) = l2 S2 ` app(l1, l2, v) ⇓ v2, S3

r, E, S ` e1.a(e2) ⇓ v2, S3

[E-Proto]

r, E, S ` e1 . . . en ⇓ v1 . . . vn, S′

r, E, S′ ` e ⇓ r′, S′′ o
let
= obj([a1 7→ v1, . . . an 7→ vn], r′)

r, E, S ` {a1 : e1 . . . an : en}O prototype e ⇓ l, S′′[l 7→ o]
l ∈ HLoc\dom(S′′)

Operational Semantics: Application

[E-App]
S(l) = fun(x, e, E) r, E[x 7→ l′], S[l′ 7→ v] ` e : v′, S′

S ` app(r, l, v) ⇓ v′, S′
l′ ∈ SLoc\dom(S)

Object Lookup

o = obj(am, r)a ∈ dom(am)

lookup(S, o, a) = am(a)

o = obj(am, l)
a 6∈ dom(am) S(l) = o′ lookup(S, o′, a) = v

lookup(S, o, a) = v

Fig. 9. Operational semantics

SJS: a Typed Subset of JavaScript with Fixed Object Layout 31

B.1 Basic Definitions

Val v ::= n | l | und | err
Loc l ∈ SLoc ∪HLoc

Env E ∈ Var→ Loc
Store S ∈ Loc→ StoreVal
StoreVal sv ∈ Val ∪Obj ∪ Fun

Obj o ::= obj(am, r)
Fun f ::= fun(x, e, E)

Ref r ::= l | und
AttrMap am ∈ Attr→ Val

Fig. 10. Runtime components

Runtime components. Figure 10 provides the definitions of the runtime compo-
nents. Values consist of: integer values (n), locations (l), the undefined value
(und), and the error value (err). An environment (E) maps variables to loca-
tions. A store (S) maps locations to store values. A store value (sv) can be either
an object (o) or a function closure (f). A store models both the call stack and
heap, and therefore locations are partitioned into stack locations (∈ SLoc) and
heap locations (∈ HLoc). The distinction is required by the soundness proof. An
object (o) is a pair of an attribute map (am) and the location of the prototype
object. An attribute map (am) of an object maps the object’s own attributes to
values. A function closure (f) consists of a parameter variable (x), a function
body (e), and an environment (E). The undefined value is a primitive value.
Finally, the error value denotes that the program execution is in an undefined
state.

Operation on maps. Given a map E, we use E(x) to denote the value of x
in E. E[x 7→ l] creates a new map E′, where E′(y) = E(y) for all y 6= x in
the domain of E and E′(x) = l. We use E[x1 7→ l1, . . . , xn 7→ ln] to denote
E[x1 7→ l1] . . . [xn 7→ ln]. We use dom(E) to denote the domain of the map E.

Operation on objects. We also define the following operations on object values:

obj(am, r)[a 7→ v] ≡ obj(am[a 7→ v], r)

dom(obj(am, und)) = dom(am)
dom(obj(am, o)) = dom(am) ∪ dom(o)

32 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

B.2 Operational Semantics.

The big-step operational semantics of the simplified core language is defined in
Figure 9. If an undefined case occurs, the program terminates with err value
indicating that the program is stuck. The operational semantics is defined using
two kinds of evaluation judgments. The expression evaluation judgment

r, E, S ` e ⇓ v, S′

means that expression e evaluates to value v and store S′ under reference r to
the receiver object, environment E, and store S. For simplicity of exposition,
we use a group evaluation judgment r, E, S ` e1 . . . en ` v1 . . . vn, S′, which is
identical to evaluating the expressions in sequence and collecting their results.
The application evaluation judgment

S ` app(r, v, l) ⇓ v′, S′

means that the application of the function closure pointed by location l to re-
ceiver reference r and argument value v under store S results in the value v′ and
store S′.

Variables. In SJS, all variables are mutable. This is realized by introducing
a level of indirection in environments. When a variable is used in [E-Var]

([E-VarUpd]), the corresponding location is retrieved from the environment,
and the value is retrieved from (or stored to) the store using the location as a
key. When a new scope is created in [E-LetVar], a new location l′ is created,
the environment is extended with a map from the new variable x to l′, and the
store is extended with a map from l′ to value v.

