
Optimizing Parallel Job Performance in Data-Intensive

Clusters

Ganesh Ananthanarayanan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-9

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-9.html

January 26, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Optimizing Parallel Job Performance in Data-Intensive Clusters

by

Ganesh Ananthanarayanan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:
Professor Ion Stoica, Chair
Professor Alexandre Bayen

Professor John Chuang
Professor Randy Katz

Professor Scott Shenker

Fall 2013

Optimizing Parallel Job Performance in Data-Intensive Clusters

Copyright 2013
by

Ganesh Ananthanarayanan

1

Abstract

Optimizing Parallel Job Performance in Data-Intensive Clusters

by

Ganesh Ananthanarayanan
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Extensive data analysis has become the enabler for diagnostics and decision making in many
modern systems. These analyses have both competitive as well as social benefits. To cope
with the deluge in data that is growing faster than Moores law, computation frameworks
have resorted to massive parallelization of analytics jobs into many fine-grained tasks. These
frameworks promised to provide efficient and fault-tolerant execution of these tasks. How-
ever, meeting this promise in clusters spanning hundreds of thousands of machines is chal-
lenging and a key departure from earlier work on parallel computing.

A simple but key aspect of parallel jobs is the all-or-nothing property: unless all tasks
of a job are provided equal improvement, there is no speedup in the completion of the
job. The all-or-nothing property is critical for the promise of efficient and fault-tolerant
parallel computations on large clusters. Meeting this promise in clusters of these scales is
challenging and a key departure from prior work on distributed systems. This talk will look
at the execution of a job from first principles and propose techniques spanning the software
stack of data analytics systems such that its tasks achieve homogeneous performance while
overcoming the various heterogeneities.

To that end, we will propose techniques for (i) caching and cache replacement for parallel
jobs, which outperforms even Belady’s MIN (that uses an oracle), (ii) data locality, and
(iii) straggler mitigation. Our analyses and evaluation are performed using workloads from
Facebook and Bing production datacenters Along the way, we will also describe how we
broke the myth of disk-locality’s importance in datacenter computing.

i

To everyone who has believed in me, especially my family.

ii

Contents

List of Figures v

List of Tables xi

Acknowledgements xii

1 Introduction 1
1.1 Job Model . 2

1.1.1 Phase Execution . 2
1.1.2 Extending from a phase to a job . 3

1.2 Heterogeneity in Clusters . 4
1.2.1 Data Skew . 4
1.2.2 Systemic Heterogeneities . 5
1.2.3 Solution Overview . 6

1.3 Methodology: Analysis and Evaluation . 8
1.3.1 Cluster Details . 8
1.3.2 Evaluation Workload . 9
1.3.3 Trace-driven Simulator . 10

1.4 Roadmap . 10

2 Input Data 11
2.1 Introduction . 11
2.2 Cache Replacement for Parallel Jobs . 13

2.2.1 All-or-Nothing Property . 14
2.2.2 Sticky Policy . 15
2.2.3 Average Completion Time – LIFE . 17
2.2.4 Cluster Efficiency – LFU-F . 18

2.3 PACMan: System Design . 19
2.3.1 Workload Characteristics . 19
2.3.2 Coordination Architecture . 22
2.3.3 Wave-width . 23
2.3.4 LIFE and LFU-F within PACMan . 25

Contents iii

2.4 Scarlett: Diffusing Hotspots . 26
2.4.1 Motivation . 26
2.4.2 Scarlett: System Design . 30
2.4.3 Effect of Replicas on Frameworks . 35

2.5 Evaluation . 39
2.5.1 Setup . 39
2.5.2 PACMan’s Improvements . 40
2.5.3 LIFE and LFU-F . 43
2.5.4 Traditional Cache Replacement . 44
2.5.5 Cache Size . 46
2.5.6 Scalability . 47
2.5.7 Using File Buffer Cache . 48
2.5.8 Scarlett: Locality Improvement . 50

2.6 Related Work . 55

3 Intermediate Data 58
3.1 Introduction . 58
3.2 Workload Analysis . 59
3.3 Network-Aware Placement . 61
3.4 Avoiding Recomputation . 62
3.5 Evaluation . 64

3.5.1 Does Mantri improve placement? . 64
3.5.2 Does Mantri help with recomputations? 66

4 Run-time Contentions 69
4.1 Introduction . 69

4.1.1 Speculation . 69
4.1.2 Cloning . 70
4.1.3 Blacklisting is Insufficient . 71

4.2 Speculation with Opportunity Cost . 73
4.2.1 Quantifying Stragglers . 73
4.2.2 Resource-aware Speculation . 74
4.2.3 Estimation of trem and tnew . 77

4.3 Cloning Tasks . 77
4.3.1 Case for Cloning . 77
4.3.2 Cloning of Parallel Jobs . 80
4.3.3 Intermediate Data Access with Dolly 83

4.4 Evaluation . 89
4.4.1 Mantri Evaluation . 89
4.4.2 Dolly Evaluation . 92

4.5 Related Work . 99

Contents iv

5 Conclusions and Future Work 102

Bibliography 104

v

List of Figures

1.1 An example of a DAG in a Dryad job. The job has two parallel in-
put phases reading data from the distributed file system, the outputs
of which are independently aggregated and then joined before being
written back to the file system. 3

1.2 An example job from the production cluster at Microsoft Bing. 6
1.3 Logical positioning of the different systems within the standard soft-

ware stack of data analytics frameworks. Mantri and Dolly work with
the scheduler while PACMan and Scarlett deal with input data man-
agement. 7

2.1 Example of a single-wave (2 tasks, simultaneously) and multi-wave job
(12 tasks, 4 at a time). Si’s are slots. Memory local tasks are dark
blocks. Completion time (dotted line) reduces when a wave-width of
input is cached. 13

2.2 Reduction in completion time of a job with 50 tasks running on 10 slots.
The job speeds up, in steps, when its number of memory local tasks
crosses multiples of the wave-width (i.e., 10), regardless of how they
are scheduled. 14

2.3 All-or-nothing property matters for efficiency. In this example of a job
with 3 map tasks and 2 reduce tasks, even if one map task is delayed
(due to lack of memory locality), reduce tasks idle and hurt efficiency. 15

2.4 Cache hit-ratio does not necessarily improve job completion. We con-
sider a cache that has to replace two out of its four blocks. MIN
evicts blocks to be accessed farthest in future. “Whole jobs” preserves
complete inputs of jobs. 16

2.5 Gains in completion time due to caching decreases as wave-width in-
creases. Solid and dotted lines show completion times without and
with caching (for two jobs with input of I but wave-widths of 2 and 4).
Memory local tasks are dark blocks, sped up by a factor of µ. 18

2.6 Power-law distribution of jobs (Facebook) in the number of tasks and
input sizes. Power-law exponents are 1.9 and 1.6 when fitted with least
squares regression. 19

List of Figures vi

2.7 Fraction of active jobs whose data fits in the aggregate cluster memory,
as the memory per machine varies. 20

2.8 Wave-width, i.e., number of simultaneous tasks, of jobs as a function
of sizes of files accessed. File sizes are normalized to the largest file;
the largest file has size 1. 20

2.9 Skewed popularity of data. CDF of the access counts of the input
blocks stored in the cluster. 21

2.10 Access count of files as a function of their sizes, normalized to the
largest file; largest file has size 1. Large files, accessed by production
jobs, have higher access count. 21

2.11 PACMan architecture. The central coordinator manages the distributed
clients. Thick arrows represent data flow while thin arrows denote
meta-data flow. 23

2.12 Variation in number of jobs accessing and concurrent accesses on input
files. The x-axis goes up to a value of 70, we have truncated it to 20
for clarity. 27

2.13 Popularity of files as a function of their sizes, normalized to the largest
file; the largest file is of size 1. 28

2.14 Overlap in files accessed across five days. With the first and fifth day
as references, we plot the fraction of bytes accessed on those days that
were also accessed in the subsequent and preceding days, respectively. 28

2.15 Hourly overlap in the set of files accessed with two sample reference
hours (hour-35 and hour-82). The graph on top shows a gradual change
while the bottom graph shows periodically accessed files. 29

2.16 Hotspots: One-sixth of the machines account for half the contentions
in the cluster. 30

2.17 Scheduling of tasks, and the different approaches to deal with conflict
for slots due to data locality. Scarlett tries to shift the focus to the
”YES” part of the decision process by preferentially replicating popular
content. 35

2.18 The probability of finding a replica on a free machine for different
values of file replication factor and cluster utilization. 36

2.19 Ideal improvement in job completion times if eviction of tasks did not
happen. 37

2.20 Correlation between file characteristics (y1) and eviction of tasks. We
plot only the top 1% of the eviction-causing files for clarity. The cu-
mulative number of evictor tasks are plotted on the right axis (y2).
Popular files directly correlate with more evictions. Large files also
correlate with evictions – the 1% of the files in this figure account for
35% of the overall storage, and 65% of overall evictions. 38

List of Figures vii

2.21 Average completion times with LIFE, for Facebook and Bing work-
loads. Relative improvements compared to Hadoop are marked for
each bin. 40

2.22 Distribution of gains for Facebook and Bing workloads. We present the
improvement in average, median and 95th percentile completion times. 41

2.23 Improvement in cluster efficiency with LFU-F compared to Hadoop.
Large jobs contribute more to improving efficiency due to their higher
frequency of access. 42

2.24 Sticky policy. LIFE [No-Sticky] evicts the largest file in cache, and
hence is worse off than LIFE. 43

2.25 Approximating LIFE to use file sizes instead of wave-widths. Accu-
rately estimating wave-widths proves important for large jobs. 44

2.26 Comparison between LIFE, LFU-F, LFU, LRU and MIN cache replace-
ments. 45

2.27 LIFE’s and LFU-F’s sensitivity to cache size. 47
2.28 Scalability. (a) Simultaneous tasks serviced by client, (b) Simultaneous

client updates at the coordinator. 48
2.29 Using the local file buffer cache. We compare the hit-ratios ((a) and

(b)) and reduction in average completion time ((c)), between PAC-
Man.9513.6 OS and vanilla Hadoop. 49

2.30 Improvement in data locality for tasks leads to median and third-
quartile improvements of 20.2% and 44.6% in job completion times,
with forfeiting in place. 50

2.31 Increased replication reduces eviction of tasks and achieves a median
improvement of 12.8% in job completion times or 84% of ideal, with
eviction in place. 51

2.32 Sensitivity Analysis of TR and δ. Rearranging files once or twice a day
is only marginally worse than doing it at the end of every hour. We
set TR as 12 hours in our system. On the other hand, δ plays a vital
role in the effectiveness of Scarlett’s replication scheme. 52

2.33 Increasing the value of the replication allowance (δ) leads to Scarlett
using more storage space. We fix δ as 1. 53

2.34 Low budgets lead to little fruitful replication. On the other hand, as
the graph below shows, budgets cease to matter beyond a limit. 54

2.35 Priority distribution of the replication budget among the files improves
the median completion time more than round-robin distribution. . . . 55

3.1 For reduce phases, the reduction in completion time over the current
placement by placing tasks in a network-aware fashion. 59

3.2 The ratio of processor and memory usage when recomputations happen
to the average at that machine (y1). Also, the cumulative percentage
of recomputations across machines (y2). 60

List of Figures viii

3.3 Clustering recomputations and outliers across time 61
3.4 Placement of reduce tasks across three racks. The rectangle blocks in-

dicate data partitions and rhombus boxes are reduce tasks. Placement
(a) results in the uplinks of unutilized racks as bottlenecks, marked
with a dotted circle. Placement (b) evenly spreads out the network load. 63

3.5 Expected Cost of Recomputation. Recompute probabilities of ma-
chines are marked ri. When data is replicated, the effective proba-
bility of loss is reduced as we take the minimum (top left). Tasks
with many-to-one input patterns have high recomputation cost and
are more valuable (top right). The calculation goes recursively back in
prior phases (bottom). Finally, the time to replicate, trep is calculated
based on the available rack-local bandwidth and data is replicated only
if trep < tnew. 64

3.6 Compared to the current placement, Mantri’s network aware place-
ment speeds up the median reduce phase by 60%. 65

3.7 Ratio of slowest to median task durations for Mantri and Dryad. . . . 65
3.8 By probabilistically replicating task output and recomputing lost data

before it is needed Mantri speeds up jobs by an amount equal to the
ideal case of no data loss. 66

3.9 Fraction of recomputations that are eliminated due to Mantri’s recom-
putation mitigation strategy, along with individual contributions from
replication and speculative recomputation. Replication and specula-
tive recomputation contribute two-third and one-third of the elimi-
nated recomputations, complementing each other. 66

3.10 The cost to protect against recomputes is fewer than a few percentage
points in both the extra traffic on the network and cluster time for
speculative recomputation. 67

4.1 CDF of the total fraction of straggler tasks to the fraction of machines
they occur on, over the entire Facebook trace. The nearly linear nature
of the graph shows that stragglers are not restricted to a small set of
machines. 72

4.2 Contribution of data size to task runtime (see §3.2) 74
4.3 How much longer do outliers take to finish? 74
4.4 A stylized example to illustrate our main ideas. Tasks that are even-

tually killed are filled with stripes, repeat instances of a task are filled
with a mesh. 75

4.5 Slowdown ratio after applying LATE and Mantri. Small jobs see a
higher prevalence of stragglers. 78

List of Figures ix

4.6 Heavy tail. Figure (a) shows the heavy tail in the fraction of total
resources used. Figure (b) shows that the distribution of cluster re-
sources consumed by jobs, in the Facebook trace, follows a power law.
Power-law exponents are 1.9 and 1.8 when fitted with least squares
regression in the Facebook and Bing traces. 80

4.7 Probability of a job straggling for varying number of clones, and sample
jobs of 10, 20 and 50 tasks. Task-level cloning requires fewer clones than
job-level cloning to achieve the same probability of the job straggling. 81

4.8 Intermediate data contention. The example job contains two upstream
tasks (U1 and U2) and two downstream tasks (D1 and D2), each cloned
twice. The clone of U1 is a straggler (marked with a dotted circle).
CAC waits for the straggling clone while CC picks the earliest clone. . 84

4.9 CAC vs. CC: Probability of a job straggling. 85
4.10 Slowdown (%) of transfer of intermediate data between phases (all-to-

all) due to contention by CC. 87
4.11 Comparing Mantri’s straggler mitigation with the baseline implemen-

tation on a O(10K)-node production cluster for the four representative
jobs. 89

4.12 Evaluation of Mantri as the default build for all jobs on a pre-production
cluster for nine days. 90

4.13 Comparing straggler mitigation strategies. Mantri provides a greater
speed-up in completion time while using fewer resources than existing
schemes. 91

4.14 Extending LATE to speculate early results in worse performance . . . 92
4.15 Mantri is on par with an ideal NoSkew benchmark and slightly worse

than NoSkew+ChopTail . 92
4.16 Dolly’s improvement for the Facebook and Bing workloads, with LATE

and Mantri as baselines. 93
4.17 Dissecting Dolly’s improvements for the Facebook workload. Figures

(a) and (b) show the duration of the small jobs before and after Dolly.
Figure (c) expands on the distribution of the gains for jobs with ≤ 10
tasks. 94

4.18 Ratio of median to minimum progress rates of tasks within a phase.
Bins are as per Table 2.1. 95

4.19 Variation in ω when updated every hour. 96
4.20 Intermediate data contention. Delay Assignment is 2.1× better than

CAC and CC (Bing workload). 97
4.21 Dolly’s gains as the number of phases in jobs in bin-1 varies in the Bing

workload, with LATE as baseline. 98
4.22 Performance of Dolly across phases with different communication pat-

terns in bin-1, in the Bing workload. 98

List of Figures x

4.23 Sensitivity to cloning budget (β). Small jobs see a negligible drop in
performance even with a 3% budget. 98

4.24 Sweep of β to measure the overall average completion time of all jobs
and specifically those within bin-1. 99

4.25 Admission Control. The policy of admission control well approximates
the policy of preemption and outperforms pure-FCFS in utilizing the
cloning budget. 100

xi

List of Tables

1.1 Definitions of terms used in data analytics frameworks. 2
1.2 Details of the Bing production Dryad logs. 9
1.3 Summary of Facebook and Bing clusters and traces. 9

2.1 Job size distributions. The jobs are binned by their sizes in the
scaled-down Facebook and Bing workloads. 39

2.2 Summary of results. We list improvement in completion time with
LIFE and cluster efficiency with LFU-F. 42

2.3 Performance of cache replacement schemes in improving average
completion times. LIFE beats all its competitors despite a lower
hit-ratio. 46

2.4 Performance of cache replacement schemes in improving cluster ef-
ficiency. LFU-F beats all its competitors despite a lower hit-ratio. . 46

2.5 Comparison of the computational overhead and compression factors
of compression schemes. 54

4.1 Blacklisting by predicting straggler probability. We show the frac-
tion of machines that got blacklisted and the improvements in com-
pletion times by avoiding them. 71

4.2 Summary of results with the deployment and simulator. We list
improvement in completion time due to Dolly; improvement of small
jobs are in parentheses. 95

xii

Acknowledgements

I am indebted to my advisor Ion Stoica for his sustained guidance and advise on my
projects as well as the qualities aiding good research. I am also thankful to Scott Shenker
for his valuable advice and encouragement during my Ph.D. The feedback I received from
my committee members — Alexandre Bayen, John Chuang, and Randy Katz has also been
important in presenting and positioning my work. A special thanks to Ali Ghodsi for being
a solid collaborator and also highlighting many nuances in conceiving projects.

My colleagues in the RAD Lab and AMP Lab have been invaluable and fun, and I will
forever be thankful to them for their inputs on my ideas, paper drafts and experiments. In no
particular order, thanks to Sameer Agarwal, Mosharaf Chowdhury, David Zats, Prashanth
Mohan, Shivaram Venkataraman, Aurojit Panda, Andrew Wang, Arka Bhattacharya, Tatha-
gata Das and Haoyuan Li (HY).

I have been fortunate to have been mentored by some amazing researchers at various
stages of my career. Venkat Padmanabhan and Chandramohan Thekkath were instrumen-
tal in me pursuing a Ph.D. Srikanth Kandula played a huge role in shaping my research
tastes and guiding my research methodology. I benefited considerably from Sriram Rao’s
many practical insights and inputs to my projects. Ramarathnam ”Venkie” Venkatesan’s
encouragement and positive spirit helped me throughout my Ph.D.

I also want to thank the support of my friends Kedar Hippalgaonkar (and Oink), Shivang
Patwa, Gopal Vaswani, Parul Jain, Deepti Chittamuru, Hastagiri Prakash, Manjari Jain,
Yamini Kannan, Amey Kaloti and Vamsi Krishna.

Finally, and most importantly, the love and support of my family, has been and will
continue to remain my backbone.

1

Chapter 1

Introduction

Analyzing large volumes of data has become the major source for innovation behind large
Internet services as well as scientific applications. Examples of such “big data analytics”
occur in personalized recommendation systems, online social networks, genomic analyses,
and legal investigations for fraud detection. A key property of the algorithms employed for
such analyses is that they provide better results with increasing amount of data processed.
In fact, in certain domains there is a trend to use relatively simpler algorithms and instead
rely on more data to produce better results.

However, while the amount of data to be analyzed increases on the one hand, the
acceptable time to produce results is shrinking on the other hand. Timely analyses have
significant ramifications for revenue as well as productivity. Low latency results in online
services leads to improved user satisfaction and revenue. Ability to crunch large datasets in
short periods results in faster iterations and progress in scientific theories.

Many compute frameworks have been built for large scale data analyses. Some of
the widely used frameworks are MapReduce [36], Dryad [70], Spark [72], Dremel [88] and
Pregel [45]. To cope with the dichotomy of ever-growing datasets and shrinking times to
analyze them, these frameworks parallelize computations on large distributed clusters con-
sisting of many machines. Such parallelization enables compute frameworks to cope with
growth in datasets being faster than Moore’s law.

Frameworks compose a computation, referred to as a job, in to a DAG of phases, where
each phase consists of many fine grained tasks. Tasks of a phase have no dependencies among
them and can execute in parallel. The job’s input (file) is divided into many blocks and stored
in the cluster using a distributed file system. Every task’s input is one or more blocks of the
file and a centralized scheduler assigns a compute slot to every task 1. Tasks in the input
phase produce intermediate outputs that are passed to other tasks downstream in the DAG.
Table 1.1 defines the terminologies.

1Slot is a virtual token, akin to a quota, for sharing cluster resources among multiple jobs. One task can
run per slot at a time.

Section 1.1. Job Model 2

Term Description
Task Atomic unit of computation with a fixed input
Phase A collection of tasks that can run in parallel, e.g., map, aggregate

Workflow A directed acyclic graph denoting how data flows between phases
Job An execution of the workflow

Block Atomic unit of storage by the distributed file system
File Collection of blocks
Slot Computational resources allotted to a task on a machine

Table 1.1: Definitions of terms used in data analytics frameworks.

1.1 Job Model

We begin with a model of a job’s execution by building from first principles. We present
our model with a single phase in the job, and then extend it to a DAG of phases. The
objective of developing our model is, in addition to explaining the functioning of parallel
jobs, also to highlight the implications of task completions on job durations.

1.1.1 Phase Execution

Assume a phase consists of n tasks and has s slots. The phase completes when its last
task finishes.

The completion time of task i, ti, is a function of the size of the data it processes, the
code it runs, the resources available on the machine it executes, and the bandwidth available
on the network paths involved:

ti = f (datasize, code,machine, network) . (1.1)

The input data size of the task dictates the time it spends on reading the data from
the distributed file system. For IO-intensive tasks, this constitutes a significant fraction of
its overall duration. Note that even within a phase, the amount of data processed by tasks
varies due to limitations in dividing work evenly. While the code executed by tasks of a
phase is the same, they differ significantly across phases. For instance, some phases parse
the records in the input data and create a schema of them, while other phases aggregate the
outputs produced by tasks of upstream phases. Finally, the resources (memory, CPU cores,
disk bandwidth) present on the machine on which the task executes, along with contention
for those resources, dictates the duration of the task. Placing a task on a machine that
has other resource hungry tasks inflates its completion time, as does reading data across
congested network links.

In the ideal scenario, where every task takes the same amount of time, say t, scheduling
is simple. Any work-conserving schedule would complete the phase in

(
dn
s
e × t

)
. When

the task completion time varies, however, a naive work-conserving scheduler can take up to

Section 1.1. Job Model 3

���

������

	
��

����������

���

������

����������

����������

�������

��������

Figure 1.1: An example of a DAG in a Dryad job. The job has two parallel input
phases reading data from the distributed file system, the outputs of which are
independently aggregated and then joined before being written back to the file
system.

(∑
n ti
s

+ max ti

)
. A large variation in ti increases the term (max ti). Thus, the goal of a

scheduler is to minimize the phase completion time and make it closer to
∑

n ti
s

. Sometimes,
it can do even better. By placing tasks at less congested machines or network locations, the
ti’s themselves can be lowered. The challenge lies in recognizing the aspects that can be
changed and scheduling accordingly.

1.1.2 Extending from a phase to a job

A job typically consists of many phases, as illustrated in Figure 1.2a. Tasks of down-
stream phases read outputs written by tasks of upstream phases. The output of upstream
tasks are typically written only to local storage and not replicated to avoid network and
storage overheads. Often, phases in a job can have barriers between them. Barriers are
points in a job’s workflow where none of the tasks in successive phase(s) can begin until all
of the tasks in the preceding phase(s) finish. Barriers occur primarily due to aggregation
operations that are neither commutative nor associative [100], for instance, computing the
median of records that have the same key. Such an aggregation task can begin only when
all tasks in the preceding phase(s) finish. In the absence of barriers, a task can start when
all its inputs, generated by tasks in earlier phases, are available. 2

2There is a variant in implementation where a slot is reserved for a task even before all its inputs are ready.
This is either to amortize the latency of network transfer by moving data over the network as soon as it is
generated [36,52], or compute partial results and present answers online even before the job is complete [94].
However, pre-allocation of slots can hog more resources for longer periods.

Section 1.2. Heterogeneity in Clusters 4

The phase structure of these jobs adds to the challenges in scheduling. Delays in com-
pletion of tasks in early phases limit when tasks that use its output downstream may start,
thereby cumulatively affecting the whole job. At barriers in the workflow, such delays can
bring the job to a standstill. We next proceed to see the reasons behind such variations in
completion times of tasks.

1.2 Heterogeneity in Clusters

From the job model described above, it is clear that variations in task completion times
has significant implications for job completion. Variations in task completions are induced by
many heterogeneities in clusters. Our focus is on heterogeneities induced by the dynamically
changing availabilities of resources in the cluster. In the context of the model in §1.1, we
do not concern ourselves with the code executed by the task and rely on complementary
techniques to optimize their performance.

1.2.1 Data Skew

We briefly describe our technique to deal with skews among tasks in the size of data
they read, and then turn our focus to the systemic aspects.

It is natural to ask why data size varies across tasks in a phase. Across phases in the
Bing production traces (described shortly), the coefficient of variation (stdev

mean
) in data size is

0.34 and 3.1 at the 50th and 90th percentiles, respectively. Dividing work evenly is non-trivial
for a few reasons. First, scheduling each additional task has overhead at the job manager.
Network bandwidth is another reason. There might be too much data on a machine for a
task to process, but it may be worse to split the work into multiple tasks and move data over
the network. A third reason is poor coding practice. If the data is partitioned on a key space
that has too little entropy, i.e., a few keys correspond to a lot of data, then the partitions
will differ in size. Reduce tasks are not amenable to splitting (neither commutative nor
associative [80, 100]), and hence each partition has to be processed by one task. Some joins
and sorts are similarly constrained.

Skews in task durations, however, do delay job completion. We mitigate the effect of
such skews by controlling the order in which tasks are scheduled. In particular, given a set
of n tasks, s slots and data sizes d[1 · · ·n], computing the optimal schedule that minimizes
the job completion time is known to be NP-hard. We approximate this using the heuristic of
scheduling tasks in a phase in descending order of their data size. Prior work on scheduling
theory has shown that doing so results in the job finishing in time T that has a bounded
approximation factor to the optimal completion time (TO).

T

TO
≤ 4

3
− 1

3s
from [48] (1.2)

Section 1.2. Heterogeneity in Clusters 5

This means that scheduling tasks with the longest processing time first is at most 30%
worse than the optimal.

1.2.2 Systemic Heterogeneities

A variety of systemic factors influence progress of tasks during their IO (reading their
inputs and writing their outputs) and computation.

Tasks read their inputs either from local storage or remotely across the network, de-
pending on the location on which it is scheduled. As a result, in clusters with substantial
over-subscription in their network topology [66], scheduling tasks with data locality, i.e., on
the same machine as its input data, significantly impacts its completion. The value of local-
ity only increases with the trend of storing inputs of tasks in memory; memory bandwidths
are much higher than network throughputs. When tasks are scheduled without locality, they
face contention on the network links depending on their location. Further, when dealing with
intermediate data, its availability becomes crucial. Intermediate data is not replicated for
efficiency reasons, hence, when the only available copy becomes inaccessible (say, due to loss
of connectivity to the machine), it has to be regenerated using expensive recomputation of
the task that generated it in the first place.

Despite being careful about the location on which tasks are scheduled, their progress
is dictated by local resources (memory/CPU) as well as changing contentions to them. For
instance, if tasks with high memory footprints are scheduled on the same machine, they
cause slowdowns due to paging and other follow-on effects. Even when tasks are scheduled
with locality, contentions to local disk can slow them down.

Illustration of Outliers

Figure 1.2a shows the workflow for Log Merge, a job whose structure is typical of those
in the cluster. The job reads a dataset of search usage and derives an index. It consists of
two map-reduce operations and a join, but for clarity we only show the first map-reduce here.
Phase names follow the Dryad [70] convention– extract reads raw blocks, partition divides
data on the key and aggregate reduces items that share a key.

Figure 1.2b depicts a timeline of an execution of this workflow. It plots the number of
tasks of each phase that are active, normalized by the maximum tasks active at any time in
that phase, over the lifetime of the job. Tasks in the first two phases start in quick succession
to each other at ∼.05, whereas the reduce starts after a barrier.

Some of the outliers are evident in the long lulls before a phase ends when only a few of
its tasks are active. In particular, note the regions before x∼.1 and x∼.5. The spike in phase
#2 here is due to the outliers in phase #1 holding on to the job’s slots. At the barrier, x∼.1,
just a few outliers hold back the job from making forward progress. Though most aggregate
tasks finish at x∼.3, the phase persists for another 20%.

Section 1.2. Heterogeneity in Clusters 6

Extract 22K Partition 13K Aggregate 51K

Barrier

File
System

(a) Partial workflow with the number of tasks in each phase

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

#
 R

u
n
n
in

g
 T

a
s
k
s

(N
o
rm

a
liz

e
d
 b

y
 m

a
x
 i
n
 p

h
a
s
e
)

Time (Normalized by Job Lifetime)

B

R R

Extract
Partition

Aggregate

(b) Time lapse of task execution (R=Recomputes, B=Barrier).

Figure 1.2: An example job from the production cluster at Microsoft Bing.

The worst cases of waiting immediately follow recomputations of lost intermediate data
marked by R. Recomputations manifest as tiny blips near the x axes for phases that had
finished earlier, e.g., phase #2 sees recomputes at x∼.2 though it finished at x∼.1. At x∼.2,
note that aggregate almost stops due to a few recomputations.

To summarize, tasks vary in their completions due to the many heterogeneities faced by
them in their IO as well as their computation. Ideally, when normalized for skew in inputs,
we want tasks to progress at the same rate. The central focus of this work is homogenizing
progress rates of computational tasks in large heterogeneous clusters.

