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Abstract

PHANTOM: Practical Oblivious Computation in a Secure Processor

by

Martin Christoph Maas

Master of Science in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Confidentiality of data is a major problem as sensitive computations migrate to the cloud.
Employees in a data center have physical access to machines and can carry out attacks that
have traditionally only affected client-side crypto-devices such as smartcards. For example,
an employee can snoop confidential data as it moves in and out of the processor to learn
secret keys or other program information that can be used for targeted attacks.

Secure processors have been proposed as a counter-measure to these attacks – such pro-
cessors are physically shielded and enforce confidentiality by encrypting all data outside the
chip, e.g. in DRAM or non-volatile storage. While first proposals were academic in nature,
this model is now starting to appear commercially, such as in the Intel SGX extensions.

Although secure processors encrypt all data as it leaves the CPU, the memory addresses
that are being accessed in DRAM are still transmitted in plaintext on the address bus. This
represents an important source of information leakage that enables serious attacks that can,
in the worst case, leak bits of cryptographic keys. To counter such attacks, we introduce
Phantom, a new secure processor that obfuscates its memory access trace. To an adversary
who can observe the processor’s output pins, all memory access traces are computationally
indistinguishable (a property known as obliviousness). We achieve obliviousness through a
cryptographic construct known as Oblivious RAM (ORAM).

Existing ORAM algorithms introduce a large (100-200×) overhead in the amount of
data moved from memory, which makes ORAM inefficient on real-world workloads. To
tackle this problem, we develop a highly parallel ORAM memory controller to reduce ORAM
memory access latency and demonstrate the design as part of the Phantom secure processor,
implemented on a Convey HC-2ex. The HC-2ex is a system that comprises an off-the-shelf
x86 CPU paired with 4 high-end FPGAs with a highly parallel memory system.

Our novel ORAM controller aggressively exploits the HC-2ex’s high DRAM bank paral-
lelism to reduce ORAM access latency and scales well to a large number of memory channels.
Phantom is efficient in both area and performance: accessing 4KB of data from a 1GB
ORAM takes 26.2us (13.5us until the data is available), a 32× slowdown over accessing 4KB
from regular memory, while SQLite queries on a population database see 1.2-6× slowdown.
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Chapter 1

Introduction

This chapter describes the security challenges for offloading computation to the cloud. It
first reviews existing work on secure processors and shows their shortcomings in providing
important privacy guarantees. It then shows how these guarantees can be provided by using
Oblivious RAM (ORAM), a cryptographic construct that obfuscates memory address traces.
Finally, it introduces the Phantom secure processor which alleviates the aforementioned
shortcomings by providing efficient hardware support for ORAM.

1.1 Security Challenges in Cloud Computing

Enterprises and organizations are increasingly moving computation into the cloud. Cloud
computing is predicted to be a $207 billion industry by 2016 [96] and KPMG’s global cloud
survey among enterprises shows that “70 percent of respondents believe that cloud is de-
livering efficiencies and cost savings today” [46]. Organizations moving to the cloud span
all sectors, from major corporations [6] to NGOs [97] to the US government [23]. While
cost savings are a significant driver, other reasons for moving to the cloud include business
transformations and increasing business agility [46].

One of the main barriers for adoption of cloud solutions are concerns about the privacy
of confidential information. Many organizations operate on highly sensitive data such as
financial data, medical data, intellectual property or user data with legally binding privacy
requirements. The KPMG Global Cloud Survey cites “data loss and privacy risks” as one of
the most pressing concerns when offloading data to the cloud [46] and cloud-based security
services are expected to be a $3.1 billion market by 2015 [26].

A particularly difficult security challenge stems from the fact that the cloud provider has
physical access to the machines storing and processing a company’s privacy-sensitive data.
As a result, a malicious employee can readily extract sensitive data from the machines:
the importance of such insider attacks has been repeatedly demonstrated through examples
of rogue employees [47] and thefts of sensitive data at major companies [19]. As recent
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high-profile leaks of confidential government information have shown, Top Secret security
clearance is not a sufficient guarantee to prevent these leaks [35].

Another concern is security at the cloud provider’s data center. As shown in a recent case
study [74], data center break-ins are in the realm of possibility and security trade-offs made
by the cloud provider may differ from those required by the client. At the same time, the
government under whose jurisdiction the cloud provider operates may enforce government-
mandated surveillance, potentially without the knowledge of the cloud provider [27]. As
these decisions are oftentimes kept secret, the client does not have a way to confirm the data
center operator’s security-level or even prove that no data was compromised.

Once an attacker has physical access to a machine, they can either run additional code
to extract information [95] or extract it directly from the DRAM modules (e.g., using cold
boot attacks [37]). Many of these attacks are undetectable, in particular if hardware probes
are deployed, which are known to be actively used by intelligence agencies today [25].

The inability to guarantee privacy of data in the cloud is particularly problematic in
cases where the privacy of information is of utmost importance (such as for health records)
or where the data gives the company a crucial business advantage (such as financial data
used by trading firms to make decisions). In some scenarios, there is even a competitive
relationship between the cloud provider and the client. For example, Netflix is hosted on
Amazon’s EC2 cloud infrastructure, while Amazon is a direct competitor through their
Amazon Instant Video service [7].

As a result, cloud customers are becoming increasingly hesitant to offload their computa-
tion to third parties (particularly in other countries), due to security concerns. It is predicted
that this will lead to losses of $22 billion to $35 billion in revenues for the US cloud indus-
try over the next three years [12]. Overcoming these security challenges is therefore highly
important for cloud adoption.

1.2 The Case for PHANTOM

For the past decade, there has been a large body of work in the research community that aims
to solve these security challenges. One proposed solution is Secure Processors [84, 88, 73, 78].
These are CPUs implemented in tamper-proof hardware which is manufactured by a trusted
third party and provides cryptographic means to allow a client to confirm its authenticity
before exposing any sensitive information. Outside the processor, data is automatically
encrypted, whether in DRAM or non-volatile storage. The advantage of secure processors is
that they provide strong privacy guarantees by encrypting data before it leaves the processor,
without the prohibitive overheads of multiple orders of magnitude incurred by homomorphic
encryption [28], or the maintenance and cost problems associated with making the entire
machine (or motherboard) tamper-proof1.

1Individual ASICs are easier to make tamper-proof, since hardware state within the silicon cannot be
readily extracted without external interfaces – there has been some recent work on drilling through the
silicon [38], but these attacks cannot be deployed during normal data-center operation.
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While the first implementations of the secure processor paradigm were academic in na-
ture (such as MIT’s AEGIS project [85]), it is increasingly being adopted by industry: IBM’s
cryptographic co-processors [3] provide a tamper-proof environment for decrypting and pro-
cessing encrypted data and Intel’s upcoming SGX processor extensions [57] protect against
memory-based attacks by encrypting an application’s address space, making it inaccessible
through both physical attack channels and the server’s operating system or hypervisor. There
are also products emulating this form of hardware support on commodity hardware [66]. All
these solutions can be deployed in cloud data centers to ensure privacy of customer data,
but other application areas (such as protection of embedded devices or DRM in consumer
electronics) are possible as well.

While such platforms prevent an attacker from directly extracting confidential informa-
tion, they are still prone to side-channel attacks [45]. One of these attacks concerns the
accessed memory addresses. Since it is economically infeasible to re-engineer DRAM chips
(i.e., the DRAM banks), trusted cloud computing platforms have to rely on off-the-shelf
DRAM components. While this does not prevent encryption of all data before sending it
to memory, it means that memory addresses have to be sent in cleartext. As a result, an
attacker with physical access to the machine can, e.g., replace the DRAM DIMMs with
malicious boards that contain non-volatile memory to log or sample all memory addresses
that are being accessed (similar to NVDIMM memory modules that are available today to
protect against power outages [4, 58]).

Although memory addresses may appear like a harmless side-channel, they represent an
important source of information leakage. Imagine, for example, that a financial company
runs a series of checks whenever they are about to sell a stock. In such a case, the addresses
accessed by the processor reveal the following information to an attacker:

• The data sets that have been accessed. For example, if the attacker finds out that
a particular range of addresses belongs to a particular portfolio, she will know which
portfolios are going to be affected by the sale.

• The instruction addresses of the code that is being executed. This can reveal informa-
tion about the nature of the operation that the client is performing, e.g., whether the
company is preparing a sale or a buy.

Depending on the scenario, address information might reveal data such as geolocations,
targets of audit or surveillance, vulnerable OS versions or programs (similar to work on OS
fingerprinting [36]) and in extreme cases even bits of cryptographic keys [100].

Preventing such information leakage requires making memory address traces computa-
tionally indistinguishable, a property known as obliviousness. To achieve this goal, this thesis
introduces Phantom, a new secure processor that provides not only data confidentiality but
also memory trace obliviousness. In other words, an attacker capable of snooping the mem-
ory bus and the DRAM contents cannot learn anything about the secret program memory,
not even the memory locations accessed.



CHAPTER 1. INTRODUCTION 4

1.3 Oblivious RAM

To provide obliviousness, we rely on an algorithmic construct called Oblivious RAM (ORAM),
initially proposed by Goldreich and Ostrovsky [31], and later improved in numerous subse-
quent works [63, 34, 16, 49, 33, 77, 83]. Intuitively, ORAM techniques obfuscate memory
access patterns through random permutation, reshuffling and reencryption of memory con-
tents. They require varying amounts of trusted memory that the adversary cannot observe.
To develop a practical ORAM in hardware, we adopt Path ORAM proposed by Stefanov et
al. [83] – a simple algorithm with a high degree of memory-access parallelism. Path ORAM
builds on a new binary-tree ORAM framework recently proposed by Shi et al. [77].

A concurrent project has also used Path ORAM to propose a secure processor (As-
cend [21, 69]); that work focused on optimizing the basic Path ORAM algorithm and on a
design-space exploration of algorithm parameters using a simple model of a CPU and ORAM
controller. In contrast, we focus on the challenges of actually building a practical oblivious
system – complete with a CPU, an ORAM controller, and running non-trivial programs like
SQLite obliviously on the CPU. The high-level algorithmic optimizations in Ascend are com-
plementary to our algorithmic improvements targeted at Path ORAM’s microarchitecture
and to our work in designing and implementing a full oblivious system.

1.4 Challenges

Making oblivious processors practical poses several challenges. The first is Path ORAM’s
significant memory bandwidth overhead: for realistic configurations, it incurs a bandwidth
overhead of more than 100× over a non-secure access. We address this problem by relying
on an off-the-shelf FPGA platform with a high-bandwidth memory system. However, Path
ORAM is difficult to parallelize across multiple memory channels, in particular without
introducing security leaks. Furthermore, while our FPGA platform provides the required
memory bandwidth, it restricts us to use a slow FPGA for the ORAM controller logic –
the ratio of slow logic to high memory bandwidth makes the problem of scaling to a larger
number of memory channels even harder. This is representative of the same challenges that
have to be solved in a high-performance ORAM system on a custom chip.

To our knowledge, Phantom is the first hardware implementation of ORAM and so
many of the microarchitectural challenges have not been previously explored. It would
therefore be impossible to model the machine at a more abstract level for simulation without
understanding what is involved in an actual implementation. Phantom closes this gap by
implementing a full design and exploring the microarchitectural challenges, providing insight
into design challenges not visible at an abstract level. In fact, we found a number of micro-
architectural details that pose serious challenges in a real implementation but were overlooked
in preliminary simulations we performed at earlier stages of the project.
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1.5 Contributions

In this thesis, we present Phantom, an oblivious processor that exploits a highly parallel
memory system in combination with a novel ORAM controller to implement a practical
oblivious system. Specifically, we make the following technical contributions:

1. We present a series of attacks to show how information leakage through memory ad-
dresses can be used to extract sensitive informations from applications. This includes
discerning different queries to a SQLite database as well as distinguishing different
algorithms running on a processor.

2. We introduce an ORAM controller architecture that is very effective at utilizing high
DRAM bandwidth – even when implemented on slow FPGA logic. We propose critical
improvements of the Path ORAM algorithm, and a deeply pipelined microarchitecture
that utilizes 93% of the maximum DRAM bandwidth from 8 parallel memory con-
trollers, while only fetching the minimum amount of data that Path ORAM requires.
As a result, Phantom achieves close to the optimal 8× speedup over a baseline design
with one memory controller.

3. We build and evaluate Phantom’s oblivious memory controller on an FPGA-based
computing platform. Using several ORAM configurations, we show that Phantom
logic requires only 2% of the LUTs on a Xilinx Virtex 6 FPGA and a single FPGA
is sufficient to support an ORAM of 1GB effective size. The Phantom prototype
sustains 38,191 full 4KB ORAM accesses per second (150MB/s) to a 1GB ORAM.

4. We integrate the oblivious memory controller with an in-order processor implementing
the RISC-V instruction set [92]. We run real-world applications on this processor,
including SQLite, and extend our results from the real hardware to different cache
sizes by using simulation. Our results show that the oblivious memory controller’s
overhead translates to 20% to 500% performance overhead for a set of SQLite queries.

1.6 Thesis Organization

Chapter 2 shows a series of attacks that exploit information leakage through the memory
address channel to demonstrate that Phantom is solving an important problem. Chap-
ter 3 presents background information on Oblivious RAM (ORAM) research, which is the
technique that we use to protect the address channel. This is followed by a high-level
introduction of Phantom (Chapter 4), the microarchitectural details of our ORAM im-
plementation (Chapter 5) and how we prototyped it on the Convey HC-2ex heterogeneous
computing platform (Chapter 6). Chapter 7 presents a detailed evaluation of Phantom’s
performance, followed by a summary of related work (Chapter 8) and a discussion of why
we believe our work is important (Chapter 9). Chapter 10 then concludes.
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Chapter 2

Attacks through Memory Addresses

In this chapter, we demonstrate how memory address traces can be used to attack an applica-
tion running on a processor, even if the data in memory is encrypted. We first show a simple
attack against a SQLite database that demonstrates how address traces reveal information
about executed queries. We then show a machine-learning-based attack to discern different
algorithms based on instruction address traces.