Functions. [E-Fun] creates a new function closure and returns the reference to
the closure. [E-FCall] invokes a closure as a function. [E-App] implements the
actual function call. The rule receives a reference to a receiver, a pointer to a
closure to call, and an argument for the closure. Note that [E-FCall] passes
und as a reference to the receiver object. Therefore, during the execution of the
callee, any attempt to access an attribute of the this variable will result in a
runtime error.

Objects. [E-Obj] creates a new object without a prototype. [E-Attr] reads
an object attribute. lookup function implements the actual attribute resolution.
lookup first searches the current object. If the search fails, lookup moves to the
prototype object. A lookup failure is an undefined behavior and the evaluation
gets stuck. [E-AttrUpd] updates an object. The rule checks whether the target
attribute is owned by the base object. The check makes sure that an object layout
is not changed and allows one to prove that a well-typed program has objects
with fixed layouts. [E-MCall] invokes a closure as a method. The reference to the
receiver object is handed to [E-App]. Finally, [E-Proto] creates a new object
with a prototype object.

SJS: a Typed Subset of JavaScript with Fixed Object Layout 33

Deviations from JavaScript operational semantics. The operational semantics
of SJS is stricter than the JavaScript semantics. The strictness is introduced to
help the type soundness proof, without loss of generality. Three modifications
to the operational semantics will bring back the flexibility of the JavaScript:
(1) a failed variable lookup should first consult the global object, then return
und, (2) a failed attribute lookup should return und, and (3) an attribute-update
operation should not check whether the attribute is owned by the base object.
Note that well typed programs will behave equivalently on the strict setting and
the relaxed setting.

B.3 Typing Runtime Components

As a second step to formalize the type soundness result, we define typing of
runtime components: values, attributes, environments, and stores (Figure 11).
Trivial cases, such as typing an integer value, are excluded from the figure.

Note that most judgments are augmented with a store and a store typing
(Σ : Loc → Type). The main purpose of store types is to provide precise type
information of runtime components to typing judgment.

We expect well-typed runtime components to behave as expected from their
types. Among component typing rules, the most important two are [VT-Obj]

and [AVT-Me].

Safety of updating attributes. [VT-Obj] checks that the owned attributes of an
object type are actually owned by the object value. This implies that statically
checked attribute updates are safe when the static type and the runtime type
of an object are equal. The safety of updating objects of an approximate object
type also follows because approximate object types always have stricter update
permission ([TS-PA], [TS-AA]).

Safety of attached methods. [AVT-Me] checks whether a method is safely attached
to the base object (i.e, the method body can be type checked with the type of
the current base object), and the check is used by [VT-Obj] to check the safety
of all attached methods. Type safety of methods, conveyed in the well-typedness
of an object value, can then be used to prove the type soundness of a method
call.

B.4 Type Augmented Operational Semantics

As a final step to formalize the type soundness result, we augment the operational
semantics to maintain a store type through the program execution. We are going
to explain this step informally since the type augmented operational semantics
is a straight forward modification of the original operational semantics. The
augmented operational semantics judgment has following form:

Σ, r,E, S ` e ⇓ v, S′, Σ′

34 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Value Typing

[VT-SLoc]
`S:Σ S(l) : T ′ T ′ <: T Σ(l) = T ′ l ∈ SLoc S(l) ∈ Val

`S:Σ l : T

[VT-HLoc]
S(l) ∈ Fun ∪Obj Σ(l) = T l ∈ HLoc `S:Σ S(l) : T

`S:Σ l : T

[VT-Fun]
`S:Σ E : Γ `S:Σ : Γ >, Γ [x 7→ T1] ` e : T2

`S:Σ fun(x, e, E) : T1 → T2

[VT-Obj]

O = ρP(own,iown) ∀a ∈ dom(ρ).O `S:Σ o.a : ρ(a)
o = obj(am, l) dom(o) = dom(ρ) dom(ρ) = own

`S:Σ o : O

Attribute Value Typing

[AVT-Fe]
T 6= T1 ⇒ T2 lookup(S, o, a) = v T ′ <: ty `S:Σ v : T ′

O `S:Σ o.a : T

[AVT-Me]

lookup(S, o, a) = fun(x, e, E)