1.2.3 Solution Overview

Towards the goal of achieving homogeneous task durations, we design and implement
the following systems. These systems involve the scheduler as well as storage. Figure 1.3
explains the positioning of the different systems.
PACMan: PACMan is an in-memory caching layer for storing input files of jobs. It leverages
the trend of machines in clusters having large memories to speed up these analytics jobs.
The key challenge, however, is that a job is sped up only when inputs of all its parallel tasks
are cached. Indeed, a single task whose input is not cached can slow down the entire job.
To meet this all-or-nothing property, PACMan coordinates access to the distributed caches.
This coordination is essential to improve job completion times and cluster efficiency. To this
end, we have implemented two cache replacement policies on top of PACMans coordinated
infrastructure—LIFE that minimizes average completion time by evicting large incomplete
inputs, and LFU-F that maximizes cluster efficiency by evicting less frequently accessed

Section 1.2. Heterogeneity in Clusters 7

����������	
����
�����

���������	�
����

����

�����������
����������

����� �����

����
��

Figure 1.3: Logical positioning of the different systems within the standard soft-
ware stack of data analytics frameworks. Mantri and Dolly work with the sched-
uler while PACMan and Scarlett deal with input data management.

inputs.
Scarlett: Despite storing blocks in cache, tasks sometimes do not obtain the benefits of
caching because they are not scheduled to execute locally. The miss in locality often occurs
when a task accesses popular input blocks or when its input is stored on machines storing
other popular blocks. When tasks contend for compute slots on popular machines, locality
suffers. To avoid contentions and improve data locality, we design a system, Scarlett, that
replicates files based on their access patterns and spreads them out to avoid hotspots, while
minimally interfering with running jobs. Scarlett accurately predicts file popularity and
works within hard bounds on additional storage.
Mantri: Mantri is a system that monitors tasks and prevents stragglers based on their
causes. It uses the following techniques. First, it schedules speculative copies of straggler
tasks while being cognizant of resource constraints and work imbalances. Second, it places
tasks based on the locations of their data sources as well as the current utilization of network
links. Finally, on a tasks completion, Mantri replicates its output (intermediate data) if the
benefit of not having to recompute outweighs the cost of replication.
Dolly: While Mantri’s speculation strategies work well for large jobs, the small jobs require
a fundamentally different technique. This is because Mantri involves an element of waiting
and speculation. Such waiting limits their agility when dealing with stragglers in small jobs
as they often start all their tasks simultaneously. Dolly instead proposes full cloning of small
jobs, avoiding waiting and speculation altogether. Cloning of small jobs only marginally
increases utilization because workloads show that while the majority of jobs are small, they
only consume a small fraction of the resources. The main challenge of cloning is, however,
that extra clones can cause contention for intermediate data. We use a technique, delay
assignment, which efficiently avoids such contention.

Section 1.3. Methodology: Analysis and Evaluation 8

1.3 Methodology: Analysis and Evaluation

The insights and evaluations in this work are based on traces of computational frame-
works from production clusters at Facebook and Microsoft Bing. We obtain task level traces
from Facebook’s production Hadoop cluster and Bing’s Dryad cluster. These are large clus-
ters consisting of thousands of well-provisioned machines.

1.3.1 Cluster Details

Microsoft Bing Cluster: We monitored the cluster and software systems that support
the Bing search engine for over twelve months. This is a cluster of tens of thousands of
commodity servers managed by Cosmos, a fork off Dryad [70].

While programmers can write native code, most of the jobs in the examined cluster
are written in Scope [80], a mash-up language that mixes SQL-like declarative statements
with user code. The Scope compiler transforms a job into a workflow where each node is
a phase and each edge joins a phase that produces data to another that uses it. Compiler
optimizations can merge different functionality into one phase or divide functionality across
phases. The number of tasks in a phase is chosen at compile time. A task will read its input
over the network if it is not available on the local disk but outputs are written to the local
disk. The eventual outputs of a job (as well as raw data) are stored in a reliable block storage
system implemented on the same servers that do computation. Blocks are replicated three
way for reliability. A run-time scheduler assigns tasks to machines, based on data locations,
dependence patterns and cluster-wide resource availability. The network layout is such that
there is more bandwidth within a rack than across racks.

We obtain detailed logs from the Scope compiler and the Cosmos scheduler. At each of
the job, phase and task levels, we record the execution behavior as represented by begin and
end times, the machines(s) involved, the sizes of input and output data, the fraction of data
that was read across racks and a code denoting the success or type of failure. We also record
the workflow of jobs. Table 1.2 depicts the random subset of logs that we analyze here.
Facebook Cluster: The Facebook cluster consisted of over 4000 machines. Each of the
machines was well-provisioned with 16 cores and 64GB of memory each. The cluster had
networks with an over-subscription factor of ∼ 10.

The Facebook cluster executed the Hadoop computing framework. Jobs were submitted
using the Hive [8] engine that composed a query in to a series of Hadoop MapReduce jobs.
The number of tasks in each of the phases is decided before the job begins its execution. A
centralized job scheduler executed these jobs by assigning tasks to slots based on the Fair
Scheduler [104]. Just like the Bing cluster, a distributed file system (Hadoop Distributed
File System or HDFS [6]) stored the data in the cluster, replicated for reliability.

The jobs executed on these clusters were a mix of production as well as experimental
analyses. Their output and performance had significant impact on productivity and revenue.
Overall, these traces represent over half a million jobs reading and transferring nearly 0.5

Section 1.3. Methodology: Analysis and Evaluation 9

Dates Phases Jobs Compute Data Network
x 103 (years) (PB) (PB)

May 2010 19.0 938 49.1 12.6 .66
Jun 2010 16.5 991 88.0 22.7 1.22
Jul 2010 22.0 1183 51.6 14.3 .67
Aug 2010 29.2 1873 60.6 18.7 .76
Sep 2010 27.4 1653 73.0 22.8 .73
Oct 2010 20.4 1362 84.1 25.3 .86
Nov 2010 37.8 1834 88.4 25.0 .68
Dec 2010 18.7 1777 96.2 18.6 .72
Jan 2011 24.4 1842 79.5 21.5 1.99

Table 1.2: Details of the Bing production Dryad logs.

Facebook Microsoft Bing
Dates Oct 2010 May 2010 – Dec 2011
Framework Hadoop Dryad
File System HDFS [6] Cosmos
Script Hive [8] Scope [80]
Jobs 375K 200K
Input Data 150PB 310PB
Cluster Size 3,500 Thousands
Memory per machine 48GB N/A

Table 1.3: Summary of Facebook and Bing clusters and traces.

Exabyte of data. Table 1.3 summarizes the details of the two clusters and the collected
traces.

1.3.2 Evaluation Workload

Evaluation of our system is done on a 200 machine cluster on Amazon’s EC2 [2]. Work-
loads for our evaluation are derived from the Facebook and Bing traces described above,
representative of Hadoop and Dryad systems. The key goals during this derivation was to
preserve the original workload’s characteristics, including the distribution of job input sizes,
variable popularity of input files, and load proportional to the original clusters.

We meet these goals as follows. We replay jobs with the same inter-arrival times and
input files as in the original workload. However, we scale down the file sizes proportionately
to reflect the smaller size of our cluster. This scaling down helps us mimic the proportional
load experienced by the original clusters as well as the access patterns of files. Additionally,
it also ensures that the memory in our experimental cluster is sufficient for the same fraction

Section 1.4. Roadmap 10

of jobs’ input as in the original workload.
We confirmed by simulation (described shortly) that performance improvements with

the scaled down version matched that of the full-sized cluster.

1.3.3 Trace-driven Simulator

We use a trace-driven simulator to evaluate at larger scales and longer durations. The
simulator performed a detailed and faithful replay of the task-level traces of Hadoop jobs
from Facebook and Dryad jobs from Bing. It simulated the thousands of machines as there
were in the original cluster and preserved the read/write sizes of tasks, replica locations
of input data as well as job characteristics of failures, stragglers and recomputations [19].
The simulator also mimicked fairness restrictions on the number of permissible concurrent
slots as well as fairness based evictions. For the network, it uses a fluid model rather than
simulating individual packets. We use the simulator to test performance at the scale of the
original datacenters, as well as to mimic ideal schemes.

1.4 Roadmap

The rest of the thesis is arranged as follows. Chapter 2 describes the work on han-
dling input data of jobs. The two main pieces of work are building a distributed in-memory
cache, PACMan, for parallel jobs and ensuring that blocks are replicated in proportion to
their popularity to achieve data locality for tasks (Scarlett). Chapter 3 deals with handling
intermediate data of jobs. In addition to efficiently scheduling the network to transfer inter-
mediate data, we also deal with inaccessibility of the data. Despite the above measures, tasks
experience many contentions for resources during their execution, causing them to straggle.
Chapter 4 tackles the occurrence of such runtime stragglers. The techniques in Chapters 2,
3 and 4 together present a comprehensive solution to achieve uniform and efficient progress
of tasks of a job. Chapter 5 concludes with some future directions for research.

11

Chapter 2

Input Data

2.1 Introduction

Data in analytics clusters is typically stored by the distributed file system across disks of
many machines. Hardware trends, however, driven by falling costs indicate a steep increase
in memory capacities of large clusters. This presents an opportunity to store the input
data of the analytics jobs in memory and speed them up. Storing all the data currently
present in disks is, however, infeasible because of the three orders of magnitude difference
in the available capacities between disk and memory, notwithstanding the growing memory
sizes. Therefore, we investigate the use of memory locality to speed-up data-intensive jobs
by caching their input data.

As mentioned earlier, data-intensive jobs, typically, have a phase where they process the
input data (e.g., map in MapReduce [36], extract in Dryad [70]). This phase simply reads
the raw input and writes out parsed output to be consumed during further computations.
Naturally, this phase is IO-intensive. Workloads from Facebook and Microsoft Bing datacen-
ters, consisting of thousands of servers, show that this IO-intensive phase constitutes 79%
of a job’s duration and consumes 69% of its resources. Our proposal is to speed up these
IO-intensive phases by caching their input data in memory. Data is cached after the first
access thereby speeding up subsequent accesses.

Using memory caching to improve performance has a long history in computer systems,
e.g., [11,40,51,57]. We argue,however, that the parallel nature of data-intensive jobs differen-
tiates them from previous systems. Frameworks split jobs in to multiple tasks that are run in
parallel. There are often enough idle compute slots for small jobs, consisting of few tasks, to
run all their tasks in parallel. Such tasks start at roughly the same time and run in a single
wave. In contrast, large jobs, consisting of many tasks, seldom find enough compute slots
to run all their tasks at the same time. Thus, only a subset of their tasks run in parallel.1

As and when tasks finish and vacate slots, new tasks get scheduled on them. We define the
number of parallel tasks as the wave-width of the job.

1We use the terms “small” and “large” jobs to refer to their input size and/or numbers of tasks.

Section 2.1. Introduction 12

The wave-based execution implies that small single-waved jobs have an all-or-nothing
property – unless all the tasks get memory locality, there is no improvement in completion
time. They run all their tasks in one wave and their completion time is proportional to the
duration of the longest task. Large jobs, on the other hand, improve their completion time
with every wave-width of their input being cached. Note that the exact set of tasks that run
in a wave is not of concern, we only care about the wave-width, i.e., how many of them run
simultaneously.

Our position is that coordinated management of the distributed caches is required to
ensure that enough tasks of a parallel job have memory locality to improve their completion
time. Coordination provides a global view that can be used to decide what to evict from
the cache, as well as where to place tasks so that they get memory locality. To this end, we
have developed PACMan – Parallel All-or-nothing Cache MANager – an in-memory caching
system for parallel jobs. On top of PACMan’s coordination infrastructure, appropriate place-
ment and eviction policies can be implemented to speed-up parallel jobs.

One such coordinated eviction policy we built, LIFE, aims to minimize the average
completion time of jobs. In a nutshell, LIFE calculates the wave-width of every job and
favors input files of jobs with small waves, i.e., lower wave-widths. It replaces cached blocks
of the incomplete file with the largest wave-width. The design of LIFE is driven by two
observations. First, a small wave requires caching less data than a large wave to get the
same decrease in completion time. This is because the amount of cache required by a job
is proportional to its wave-width. Second, we need to retain the entire input of a wave to
decrease the completion time. Hence the heuristic of replacing blocks from incomplete files.

Note that maximizing cache hit-ratio – the metric of choice of traditional replacement
policies – does not necessarily minimize average completion time, as it ignores the wave-
width constraint of parallel jobs. For instance, consider a simple workload consisting of 10
equal-sized single-waved jobs. A policy that caches only the inputs of five jobs will provide
a better average completion time, than a policy that caches 90% of the inputs of each job,
which will not provide any completion time improvement over the case in which no inputs are
cached. However, the first policy will achieve only 50% hit-ratio, compared to 90% hit-ratio
for the second policy.

In addition to LIFE, we implemented a second eviction policy, LFU-F, which aims to
maximize the efficiency of the cluster. Cluster efficiency is defined as finishing the jobs by
using the least amount of resources. LFU-F favors popular files and evicts blocks from the
least accessed files. Efficiency improves every time data is accessed from cache. So files
that are accessed more frequently contribute more to cluster efficiency than files that will be
accessed fewer number of times.

A subtle aspect is that the all-or-nothing property is important even for cluster efficiency.
This is because tasks of subsequent phases often overlap with the IO-intensive phase. For
example, in MapReduce jobs, reduce tasks begin after a certain fraction of map tasks finish.
The reduce tasks start reading the output of completed map tasks. Hence a delay in the
completion of a few map tasks, when their data is not cached, results in all the reduce tasks
waiting. These waiting reduce tasks waste computation slots effectively hurting efficiency.

Section 2.2. Cache Replacement for Parallel Jobs 13

time time

S
1

time

S
2

S
1

S
2

S
1

S
2

W
a
v
e
-w

id
th

time time

S
1

S
2

S
3

S4

W
a
v
e
-w

id
th

S
1

S
2

S
3

S
4

Figure 2.1: Example of a single-wave (2 tasks, simultaneously) and multi-wave
job (12 tasks, 4 at a time). Si’s are slots. Memory local tasks are dark blocks.
Completion time (dotted line) reduces when a wave-width of input is cached.

Finally, a key component towards effectively utilizing the cache is scheduling tasks on
machines that stores their input data in memory. Remote reads are limited by network
throughputs which are typically lower than memory bandwidths. Unfortunately, tasks con-
tend for compute slots on machines containing popular data blocks. To avoid such con-
tention, we design a selective replication system Scarlett that automatically infers popular
data blocks and replicates them. Scarlett uses historical access patterns to predict popular-
ity and impending contentions. While creating extra replicas, Scarlett is intelligent about
spreading them out and minimally contending with existing network traffic.

This chapter is outlined as follows. §2.2 describes the fundamental properties of parallel
jobs that influence the design of the caching algorithms. We describe PACMan’s system
design in §2.3. Scarlett’s replication algorithm is described in §2.4. We present evaluation
results in §2.5 by deploying our system on Amazon’s EC2 and evaluating using production
workloads. Finally, §2.6 contrasts PACMan and Scarlett with prior work.

2.2 Cache Replacement for Parallel Jobs

In this section, we first explain how the concept of wave-width is important for parallel
jobs, and argue that maximizing cache hit-ratio neither minimizes the average completion
time of parallel jobs nor maximizes efficiency of a cluster executing parallel jobs. From first
principles, we then derive the ideas behind LIFE and LFU-F cache replacement schemes.

Section 2.2. Cache Replacement for Parallel Jobs 14

0

20

40

60

80

100

0 10 20 30 40 50

Wave-wise Equal Spread Random

R
e

d
u

c
ti
o

n
 (

%
)

in

C
o

m
p

le
ti
o

n
 T

im
e

Memory local Tasks

Figure 2.2: Reduction in completion time of a job with 50 tasks running on 10
slots. The job speeds up, in steps, when its number of memory local tasks crosses
multiples of the wave-width (i.e., 10), regardless of how they are scheduled.

2.2.1 All-or-Nothing Property

Achieving memory locality for a task will shorten its completion time. But this need
not speed up the job. Jobs speed up when an entire wave-width of input is cached (Fig-
ure 2.1). The wave-width of a job is defined as the number of simultaneously executing
tasks. Therefore, jobs that consist of a single wave need 100% memory locality to reduce
their completion time. We refer to this as the all-or-nothing property. Jobs consisting of
many waves improve as we incrementally cache inputs in multiples of their wave-width. In
Figure 2.1, the single-waved job runs both its tasks simultaneously and will speed up only if
the inputs of both tasks are cached. The multi-waved job, on the other hand, consists of 12
tasks and can run 4 of them at a time. Its completion time improves in steps when any 4, 8
and 12 tasks run memory locally.

We confirmed the hypothesis of wave-widths by executing a sample job on a cluster with
10 slots (see Figure 2.2). The job operated on 3GB of input and consisted of 50 tasks each
working on 60MB of data. Our experiment varied the number of memory-local tasks of the
job and measured the reduction in completion time. The baseline was the job running with
no caching. Memory local tasks were spread uniformly among the waves (“Equal Spread”).
We observed the job speeding up when its number of memory-local tasks crossed 10, 20 and
so forth, i.e., multiples of its wave-width, thereby verifying the hypothesis. Further, we tried
two other scheduling strategies. “Wave-wise” scheduled the non-memory-local tasks before
memory local tasks, i.e., memory local tasks ran simultaneously, and “Random” scheduled
the memory local tasks in an arbitrary order. We see that the speed-up in steps of wave-
width holds in both cases, albeit with slightly reduced gains for “Random”. Surprisingly, the
wave-width property holds even when memory local tasks are randomly scheduled because
a task is allotted a slot only when slots become vacant, not a priori. This automatically
balances memory local tasks and non-memory-local tasks across the compute slots.

Section 2.2. Cache Replacement for Parallel Jobs 15

Read Compute

ComputeRead

Compute

Compute

Read

ReadRead

Read Idle

Idle

M
a
p

R
e
d
u
c
e

(time) (time)

Figure 2.3: All-or-nothing property matters for efficiency. In this example of a
job with 3 map tasks and 2 reduce tasks, even if one map task is delayed (due
to lack of memory locality), reduce tasks idle and hurt efficiency.

That achieving memory locality will lower resource usage is obvious – tasks whose inputs
are available in memory run faster and occupy the cluster for fewer hours. A subtler point
is that the all-or-nothing constraint can also be important for cluster efficiency. This is
because some of the schedulers in parallel frameworks (e.g., Hadoop and MPI) allow tasks of
subsequent stages to begin even before all tasks in the earlier stages finish. Such “pipelining”
can hide away some data transfer latency, for example, when reduce tasks start running even
before the last task in the map stage completes [7]. However, this means that a delay in
the completion of some map tasks, perhaps due to lack of memory locality, results in all
the reduce tasks waiting. These waiting reduce tasks waste computation slots and adversely
affect efficiency. Figure 2.3 illustrates this overlap with an example job of three map tasks
and two reduce tasks.

In summary, meeting the all-or-nothing constraint improves completion time and effi-
ciency of parallel jobs.

2.2.2 Sticky Policy

Traditional cache replacement schemes that maximize cache hit-ratio do not consider
the wave-width constraint of all-or-nothing parallel jobs. Consider the situation depicted in
Figure 2.4 of a 4-entry cache storing blocks A, B, C and D. Job J1’s two tasks will access
blocks A and B, while job J2’s two tasks will access C and D. Both jobs consist of just a
single wave and hence their job completion time improves only if their entire input is cached.

Now, pretend a third job J3 with inputs F and G is scheduled before J1 and J2, requiring
the eviction of two blocks currently in the cache. Given the oracular knowledge that the
future block access pattern will be A, C, B, then D, MIN [26] will evict the blocks accessed
farthest in the future: B and D. Then, when J1 and J2 execute, they both experience a

Section 2.2. Cache Replacement for Parallel Jobs 16

A B C D

MIN “Whole Jobs”

F GInsert

Cache

Future: A, C, B, D Jobs: J1{A, B}, J2 {C, D}

Replacement

Evict

A F C GCache A B F GCache

EvictB D C D

J2
DJ2

CJ1
A J1

B J2
DJ2

CJ1
A J1

B

Figure 2.4: Cache hit-ratio does not necessarily improve job completion. We
consider a cache that has to replace two out of its four blocks. MIN evicts
blocks to be accessed farthest in future. “Whole jobs” preserves complete inputs
of jobs.

cache miss on one of their tasks. These cache misses bound their completion times, meaning
that MIN cache replacement resulted in no reduction in completion time for either J1 or J2.
Consider an alternate replacement scheme that chooses to evict the input set of J2 (C and
D). This results in a reduction in completion time for J1 (since its entire input set of A and
B is cached). J2’s completion time is unaffected. Note that the cache hit-ratio remains the
same as for MIN (50%).

Further, maximizing hit-ratio does not maximize efficiency of the cluster. In the same
example as in Figure 2.4, let us add a reduce task to each job. Both J1 and J2 have two map
tasks and one reduce task. Let the reduce task start after 5% of the map tasks have completed
(as in Hadoop [7]). We now compare the resource consumption of the two jobs with MIN
and “whole jobs” which evicts inputs of J2. With MIN, the total resource consumption is
2 (1 + µ)m+ 2 (0.95)m, where m is the duration of a non-memory-local task and µ reflects
the speed-up when its input is cached; we have omitted the computation of the reduce
task. The policy of “whole jobs”, on the other hand, expends 2 (1 + µ)m+ (0.95µ+ 0.05)m
resources. As long as memory locality produces a speed-up, i.e., µ ≤ 1, MIN consumes more
resources.

The above example, in addition to illustrating that cache hit-ratios are insufficient for
both speeding up jobs and improving cluster efficiency, also highlights the importance of
retaining complete sets of inputs. Improving completion time requires retaining complete
wave-widths of inputs, while improving efficiency requires retaining complete inputs of jobs.
Note that retaining the complete inputs of jobs automatically meets the wave-width con-
straint to reduce completion times. Therefore, instead of evicting the blocks accessed farthest
in the future, replacement schemes for parallel jobs should recognize the commonality be-
tween inputs of the same job and evict at the granularity of a job’s input.

This intuition gives rise to the sticky policy. The sticky policy preferentially evicts blocks

Section 2.2. Cache Replacement for Parallel Jobs 17

of incomplete files. If there is an incomplete file in cache, it sticks to its blocks for eviction
until the file is completely removed from cache. The sticky policy is crucial as it disturbs
the fewest completely cached inputs and evicts the incomplete files which are not beneficial
for jobs.2

Given the sticky policy to achieve the all-or-nothing requirement, we now address the
question of which inputs to retain in cache such that we minimize average completion time
of jobs and maximize cluster efficiency.

2.2.3 Average Completion Time – LIFE

We show that in a cluster with multiple jobs, favoring jobs with the smallest wave-widths
minimizes the average completion time of jobs. Assume that all jobs in the cluster are single-
waved. Every job j has a wave-width of w and an input size of I. Let us assume the input
of a job is equally distributed among its tasks. Each task’s input size is

(
I
w

)
and its duration

is proportional to its input size. As before, memory locality reduces its duration by a factor
of µ. The factor µ is dictated by the difference between memory and disk bandwidths, but
limited by additional overheads such as deserialization and decompression of the data after
reading it.

To speed up a single-waved job, we need I units of cache space. On spending I units
of cache space, tasks would complete in µ

(
I
w

)
time. Therefore the saving in completion

time would be (1− µ)
(
I
w

)
. Counting this savings for every access of the file, it becomes

f (1− µ)
(
I
w

)
, where f is the frequency of access of the file. Therefore, the ratio of the

job’s benefit to its cost is f (1− µ)
(

1
w

)
. In other words, it is directly proportional to the

frequency and inversely proportional to the wave-width. The smaller the wave-width, the
larger the savings in completion time per unit of cache spent. This is illustrated in Figure 2.5
comparing two jobs with the same input size (and of the same frequency), but wave-widths
of 2 and 4. Clearly, it is better to use I units of cache space to store the input of the job
with a wave-width of two. This is because its work per task is higher and so the savings
are proportionately more. Note that even if the two inputs are unequal (say, I1 and I2, and
I1 > I2), caching the input of the job with lower wave-width (I1) is preferred despite its
larger input size. Therefore, in a cluster with multiple jobs, average completion time is best
reduced by favoring the jobs with smallest wave-widths (LIFE).

This can be easily extended to a multi-waved jobs. Let the job have n waves, c of which
have their inputs cached. This uses cw

(
I
nw

)
of cache space. The benefit in completion time

is f (1− µ) c
(
I
nw

)
. The ratio of the job’s benefit to its cost is f (1− µ)

(
1
w

)
, hence best

reduced by still picking the jobs that have the smallest wave-widths.

2When there are strict barriers between phases, the sticky policy does not improve efficiency. Nonetheless,
such barriers are akin to “application-level stickiness” and hence stickiness at the caching layer beneath,
expectedly, does not add value.

Section 2.2. Cache Replacement for Parallel Jobs 18

(time)

w
1

=
 2

(1 – µ) (I/w
1
)

(time)

w
2

 =
 4

(1 – µ) (I/w
2
)

w
1

=
 2

(time) (time)

w
2

 =
 4

Figure 2.5: Gains in completion time due to caching decreases as wave-width in-
creases. Solid and dotted lines show completion times without and with caching
(for two jobs with input of I but wave-widths of 2 and 4). Memory local tasks
are dark blocks, sped up by a factor of µ.

2.2.4 Cluster Efficiency – LFU-F

In this section, we derive that retaining frequently accessed files maximizes efficiency
of the cluster. We use the same model for the cluster and its jobs as before. The cluster
consists of single-waved jobs, and each job j has wave-width w and input size I. Duration
of tasks are proportional to their input sizes,

(
I
w

)
, and achieving memory locality reduces

its duration by a factor of µ.
When the input of this job is cached, we use I units of cache. In return, the savings in

efficiency is (1− µ) I. The savings is obtained by summing the reduction in completion time
across all the tasks in the wave, i.e., w · (1− µ)

(
I
w

)
. Every memory local task contributes to

improvement in efficiency. Further, the savings of (1− µ) I is obtained on every access of the
file, thereby making its aggregate value f (1− µ) I where f is the frequency of access of the
file. Hence, the ratio of the benefit to every unit of cache space spent on this job is f (1− µ),
or a function of only the frequency of access of the file. Therefore, cluster efficiency is best
improved by retaining the most frequently accessed files (LFU-F).

This naturally extends to multi-waved jobs. As jobs in data-intensive clusters typically
read entire files, frequency of access of inputs across the different waves of a job is the same.
Hence cluster efficiency is best improved by still favoring the frequently accessed files.

To summarize, we have shown that, (i) the all-or-nothing property is crucial for improv-
ing completion time of jobs as well as efficiency, (ii) average completion time is minimized
by retaining inputs of jobs with low wave-widths, and (iii) cluster efficiency is maximized
by retaining the frequently used inputs. We next show some relevant characteristics from
production workloads, before moving on to explain the details of PACMan.

Section 2.3. PACMan: System Design 19

y = (6E+07)x-1.9

N
u

m
b

e
r

o
f

J
o

b
s

105

104

103

102

10

1

106

Number of Tasks
1 10 102 103 104 105

(a) Number of tasks

y = (9E+06)x-1.6

N
u

m
b

e
r

o
f

J
o

b
s

Input Size (GB)

106

105

104

103

102

10

1
1 10 102 103 104 105 106

(b) Input Size

Figure 2.6: Power-law distribution of jobs (Facebook) in the number of tasks and
input sizes. Power-law exponents are 1.9 and 1.6 when fitted with least squares
regression.

2.3 PACMan: System Design

We first present PACMan’s architecture that enables the implementation of the sticky
policy, and then discuss the details involved in realizing LIFE and LFU-F. Before presenting
the architecture, we briefly highlight characteristics in workloads—heavy tail distribution of
input sizes of jobs, and correlation between file size and popularity—that are relevant for
LIFE and LFU-F.

2.3.1 Workload Characteristics

Heavy-tailed Input Sizes of Jobs

Datacenter jobs exhibit a heavy-tailed distribution of input sizes. Workloads consist of
many small jobs and relatively few large jobs. In fact, 10% of overall data read is accounted
by a disproportionate 96% and 90% of the smallest jobs in the Facebook and Bing workloads.
As Figure 4.6 shows, job sizes – input sizes and number of tasks – indeed follow a power-law
distribution, as the log-log plot shows a linear relationship.

The skew in job input sizes is so pronounced that a large fraction of active jobs can
simultaneously fit their entire data in memory.3 We perform a simple simulation that looks at
jobs in the order of their arrival time. The simulator assumes the memory and computation
slots across all the machines in the cluster to be aggregated. It loads a job’s entire input
into memory when it starts and deletes it when the job completes. If the available memory
is insufficient for a job’s entire input, none of it is loaded. Figure 2.7 plots the results of

3By active jobs we mean jobs that have at least one task running.

Section 2.3. PACMan: System Design 20

F
ra

ct
io

n
 o

f
Jo

b
s

(%
)

Memory per machine (GB)

0

20

40

60

80

100

0 8 16 24 32 40 48 56 64

Facebook

Bing

Figure 2.7: Fraction of active jobs whose data fits in the aggregate cluster memory,
as the memory per machine varies.

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Median 99th perc

W
a
v
e
-w

id
th

(l
o
g
-s
c
a
le
)

Normalized File Size

Figure 2.8: Wave-width, i.e., number of simultaneous tasks, of jobs as a function
of sizes of files accessed. File sizes are normalized to the largest file; the largest
file has size 1.

the simulation. For the workloads from Facebook and Bing, we see that 96% and 89% of
the active jobs respectively can have their data entirely fit in memory, given an allowance
of 32GB memory per server for caching. This bodes well for satisfying the all-or-nothing
constraint of jobs, crucial for the efficacy of LIFE and LFU-F.