2.1 Assumptions

For the purpose of these attacks, we assume a very basic setup where we can retrieve full
address traces from the stream of memory requests that is issued by the CPU to main memory
(i.e., addresses but no temporal information – a CPU could remove temporal information by
issuing a memory request every once in a fixed period). This scenario matches an attacker
with physical access to the machine who is eavesdropping on the machine’s address bus, e.g.,
through malicious DRAM DIMMs. We assume no additional information, unless explicitly
stated otherwise – in particular, we assume no knowledge of DRAM contents, or any state
within the CPU or caches (Figure 2.1).

CPU Caches DRAM

Sealed Data (Encrypted)

Addresses
Information Leakage

Figure 2.1: The basic attack model - we exploit the indicated information leakage. Red
indicates encrypted data while green indicates plain-text. An attacker has physical access
to every part of the system except the sealed part indicated in blue.
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2.2 Classification of Attacks

Different attack models are conceivable in this scenario. For example, we could assume that
we know the code of the application that the victim is running. Based on this knowledge, we
could retrace the data flow within the application and reconstruct parts of the confidential
data the application is operating on (an instance of this approach has been used to extract
bits of cryptographic keys from address traces [100]). It is therefore useful to classify attacks
through memory addresses based on whether they assume knowledge of the application’s
code, the data that it is operating on, or neither.

The case where the data is known but the code is private corresponds to attacks circum-
venting software protection to learn the functionality of an application based on its memory
access pattern. Reconstructing the code of an application is important for reverse engineer-
ing programs and learning about attack vectors (e.g., when targeting security-sensitive code
in smart cards). It can also be used to extract intellectual property, such as proprietary
algorithms that are executed by an application. As a result, software protection was one of
the original motivations when Oblivious RAM was first introduced [30].

Recent work has increasingly focused on attacks where an attacker wants to learn about
the data being accessed. This is often motivated by the cloud scenario where a cloud provider
can learn about the access pattern to data stored in its data centers, e.g., which files are
being accessed in a cloud file system [94, 80], which diseases or specialists are being searched
for in a medical application [13], or which queries are being executed on a database [2].
Oftentimes, at least part of the code is known in these cases, e.g., an attacker may have
access to the code of the file system running on its server, while the data itself is encrypted.

In many cases, neither the data nor the code is known. However, previous work has
demonstrated a control flow graph (CFG) fingerprinting technique to identify known pieces of
code solely based on the address trace [100], relying on the observation that most applications
contain a large portion of reused code – e.g., 39% for the SPEC 2000 benchmarks. This allows
an attacker to still correlate memory accesses to program behavior for the reused portions
of the code, even if other parts of the program remain unknown.

Some of these different types of attacks are related to other research areas that aim to
solve different sets of problems. For example, learning about executing code while the data
is known is similar to work on intrusion detection, which aims to detect anomalies in code
executing on the machine and can make use of memory traces to achieve this goal. Similarly,
learning about a program for which both the code and the data is known has similarities to
workload characterization. Table 2.1 summarizes these different scenarios and lists related
work for each of them. A comprehensive overview of related work is given in Chapter 8.

For the remainder of this chapter, we will mostly assume an attack model where both code
and data are unknown to the attacker – while the CFG fingerprinting approach can often be
used to identify reused pieces of code, address space randomization might be used to counter
this solution. In the following sections, we first demonstrate how address traces can leak
information about both the program that is executing and the data that it is operating on,
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Code
Data

Public Private

Public Workload Classification [76] HIDE [100]
Private Intrusion Detection [67] Itai et al. [41], this work

Table 2.1: Classification of related work.

even without any advanced processing of the traces. We then show that a machine-learning
based approach can extract even more information and automatically recognize different
algorithms running on a processor, even when running on different input data.

2.3 Extracting the Data that is Being Accessed

In simple cases, the information leakage through the memory address channel is clearly visible
from the trace. For example, in many data structures (such as linked lists, hash tables or
binary search trees), the address trace uniquely identifies the accessed element, which in turn
leaks information about the executed operations, such as which portfolio is being accessed,
or an entry in a medical database. Even without knowing the exact data, this information
leakage allows an attacker to link accesses to the same data, and over time learn the layout
of the underlying data structure. This is similar to other attacks presented in the past, even
though some of these attacks rely on channels other than memory addresses [13, 100].

To demonstrate that the same information leakage occurs in significantly more complex
workloads – even in the presence of caches – we simulated a SQLite workload on a processor
model with simulated caches. We used the RISC-V ISA simulator [87] for this purpose, since
it provides a functional model of the processor we are using for Phantom.

In our experiment, we simulate an in-order processor with a 32KB L1 instruction cache,
a 64KB L2 data cache and a 512KB unified L2 cache1. We ran SQLite 3.7.15.2 on a publicly
available SQLite version of the 2010 US Census Database [20]. This represents a 7.5MB
database, which we packaged with the SQLite executable for easier transfer into the simula-
tor. Further, we modified SQLite to redirect all file system accesses into main memory, such
that the resulting application never has to access a real file system and runs on bare metal
rather than requiring an operating system (we built on spmemvfs [53] for this purpose). We
also modified SQLite’s syscall table to emulate all syscalls within the SQLite executable.

The database we used is small and therefore will hit the cache more often than a bigger
data set would. As such, the information leakage we show in this experiment is a conserva-
tive estimate – results for more realistically sized data sets are likely to exhibit even more
information leakage.

1The cache line size for all caches is 128B. The L1 instruction cache is 2-way associative, the L1 data
cache 4-way associative and the L2 cache 8-way associative



CHAPTER 2. ATTACKS THROUGH MEMORY ADDRESSES 9

Read database Query

SELECT population FROM all counties in…

California

Texas

Re
ad

 d
at

ab
as

e
Qu

er
y

SE
LE

C
T

 M
/F

 F
R

O
M

 a
ll 

co
un

ti
es

 in
…
 C
al

if
or

ni
a

T
ex

as


Figure 2.2: Visible information leakage in memory address traces from SQLite, running on
a RISC-V processor model with caches. Two queries running on the same SQLite database
yield clearly discernible memory accesses.

Figure 2.2 plots the accessed physical memory addresses from last-level cache misses, as
produced by our simulator. We ran two different queries:

SELECT zctas.zcta,zctas.population_female_total,zctas.population_male_total

FROM zctas,states_zctas WHERE zctas.id = states_zctas.zcta_id AND

states_zctas.state_id = <STATE_ID>;

where in one case we set <STATE_ID> to ’29’ (California) while in the other we set it to ’49’

(Texas). The plot shows that these two queries produce address traces that are identical
for the first part (which consists of loading the executable and the database into memory,
and copying the database from its .data region into a newly allocated area on the heap).
However, once the execution of the query commences, the two executions produce visibly
different address traces. An attacker could therefore discern the two queries, which represents
a significant amount of information leakage about the data that the program is accessing.

2.4 Extracting the Algorithm that is Being Executed

While the previous attack shows how the address trace leaks information about the data that
an algorithm is accessing, the following example demonstrates how address traces enable an
attacker to learn about the code – and hence the algorithm – that is being executed. This
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Figure 2.3: An example of a data trace and an instruction trace. The data trace stems
from an execution of the merge sort algorithm, the instruction trace from a bubble sort
implementation. In both cases, the trace indicates which algorithm is being executed.

is equally important since the execution of a particular algorithm can serve as a fingerprint
for a particular function that is running (e.g., to sell stock from a portfolio or to do some
routine checks prior to a particular kind of transaction).

In this example, we look at a set of sort algorithms and show what the address traces
can tell us about the algorithm that is currently running. Note that for any address trace,
we can often discern which parts of it represent instruction fetches and which of them rep-
resent accesses to data (based on address ranges in memory). Both of these accesses leak
information about the algorithm that is being executed.

To demonstrate this information leakage, consider the two address traces presented in
Figure 2.3 (in contrast to the previous experiment, these traces ignore caches and were
collected from an x86 executable instrumented using valgrind – the precise methodology is
described in Section 2.5). The first plot represents a data trace, which contains all addresses
accessed on the heap of a program running glibc’s sort function. From this trace alone,
it is possible to see that the algorithm performed by this function is merge sort: the trace
clearly shows the different phases of the algorithm – sorting two subregions recursively and
then merging them in a linear scan through both regions.

Similarly, the second graph presents the instruction trace of a bubble sort implementation.
The “spikes” show the beginning of the next iteration of the outer loop while the linear
accesses in between represent the linear scan through the array. Note that some iterations
take longer than others – this represents whether two consecutive elements are being swapped
or not and leaks information about the input data. The trace even shows how these swaps
often occur in consecutive locations due to entries “bubbling” through the array.

While far from a rigorous analysis, this example intuitively shows that there is a signifi-
cant amount of statistical information contained in address traces. In reality, this information
is not as readily available as in this example, since instruction and data caches hide a signif-
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icant portion of the memory accesses and introduce noise. The next section presents work
towards statistical methods to extract the information contained in address traces and use
it to learn sensitive information about the program that generated them.

2.5 Using Machine Learning to Extract Secrets

While information can sometimes be visually observed from the address traces, most attacks
through address traces require a more sophisticated approach. In particular, in a scenario
with more complex application mixes and architectures, the address trace may appear ran-
dom at visual inspection, even if it includes a large amount of information. Simple defenses
against information leakage through the address channel (such as HIDE [100] or address
space randomization) introduce additional noise as well. We therefore explore statistical
techniques to still extract information from the memory address trace, even in cases where
this information is not visually apparent. Such techniques can be used to automate attacks
and search for relevant information in a trace collected during a physical attack.

Methodology

To make the problem more tractable, we restrict ourselves to identifying the algorithm a
victim is executing. This information may allow us to predict the victim’s actions (e.g. if it
is a financial firm, whether it is about to sell or buy) and learn properties of data (e.g. if the
victim is operating on medical records and runs an algorithm specific to a particular disease,
we know that it is part of the record). We focus on instruction traces and assume that all
addresses are observed (it has been shown that this could be approximated by maliciously
causing cache flushes [100]). Modeling the impact of caches is future work.

Formally, our attack can be described as follows: we want to capture each operation
O ∈ O that the victim may perform by a model θO such that when we observe an address
trace Y , we can determine that it stemmed from O, i.e.

∀O′ ∈ O.(O′ 6= O)⇒ L(Y |θO)� L(Y |θO′).

We base our research on instruction traces gathered from implementations of three common
algorithms: (i) Merge Sort, (ii) Bubble Sort and (iii) Sparse Matrix Multiplication [42]. These
algorithms are similar in complexity but sufficiently different to give meaningful results.
To collect our memory traces, we used the open-source valgrind [59] tool, which allows
instrumentation of binaries. We developed our own Valgrind plug-in (based on the lackey

example tool included with Valgrind) that allows us to record full instruction or data traces,
and to switch tracing on and off through macros in the profiled application. For each of the
three algorithms, we collected one trace of training data and one trace of test data stemming
from different inputs. The traces were 22,391-44,429 addresses in length.
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The Basic Probabilistic Model

Programs can be divided into basic blocks. A basic block is a unit of consecutive instructions
with the property that it has a single entry and exit point, i.e. execution will never jump into
or away from interior instructions of a basic block. This allows us to model (deterministic)
execution of an application on data D as follows:

push ebp
mov ebp, esp
add eax, ddx

shl eax, 2

shr eax, 8
mov ebp, esp

push ebp
lea eax, edx
add eax, ddx

shl eax, 2

add ebp, 5
mov ebp, esp

add al, cl
shl eax, 2

shr eax, 8
rtn

BB1

BB2

BB3

BB4

BB5

Xt ∈ N− Instruction address at time t

π ∈ N− Program entry point

p(X0 = i) =

{
1 if π = i
0 otherwise

p(Xt+1|Xt, D) =



1 if Xt is not the end of basic
block and Xt+1 = Xt + 1

0 if Xt is not the end of basic
block and Xt+1 6= Xt + 1

q(Xt+1|Xt, D) otherwise, for some unknown
but fixed distribution q

The distribution q captures all the program behavior (i.e transfer probabilities between
different basic blocks) and can be arbitrarily complex. In order to model program execution,
we therefore need a way to approximate q. We do this by dropping D from the equation (since
the data is unknown to us) and enforce the Markov property, i.e. q(Xt+1|Xt, D) becomes
q(Xt+1|Xt). For simplicity, we also assume time homogeneity (however, according to results
from [76], it may be beneficial to drop this assumption at some later point). In practice, this
means that the model does not capture certain changes between program phases.

The second assumption we have to drop is the fixed entry point π. Since we cannot
assume that our recorded trace starts precisely at the entry point, we use a distribution over
states that we fit to the training data based on maximum likelihood. The resulting model is
a time-homogeneous Markov Chain where states represent basic blocks (Figure 2.4). Here,
the yt’s represent the observed addresses – the likelihood of observing a particular yj while
in state Xi is captured by the emission probability of the model.

The Empirical Model

To confirm the validity of this model, we used the training data to build an empirical model
that constructs the Markov Model directly from the training data. In this model, each state
of the Markov Chain corresponds to a basic block and the transition probabilities between
states are the relative transition frequencies between basic blocks as they occurred in the
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y1 y2 y3 y4

0x4195912 0x4195916 0x4195919 0x4195921

X1 X2 X3 X4
P11 P12 P23

η1(0x4195912) η1(0x4195916) η2(0x4195919) η3(0x4195921)

Figure 2.4: The graphical model of the Markov Chain with multinomial emission proba-
bilities that underlies the empirical model.

training data. The emission probabilities of the Markov Chain are modeled as multinomials,
with uniform emission probabilities for addresses within the current basic block and zero
probability for all addresses outside the block (here, yT1 is the training address trace):

si − First address of BBi ei − Last address of BBi li = ei − si + 1

Q = # BBs bij =
T−1∑
t=1

I(si ≤ yt & yt ≤ ei & sj ≤ yt+1 & yt+1 ≤ ej)

π = ~1 · (1/Q) Pij =
bij∑Q
k=1 bik

ηij =
1

li
I(si ≤ j & j ≤ ei)

Note that the basic block boundaries si, ei are not available to an attacker who only observes
the address trace. To construct the empirical model, we extracted them using BBV, a Valgrind
tool that detects branch instructions to determine basic blocks.