O = ρP(own,iown) `S:Σ E : Γ ρA(iown), Γ [x 7→ T1] ` e : T2

O `S:Σ o.a : T1 ⇒ T2

Environment Typing

∀x ∈ dom(E). `S:Σ E(x) : Γ (x)

`S:Σ E : Γ

Store Typing
∀l ∈ dom(S). `S:Σ l : Σ(l) ∀T ∈ range(Σ). ` T

` S : Σ

Fig. 11. Runtime-component typing

The new judgment takes store type Σ as an input and generates updated store
type Σ′. A store type provides a type level interpretation of a corresponding store
(S). Maintaining the soundness of a store type with respect to a corresponding
store (i.e, ` S : Σ) is a key to the type soundness proof. During the program
execution, a store type is updated when a new location is added to a store.
Note that when a new location is introduced, a corresponding type annotation
exists most of the time ([E-LetVar], [E-Fun], [E-Obj], and [E-Proto]). For
example, the [E-LetVar] rule and [E-Obj] can be extended as follows. The new

SJS: a Typed Subset of JavaScript with Fixed Object Layout 35

parts are highlighted:

[E-LetVarΣ]

Σ , r,E, S ` e1 ⇓ v1, S1, Σ1

Σ1 , r, E[x 7→ l], S1[l 7→ v1] ` e2 ⇓ v2, S2, Σ2

Σ , r,E, S ` var x : T=e1 in e2 ⇓ v2, S2, Σ2[l 7→ T]
l ∈ SLoc\dom(S1)

[E-ObjΣ]

Σ , r,E, S ` e1 . . . en ⇓ v1 . . . vn, S′, Σ′

o
let
= obj([a1 7→ v1, . . . an 7→ vn], und)

Σ , r,E, S ` {a1 : e1 . . . an : en}O ⇓ l, S′[l 7→ o], Σ′[l→ O]
l ∈ HLoc\dom(S′)

The application evaluation judgment is also modified accordingly (Σ,S ` app(r, l, v) ⇓
v, S′, Σ′). In case of the application rule ([E-App]), the parameter type is ex-
tracted from the function type retrieved from the store type. The receiver object
type does not need to be updated because it is already added to the store type,
when the object is first created.

[E-AppΣ]

S(l) = fun(x, e, E) Σ(l) = T1 → T2

Σ[l′ → T1] , r, E[x 7→ l′], S[l′ 7→ v] ` e : v′, S′, Σ′

Σ ,S ` app(r, l, v) ⇓ v′, S′, Σ′
l′ ∈ SLoc\dom(S)

B.5 Type Soundness

Lemma 1. (Receiver Subtyping) Assume method body e type checks with object
type O as a receiver. Then, the method body can also be type checked with a
subtype of O as a receiver, i.e., if O,Γ ` e : T and O′ <: O, then O′, Γ ` e : T

Proof. The proof can be done by induction on the structure of the typing of the
expression. ut

Lemma 2. (Preservation) Assume ` S : Σ, `S:Σ E : Γ , `S:Σ r : R, and ` T .
If R,Γ ` e : T and Σ, r,E, S ` e ⇓ v, S′, Σ′, then we have:

Σ ≤ Σ′, ` S′ : Σ′, and `S′Σ′ v : T ′ for some T ′ <: T.

The order on type stores (≤) is defined as: ∀l ∈ dom(Σ).Σ(l) ≡ Σ′(l)⇔ Σ ≤ Σ′.

Proof. The proof can be done by induction on the structure of the evaluation
derivation tree. [E-Num], [E-Var], and [E-This] are the base cases. Most of
the cases follow from the well-typedness of the runtime components and the
induction hypothesis. The method call case and the prototype inheritance case
are worth mentioning:

– [E-MCall]: From the induction hypothesis, the typing of the receiver ex-
pression (e1), and the evaluation derivation of the receiver expression, we
have the well-typedness of the evaluation result of the receiver expression.
The well-typedness then provides the typing of the body of the method

36 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

([AVT-Me]). The typing of the method body, the induction hypothesis, and
the evaluation derivation of the method body, yield the well-typedness of the
method call result.

– [E-Proto]: The crux of the proof of the case is to show the type safety of
inherited methods. From the method’s point of view, the method inheritance
is to be bound to a new receiver object whose type is a subtype of the previous
receiver object. The safety of rebinding follows from the Receiver Subtyping
lemma.

ut

Theorem 1. (Type Safety) A well-typed program never gets stuck.