In addition to being easier to fit a small job’s input in memory, its wave-width is smaller.
In our workloads, wave-widths roughly correlate with the input file size of the job. Figure 2.8
plots the wave-width of jobs binned by the size of their input files. Small jobs, accessing
the smaller files, have lower wave-widths. This is because, typically, small jobs do not have
sufficient number of tasks to utilize the slots allocated by the scheduler. This correlation
helps to explore an approximation for LIFE to use file sizes instead of estimating wave-widths
(§2.3.3).

Section 2.3. PACMan: System Design 21

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

C
D
F

Access Count

Facebook

Bing

Figure 2.9: Skewed popularity of data. CDF of the access counts of the input
blocks stored in the cluster.

0
2
4
6
8

10
12
14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Facebook

Bing

Normalized File Size

A
ve

ra
g

e
 A

cc
e

ss
 C

o
u

n
t

Figure 2.10: Access count of files as a function of their sizes, normalized to the
largest file; largest file has size 1. Large files, accessed by production jobs, have
higher access count.

Large Files are Popular

Now, we look at popularity skew in data access patterns. As noted in prior work, the
popularity of input data is skewed in data-intensive clusters [43]. A small fraction of the
data is highly popular, while the rest is accessed less frequently. Figure 2.9 shows that the
top 12% of popular data is accessed 10× more than the bottom third in the Bing cluster.
The Facebook cluster demonstrates a similar skew. The top 5% of the blocks are seven times
more popular than the bottom three-quarters.

Interestingly, large files have higher access counts (see Figure 2.10). Often they are
accessed by production jobs to generate periodic (hourly) summaries, e.g., financial and
performance metrics, from various large logs over consolidated time intervals in the past.
These intervals could be as large as weeks and months, directly leading to many of the logs

Section 2.3. PACMan: System Design 22

in that interval being repeatedly accessed. The popularity of large files, whose jobs consume
most resources, strengthens the idea from §2.2.4 that favoring frequently accessed files is
best for cluster efficiency.

We also observe repeatability in the data accesses. Single-accessed files are spread across
only 11% and 6% of jobs in the Facebook and Bing workloads. Even in these jobs, not all
the data they access is singly-accessed. Hence, we have sufficient repeatability to improve
job performance by caching their inputs.

2.3.2 Coordination Architecture

PACMan globally coordinates access to its caches. Global coordination ensures that a
job’s different input blocks, distributed across machines, are viewed in unison to satisfy the
all-or-nothing constraint. To that end, the two requirements from PACMan are, (a) support
queries for the set of machines where a block is cached, and (b) mediate cache replacement
globally across the machines.

PACMan’s architecture consists of a central coordinator and a set of clients located at
the storage nodes of the cluster (see Figure 2.11). Blocks are added to the PACMan clients.
PACMan clients update the coordinator when the state of their cache changes (i.e., when
a block is added or removed). The coordinator uses these updates to maintain a mapping
between every cached block and the machines that cache it. As part of the map, it also stores
the file that a block belongs to and the wave-width of jobs when accessing that file (§2.3.3).
This global map is leveraged by LIFE and LFU-F in implementing the sticky policy to look
for incomplete files. Frameworks work with the coordinator to achieve memory locality for
tasks.

The client’s main role is to serve cached blocks, as well as cache new blocks. We choose
to cache blocks at the destination, i.e., the machine where the task executes as opposed to
the source, i.e., the machine where the input is stored. This allows an uncapped number of
replicas in cache, which in turn increases the chances of achieving memory locality especially
when there are hotspots due to popularity skew [43]. Memory local tasks contact the local
PACMan client to check if its input data is present. If not, they fetch it from the distributed
file system (DFS). If the task reads data from the DFS, it puts it in cache of the local
PACMan client and the client updates the coordinator about the newly cached block. Data
flow is designed to be local in PACMan as remote memory access could be constrained by
the network.
Fault Tolerance: The coordinator’s failure does not hamper the job’s execution as data
can always be read from disk. However, we include a secondary coordinator that functions
as a cold standby. Since the secondary coordinator has no cache view when it starts, clients
periodically send updates to the coordinator informing it of the state of their cache. The
secondary coordinator uses these updates to construct the global cache view. Clients do not
update their cache when the coordinator is down.
Scalability: Nothing precludes distributing the central coordinator across different ma-

Section 2.3. PACMan: System Design 23

������

���	�

������	

������

���	�

������	

������

���	�

������	

�������

��������
��

������
	�

Figure 2.11: PACMan architecture. The central coordinator manages the dis-
tributed clients. Thick arrows represent data flow while thin arrows denote
meta-data flow.

chines to avoid having it be a bottleneck. We have, however, found that the scalability of
our system suffices for our workloads (see §2.5.6).

2.3.3 Wave-width

Wave-width is important for LIFE as it aims to retain inputs of jobs with lower wave-
widths. However, both defining and calculating wave-widths is non-trivial because tasks do
not strictly follow wave boundaries. Tasks get scheduled as and when previous tasks finish
and slots become available. This makes modeling the tasks that run in a wave complicated.
Slots also open up for scheduling when the scheduler allots extra slots to a job during
periods of low utilization in the cluster. Therefore, wave-widths are not static during a job’s
execution. They are decided based on slot availabilities, fairness restrictions and scheduler
policies. Unlike MIN, which is concerned only with the order in which requests arrive, our
setting requires knowing the exact time of the request, which in turn requires estimating
the speed-up due to memory locality for each task. All these factors are highly variable and
hard to model accurately.

Given such a fluid model, we propose the following approximation. We make periodic
measurements of the number of concurrent tasks of a job. When a job completes, we get a
set of values, 〈(w, t (w))〉, such that 0 < t (w) ≤ 1. For every value of wave-width, w, t (w)
shows the fraction of time spent by the job with that wave-width. We take measurements
every 1s in practice.

Note that while
∑
t (w) = 1,

∑
w is not necessarily equal to the number of tasks in the

job. This is because wave boundaries are not strict and tasks overlap between measurements.
This led us to drop the idea of using the measurements of 〈(w, t (w))〉 to divide blocks of a
file into different waves. Also, such an explicit division requires the scheduler to collectively

Section 2.3. PACMan: System Design 24

Pseudocode 1 Implementation of LIFE and LFU-F – from the perspective of the
PACMan coordinator.

procedure FileToEvict LIFE(Client c)
cFiles = fileSet.filter(c) . Consider only c’s files
f = cFiles.olderThan(window).oldest() . Aging
if f == null then . No old files to age out

f = cFiles.getLargestIncompleteFile()
if f == null then . Only complete files left

f = cFiles.getLargestCompleteFile()
return f.name . File to evict

procedure FileToEvict LFU-F(Client c)
cFiles = fileSet.filter(c) . Consider only c’s files
f = cFiles.olderThan(window).oldest() . Aging
if f == null then . No old files to age out

f = cFiles.getLeastAccessedIncompleteFile()
if f == null then . Only complete files left

f = cFiles.getLeastAccessedCompleteFile()
return f.name . File to evict

procedure Add(Client c, String name, Block bId)
File f = fileSet.getByName(name)
if f == null then

f = new File(name)
fileSet.add(f)

f.addLocation(c, bId) . Update properties

schedule the tasks operating on a wave. Therefore, despite the potential benefits, to sidestep
the above problems, we assign a single value for the wave-width of a file. We define the wave-
width of a file as a weighted average across the different observed wave-widths,

∑
w · t (w).

The wave-width is included in the mapping maintained by the coordinator.
A noteworthy approximation to wave-widths is to simply consider small and large jobs

instead, based on their input sizes. As Figure 2.8 showed, there is a correlation between input
sizes of jobs and their wave-widths. Therefore, such an approximation mostly maintains the
relative ordering between small and large waves despite approximating them to small and
large job input sizes. We evaluate this approximation in §2.5.3.

Section 2.3. PACMan: System Design 25

2.3.4 LIFE and LFU-F within PACMan

We now describe how LIFE and LFU-F are implemented inside PACMan’s coordinated
architecture.

The coordinated infrastructure’s global view is fundamental to implementing the sticky
policy. Since LIFE and LFU-F are global cache replacement policies, they are implemented
at the coordinator. Pseudocode 1 describes the steps in implementing LIFE and LFU-F. In
the following description, we use the terms file and input interchangeably. If all blocks of a
file are cached, we call it a complete file; otherwise it is an incomplete file. When a client
runs out of cache memory it asks the coordinator for a file whose blocks it can evict, by
calling FileToEvict() (LIFE or LFU-F).

To make this decision, LIFE first checks whether the client’s machine caches the blocks
of any incomplete file. If there are many such incomplete files, LIFE picks the one with the
largest wave-width and returns it to the client. There are two points worth noting. First,
by picking an incomplete file, LIFE ensures that the number of fully cached files does not
decrease. Second, by picking the largest incomplete file, LIFE increases the opportunity for
more small files to remain in cache. If the client does not store the blocks of any incomplete
file, LIFE looks at the list of complete files whose blocks are cached by the client. Among
these files, it picks the one with the largest wave-width. This increases the probability of
multiple small files being cached in future.

LFU-F rids the cache of less frequently used files. It assumes that the future accesses of
a file is predicted by its current frequency of access. To evict a block, it first checks if there
are incomplete files and picks the least accessed among them. If there are no incomplete files,
it picks the complete file with the smallest access count.

To avoid cache pollution with files that are never evicted, we also implement a window
based aging mechanism. Before checking for incomplete and complete files, both LIFE and
LFU-F check whether the client stores any blocks of a file that has not been referred to for
at least window time period. Among these files, it picks the one that has been accessed
the least number of times. This makes it flush out the aged and less popular blocks. In
practice, we set the window to be large (e.g., hours), and it has had limited impact on most
workloads.

PACMan operates in conjunction with the DFS. However, in practice, they are insulated
from the job identifiers that access them. Therefore, we approximate the policy of maximizing
the number of whole job inputs to maximizing the number of whole files that are present in
cache, an approximation that works well (§2.5.3).

Finally, upon caching a block, a client contacts the coordinator by calling Add(). This
allows the coordinator to maintain a global view of the cache, including the access count
for every file for implementing LFU-F. Similarly, when a block is evicted, the client calls
Remove() to update the coordinator’s global view. We have omitted the pseudocode for
this for brevity.

Pluggable policies: PACMan’s architecture is agnostic to replacement algorithms. Its
global cache view can support any replacement policy that needs coordination.

Section 2.4. Scarlett: Diffusing Hotspots 26

2.4 Scarlett: Diffusing Hotspots

Crucial to effective functioning of the cache is co-locating the task on the same machine
as its input data. Unfortunately, it is not always possible to co-locate a task with its input
data because of contention for slots on machines storing the more popular blocks. Simply
increasing the replication factor of all the blocks is not a good solution, as data access
patterns vary widely in terms of the total number of accesses, the number of concurrent
accesses, and the access rate over time. Our analysis of logs from Microsoft Bing’s Dryad
clusters shows that the top 12% of the most popular data is accessed over ten times more
than the bottom third of the data. Some data exhibits high access concurrency, with 18%
of the data being accessed by at least three unique jobs at a time.

Contention for slots on machines storing popular data may hurt job performance. If the
number of jobs concurrently accessing a popular file exceeds the number of replicas available
in cache (typically one, to begin with), some of these jobs may have to access data remotely
and/or compete for the same replica. We estimate that as a direct consequence of contentions
to popular files, the median duration of jobs increases by 16%.

To avoid contentions and improve memory locality, we design a system, Scarlett, that
replicates files based on their access patterns and spreads them out to avoid hotspots, while
minimally interfering with running jobs. To implement this approach it is critical to ac-
curately predict data popularity. If we don’t, we may either create too few replicas thus
failing to alleviate contention, or create too many replicas thus wasting both storage and
network bandwidth. To guide replication, Scarlett uses a combination of historical usage
statistics, online predictors based on recent past, and information about the jobs that have
been submitted for execution. To minimize interference with jobs running in the cluster,
Scarlett operates within a storage budget, replicates data lazily, and uses compression to
trade processing time for network bandwidth. Finally, Scarlett benefits from spreading out
the extra replicas, and hence cluster load, on machines and racks that are lightly loaded.

2.4.1 Motivation

In this section, we examine the variation in popularity across files and how popularity
changes over time. We also quantify the effects of popularity skew – hotspots in the cluster.

Variation in Popularity

Since accesses to content are made by jobs, we examine popularity at the smallest
granularity of content that can be addressed by them. We colloquially refer to this unit as
a file. In practice, this smallest unit is a collection of many blocks and often has semantic
meaning associated with it such as records within a certain time range from a data stream.

There is a large variation among files in their number of accesses as well as in their
number of concurrent accesses. Figure 2.12a plots CDFs over files of the total number of

Section 2.4. Scarlett: Diffusing Hotspots 27

�

��

��

��

��

���

� � �� �� ��

�	
����������

��	����������

�
�
�
��
��
��
�
�

(a) File Accesses

�

��

��

��

��

���

� � �� �� ��

�	
����������

��	����������

�
�
�
��
��
�
��
�

(b) Weighted by File Size

Figure 2.12: Variation in number of jobs accessing and concurrent accesses on
input files. The x-axis goes up to a value of 70, we have truncated it to 20 for
clarity.

tasks that access each file and the maximum number of tasks that concurrently access each
file. The figure shows that 2.5% of the files are accessed more than 10 times and 1.5% of
the files are accessed more than three times concurrently. On the other hand, a substantial
fraction of the files are accessed by no more than one task at a time (90%) and no more than
once over the entire duration of the dataset (26%).

Files vary in size, so to examine the byte popularity, Figure 2.12b weights each file by
its size. We see that 38% of all data is accessed just once in the five-day interval. On the
other hand, 12% of the data is accessed more than 10 times, i.e., 12% of the data is 10x
more popular than roughly a third of the data. Recall that each block in the file system is
replicated thrice. The figure shows that 18% of the data have ≥3 concurrent accesses, i.e.,
are operating at brim, while 6% of them have more concurrent accesses than replicas.

When multiple tasks contend for a few replicas, the machines hosting the replicas become
hotspots. Even if these tasks ran elsewhere in the cluster, they compete for disk bandwidth
at the machines hosting the replicas. When the cluster is highly utilized, a machine can
have more than one popular block. Due to collisions between tasks reading different popular
blocks, the effective number of replicas per block can be fewer as some of the machines
hosting its replicas are busy serving other blocks.

We find high correlation between the total number of accesses and number of concurrent
accesses with a Pearson correlation factor of 0.78, implying that either of these metrics is
sufficient to capture file popularity.

We also find that larger files experience more accesses. Figure 2.13 bins files by their
size, with the largest file having a normalized size of 1, and plots the average number of
accesses (total and concurrent) to files in each bin. Owing to their disproportionately high
access counts, focusing on just the larger files is likely to yield most of the benefits.

Section 2.4. Scarlett: Diffusing Hotspots 28

Figure 2.13: Popularity of files as a function of their sizes, normalized to the
largest file; the largest file is of size 1.

�

��

��

��

��

���

� � � � �

��������	
�������

��������	
�������

	

�
�
�
�
��
�
��
�
�
�
��
�
�
�
��
��

�

����

Figure 2.14: Overlap in files accessed across five days. With the first and fifth day
as references, we plot the fraction of bytes accessed on those days that were also
accessed in the subsequent and preceding days, respectively.

Change in Popularity

Files change in popularity over time. Figure 2.14 plots the overlap in the set of files
accessed across five consecutive days, with day-1 and day-5 as references. We observe a
strong day effect – only 50% of the files accessed on any given day are accessed in the next
or the previous days. Beyond this initial drop, files exhibit a gradual ascent and decline in
popularity. Roughly 40% of the files accessed on day 1 are also accessed four days before or
after. The relatively stable popularity across days indicates that prediction techniques that
learn access patterns will be effective.

On an hourly basis, however, access patterns exhibit not only the gradual ascent and
decline in popularity that we see over days but also periodic bursts in popularity. Figure 2.15
plots hourly overlap in the set of files accessed, with two illustrative reference hours. The
figure on top shows gradual variation while the bottom figure shows that some sets of files
are accessed in bursts. We conjecture that the difference is due to the types of files involved
– the hour on the top likely consists of a time-sensitive set of files used by many different
users or groups, so their popularity decays faster and more smoothly, while the bottom hour

Section 2.4. Scarlett: Diffusing Hotspots 29

Figure 2.15: Hourly overlap in the set of files accessed with two sample reference
hours (hour-35 and hour-82). The graph on top shows a gradual change while the
bottom graph shows periodically accessed files.

likely consists of a set of files used by fewer but more frequent users explaining the periodic
bursts.

Effect of Popularity Skew: Hotspots

When more tasks want to run simultaneously on a machine than that machine can
support, we will say a contention event has happened. MapReduce frameworks vary in how
they deal with contention events. Some queue up tasks, others give up on locality and
execute task elsewhere and some others evict the less preferred tasks. Regardless of the
coping mechanism, contention events slow down the job and waste cluster resources.

Figure 2.16 plots a CDF of how contentions are distributed across the machines in the
cluster. The figure shows that 50% of contentions are concentrated on a small fraction of ma-
chines (less than (1

6
)th) in the cluster. Across periods of low and high cluster utilization (5AM

and 12PM respectively), the pattern of hotspots is similar.
We attribute these hotspots to skew in popularity of files. Hotspots occur on machines

containing replicas of files that have many concurrent accesses. Further, current placement
schemes are agnostic to correlations in popularity, they do not avoid co-locating popular
files, and hence increase the chance of contentions.

Summary

From analysis of production logs, we take away these lessons for the design of Scarlett:

1. The number of concurrent accesses is a sufficient metric to capture popularity of files.

2. Large files contribute to most accesses in the cluster, so reducing contention for such
files improves overall performance.

3. Recent logs are a good indicator of future access patterns.

Section 2.4. Scarlett: Diffusing Hotspots 30

Figure 2.16: Hotspots: One-sixth of the machines account for half the contentions
in the cluster.

4. Hotspots in the cluster can be smoothened via appropriate placement of files.

2.4.2 Scarlett: System Design

We makes the following two design choices. First, Scarlett considers replicating content
at the smallest granularity at which jobs can address content. Recall that we call this a file.
Scarlett does so because a job will access all blocks or none in a file. Even if some blocks
in a file have more replicas, the block(s) with the fewest replicas become the bottleneck,
i.e., tasks in the job that access these hot blocks will straggle [19] and hold back the job.
Second, Scarlett adopts a proactive replication scheme, i.e., replicate files based on predicted
popularity. While we considered the reactive alternative of simply caching data when tasks
executed non-locally (thereby increasing its replication factor), we discarded it as it was
unsuited to handle frameworks that deal with slot contentions using task evictions (e.g., as
in Dryad, § 2.4.3). In addition, the choice of replicating at the granularity of files and doing
so proactively has the advantage of simplicity of implementation.

Scarlett captures the popularity of files and uses that to increase the replication factor
of oft-accessed files, while avoiding hotspots in the cluster and causing minimal interference
to the cross-rack network traffic of jobs. To do so, Scarlett computes a replication factor rf
for each file that is proportional to its popularity (§2.4.2) while remaining within a budget
on extra storage due to additional replicas. Scarlett smooths out placement of replicas
across machines in the cluster so that the expected load on each machine (and rack) is
uniform (§2.4.2). Finally, Scarlett uses compression and memoization to reduce the cost to
creating replicas (§2.4.2).

Recall that current file systems [6,85] divide files into blocks and uniformly replicate each
block three times for reliability. Two replicas are placed on machines connected to the same
rack switch, and the third is on a different rack. Placing more replicas within a rack allows
tasks to stay within their desired rack. The third replica ensures data availability despite
rack-wide failures. Datacenter topologies are such that there is more bandwidth within a
rack than across racks [86]. Our analysis in §2.4.1 shows sizable room for improvement over

Section 2.4. Scarlett: Diffusing Hotspots 31

the policy of uniform replication.

Computing File Replication Factor

Scarlett replicates data at the granularity of files. For every file, Scarlett maintains a
count of the maximum number of concurrent accesses (cf) in a learning window of length
TL. Once every rearrangement period, TR, Scarlett computes appropriate replication factors
for all the files. By default, TL = 24 hours and TR = 12 hours. The choice of these values
is guided by observations in the production logs that show relative stability in popularity
during a day. It also indicates Scarlett’s preference to conservatively replicate files that have
a consistent skew in popularity over long periods.

Scarlett chooses to replicate files proportional to their expected usage cf . The intuition
here is that the expected load at a machine due to each replica that it stores be constant
– the load for content that is more popular is distributed across a proportional number of
replicas. To provide a cushion against under-estimates, Scarlett creates δ more replicas. By
default δ = 1. Scarlett lower bounds the replication by one, thereby maintaining at least
one copy. Hence the desired replication factor is max(cf + δ, 1).

Scarlett operates within a fixed budget B on the storage used by extra replicas. We note
that storage while available is not a free resource, production clusters routinely compress
data before storing to lower their usage. How should this budget be apportioned among the
various files?

Scarlett employs two approaches. In the priority approach, Scarlett traverses the files
in descending order of their size and increases each file’s replication factor up to the desired
value of cf + δ until it runs out of budget. The intuition here is that since files with
larger size contribute most of the accesses (see Fig 2.13), it is better to spend the limited
budget on replication on those files. Pseudocode 2 summarizes this approach. We would
like to emphasize that while looking at files by descending order of size is suited for our
environment, the design of Scarlett allows any ordering to be plugged in.

The second round-robin approach alleviates the concern that most of the budget can be
spent on just a few files. Hence, in this approach, Scarlett increases the replication factor of
each file by at most 1 in each iteration and iterates over the files until it runs out of budget.
Pseudocode 3 depicts this approach. The round-robin approach provides improvements to
many more files while the priority approach focuses on just a few files but can improve their
accesses by a larger amount. We evaluate both distribution approaches for different values
of the budget in §2.5.

The following desirable properties follow from Scarlett’s strategy to choose different
replication factors for files:

• Files that are accessed more frequently have more replicas to smooth their load over.

Section 2.4. Scarlett: Diffusing Hotspots 32

Pseudocode 2 Scarlett computes the file replication factor rf based on their
popularity and budget B. cf is the observed number of concurrent accesses.
Here files with larger size have a strictly higher priority of getting their desired
number of replicas.

Used Budget, Bused ← 0
F ← Set of files sorted in descending order of size
Set rf ← 1 ∀f ∈ F . Base Replication
for file f ∈ F do

rf ← max(cf + δ, 1) . Increase rf to cf + δ
Bused ← Bused + fsize · (rf − 1)
break if Bused ≥ B

Pseudocode 3 Round-robin distribution of the replication budget B among the
set of files F .

Used Budget, Bused ← 0
F ← Set of files sorted in descending order of size
Set rf ← 3 ∀f ∈ F . Base Replication
while Bused < B do

for file f ∈ F do
if rf < cf + δ then

rf ← rf + 1 . Increase rf by 1
Bused ← Bused + fsize
break if Bused ≥ B

• Together, δ, TR and TL track changes in file popularity while being robust to short-lived
effects.

• Choosing appropriate values for the budget on extra storage B and the period at which
replication factors change TR can limit the impact of Scarlett on the cluster.

Smooth Placement of Replicas

We just saw which files are worthwhile to replicate but where to place these replicas?
A machine that contains blocks from many popular files will become a hotspot, even though
as shown above, there may be enough replicas for each block such that the per-block load is
roughly uniform. Here, we show how Scarlett smooths the load across machines.

In current and future hardware SKUs, reading from the local disk is comparable to
reading within the rack, since top-of-rack switches have enough backplane bandwidth to
support all intra-rack transfers. Reading across racks however continues to remain costly
due to network over-subscription. Hence, Scarlett spreads replicas of a block over as many
racks as possible to provide many reasonable locations for placing the task.

Section 2.4. Scarlett: Diffusing Hotspots 33

Scarlett’s placement of replicas rests on this principle: place the desired number of
replicas of a block on as many distinct machines and racks as possible while ensuring that
the expected load is uniform across all machines and racks.

A strawman approach to achieve these goals would begin with random circular per-
mutations of racks and machines within each rack. It would place the first replica at the
first machine on the first rack. Advancing the rack permutation would ensure that the next
replica is placed on a different rack. Advancing to the next machine in this rack ensures that
when this rack next gets a replica, i.e., after all racks have taken a turn, that replica will be
placed on a different machine in the rack. It is easy to see that this approach smooths out the
replicas across machines and racks. The trouble with this approach, however, is that even
one change in the replication factor changes the entire placement leading to needless shuffling
of replicas across machines. Such shuffling wastes time and cross-rack network bandwidth.

Scarlett minimizes the number of replicas shuffled when replication factors change while
satisfying the objective of smooth placement in this way. It maintains a load factor for each
machine, lm. The load factor for each rack, lr, is the sum of load factors of machines in the
rack. Each replica is placed on the the rack with the least load and the machine with the
least load in that rack. Placing a replica increases both these factors by the expected load
due to that replica –

cf
rf

. The intuition is to keep track of the current load via the load factor,

and make the desired changes in replicas (increase or decrease) such that the lightly loaded
machines and racks shoulder more of the load. This approach is motivated by the Deficit
Round Robin (DRR) scheme that employs a similar technique to spread load across multiple
queues in arbitrary proportions.

Pseudocode 4 shows how, once every TR, after obtaining a new set of replication factors
rdesiredf , Scarlett places those replicas. Files whose replication factors have to be reduced are
processed first so that we get an updated view of the load factors of racks and machines.
We defer how replicas are actually created and deleted to the next subsection. Traversing
the list of desired replicas, Scarlett places each replica on the next lightly loaded machine
and rack. Replicas of the same block are ensured to not end up on a machine or rack that
contains another replica.

Creating Replicas Efficiently

Replication of files cause data movement over already over-subscribed cross-rack links [86].
This interferes with the performance of tasks, especially those of network-intensive phases
like reduce and joins. A skew in the bandwidth utilization of racks leads to tasks that
read data over them lagging behind the other tasks in their phase, eventually inflating job
completion times [19]. While our policy of placing one replica per rack makes cross-rack
data movement inevitable during replication, we aim to minimize it. The approximation
algorithm in Pseudocode 4 takes a first stab by retaining the location of existing blocks. As
a next step, we now reduce the interference caused due to replication traffic. In addition to
replication traffic running at lower priority compared to network flows of tasks, we employ

Section 2.4. Scarlett: Diffusing Hotspots 34

Pseudocode 4 Replicating the set of files F with current replication factors rf
to the desired replication factors rdesiredf . lm is the current expected load at each
machine due to the replicas it stores.

for file f in F do
if rf > rdesiredf then

Delete Replicas . De-replicate
Update lm accordingly

for file f in F do
while rf < rdesiredf do

for blocks b ∈ f do
m∗ ← arg min(lm)∀ machines not having b
Replicate(b) at m∗

lm∗ ← lm∗ +
cf
rf

. Update load
rf ← rf + 1

two techniques that complement each other – (a) equally spread replication traffic across all
uplinks of racks, and (b) reduce the volume of replication traffic by trading network usage
for computation using compression of data.
While Replicating, Read From Many Sources: We adopt the following simple approach
to spread replication traffic equally across all the racks. Suppose the number of replicas
increases from rold to rnew. The old replicas equally distribute the load of creating new
replicas among themselves. Each old replica is a source for d rnew−rold

rold
e new replicas. In the

case of rnew

rold
≤ 2, each rack with old replicas will have only one copy of the block flowing over

their uplinks at a time.
When the increase in number of replicas is greater than 2, Scarlett starts from rold and

increases the replication factor in steps of two, thereby doubling the number of sources in
every step. This strategy ensures that no more than a logarithmic number of steps are
required to complete the replication while also keeping the per-link cost for each block being
replicated a constant independent of the number of desired replicas.
Compress Data Before Replicating: Recent trends in datacenter hardware and data
patterns point to favorable conditions for data compression techniques. Data compression
techniques tradeoff computational overhead for network bandwidth [76]. However, the trend
of multiple cores on servers (typical datacenter servers now have 8 cores) presents spare
cores that can be devoted for compression/decompression purposes. Observations of low
utilization in datacenters support this claim [62]. Also, the primary driver of MapReduce jobs
are large text data blobs of structured data (e.g., web crawls) [3] which can be substantially
compressed.

Libraries for data compression are already used by MapReduce frameworks. Hadoop,
the open-source version of MapReduce, includes two compression options [30]. The gzip codec
implements the DEFLATE algorithm, a combination of Huffman encoding and Lempel-Ziv
1977 (LZ77). The other option is a variant of LZ77 known as LZO. Dryad supports similar

Section 2.4. Scarlett: Diffusing Hotspots 35

����� �������

��	
���

����� ����

��������������

���	����

����������������

� �����	�������

�����������

�����������

� ����
����� ����

���

��

��������

��	
���

����	����

 ��!�� "���������������

��	
����� ���#������	�����

Figure 2.17: Scheduling of tasks, and the different approaches to deal with conflict
for slots due to data locality. Scarlett tries to shift the focus to the ”YES” part
of the decision process by preferentially replicating popular content.

schemes. Since replication of files is not in the critical path of job executions, our latency
constraints are not rigid. With the goal of minimizing network traffic, we employ compression
schemes with highest reduction factors albeit at the expense of computational overhead for
compression and decompression. We present benchmarks of a few compression schemes as
well as the advantages of compressing replication data in §2.5.
Lazy Deletion: Scarlett deletes needless replicas lazily, i.e., by overwriting it when another
block or replica that needs to be written to disk. By doing so, the cost to delete is negligible.
To ensure that these needless replicas do not contribute unexpected load, they are removed
from the list of available replicas.