The empirical model correctly matched the test address traces with the algorithm that
generated them: after fitting π for each test trace (using the EM algorithm), keeping the other
model parameters fixed, the resulting log-likelihood was −50, 012 for the bubble sort model
on the bubble sort trace, −165, 051 for the merge sort model on the merge sort trace and
−80, 657 for the matrix multiplication model on the matrix multiplication trace. All other
likelihoods were zero. This is not surprising, since the multinomial emission probabilities
mean that a trace that contains even a single address which didn’t occur in the model’s
training data (a very likely scenario) results in likelihood 0. While this makes the model too
fragile for practical use, it shows that the basic approach of modeling execution as a Markov
Model works well. We will now show how to refine the model to be more practical.
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Model
Test Data

BSort MSort SparseMM

BSort -50,590 -439,390 −∞
MSort -309,450 -121,780 −∞
SparseMM -326,320 -349,680 -48,240

Table 2.2: Results for HMM with Gaussian emission probabilities (Q=50 states). We
highlight the maximum likelihood in each column.

The Näıve Hidden Markov Model

The empirical model relied on knowledge of the basic blocks, which the attacker does not
have. We therefore need a model that learns the basic blocks instead. A Hidden Markov
Model (HMM) achieves this: by fitting the HMM to the training data, it will learn a set
of states (basic blocks) and instructions that belong to them (emission probabilities). We
fit a Hidden Markov Model with 50 states and multinomial emission probabilities (with one
outcome for each address in the output) using the EM algorithm. After fitting the model, we
performed the same test as with the empirical model, fitting the test data’s prior distribution
π and comparing log-likelihoods. The results were similar: all three algorithms were correctly
classified (log likelihoods −4, 123 for bubble sort, −80, 146 for merge sort and −21, 286 for
sparse matrix multiplication). The other likelihoods were, as before, zero.

Gaussian Emission Probabilities

While the previous approach achieves its goal for our examples, it is impractical: it is too
fragile and has too many free parameters (one emission probability for each address, which
number in the millions even in small programs). Both problems are solved by replacing the
multinomial emission probabilities by Gaussian emission probabilities. Each state i receives
a parameter pair (µi, σ

2
i ), which can be interpreted as the center and the size of each basic

block2. As expected, the results are not as clear cut as before anymore – resulting in non-zero
likelihoods for most pairs – but still classify each algorithm correctly (Table 2.2).

Adapting the EM Algorithm to support code relocation

The above approach fails when the basic blocks are at different locations than in the training
data. However, this is a common case as many systems use address space randomization for
security reasons. Furthermore, recompilation and small changes to software or compiler lead
to changes in addresses as well.

2We enforced σ2 ≥ 1 since otherwise the optimization can result in Gaussians with a very small variance
in cases where there are more states than instructions, giving an invalid interpretation (blocks with < 1
instructions) and a positive log likelihood.
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Model
Test Data

BSort MSort SparseMM

BSort -222,090 -325,450 −∞
MSort -265,350 −∞ −∞
SparseMM -318,270 -332,490 -172,790

Table 2.3: Results for HMM approach with mean fitting for relocated code.

A simple way to support such code relocation would appear to be fitting the means again
when fitting the model to the test data, while leaving transition matrix and variances fixed
as before. However, running this approach on data that has been shifted by +500 shows that
the results do not look very encouraging (Table 2.3). While the method correctly classifies
BSort and SparseMM, the distinction is not very clear and the results for MSort appear to
be meaningless. We hypothesized that the reason for this is that refitting the mean loses a
fundamental property of the model: the relative distances of the means for the basic blocks.
Since code relocation should not change these values significantly, a natural solution seems
to be not to fit all the µi, but instead fit a single global offset M and use a model with means
µi +M where the µi are fixed.

To find this M , the EM algorithm needs to be adapted. For the E step, every occurrence
of µi has to be replaced by µi +M . For the M step, we need to derive the update for M . In
the new model, we need to maximize log p(q, y), i.e.

Q∑
i=1

qi0 log πi +
T−1∑
t=0

Q∑
i,j=1

qitq
j
t+1 logPij +

T∑
t=0

Q∑
i=1

qit

{
−1

2

(
(yt − µi)−M

σi

)2
}

Zero-gradient for last term: M

(
T∑
t=0

Q∑
i=1

qit
σ2
i

)
=

T∑
t=0

Q∑
i=1

qit
σ2
i

(yt − µi)

Parameter update: M ←

∑T
t=0

∑Q
i=1

γit
σ2
i
(yt − µi)∑T

t=0

∑Q
i=1

γit
σ2
i

However, it turns out that when applying this algorithm, parameter M barely changes. The
reason is that due to the nature of the data, we have a very large number of local maxima
(which correspond to addresses in the model being shifted over addresses in the data, whether
they are the right addresses or not). This becomes evident when looking at the log likelihood
as a function of M (Figure 2.5). A solution to this problem is to get an approximation of the
global maximum (e.g. by setting all γ’s in the EM algorithm to the same value) and then
performing a linear search in both directions. Once the right value of M has been found,
the results are the same as for the original algorithm.
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Using BIC to Determine the Right Number of States

Choosing the right number of states for the Markov Chain is crucial for the quality of the
model in order to avoid overfitting. As explained by Raftery [68], minimizing the BIC score
is a good way to determine the right number of states. The BIC score is calculated as
−2L + k · log n where n is the length of the training data, L is the resulting log likelihood
and k is the number of free parameters. Notably, the number of free parameters in this case
is k = Q · (Q− 1) + 3Q: Q(Q− 1) from the transition matrix, Q from the prior, Q from the
means and Q from the variances. Figure 2.6 presents the BIC score for the case of Sparse
Matrix Multiplication. According to the BIC score, the best number of states is 66.

An interesting observation is that this number is vastly higher than the number of basic
blocks (32 in this case). This could imply overfitting, but might also only mean that it makes
the model easier to fit. In principle, additional states do not hurt since a basic block can
always be split into two blocks with transition probability one between them.



CHAPTER 2. ATTACKS THROUGH MEMORY ADDRESSES 17

A Comment on Running Time

Fitting the models to training data (max. 20 iterations of EM) took 2 minutes on a 2011
Macbook Pro, fitting the prior as part of classification (max. 10 iterations) about 20 seconds.
All computation was performed in MATLAB.

2.6 Limitations and Future Work

Naturally, this example only scratches the surface of the topic and the presented results
can only be considered preliminary. In particular, the following represent some important
limitations of the approach, and opportunities for future work.

• Impact of Caches: The biggest omission is the impact of caches. In a real-world
scenario, this will be a key limiting factor on the quality of classification that can be
achieved. Caches can be simulated using Valgrind’s cachegrind tool and will have the
effect that (i) not all addresses will be observed (blurring the transition probabilities)
and (ii) addresses will be quantized to cache lines. It remains to be seen whether a
pure HMM approach would be sufficient in this case or whether additional measures
are required (as in [99]).

• Large-scale Programs: The current approach will not scale to programs with large
numbers of basic blocks. To achieve this, it would be possible to use an approach
similar to [76] and accumulate information about visited basic blocks into basic block
vectors and use random projections of them to get low-dimensional data to classify.

• Alternative Models: HMMs are only one possible approach. A different strategy
could use a Näıve Bayes classifier or support vector machines to classify traces based on
features such as access frequencies and strides (which could be determined by applying
an FFT to the data) or analyzing data traces in addition to instruction traces.

2.7 Summary

In this chapter, we demonstrated that memory address traces contain exploitable information
and showed first steps towards using them to learn secrets about workloads running on a
machine. Oftentimes, manual inspection of the trace directly yields exploitable information
leakage. For more complex scenarios, we saw that HMMs provide a promising model to
classify algorithms but also noticed that code relocation and input size pose challenges. The
effect of caches should raise further interesting research questions. In summary, this work
demonstrates that information leakage on the address bus is a serious concern and work to
prevent it is warranted.
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Chapter 3

Background on Oblivious RAM

This chapter presents previous research on Oblivious RAM, followed by a detailed review of
the Path ORAM Algorithm which is used in this work. Furthermore, it reviews joint work
with Stefanov et al. to determine the required size of an ORAM processor’s on-chip storage.

3.1 The Need for Oblivious RAM

As shown in Chapter 2, memory address traces from programs running on a processor result
in significant information leakage that can be exploited in a number of different ways. As
a result, clients with strong requirements for confidentiality will have to protect themselves
against this side channel to ensure the confidentiality of information.

For this protection to be trusted, a formal model is required to define what it means for
an execution to be free of information leakage through address traces. This model needs to
ensure that an attacker cannot learn anything about the logical memory addresses being ac-
cessed by the program, even if she can observe the full trace. While some work has attempted
to use an intuitive definition of hiding information leakage through address traces [100], such
a model is not sufficient to guarantee obliviousness – without formal, provable guarantees,
a client can never be sure that her confidentiality requirements are satisfied and that no
information leakage occurs, even in corner cases.

Memory Trace Obliviousness (or obliviousness) is a formal property that captures the
above intuitive requirement. Over the years, the research community has proposed a number
of mechanisms (collectively known as Oblivious RAM or ORAM ) to provide the obliviousness
property in a number of computing scenarios. In the next sections, we will give a formal
definition of obliviousness and review existing research in this area. We will then focus on a
recently proposed ORAM algorithm – Path Oblivious RAM – that we use in Phantom.
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3.2 Definition of Obliviousness

While the concept of memory trace obliviousness has been applied to a multitude of different
scenarios, obliviousness was first introduced in the context of a program running on a trusted,
sealed CPU and an attacker who wants to learn information about the program or the data
it is operating on – while only being able to observe the sequence and timing of accessed
addresses in physical memory, not its content. More formally, the obliviousness property for
such processors can be defined as follows:

Definition 1. Let An(x) = ((a1, o1), . . . , (an, on)) (ai ∈ {0, . . . , amax − 1} , oi ∈ {read,write}
for all i, where amax is the size of the processor’s memory in words) be the sequence of memory
accesses that a processor P produces when run on input x (i.e., the program to execute as well
as any input data – specifically, this is the entire initial content of the processor’s memory)
for a duration of n memory accesses. We call P oblivious if for any inputs x and x′, An(x)
and An(x′) are computationally indistinguishable for all n ∈ N1.

The most intuitive way to achieve obliviousness is to simply access all of physical memory
for every memory access. Hence, for every access, the processor would read all of memory
but only use the word that was actually requested. For writes, the processor would have to
read and write every memory word, and re-encrypt them using probabilistic encryption (e.g.
by adding a randomly generated nonce to each cipher block), to avoid leaking which memory
word was written. While this approach is obviously infeasible for performance reasons, it
gives a good intuition about how obliviousness works. The goal of research on Oblivious
RAM has been to reduce this overhead to acceptable levels, while maintaining the same
security guarantee.

3.3 History of Oblivious RAM

Oblivious RAM was first proposed by Goldreich [30] and Ostrovsky [60] who built on work
by Pippenger and Fischer [64] on Oblivious Turing Machines (who, interestingly, discussed
obliviousness in a completely different context than security). While Goldreich and Ostro-
vsky were investigating Oblivious RAM for Software Protection [31] – to prevent an attacker
from extracting the algorithm executed by a sealed processor – their attack model is very
similar to ours, where an attacker with physical access to a CPU can wiretap the address bus,
and memory contents are encrypted. Goldreich and Ostrovsky achieved obliviousness with
an overhead of O(log3N) per memory access (where N is the size of the oblivious memory
in memory words), albeit with very large constant factors [63]. These constant factors made
this approach infeasible for practical deployment in most scenarios.

1Note that this definition does not consider timing channels (i.e. when the n memory accesses occur).
This is a source of information leakage orthogonal to obliviousness and will be discussed in Section 3.4. It
also ignores active attacks where an attacker can return incorrect responses to memory requests – these can
be countered by adding integrity and freshness (Section 3.6).
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Numerous projects have since then revisited Oblivious RAM to reduce this performance
overhead [34, 61, 49, 93, 32, 82, 77, 29, 14] and show that it is possible to achieve obliviousness
with low constant factors for a O(polylog(N)) overhead, i.e., every memory access translates
into O(polylog(N)) seemingly random accesses. There have also been a number of projects
that apply ORAM techniques to specific scenarios such as oblivious file systems [94, 54, 80],
databases [2] and ad serving [9].

While Phantom builds on this line of work, it brings Oblivious RAM back to the roots
by applying these techniques to the secure processor scenario for which ORAM was originally
designed. Instead of devising a new ORAM scheme, Phantom considers a state-of-the art
algorithm and shows how to adapt it for an efficient hardware implementation. As such, it is
the first project to present a real microarchitectural implementation of ORAM (Ascend is a
concurrent project that also proposes an oblivious processor [21, 69] but is simulation-based
and focusses on algorithmic aspects of ORAM rather than microarchitectural details).

3.4 Path Oblivious RAM

Phantom builds on an ORAM scheme called Path Oblivious RAM (or Path ORAM ) which
was first publicly introduced by Stefanov and Shi in 2012 [81]. The authors have since
characterized the algorithm in more detail and proved security guarantees in subsequent
refinement of the work. The final version of Path ORAM was published alongside Phantom
at the 20th ACM Conference on Computer and Communications Security (CCS’13)2 [83].

Intuitively, the Path ORAM algorithm prevents information leakage through memory
addresses by reshuffling contents of untrusted memory after each access, such that accesses
to the same location cannot be linked (while also probabilistically reencrypting the accessed
content at every access). Furthermore, we assume the secure processor has a small amount
of trusted memory, which Path ORAM can access without revealing any information to the
attacker. This memory is used to keep track of where data resides in untrusted memory.
Using the trusted memory, Path ORAM ensures that all that is visible to an attacker is a
series of random-looking accesses to untrusted memory.