Proof. The proof follows from the Preservation lemma and the fact that the
error value (which happens when the evaluation gets stuck) doesn’t have a type.

ut

Theorem 2. (Fixed Object Layout) A well-typed program never modifies object
layouts.

Proof. The proof follows from the Type Safety theorem and the fact that a
program modifying an object layout gets stuck under the operational semantics
of the core calculus. ut

C Type Directed Translation

In this work, we implemented a proof-of-concept compiler from SJS to a low-
level language that can bypass expensive hash table based attribute lookups by
taking advantage of static object layout information. In this section we discuss
the most interesting aspects of the compiler, and the formal definition of the
type directed translation from the core language to a lower level language.

C.1 Object Representation

First we note that in the presence of structural subtyping, the offset of a given
attribute may not be the same for all subtypes of a given object type. To illustrate
this, consider the following example.

Example 1.
1: var o1 = { a:"A", b:"B" };

2: var o2 = { b:"B": c:"C" };

3: var o3 = if(*) o1 else o2;

4: console.log(o3.b);

The type of o1, o2, and o3 are:

o1 : {a : Str, b : Str}P({a,b},{})

o2 : {b : Str, c:Str}P({b,c},{})

o3 : {b : Str}A({b})

SJS: a Typed Subset of JavaScript with Fixed Object Layout 37

Let us assume that we use an array to store the values of the attributes of an
object. The representation of object o1 will then use an array where the first and
second cells will store the values of the attributes a and b, respectively. Similarly,
object o2 will use its first cell to store the value of its attribute b. Therefore,
attribute b will have different offsets in the two objects. At line 4, o3 can refer
to o1 or o2. Therefore, we cannot use a fixed offset to resolve o3.b at line 4.

Solution using indirection table. Our solution to resolve this situation is to have
objects carry an indirection table that contains the actual attribute offsets. At-
tribute resolution is done in several steps. At compile time, the attribute name
is mapped to an offset into the indirection table. At run time, the indirection
table is used to retrieve the offset into the object table, which in turn is used to
access the attribute.

– In the above example, objects o1 and o2 can be represented as follows:

o1 = { tbl:[0,1], obj:["A","B"] }

o2 = { tbl:[0,1], obj:["B","C"] }

The tbl attribute stores the indirection table. The obj attribute contains the
object array. With this representation, the accesses o1.b and o2.b compile
respectively to

o1.obj[o1.tbl[1]]

o2.obj[o2.tbl[0]]

– Objects get rebundled when coerced to a supertype, reusing the object table
with a new indirection table. At line 3, if o1 gets assigned to o3, o3 will get
the following value:

o3 = { tbl:[1], obj:["A", "B"] }

Note o3 is a fresh value composed of o1.obj and the newly computed in-
direction table. The original object value o1 is not affected by the coercion
process. If o2 gets assigned to o3, then the value of o3 will be:

o3 = { tbl:[0], obj:["B", "C"] }

In either case, o3.b at line 4 can be compiled to:

o3.obj[o3.tbl[0]]

C.2 Handling Prototype-Based Inheritance

The above compilation scheme will not work if an object accesses an attribute
defined in its prototype. The value of an attribute defined in a prototype is
shared by all of its inheritors (for simplicity let us assume that the attribute is
not overridden by an inheritor). A change in the attribute value should be visible
to all inheritor objects.

38 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

To support this sharing mechanism via prototypes, we add another level of
indirection. We modify object arrays to store references to values, instead of the
values themselves. With this modification, prototype-based inheritance can be
implemented by simply copying the contents of the prototype’s object array to
its inheritors’ object arrays. Consider the following example:

1: var o4 = { a:10 };

2: var o5 = { b:20 } prototype o4;

3: o5.a;

In this program, o5.a accesses o4’s a attribute. Any modification to o4.a should
be visible from o5. Using the modified representation, this program compiles to:

let o4 = { tbl:[0], obj:[ref 10] } in

let o5 = { tbl:[0,1], obj:[o4.obj[o4.tbl[0]], ref 20] } in

! (o5.obj[o5.tbl[0]]);

where the operator ref allocates a new reference cells initialized to the given
value, and the operator “!” reads the contents of a reference cell. Note that this
representation is possible only because the core language programs have fixed
object layouts. If, for example, we would allow an update of o5.a then the source
JavaScript program and the compiled version would have different semantics.