2.4.3 Effect of Replicas on Frameworks

In this section, we describe how schedulers in frameworks benefit from extra replicas of
popular data blocks.

There is a growing trend towards sharing of clusters for economic benefits (e.g., as
mentioned in [4]). This naturally raises questions of fairness and MapReduce job managers
enforce weighted distribution of resources between the different jobs [56], reflecting the rel-
ative importance of jobs. Each job is entitled to a legitimate quota of slots. However, each
of the frameworks allow jobs to use more than their legitimate share subject to availability,
called bonus slots. This reduces idling of resources and improves throughput of the cluster.

A natural question that arises is, how to deal with a bonus task when a legitimate request
arrives for its slot? Job managers confront this question more frequently when dealing with
tasks with data locality constraints. Despite the presence of free slots, locality constraints
lead to higher contention for certain machines (§2.4.1). Proposed and deployed solutions to
dealing with this fall between the following two options: evict the task running on a bonus
slot [56], force the newly-arrived task to compromise by running elsewhere [52]. In practice,

Section 2.4. Scarlett: Diffusing Hotspots 36

Figure 2.18: The probability of finding a replica on a free machine for different
values of file replication factor and cluster utilization.

both options wait for a brief period for the bonus task to finish (e.g., as in [104]). Figure 2.17
shows the decision process for contention resolution in different MapReduce frameworks.
Each of these solutions are suited to specific environments depending on the service-level
agreement constraints, duration of tasks, congestion of network links and popularity skew
of input data (elaborated in §2.6). A relative comparison of these solutions is orthogonal
to this work; we intend to minimize the occurrence of such contentions in the first place
by replicating the popular files thereby ensuring that enough machines with replicas are
available.

We start with a simple analysis that demonstrates the intuition behind how increased
replication reduces contention. With m machines in the cluster, k of which can be used
to run, the probability of finding one of r replicas of a file on the available machines is
1 − (1 − k

m
)r. This probability increases with the replication factor r, and decreases with

cluster utilization (1− k
m

).
Figure 2.18 plots the results of a numerical analysis to understand how this probability

changes with replication factors and cluster utilizations. At a cluster utilization of 80%, with
the current replication factor (r=3), we see that the probability of finding a replica among
the available machines is less than half. Doubling the replication factor raises the probability
to over 75%. Even at higher utilizations of 90%, a file with 10 replicas has a 60% chance
of finding a replica on a free machine. By replicating files proportionally to their number of
concurrent accesses, Scarlett improves the chances of finding a replica on a free machine.

We now proceed to look at the effect of contention on the Dryad and Hadoop frameworks.

Dryad

Dryad’s scheduler pre-emptively evicts a bonus task when a legitimate task makes a
request for its slot. In the Dryad cluster under observation, bonus tasks have a 30s notice
period before being evicted. Here, we refer to the legitimate and bonus tasks as evictor and
evicted tasks respectively.

Using Dryad logs from Microsoft Bing’s clusters, we quantify the magnitude of the

Section 2.4. Scarlett: Diffusing Hotspots 37

Figure 2.19: Ideal improvement in job completion times if eviction of tasks did
not happen.

problem due to evictions.
Eviction of Tasks: Of all tasks that run on the cluster, 21.1% of them end up being
evicted. Further, an overwhelming majority of the evicted tasks (98.2%) and the evictor
tasks (93%) are from map phases. These tasks can execute elsewhere were more replicas
available. Reclaiming resources used by killed tasks will reduce the load on the cluster. As
a second-order effect, we see from Figure 2.18, that the probability of finding a replica on
the available machines improves with lower utilization. In addition, the spare resources can
be used for speculative executions to combat outliers.
Inflation of Job Durations: Figure 2.19 plots the ideal improvement in completion times
for the jobs in the cluster if all evicted tasks were left to execute to completion and did not
have to be re-executed and the evictor tasks achieved locality too. The potential median
and third-quartile improvements are 16.7% and 34.1% respectively. In large production
clusters, this translates to millions of dollars of savings. We see that the improvements by
hypothetically avoiding evictions by only the map tasks is nearly the same (median of 15.2%)
as when all evictions are avoided.

Correlation of evictor tasks and files: Figure 2.20 explores the correlation between evic-
tor tasks and the characteristics of the input files they work on – access count, concurrency
and size. For clarity, we plot only the top 160 files contributing to evictions, out of a total
of 16000 files (or 1%) – these account for 65% of the evictor tasks. As marked in the figure,
we see that the files that contribute the most to evictor tasks are directly correlated with
popularity – high access counts as well as concurrency. High concurrency naturally leads to
contention and eviction while more accesses imply more tasks run overall on them and hence
greater probability of evictions. In addition, the worst sources of evictor tasks also are the
bigger files. The 1% of the files plotted in Figure 2.20 contribute to a disproportionate 35%
of the overall storage’s size and account for 65% of all evictions. This validates our design
choice in §2.4.2 where we order the files in descending order of size before distributing the
replication budget.

That evictions happen even in the presence of idle computational resources points to

Section 2.4. Scarlett: Diffusing Hotspots 38

�

��

��

��

��

���

�

��

��

��

��

��

��

	�

� �� �� ��� ���

���

����������

�����������

�������

�
��
�
��
�
�
��
�
��
�
�
��
�

�
�

�
��
��
�
�
��
�
��
��
�
��
�

�

Figure 2.20: Correlation between file characteristics (y1) and eviction of tasks.
We plot only the top 1% of the eviction-causing files for clarity. The cumulative
number of evictor tasks are plotted on the right axis (y2). Popular files directly
correlate with more evictions. Large files also correlate with evictions – the 1%
of the files in this figure account for 35% of the overall storage, and 65% of
overall evictions.

evictions being primarily due to contention for popular data.
Our results in §2.5 show that Scarlett manages to reduce evictions by 83% in Dryad

jobs.

Hadoop

Hadoop’s policy of dealing with contention for slots is to force the new task to forfeit
locality. Delay Scheduling [104] improves on this default policy by making tasks wait briefly
before deciding to cede locality. The data from Facebook’s Hadoop logs in [104] shows that
small jobs (which constitute 58% of all Hadoop jobs) achieve only 5% node locality and 59%
rack locality.

As described earlier, Scarlett’s replication reduces contention and provides more oppor-
tunities for map tasks to attain machine or rack locality. Storing more replicas of popular
files provides more machine-local slots (§2.4.2) while spreading out replicas across racks and
preventing concentration of popularity (§2.4.2) facilitates rack locality when machine locality
is not achievable. Our evaluation in §2.5 shows a 45% increase in locality for map tasks in
Hadoop jobs.

We believe that data locality will continue to be a preference in future frameworks built
on Hadoop thereby making Scarlett’s replication policies generically applicable for contention
avoidance of slots.

Section 2.5. Evaluation 39

Bin Tasks % of Jobs % of Resources
Facebook Bing Facebook Bing

1 1–10 85% 43% 8% 6%
2 11–50 4% 8% 1% 5%
3 51–150 8% 24% 3% 16%
4 151–500 2% 23% 12% 18%
5 > 500 1% 2% 76% 55%

Table 2.1: Job size distributions. The jobs are binned by their sizes in the scaled-
down Facebook and Bing workloads.

2.5 Evaluation

We built PACMan along with Scarlett’s popularity-based replication, and modified
HDFS [6] to leverage PACMan’s caching service. The prototype is evaluated on a 100-
node cluster on Amazon EC2 [2] using workloads derived from the Facebook and Bing traces
(§1.3). To compare at a larger scale against a wider set of idealized caching techniques, we
use the trace-driven simulator that performs a detailed replay of task logs. We first describe
our evaluation setup before presenting our results.

2.5.1 Setup

Cluster: We deploy our prototype on 100 Amazon EC2 nodes, each of them “double-extra-
large” machines [2] with 34.2GB of memory, 13 cores and 850GB of storage. PACMan is
allotted 20GB of cache per machine; we evaluate PACMan’s sensitivity to cache space in
§2.5.5.
Compared Schemes: Our implementation and simulator replaced blocks in cache using
LIFE and LFU-F,
Metrics: We evaluate PACMan on two metrics that it optimizes – average completion time
of jobs and efficiency of the cluster. The baseline for our deployment is Hadoop-0.20.2. The
trace-driven simulator compared with currently deployed versions of Hadoop and Dryad.
Job Bins: To separate the effect of PACMan’s memory locality on different jobs, we binned
them by the number of map tasks they contained in the scaled-down workload. Table 2.1
shows the distribution of jobs by count and resources. The Facebook workload is dominated
by small jobs – 85% of them have ≤ 10 tasks. The Bing workload, on the other hand, has the
corresponding fraction to be smaller but still sizable at 43%. When viewed by the resources
consumed, we obtain a different picture. Large jobs (bin-5), that are only 1% and 2% of all
jobs, consume a disproportionate 76% and 55% of all resources. The skew between small
and large jobs is higher in the Facebook workload than in the Bing workload.
The following is a summary of our results.

Section 2.5. Evaluation 40

A
ve

ra
g

e
 C

o
m

p
le

tio
n

T
im

e
 (

s)

77% 68% 41%

35%

32%

0

1000

2000

3000

4000

5000

1-10 11-50 50-150 150-500 >500

Hadoop

LIFE

Bin (#Tasks)

(a) Facebook Workload

77% 52%

51% 60%

37%

0

1000

2000

3000

4000

5000

1-10 11-50 50-150 150-500 >500

Hadoop

LIFE

Bin (#Tasks)

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n

T
im

e
 (

s
)

(b) Bing Workload

Figure 2.21: Average completion times with LIFE, for Facebook and Bing work-
loads. Relative improvements compared to Hadoop are marked for each bin.

• Average completion times improve by 53% with LIFE; small jobs improve by 77%.
Cluster efficiency improves by 54% with LFU-F (§2.5.2).

• Without the sticky policy of evicting from incomplete files, average completion time is
2× more and cluster efficiency is 1.3× worse (§2.5.3).

• LIFE and LFU-F are better than MIN in improving job completion time and cluster
efficiency, despite a lower cache hit-ratio (§2.5.4).

• PACMan’s performance improves by 15% when Scarlett’s selective replication is turned
on (§2.5.8).

2.5.2 PACMan’s Improvements

LIFE improves the average completion time of jobs by 53% and 51% in the two work-

Section 2.5. Evaluation 41

0

20

40

60

80

100

1-10 11-50 50-150 150-500 >500

Average Median 95th percentile
R

e
d

u
ct

io
n

 in

C
o

m
p

le
tio

n
 T

im
e

 (
%

)

Bin (#Tasks)

(a) Facebook Workload

0

20

40

60

80

100

1-10 11-50 50-150 150-500 >500

Average Median 95th percentile

Bin (#Tasks)

R
e

d
u

ct
io

n
 in

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

(b) Bing Workload

Figure 2.22: Distribution of gains for Facebook and Bing workloads. We present
the improvement in average, median and 95th percentile completion times.

loads. As Figure 4.16 shows small jobs (bin-1 and bin-2) benefit considerably. Jobs in bin-1
see their average completion time reduce by 77% with the gains continuing to hold in bin-2.
As a direct consequence of the sticky policy, 74% of jobs in the Facebook workload and
48% of jobs in the Bing workload meet the all-or-nothing constraint, i.e.,all their tasks being
memory local. Large jobs benefit too (bin-5) seeing an improvement of 32% and 37% in the
two workloads. This highlights LIFE’s automatic adaptability. While it favors small jobs,
the benefits automatically spill over to large jobs when there is spare cache space.

Figure 4.17c elaborates on the distribution – median and 95th percentile completion
times – of LIFE’s gains. The encouraging aspect is the tight distribution in bin-1 with LIFE
where the median and 95th percentile values differ by at most 6% and 5%, respectively.
Interestingly, the Facebook results in bin-2 and the Bing results in bin-3 are spread tighter
compared to the other workload.

LFU-F improves cluster efficiency by 47% with the Facebook workload and 54% with
the Bing workload. In large clusters, this translates to significant room for executing more

Section 2.5. Evaluation 42

0

20

40

60

80

100

1-10 11-50 50-150 150-500 >500

Facebook

Bing

Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

in

E
ff

ic
ie

n
c
y
 (

%
)

Figure 2.23: Improvement in cluster efficiency with LFU-F compared to Hadoop.
Large jobs contribute more to improving efficiency due to their higher frequency
of access.

Testbed Scale LIFE LFU-F
Facebook Bing Facebook Bing

EC2 100 53% 51% 47% 54%
Simulator 1000′s∗ 55% 46% 43% 50%
* Original cluster size

Table 2.2: Summary of results. We list improvement in completion time with
LIFE and cluster efficiency with LFU-F.

computation. Figure 2.23 shows how this gain in efficiency is derived from different job bins.
Large jobs have a higher contribution to improvement in efficiency than the small jobs. This
is explained by the observation in §2.3.1 that large files are more frequently accessed.

An interesting question is the effect LIFE and LFU-F have on the metric that is not
their target. With LIFE in deployment, cluster efficiency improves by 41% and 43% in the
Facebook and Bing workloads. These are comparable to LFU-F because of the power-law
distribution of job sizes. Since small jobs require only a little cache space, even after favoring
their inputs, there is space remaining for the large (frequently accessed) files. However, the
power-law distribution results in LFU-F’s poor performance on average completion time.
Average completion time of jobs improves by only 15% and 31% with LFU-F. Favoring the
large frequently accessed files leaves insufficient space for small jobs, whose improvement has
the highest impact on average completion time.

Overall, we see that memory local tasks run 10.8× faster than those that read data from
disk.
Simulation: We use the trace-driven simulator to assess PACMan’s performance on a larger
scale of thousands of machines (same size as in the original clusters). The simulator uses
20GB of memory per machine for PACMan’s cache. LIFE improves the average completion

Section 2.5. Evaluation 43

0

20

40

60

80

100

1 2 3 4 5

LIFE

LIFE [No-Sticky]
R

e
d

u
c
ti
o

n
 i
n

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

Bin (#Tasks)

(a) Facebook

0

20

40

60

80

100

1 2 3 4 5

LIFE

LIFE [No-Sticky]

R
e

d
u

c
ti
o

n
 i
n

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

Bin (#Tasks)

(b) Bing

Figure 2.24: Sticky policy. LIFE [No-Sticky] evicts the largest file in cache, and
hence is worse off than LIFE.

times of jobs by 58% and 48% for the Facebook and Bing workloads. LFU-F’s results too
are comparable to our EC2 deployment with cluster efficiency improving by 45% and 51% in
the two workloads. This increases our confidence in the large-scale performance of PACMan
as well as our methodology for scaling down the workload. Table 4.2 shows a comparative
summary of the results.

2.5.3 LIFE and LFU-F

In this section, we study different aspects of LIFE and LFU-F. The aspects under focus
are the sticky policy, approximation of wave-widths to file size, and using whole file inputs
instead of whole job inputs.
Sticky Policy: An important aspect of LIFE and LFU-F is its sticky policy that prefers
to evict blocks from already incomplete files. We test its value with two schemes, LIFE[No-
Sticky] and LFU-F[No-Sticky]. LIFE[No-Sticky] and LFU-F[No-Sticky] are simple modifica-
tions to LIFE and LFU-F to not factor the incompleteness while evicting. LIFE[No-Sticky]
evicts the file with the largest wave-width in the cache, LFU-F[No-Sticky] just evicts blocks
from the least frequently accessed file. Ties are broken arbitrarily.

Figure 2.24 compares LIFE[No-Sticky] with LIFE. Large jobs are hurt most. The per-
formance of LIFE[No-Sticky] is 2× worse than LIFE in bin-4 and 3× worse in bin-5. Inter-
estingly, jobs in bin-1 are less affected. While LIFE and LIFE[No-Sticky] differ in the way
they evict blocks of the large files, there are enough large files to avoid disturbing the inputs
of small jobs.

LFU-F[No-Sticky]’s improvement in efficiency is 32% and 39% for the two workloads,
sharply reduced values in contrast to LFU-F’s 47% and 54% with the Facebook and Bing
workloads. These results strongly underline the value of coordinated replacement in PACMan

Section 2.5. Evaluation 44

0

20

40

60

80

100

1 2 3 4 5

LIFE LIFE~

R
e

d
u

c
ti
o

n
 i
n

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

Bin (#Tasks)

(a) LIFE∼ vs. LIFE – Face-
book

0

20

40

60

80

100

1 2 3 4 5

LIFE LIFE~

Bin (#Tasks)

R
e

d
u

c
ti
o

n
 i
n

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

(b) LIFE∼ vs. LIFE – Bing

Figure 2.25: Approximating LIFE to use file sizes instead of wave-widths. Accu-
rately estimating wave-widths proves important for large jobs.

by looking at global view of the cache.
Wave-width vs. File Sizes: As alluded to in §2.3.3, we explore the benefits of using file
sizes as a substitute for wave-width. The intuition is founded on the observation in §2.3.1
(Figure 2.8) that wave-widths roughly correlate with file sizes. We call the variant of LIFE
that uses file sizes as LIFE∼. The results in Figure 2.25 shows that while LIFE∼ keeps up
with LIFE for small jobs, there is significant difference for the large jobs in bin-4 and bin-5.
The detailed calculation of the wave-widths pays off with improvements differing by 1.7×
for large jobs.
Whole-jobs: Recall from §2.2.2 and §2.3.4 that our desired policy is to retain inputs of as
many whole job inputs as possible. As job-level information is typically not available at the
file system or caching level, for ease and cleanliness of implementation, LIFE and LFU-F
approximate this by retaining as many whole files as possible.

Evaluation shows that LIFE is on par with the eviction policy that retains whole job
inputs, for small jobs. This is because small jobs typically tend to operate on single files,
therefore the approximation does not introduce errors. For larger jobs, that access multiple
files, LIFE takes a 11% hit in performance. The difference due to LFU-F using whole files
instead of whole job inputs is just a 2% drop in efficiency. The comparable results make us
conclude that the approximation is a reasonable trade-off for the significant implementation
ease.

2.5.4 Traditional Cache Replacement

Our prototype also implements traditional cache replacement techniques like LRU and
LFU. Figure 2.26 and Table 2.3 compare LIFE’s performance. Table 2.4 contrasts LFU-
F’s performance. LIFE outperforms both LRU and LFU for small jobs while achieving

Section 2.5. Evaluation 45

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���0

20

40

60

80

100

1-10 11-50 50-150 150-500 >500

LIFE LFU LRU
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� MIN

R
e

d
u

ct
io

n
 in

 A
ve

ra
g

e

C
o

m
p

le
tio

n
 T

im
e

 (
%

)

Bin (#Tasks)

(a) Facebook Workload

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��0

20

40

60

80

100

1-10 11-50 50-150 150-500 >500

LIFE LFU LRU
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� MIN

Bin (#Tasks)

R
e

d
u

ct
io

n
 in

 A
ve

ra
g

e

C
o

m
p

le
tio

n
 T

im
e

 (
%

)

(b) Bing Workload

Figure 2.26: Comparison between LIFE, LFU-F, LFU, LRU and MIN cache re-
placements.

comparable performance for large jobs. Likewise, LFU-F is better than LRU and LFU in
improving cluster efficiency.

Interestingly, LIFE and LFU-F outperform even MIN [26], the optimal replacement
algorithm for cache hit-ratio. MIN deletes the block that is to be accessed farthest in the
future. As Figure 2.26 shows, not taking the all-or-nothing constraint of jobs into account
hurts MIN, especially with small jobs. LIFE is 7.1× better than MIN in bin-1 and 2.5×
better in bin-3 and bin-4. However, MIN’s performance for bin-5 is comparable to LIFE.
As Table 2.4 shows, the sticky policy also helps in LFU-F outperforming MIN in improving
cluster efficiency.

Overall, this is despite a lower cache hit-ratio. This underscores the key principle and
differentiator in LIFE and LFU-F – coordinated replacement implementing the sticky policy,
as opposed to simply focusing on hit-ratios.

Section 2.5. Evaluation 46

Scheme Facebook Bing
% Job Hit % Job Hit
Saving Ratio (%) Saving Ratio (%)

LIFE 53% 43% 51% 39%
MIN 13% 63% 30% 68%
LRU 15% 36% 16% 34%
LFU 10% 47% 21% 48%

Table 2.3: Performance of cache replacement schemes in improving average com-
pletion times. LIFE beats all its competitors despite a lower hit-ratio.

Scheme Facebook Bing
% Cluster Hit % Cluster Hit
Efficiency Ratio (%) Efficiency Ratio (%)

LFU-F 47% 58% 54% 62%
MIN 40% 63% 44% 68%
LRU 32% 36% 23% 34%
LFU 41% 47% 46% 48%

Table 2.4: Performance of cache replacement schemes in improving cluster effi-
ciency. LFU-F beats all its competitors despite a lower hit-ratio.

2.5.5 Cache Size

We now evaluate PACMan’s sensitivity to available cache size (Figure 2.27) by varying
the budgeted cache space at each PACMan client varies between 2GB and 32GB. The en-
couraging observation is that both LIFE and LFU-F react gracefully to reduction in cache
space. As the cache size reduces from 20GB on to 12GB, the performance of LIFE and
LFU-F under both workloads hold to provide appreciable reduction of 35% in completion
time and 29% improvement in cluster efficiency, respectively.

For lower cache sizes (≤ 12GB), the workloads have a stronger influence on performance.
While both workloads have a strong heavy-tailed distribution, recall from Table 2.1 that the
skew between the small jobs and large jobs is higher in the Facebook workload. The high
fraction of small jobs in the Facebook workload ensures that LIFE’s performance drops much
more slowly. Even at lower cache sizes, there are sufficient small jobs whose inputs can be
retained by LIFE. Contrast with the sharper drop for caches sizes ≤ 12GB for the Bing
workload.

LFU-F reacts more smoothly to decrease in cache space. Unlike job completion time,
cluster efficiency improves even with incomplete files; the sticky policy helps improve it. The
correlation between the frequency of access and size of files (§2.3.1), coupled with the fact
that the inputs of the large jobs are bigger in the Facebook workload than the Bing workload,

Section 2.5. Evaluation 47

0

10

20

30

40

50

60

0 8 16 24 32

Facebook

Bing
R

e
d

u
c
ti
o

n
 i
n

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

Cache per machine (GB)

(a) LIFE

0

10

20

30

40

50

60

0 8 16 24 32

Facebook

Bing

Im
p

ro
v
e

m
e

n
t

in

C
lu

s
te

r
E

ff
ic

ie
n

c
y
 (

%
)

Cache per machine (GB)

(b) LFU-F

Figure 2.27: LIFE’s and LFU-F’s sensitivity to cache size.

leads to LFU-F’s performance deteriorating marginally quicker with reducing cache space in
the Facebook workload.

2.5.6 Scalability

We now probe the scalability limits of the PACMan coordinator and client. The client’s
main functionality is to provide and cache blocks for tasks. We measure the throughput
when tasks communicate with the client and latency when clients deal with the coordinator.
PACMan Client: We stress the PACMan client to understand the number of simultaneous
tasks it can serve before its capacity saturates. Each task reads a block from the client’s
cache. Figure 2.28a reports the aggregate throughput for block sizes of 64MB, 128MB and
256MB. For block sizes of 128MB, we see that the client saturates at 10 tasks. Increasing the
number of tasks beyond this point results in no increase in aggregate throughput. Halving
the block size to 64MB only slightly nudges the saturation point to 12 tasks. We believe this
is due to the overheads associated with connection management. Connections with 256MB
blocks peak at 8 tasks beyond which the throughput stays constant. The set of block sizes we
have tested represent the commonly used settings in many Hadoop installations. Also, since
Hadoop installations rarely execute more than 8 or 10 map tasks per machine, we conclude
that our client scales sufficiently to handle the expected load.
PACMan Coordinator: Our objective is to understand the latency added to the task
because of the PACMan client’s communication with the PACMan coordinator. Since we
assume a single centralized coordinator, it is crucial that it supports the expected number
of client requests (block updates and LIFE eviction). We vary the number of client re-
quests directed at the server per second and observe the average latency to service those
requests. As Figure 2.28b shows, the latency experienced by the requests stays constant at
∼1.2ms until 10,300 requests per second. At this point, the coordinator’s processing over-
head starts increasing the latency. The latency nearly doubles at around 11,000 requests
per second. Recently reported research on framework managers [23] show that the number

Section 2.5. Evaluation 48

0

2

4

6

8

10

12

0 4 8 12 16 20

64MB

128MB

256MB

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of Tasks

(a) PACMan Client

1

1.2

1.4

1.6

1.8

2

0 4000 8000 12000

����������

L
a

te
n

c
y
 (

m
s
)

(b) PACMan Coordinator

Figure 2.28: Scalability. (a) Simultaneous tasks serviced by client, (b) Simultane-
ous client updates at the coordinator.

of requests handled by the centralized job managers of Hadoop is significantly less (3,200
requests/second). Since a task makes a single request to the coordinator via the client, we
believe the coordinator scales well to handle expected loads.

2.5.7 Using File Buffer Cache

We evaluate the extent of achievable gains using only the unmodified local file buffer
caches. For this purpose, we use a simplified implementation,PACMan OS. We turn off
the PACMan coordinator and all the clients. The job scheduler in Hadoop itself maintains
an estimate of the machines where each data block is cached in the local file buffer caches.
After scheduling each task, the job scheduler updates the corresponding input block’s cached
location to the machine that the task read its data off. Subsequent scheduling of tasks that
read the same input is preferably done for memory locality.4

Of interest to us is the buffer cache hit-ratio, i.e., fraction of data that is read from the
buffer cache. We compare PACMan OS with vanilla Hadoop. Hadoop does not explicitly
schedule tasks for memory locality. We verify whether a task read its data from cache or
disk using iostat [9] values recorded at the start and end of a task.

Figures 2.29a and 2.29b present hit-ratios for varying memory sizes per machine (2GB
to 20GB), indirectly controlling the buffer cache size. Note the low slope of the curve for
stock Hadoop – since it is agnostic to cache locations, it does not capitalize on more blocks
being cached as memory sizes increase. In both workloads, we see moderate difference in hit-
ratios for small cache sizes, while the two curves have a large divergence for higher memory
sizes. With limited memory, data is less likely to be retained in cache, so Hadoop’s policy of
scheduling tasks without being aware of their inputs’ cached locations does not cause much
harm. However, with larger memory sizes, where more blocks are likely to be retained in

4Blocks are assumed to expire off the cache after a time period; 30 minutes gave the maximum hit-ratio
in our experiments.

Section 2.5. Evaluation 49

0

5

10

15

20

25

30

0 4 8 12 16 20

H
it
-r

a
ti
o

 (
%

)

Machine Memory (GB)

Hadoop

PACMan_OS

(a) Facebook Workload

0
5
10
15
20
25
30
35

0 4 8 12 16 20

H
it
-r

a
ti
o

 (
%

)

Machine Memory (GB)

Hadoop

PACMan_OS

(b) Bing Workload

0
2
4
6
8

10
12
14

2 4 8 12 16 20

Facebook Bing

R
e

d
u

c
ti
o

n
 in

 A
v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

 (
%

)

Machine Memory (GB)

(c) Job Improvement

Figure 2.29: Using the local file buffer cache. We compare the hit-ratios ((a) and
(b)) and reduction in average completion time ((c)), between PACMan OS and
vanilla Hadoop.

cache, PACMan OS’s targeted scheduling stands out with a 2.2× and 3× difference in the
two workloads. A subtle point to note is that since blocks are cached at the source, vanilla
Hadoop’s performance would be similar to PACMan OS once all the three replicas of a block
are in their respective buffer caches. However, since majority of blocks have an access count
of ≤ 4, we do not have the luxury of cache misses (§2.3.1).

Notwithstanding the improved hit-ratio, we do not observe much improvement in com-
pletion times (Figure 2.29c). This supports our assertion that improving hit-ratios do not
necessarily accelerate parallel jobs.

Section 2.5. Evaluation 50

Figure 2.30: Improvement in data locality for tasks leads to median and third-
quartile improvements of 20.2% and 44.6% in job completion times, with forfeit-
ing in place.

2.5.8 Scarlett: Locality Improvement

Finally, we measure the benefits due to Scarlett’s selective replication of popular data
blocks. For this measurement, we use PACMan with LIFE as our baseline. We set Scarlett’s
parameters as follows: δ = 1, let TL range from 6 to 24 hours, set storage budget B = 10%
and rearrange once at the beginning of the ten hour run (TR ≥ 10 hours). As described
in §2.4.3, we implement both reactions when the requested slot is currently in use: forfeit
locality after a brief wait as well as evict running tasks.

Figure 2.30 plots the reduction in completion times of jobs. We see that completion
times improve by 20.2% and 44.6% at the median and 75th percentile respectively. This is
explained by the increase in fraction of map tasks that achieve locality. The fraction of map
tasks that achieve locality improves from 57% with vanilla HDFS to 83% with Scarlett, in
other words a 45% improvement.

With eviction in place, replicating popular files reduces the necessity for eviction and
wastage of work, in turn leading to jobs completing faster. The ideal improvement when
all evictions by map tasks are avoided is 15.2% at median, and Scarlett produces a 12.8%
median improvement. Here, we set δ = 1, TR = 12 hours, let TL range from 6 to 24 hours,
and set storage budget B = 10%. Figure 2.31 compares the ideal case with our replication
scheme where we obtain 84% of ideal performance at median. The ideal case contains no
evictions and at the same time assumes that all evictor tasks achieve locality.