Path ORAM allows data to be read and written in units called blocks. All data stored by
an ORAM instance is arranged in untrusted memory as a binary tree structure, each node
of which contains space to store a few blocks. When a request is made to the ORAM for
a particular block, Path ORAM looks up the block’s current location in a table in trusted
memory called the position map. In the position map, every block is assigned to a particular
leaf node of the ORAM tree, and the Path ORAM algorithm guarantees an invariant that
each block will be resident in one of the nodes along the path from the tree’s root to the

2Phantom has been under development in parallel to this work, starting from Fall 2011. We have closely
collaborated with Stefanov and Shi, who have made significant contributions to this project while working
on the algorithm. Among others, they have provided an empirical analysis of the storage requirements for
the Path ORAM algorithm (Section 3.5) and conducted experiments to empirically show the significance of
the reordering scheme used with Path ORAM (Section 4.6).
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Figure 3.1: The Path ORAM Algorithm. The algorithm’s operation is demonstrated for
two path reads on a small ORAM tree. The first is a read of Block A, which the position
map shows must be located somewhere on the path to leaf 101. Reading this path results
in blocks B and E also being read into the stash. Block A is then randomly reassigned to
leaf 011, and is therefore moved to the root of the path as it is being written back, since
this is as far as it can now be inserted on the path to 101. Next, block C is read. Since the
position map indicates that it is on the path to leaf bucket 000, that path is read, bringing
blocks A, B, D, and F into the Stash as well. C is reassigned to leaf 010 and the bucket
containing D and F is already full, so it can only be in the root of the path being written
back. However, A and B must also be in the root as they cannot be moved any deeper, so
C cannot be inserted. It therefore remains in the stash beyond the ORAM access.

block’s designated leaf node. Reading this entire path into the stash – a data structure that
stores data blocks in trusted memory – will thus necessarily retrieve the desired block along
with other blocks on the path to the same leaf node.

After the requested block is found and its data returned to the requester (e.g., a CPU
within a secure processor), Path ORAM reassigns the block to a random leaf node and then
writes the same path back to memory that it had read before. Since the requested block
was reassigned to a random leaf node, it may now belong to a different path from that on
which it was read. As all paths emanate from the root, they will have at least the root
node in common, but there is a 50% chance they will not share any others, in which case
the reassigned block will have to stay in the root node. If no additional steps were taken,
the upper levels of the tree would thus quickly become full. A Path ORAM implementation
therefore has to move blocks in the stash as deep as possible towards the leaf of the current
path as they are written back – this is called reordering. Furthermore, blocks may stay
behind in the stash if there is no space for them in the path.

The obliviousness of Path ORAM stems from the fact that blocks are reassigned to
random leaf nodes every time they are accessed. Repeated accesses to the same block will
hence appear as accesses to a random sequence of paths through the tree (each of which
consists of a full read followed by a full write of the same path). Algorithm 1 summarizes
the Path ORAM algorithm, and Figure 3.1 illustrates its execution.
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Algorithm 1 Pseudo-code of Path ORAM [83]

procedure Access (block id, read write)
if block id in stash, access block there and exit
leaf id ← position map [block id]
position map [block id]← new random position
path[]← read path from root to leaf id
add all blocks found in path to stash
if read write = READ then

return block with id block id in stash
else

overwrite block with id block id in stash
end if
write path from leaf id to root (evicting as many blocks

as possible and filling up with dummies)

Algorithmic Details

In addition to the basic algorithm, implementations of Path ORAM also need to take the
following considerations into account:

• Data Layout: Path ORAM represents the full binary tree as a set of partitions
in untrusted memory that each represent a node of the tree and are called buckets.
Buckets are themselves divided into a fixed number of slots (usually four) that can
each hold a single block and its associated header.

• Encryption: All data stored in untrusted memory has to be encrypted at all times,
and is probabilistically reencrypted during every ORAM operation that touches it
(otherwise it would be possible to correlate accesses to the same data). Each block’s
header therefore contains a nonce that changes every time the block is accessed, and
affects the encryption of the entire block.

• Dummies: All slots of the tree that do not contain a block are filled with dummies,
which contain no actual data but are encrypted in the same way as blocks so that
their cipher text is indistinguishable from that of a block. Dummies are ignored for
reordering and are not written into the stash.

• Stash: Even with reordering, there can be cases where not all blocks in the stash can
be written back to the current path (Figure 3.1). This is addressed by making the
stash larger than a path worth of blocks. Blocks that cannot be written back remain
in the stash and are carried over into the next ORAM access and handled the same as
if they had been read during that operation. At the start of an ORAM operation, it
therefore has to be checked whether the block is in the stash already. If it is, a random
path can be accessed to not leak this information.



CHAPTER 3. BACKGROUND ON OBLIVIOUS RAM 23

Stash Overflows

It is important to note that the stash may overflow (i.e. no more blocks can be fit into
the stash). Path ORAM can recover from overflows by reading and writing random paths
and try to evict blocks from the stash during those path reads and writes. While this does
not leak information (the random path accesses are indistinguishable from regular ORAM
accesses), it increases execution time and may hence cause execution to not finish in the
allotted time. It is therefore desirable to size the stash in such a way that these accesses
occur rarely. In our CCS ’13 paper [55], we presented an empirical analysis to determine a
stash size that makes these overflows extremely unlikely. We summarize our findings from
this work in Section 3.5.

Timing Channel

To avoid information leakage through memory access timing, Path ORAM can perform a non-
stop sequence of path reads and writes, accessing a random path if there is no outstanding
ORAM request from the CPU. Stash hits can be hidden by performing a fake path access as
well, and multiple stash hits can be hidden behind the same access (alternatively, there can
be a fixed gap between ORAM accesses, and stash hits can be performed within this gap).
As described in Section 4.3, this is orthogonal to the microarchitectural details we investigate
in Phantom (and hence not implemented), but would be required in a real deployment.

The timing channel has also been investigated by Fletcher et al. in a later project [22],
and the results could be implemented in the context of Phantom as well.

3.5 Path ORAM Design Space

Path ORAM has a number of parameters that can be varied to result in ORAMs of different
sizes and with different properties. The most important parameters are the number of levels
in the binary tree and the ORAM block size. The number of levels in the tree determines the
number of blocks that it can store and the size of the position map in trusted memory. In
contrast, the block size allows to increase the size of the ORAM without affecting the size of
the position map – however, a larger block size leads to a longer ORAM access latency and
potentially more wasted data per memory access if the processor cannot use all data within
a block. The exact trade-off depends on spatial (and, to a lesser degree, temporal) locality
within program execution and is related to the trade-offs made when selecting the cache line
size for a conventional processor.

While it is possible to vary the number of blocks per bucket and the number of blocks
stored in the tree, we assume 4 blocks per bucket and store 4 · 2l−1 blocks in a tree of l
levels (i.e., as many blocks as there are in all leaf nodes combined). These values are chosen
empirically and in line with the original Path ORAM paper [83].
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Levels in
ORAM tree

Size in no. of
blocks

Size (128B
blocks)

Size (4KB
blocks)

Data per
ORAM access

10 211 0.25 MB 8 MB 80x
13 214 2 MB 64 MB 104x
17 218 32 MB 1 GB 136x
21 222 512 MB 16 GB 168x
24 225 4 GB 128 GB 192x

Table 3.1: Overheads for different design points of Path ORAM. The table reports the
design point, what ORAM size it would result in for different block sizes, and the amount of
data movement per access relative to unprotected memory accesses (i.e., without ORAM).

Fundamental Overheads

Path ORAM always achieves perfect and provable obliviousness, albeit at both significant
space and memory bandwidth costs. In particular, every memory access translates to an
entire series of memory reads and writes, leading to an increase in data movement per
memory access of more than 1-3 orders of magnitude, depending on the size of the ORAM
and the block size. Furthermore, not the entire ORAM tree can be used to store ORAM
content, leading to an overhead in usable memory as well.

With regard to space overheads, let the capacity N of the ORAM be defined as the
number of logical blocks it can store. In the setting described above (i.e., we store as
many blocks as there are slots in the leaf nodes), 50% of the physical memory is available
as oblivious memory (which includes data and a 0.4% overhead for block headers). The
remainder is reserved for dummy blocks.

The memory bandwidth overheads for different configurations are shown in Table 3.1.
Since each block access results in an entire path read and write, Path ORAM’s bandwidth
overheads range from 104× for a 13-level ORAM tree (64MB capacity with 4KB blocks)
to 192× for a 24-level tree (128GB capacity with a 4KB blocks). Consequently, the task
of building a real, well-performing ORAM system becomes quite challenging: in particular,
such a system will have to access two orders of magnitude more data per memory access.

Position Map Size

The majority of trusted storage is taken up by the position map. For an l-level tree, the
position map has to store (l − 1) · 2l+1 bits, i.e., l − 1 bits for each ORAM block. As such,
the position map size ranges from 2KB (for a 10-level tree) to 92MB for a 24-level tree.
Naturally, some of these sizes are not acceptable in a secure processor scenario, as on-chip
memories of more than 64MB are unlikely with current technology, even in the presence of
more compact on-chip memories such as EDRAM [43].
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Stash Size

In contrast to the position map, the size of the stash is flexible and has to be chosen by
the designer. Smaller stash sizes make stash overflows more likely, which in turn results in
longer execution times due to having to evict blocks from the stash until it frees up again. In
this work, we focus on a scenario without such evictions and therefore choose the stash size
such that overflows become extremely unlikely (we initially targeted an overflow probability
of around 2−80 per access).

In [55], we show an empirical analysis based on long-running Path ORAM simulations
for both SPEC benchmarks and synthetic worst-case workloads3. In these experiments,
an infinite stash size was assumed and the number of entries remaining in the stash after
every ORAM access was recorded. This allows to determine the fraction of ORAM accesses
for which more than a certain stash size is required, which is equivalent to the overflow
probability if that stash size is chosen.

While the simulation was run for billions of accesses, no simulation run could feasibly
be long enough to determine the stash size such that the overflow probability becomes 2−80.
However, there exists a theoretical result [83] that relates the overflow probability to stash
size and ORAM size N , up to constant factors. The results from the simulation runs were
therefore used to fit these factors and derive the following formula for the minimum stash
size to achieve an overflow probability of at most 2−λ:

2.19498 log2(N) + 1.56669λ− 10.98615

This minimum stash size includes two parts:

1. A O(logN) part for storing the path fetched from memory

2. A O(λ) part for storing blocks left behind after the write-back phase

Based on the above formula, we designed the Phantom prototype with a stash size of 128
or 256 for logN = 13 to 19, to achieve corresponding λ values from λ = 70 to λ = 144.

3.6 Path ORAM Optimizations

Numerous optimizations and extensions can be applied to Path ORAM. While we have not
implemented them in the context of Phantom, they may become relevant for future work
and expose additional microarchitectural challenges.

3These experiments and results are not considered a contribution of this thesis, since they were performed
by Shi, Stefanov and Tiwari, inependently from the main author.
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Hierarchical ORAM

As previously explained, the position map size can become very large for large ORAMs
and/or small block sizes. If the position map becomes too large to be stored in trusted
memory, it is possible to employ a hierarchical construction where the position map is stored
in an ORAM itself and this ORAM is accessed in order to get the position map entry. This
construction can be extended to an arbitrary number of levels to enable arbitrary ORAM
and block sizes. However, the overhead of having to access multiple ORAMs for each access
is significant and can easily outweigh the performance gain from smaller block sizes.

Ren et al. have investigated some of these trade-offs [69] and show optimizations for hi-
erarchical ORAM that enable caching lower levels of the hierarchy through merging different
levels of the hierarchy into the same ORAM tree [71].

Superblocks

Superblocks have been proposed as an additional optimization to Path ORAM [69]. In this
optimization, adjacent blocks can be merged such that they are mapped to the same leaf
node and are always brought into the stash together whenever one of them is accessed. This
allows to exploit spatial locality in a program at the cost of additional stash overflows.

As with hierarchical ORAM, there is a trade-off between superblocks and choosing a
larger block size. Both exploit spatial locality: superblocks do so at the cost of a larger
position map (requiring more levels of hierarchy) while a larger block size increases the
ORAM access latency. The exact nature of this trade-off is not agreed upon at this point
and can only be determined in an Apples-to-Apples comparison on real applications spanning
a large part of the design space.

Integrity & Freshness

In a real deployment, implementations of Path ORAM would require integrity and freshness
in addition to confidentiality. The original Path ORAM tech report [81] discusses a Merkle-
tree based approach to achieve this goal, which has later been expanded [70]. Since this
is orthogonal to the problems investigated in Phantom, integrity and freshness were not
implemented and are ignored for the remainder of the thesis.
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Chapter 4

The PHANTOM Secure Processor

This chapter gives a high-level overview of the Phantom Secure Processor and how we
envision it to be deployed in a data center. It describes our attack model and introduces the
different components of our design. Finally, it present a high-level overview of Phantom’s
ORAM controller microarchitecture.

4.1 Overview of PHANTOM

Phantom’s basic setup is similar to traditional secure processors [88, 84]: it consists of
trusted on-chip logic and memory whose activity cannot be observed externally. The key
component of Phantom is its oblivious memory controller (or ORAM controller), which –
from the processor’s perspective – behaves like a traditional memory controller, but imple-
ments the Path ORAM algorithm to obfuscate all memory addresses that leave the chip and
make the observable access pattern fully oblivious. In general, we envision Phantom to be
integrated into a bigger system as a coprocessor.

We designed Phantom with today’s data centers in mind – our goal was to introduce
a design that could be deployed by cloud providers today and enables cloud customers to
perform oblivious computation on encrypted data. One important aspect we considered was
that such secure processors may be best deployed on FPGAs: considering the high costs of
producing a custom ASIC and the fact that FPGAs are already starting to appear in data
centers [18], an FPGA-based secure coprocessor is likely to be the most economical design
point in the immediate future (unless the initial demand for obliviousness is sufficiently high
to justify an ASIC implementation).

While we focus on FPGAs for the rest of this thesis (and have prototyped Phantom on an
FPGA-platform), our microarchitecture could be implemented within a custom ASIC as well,
and even be deployed in novel architecture designs such as the Hybrid Memory Cube [62].
As such, we believe that the results we learned while building Phantom are universally
applicable to any implementation of a Path-ORAM-based oblivious secure processor.
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Figure 4.1: The different possible usage scenarios for Phantom. The ORAM controller
can either be used with a Secure CPU, a custom domain-specific accelerator or forward
requests from a remote client.