C.3 Type Directed Translation

Target Language

e ::= n | λx.e | ee | x | let x = e in e | ref e | !e | e := e | [e, . . . , e] | e[e] | e; e

Target language is a call-by-value lambda calculus with integers, let-bindings,
references, and immutable tuples. We use underline (e) to distinguish target
language expressions from source language expressions. refe allocates a new
memory cell, initializes the cell with the evaluation result of e, and returns the
address of the cell. !e is a dereferencing. e := e is a reference update. [e, . . . , e]
defines a new tuple and e[e] accesses an element of the tuple by an index. e; e is
a sequence expression, which executes subexpressions in a sequence and returns
the result of the last subexpression. Essentially, the target language is a subset
of the ML language, for which a compilation strategy to efficient machine code
is well known. In this paper, we omit the operational semantics and the type
system of the target language.

Auxiliary Definitions

Type tagging. We are going to assume the existence of a mapping from types to
distinctive integer tags, and refer it by tag(T).

SJS: a Typed Subset of JavaScript with Fixed Object Layout 39

Syntactic Sugars. For the clarity of the description, we define two kind of record
expressions ({obj : e, tbl : e, ty : e} and {fun : e, rTy : e} respectively) and
corresponding record field access expression which are a syntactic sugar defined
in terms of tuple expressions. A first kind of tuple is used to represent an object
value as explained before, with the additional field ty (the runtime type tag
of the object). A second kind of tuple represents a method value, of which the
second field rTy indicates the static receiver type of the method.

Ordering. The order function (Order(O, a) = n) determines the offset of at-
tributes of a given object type. We assume that (1) the function is injective and
(2)given an object, the range of the function and the set of attributes of the
object have the same cardinality. Any function satisfying two properties can be
used in theory. In this section, we are going to abuse the order function to also
accept a type tag, instead of a type, as the first argument.

Computing indirection table. GetTbl function computes an indirection table re-
ceiving the runtime type of an object and the static type of the object. Like the
order function, we are going to abuse GetTbl function to accept type tags as
arguments, instead of types. Following is the specification of GetTbl function.

Or <: Os
|dom(Os)| = k ∀i ∈ [1, k].∃a.Order(Os, a) = i ∧Order(Or, a) = ni

GetTable(Or, Os) = [n1, ..., nk]

Compilation Figure 12 defines type directed translation. Type directed expres-
sion compilation judgment

R,Γ ` e : T ; e

means that expression e of type T translates to expression e. We assumes that
program is well typed and annotated with type information. We also use simpler
form e; e when type information is not necessary. Subjudgment

R,Γ ` O.a = e; e

translates the argument expression of an attribute update expression. Another
judgment, subtyping compilation judgment

T1 <: T2 ; e

creates a coercion function from the current runtime type to the target type. The
subtype part (T1) is not used during the compilation. Since the type directed
translation rules are based on the typing rules, Figure 12 only shows parts up-
dated from Figure 7.

Variables are compiled to a variable containing a reference ([C-Fun], [C-AttrUpdM]).
Variable lookups and updates become a dereferncing and a reference update
([C-Upd], [C-Var]). Functions are compiled into a lambda function. Methods

40 Wontae Choi, Satish Chandra, George Necula, and Koushik Sen

Expression Compilation

[C-Num]
R,Γ ` n : Int; n

[C-Var]
. . .

R, Γ ` x : T ;!x

[C-Let]
R,Γ ` e1 : T1 ; e1 T1 <: T ; es R,Γ [x : T] ` e2 : T2 ; e2

R,Γ ` let x : T = e1 in e2 : T2 ; let x = ref es(e1) in e2

[C-Upd]
. . . R, Γ ` e : T2 ; e T2 <: T1 ; es

R,Γ ` x=e : T1 ; let t = e in (x := t ; es(t))
fresht [C-This]

O,Γ ` this : O ;!this

[C-Fun]
. . . R, Γ [x 7→ T1] ` e : T2 ; e

R, Γ ` function(x : T1){e} : T1 → T2 ; λx′.let x = ref x′ in e
fresh x′

[C-App]
R,Γ ` e1 : T1 → T2 ; e1 R,Γ ` e2 : T3 ; e2 T3 <: T1 ; es

R,Γ ` e1(e2) : T2 ; e1(es(e2))