A closer look reveals that by replicating popular content, Scarlett avoids 83% of all
evictions, i.e., the evictor tasks could be run on another machine containing a replica of their
input. Note that this number goes up to 93%, when we consider evictions by tasks operating
on the top hundred popular files, confirming the design choice in Scarlett to focus on the more
popular files. Increasing the storage budget provides marginal (but smaller improvements)
– with an increased storage budget of 20% Scarlett prevents 96% of all evictions.

Section 2.5. Evaluation 51

Figure 2.31: Increased replication reduces eviction of tasks and achieves a median
improvement of 12.8% in job completion times or 84% of ideal, with eviction in
place.

Sensitivity Analysis

We now analyze the sensitivity of Scarlett to the parameters of our learning algorithm–
rearrangement window, TR, and the cushion for replication, δ. TR decides how often data
is moved around, potentially impacting network performance of currently running jobs. δ
results in greater storage occupancy and more replication traffic.

Figure 2.32a compares the improvement in job completion times (with eviction) for
different rearrangement windows, i.e., TR = {1, 12, 24} hours. Interestingly, we see that
TR has little effect on the performance of jobs. Re-evaluating replication decisions once
a day is only marginally worse than doing it once every hour. This points to Scarlett’s
minimal interference on running jobs. It also points to the fact that most of the gains in
the observed workload accrue from replicating files that are consistently popular over long
periods. Results with forfeiting in place are similar. For TR values of 1, 5 and 10 hours, the
median improvements are 21.1%, 20.4% and 20.2% respectively. By default, we set TR to 12
hours, or rearrange files twice a day.

The replication allowance δ impacts performance. Changing δ from 0 to 1 improves
performance substantially, but larger values of δ have lower marginal increases. Figure 2.32b
shows that for δ values of 0, 1 and 2, the median reductions in job durations are 8.5%, 12.8%
and 13.8%. Note the improvement of 42% as δ changes from 0 to 1. Likewise, with forfeiting
in place, jobs see a 56% increase from 12.9% to 20.2% in median improvement in completion
time as we shift δ from 0 to 1. We believe this is because operating at the brim with a
replication factor equal to the observed number of concurrent accesses is inferior to having
a cushion, even if that were only one extra replica.

Figure 2.33 shows the cost of increasing δ. Values of storage overhead change upon
replication, i.e., once every TR=12 hours. δ = 2 results in a 24% increase in storage, almost
double of the overhead for δ = 1. Combined with the fact that we see the most improvement
when moving from δ from 0 to 1, we fix δ as 1.

Section 2.5. Evaluation 52

(a) Rearrangement Window
(TR)

(b) Replication Allowance (δ)

Figure 2.32: Sensitivity Analysis of TR and δ. Rearranging files once or twice a day
is only marginally worse than doing it at the end of every hour. We set TR as 12
hours in our system. On the other hand, δ plays a vital role in the effectiveness
of Scarlett’s replication scheme.

Storage Budget for Replication

Figure 2.34a plots reduction in job completion times for various budget values. Here,
we use the priority distribution, i.e., larger files are preferentially replicated over smaller
files within the budget. A budget of 10% improves performance substantially (by 88%)
over a 5% limit. As expected, the lower budget reduces storage footprint at the expense
of fewer files being replicated or a smaller replication factor for some files. The marginal
improvement is smaller as the budget increases to 15%. This indicates that most of the value
from replication accrues quickly, i.e., at small replication factors for files. Conversations with
datacenter operators confirm that 10% is a reasonable increase in memory usage for storing
inputs.

Note however that the improvement going from a budget of 2% to a budget of 5% is
smaller than when going from 5% to 10%. This is likely because the distribution policy used
by Scarlett is simple and greedy but not optimal. Likely, there are some files, replicating
which yields significantly more benefit per unit extra storage, that Scarlett fails to replicate
when budgets are small. However, these inefficiences go away with a slightly larger budget

Section 2.5. Evaluation 53

Figure 2.33: Increasing the value of the replication allowance (δ) leads to Scarlett
using more storage space. We fix δ as 1.

value of 10%, and we choose to persist with the simpler algorithm.
With forfeiting in place, jobs (Figure 2.34b) exhibit a similar trend. The increase in

median completion time when moving from a budget of 5% to 10% is much higher (120%).
This indicates that how Hadoop deals with contentions (by moving tasks elsewhere) is likely
more sensitive to the loss of locality when popular files are not replicated.

Priority vs. Round-robin Distribution: Recall from §2.4.2 that the replication budget
can be spread among the files either in a priority fashion – iterate through the files in
decreasing order of size, or distributed iteratively in a round-robin manner. Figure 2.35a
plots the performance of jobs with respect to both these allocations. For a replication
budget of 10%, we observe that the priority allocation gives a median improvement of 12.8%
as opposed to 8.4% with round-robin allocation, or a 52% difference. This is explained
by our causal analysis in Figure 2.13 and Figure 2.20 that shows that large files account
for a disproportionate fraction of the evicting tasks while also experiencing high levels of
concurrent accesses. Hence, giving them a greater share of the replication budget helps
avoid more evictions. Hadoop jobs exhibit a greater difference of 63% between the two
distributions showing greater sensitivity to loss of locality (Figure 2.35b).

However, the difference in advantage between the two distributions are negligible at
small replication budgets. As we see in Figure 2.35a, the limited opportunity to replicate
results in there being very little to choose between the two distribution strategies.

Increase in Network Traffic

For δ = 1, the maximum increase in uncompressed network traffic during rearrangement
of replicas is 24%. Using the PPMVC compression scheme [90], this reduces to an acceptable
overhead of 0.9%.

We also present micro-benchmarks of various compression techniques. Table 2.5 lists
the compression and de-compression speeds as well as the compression ratios achieved by a

Section 2.5. Evaluation 54

(a) Eviction

�

��

��

��

��

���

��� � �� �� �� �� 	� ��

�����	�

��������

�
�
�
��
��
�
�
��
�
��
��
�
�

������������������� !"������#� �

(b) Forfeit

Figure 2.34: Low budgets lead to little fruitful replication. On the other hand, as
the graph below shows, budgets cease to matter beyond a limit.

Scheme Throughput (Mbps) Compression
Compress De-compress Factor

gzip 144 413 12-13X
bzip2 9.7 88.2 19-20X

LZMA 3.6 375 22-23X
PPMVC 30.2 31.4 26-27X

Table 2.5: Comparison of the computational overhead and compression factors of
compression schemes.

few compression algorithms [76,90]. There is a clear trend of more computational overhead
providing heavier compression. Given the flexible latency constraints for replication and low
bandwidth across racks, Scarlett leans toward the choice that results in the least load on the
network.

Section 2.6. Related Work 55

(a) Eviction

�

��

��

��

��

���

��� � �� �� �� �� 	� ��

��������

��������

�
�
�
��
��
�
�
��
�
��
��
�

���������������� !"�����#� �

(b) Forfeit

Figure 2.35: Priority distribution of the replication budget among the files im-
proves the median completion time more than round-robin distribution.

2.6 Related Work

There has been a humbling amount of work on in-memory storage and caches. While
our work borrows and builds up on ideas from prior work, the key differences arise from
dealing with parallel jobs that led to a coordinated system that improved job completion
time and cluster efficiency, as opposed to hit-ratio.

RAMCloud [57] and prior work on databases such as MMDB [51] propose storing all
data in RAM. While this is suited for web servers, it is unlikely to work in data-intensive
clusters due to capacity reasons – Facebook has 600× more storage on disk than aggregate
memory. Our work thus treats memory as a constrained cache.

Global memory systems such as the GMS project [11], NOW project [12] and others [40]
use the memory of a remote machine instead of spilling to disk. Based on the vast difference
between local memory and network throughputs, PACMan’s memory caches only serves
tasks on the local node. However, nothing in the design precludes adding a global memory
view. Crucially, PACMan considers job access patterns for replacement.

Web caches have identified the difference between byte hit-ratios and request hit-ratios,
i.e., the value of having an entire file cached to satisfy a request [22,31,78]. Request hit-ratios
are best optimized by retaining small files [96], a notion we borrow. We build up on it by
addressing the added challenges in data-intensive clusters. Our distributed setting, unlike

Section 2.6. Related Work 56

web caches, necessitate coordinated replacement. Also, we identify benefits for partial cache
hits, e.g., large jobs that benefit with partial memory locality. This leads to more careful
replacement like evicting parts of an incomplete file. The analogy with web caches would
not be a web request but a web page – collection of multiple web objects (.gif, .html). Web
caches, to the best of our knowledge, have not considered cache replacment to optimize at
that level.

LIFE’s policy is analogous to servicing small requests in queuing systems, e.g., web
servers [69]. In particular, when the workload is heavy-tailed, giving preference to small
requests hardly hurts the big requests.

Distributed filesystems such as Zebra [53] and xFS [21] developed for the Sprite operating
system [74] make use of client-side in-memory block caching, also suggesting using the cache
only for small files. However, these systems make use of relatively simple eviction policies and
do not coordinate scheduling with locality since they were designed for usage by a network
of workstations.

Cluster computing frameworks such as Piccolo [81] and Spark [72] are optimized for
iterative machine learning workloads. They cache data in memory after the first iteration,
speeding up further iterations. The key difference with PACMan is that since we assume
no application semantics, our cache can benefit multiple and a greater variety of jobs. We
operate at the storage level and can serve as a substrate for such frameworks to build upon.

The principle of “replication and placement” of popular data has been employed in
different contexts in prior work. Our contributions are to (i) identify (and quantify) the
content popularity skew in the MapReduce scenario using production traces, (ii) show how
the skew causes contention in two kinds of MapReduce systems (ceding locality for Hadoop
vs. eviction for Dryad), and (iii) design solutions that operate under a storage budget
for large data volumes common in MapReduce systems. While we have evaluated Scarlett
primarily for map tasks, we believe the principle of proactively replicating content based
on its expected concurrent access can be extended to intermediate data too (e.g., as in
Nectar [50] that stores intermediate data across jobs).

Much recent work focuses on the tussle between data locality and fairness in MapReduce
frameworks. Complementary to Scarlett, Quincy [56] arbitrates between multiple jobs. Delay
Scheduling [104] on the other hand supports temporary relaxation of fairness while tasks wait
to attain locality. This can alleviate contention by steering tasks away from a hotspot. It
however makes some assumptions that do not hold universally: (a) task durations are short
and bimodal, and (b) one task queue per cluster (as in Hadoop). In the Cosmos clusters
at Microsoft, tasks are longer (median of 145s as opposed to the 19s in [104]) to amortize
overheads in maintaining task-level state at the job manager, copying task binaries etc.
Task lengths are also more variable in Dryad owing to diversity in types of phases. Finally,
Dryad uses one task-queue per machine, further reducing the load at the job scheduler to
improve scalability. Scarlett does not rely on these assumptions and addresses the root cause
of contention by identifying and replicating popular content. Furthermore, Scarlett can be
beneficially combined with both Delay Scheduling and Quincy.

The idea of replicating content in accordance to popularity for alleviating hotspots has

Section 2.6. Related Work 57

been used in the past. Caching popular data and placing it closer to the application is
used in various content distribution networks (CDNs) [1, 5] in the Internet. Beehive [82]
proactively replicates popular data in a DHT to provide constant time look-ups in peer-to-
peer overlays. Finally, dynamic placement of popular data has also been recently explored
in the context of energy efficiency [95]. To the best of our knowledge, ours is the first
work to understand popularity skew and explore the benefits of dynamic data replication in
MapReduce clusters. The context of our work is different as file access patterns and sizes
in MapReduce significantly differ from web access patterns. It differs from Beehive due to
the different application semantics. While Beehive is optimized for lookups, Scarlett aims
at parallel computation frameworks like MapReduce. Further, our main goal is to increase
performance rather than be energy efficient, so we aim for spreading data across nodes as
opposed to compaction.

Bursts in data center workloads often result in peak I/O request rates that are over an
order of magnitude higher than average load [35]. A common approach to deal with such
bursts is to identify overloaded nodes and offload some of their work to less utilized nodes [35,
44]. In contrast, our approach is geared towards a read-heavy workload (unlike [35]), common
to MapReduce clusters. While Dynamo [44] reactively migrates (not replicate) popular data,
we replicate and do so proactively, techniques more suited to our setting. Recent work [27,92]
on providing semantic context to the file system can be leveraged to implement our replication
policies.

A wide variety of work has also been done in the area of predictive pre-fetching of
popular files based on historical access patterns [33] as well as elaborate program and user
based file prediction models [101]. However, these are in the context of individual systems
and deal with small amounts of data unlike our setting with petabytes of distributed storage,
the replication and transfer of which require strict storage/network constraints.

Some prior work on dynamic database replication policies [91] is very similar in flavor to
ours. However, these policies are reactive in reference to application latency requirements.
Our work, on the other hand, focuses on designing proactive replication policies.

Finally, much recent work has gone into designs for full bisection bandwidth networks.
By suitably increasing the numbers of switches and links in the core, these designs ensure
that the network will not be the bottleneck for well-behaved traffic [15, 66]. Well-behaved
refers to the hose model constraint, which requires the traffic incoming to each machine to
be no larger than the capacity on its incoming network link. We note that Scarlett’s benefits
remain even if networks have full bisection bandwidth, since concurrent access of blocks
results in a bottleneck at the source machine that stores them. By providing more replicas
(as many as the predicted concurrent access), Scarlett alleviates this bottleneck.

58

Chapter 3

Intermediate Data

3.1 Introduction

Data-intensive jobs typically consist of DAGs of tasks with downstream tasks reading
the outputs written by upstream tasks. The communication patterns between tasks can be
varied ranging from simple one-to-one communication all the way to an all-to-all transfer.
Example scenarios are aggregation of outputs from a subset of upstream tasks (perhaps,
within a rack switch) to an shuffle for producing the final result (as with reduce tasks
reading map outputs in MapReduce [36] computations). The ability to construct such DAGs
of computations enables frameworks to support rich and varied applications.

A significant fraction of the lifetime of jobs is spent on intermediate phases, of which,
transferring the data down the DAG occupies a big part. Analysis of the Facebook jobs logs
show that 20% to 44% of a job’s duration is spent on intermediate phases. The numbers
are similar for Bing’s Dryad jobs. As a result, inefficiencies in intermediate phases delay
job completion. Of particular interest to us are network and disk based inefficiencies while
reading intermediate data.

Transferring data over the network can result in flows of a job facing contention with
other flows in the cluster as well as amongst themselves. A job relies on the completion
of multiple network flows, often a single task involves reading data from different places.
It follows from the all-or-nothing property described earlier that even if a subset of the
flows traverse contended routes in the network, the overall job’s completion suffers. Even
with reduction in over-subscription factors of datacenter networks [42], there is considerable
transient variation in congestion among different paths.

In our solution, Mantri, we maintain information about the currently active flows. New
tasks are scheduled such that their flows face the least contention while also taking care to
equalize the contention faced by all the tasks. We develop a detailed analytical model for
our task placement and approximate the NP-Hard problem with a simple heuristic suited
for online schedulers.

Another key aspect that influences the transfer of intermediate data is reliability of

Section 3.2. Workload Analysis 59

40

60

80

100

C
D

F
 %

 P
h

a
se

T
im

e

0

20

0 20 40 60 80 100

C
D

F
 %

 P
h

a
se

Ideal Redn. (%) in Completion Time

(62.8%)

Figure 3.1: For reduce phases, the reduction in completion time over the current
placement by placing tasks in a network-aware fashion.

accessing them. For reasons of efficiency, intermediate data is not stored in the distributed
file system, and hence not replicated. Cluster frameworks make this decision in the interest
of causing transient surges in storage as well as network traffic. In fact, if all intermediate
data were to be replicated, the overall network traffic in clusters will increase by 22% with
short-term spikes as high as 58%. The downside to not replicating the data, however, is that
loss of reliability. When the intermediate output is inaccessible, there is no copy to fall back.

Such inaccessibility can occur due to reasons of either disk unreliability (on problematic
machines) or unresponsiveness (on overloaded machines). The former occurs due to erratic
disk behaviors while the latter results in client processes catering the intermediate data not
responding even when the data is present. Consequently, the only option is to recompute
the upstream task that produced the output. The corresponding downstream task(s) wait
for the recomputation to complete before proceeding. Naturally, this leads to them lagging
behind the other tasks.

We selectively replicate intermediate outputs by both weighing the benefit due to avoid-
ing recomputation to the cost incurred (time and resources) in replication. Mantri uses sim-
ple estimates to model the network costs as well as predict impending failures in machines.
Evaluations show that Mantri is able to mitigate the effect of most of the recomputations.

3.2 Workload Analysis

We first quantify the deficiencies in state-of-the-art techniques in handling intermediate
data. We cover both techniques for handling network flows while reading the intermediate
data (e.g., reduce tasks) as well as the reliability of the intermediate data that is typically
stored without replication.

Crossrack Traffic: We find that reduce phases contribute over 70% of the cross rack

Section 3.2. Workload Analysis 60

20

40

60

80

100

1.1

1.2

1.3

1.4

CPU Ratio

Memory Ratio

#Recomputes
R

e
co

m
p

 U
ti

l
to

 A
v

g

C
u

m
u

la
ti

v
e

0

20

1

1.1

0 1000 2000 3000 4000
Machine Index

R
e

co
m

p

C
u

m
u

la
ti

v
e

Figure 3.2: The ratio of processor and memory usage when recomputations hap-
pen to the average at that machine (y1). Also, the cumulative percentage of
recomputations across machines (y2).

traffic in the cluster, while most of the rest is due to joins. We focus on cross rack traffic
because the network links upstream of the racks have less bandwidth than the cumulative
capacity of servers in the rack.

We find that crossrack traffic leads to outliers in two ways. First, in phases where
moving data across racks is avoidable (through locality constraints), a task that ends up in a
disadvantageous network location runs slower than others. Second, in phases where moving
data across racks is unavoidable, not accounting for the competition among tasks within the
phase (self-interference) leads to outliers. In a reduce phase, for example, each task reads
from every map task. Since the maps are spread across the cluster, regardless of where a
reduce task is placed, it will read a lot of data from other racks. Current implementations
place reduce tasks on any machine with spare slots. A rack that has too many reduce tasks
will be congested on its downlink leading to outliers.

Figure 3.1 compares the current placement with an ideal one that minimizes the cost of
network transfer. When possible it avoids reading data across racks, and if not, places tasks
such that their competition for bandwidth does not result in hotspots. In over 50% of the
jobs, reduce phases account for 17% of the job’s lifetime. For the reduce phases, the figure
shows that the median phase takes 62% longer under the current placement.

Bad and Busy Machines: We rarely find machines that persistently inflate runtimes.
Recomputations, however, are more localized. Half of them happen on 5% of the machines
in the cluster. Figure 3.2 plots the cumulative share of recomputes across machines on
the axes on the right. The figure also plots the ratio of processor and memory utilization
during recomputes to the overall average on that machine. The occurrence of recomputes
is correlated with increased use of resources by at least 20%. The subset of machines that
triggers most of the recomputes is steady over days but varies over weeks, likely indicative

Section 3.3. Network-Aware Placement 61

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

T
im

e
~

(m
in

u
te

s
)

Machine Id

model outliers recomputes

Figure 3.3: Clustering recomputations and outliers across time

of changing hotspots in data popularity or corruption in disks [24].
Figure 3.3 investigates the occurrence of “spikes” in outliers. We find that runtime

outliers (shown as stars) cluster by time. If outliers were happening at random, there should
not be any horizontal bands. Rather it appears that jobs contend for resources at some times.
Even at these busy times, other lightly loaded machines exist. Recomputations (shown as
circles) cluster by machine. When a machine loses the output of a task, it has a higher
chance of losing the output of other tasks.

Rarely does an entire rack of servers experience the same anomaly. When an anomaly
happens, the fraction of other machines within the rack that see the same anomaly is less
than 1

20
for recomputes, and 4

20
for runtime with high probability. So, it is possible to restart

a task, or replicate output to protect against loss on another machine within the same rack
as the original machine.

3.3 Network-Aware Placement

Reduce tasks, as noted before (§3.2), have to read data across racks. A rack with too
many reduce tasks is congested on its downlink and such tasks will straggle. Figure 3.4
illustrates a scenario where placing more reduce tasks on a rack leads to congestion. Input
(partitioned) is evenly distributed across three racks and each reduce task consumes its share
of the input from each rack. We have three reduce tasks to schedule across racks with equal
bandwidths. Assuming a partition size of p and equal uplink and downlink bandwidths of b,
the time taken for data transfer for the placement in the left is 4p/b whereas it is 2p/b when
tasks are spread out (right). Our intuition is to evenly distribute the load across the links
avoiding bottlenecks and considering network congestion.

Mantri approximates the optimal placement that relieves congestion by the following
greedy local algorithm. For a reduce phase, with n reduce tasks, Mantri determines r = {ri},
i = 1, · · · , n, the fraction of tasks assigned to rack i. Assume the fraction of map phase output
in the i’th rack to be di and the available bandwidths on the uplink and downlink to be ui

Section 3.4. Avoiding Recomputation 62

and vi respectively. For each i, compute two terms c2i−1 = (1−ri)di
ui

and c2i = ri(1−di)
vi

. The
first term is the ratio of outgoing traffic and available uplink bandwidth, and the second term
is the ratio of incoming traffic and available downlink bandwidth. The algorithm computes
the vector r = arg minr maxj cj, j = 1, · · · , 2n, that minimizes the maximum data transfer
time.

Note that the sizes of the map outputs in each rack, di, are known to the scheduler prior
to placing the tasks of the subsequent reduce phase.

The available bandwidths ui and vi change with time and as a function of other jobs
in the cluster. Rather than track the changes as an oracle could, Mantri estimates the
bandwidths as follows. Phases with small amount of data finish fast, and the bandwidths
can be assumed to be constant throughout the execution of the phase. Phases with large
amount of data take longer to finish, and the bandwidth averaged over their long lifetime is
assumed to be equal for all links. With these estimates, Mantri’s placement comes close to
the ideal in our experiments (see §3.5.1).

For phases other than reduce, Mantri complements the Cosmos policy of placing a task
close to its data [86]. By accounting for the cost of moving data over low bandwidth links
in tnew, Mantri ensures that no copy is started at a location where it has little chance of
finishing earlier thereby not wasting resources.

3.4 Avoiding Recomputation

To mitigate costly recomputations that stall a job, Mantri protects against interim data
loss by replicating task output. Mantri acts early by replicating those ouputs whose cost
to recompute exceeds the cost to replicate. Mantri estimates the cost to recompute as the
product of the probability that the output will be lost and the time to repeat the task.
The probability of loss is estimated for a machine over a long period of time. The time
to repeat the task is tnew with a recursive adjustment that accounts for the task’s inputs
also being lost. The cost to replicate is the time to move the data to another machine in
the rack. Figure 3.5 illustrates the calculation of tnew that takes the machines’ recompute
probabilities (ri’s), time taken by the tasks (ti’s) and recursively looks at prior phases. From
our model, expected cost of recomputation automatically decreases if data is replicated (left)
as both replicas have to be unavailable for recomputation, and increases if the input pattern
is many-to-one (middle) as the unavailability of any of the inputs stalls the task. We assume
that in the event of multiple inputs being lost, they can be recomputed in parallel since the
overall number of recomputes is small (Figure 4.2a). Recursively looking at prior phases
(right) makes us resilient to data loss across any of them.

To avoid excessive replication, Mantri limits the amount of data replicated to 10% of
the data processed by the job. This limit is implemented by granting tokens proportional to
the amount of data processed by each task. Task output that satisfies the above cost-benefit

Section 3.4. Avoiding Recomputation 63

(a)

(b)

Figure 3.4: Placement of reduce tasks across three racks. The rectangle blocks
indicate data partitions and rhombus boxes are reduce tasks. Placement (a)
results in the uplinks of unutilized racks as bottlenecks, marked with a dotted
circle. Placement (b) evenly spreads out the network load.

check is replicated only if an equal number of tokens are available. Tokens are deducted
upon each replication.

In §3.2, we saw that recomputations manifest closely spaced in time. When a recompute
is triggered by a machine due to its failure to serve data, Mantri considers this is as the onset
of a temporal problem and anticipates future requests to this machine to fail. Hence, all
the unread task outputs on that machine (of any job) is proactively generated by scheduling
speculative recomputations of the corresponding tasks elsewhere. Such speculative recompu-
tations either decrease or eliminate the wait time of a dependent task for lost input to be
regenerated.

Replication and speculative recomputation complement each other - long-term failure
probabilities of machines decide on replication, and speculative recomputation makes Mantri
agile to short-term errors - and well approximate the ideal scheme in our evaluation (§3.5.2),
in addition to judicious usage of resources.

Section 3.5. Evaluation 64

Task1 Task 2

t
new

= r
2
(1-r

1
)t

2
+

(r
2
r

1
)(t

2
+t

1
)

M11

M12

M2

r
1

= r11 x r12 r
1

= max(r
11

,… r
1n

)

t = max(t ,… t)

Task 2

M2
M11

M1n

Phase 1: {1,…n}

t
new

≤ r
2
(1-r

1
)t

2
+

(r
2
r

1
)(t

2
+t

1
)

1 11 1n

t
1

= max(t
11

,… t
1n

)

Task1 Task 2

t
new

= r
3
(1-r

2
) t

3
+

r
3
r

2
(1-r

1
)(t

3
+t

2
) +

r
3
r

2
r

1
(t

3
+t

2
+t

1
)

M1
M2

Task 3

M3

Figure 3.5: Expected Cost of Recomputation. Recompute probabilities of ma-
chines are marked ri. When data is replicated, the effective probability of loss
is reduced as we take the minimum (top left). Tasks with many-to-one input
patterns have high recomputation cost and are more valuable (top right). The
calculation goes recursively back in prior phases (bottom). Finally, the time to
replicate, trep is calculated based on the available rack-local bandwidth and data
is replicated only if trep < tnew.

3.5 Evaluation

3.5.1 Does Mantri improve placement?

Figure 3.6 plots the reduction in completion time due to Mantri’s placement of reduce
tasks as a CDF over all reduce phases in the dataset in Table 1.3. As before, the y-axes
weighs phases by their lifetime. The figure shows that Mantri provides a median speed up
of 60% or a 2.5× improvement over the current implementation, vindicating our choice of
monitoring and judiciously using the available resources (network bandwidths).

The figure also compares Mantri against strategies that estimate available bandwidths
differently. The IdealReduce strategy tracks perfectly the changes in available bandwidth of
links due to the other jobs in the cluster. The Equal strategy assumes that the available
bandwidths are equal across all links whereas Start assumes that the available bandwidths
are the same as at the start of the phase. We see a partial order between Start and Equal.

Section 3.5. Evaluation 65

40

60

80

100 Start

Equal

Mantri

IdealReduce

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

0 20 40 60 80 100

% Reduction in Completion Time

C
D

F
 %

P
h

a
se

(59.1%)

Figure 3.6: Compared to the current placement, Mantri’s network aware place-
ment speeds up the median reduce phase by 60%.

20

40

60

80

100

Dryad

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

1 6 11 16 21 26 31

Mantri

Ratio of slowest to median

task durations

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

Figure 3.7: Ratio of slowest to median task durations for Mantri and Dryad.

Short phases are impacted by transient differences in the available bandwidths and Start is
a good choice for these phases. However, these differences even out over the lifetime of long
phases for whom Equal works better. Mantri is a hybrid of Start and Equal. It achieves a
good approximation of IdealReduce without re-sampling available bandwidths.

Recall that outliers occur when tasks are placed such that some of them read data over
congested links (§3.3). Figure 3.7 plots the ratio of the slowest task duration to the median
duration, which roughly corresponds to the ratios in congestions of the network links. By
using the available bandwidths and data transfer patterns, Mantri ensures that the median
phase’s slowest task is just 5% more than its median, with the ratio of slow to median task
durations never exceeding 2. Dryad’s policy of placing tasks at any available slot results in
heavy manifestation of outliers with the ratio of slowest task to the median being 5.25 and
14.33 at 50th and 75th percentiles. We reiterate that identifying the cause of outliers, i.e.,
network congestion, helped in appropriate placement whereas duplication of tasks without

Section 3.5. Evaluation 66

40

60

80

100

Mantri

IdealRecomputeJo
b

 D
u

ra
ti

o
n

0

20

0 20 40 60 80 100

IdealRecompute

% Reduction in Completion Time

C
D

F
 %

Jo
b

Figure 3.8: By probabilistically replicating task output and recomputing lost data
before it is needed Mantri speeds up jobs by an amount equal to the ideal case
of no data loss.

40

60

80

100 Speculation Replication

Mantri

C
D

F
 %

 J
o

b
 D

u
ra

ti
o

n

0

20

40

0 20 40 60 80 100

(78%)(53%)(25%)

% Recomputes Eliminated

C
D

F
 %

 J
o

b
 D

u
ra

ti
o

n

Figure 3.9: Fraction of recomputations that are eliminated due to Mantri’s recom-
putation mitigation strategy, along with individual contributions from replica-
tion and speculative recomputation. Replication and speculative recomputation
contribute two-third and one-third of the eliminated recomputations, comple-
menting each other.

considering available bandwidths would not have helped.