4.2 Usage Model

We consider a general setting where a user wants to offload sensitive data and computation
to the cloud, a cloud provider sells infrastructure as a service (IaaS), and a hardware manu-
facturer creates secure FPGAs. We envision the cloud provider to deploy a secure processor
on a secure FPGA bought from the hardware manufacturer. This secure processor, in col-
laboration with the secure FPGA, provides a mechanism for remote attestation to the user.
Through this mechanisms, the user can ensure that she is running computation on a genuine
secure processor, without having to trust the cloud provider.

We envision the secure processor to have non-volatile memory on-chip to store a unique
private key (such FPGAs are available off-the-shelf [24] and are a direct replacement for the
FPGAs on our prototype platform). A remote client can establish a session key with a loader
program on the secure processor and then transfer an encrypted ORAM image with sensitive
data and code to the processor’s physical memory (i.e., DRAM). The loader then executes
the code obliviously and stores results back into ORAM. The remote client can collect the
encrypted results once the time allocated for the computation has elapsed.

Phantom is our take at this secure processor. We envision it to be deployed in three
different usage scenarios (Figure 4.1):

1. The remote client stores all sensitive computation, including both code and data, into
Phantom’s ORAM. Phantom, which comprises a general-purpose RISC core and an
ORAM controller on a trusted chip (an FPGA in our prototype), then executes this
program obliviously.
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PHANTOM: Practical Oblivious Computation in a Secure Processor 
Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz, Dawn Song 

 HIGHLY SENSITIVE DATA IN THE CLOUD 

THE SECURITY CHALLENGE 

•  Organizations (including the U.S. government [1]) 
are offloading workloads into the cloud. 

•  Many operate on highly sensitive data, whether for 
privacy, regulatory or competitive reasons. 

•  Need strong confidentiality for this data. 

•  Cloud operators have physical access to machines.  
•  Can eavesdrop on data traveling between CPU and 

main memory (e.g. using malicious NVDIMMs [2]). 
 
 
 
 
 
 
This threat is real. Attacks can originate from: 
•  Malicious employees (e.g. infiltrating cloud provi-

ders or bribing existing employees) 
•  Intruders that break into a data center to wiretap 

machines (it has been done: [3]) 
•  Governments that force cloud providers in a 

country to wiretap machines for them 

COMPUTING ON ENCRYPTED DATA MISSION STATEMENT & CHALLENGES 

*"Our"prototype"does"not"implement"remote"a2esta3on"and"models"encryp3on"units"as"simple"pipelines."The"first"implementa3on"of"PHANTOM"has"very"small"caches"(4kB/4kB/8kB)"and"hence"has"overheads"
of"6.5I14.7x"for"our"SQLite"workloads."We"therefore"simulate"for"larger"cache"sizes,"using"a"3ming"model"derived"from"our"real"implementa3on"(these"are"the"numbers"presented"in"the"figure).!
References:"[1]"“Microso-"reveals"plans"for"a"government"cloud"pla:orm,”"ZDNet,"10/8/13;"[2]""ArxCisJNV:"NonJVolaLle"Memory"Technology,”"www.vikingtechnology.com/arxcisJnv";"[3]""Case"Study:"Physical"PenetraLon,"HosLng"Provider,""SecureState,"www.securestate.com/Services/Profiling/
Pages/PhysicalJAWackJandJPenetraLon.aspx;"[4]"A."Huang,"“Keeping"Secrets"in"Hardware:"The"Microso-"Xbox"Case"Study,”"in"CHES,"2002;"[5]"S."Chen,"R."Wang,"X."Wang,"and"K."Zhang,""SideJchannel"leaks"in"web"applicaLons:"A"reality"today,"a"challenge"tomorrow,""in"Oakland,"2010;"[6]"X."
Zhuang,"T."Zhang,"and"S."Pande,"“HIDE:"An"Infrastructure"for"Efficiently"ProtecLng"InformaLon"Leakage"on"the"Address"Bus,”"in"ASPLOS,"2004;"[7]"E."Stefanov,"M."van"Dijk,"E."Shi,"C."Fletcher,"L."Ren,"X."Yu,"and"S."Devadas,"“Path"OJRAM:"An"Extremely"Simple"Oblivious"RAM"Protocol,”"in"CCS,"2013."

MEMORY ADDRESS TRACE ATTACKS 

OBLIVIOUS RAM (ORAM) 
•  Provably hides address trace through reshuffling memory at every access. 
•  Explored since 80’s (e.g. for file systems) to bring overhead from >100,000x 

per access to 100-250x (less with large trusted storage). 
•  We use Path ORAM [7], which reorders blocks in memory at every access: 

•  Secure processors protect against physical access 
through a tamper-proof processor that encrypts all 
data in memory and provides remote attestation. 

•  e.g. XOM, AEGIS, Intel SGX, IBM Cryptographic 
Coprocessors, PrivateCore, Private Machines 

•  Accessed memory addresses are (and have to be) transmitted in plaintext.  
•  Enables serious attacks that existing solutions cannot protect against.  

 
 

 
 

•  Can apply ML/statistics to extract e.g. financial transactions, subjects of 
surveillance/audit, medical data [5], geolocations, vulnerable machine 
learning algorithms, OS fingerprints, cryptographic keys [6], etc. 
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We want to make a practical oblivious processor reality.  
•  Need practical solution ! exploit trend towards FPGA-based accelerators. 
•  Previous work was algorithmic, does not tell where architectural bottlenecks 

are  ! investigate ORAM at  microarchitectural level (need to built it). 
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Figure 3: The Path ORAM Algorithm from [32]. The algorithm’s operation is demonstrated for two path reads on a
small ORAM tree. The first is a read of Block A, which the position map shows must be located somewhere on the path to
leaf 101. Reading this path results in blocks B and E also being read into the stash. Block A is then randomly reassigned to
leaf 011, and is therefore moved to the root of the path as it is being written back, since this is as far as it can now be inserted
on the path to 101. Next, block C is read. Since the position map indicates that it is on the path to leaf bucket 000, that
path is read, bringing blocks A, B, D, and F into the Stash as well. C is reassigned to leaf 010 and the bucket containing D
and F is already full, so it can only be in the root of the path being written back. However, A and B must also be in the root
as they cannot be moved any deeper, so C cannot be inserted. It therefore remains in the stash beyond the ORAM access.

time the block is accessed, and affects the encryption of the
entire block.

All slots of the tree that do not contain a block are filled
with dummies, which contain no actual data but are en-
crypted in the same way as blocks so that their cipher text
is indistinguishable from that of a block. Dummies are ig-
nored for reordering and are not written into the stash.

Even with reordering, there can be cases where not all
blocks in the stash can be written back to the current path
(Figure 3). This is addressed by making the stash larger
than a path worth of blocks. Blocks that cannot be written
back remain in the stash and are carried over into the next
ORAM access and handled the same as if they had been read
during that operation. At the start of an ORAM operation,
it therefore has to be checked whether the block is in the
stash already. If it is, a random path can be accessed to not
leak this information.

Stash overflows: It is important to note that the stash may
overflow (i.e. no more blocks can be fit into the stash). Path
ORAM can recover from overflows by reading and writing
random paths and try to evict blocks from the stash during
those path reads and writes. While this does not leak in-
formation (the random path accesses are indistinguishable
from regular ORAM accesses), it increases execution time
and may hence cause execution to not finish in the allotted
time. It is therefore desirable to size the stash in such a way
that these accesses occur rarely. In Section 3.2 we present
an empirical analysis to determine a stash size that makes
these overflows extremely unlikely.

Access timing: To avoid information leakage through mem-
ory access timing, Path ORAM can perform a non-stop se-
quence of path reads and writes, accessing a random path
if there is no outstanding ORAM request from the CPU.
Stash hits can be hidden by performing a fake path access
as well, and multiple stash hits can be hidden behind the
same access. As described in Section 2.2, this is orthogonal
to our microarchitecture (and hence not implemented) but
would be required in a real deployment.

Algorithm 1 Pseudo-code of Path ORAM [32]

procedure Access (block id, read write)
if block id in stash, access block there and exit
leaf id ← position map [block id]
position map [block id]← new random position
path[]← read path from root to leaf id
add all blocks found in path to stash
if read write = READ then

return block with id block id in stash
else

overwrite block with id block id in stash
end if
write path from leaf id to root (evicting as many blocks

as possible and filling up with dummies)

Fundamental Overheads: Path ORAM’s obliviousness
has both space and bandwidth costs.

The capacity N of the ORAM is defined as the number
of logical blocks it can store. We set the number of leaf
nodes in the tree to N/4, and the number of blocks in each
bucket to 4. As a result, 50% of the physical memory is
available as oblivious memory (including data and 0.4% for
block headers) and the rest is reserved for dummy blocks.

Since each block access results in an entire path read and
write, Path ORAM’s bandwidth overheads range from 104×
for a 13-level ORAM tree (16MB capacity with 4KB blocks)
to 192× for a 24-level tree (32GB capacity with a 4KB
blocks). Consequently, the task of building a real, well-
performing ORAM system becomes quite challenging: in
particular, such a system will have to read two orders of
magnitude more data per memory access.

3.2 Empirical Stash Size Analysis
To implement Path ORAM, we first had to determine a

suitable stash size that makes stash overflows unlikely.
Our goal was to find a stash size such that the overflow

probability is 2−λ for a suitable value of λ, e.g. λ = 128.
One way to do this is to rely on a recent theoretic bound [32]
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Instruc3on"Cache,"32kB"Data"
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can"be"clearly"dis3nguished"based"
on"the"addresses"they"access.""

EVALUATION RESULTS 

PHANTOM: AN OBLIVIOUS PROCESSOR 
•  Implemented on the Convey HC-2ex 

heterogeneous computing platform 
(x86 CPU + 4 FPGAs + a high-bandwidth 
memory system). 

•  Includes a fully implemented custom 
ORAM microarchitecture integrated 
with a 6-stage in-order processor.* 

•  Runs real workloads (e.g. SQLite). 

the DRAM contents cannot learn anything about the secret
program memory – not even the DRAM locations accessed.

Oblivious RAM: We rely on an algorithmic construct called
Oblivious RAM (ORAM), initially proposed by Goldreich
and Ostrovsky [11], and later improved in numerous sub-
sequent works [12, 14, 38]. Intuitively, ORAM techniques
obfuscate memory access patterns through random permu-
tation, reshuffling, and reencryption of memory contents,
and require varying amounts of trusted memory that the ad-
versary cannot observe. To develop a practical ORAM in
hardware, we adopt Path ORAM proposed by Stefanov et
al. [32] – a simple algorithm with a high degree of memory
access parallelism. Path ORAM builds on the new binary-
tree ORAM framework recently proposed by Shi et al. [28].

Other recent work has also used Path ORAM to propose
a secure processor (ASCEND [9, 26]); this work focused on
optimizing the basic Path ORAM algorithm and on a design-
space exploration of algorithm parameters using a simple
model of a CPU and ORAM controller. In contrast, we
focus on building a practical oblivious system – complete
with a CPU, an ORAM controller, and running non-trivial
programs like SQLite running obliviously on the CPU. The
high-level algorithmic optimizations in ASCEND are com-
plementary to our algorithmic improvements targeted at
Path ORAM’s microarchitecture and to our work in design-
ing and building a practical oblivious system.

Challenges: Making oblivious processors practical poses
several challenges. The first is Path ORAM’s significant
memory bandwidth overhead – more than 100× over a non-
secure access. Second, Path ORAM’s irregular, data-driven
nature makes it difficult to simply add more memory chan-
nels and build a deterministic yet efficient ORAM controller.
Finally, we do not propose a custom chip but rely on an off-
the-shelf FPGA platform that, on the one hand, can provide
high memory bandwidth but on the other hand restricts us
to use a slow FPGA for the ORAM controller logic. The
ratio of slow logic to high memory bandwidth makes the
problem of scaling to more memory channels even harder.

Contributions: In this paper, we present Phantom, a pro-
cessor that exploits a highly parallel memory system in com-
bination with a novel ORAM controller to implement an ef-
ficient oblivious system. Specifically, we make the following
technical contributions:

1. Empirical Model for Path ORAM. We determine
Path ORAM’s trusted memory requirements by simulating
both synthetic, worst-case memory access traces and SPEC
benchmark traces. We develop an empirical model for Path
ORAM’s trusted memory size v. size of the ORAM, and
show that SPEC benchmarks’ high degree of memory local-
ity means that they require considerably less trusted mem-
ory than the worst-case access traces.

2. Efficient ORAM Microarchitecture. We intro-
duce an ORAM controller architecture that is very effec-
tive at utilizing high-bandwidth DRAM – even when imple-
mented on slow FPGA logic. We propose critical improve-
ments of the Path ORAM algorithm, and a deeply pipelined
microarchitecture that utilizes 93% of the maximum DRAM
bandwidth from 8 parallel memory controllers, while only
fetching the minimum amount of data that Path ORAM re-
quires. As a result, Phantom achieves close to the optimal
8× speedup over a baseline design with 1 memory controller.
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Figure 2: Phantom prototype on a Convey HC-2ex
Computing Platform. Phantom comprises a CPU, non-
volatile memory, and an ORAM controller implemented on
a single chip (here, an FPGA). All digital signals outside the
Phantom chip are assumed to be visible to the adversary.

3. Real-world evaluation. We build and evaluate
Phantom’s oblivious memory controller on an FPGA-based
computing platform running SQLite workloads, and simu-
late its performance for different cache sizes. Using sev-
eral ORAM configurations, we show that Phantom logic
requires only 2% of the logic on a Xilinx Virtex 6 FPGA
and a single FPGA is sufficient to support an ORAM of 1GB
effective size. The Phantom prototype sustains 38,191 full
4KB ORAM accesses per second to a 1GB ORAM – which
translates to 0.2× to 5× slowdown for SQLite queries.

To the best of our knowledge, this is the first practical
demonstration of an oblivious processor.

2. PLATFORM OVERVIEW
2.1 Usage Model

We consider a setting where a user wants to offload sen-
sitive data and computation to the cloud, a cloud provider
sells infrastructure as a service, and a hardware manufac-
turer creates secure FPGAs.

We envision a secure processor that has non-volatile mem-
ory on-chip to store a unique private key. A remote client
can establish a session key with a loader program on the
secure processor and then transfer an encrypted ORAM im-
age with sensitive data and code to the processors physical
memory (i.e. DRAM). The loader then executes the code
obliviously and stores results back into ORAM. The remote
client can collect the encrypted results once the time allo-
cated for the computation is complete.