[C-Obj]
. . . ∀i ∈ [1, n].R, Γ ÀU O.ai = ei ; ei ∧Order(O, ai) = ki ∧ e′ki = ref ei

R,Γ ` {a1 : e1, . . . , an : en}O : O ; {obj : [e′1, . . . e
′
n], tbl : [0, . . . , n− 1], ty : Tag(O)}

[C-AttrUpd]
. . . R, Γ ` e1 : O ; e1 R,Γ ÀU O.a = e2 ; e2 Order(O, a) = n

R, Γ ` e1.a := e2 : >; let x = e1 in x.obj[x.tbl[n]] := e2
fresh x

[C-Attr]
. . . R, Γ ` e : O ; e Order(O, a) = n

R, Γ ` e.a : T ; let x = e in !(x.obj[x.tbl[n]])
fresh x

[C-MCall]

. . . O(a) = T1 ⇒ T2

R,Γ ` e1 : O ; e1 R,Γ ` e2 : T3 ; e2 T3 <: T1 ; es Order(O, a) = n
eobj = {obj : x.obj, tbl : GetTbl(x.ty, y.rTy), x.ty}

R,Γ ` e1.a(e2) : T2 ; let x = e1, y =!(x.obj[x.tbl[n]]), z = eobj in y.fun(z)(e2)
fresh x, y, z

[C-Proto]

. . . R, Γ ` ep : Op ; ep |dom(O)| = m

∀i ∈ [1, n].R, Γ ÀU O.ai = ei ; ei ∧Order(O, ai) = ji ∧ e′ji = ref ei

∀a ∈ (dom(O) \ own(O)).Order(O, a) = k ∧Order(Op, a) = l ∧ e′k = ref x.obj[x.tbl[l]]
eobj = {obj : [e′1, . . . e

′
m], tbl : [0, . . . , n− 1], ty : Tag(O)}

R,Γ ` {a1 : e1 . . . an : en}O prototype ep : O ; let x = e in eobj
fresh x

Attribute Update Compilation

[C-AttrUpdV]
O(a) = T T 6= T1 ⇒ T2 R,Γ ` e : T ′ ; e T ′ <: T ; es

R,Γ ÀU O.a = e; es(e)

[C-AttrUpdM]

O=ρP(own,iown) O′=ρA(iown′) O(a)=T1 ⇒ T2 O′, Γ [x 7→ T1] ` e : T2 ; e
em = λthis′.λx′.let this

′ = ref this, x = ref x′ in e

R, Γ ÀU O.a = function(x)e; {fun : em, rTy : Tag(O′)}
fresh x′

Subtyping Compilation

[C-ObjPA<:], [C-ObjAA<:]
. . .

O1 <: O2 ; λx.{obj : x.obj, tbl : GetTable(x.ty, O2), ty : x.ty}
fresh x

[C-Trans<:]
T1 <: T2 ; e12 T2 <: T3 ; e23

T1 <: T3 ; e23 ◦ e12
[C-Refl<:]

T <: T ; λx.x
fresh x

[C-Fun<:]
T3 <: T1 ; ea T2 <: T4 ; er

T1 → T2 <: T3 → T4 ; λx.er ◦ x ◦ ea
fresh x [C-Top<:]

T <: >; λx.x
fresh x

Fig. 12. Type Directed Compilation

SJS: a Typed Subset of JavaScript with Fixed Object Layout 41

are represented as a tuple composed of a function value with two explicit parame-
ters (the receiver and the actual parameter) and a receiver type ([C-AttrUpdM]).
The receiver type information is used to coerce an actual receiver object argu-
ment passed to the method to the expected receiver type. Coercion is necessary
because that a receiver object may have the runtime type different from the
expected type ([C-MCall]). x.fun and x.rty each indicates the function value
component and the receiver type of the method value.

Object representations are handled as described in previous subsections.
([C-Obj], [C-Attr], [C-AttrUpd], [C-Proto]). A runtime type tag is attached
to perform object type coercion ([C-ObjPA<:], [C-ObjAA<:]). Note object type
coercion functions generated by the object subtyping rules invoke GetTbl func-
tion when executed, which might require hashtable lookup. However, these are
the only points where a hashtable is involved.