3.5.2 Does Mantri help with recomputations?

The best possible protection against loss of output would (a) eliminate all the increase in
job completion time due to tasks waiting for their inputs to be recomputed and (b) do so with
little additional cost. Mantri approximates both goals. Fig. 3.8 shows that by selectively

Section 3.5. Evaluation 67

40

60

80

100

Replication

IdealRecomputeo
f

T
o

ta
l

T
ra

ff
ic

0

20

40

0 0.2 0.4 0.6 0.8 1

IdealRecompute

C
D

F
 %

o
f

T
o

ta
l

Increase in Traffic (%)

(a) Cost: Network Traffic

40

60

80

100

C
lu

st
e

r
R

e
so

u
rc

e
s

0

20

40

0 0.5 1 1.5 2 2.5 3

Increase in Cluster Resource(%)

C
D

F
 %

 C
lu

st
e

r
R

e
so

u
rc

e
s

(b) Cost: Cluster Time

Figure 3.10: The cost to protect against recomputes is fewer than a few percentage
points in both the extra traffic on the network and cluster time for speculative
recomputation.

replicating tasks that are more likely to have their inputs corrupted (by noting the origin
of the problem - problematic machines) and early action using speculatively recomputations
for data that has already been lost, Mantri achieves parity with IdealRecompute that has
perfect future knowledge of loss. The improvement in job completion time is 20% and 40%
at the 50th and 75th percentiles. As supporting evidence, we see that Mantri is successful in
eliminating the majority of recomputations. As Figure 3.9 shows, 78% of the median job’s
recomputations are eliminated. Note that despite some jobs having only a small fraction
of their recomputes eliminated, Mantri’s policy of estimating and protecting the output of
more valuable tasks ensures it is almost on par with IdealRecompute. Figure 3.9 also shows
the contribution of replication and speculative recomputation to the eliminated recomputa-
tions. The two techniques contribute roughly two-third and one-third towards the eilimated
recomputations, complementing each other.

Now we show that Mantri’s accurate predictions ensure that the improvements are de-
spite little increase in resource consumption. Fig. 3.10a shows that the extra network traffic
due to replication is (overall negligible and) comparable to a scheme that has perfect future
knowledge of which data is lost and replicates just that data. Mantri sometimes replicates
more data than the ideal, and at other times misses some tasks that should be replicated.
Fig. 3.10b shows that speculative recomputations take no more than a few percentage extra
cluster resources. We reinforce the accuracy of our predictions for replication and speculative
recomputations by observing their success rate, i.e., the task whose output was replicated or
speculatively recomputed did lose its output. Replication turns out to be accurate for 84%
of the tasks. The success rate of speculative recomputations increase with greater historical
knowledge. Speculative recomputations turn out to be right 76% of the time when we con-
sider the occurrence of a single recompute as a trigger but this rate goes up to 93% when we

Section 3.5. Evaluation 68

wait for two recomputes in the last minute window for scheduling speculative recomputes,
despite producing only an insignificant drop in improvement of completion times. We con-
sider the high success rate as a validation of our estimation of tnew, available replication
bandwidth and onset of failure for speculative recomputation.

69

Chapter 4

Run-time Contentions

4.1 Introduction

While the techniques thus far schedule tasks such that none of them are relatively dis-
advantaged, tasks can still face unexpected contentions during execution. Such contentions
occur due to complex requirements for resources including memory, disk and network. Tasks
facing such contentions consequently slow down and we refer to them as stragglers. Strag-
glers are tasks that run much slower than other tasks, and since a job finishes only when its
last task finishes, stragglers delay job completion.

Cluster managers combat stragglers by blacklisting problematic machines. Blacklisting
identifies machines in bad health (e.g., due to faulty disks) and avoids scheduling tasks
on them. The Facebook and Bing clusters, in fact, blacklist roughly 10% of their machines.
However, stragglers occur on the non-blacklisted machines, often due to intrinsically complex
reasons like IO contentions, interference by periodic maintenance operations and background
services, and hardware behaviors [10].

4.1.1 Speculation

An intuitive and effective way to deal with straggler tasks is speculation—launching
speculative copies for the slower tasks, where a speculative copy is simply a duplicate of the
original task. It then becomes a race between the original and the speculative copies.

The key to effective speculation is picking the right task to speculate at the right
time. Scheduling tasks to compute slots is a classic scheduling problem with known heuris-
tics [58,63,79]. These heuristics, unfortunately, do not directly carry over to our scenario for
the following reasons. First, they calculate the optimal scheduling order statically. Strag-
gling of tasks, on the other hand, is unpredictable and necessitates dynamic modification of
the priority ordering of tasks according to the approximation bounds. Second, traditional
scheduling techniques assign tasks to slots assuming every task to occupy only one slot.
Spawning a speculative copy, however, leads to the same task using two (or multiple) slots

Section 4.1. Introduction 70

simultaneously. Hence, this distills our challenge to dynamically weighing the gains due to
speculation against the cost of using extra resources for speculation.

Scheduling tasks with speculative copies is NP-Hard and devising good heuristics (i.e.,
with good approximation factors) is an open theoretical problem. Scheduling a speculative
copy helps make immediate progress by finishing a task faster. However, while not schedul-
ing a speculative copy results in the task running slower, many more tasks may be completed
using the saved slot. To understand this opportunity cost, consider a cluster with one unoc-
cupied slot and a straggler task. Letting the straggler complete takes five more time units
while a new copy of it would take four time units. While scheduling a speculative copy for
this straggler speeds it up by one time unit, if we were not to, that slot could finish another
task (taking five time units too).

We design a heuristic, Mantri, that performs speculation by carefully considering the
opportunity cost of the duplicate copy. It schedules a speculative copy only if doing so saves
both time and resources.

4.1.2 Cloning

Speculation techniques, however, face a fundamental limitation when dealing with small
jobs, i.e., jobs that consist of a few tasks. Such jobs typically get to run all their tasks at once.
Therefore, even if a single task is slow, i.e., straggle, the whole job is significantly delayed.
Small jobs are pervasive. Conversations with datacenter operators reveal that these small
jobs are typically used when performing interactive and exploratory analyses. Achieving
low latencies for such jobs is critical to enable data analysts to efficiently explore the search
space. To obtain low latencies, analysts already restrict their queries to small but carefully
chosen datasets, which results in jobs consisting of only a few short tasks. The trend of such
exploratory analytics is evident in Over 80% of the Hadoop jobs and over 60% of the Dryad
jobs are small with fewer than ten tasks 1 Achieving low latencies for these small interactive
jobs is of prime concern to datacenter operators.

While speculation techniques rely on comparing tasks of a job, any meaningful compar-
ison requires waiting to collect statistically significant samples of task performance. Such
waiting limits their agility when dealing with stragglers in small jobs as they often start all
their tasks simultaneously. The problem is exacerbated when some tasks start straggling
when they are well into their execution. Spawning a speculative copy at that point might
be too late to help.

We propose a different approach. Instead of waiting and trying to predict stragglers,
we take speculative execution to its extreme and propose launching multiple clones of every
task of a job and only use the result of the clone that finishes first. This technique is both
general and robust as it eschews waiting, speculating, and finding complex correlations. Such
proactive cloning will significantly improve the agility of straggler mitigation when dealing
with small interactive jobs.

1The length of a task is mostly invariant across small and large jobs.

Section 4.1. Introduction 71

pb Blacklisted Machines (%) Job Improvement (%)
5 min 1 hour 5 min 1 hour

0.3 4% 6% 7.1% 8.4%
0.5 1.6% 2.8% 4.4% 5.2%
0.7 0.8% 1.2% 2.3% 2.8%

Table 4.1: Blacklisting by predicting straggler probability. We show the fraction
of machines that got blacklisted and the improvements in completion times by
avoiding them.

Cloning comes with two main challenges. The first challenge is that extra clones might
use a prohibitive amount of extra resources. However, our analysis of production traces
shows a strong heavy-tail distribution of job sizes: the smallest 90% of jobs consume as less
as 6% of the resources. The interactive jobs whose latency we seek to improve all fall in
this category of small jobs. We can, hence, improve them by using few extra resources.
The second challenge is the potential contention that extra clones create on intermediate
data, possibly hurting job performance. Efficient cloning requires that we clone each task
and use the output from the clone of the task that finishes first. This, however, can cause
contention for the intermediate data passed between tasks of the different phases (e.g., map,
reduce, join) of the job; frameworks often compose jobs as a graph of phases where tasks of
downstream phases (e.g., reduce) read the output of tasks of upstream phases (e.g., map). If
all downstream clones read from the upstream clone that finishes first, they contend for the
IO bandwidth. An alternate that avoids this contention is making each downstream clone
read exclusively from only a single upstream clone. But this staggers the start times of the
downstream clones.

Our solution to the contention problem, delay assignment, is a hybrid solution that aims
to get the best of both the above pure approaches. It is based on the intuition that most
clones, except few stragglers, finish nearly simultaneously. Using a cost-benefit analysis that
captures this small variation among the clones, it checks to see if clones can obtain exclusive
copies before assigning downstream clones to the available copies of upstream outputs. The
cost-benefit analysis is generic to account for different communication patterns between the
phases, including all-to-all (MapReduce), many-to-one (Dryad), and one-to-one (Dryad and
Spark).

We have built Dolly, a system that performs cloning to mitigate the effect of stragglers
while operating within a resource budget.

4.1.3 Blacklisting is Insufficient

An intuitive solution for mitigating stragglers is to blacklist machines that are likely to
cause them and avoid scheduling tasks on them. For this analysis, we classify a task as a
straggler if its progress rate is less than half of the median progress rate among tasks in its

Section 4.1. Introduction 72

0

20

40

60

80

100

0 20 40 60 80 100

Fraction of machines (%)

F
ra

c
ti
o

n
 o

f

S
tr

a
g

g
le

rs
 (

%
)

Figure 4.1: CDF of the total fraction of straggler tasks to the fraction of machines
they occur on, over the entire Facebook trace. The nearly linear nature of the
graph shows that stragglers are not restricted to a small set of machines.

phase. In our trace, stragglers are not restricted to a small set of machines but are rather
spread out uniformly through the cluster. This is not surprising because both the clusters
already blacklist machines with faulty disks and other hardware troubles using periodic
diagnostics.

Stragglers are not restricted to a set of problematic machines (for e.g., due to faulty
hardware). Figure 4.1 plots the CDF of the total fraction of stragglers to the fraction of
machines they occur on, over the entire trace. The curve grows near-linearly with a slope
of 2 until ∼ 35% of the stragglers beyond which the slope gradually decreases and reaches
unity. This shows that just a few machines do not cause the bulk of the stragglers in the
cluster. This is not surprising because the Facebook cluster already performs blacklisting of
machines to eliminate machines with faulty disks and other hardware troubles.

We enhance this blacklisting by monitoring machines at finer time intervals and em-
ploying temporal prediction techniques to warn about straggler occurrences. We use an
EWMA to predict stragglers—the probability of a machine causing a straggler in a time
window is equally dependent on its straggler probability in the previous window and its
long-term average. Machines with a predicted straggler probability greater than a threshold
(pb) are blacklisted for that time window but considered again for scheduling in the next
time window.

We try time windows of 5 minutes and 1 hour. Table 4.1 lists the fraction of machines
that get blacklisted and the resulting improvement in job completion times by eliminating
stragglers on them, in the Facebook trace. The best case eliminates only 12% of the stragglers
and improves the average completion time by only 8.4% (in the Bing trace, 11% of stragglers
are eliminated leading to an improvement of 6.2%). This is in harsh contrast with potential
improvements of 29% to 47% if all stragglers were eliminated, as shown in §4.3.1.

Surprisingly, occurrence of stragglers on a machine does not correlate with the utilization
of memory, CPU or slots on it; the Pearson correlation coefficients between the utilizations

Section 4.2. Speculation with Opportunity Cost 73

and probability of stragglers are 0.1, 0.16 and 0.14, respectively, indicating little correlation.
This shows that stragglers often occur due to complex and fleeting events (e.g., garbage
collection). The lack of simple correlations for idiosyncratic performances is consistent with
recent observations in Google’s clusters where the complexity of the hardware and the inter-
twining of the various software and operating system modules precludes realistic modeling
and blacklisting solutions [10].

The above results do not prove that effective blacklisting is impossible, but shows that
none of the blacklisting techniques that we and, to our best knowledge, others [10] have
tried effectively prevent stragglers, suggesting that such correlations either do not exist or
are hard to find.

4.2 Speculation with Opportunity Cost

4.2.1 Quantifying Stragglers

We characterize the prevalence and causes of outliers and their impact on job completion
times and cluster resource usage. We will argue that three factors – dynamics, concurrency
and scale, that are somewhat unique to large map-reduce clusters for efficient and economic
operation lie at the core of the outlier problem.

Figure 4.2a plots the fraction of high runtime outliers and recomputes in a phase. For
exposition, we arbitrarily say that a task has high runtime if its time to finish is longer than
1.5x the median task duration in its phase. By recomputes, we mean instances where a task
output is lost and dependent tasks wait until the output is regenerated.

We see in Figure 4.2a that 25% of phases have more than 15% of their tasks as outliers.
The figure also shows that 99% of the phases see no recomputes. Though rare, recomputes
have a widespread impact. Two out of a thousand phases have over 50% of their tasks
waiting for data to be recomputed.

How much longer do outliers run for? Figure 4.3 shows that 80% of the runtime outliers
last less than 2.5 times the median task duration in the phase, with a uniform probability
of being delayed by between 1.5x to 2.5x.

The tail is heavy and long– 10% take more than 10x the median duration. Ignoring
these if they happen early in a phase, as current approaches do, appears wasteful.

Figure 4.3a shows that in 40% of the phases (top right), all the tasks with high run-
times (i.e., over 1.5x the median task) are well explained by the amount of data they process
or move on the network. Duplicating these tasks would not make them run faster and will
waste resources.

Figure 4.3b shows tasks that take longer than they should, as predicted by the model
based on the data they read, but do not take over 1.5X the median task in their phase. Such
tasks present an opportunity for improvement. They may finish faster if run elsewhere, yet

Section 4.2. Speculation with Opportunity Cost 74

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f
P

h
a
s
e
s

Fraction of Outliers

high runtime
recompute

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 4 6 8 10

C
u
m

u
la

ti
v
e

Ratio of Straggler Duration to the
 Duration of the Median Task

high runtime
recompute

(b)

Figure 4.2: Contribution of data size to task runtime (see §3.2)

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that have high

runtime but are explainable

(a)

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v

e
 #

P
h

a
se

s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that are unexplainably

long, but not long per-se

(b)

Figure 4.3: How much longer do outliers take to finish?

current schemes do nothing for them. 30% of the phases (on the top right) have over 50%
of such improvable tasks.

4.2.2 Resource-aware Speculation

Based on task progress reports, Mantri estimates for each task the remaining time to
finish, trem, and the predicted completion time of a new copy of the task, tnew. Tasks report
progress once every 10s or ten times in their lifetime, whichever is smaller. We use ∆ to
refer to this period. We defer details of the estimation to §4.2.3 and proceed to describe the
algorithms for mitigating each of the main causes of outliers. All that matters is that trem
be an accurate estimate and that the predicted distribution tnew account for the underlying
work that the task has to do, the appropriateness of the network location and any persistent
slowness of the new machine.

Duplication of outliers needs to be resource aware, act early and be closed-loop. Resource

Section 4.2. Speculation with Opportunity Cost 75

time

1
2

t t

t t

2t t

2t

time

1
2

t t
t

t 2t
t 2t

time

slots

1
2

t
5t

t
t

2t t 2t baseline,

kill, restart

duplicate

w/o early

Figure 4.4: A stylized example to illustrate our main ideas. Tasks that are even-
tually killed are filled with stripes, repeat instances of a task are filled with a
mesh.

awareness measures the value of duplicate tasks. Note that reducing the completion time of
a task may in fact increase the job completion time because twice as many resources are used
up for this task now denying resources to other tasks that are waiting to run. Early action
on outliers vacates slots for outstanding tasks and can speed up completion. Unlike Mantri,
none of the existing approaches act early. Closed-loop action reduces wasted resource and
makes Mantri robust to errors involved with the probabilistic predictions. Mantri monitors
running copies and kills those whose cost exceeds the benefit, e.g., a restarted task that is
slower than expected, or a duplicate that is slower than the original. The freed resource
enables other tasks or new copies to start.

Scheduling Example

Figure 4.4 shows a phase that has seven tasks and two slots. Normal tasks run for times
t and 2t. One outlier has a runtime of 5t. Time increases along the x axes.

The timeline at the top shows a baseline which ignores outliers and finishes at 7t. Prior
approaches that only address outliers at the end of the phase also finish at 7t.

Note that if this outlier has a large amount of data to process letting the straggling task
be is better than killing or duplicating it, both of which waste resources.

If however, the outlier was slowed down by its location, the second and third timelines
compare duplication to a restart that kills the original copy. After a short time to identify
the outlier, the scheduler can duplicate it at the next available slot (the middle time-line)
or restart it in-place (the bottom timeline). If prediction is accurate, restarting is strictly
better. However, if slots are going idle, it may be worthwhile to duplicate rather than incur
the risk of losing work by killing.

Duplicating the outlier costs a total of 3t in resources (2t before the original task is
killed and t for the duplicate) which may be wasteful if the outlier were to finish in sooner
than 3t by itself.

Section 4.2. Speculation with Opportunity Cost 76

Pseudocode 5 Resource-aware restart.
1: let ∆ = period of progress reports
2: let c = number of copies of a task
3: periodically, for each running task, kill all but the fastest α copies after ∆ time has

passed since begin
4: while slots are available do
5: if tasks are waiting for slots then
6: kill, restart task if trem > E(tnew) + ∆, stop at γ restarts
7: duplicate if P(trem > tnew

c+1
c

) > δ
8: start the waiting task that has the largest data to read
9: else . all tasks have begun

10: duplicate iff E(tnew − trem) > ρ∆

Speculation Algorithm

Mantri uses two variants of restart, the first kills a running task and restarts it else-
where, the second schedules a duplicate copy. In either method, Mantri restarts only when
the probability of success, i.e., P(tnew < trem) is high. Since tnew accounts for the systematic
differences and the expected dynamic variation, Mantri does not restart tasks that are nor-
mal (e.g., runtime proportional to work). Pseudocode 1 summarizes the algorithm. Mantri
kills and restarts a task if its remaining time is so large that there is a more than even chance
that a restart would finish sooner. In particular, Mantri does so when trem > E(tnew) + ∆.2

To not thrash on inaccurate estimates, Mantri never kills a task more than γ = 3 times.
The “kill and restart” scheme drastically improves the job completion time without

requiring extra slots as we show analytically. However, the current job scheduler incurs a
queueing delay before a task is restarted. This delay can be large and has a high variation.
Hence, we consider scheduling duplicates.

Scheduling a duplicate results in the minimum completion time of the two copies and
provides a safety net when estimates are noisy or the queueing delay is large. However, it
requires an extra slot and if allowed to run to finish, consumes extra computation resource
that will increase the job completion time if outstanding tasks are prevented from starting.
Hence, when there are outstanding tasks and no spare slots, we schedule a duplicate only
if the total amount of computation resource consumed decreases. In particular, if c copies
of the task are currently running, a duplicate is scheduled only if P(tnew < c

c+1
trem) > δ.

By default, δ = .25. For example, a task with one running copy is duplicated only if tnew
is less than half of trem. On the other hand, when spare slots are available, a duplicate
is scheduled if the reduction in the job completion time is larger than the extra resource
consumed, E(tnew − trem) > ρ∆. By default, ρ = 3.

Mantri’s restart algorithm is independent of the values for its parameters. Setting γ to

2Since the median of the heavy tailed task completion time distribution is smaller than the mean, this
check implies that P (tnew < trem) > P (tnew < E(tnew)) ≥ .5

Section 4.3. Cloning Tasks 77

a larger and ρ, δ to a smaller value trades off the risk of wasteful restarts for the reward of a
larger speed-up. The default values err on the side of caution. In addition, Mantri kills all
but the fastest copy of a task to reduce consumed resources. Hence, the number of running
copies of a task is never larger than 3. By scheduling duplicates conservatively and pruning
aggressively, Mantri boosts the success rate of its restarts. It reduces completion time and
conserves resources (§4.4).

4.2.3 Estimation of trem and tnew

Periodically, every running task informs the job scheduler of its status, including how
many bytes it has read or written thus far. Combining progress reports with the size of the
input data that each task has to process, d, Mantri predicts how much longer the task would
take to finish as follows:

trem = telapsed ∗
d

dread
+ twrapup. (4.1)

The first term captures the remaining time to process data. The second term is the time
to compute after all the input has been read and is estimated from the behavior of earlier
tasks in the phase. Tasks may speed up or slow down and hence, rather than extrapolating
from each progress report, Mantri uses a moving average. To be robust against lost progress
reports, when a task hasn’t reported for a while, Mantri increases trem by assuming that the
task has not progressed since its last report.

Mantri estimates tnew, the distribution over time that a new copy of the task will take
to run, as follows:

tnew = processRate ∗ locationFactor ∗ d+ schedLag. (4.2)

The first term is a distribution of the process rate, i.e., ∆time
∆data

, of all the tasks in this phase.
The second term is a relative factor that accounts for whether the candidate machine for
running this task is persistently slower (or faster) than other machines or has smaller (or
larger) capacity on the network path to where the task’s inputs are located. The third term,
as before, is the amount of data the task has to process. The last term is the average delay
between a task being scheduled and when it gets to run. We show in §4.4 that these estimates
are sufficiently accurate for Mantri’s algorithms to function.

4.3 Cloning Tasks

4.3.1 Case for Cloning

In this section we quantify: (i) magnitude of stragglers and the potential in eliminating
them, and (ii) power law distribution of job sizes that facilitate aggressive cloning.

Section 4.3. Cloning Tasks 78

1

3

5

7

9

1
-1

0

1
1

-5
0

5
1

-

1
5

0

1
5

0
-

5
0

0

>
 5

0
0

Facebook

Bing
(M

e
d

ia
n

 :
 M

in
im

u
m

)

P
ro

g
re

s
s
-r

a
te

Bin (#Tasks)

(a) LATE

1

3

5

7

9

1
-1

0

1
1

-5
0

5
1

-

1
5

0

1
5

0
-

5
0

0

>
 5

0
0

Facebook

Bing

(M
e

d
ia

n
 :

 M
in

im
u

m
)

P
ro

g
re

s
s
-r

a
te

Bin (#Tasks)

(b) Mantri

Figure 4.5: Slowdown ratio after applying LATE and Mantri. Small jobs see a
higher prevalence of stragglers.

Magnitude of Stragglers and their Impact

We first quantify the magnitude and impact of stragglers.
A job consists of a graph of phases (e.g., map, reduce, and join), with each phase

executing the same type of tasks in parallel. We identify stragglers by comparing the progress
rates of tasks within a phase. The progress rate of a task is defined as the size of its input
data divided by its duration. In absence of stragglers, progress rates of tasks of a phase
are expected to be similar as they perform similar IO and compute operations. We use the
progress rate instead of the task’s duration to remain agnostic to skews in work assignment
among tasks [19]. Techniques have been developed to deal with the problem of data skews
among tasks [17,60,99] and our approach is complementary to those techniques.

Within each phase, we measure the slowdown ratio, i.e., the ratio of the progress rate
of the median task to the slowest task. The negative impact of stragglers increases as the
slowdown ratio increases. We measure the slowdown ratio after applying the LATE and
Mantri mitigations; a what-if simulation is used for the mitigation strategy that the original
trace did not originally deploy.

Figure 4.5a plots the slowdown ratio by binning jobs according to their number of tasks,
with LATE in effect. Phases in jobs with fewer than ten tasks, have a median value of this
ratio between 6 and 8, i.e., the slowest task is up to 8× slower than the median task in the
job. Also, small jobs are hit harder by stragglers.3 This is similar even if Mantri [19] was
deployed. Figure 4.5b shows that the slowest task is still 7× slower than the median task,
with Mantri. However, both LATE and Mantri effectively mitigate stragglers in large jobs.

Speculation techniques are not as effective in mitigating stragglers in small jobs as

3Implicit in our explanation is that small interactive jobs consist of just a few tasks. While we considered
alternate definitions based on input size and durations, in both our traces, we see a high correlation between
jobs running for short durations and the number of tasks they contain along with the size of their input.

Section 4.3. Cloning Tasks 79

they are with large jobs because they rely on comparing different tasks of a job to identify
stragglers. Comparisons are effective with more samples of task performance. This makes
them challenging to do with small jobs because not only do these jobs have fewer tasks but
also start all of them simultaneously.
Impact of Stragglers: We measure the potential in speeding up jobs in the trace using the
following crude analysis: replace the progress rate of every task of a phase that is slower than
the median task with the median task’s rate. If this were to happen, the average completion
time of jobs improves by 47% and 29% in the Facebook and Bing traces, respectively; small
jobs (those with ≤ 10 tasks) improve by 49% and 38%.

Heavy Tail in Job Sizes

We observed that smaller jobs are most affected by stragglers. These jobs were submitted
by users for iterative experimental purposes. For example, researchers tune the parameters
of new mining algorithms by evaluating it on a small sample of the dataset. For this reason,
these jobs consist of just a few tasks. In fact, in both our traces, we have noted a correlation
between a job’s duration and the number of tasks it has, i.e., jobs with shorter durations
tend to have fewer tasks. Short and predictable response times for these jobs is of prime
concern to datacenter operators as they significantly impact productivity.

On the one hand, small interactive jobs absolutely dominate the cluster and have strin-
gent latency demands. In the Facebook and Bing traces, jobs with ≤ 10 tasks account for
82% and 61% of all the jobs, respectively. On the other hand, they are the most affected by
stragglers.

Despite this, we can clone all the small jobs using few extra resources. This is because
job sizes have a heavy-tail distribution. Just a few large jobs consume most of the resources in
the cluster, while the cluster is dominated by small interactive jobs. As Figure 4.6a shows,
90% of the smallest jobs consume only 6% and 11% of the total cluster resources in the
Facebook and Bing clusters, respectively. Indeed, the distribution of resources consumed by
jobs follows a power law (see Figure 4.6b). In fact, at any point in time, the small jobs do
not use more than 2% of the overall cluster resources.

The heavy-tail distribution offers potential to speed up these jobs by using few extra
resources. For instance, cloning each of the smallest 90% of the jobs three times increases
overall utilization by merely 3%. This is well within reach of today’s underutilized clusters
which are heavily over-provisioned to satisfy their peak demand of over 99%, that leaves
them idle at other times [61,98].

Google recently released traces from their cluster job scheduler that schedules a mixed
workload of MapReduce batch jobs, interactive queries and long-running services [13]. Anal-
ysis of these traces again reveal a heavy-tail distribution of job sizes, with 92% of the jobs
accounting for only 2% of the overall resources [29].

Section 4.3. Cloning Tasks 80

0

20

40

60

80

100

0 20 40 60 80 100

Total Cluster Cycles (%)

Facebook

Bing

F
ra

c
ti
o

n
 o

f
J
o

b
s
 (

%
)

(a) Heavy-tail

y = (9E+06)x-1.9

N
u

m
b

e
r

o
f

J
o

b
s

Cluster Cycles

106

105

104

103

102

10

1
1 10 102 103 104 105 106

(b) Power Law

Figure 4.6: Heavy tail. Figure (a) shows the heavy tail in the fraction of total
resources used. Figure (b) shows that the distribution of cluster resources con-
sumed by jobs, in the Facebook trace, follows a power law. Power-law exponents
are 1.9 and 1.8 when fitted with least squares regression in the Facebook and Bing
traces.

4.3.2 Cloning of Parallel Jobs

We start this section by describing the high-level idea of cloning. After that (§4.3.2) we
determine the granularity of cloning, and settle for cloning at the granularity of tasks, rather
than entire jobs, as the former requires fewer clones. Thereafter (§4.3.2), we investigate the
number of clones needed if we desire the probability of a job straggling to be at most ε, while
staying within a cloning budget. Finally (§4.3.2), as we are unlikely to have room to clone
every job in the cluster, we show a very simple admission control mechanism that decides
when to clone jobs. An important challenge of cloning—handling data contention between
clones—is dealt with in §4.3.3.

In contrast to reactive speculation solutions [19, 36, 71], Dolly advocates a proactive
approach—straightaway launch multiple clones of a job and use the result of the first clone
that finishes. Cloning makes straggler mitigation agile as it does not have to wait and
observe a task before acting, and also removes the risk inherent in speculation—speculating
the wrong tasks or missing the stragglers. Similar to speculation, we assume that picking
the earliest clone does not bias the results, a property that generally holds for data-intensive
computations.

Granularity of Cloning

We start with a job consisting of a single phase. A crucial decision affecting efficiency
is the granularity of cloning. A simple option is to clone at the granularity of jobs. For
every job submitted to the cluster, multiple clones of the entire job are launched. Results
are taken from the earliest job that finishes. Such job-level cloning is appealing due to its
simplicity and ease of implementation.

Section 4.3. Cloning Tasks 81

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

10 Tasks

20 Tasks

50 Tasks

Number of clonesP
ro

b
a

b
ili

ty
 o

f
th

e
 J

o
b

 S
tr

a
g

g
lin

g

(a) Job-level Cloning

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

10 Tasks

20 Tasks

50 Tasks

Number of clonesP
ro

b
a

b
ili

ty
 o

f
th

e
 J

o
b

 S
tr

a
g

g
lin

g

(b) Task-level Cloning

Figure 4.7: Probability of a job straggling for varying number of clones, and
sample jobs of 10, 20 and 50 tasks. Task-level cloning requires fewer clones than
job-level cloning to achieve the same probability of the job straggling.

A fine-grained alternative is to clone at the granularity of individual tasks. Thus, mul-
tiple clones of each task are launched. We refer to the different clones of the same task
as a clone group. In every clone group, we then use the result of the clone that finishes
first. Therefore, unlike job-level cloning, task-level cloning requires internal changes to the
execution engine of the framework.