Phantom is our take at this secure processor. It sup-
ports two usage scenarios: 1) The remote client stores all
sensitive computation, including both code and data, into
Phantom’s ORAM. Phantom, which comprises a general
purpose RISC core and an ORAM controller on a trusted
chip (an FPGA in our prototype), then executes this pro-
gram obliviously. 2) The remote user runs a trusted pro-
gram on a standard processor (after establishing a dynamic
root of trust), and does her best to keep sensitive data
in confidential on-chip memory [1]. When sensitive data
must be spilled off-chip, the trusted program makes en-
crypted ORAM reads/writes through the Phantom copro-
cessor. The second scenario is harder to make verifiably se-
cure because preventing plain-text data from going off-chip
on a commercial microprocessor is complicated, but has the
benefit that existing applications can be ported easily and
can run faster than on the FPGA.

THE PATH ORAM MICROARCHITECTURE 
ORAM has large, fundamental memory bandwidth overheads. We counter them through a 
highly parallel memory system. Our microarchitecture aims to maximize utilization: 

e.g. adapt Path ORAM to reorder blocks in parallel to memory accesses, multiplex FPGA 
memories at fine granularity, isolate memory interface to avoid leakage of state. 
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Figure 9: The data path in Phantom resembles a boomerang: Data is read, decrypted and written to the stash. It
is then read from the stash, encrypted and written back to memory, using the same functional units.

The Stash 7 buffers ORAM blocks in plaintext. Its size is
chosen to make the overflow probability small (Section 3.2).
Any block that is decrypted in the read phase is put into
the stash, and blocks are removed from the stash when they
are encrypted in the write phase. All blocks stored in the
stash are striped across 8 independent columns (i.e. mem-
ories), each accessed by an AES unit (Section 5.3). This is
necessary to reduce the critical path (and achieve the clock
frequencies required for the Convey platform).

The Stash Index 2 is a content-addressable memory
(CAM) that stores the address of the block contained in
each entry of the stash, including a bit to indicate whether
a stash entry is occupied. Before decrypting a block, the
stash index is queried to find a free slot. During a path
write, once encryption of a block finishes, the corresponding
entry of the Stash Index is set to free.

The Stash Index is queried before starting each ORAM
access, in parallel with the position map. If the requested
block is present, the ORAM controller will read or write
to the stash directly, rather than initiating a Path ORAM
access . Querying the Stash Index and the Position Map
adds a single cycle latency to each request. Position Maps
grow linearly with ORAM sizes and may have to be pipelined
to keep the critical timing path low (up to 4-deep for the
position map of a 17-level tree, representing an additional
4 cycles of latency). Updating the stash index requires 2
cycles, but these are overlapped with the path reads/writes.

5.2 DRAM Interface
Phantom’s DRAM Interface takes a leaf ID and fetches

an entire path from the untrusted DRAM into the trusted
memory on the FPGA.

Memory Request Generation: The Convey platform
features 1,024 DRAM banks (64 for each of its 16 memory
channels). We cannot place ORAM blocks sequentially in
the memory address space if we want to fetch data at (close
to) peak bandwidth. Instead, we place each word such that
the DRAM banks’ latency can be hidden behind successive
64 bit words being read from different DRAM banks.

We stripe each ORAM block across the 1,024 banks such
that every memory controller accesses all its banks in se-
quence, reading a 64 bit word from each bank, wrapping
around after the last bank. Going round-robin across all
DRAM banks allows each bank enough time to open a DRAM
row and return its data to the memory controller without
the controller having to stall.

DRAM Buffer: As encrypted data arrives from memory,
it is put into the DRAM Buffer in order to be decrypted
in subsequent stages. In practice, DRAM controllers often
run ahead or fall behind, and the DRAM Buffer waits until
it receives a complete row – the maximum number of bits
received from DRAM each cycle (1,024 bits on the HC2-ex) –
before forwarding it into AES decryption units. To account
for worst case DRAM stalls, we provision the DRAM Buffer
with space to store an entire path of ORAM blocks. During
the write phase, the DRAM Buffer stores encrypted data
from the AES units on its way to be written back to memory,
absorbing DRAM stalls without stalling AES encryption.

The DRAM Buffer thus isolates the internals of Phan-
tom from these timing variations. As long as it consumes
1,024 bits of data per cycle out of the DRAM buffer, and
produces data at this rate during write-back, Phantom is
completely shielded from any DRAM timing variations.

The DRAM Buffer is implemented using 16 independent
columns. Each column serves one memory channel and
keeps track of how much data it has received from the mem-
ory system – we use a feature of the HC-2ex that forces the
memory controllers to buffer responses internally and deliver
them in order, so that the DRAM Buffer only has to store
how many words each column has received. As soon as all
the words of a row are available, the buffer notifies the rest
of the system that it is ready to be consumed.

5.3 Encryption of ORAM Blocks
Once data has arrived in the DRAM buffer, it is con-

sumed by AES units to be decrypted into the stash. The
same units also encrypt all data as it is written back from
the stash into the DRAM buffer. Phantom uses eight AES-
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Figure 4.2: Visualization of the attack model

2. In cases where high performance is required, the RISC core can be replaced by cus-
tom logic that implements the computation directly, similar to existing FPGA-based
domain-specific accelerators [98, 75]. These accelerators directly connect to the ORAM
controller, so that access patterns remain protected. As such, Phantom can allow an
existing hardware accelerator to become oblivious on-demand, by using the ORAM
controller instead of accessing memory directly.

3. The remote user runs a trusted program on a standard processor (after establishing a
dynamic root of trust), and does her best to keep sensitive data in confidential on-chip
memory [66]. When sensitive data must be spilled off-chip, the trusted program makes
encrypted ORAM reads/writes through Phantom.

The third scenario is harder to make verifiably secure because preventing plain-text data from
going off-chip on a commercial microprocessor is complicated. However, it has the benefit
that existing applications can be ported easily and can run faster than on the FPGA. This
approach could also be used for a (less efficient) software implementation of ORAM.

4.3 Attack Model

We aim to protect against untrusted cloud providers and third parties with physical access
to the cloud provider’s data center. We trust users and hardware manufacturers (malicious
hardware attacks [90] are out of scope) and focus on digital attacks where an attacker with
physical access to the machine can probe memory busses, board-level interconnects and chip
pins (Figure 4.2). Such attacks can originate from a number of different sources:

• Malicious employees: Admins in a data center require full physical access to ma-
chines to perform their duty, and this privilege can be abused. As recent leaks at the
National Security Agency [35] have shown, not even requiring top secret security clear-
ance for all admins is sufficient to prevent – potentially devastating – leaks. It is also
conceivable that malicious employees are sent to infiltrate data centers. Other examples
of malicious employee attackers includes disgruntled employees out for revenge [19].
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• Data center break-ins: For high-profile targets such as banks, government organi-
zations or targets of industrial espionage, sophisticated break-ins into data centers are
in the scope of economic viability. A case study [74] has shown that even moderate
effort sufficed to infiltrate a (purportedly) high-security data center and gain physical
access to machines (despite physical measures such as cameras and security desks).

• Government surveillance: With large amounts of potentially intelligence-critical
data available in the cloud, they make a very attractive target for governments. As
recent security leaks have shown, physical attacks involving hardware implants for
server machines are in active use by the intelligence community [25] and it can be
presumed that these are not limited to the United States. Similarly, when offloading
workloads to a third country, users have no guarantee that the cloud provider does
not have to comply with government-mandated surveillance, since the existence of
such surveillance measures is often kept secret and cloud providers are not allowed
to disclose them to their users. This has been of great concern to customers and is
expected to have a significant impact on cloud provider revenues [12].

Once an attacker has physical access to a machine, one way she could probe the memory
interconnect would be by installing malicious DRAM DIMMs that contain non-volatile mem-
ory in addition to DRAM (similar DRAM modules exist for the purpose of backing up data
in the case of a power outage [4, 58]). These DIMMs could log (or sample) accessed addresses
to this non-volatile memory, and the attacker could later extract and analyze them.

While existing solutions (such as Intel SGX [57] and secure processor such as XOM [88]
or AEGIS [84]) only consider explicit data leakage through the data bus (and prevent it
with encryption), we extend this attack model to implicit information leakage through the
address bus. In addition to encryption, we therefore require full memory trace obliviousness
(Section 3) to consider a system secure for our purposes.

Note that the total execution time (a termination channel) is out of scope for this work.
However, information leaks through this channel can be countered by computing the worst
case execution time for a program, or through offline program analysis to set execution
times that are independent of confidential data. Probabilistic solutions to this problem are
acceptable, since a computation that does not finish by the desired execution time can be
cancelled and return an error to the user (which is invisible to an attacker).

Further, the timing of individual ORAM accesses does not leak information if Phantom
is deployed such that a non-stop stream of DRAM traffic is maintained (whether or not
there are outstanding ORAM requests – if there are not, the ORAM controller can perform
fake accesses to random paths). Cache hits inside the CPU or the ORAM controller would
not alter the pattern of DRAM accesses observable by an adversary and only reduce the
execution time (i.e. timing channels are reduced to a termination channel).

We do not consider software-level digital attacks where malicious software relies on covert
channels through the processor or operating system. Such attacks can be addressed using
architectural and OS support for strong isolation [89, 44], obfuscation [56], and deterministic
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Figure 4.3: The Convey HC-2ex Heterogeneous Computing Platform

execution [5, 17]. Analog attacks that exploit the physical side-effects of computation – such
as temperature, EM radiation, or even power draw – are orthogonal to our proposal as well.
These can be addressed through techniques that normalize or randomize the potential phys-
ical side-effects of computation. Further, timing and termination channels can be eliminated
by normalizing the program execution time and rate of memory accesses by the secure CPU.
Alternate obfuscation approaches [56] exist as well.

4.4 Implementation Platform

We prototyped Phantom on a Convey HC-2ex server [15]. The HC2-ex is a heterogeneous
computing platform with a server-grade Intel Xeon CPU connected to a custom board that
features four large FPGAs (Xilinx Virtex-6 LX760) connected in a ring, and 16 independent
memory channels, each with 64 DRAM banks, for a combined memory of 64GB (Figure 4.3).
Between the four FPGAs, this high-bandwidth memory system can achieve a bandwidth of
80GB/s (20GB/s per FPGA) and is also coherent with the host memory. In addition to
these main components, a small RISC core next to the FPGAs manages communication
between the host CPU and the FPGAs, which becomes as simple as calling into a special
function on the host that then triggers functionality on the FPGAs (Section 6.2).

Phantom is implemented as an independent co-processor on one of the HC-2ex’s FPGAs.
Oblivious computation is initiated by the host (by setting up the code and data to operate
on), after which Phantom executes the code obliviously and stores the result back to
memory. We also use the host CPU for debugging purposes (e.g. for debug output).

This choice of platform was based on the insight that Path ORAM’s main bottleneck is
its large memory bandwidth overhead – a high-bandwidth memory system such as the one
available on the HC-2ex is therefore an opportunity to make ORAM practical by providing
the required memory bandwidth within off-the-shelf hardware. Furthermore, the reconfig-
urable logic available on the Convey system both gave us a convenient prototyping platform
and a realistic deployment scenario (the HC-2ex is commercially available).
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While we started with a set of preliminary simulations to understand the trade-offs in the
Path ORAM algorithm and the implementation challenges we may face, we quickly moved
to prototyping the ORAM controller at the RTL-level.

Creating a full RTL-implementation was necessary to learn about the details that need
to be considered in a real Path ORAM controller. Many of them are not apparent from the
high-level description of the algorithm, such as the importance of how to reorder blocks, how
to organize the stash, how to arrange data in DRAM, what meta-data needs to be stored
with each block and when to update it (e.g., we found that blocks should store their own
leaf ID to decrease pressure on the position map, and that it needs to be updated during
the read, not the write phase). Hence, without building a full hardware-implementation, it
is not clear what to simulate, since nobody had ever built an ORAM system before.

The decision to not merely simulate at the RTL-level but go all the way to a full FPGA-
based hardware implementation was based on three considerations:

• Many issues are not visible at the RTL-level, in particular issues related to meeting
timing constraints. When building Phantom, we found many places where logic
that seemed innocent at the algorithmic and RTL level caused overly long wires when
synthesized to real hardware, and required us to adapt the design. For example, our
heap-sorter design (Section 5.6) is motivated by such issues. If simulating a system
only at a high level, one cannot be confident that such issues won’t arise and invalidate
the numbers.

• We wanted to simulate our ORAM controller with real-world workloads running for a
long time. This is necessary to confirm that it behaves as expected in a real deployment,
and also increases confidence in its correctness. However, simulating a single ORAM
access in Synopsys VCS took 30 seconds for our ORAM controller – not enough to
simulate more than a few hundred accesses. Running on an FPGA allowed us to run
more than 30,000 ORAM accesses per second and execute real-world workloads such
as SQLite. Notably, there were a number of subtle bugs in the ORAM controller that
only manifested after 10,000 accesses or more – without running on real hardware, we
would have never found those bugs. As such, building the real system significantly
helps to increase confidence in our results as well.

• We wanted to demonstrate a prototype that – with moderate changes –could be de-
ployed on hardware that exists today. This would allow other researchers to use Phan-
tom as a prototyping platform for hardware-related ORAM research, and may also
help to drive commercial designs should they arise.

The Convey HC-2ex enabled us to achieve all of these goals. However, very little of the
Phantom implementation is specific to this particular platform, and it would be possible
to port Phantom to other platforms as well, or use it as an IP block in an ASIC.
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Figure 4.4: High-level System Design. Phantom comprises a CPU, non-volatile memory,
and an ORAM controller implemented on a single FPGA. All digital signals outside the
Phantom chip are assumed to be visible to an adversary.

FPGAs: Opportunities & Challenges

FPGAs give us an opportunity to prototype a processor with an oblivious memory system
under realistic conditions. However, designing high-performance logic on an FPGA is chal-
lenging. FPGAs operate at much lower frequencies than custom chips – for instance, most of
the FPGAs on the Convey platform are clocked at 150MHz – because logic is implemented
as a network of interconnected look-up tables.

The main challenge of Phantom is therefore to map Path ORAM, an irregular data-
driven algorithm, onto slow FPGA logic and yet ensure that 1) Phantom maximizes memory
bandwidth utilization, and 2) execution time of an ORAM access is independent of the access
pattern (since it would otherwise leak information). Sections 4.6 and 4.7 describe how we
achieve these two requirements.

4.5 System Design

Phantom consists of our custom designed ORAM controller and a single-core in-order RISC-
V [87] CPU developed in Berkeley’s computer architecture group. The entire project was
implemented in Chisel [8], a new hardware description language developed at UC Berkeley.
Phantom is implemented on one of the Convey HC-2ex’s four FPGAs (Figure 4.4), but
some design points use up to two more FPGAs to store the position map.

The ORAM controller is connected to the processor’s memory interface, in place of a
conventional memory controller. As such, it handles all LLC misses from the CPU – a thin
conversion layer translates the CPU’s request format to the ORAM controller’s interface
and converts between the (large) ORAM block size and the (small) cache line size of the
CPU. The ORAM controller provides an efficient microarchitecture implementing the Path
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ORAM algorithm, which makes use of Convey’s high-bandwidth memory interface and uses
a number of technique to keep up with the memory system.

The RISC-V CPU communicates with the host-processor through a bidirectional com-
munication channel, the host-target interface (Section 6.1). This allows the host to initialize
the program to execute obliviously and provide debugging facilities to the RISC-V CPU. It
also allows the host to bypass the RISC-V CPU to write to oblivious memory directly.

Note that everything outside the FPGA is assumed to be untrusted, in accordance with
our attack model (Section 4.3). This includes the channels between the host CPU and the
FPGA, as well as between the ORAM controller and the memory controllers. As a result,
any communication on these channels has to be encrypted1.

The ORAM Controller

Whenever the ORAM controller receives a request to access an address in oblivious memory
(usually on a last-level cache miss from the CPU), it initiates an ORAM access. It first looks
up the desired ORAM block in the position map to get a leaf node to access, then reads and
decrypts the path to that leaf and puts the result into the stash. It can then return the data
in the accessed block (or update it in case of a write) before encrypting and writing back
the entire path. While doing so, it has to reorder the blocks on the path to move them as
far down the tree as possible. Figure 4.5 presents an overview of this process and shows the
corresponding components of the ORAM controller.

The following sections give a high-level overview of the ORAM controller and Chapter 5
will talk in detail about its microarchitecture. Chapter 6 will then describe the integration
of the ORAM controller with the RISC-V processor and the HC-2ex.

1In our prototype, we do not implement encryption, but model it as fixed-length pipelines where required.
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Levels (N) 17 19 17
Block size 4096 4096 1024
Stash size O(C) 128 256 128
1 MC (baseline) 34816 38912 8704
8 MCs, pick from stash 10880 21888 9248
8 MCs, non-overlapped sort 5248 6912 1984
8 MCs, overlapped sort (ours) 4352 4864 1088

Table 4.1: Potential improvement from optimizations in cycles (or time) per ORAM access.
Baseline is an ORAM processor with one memory controller (MC). Phantom uses 8 MCs
and adapts Path ORAM’s reordering step; we expect it to be 8× better than the baseline.

4.6 Achieving High Performance

Like all ORAM schemes, Path ORAM has a fundamental overhead in the amount of data
that needs to be accessed per memory request, e.g. 136× for a 1GB ORAM with 4KB block
size (Section 3.5). Path ORAM’s bandwidth requirement thus motivates the use of platforms
with a very wide memory system, such as the Convey HC-2ex: by employing a 1,024b-wide
memory system rather than a conventional 128b-wide one, we can achieve a potential speed-
up of 8× over a naive implementation on a traditional memory system. However, exploiting
the higher memory bandwidth is non-trivial: it is necessary to co-optimize the hardware
implementation and the Path ORAM algorithm itself, in order for the implementation of
Path ORAM to keep up with the memory system.

We now present the key ideas and optimizations that allow us to achieve this goal. Ta-
ble 4.1 summarizes the potential performance gains of each idea over a naive implementation
with a traditional memory system. These numbers are based on back-of-the-envelope calcu-
lations and are called ‘potential’ because they assume a perfect Phantom implementation
without DRAM stalls. We demonstrate experimentally in Chapter 7 that Phantom comes
close to this ideal on the actual FPGA implementation.

Table 4.1 presents three different ORAM configurations and a baseline design that uses a
standard, 128b-wide memory controller (MC) operating at 150MHz. The baseline assumes
that all ORAM logic is free and accesses are limited only by the bandwidth of a single
MC, namely 34,816 cycles to access a 17-level ORAM with 4KB blocks. Our potential
performance-gains are therefore conservative estimates.

Memory Layout to Improve Utilization

Simply using a wide memory bus does not yield maximum DRAM utilization. Concurrent
accesses to addresses in the same bank – bank conflicts – lead to stalls and decrease DRAM
bandwidth utlilization. To resolve such bank conflicts, we chose a layout of the Path ORAM
tree in memory (DRAM) where data is striped across memory banks, ensuring that all
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DRAM controllers can return a value almost every cycle following an initial setup phase.
Fully using eight memory controllers in parallel thus reduces the 136× bandwidth overhead
to 17×, making ORAM controller logic on the FPGA the main implementation bottleneck.

Picking Blocks for Writeback

Bringing 1,024b per cycle into Phantom raises acute performance problems: the operation
of the Path ORAM algorithm now has to complete much faster than it did before, to keep up
with the memory system (e.g., Phantom needs to decrypt and encrypt 1,024 bits per cycle
in parallel). While encryption can be parallelized by using multiple AES units in counter
mode, the Path ORAM algorithm still has to manage its stash and decide which blocks from
the stash to write back after each ORAM access (the reordering step from Section 3.4).

The latter is of particular importance: The ORAM controller has to find the blocks that
can be placed deepest into the current path, and do so while the memory controllers push
in and write out data at 1,024b per cycle. One approach would be to scan the entire stash
and pick a possible block for every position on the path, in parallel with writing the path to
memory in leaf-to-root order. However, with Convey’s high memory bandwidth, scanning
through the stash takes longer than writing out an ORAM block, causing this approach to
achieve less than half the potential performance with stash size C = 128 (Table 4.1).

At the same time, in order to keep the stash small, it is crucial to select each block
from the entire stash – including both the current path blocks and old blocks. In the CCS
paper [55], we show that an approach that only considers the top blocks of the stash would
not suffice and could cause unbounded stash growth.

We hence propose an approach that splits the task of picking the blocks for writeback
into two phases: a sorting phase that sorts blocks by how far they can be moved down the
current path (XORing their leaf with the leaf ID of the current path), and a selection stage
that (during bottom-up writeback) looks at the last block in the sorted list and checks in
one cycle whether it can be written into the current position – if not, no other block can,
and we have to write a dummy (Section 5.6).

We further improve on this approach by replacing the sorting and selection stages by a
min-heap (sorted by the current path’s leaf ID). This replaces an O(C logC) operation by
multiple O(logC) operations (each of which completely overlaps either with a block arriving
from or being written to memory), where C is the size of the stash. This now makes it
possible to overlap sorting completely with the path read and to overlap selecting with
the path write phase, allowing the Path ORAM logic to keep up with the memory system
(Table 4.1). Section 5.6 describes this approach in more detail.

Treetop Caching inside the Stash

While the stash is required by Path ORAM as a temporary store for ORAM blocks while
they wait to be written out, it can also be used to improve performance by securely caching
ORAM blocks on-chip. We propose to cache the top levels of the ORAM tree inside the stash
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– we call this treetop caching – which saves Phantom from fetching these parts of the path
from DRAM. Since the number of nodes is low at levels close to the root, caching a few levels
improves ORAM latency and throughput significantly while using only modest amounts of
trusted memory. Our results demonstrate this insight experimentally (Figure 7.1).

We designed Phantom’s stash management to support treetop caching with minimal ef-
fort (as well as other methods, such as LRU caching). To do so, we use a content-addressable
memory (CAM) that serves as lookup-table for entries in the stash, but is also used as di-
rectory for caching and as free-list to find empty slots in the stash. This avoids placing
caches separate from the stash – one of our previous prototypes showed that this leads to
performance delays from checking the cache and moving ORAM blocks between the cache
and the stash (and additionally complicates Phantom’s logic, which makes obliviousness
harder to ensure).

Meeting FPGA Constraints

Each BRAM on our FPGAs is limited to 2 read/write ports. However, the BRAMs in
Phantom that constitute the stash have to be multiplexed among four functional units
(encryption during path reads, decryption during path writes and reads/writes by the secure
CPU). We therefore designed Phantom such that all the units that read from or write to
the stash are carefully scheduled such that only a single read port and a single write port
on the BRAM is in use during any particular clock cycle. Implementing the min-heap to
reorder stash entries also requires similar tricks, which we describe in Section 5.6.

The FPGAs also impose strict timing constraints on our design. Convey’s DRAM con-
trollers operate at 150MHz, which means that the ORAM controller had to run at 150 Mhz
as well. Since this frequency was too high for the CPU (which was originally designed for
ASICs), we put it into a second 75 Mhz clock domain available on the Convey architecture,
and use asynchronous FIFOs to connect it to the ORAM controller. Nonetheless, without
rearchitecting part of the uncore (Section 6.1), we are only able to run with cache sizes of
4KB (IC), 4KB (DC) and 8KB (LLC), while still overclocking the circuit slightly (synthesis
results differ between design points, but a representative example has 73 and 142 Mhz for
the respective clock domains). To extrapolate numbers for realistic cache sizes, we therefore
ran simulations based on the ORAM access latencies from our prototype (Section 7.5).

To run at these frequencies, we had to modify a baseline Phantom implementation to
replicate and pipeline critical paths. The details can be found in Chapter 5.

4.7 Preserving Security

When implementing a complex security-critical algorithm such as Path ORAM, it is crucial
to ensure that the hardware implementation does not introduce any additional leaks, e.g.
through timing channels. One way to achieve this goal would have been to use formal
verification – however, verifying large hardware designs is a very resource-intensive process



CHAPTER 4. THE PHANTOM SECURE PROCESSOR 38

Constant-time gap (69 cycles)

Memory Path Read Path Write

AES Decrypt Encrypt

Reordering Heapify Heap Insert Heap Delete

CPU I/O Read Write

Figure 4.6: Overlapping the steps of the Path ORAM algorithm with memory accesses

that is hard to achieve in an academic setting. We therefore chose a different approach and
designed Phantom such that it is free of information leakage by design. To achieve this
goal, we rely on the following two techniques: 1) we use a set of design principles to avoid
timing variations in Phantom’s operations, and 2) we isolate interactions with the outside
world from Phantom’s internal (confidential) data structures.

Design Principles for Obliviousness

We use two simple design principles to ensure that Phantom’s design does not break Path
ORAM’s obliviousness guarantees. Any operation – checking the position map, reordering,
caching, etc. – that depends on ORAM data is either a) statically fixed to take the worst-
case time or b) is overlapped with another operation that takes strictly longer. Phantom’s
decrypt operation could, for example, be optimized by not decrypting dummy ORAM blocks
– but this leaks information since it would cause an operation to finish earlier depending
on whether the last block was a dummy or not. Instead, Phantom pushes dummy blocks
through the decryption units just the same as actual data blocks. These two design principles
yield a completely deterministic Phantom pipeline. Figure 4.6 shows how the different
operations in Phantom overlap with reading and writing a path.

Terminating Timing Channels at the Periphery

The DRAM interface requires further attention to ensure security. Phantom sends path
addresses to all DRAM controllers in parallel, but these controllers do not always return
values in sync with each other. Although DRAM stalls do not compromise obliviousness
(DRAM activity is not confidential), propagating these timing variations into Phantom’s
design can make Phantom’s timing analysis complicated. To keep Phantom’s internal
behavior deterministic and simple to analyze, we introduce DRAM buffers at the interface
with external DRAMs to isolate the rest of Phantom’s ORAM controller from timing
variations in the memory system. At the same time, all inputs to the DRAM interface and
their timing are public (a leaf ID and 1,024b of encrypted data per cycle during writeback),
so that no information can be leaked out of Phantom.
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Chapter 5

Microarchitectural Details

This chapter presents the details of the microarchitecture of Phantom’s ORAM Controller.
It discusses design decisions and challenges, and highlights aspects of implementing Path
ORAM in hardware that would not have been apparent without a real implementation.

5.1 High-level Description

Since the fundamental limitation of Path ORAM is its memory bandwidth consumption,
the goal of Phantom’s microarchitecture is to make maximum use of the available DRAM
bandwidth (up to 1,024b/cycle on the Convey HC-2ex). This involves accelerating all com-
putation related to Path ORAM such that it can be moved off the critical path and occur
in parallel with the memory accesses, as far as possible. An optimal implementation would
be one that performs no additional cycles beyond those needed for the memory accesses –
as we will see in this chapter, Phantom gets close to this goal.

Figure 5.1 shows how the different components of the microarchitecture fit together and
Figure 5.2 illustrates Phantom’s data path in further detail. First, ORAM blocks are read
from memory, decrypted, and written to the stash – we call this the read phase. After the
read phase, blocks are read from the stash, encrypted, and written back to memory using
the same functional units as in the read phase; this is the write phase. Concurrently to the
read and write phases, Phantom reorders the blocks in the stash and returns a value to the
secure CPU (or writes a value into an ORAM block).

5.2 On-Chip Data Structures

The Position Map ( 1 in Figure 5.2) is the central data structure for making memory accesses
oblivious, and stores a mapping from ORAM blocks to the leaf node in the ORAM tree that
the block is assigned to.
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Figure 5.1: Overview of the ORAM controller. The arrows represent the data flow during
the two phases of the Path ORAM algorithm.

The Stash 7 buffers ORAM blocks in plaintext. Its size is chosen to make the overflow
probability small (Section 3.5). Any block that is decrypted in the read phase is put into the
stash, and blocks are removed from the stash when they are encrypted in the write phase.
All blocks stored in the stash are striped across 8 independent columns (i.e., memories), each
accessed by an AES unit (Section 5.5). This is necessary to reduce the critical path (and
achieve the clock frequencies required for the Convey platform).