As a result of the finer granularity, for the same number of clones, task-level cloning pro-
vides better probabilistic guarantees for eliminating stragglers compared to job-level cloning.
Let p be the probability of a task straggling. For a single-phased job with n parallel tasks
and c clones, the probability that it straggles is (1− (1− p)n)

c
with job-level cloning, and

1 − (1− pc)n with task-level cloning. Figure 4.7 compares these probabilities. Task-level
cloning gains more per clone and the probability of the job straggling drops off faster.

Task-level cloning’s resource efficiency is desirable because it reduces contention on
the input data which is read from file systems like HDFS [6]. If replication of input data
does not match the number of clones, the clones contend for IO bandwidth in reading the
data. Increasing replication, however, is difficult as clusters already face a dearth of storage
space [16,42]. Hence, due to its efficiency, we opt for task-level cloning in Dolly.

Budgeted Cloning Algorithm

Pseudocode 6 describes the cloning algorithm that is executed at the scheduler per
job. The algorithm takes as input the cluster-wide probability of a straggler (p) and the
acceptable risk of a job straggling (ε). We aim for an ε of 5% in our experiments. The
probability of a straggler, p, is calculated every hour, where the straggler progresses at less

Section 4.3. Cloning Tasks 82

than half the median task in the job. This coarse approach suffices for our purpose.
Dolly operates within an allotted resource budget. This budget is a configurable fraction

(β) of the total capacity of the cluster (C). At no point does Dolly use more than this cloning
budget. Setting a hard limit eases deployment concerns because operators are typically
nervous about increasing the average utilization by more than a few percent. Utilization
and capacity are measured in number of slots (computation units allotted to tasks).

The pseudocode first calculates the desired number of clones per task (step 2). For a
job with n tasks, the number of clones desired by task-level cloning, c, can be derived to be

at least log
(

1− (1− ε)(1/n)
)
/ log p. 4 The number of clones that are eventually spawned is

limited by the resource budget (C · β) and a utilization threshold (τ), as in step 3. The job
is cloned only if there is room to clone all its tasks, a policy we explain shortly in §4.3.2.
Further, cloning is avoided if the cluster utilization after spawning clones is expected to
exceed a ceiling τ . This ceiling avoids cloning during heavily-loaded periods.

Note that Pseudocode 6 spawns the same number of clones to all the tasks of a job.
Otherwise, tasks with fewer clones are more likely to lag behind. Also, there are no conflicts
between jobs in updating the shared variables BU and U because the centralized scheduler
handles cloning decisions one job at a time.
Multi-phased Jobs: For multi-phased jobs, Dolly uses Pseudocode 6 to decide the number
of clones for tasks of every phase. However, the number of clones for tasks of a downstream
phase (e.g., reduce) never exceeds the number of clones launched its upstream phase (e.g.,
map). This avoids contention for intermediate data (we revisit this in §4.3.3). In practice,
this limit never applies because small jobs have equal number of tasks across their phases.
In both our traces, over 91% of the jobs with ≤ 10 tasks have equal number of tasks in their
phases.

Admission Control

The limited cloning budget, β, should preferably be utilized to clone the small interactive
jobs. Dolly achieves this using a simple policy of admission control.

Whenever the first task of a job is to be executed, the admission control mechanism
computes, as previously explained, the number of clones c that would be required to reach
the target probability ε of that job straggling. If, at that moment, there is room in the
cloning budget for creating c copies of all the tasks, it admits cloning the job. If there
is not enough budget for c clones of all the tasks, the job is simply denied cloning and is
executed without Dolly’s straggler mitigation. The policy of admission control implicitly
biases towards cloning small jobs—the budget will typically be insufficient for creating the
required number of clones for the larger jobs. Step 3 in Pseudocode 6 implements this policy.

Many other competing policies are possible. For instance, a job could be partially cloned

4The probability of a job straggling can be at most ε, i.e., 1− (1− pc)n ≤ ε. The equation is derived by
solving for c.

Section 4.3. Cloning Tasks 83

Pseudocode 6 Task-level cloning for a single-phased job with n parallel tasks, on
a cluster with probability of straggler as p, and the acceptable risk of straggler
as ε.
1: procedure Clone(n tasks, p, ε)

C: Cluster Capacity, U : Cluster Utilization
β: Budget in fraction, BU : Utilized budget in #slots

2: c = dlog
(

1− (1− ε)(1/n)
)
/ log pe

3: if (BU + c · n) ≤ (C · β) and (U + c · n) ≤ τ then
. Admission Control: Sufficient capacity to

create c clones for each task
4: for each task t do

Create c clones for t
BU ← BU + c · n

if there is not enough room for c clones. Furthermore, preemption could be used to cancel
the clones of an existing job to make way for cloning another job. It turns out that these
competing policies buy little performance compared to our simple policy. We compare these
policies in §4.4.2.

4.3.3 Intermediate Data Access with Dolly

A fundamental challenge of cloning is the potential contention it creates in reading
data. Downstream tasks in a job read intermediate data from upstream tasks according to
the communication pattern of that phase (all-to-all, many-to-one, one-to-one). The clones
in a downstream clone group would ideally read their intermediate data from the upstream
clone that finishes first as this helps them all start together.5 This, however, can create
contention at the upstream clone that finishes first. Dealing with such contentions is the
focus of this section.

We first (§4.3.3) explore two pure strategies at opposite ends of the spectrum for dealing
with intermediate data contention. At one extreme, we completely avoid contention by
assigning each upstream clone, as it finishes, to a new downstream task clone. This avoids
contention because it guarantees that every upstream task clone only transfers data to a
single clone per downstream clone group. At another extreme, the system ignores the extra
contention caused and assumes that the first finished upstream clone in every clone group
can sustain transferring its intermediate output to all downstream task clones. As we show
(§4.3.3), the latter better mitigates stragglers compared to the former strategy. However, we
show (§4.3.3) that the latter may lead to congestion whereas the former completely avoids

5Intermediate data typically only exists on a single machine, as it is not replicated to avoid time and
resource overheads. Some systems do replicate intermediate data [19,87] for fault-tolerance but limit this to
replicating only a small fraction of the data.

Section 4.3. Cloning Tasks 84

Clone Group Clone Group

Clone Group Clone Group

U1 U1 U2 U2

D1 D1 D2 D2

(a) Contention-Avoidance Cloning (CAC)

Clone Group Clone Group

Clone Group Clone Group

U1 U1 U2 U2

D1 D1 D2 D2

(b) Contention Cloning (CC)

Figure 4.8: Intermediate data contention. The example job contains two upstream
tasks (U1 and U2) and two downstream tasks (D1 and D2), each cloned twice.
The clone of U1 is a straggler (marked with a dotted circle). CAC waits for the
straggling clone while CC picks the earliest clone.

it. Finally (§4.3.3), we settle on a hybrid between the two (§4.3.3), delay assignment that
far outperforms these two pure strategies.

Two Opposite Strategies

We illustrate two approaches at the opposite ends of the spectrum through a simple
example. Consider a job with two phases (see Figure 4.8) and an all-to-all (e.g., shuffle)
communication pattern between them (§4.3.3 shows how this can be generalized to other
patterns). Each of the phases consist of two tasks, and each task has two clones.

The first option (Figure 4.8a), which we call Contention-Avoidance Cloning (CAC)
eschews contention altogether. As soon as an upstream task clone finishes, its output is
sent to exactly one downstream task clone per clone group. Thus, the other downstream
task clones have to wait for another upstream task clone to finish before they can start
their computation. We call this Contention-Avoidance Cloning (CAC). Note that in CAC
an upstream clone will send its intermediate data to the exact same number of other tasks
as if no cloning was done, avoiding contention due to cloning. The disadvantage with CAC

Section 4.3. Cloning Tasks 85

0

0.2

0.4

0.6

0.8

2 3 4 5

CAC

CC

Number of clones (c)P
ro

b
.

o
f

J
o

b
 S

tr
a

g
g

lin
g

(a) n = 10 tasks

0

0.2

0.4

0.6

0.8

2 3 4 5

CAC

CC

P
ro

b
.

o
f

J
o

b
 S

tr
a

g
g

lin
g

Number of clones (c)

(b) n = 20 tasks

Figure 4.9: CAC vs. CC: Probability of a job straggling.

is that when some upstream clones straggle, the corresponding downstream clones that read
data from them automatically lag behind.

The alternate option (Figure 4.8b), Contention Cloning (CC), alleviates this problem
by making all the tasks in a downstream clone group read the output of the upstream clone
that finishes first. This ensures that no downstream clone is disadvantaged, however, all of
them may slow down due to contention on disk or network bandwidth.

There are downsides to both CAC and CC. The next two sub-sections quantify these
downsides.

Probability of Job Straggling: CAC vs. CC

CAC increases the vulnerability of a job to stragglers by negating the value of some of
its clones. We first analytically derive the probability of a job straggling with CAC and CC,
and then compare them for some representative job sizes. We use a job with n upstream
and n downstream tasks, with c clones of each task.
CAC: A job straggles with CAC when either the upstream clones straggle and consequently
handicap the downstream clones, or the downstream clones straggle by themselves. We start
with the upstream phase first before moving to the downstream phase.

The probability that at least d upstream clones of every clone group will succeed without
straggling is given by the function Ψ; p is the probability of a task straggling.

Ψ(n, c, d) = Probability[n upstream tasks of c clones with

≥ d non-stragglers per clone group]

Ψ(n, c, d) =

(
c−d∑
i=0

(
c

i

)
pi(1− p)c−i

)n

(4.3)

Section 4.3. Cloning Tasks 86

Therefore, the probability of exactly d upstream clones not straggling is calculated as:

Ψ(n, c, d)−Ψ(n, c, d− 1)

Recall that there are n downstream tasks that are cloned c times each. Therefore, the
probability of the whole job straggling is essentially the probability of a straggler occurring in
the downstream phase, conditional on the number of upstream clones that are non-stragglers.

Probability[Job straggling with CAC] =

1−
c∑

d=1

[Ψ(n, c, d)−Ψ(n, c, d− 1)]
(
1− pd

)n (4.4)

CC: CC assigns all downstream clones to the output of the first upstream task that finishes
in every clone group. As all the downstream clones start at the same time, none of them
are handicapped. For a job to succeed without straggling, it only requires that one of the
upstream clones in each clone group be a non-straggler. Therefore, the probability of the
job straggling is:

Probability[Job straggling with CC] =

1−Ψ(n, c, 1) (1− pc)n
(4.5)

CAC vs. CC: We now compare the probability of a job straggling with CAC and CC for
different job sizes. Figure 4.9 plots this for jobs with 10 and 20 upstream and downstream
tasks each. With three clones per task, the probability of the job straggling increases by
over 10% and 30% with CAC compared to CC. Contrast this with our algorithm in §4.3.2
which aims for an ε of 5%. The gap between CAC and CC diminishes for higher numbers
of clones but this is contradictory to our decision to pick task-level cloning as we wanted to
limit the number of clones. In summary, CAC significantly increases susceptibility of jobs
to stragglers compared to CC.

I/O Contention with CC

By assigning all tasks in a downstream clone group to read the output of the earliest
upstream clone, CC causes contention for IO bandwidth. We quantify the impact due to
this contention using a micro-benchmark rather than using mathematical analysis to model
IO bandwidths, which for contention is likely to be inaccurate.

With the goal of realistically measuring contention, our micro-benchmark replicates the
all-to-all data shuffle portion of jobs in the Facebook trace. The experiment is performed
on the same 150 node cluster we use for Dolly’s evaluation. Every downstream task reads
its share of the output from each of the upstream tasks. All the reads start at exactly the
same relative time as in the original trace and read the same amount of data from every

Section 4.3. Cloning Tasks 87

0

10

20

30

40

50

1-10 11-50 51-150 150-500 > 500

25th perc

Median

75th perc

S
lo

w
d

o
w

n
 (

%
)

o
f

T
ra

n
s
fe

rs

Bin (#Tasks)

Figure 4.10: Slowdown (%) of transfer of intermediate data between phases (all-
to-all) due to contention by CC.

upstream task’s output. The reads of all the downstream tasks of a job together constitute
a transfer [68].

The number of clones per upstream and downstream task is decided as in §4.3.2. In
the absence of stragglers, there would be as many copies of the upstream outputs as there
are downstream clones. However, a fraction of the upstream clones will be stragglers. When
upstream clones straggle, we assume their copy of the intermediate data is not available for
the transfer. Naturally, this causes contention among the downstream clones.

Reading contended copies of intermediate data likely results in a lower throughput than
when there are exclusive copies. Of interest to us is the slowdown in the transfer of the
downstream phase due to such contentions, compared to the case where there are as many
copies of the intermediate data as there are downstream clones.

Figure 4.10 shows the slowdown of transfers in each bin of jobs. Transfers of jobs in the
first two bins slow down by 32% and 39% at median, third quartile values are 50%. Transfers
of large jobs are less hurt because tasks of large jobs are often not cloned because of lack of
cloning budget. Overall, we see that contentions cause significant slowdown of transfers and
are worth avoiding.

Delay Assignment

The analyses in §4.3.3 and §4.3.3 conclude that both CAC and CC have downsides.
Contentions with CC are not small enough to be ignored. Following strict CAC is not the
solution either because it diminishes the benefits of cloning. A deficiency with both CAC
and CC is that they do not distinguish stragglers from tasks that have normal (but minor)
variations in their progress. CC errs on the side of assuming that all clones other than the
earliest are stragglers, while CAC assumes all variations are normal.

We develop a hybrid approach, delay assignment, that first waits to assign the early
upstream clones (like CAC), and thereafter proceeds without waiting for any remaining
stragglers (like CC). Every downstream clone waits for a small window of time (ω) to see if

Section 4.3. Cloning Tasks 88

it can get an exclusive copy of the intermediate data. The wait time of ω allows for normal
variations among upstream clones. If the downstream clone does not get its exclusive copy
even after waiting for ω, it reads with contention from one of the finished upstream clone’s
outputs.

Crucial to delay assignment’s performance is setting the wait time of ω. We next proceed
to discuss the analysis that picks a balanced value of ω.
Setting the delay (ω): The objective of the analysis is to minimize the expected duration
of a downstream task, which is the minimum of the durations of its clones.

We reuse the scenario from Figure 4.8. After waiting for ω, the downstream clone
either gets its own exclusive copy, or reads the available copy with contention with the
other clone. We denote the durations for reading the data in these two cases as TE and
TC , respectively. In estimating read durations, we eschew detailed modeling of systemic and
network performance. Further, we make the simplifying assumption that all downstream
clones can read the upstream output (of size r) with a bandwidth of B when there is no
contention, and αB in the presence of contention (α ≤ 1).
Our analysis, then, performs the following three steps.

1. Calculate the clone’s expected duration for reading each upstream output using TC
and TE.

2. Use read durations of all clones of a task to estimate the overall duration of the task.

3. Find the delay ω that minimizes the task’s duration.

Step (1): We first calculate TC , i.e., the case where the clone waits for ω but does not get
its exclusive copy, and contends with the other clone. The downstream clone that started
reading first will complete its read in

(
ω +

(
r−Bw
αB

))
, i.e., it reads for ω by itself and contends

with the other clone for the remaining time. The other clone takes
(
2ω +

(
r−Bw
αB

))
to read

the data.
Alternately, if the clone gets its exclusive copy, then the clone that began reading first

reads without interruption and completes its read in
(
r
B

)
. The other clone, since it gets

its own copy too, takes
(
r
B

+ min(r
B
, ω)
)

to read the data.6 Now that we have calculated
TC and TE, the expected duration of the task for reading this upstream output is simply
pcTC +(1− pc)TE, where pc is the probability of the task not getting an exclusive copy. Note
that, regardless of the number of clones, every clone is assigned an input source latest at the
end of ω. Unfinished upstream clones at that point are killed.
Step (2): Every clone may have to read the outputs of multiple upstream clones, depending
on the intermediate data communication pattern. In all-to-all communication, a task reads
data from each upstream task’s output. In one-to-one or many-to-one communications, a
task reads data from just one or few tasks upstream of it. Therefore, the total time Ti taken
by clone i of a task is obtained by considering its read durations from each of the relevant

6The wait time of ω is an upper limit. The downstream clone can start as soon as the upstream output
arrives.

Section 4.4. Evaluation 89

21.7

31.0
26.2

21.4
20

30

40

50

%
 R

e
d

u
ct

io
n

 i
n

C
o

m
p

le
ti

o
n

 T
im

e

0

10

20

%
 R

e
d

u
ct

io
n

 i
n

C
o

m
p

le
ti

o
n

 T
im

e

Word

Count

Table

Join

Group

By

Grep

(a) Completion Time

13.4

20

30

40

%
 R

e
d

u
ct

io
n

 i
n

Jo
b

 R
e

so
u

rc
e

s

2.5

13.4

7.6 9.5

0

10

%
 R

e
d

u
ct

io
n

 i
n

Jo
b

 R
e

so
u

rc
e

s

Word

Count

Table

Join

Group

By

Grep

(b) Resource Usage

Figure 4.11: Comparing Mantri’s straggler mitigation with the baseline imple-
mentation on a O(10K)-node production cluster for the four representative jobs.

upstream tasks, along with the expected time for computation. The expected duration of
the task is the minimum of all its clones, mini (Ti).
Step (3): The final step is to find ω that minimizes this expected task duration. We sample
values of B and α, pc and the computation times of tasks from samples of completed jobs.
The value of B depends on the number of active flows traversing a machine, while the pc
is inversely proportional to ω. Using these, we pick ω that minimizes the duration of a
task calculated in step (2). The value of ω is calculated periodically and automatically for
different job bins (see §4.4.2). A subtle point with our analysis is that it automatically
considers the option where clones read from the available upstream output, one after the
other, without contending.

A concern in the strategy of delaying a task is that it is not work-conserving and also
somewhat contradicts the observation in §2.4.1 that waiting before deciding to speculate is
harmful. Both concerns are ameliorated by the fact that we eventually pick a wait duration
that minimizes the completion time. Therefore, our wait is not because we lack data to make
a decision but precisely because the data dictates that we wait for the duration of ω.

4.4 Evaluation

4.4.1 Mantri Evaluation

Figure 4.11 compares Mantri with the baseline Cosmos implementation for four jobs
running on the larger cluster. Each job was repeated twenty times with and without Mantri.
The histograms plot the average reduction, error bars are the 10th and 90th percentiles of
samples. We see that Mantri improves job completion times by roughly 25%. Further, by

Section 4.4. Evaluation 90

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

0

20

40

0 20 40 60 80 100

% Reduction in Completion Time

C
D

F
 %

 J
o

b
 T

im
e

(14.3%)

(a) Completion Time

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

0

20

40

-50 -30 -10 10 30 50

C
D

F
 %

 J
o

b
 T

im
e

%Reduction in Job Resources
(b) Resource Usage

Figure 4.12: Evaluation of Mantri as the default build for all jobs on a pre-
production cluster for nine days.

terminating the largest stragglers early, resource usage falls by roughly 10%. As we show
later, this is because very few of the duplicates scheduled by the current mitigation scheme
based on Dryad are useful.

To micro-benchmark Mantri’s estimators, we logged progress reports from these produc-
tion runs. We find that Mantri’s predictor, based on reports from the recent past, estimates
trem to within a 2.9% error of the actual completion time. From the results above, we see
that this accuracy suffices to see practical gains.

Jobs in the Wild All the jobs submitted to the pre-production cluster ran with
Mantri for a nine day period. We compare these job runs with earlier runs of the same jobs
that ran with the unmodified build. Figure 4.12a plots the CDF of the net improvement in
completion times of 202 jobs. Jobs that occupy the cluster for half the time sped up by at
least 14.3%. We see larger gains on the benchmark jobs in the production cluster and in
trace driven simulations. This is because, the pre-production being lightly loaded has fewer
outliers and hence, less room for Mantri to improve. Figure 4.12b also shows that 60% of
jobs see a reduction in resource consumption while the others use up a few extra resources.

To compare against alternative schemes and to piece apart gains from the various algo-
rithms in Mantri, we present results from the trace-driven simulator.

Figure 4.13 compares straggler mitigation strategies in their impact on completion time
and resource usage. The y-axes weighs phases by their lifetime since improving the longer
phases improves cluster efficiency. The figures plots the cumulative reduction in these metrics
over each of the 210K phases in Table 1.3 with each phase repeated 3 times.

Figures 4.13a and 4.13b show that Mantri improves completion time by 21% and 42% at
the 50th and 75th percentiles and reduces resource usage by 3% and 7% at these percentiles.

Section 4.4. Evaluation 91

40

60

80

100

Dryad

Hadoop

LATE

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

-20 0 20 40 60 80 100

LATE

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

% Reduction in Completion Time
(a) Change in Completion Time

40

60

80

100

Dryad

Hadoop

LATE

MapReduce

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-40 -20 0 20 40 60 80 100

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

% Reduction in Resource Usage
(b) Change in Resource Usage

Figure 4.13: Comparing straggler mitigation strategies. Mantri provides a greater
speed-up in completion time while using fewer resources than existing schemes.

Results from simulation are consistent with those from our production deployment. We
attribute these gains to the combination of early action and cause-aware restarts.

From Figure 4.13a, at the 50th percentile, Mantri sped up phases by 21.1%, an additional
3.1X over the 6.9% improvement of Hadoop, the next best scheme. To achieve this Hadoop
uses 15.9% more resources (Fig.4.13b).

MapReduce and Dryad have no positive impact until the 80th and 50th percentile
respectively. Up to the 30th percentile Dryad increases the completion time of phases.
LATE is similar in its time improvement to Hadoop but does so using fewer resources.

The reason for poor performance is that they miss outliers that happen early in the phase
and by not knowing the true causes of outliers, the duplicates they schedule are mostly not
useful. Mantri and Dryad schedule .2 restarts per task for the average phase (.06 and .56
for LATE and Hadoop). But, Mantri’s restarts have a success rate of 70% compared to the
15% for LATE. The other schemes have lower success rates.

While the insight of early action on stragglers is valuable, it is nonetheless non trivial.
We evaluate this in Figures 4.14a and 4.14b that present a form of LATE that is identical
in all ways except that it addresses stragglers early. We see that addressing stragglers early
increases completion time up to the 40th percentile, uses more resources and is worse than
vanilla LATE. Being resource aware is crucial to get the best out of early action.

Finally, Fig. 4.15 shows that Mantri is on par with the ideal benchmark that has no
variation in tasks NoSkew and is slightly worse than the variant that removes all durations
in the top quartile, NoSkew+ChopTail.

Section 4.4. Evaluation 92

40

60

80

100

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-20 -10 0 10 20 30 40

LATE + Early

LATE

C
D

F
 %

 P
h

a
se

% Reduction in Completion Time
(a) Time

40

60

80

100

LATE

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-20 -10 0 10 20 30 40

% Reduction in Resource Usage

C
D

F
 %

 P
h

a
se

(b) Resources

Figure 4.14: Extending LATE to speculate early results in worse performance

40

60

80

100
NoSkew

NoSkew + ChopTail

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-10 0 10 20 30 40 50

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Completion Time
(a) Time

40

60

80

100

NoSkew + ChopTail

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Resource Usage

0

20

40

-10 0 10 20 30 40 50

NoSkew + ChopTail

NoSkew

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

(b) Resources

Figure 4.15: Mantri is on par with an ideal NoSkew benchmark and slightly worse
than NoSkew+ChopTail

4.4.2 Dolly Evaluation

Does Dolly mitigate stragglers?

We first present the improvement in completion time using Dolly. Unless specified
otherwise, the cloning budget β is 5% and utilization threshold τ is 80%.

Dolly improves the average completion time of jobs by 42% compared to LATE and
40% compared to Mantri, in the Facebook workload. The corresponding improvements are
27% and 23% in the Bing workload. Figure 4.16 plots the improvement in different job bins.

Section 4.4. Evaluation 93

0

10

20

30

40

50

1-10 11-50 50-150 150-500 >500

Baseline: LATE

Baseline: Mantri

Bin (#Tasks)R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

(a) Facebook workload.

0

10

20

30

40

1-10 11-50 50-150 150-500 >500

Baseline: LATE

Baseline: Mantri

Bin (#Tasks)R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

(b) Bing workload.

Figure 4.16: Dolly’s improvement for the Facebook and Bing workloads, with
LATE and Mantri as baselines.

Small jobs (bin-1) benefit the most, improving by 46% and 37% compared to LATE and
44% and 34% compared to Mantri, in the Facebook and Bing workloads. This is because
of the power-law in job sizes and the policy of admission control. Figures 4.17a and 4.17b
show the average duration of jobs in the smallest two bins with LATE and Mantri, and
its reduction due to Dolly’s cloning, for the Facebook workload. Figure 4.17c shows the
distribution of gains for jobs in bin-1. We see that jobs improve by nearly 50% and 60%
at the 75th and 90th percentiles, respectively. Note that even at the 10th percentile, there
is a non-zero improvement, demonstrating the seriousness and prevalence of the problem of
stragglers in small jobs.

Figure 4.18 presents supporting evidence for the improvements. The ratio of medium to
minimum progress rates of tasks, which is over 5 with LATE and Mantri in our deployment,
drops to as low as 1.06 with Dolly. Even at the 95th percentile, this ratio is only 1.17, thereby
indicating that Dolly effectively mitigates nearly all stragglers.

The ratio not being exactly 1 shows that some stragglers still remain. One reason for

Section 4.4. Evaluation 94

0

25

50

75

100

125

1-10 11-50

LATE Dolly

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n

T
im

e
 (

s
)

Bin (#Tasks)

46% 29%

(a) Job Durations.

0

25

50

75

100

125

1-10 11-50

Mantri Dolly

A
v
e

ra
g

e
 C

o
m

p
le

ti
o

n

T
im

e
 (

s
)

Bin (#Tasks)

44% 26%

(b) Job Durations.

0

20

40

60

80

100

10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

Baseline: LATE

Baseline: Mantri

Percentile (%)

R
e

d
u

c
ti
o

n
 (

%
)

in

C
o

m
p

le
ti
o

n
 T

im
e

(c) Distribution of improvements (≤ 10 tasks).

Figure 4.17: Dissecting Dolly’s improvements for the Facebook workload. Figures
(a) and (b) show the duration of the small jobs before and after Dolly. Figure
(c) expands on the distribution of the gains for jobs with ≤ 10 tasks.

this is that while our policy of admission control is a good approximation (§4.3.2), it does
not explicitly prioritize small jobs. Hence a few large jobs possibly deny the budget to some
small jobs. Analyzing the consumption of the cloning budget shows that this is indeed the
case. Jobs in bin-1 and bin-2 together consume 83% of the cloning budget. However, even
jobs in bin-5 get a small share (2%) of the budget.

Improvements with our simulator that replays the entire traces are similar to our de-
ployment results. Table 4.2 summarizes and compares the results.

Delay Assignment

Setting ω: Crucial to the above improvements is delay assignment’s dynamic calculation of
the wait duration of ω. The value of ω, picked using the analysis in §4.3.3, is updated every
hour. It varied between 2.5s and 4.7s for jobs in bin-1, and 3.1s and 5.2s for jobs in bin-2.

Section 4.4. Evaluation 95

1

2

3

4

5

6

1 2 3 4 5

LATE

Mantri

Dolly

(M
e

d
ia

n
 :

 M
in

im
u

m
)

P
ro

g
re

s
s
 R

a
te

Bin (#Tasks)

(a) Facebook

1

2

3

4

5

6

1 2 3 4 5

LATE

Mantri

Dolly

Bin (#Tasks)

(M
e

d
ia

n
 :

 M
in

im
u

m
)

P
ro

g
re

s
s
 R

a
te

(b) Bing

Figure 4.18: Ratio of median to minimum progress rates of tasks within a phase.
Bins are as per Table 2.1.

Baseline: LATE Baseline: Mantri
Facebook Bing Facebook Bing

Dep. 42% (46%) 27% (37%) 40% (44%) 23% (34%)
Sim. 43% (48%) 28% (41%) 41% (45%) 26% (36%)
* Original cluster size

Table 4.2: Summary of results with the deployment and simulator. We list im-
provement in completion time due to Dolly; improvement of small jobs are in
parentheses.

The value of ω varies based on job sizes because the number of tasks in a job influences B,
α and pc. Figure 4.19 plots the variation with time. The sensitivity of ω to the periodicity
of updating its value is low—using values between 30 minutes to 3 hours causes little change
in its value.
CC and CAC: We now compare delay assignment to the two static assignment schemes,
Contention Cloning (CC) and Contention Avoidance Cloning (CAC) in Figure 4.20, for
the Bing workload. With LATE as the baseline, CAC and CC improve the small jobs by
17% and 26%, in contrast to delay assignment’s 37% improvement (or up to 2.1× better).
With Mantri as the baseline, delay assignment is again up to 2.1× better. In the Facebook
workload, delay assignment is at least 1.7× better.

The main reason behind delay assignment’s better performance is its accurate estimation
of the effect of contention and the likelihood of stragglers. It uses sampling from prior runs to
estimate both. Bandwidth estimation is 93% accurate without contention and 97% accurate
with contention. Also, the probability of an upstream clone straggling is estimated to an
accuracy of 95%.

Between the two, CC is a closer competitor to delay assignment than CAC, for small
jobs. This is because they transfer only moderate amounts of data. However, contentions

Section 4.4. Evaluation 96

1

2

3

4

5

0 1 2 3 4 5 6

1-10

11-50

V
a

lu
e

 o
f

ω
(s

)

Hourly Interval

Figure 4.19: Variation in ω when updated every hour.

hurt large jobs as they transfer sizable intermediate data. As a result, CC’s gains drop below
CAC.
Number of Phases: Dryad jobs may have multiple phases (maximum of 6 in our Bing
traces), and tasks of different phases have the same number of clones. More phases increases
the chances of there being fewer exclusive copies of task outputs, which in turn worsens
the effect of both waiting as well as contention. Figure 4.21 measures the consequent drop
in performance. CAC’s gains drop quickly while CC’s performance drops at a moderate
rate. Importantly, delay assignment’s performance only has a gradual and relatively small
drop. Even when the job has six phases, improvement is at 31%, a direct result of its deft
cost-benefit analysis (§4.3.3).
Communication Pattern: Delay assignment is generic to handle any communication pat-
tern between phases. Figure 4.22 differentiates the gains in completion times of the phases
based on their communication pattern. Results show that delay assignment is significantly
more valuable for all-to-all communication patterns than the many-to-one and one-to-one
patterns. The higher the dependency among communicating tasks, the greater the value of
delay assignment’s cost-benefit analysis.

Overall, we believe the above analysis shows the applicability and robust performance
of Dolly’s mechanisms to different frameworks with varied features.

Cloning Budget

The improvements in the previous sections are based on a cloning budget β of 5%. In
this section, we analyze the sensitivity of Dolly’s performance to β. We aim to understand
whether the gains hold for lower budgets and how much further gains are obtained at higher
budgets.

In the Facebook workload, overall improvement remains at 38% compared to LATE

Section 4.4. Evaluation 97

0

10

20

30

40

1-10 11-50 50-150 150-500 >500

CAC

CC

Delay Assignment

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(a) Baseline: LATE

0

10

20

30

40

1-10 11-50 50-150 150-500 >500

CAC

CC

Delay Assignment

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(b) Baseline: Mantri

Figure 4.20: Intermediate data contention. Delay Assignment is 2.1× better than
CAC and CC (Bing workload).

even with a cloning budget of only 3% (Figure 4.23a). Small jobs, in fact, see a negligible
drop in gains. This is due to the policy of admission control to favor small jobs. Large jobs
take a non-negligible performance hit though. In fact, in the Bing workload, even the small
jobs see a drop of 7% when the budget is reduced from 5% to 3%. This is because job sizes in
Bing are less heavy-tailed. However, the gains still stand at a significant 28% (Figure 4.23b).

Increasing the budget to 10% does not help much. Most of the gains are obtained by
eliminating stragglers in the smaller jobs, which do not require a big budget.

In fact, sweeping the space of β (Figure 4.24) reveals that Dolly requires a cloning budget
of at least 2% and 3% for the Facebook and Bing workloads, below which performance drops
drastically. Gains in the Facebook workload plateau beyond 5%. In the Bing workload, gains
for jobs in bin-1 plateau at 5% but the overall gains cease to grow only at 12%. While this
validates our setting of β as 5%, clusters can set their budgets based on their utilizations
and the jobs they seek to improve with cloning.

Section 4.4. Evaluation 98

0
10
20
30
40
50

2 3 4 5 6

Delay Assignment CAC CC

R
e

d
u

ct
io

n
 (

%
)

in

A
vg

.
C

o
m

p
le

tio
n

T
im

e

Number of phases in the job

Figure 4.21: Dolly’s gains as the number of phases in jobs in bin-1 varies in the
Bing workload, with LATE as baseline.

0

10

20

30

40

50

One-to-one Many-to-one All-to-all

Delay Assignment CAC CC

R
e

d
u

ct
io

n
 (

%
)

in

A
vg

.
C

o
m

p
le

tio
n

T
im

e

Communication Pattern

Figure 4.22: Performance of Dolly across phases with different communication
patterns in bin-1, in the Bing workload.

0

10

20

30

40

50

1 2 3 4 5

β = 3%

β = 5%

β = 10%

Bin (#Tasks)

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

(a) Facebook

0

10

20

30

40

1 2 3 4 5

β = 3%

β = 5%

β = 10%

Bin (#Tasks)

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

(b) Bing

Figure 4.23: Sensitivity to cloning budget (β). Small jobs see a negligible drop in
performance even with a 3% budget.

Admission Control

A competing policy to admission control (§4.3.2) is to preempt clones of larger jobs
for the small jobs. Preemption is expected to outperform admission control as it explicitly
prioritizes the small jobs; we aim to quantify the gap.

Section 4.5. Related Work 99

0

10

20

30

40

50

0 2 4 6 8 10

Overall

Bin-1

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

Cloning budget, β (%)

(a) Facebook

0

10

20

30

40

0 3 6 9 12 15

Overall

Bin-1

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
g

.

C
o

m
p

le
ti
o

n
 T

im
e

Cloning budget, β (%)

(b) Bing

Figure 4.24: Sweep of β to measure the overall average completion time of all jobs
and specifically those within bin-1.

Figure 4.25 presents the results with LATE as the baseline and cloning budgets of 5%
and 3%. The gains with preemption is 43% and 29% in the Facebook and Bing workloads,
compared to 42% and 27% with the policy of admission control. This small difference
is obtained by preempting 8% and 9% of the tasks in the two workloads. Lowering the
cloning budget to 3% further shrinks this difference, even as more tasks are preempted.
With a cloning budget of 3%, the improvements are nearly equal, even as 17% of the tasks
are preempted, effectively wasting cluster resources. Admission control well approximates
preemption due to the heavy tailed distribution. Note the near-identical gains for small jobs.

Doing neither preemption or admission control in allocating the cloning budget (“pure-
FCFS”) reduces the gains by nearly 14%, implying this often results in larger jobs denying
the cloning budget to the smaller jobs.

4.5 Related Work

Outliers inevitably occur in systems that compete for a share of resource pools [97], of
which mapreduce is one example. OpenDHT [83] and MONET [20] reported outliers over
planetlab and wide-area Internet respectively.

Much recent work focuses on large scale data parallel computing. Following on the map-
reduce [36] paper, there has been work in improving workflows [52,70], language design [28,
80, 102], fair schedulers [56, 103], and providing privacy [84]. Our work here takes the next
step of understanding how such production clusters behave and can be improved.

Run-time stragglers have been identified by past work [36, 52, 59, 71]. However, this
paper is the first to characterize the prevalence of stragglers in production and their various
causes. By understanding the causes, addressing stragglers early and scheduling duplicates
only when there is a fair chance that the speculation saves both time and resources, our
approach provides a greater reduction in job completion time while using fewer resources

Section 4.5. Related Work 100

0

10

20

30

40

50

1 2 3 4 5

pure-FCFS

Preemption

Admission Control
R

e
d

u
c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(a) Facebook (β = 5%)

0

10

20

30

40

1 2 3 4 5

pure-FCFS

Preemption

Admission Control

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(b) Bing (β = 5%)

0

10

20

30

40

50

1 2 3 4 5

pure-FCFS

Preemption

Admission Control

R
e

d
u

c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(c) Facebook (β = 3%)

0

10

20

30

1 2 3 4 5

pure-FCFS

Preemption

Admission Control
R

e
d

u
c
ti
o

n
 (

%
)

in
 A

v
e

ra
g

e

C
o

m
p

le
ti
o

n
 T

im
e

Bin (#Tasks)

(d) Bing (β = 3%)

Figure 4.25: Admission Control. The policy of admission control well approx-
imates the policy of preemption and outperforms pure-FCFS in utilizing the
cloning budget.

than prior strategies that duplicate tasks towards the end of a phase.
Current approaches [36,52,70] only duplicate tasks except for Late [71] which also stops

using persistently slow machines. Logs from the production cluster show that persistent
slowness occurs rarely and duplicates do not counter most of the causes of outliers, e.g.,
those that do a lot of work. Further, they do not avoid network hotspots or protect against
loss of task output.

By only acting at the end of a phase, current approaches [36,52,70] miss early outliers.
They vary in the choice of which among the tasks that remain at the end of a phase to
duplicate. After a threshold number of tasks have finished, MapReduce [36] duplicates all
the tasks that remain. Dryad [70] duplicates those that have been running for longer than
the 75th percentile of task durations. After all tasks have started, Hadoop [52] uses slots
that free up to duplicate any task that has read less data than the others, while Late [71]
duplicates only those reading at a slow rate.

Replicating tasks in distributed systems have a long history [25, 34, 67], and have been
studied extensively [32,47,77] in prior work. These studies conclude that modeling running

Section 4.5. Related Work 101

tasks and using it for predicting and comparing performance of other tasks is the hardest
component, errors in which often cause degradation in performance. We concur with a
similar observation in our traces.

The problem of stragglers was identified in the original MapReduce paper [36]. Since
then solutions have been proposed to fix it using speculative executions [19,70,71]. Despite
these techniques, stragglers remain a problem in small jobs. Dolly addresses their fundamen-
tal limitation—wait to observe before acting—with a proactive approach of cloning jobs. It
does so using few extra resources by relying on the power-law of job sizes.

Based on extensive research on detecting faults in machines (e.g., [38, 39, 49, 55, 73]),
datacenters periodically check for faulty machines and avoid scheduling jobs on them. How-
ever, stragglers continue to occur on the non-blacklisted machines. Further improvements
to blacklisting requires a root cause analysis of stragglers in small jobs. However, this is
intrinsically hard due to the complexity of the hardware and software modules, a problem
recently acknowledged in Google’s clusters [10].

In fact, Google’s clusters aim to make jobs “predictable out of unpredictable parts” [10].
They overcome vagaries in performance by scheduling backup copies for every job. Such
backup requests are also used in Amazon’s Dynamo [44]. This notion is similar to Dolly.
However, these systems aim to overcome variations in scheduling delays on the machines, not
runtime stragglers. Therefore, they cancel the backup copies once one of the copies starts. In
contrast, Dolly has to be resilient to runtime variabilities which requires functioning within
utilization limits and efficiently handle intermediate data.

Finally, our delay assignment model is similar to the idea of delay scheduling [104] that
delays scheduling tasks for locality. We borrow this idea in Dolly, but crucially, pick the
value of the delay based on a cost-benefit analysis weighing contention versus waiting for
slower tasks.

102

Chapter 5

Conclusions and Future Work

Several interesting and important issues remain in designing frameworks for parallel
jobs, borne out of theoretical complexities as well as evolving usage trends. We detail some
of there as future research directions.
Optimal Replacement for Parallel Jobs: An unanswered question is the optimal cache
replacement strategy to minimize average completion time of parallel jobs or maximize cluster
efficiency. The optimal algorithm picks that block for replacement whose absence hurts the
least when the entire trace is replayed. Note the combinatorial explosion as a greedy decision
for each replacement will not be optimal. We outline the challenges in formulating such an
oracular algorithm.

The completion time of a job is a function of when its tasks get scheduled, which in turn
is dependent on the availability of compute slots. An aspect that decides the availability of
slots for a job is its fair share. So, when executing tasks of a job finish, slots open up for
its unscheduled tasks. Modeling this requires knowing the speed-up due to memory locality
but that is non-trivial because it varies across tasks of even the same job. Further, scheduler
policies may allow jobs to use some extra slots if available. Hence one has to consider
scheduler policies on using extra slots as well as the mechanism to reclaim those extra
slots (e.g., killing of running tasks) when new jobs arrive. Precise modeling of the speed-
ups of tasks, scheduler policies and job completion times will help formulate the optimal
replacement scheme and evaluate room for improvement over LIFE and LFU-F.
Pre-fetching: A challenge for any cache is data that is accessed only once. While our work-
loads have only a few jobs that read such singly-accessed blocks, they nonetheless account
for over 30% of all tasks. Pre-fetching can help provide memory locality for these tasks.

We consider two types of pre-fetching. First, as soon as a job is submitted, the scheduler
knows its input blocks. It can inform the PACMan coordinator which can start pre-fetching
parts of the input that is not in cache, especially for the later waves of tasks. This approach
is helpful for jobs consisting of multiple waves of execution. This also plays nicely with
LIFE’s policy of favoring small single-waved jobs. The blocks whose files are absent are
likely to be those of large multi-waved jobs. Any absence of their input blocks from the
cache can be rectified through pre-fetching. Second, recently created data (e.g., output of

103

jobs or logs imported into the file system) can be pre-fetched into memory as they are likely
to be accessed in the near future, for example, when there are a chain of jobs. We believe
that an investigation and application of different pre-fetching techniques will further improve
cluster efficiency.
Speculation for Approximation Jobs: Increasingly, with the deluge of data, analytics
applications no longer require processing entire datasets. Instead, they choose to tradeoff
accuracy for response time. Approximate results obtained early from just part of the dataset
are often good enough [14, 89, 93]. Approximation is explored across two dimensions—time
for obtaining the result (deadline) and error in the result [64].

• Deadline-bound jobs strive to maximize the accuracy of their result within a specified
time limit. Such jobs are common in real-time advertisement systems and web search
engines. Generally, the job is spawned on a large dataset and accuracy is proportional
to the fraction of data processed [46,54,65] (or tasks completed, for ease of exposition).

• Error-bound jobs strive to minimize the time taken to reach a specified error limit in
the result. Again, accuracy is measured in the amount of data processed (or tasks
completed). Error-bound jobs are used in scenarios where the value in reducing the
error below a limit is marginal, e.g., counting of the number of cars crossing a section
of a road to the nearest thousand is sufficient for many purposes.

Approximation jobs require schedulers to prioritize the appropriate subset of their tasks
depending on the deadline or error bound. Prioritization is important for two reasons. First,
due to cluster heterogeneities [18, 37, 71], tasks take different durations even if assigned the
same amount of work. Second, jobs are often multi-waved, i.e., their number of tasks is much
more than available compute slots [41], thereby they run only a fraction of their tasks at a
time. The trend of multi-waved jobs is only expected to grow with smaller tasks [75].

Optimally prioritizing tasks of a job to slots is a classic scheduling problem with known
heuristics [58, 63, 79]. These heuristics, unfortunately, do not directly carry over to our sce-
nario for the following reasons. First, they calculate the optimal ordering statically. Strag-
gling of tasks, on the other hand, is unpredictable and necessitates dynamic modification
of the priority ordering of tasks according to the approximation bounds. Second, and most
importantly, traditional prioritization techniques assign tasks to slots assuming every task
to occupy only one slot. Spawning a speculative copy, however, leads to the same task using
two (or multiple) slots simultaneously. Hence, this distills our challenge to achieving the
approximation bounds by dynamically weighing the gains due to speculation against the cost
of using extra resources for speculation.

104

Bibliography

[1] Akamai content distribution network. http://www.akamai.com/.
[2] Amazon elastic compute cloud. http://aws.amazon.com/ec2/instance-types/.
[3] Applications and organizations using hadoop. http://wiki.apache.org/hadoop/

PoweredBy.
[4] Cloud compute can save govt agencies 25-50% in costs. http://googlepublicpolicy.

blogspot.com/2010/04/brookings-cloud-computing-can-save-govt.html.
[5] The coral content distribution network. http://www.coralcdn.org/.
[6] Hadoop distributed file system. http://hadoop.apache.org/hdfs.
[7] Hadoop Slowstart. https://issues.apache.org/jira/browse/MAPREDUCE-1184/.
[8] Hive. http://wiki.apache.org/hadoop/Hive.
[9] iostat - linux users manual. http://linuxcommand.org/man pages/iostat1.html.

[10] J. Dean. Achieving Rapid Response Times in Large Online Services. http://research.
google.com/people/jeff/latency.html.

[11] The Global Memory System (GMS) Project. http://www.cs.washington.edu/homes/
levy/gms/.

[12] The NOW Project. http://now.cs.berkeley.edu/.
[13] J. Wilkes and C. Reiss., 2011. https://code.google.com/p/googleclusterdata/wiki/

ClusterData2011 1.
[14] Interactive Big Data analysis using approximate answers, 2013. http://tinyurl.com/

k5favda.
[15] A. Greenberg, N. Jain, J. Hamilton, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel,

S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In ACM SIGCOMM,
2009.

[16] A. Thusoo . Data warehousing and analytics infrastructure at facebook. In SIGMOD,
2010.

[17] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica. True
Elasticity in Multi-Tenant Clusters through Amoeba. In ACM SoCC, 2012.

[18] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective Straggler Miti-
gation: Attack of the Clones. In USENIX NSDI, 2013.

[19] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, E. Harris, and B. Saha.
Reining in the Outliers in Map-Reduce Clusters using Mantri. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2010.

http://aws.amazon.com/ec2/instance-types/
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
http://googlepublicpolicy.blogspot.com/2010/04/brookings-cloud-computing-can-save-govt.html
http://googlepublicpolicy.blogspot.com/2010/04/brookings-cloud-computing-can-save-govt.html
http://hadoop.apache.org/hdfs
https://issues.apache.org/jira/browse/MAPREDUCE-1184/
http://wiki.apache.org/hadoop/Hive
http://linuxcommand.org/man_pages/iostat1.html
http://research.google.com/people/jeff/latency.html
http://research.google.com/people/jeff/latency.html
http://www.cs.washington.edu/homes/levy/gms/
http://www.cs.washington.edu/homes/levy/gms/
http://now.cs.berkeley.edu/
https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://tinyurl.com/k5favda
http://tinyurl.com/k5favda

Bibliography 105

[20] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Rao. Improving web
availability for clients with monet. In NSDI, 2005.

[21] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y.
Wang. Serverless network file systems. In ACM Symposium on Operating Systems
Principles (SOSP), 1995.

[22] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evaluating Content
Management Techniques for Web Proxy Caches. In WISP, 1999.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz, S. Shenker,
I. Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2011.

[24] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. An analysis of data corruption in the storage stack. In FAST,
2008.

[25] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko. Charlotte: Metacomputing on the
Web. In 9th Conference on Parallel and Distributed Computing Systems, 1996.

[26] L. A. Belady. A Study of Replacement Algorithms for Virtual-Storage Computer. IBM
Systems Journal, 1966.

[27] N. M. Belaramani, J. Zheng, A. Nayate, R. Soul, M. Dahlin, and R. Grimm. Pads:
A policy architecture for distributed storage systems. In Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins. Pig Latin: A Not-So-
Foreign Language for Data Processing. In ACM SIGMOD, 2008.

[29] C. Reiss, A. Tumanov, G. Ganger, R. H. Katz, M. Kozuch. Heterogeneity and dynam-
icity of clouds at scale: Google trace analysis. In ACM SoCC, 2012.

[30] Y. Chen, A. Ganapathi, and R. Katz. To Compress or Not To Compress - Compute
vs. IO tradeoffs for MapReduce Energy Efficiency. In Proceedings of the First ACM
SIGCOMM Workshop on Green Networking, 2010.

[31] L. Cherkasova and G. Ciardo. Role of Aging, Frequency, and Size in Web Cache
Replacement Policies. In HPCN EUrope, 2001.

[32] W. Cirne, D. Paranhos, F. Brasileiro, L. F. W. Goes, and W. Voorsluys. On the
Efficacy, Efficiency and Emergent Behavior of Task Replication in Large Distributed
Systems. In Parallel Computing, 2007.

[33] K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data compres-
sion. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international conference
on Management of data, pages 257–266, New York, NY, USA, 1993. ACM.

[34] E. K. D. Anderson, J. Cobb. SETI@home: An Experiment in Public-Resource Com-
puting. In Comm. ACM, 2002.

[35] D. Narayanan and A. Donnelly and E. Thereska and S. Elnikety and A. Rowstron.
Everest: Scaling down peak loads through i/o off-loading. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2008.

[36] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

Bibliography 106

2004.
[37] E. Bortnikov, A. Frank, E. Hillel, S. Rao. Predicting Execution Bottlenecks in Map-

Reduce Clusters. In USENIX HotCloud, 2012.
[38] J. G. Elerath and S. Shah. Dependence upon fly-height and quantity of heads. In

Annual Symposium on Reliability and Maintainability, 2003.
[39] J. G. Elerath and S. Shah. Server class disk drives: How reliable are they? In Annual

Symposium on Reliability and Maintainability, 2004.
[40] M. J. Franklin, M. J. Carey, and M. Livny. Global memory management in client-server

database architectures. In Very Large Data Bases, 1992.
[41] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,

I. Stoica. PACMan: Coordinated Memory Caching for Parallel Jobs. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2012.

[42] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica. Disk Locality Considered
Irrelevant. In USENIX HotOS, 2011.

[43] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, E.
Harris. Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. In
European Conference on Computer Systems, 2011.

[44] G. DeCandia and D. Hastorun and M. Jampani and G. Kakulapati and A. Lakshman
and A. Pilchin and S. Sivasubramanian and P. Vosshall and W. Vogels. Dynamo:
Amazons Highly Available Key-value Store. In ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[45] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing. In ACM SIGMOD, 2010.

[46] M. Garofalais and P. Gibbons. Approximate Query Processing: Taming the Terabytes.
In VLDB, 2001.

[47] G. Ghare and S. Leutenegger. Improving Speedup and Response Times by Replicating
Parallel Programs on a SNOW. In JSSPP, 2004.

[48] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, March 1969.

[49] J. Gray and C. van Ingen. Empirical measurements of disk failure rates and error
rates. In Technical Report MSR-TR-2005-166, 2005.

[50] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nectar: Auto-
matic Management of Data and Computation in Data Centers. In OSDI’10: Proceed-
ings of the 9th USENIX Symposium on Operating Systems Design and Implementation,
2010.

[51] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An Overview. In
IEEE Transactions on Knowledge and Data Engineering, 1992.

[52] http://hadoop.apache.org.
[53] J. H. Hartman and J. K. Ousterhout. The Zebra Striped Network File System. In

ACM SOSP, 1993.
[54] J. Hellerstin, P. Haas, and H. Wang. Online Aggregation. In ACM SIGMOD, 1997.
[55] E. Ipek, M. Krman, N. Krman, and J. F. Martinez. Core Fusion: Accommodating

http://hadoop.apache.org

Bibliography 107

Software Diversity in Chip Multiprocessors. In ISCA, 2007.
[56] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:

Fair Scheduling for Distributed Computing Clusters. In ACM Symposium on Operating
Systems Principles (SOSP), 2009.

[57] J. Ousterhout et al. The Case for RAMClouds: Scalable High-Performance Storage
Entirely in DRAM. In SIGOPS Operating Systems Review, 2009.

[58] L. Kleinrock. Queueing systems, volume II: computer applications. John Wiley & Sons
New York, 1976.

[59] S. Ko, I. Hoque, B. Cho, and I. Gupta. On Availability of Intermediate Data in Cloud
Comput. In HotOS, 2009.

[60] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A Study of Skew in MapReduce
Applications. In Open Cirrus Summit, 2011.

[61] L. A. Barroso. Warehouse-scale computing: Entering the teenage decade. In ISCA,
2011.

[62] L. A. Barroso and U. Holzle. The Case for Energy-Proportional Computing. In Com-
puter, 40(12), 2007.

[63] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-real-
time Environment. Journal of the ACM (JACM), 1973.

[64] J. Liu, K. Shih, W. Lin, R. Bettati, and J. Chung. Imprecise Computations. Proceedings
of the IEEE, 1994.

[65] S. Lohr. Sampling: design and analysis. Thomson, 2009.
[66] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center

Network Architecture. In SIGCOMM, 2008.
[67] M. C. Rinard and P. C. Diniz. Commutativity Analysis: A New Analysis Framework

for Parallelizing Compilers. In ACM PLDI, 1996.
[68] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, I. Stoica. Managing Data Transfers in

Computer Clusters with Orchestra. In ACM SIGCOMM, 2011.
[69] M. H.-B. M. E. Crovella, R. Frangioso. Connection Scheduling in Web Servers. In

USENIX USITS, 1999.
[70] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. Dryad: Distributed Data-

parallel Programs from Sequential Building Blocks. In ACM European Conference on
Computer Systems, 2007.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving MapReduce
Performance in Heterogeneous Environments. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[72] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S.
Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[73] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal, and K. Shin. Maestro: Quality-
of-Service in Large Disk Arrays. In ACM ICAC, 2011.

[74] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite Network File

Bibliography 108

System. ACM TOCS, Feb 1988.
[75] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,

S. Shenker, and I. Stoica. The Case for Tiny Tasks in Compute Clusters. In USENIX
HotOS, 2013.

[76] P. Skibinski and J. Swacha. 2007: Fast and efficient log file compression. In CEUR
ADBIS 2007.

[77] D. Paranhos, W. Cirne, and F. Brasileiro. Trading Cycles for Information: Using
Replication to Schedule Bag-of-Tasks Applications on Computational Grids. In Euro-
Par, 2003.

[78] P.Cao and S.Irani. Cost Aware WWW Proxy Caching Algorithms. In USENIX USITS,
1997.

[79] M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.
[80] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou. SCOPE:

Easy and Efficient Parallel Processing of Massive Datasets. In Very Large Data Bases,
2008.

[81] R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned
tables. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

[82] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup performance for power-
law query distributions in peer-to-peer overlays. In Symposium on Networked Systems
Design and Implementation (NSDI), 2004.

[83] S. Rhea, B.-G. Chun, J. Kubiatowicz, and ScottShenker. Fixing the embarrassing
slowness of opendht on planetlab. In WORLDS, 2005.

[84] I. Roy, S. T. Shetty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat: Security and
privacy for mapreduce. In NSDI, 2010.

[85] S. T. L. S. Ghemawat, H. Gobioff. The Google File System. In ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[86] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken. Nature of Datacenter
Traffic: Measurements and Analysis. In IMC, 2009.

[87] S. Ko, I. Hoque, B. Cho, I. Gupta. Making Cloud Intermediate Data Fault-Tolerant.
In ACM SOCC, 2010.

[88] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis.
Dremel: Interactive Analysis of Web-Scale Datasets. In Very Large Data Bases, 2010.

[89] S.Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB:
Queries with Bounded Errors and Bounded Response Times on Very Large Data. In
EuroSys. ACM, 2013.

[90] P. Skibinski and S. Grabowski. Variable-length contexts for PPM. In DCC’04: Pro-
ceedings of IEEE Data Compression Conference, 2004.

[91] G. Soundararajan, C. Amza, and A. Goel. Database replication policies for dynamic
content applications. In ACM European Conference on Computer Systems, 2006.

[92] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and R. Morris.
Flexible, wide-area storage for distributed systems with wheelfs. In Symposium on

Bibliography 109

Networked Systems Design and Implementation (NSDI), 2009.
[93] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R. Sears. MapRe-

duce Online. In USENIX NSDI, 2010.
[94] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, R. Sears. MapReduce

Online. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2010.

[95] A. Verma, R. Koller, L. Useche, and R. Rangaswami. Srcmap: Energy proportional
storage using dynamic consolidation. In FAST, 2010.

[96] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox. Removal
Policies in Network Caches for World-Wide Web Documents. In ACM SIGCOMM,
1996.

[97] D. Wischik, M. Handley, and M. B. Braun. The resource pooling principle. www.cs.
ucl.ac.uk/staff/D.Wischik/Research/respool.html.

[98] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz. Energy Efficiency for Large-Scale
MapReduce Workloads with Significant Interactive Analysis. In ACM European Con-
ference on Computer Systems, 2012.

[99] Y. Yu et al. Distributed Aggregation for Data-Parallel Computing: Interfaces and
Implementations. In ACM Symposium on Operating Systems Principles (SOSP), 2009.

[100] Y. Yu, P. K. Gunda, M. Isard. Distributed Aggregation for Data-Parallel Computing:
Interfaces and Implementations. In ACM Symposium on Operating Systems Principles
(SOSP), 2009.

[101] T. Yeh, D. D. E. Long, and S. A. Brandt. Increasing predictive accuracy by prefetching
multiple program and user specific files. High Performance Computing Systems and
Applications, Annual International Symposium on, 0:12, 2002.

[102] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Cur-
rey. DryadLINQ: A System for General-Purpose Data-Parallel Computing Using a
Language. In OSDI, 2008.

[103] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Job scheduling for multi-user mapreduce clusters. Technical Report EECS-2009-55,
UCBerkeley.

[104] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster
Scheduling. In ACM European Conference on Computer Systems, 2010.

www.cs.ucl.ac.uk/staff/D.Wischik/Research/respool.html
www.cs.ucl.ac.uk/staff/D.Wischik/Research/respool.html

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Job Model
	Phase Execution
	Extending from a phase to a job

	Heterogeneity in Clusters
	Data Skew
	Systemic Heterogeneities
	Solution Overview

	Methodology: Analysis and Evaluation
	Cluster Details
	Evaluation Workload
	Trace-driven Simulator

	Roadmap

	Input Data
	Introduction
	Cache Replacement for Parallel Jobs
	All-or-Nothing Property
	Sticky Policy
	Average Completion Time – LIFE
	Cluster Efficiency – LFU-F

	PACMan: System Design
	Workload Characteristics
	Coordination Architecture
	Wave-width
	LIFE and LFU-F within PACMan

	Scarlett: Diffusing Hotspots
	Motivation
	Scarlett: System Design
	Effect of Replicas on Frameworks

	Evaluation
	Setup
	PACMan's Improvements
	LIFE and LFU-F
	Traditional Cache Replacement
	Cache Size
	Scalability
	Using File Buffer Cache
	Scarlett: Locality Improvement

	Related Work

	Intermediate Data
	Introduction
	Workload Analysis
	Network-Aware Placement
	Avoiding Recomputation
	Evaluation
	Does Mantri improve placement?
	Does Mantri help with recomputations?

	Run-time Contentions
	Introduction
	Speculation
	Cloning
	Blacklisting is Insufficient

	Speculation with Opportunity Cost
	Quantifying Stragglers
	Resource-aware Speculation
	Estimation of trem and tnew

	Cloning Tasks
	Case for Cloning
	Cloning of Parallel Jobs
	Intermediate Data Access with Dolly

	Evaluation
	Mantri Evaluation
	Dolly Evaluation

	Related Work

	Conclusions and Future Work
	Bibliography