The Stash Index 2 is a content-addressable memory (CAM) that stores the address of
the block contained in each entry of the stash, including a bit to indicate whether a stash
entry is occupied. Before decrypting a block, the stash index is queried to find a free slot.
During a path write, once encryption of a block finishes, the corresponding entry of the Stash
Index is set to free.

The Stash Index is queried before starting each ORAM access, in parallel with the posi-
tion map. If the requested block is present, the ORAM controller will read or write to the
stash directly, rather than initiating a Path ORAM access (as described in Section 3.4, in a
real deployment, Phantom would have to perform a fake path access to hide the fact that
the stash was accessed and avoid a timing channel – our prototype does not implement this
at the time of writing).

Querying the Stash Index and Position Map adds a single cycle latency to each request.
As the Position Map grows linearly with ORAM size, it may also have to be pipelined to
keep the critical timing path low (up to 4-deep for the position map of a 17-level tree), which
adds another few cycles of latency to each request (4 in the example above). Updating the
stash index requires 2 cycles, but these are overlapped with the path reads/writes.
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5.3 In-Memory Data Structures

The main data structure in DRAM is the ORAM tree (Section 3.4). It consists of a number of
buckets, each of which stores 4 ORAM blocks of size 4KB. Each ORAM block then consists
of a 128b header (for meta-data) and its payload. Since Path ORAM’s performance is
dominated by memory accesses to this data structure, its memory layout is crucial.

The Convey platform features 1,024 DRAM banks (64 for each of its 16 memory channels).
During an ORAM access, the address generation logic 3 takes the leaf ID of the path to
access and generates a series of memory requests for each of these channels. Our goal is
to fetch data at (close to) peak bandwidth – to do so, however, we cannot place the words
of the ORAM blocks sequentially in the memory address space. Instead, we need to place
each word such that the DRAM banks’ latency can be hidden behind successive 64-bit words
being read from different DRAM banks (or, alternatively, bursts of words).

To achieve this goal, we stripe each ORAM bucket across the 1,024 banks such that, when
reading a block sequentially, every memory controller accesses all its banks in sequence,
reading a 64-bit word from each bank and wrapping around after the last bank. Going
round-robin across all DRAM banks allows each bank enough time to open a DRAM row
and return its data to the memory controller without the controller having to stall. Our
implementation uses the fact that some bits in Convey’s memory addresses directly map to
certain DRAM banks – we can hence ensure that successive words map to different banks.

The layout of the tree itself follows the standard way of storing a binary tree in memory:
The root is stored at address bucket size/16 (for each of the 16 memory channels), and the
two children of the bucket at address i are located at 2× i and 2× i+ bucket size/16.
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and fed into the AES units at a rate of 1,024b/cycle as soon as an entire row is ready.

5.4 DRAM Buffer

During an ORAM access, the address-generation logic generates memory requests for each
word in the path. When encrypted data arrives from memory, it is put into the DRAM
Buffer 4 in order to be decrypted in subsequent stages. In practice, DRAM controllers
often run ahead or fall behind, and the DRAM Buffer waits until it receives a complete row
– the maximum number of bits received from DRAM each cycle (1,024 bits on the HC2-ex) –
before forwarding it into the AES decryption units. To account for worst-case DRAM stalls,
we provision the DRAM Buffer with space to store an entire path of ORAM blocks. During
the write phase, the DRAM Buffer stores encrypted data from the AES units on its way to
be written back to memory, absorbing DRAM stalls without stalling AES encryption.

The DRAM Buffer’s design allows us to isolate the internals of Phantom from timing
variations in the memory system. As long as the core part of the ORAM controller (i.e.
encryption/decryption hardware, stash and reordering logic) consumes 1,024 bits of data per
cycle out of the DRAM buffer, and produces data at this rate during write-back, Phantom
is completely shielded from any DRAM timing variations (Figure 5.4).

The DRAM Buffer is implemented using 16 independent columns (Figure 5.3). Each
column serves one memory channel and keeps track of how much data it has received from
the memory system – we use a feature of the HC-2ex that forces the memory controllers to
buffer responses internally and deliver them in order, so that the DRAM Buffer only has
to store how many words each column has received. As soon as all the words of a row are
available, the buffer notifies the AES units that the row is ready to be consumed.
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Figure 5.4: The DRAM Buffer protects Phantom’s internal state from timing variations
in the memory system. As such, it prevents timing channels by design.

5.5 Encryption of ORAM Blocks

Once data has arrived in the DRAM buffer, it is consumed by AES units to be decrypted into
the stash. The same units also encrypt all data as it is written back from the stash into the
DRAM buffer. Phantom uses eight AES-128 units in counter mode (CTR). This approach
was chosen since counter mode allows us to parallelize both encryption and decryption, which
is crucial to maintain the required throughput of 1,024 bits per cycle.

Each ORAM block has an associated clear-text nonce for CTR (which could be stored
in its first 128 bits). It also includes an (encrypted) block header which includes the block’s
ID and whether or not it is a dummy. As an optimization, we store the block’s leaf ID in
the header as well – this reduces accesses to the position map.

Before the AES units can start decryption, they first need to have the block’s nonce
available to them. To avoid this causing stalls during the read phase, it is possible to add
a forwarding path 5 from the first two memory channels. The forwarding path buffers all
words belonging to nonces in a way similar to the DRAM buffer, so that the nonces are
available when the AES units start to decrypt the actual block.

To avoid wasting oblivious storage, we introduce an additional optimization: we store
the nonce in the block header itself (since more than 80 out of 128 header bits are free –
even for large configurations1). The nonce now gets encrypted, since it is included in the
header AES block. Thus, the forwarding path must be extended with an AES unit ( 5 ) that
pre-decrypts the header while the rest of the block is being fetched, and (due to overlapping
and in-order memory fetch) is always finished by the time the rest of the block is available
to be decrypted. Since this makes the AES unit’s timing completely deterministic based on
the timing within the memory system, it does not break any of the security guarantees.

Decrypting the header in advance also allows Phantom to insert a block into the reorder
min-heap (Section 5.6) while the rest of the block is still being read. Phantom also reserves

1The highest-order bit of the non-nonce part should be set to 1, to avoid the counter of AES-CTR ever
coinciding with that part, as the resulting ciphertext would be identical to the encrypted header.
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an entry in the stash once the header is decrypted; subsequent outputs of the AES decrypt
units can then be directly written to this entry without any stalls, thereby hiding the 2-cycle
stall of the stash index lookup (Section 5.2).

The choice of AES implementation is a trade-off that is largely orthogonal to our archi-
tecture, as long as each AES unit is pipelined and provides 128 bit/cycle throughput. In our
prototype, we model AES-128 units as 11-stage pipelines that take the nonce, 128b plain text
and counter as input, and output the cipher text 11 cycles later. We also assume an on-chip
pseudo-random number generator (PRNG)2. While we do not include the size of AES and
PRNG in our results, we show that Phantom’s Oblivious RAM controller requires less than
2% of the logic on the FPGA, leaving ample space for AES and PRNG functionality (e.g. 9
instances of the AES unit from [39] would require 50% of the available LUTs).

5.6 Heap-based Reordering

As described in Section 3.4, the blocks in the stash have to be reordered before being written
back to memory, ensuring that each block is moved as far down the path as possible. A
simple implementation would be to go through the entire stash for each slot, in order to
choose a candidate block. However, this search would take a larger number of cycles than
the write-back of the block to memory would take, which would make the ORAM access
computationally bound rather than memory bound (especially on an FPGA, where clock
rates are much lower than on an ASIC).

To avoid this problem, Phantom has max time = (blocksize/bits per cycle) cycles to pick
a block to write back. In our prototype with its 4KB block size, max time is 32. With a stash
of about 100 entries, a linear scan will not be hidden behind a 32-cycle ORAM block read,
and will thus introduce a 68-cycle stall per block or (68 × path length × blocks per bucket)
cycles for each ORAM access – 4,624 additional cycles for a 17-level ORAM. To avoid these
stalls, we need a different approach that can overlap reordering with the memory accesses.

It is important to note that in some cases, the linear scan approach may take fewer
than 100 cycles – e.g. if the stash contains fewer than 100 elements. However, to avoid
information leakage through a timing channel, the scanning operation always needs to take
the maximum time possible, even if it could finish earlier (which follows from our design
principles for avoiding timing channels from Section 4.7). Any alternative approach we
choose therefore has to make every decision within max time, even in the worst case.

An alternative to scanning the entire stash is to pre-sort its entries based on their leaf
IDs. Phantom reorders stash entries by performing a bit-wise XOR between the leaf IDs of
entries in the stash and the leaf ID of the current path (assuming the leaf ID naming scheme
from Figure 3.1), and then sorting ( 8 ) them in increasing order. The resulting order reflects
how deeply they can be placed in the tree, since the first bit where they disagree with the
current leaf ID is at a later, lower-order bit if they can be placed deeper.

2Instead of generating truly random numbers, our prototype uses a linear feedback shift register to
emulate the PRNG functionality (which is insecure but sufficient for prototyping purposes).
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Once entries have been sorted like this, Phantom determines which blocks to write back
by going backwards through the path (starting from the leaf), always looking at the lowest
element in the sorter and checking its leaf ID to determine whether it can be placed in the
currently examined slot in the tree. If yes, Phantom inserts the block, otherwise Phantom
fills the slot with a dummy (dummies are generated directly by the AES units – instead of
reading data from the stash, they simply encrypt some random data). We call this the select
stage ( 8 ). Figure 5.5 visualizes this strategy.

While this approach avoids going through the entire stash, the sorting step requires
further attention. Algorithms like Merge sort cannot overlap the sorting with the memory
reads and writes (because they require all entries to be present at the time the sort begins).
On the other hand, algorithms like Insertion sort (which is simple to implement in hardware
and can perform the insertion in parallel to the reads) would make the latency to insert each
block linear in the stash size and larger than max time (i.e., 32 cycles).

We therefore designed Phantom to use a min-heap data structure instead. Rather than
performing all the sorting either during the write phase or during the read phase, we insert
the blocks into the min-heap as they are read in, and remove them from the heap as we write
them back. This takes logarithmic time per block both during the read and write phases,
but as a result, the phases can individually keep up with the speed at which blocks arrive
from memory and have to be written back.

We also have to make sure that we heapify (re-sort) the current contents of the heap at
the start of each ORAM operation, since the ordering changes with the leaf ID of the current
path. We therefore added a queue (which may hold as many entries as the stash) to buffer
the meta-data of incoming blocks in case the heapify operation is not complete by the time
the first blocks come out of the AES unit. We can show that the overall latency does not
exceed the amount of time we have during the read phase, ensuring that we always finish all
insertions into the heap by the time the last block has finished reading (a proof follows).

With these optimizations, we can overlap the reordering completely with the memory
requests, making our system completely limited by the available memory bandwidth.
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Implementing the Min-Heap on an FPGA

The heap implementation requires some care to minimize the cost of each operation. For
some heap operations, a node must be compared to both of its children, potentially doubling
the access latency to the heap (from dlog ke cycles to 2dlog ke cycles, where k is the number
of nodes in the heap), since each of the FPGA’s BRAM memories has only one read and one
write port. We avoided this problem by splitting the heap into two separate memories, each
with a read and a write port. One holds even memory locations, the other holds the odd
memory locations. As a result, the two children of a node are always in different BRAMs
and can be accessed in the same cycle. The updates to the heap are performed in parallel
to those reads, using the remaining write port.

Although this approach is functionally correct, it results in a circuit with paths from
one BRAM through multiple levels of logic to another BRAM, leading to a long critical
path latency. We therefore split the memory even further: our final implementation uses 4
different BRAMs (Figure 5.6). At every cycle, we prefetch the four grandchildren of a node
so that the two children we are interested in will be available in buffer registers at the point
when they are required for comparison (whichever way the previous comparison went).

Proof of Overlapping Heapify

For the heap operations to fully overlap with the memory reads and writes, it is necessary
to ensure that the heapify (re-sort) operation at the start of each ORAM access will always
complete in time as well. Both the heapify operation and inserting all the incoming blocks
into the heap must perfectly overlap with the memory read phase for this to be the case.
We show that for realistically sized ORAMs (at least 13 levels, stash size at most 256), this
is always the case and the heap-based approach is correct.

Proof. For a heap with tree-depth d, insert and extractMin take d + 3 cycles. For a stash
size less than 256, d ≤ 8 and hence the extractMins overlap with the (32 cycle) writes since



CHAPTER 5. MICROARCHITECTURAL DETAILS 47

8 + 3 ≤ 32. To prove that the insertions overlap as well, we have to show that the heapify
operation and all insertions always finish in the available time.

Heapify starts at the first cycle of the ORAM access, and incoming blocks from from
AES decrypt are stored in a queue. Hence it is sufficient to show that the combined time
for heapify and all inserts is smaller than the time the entire path read takes. Since inserts
take d+ 3 cycles per block, for an ORAM tree with l levels and a bucket size of 4, we need
to ensure that heapify takes at most tmax = 4l(32− (d+ 3)) cycles.

Heapify performs a k + 1 cycle operation for each node in the heap except the ones on
the last level, where k is the distance of the node to the leaves. Hence heapify takes

th =
d−1∑
i=1

2i−1(d− i+ 1) <
d−1∑
i=1

2i−12d−i =
d−1∑
i=1

2d−1 = (d− 1)2d−1

cycles. Now if we set d ≤ 8, l ≥ 13, then th < 7 ·27 = 896 while tmax = 4 ·13 · (32− (8+3)) =
1, 092. Hence th < tmax and therefore heapify and inserts overlap. Note that this bound is
not very tight (for d ≤ 8, th = 374) and sorting can be further optimized.

5.7 Control Logic

Phantom’s control logic is the component that coordinates the movement of data through
the ORAM controller, namely from the DRAM buffer through the AES units into the stash
(and vice versa for the write-back), maintaining the invariant that data takes constant num-
ber of cycles to pass through each stage of the pipeline.

At its core, the control logic consists of a pipeline that runs in parallel to the pipelined
AES units. Each stage of the pipeline holds a descriptor for the data in the corresponding
stage of the AES units (Figure 5.7). The descriptor is a tuple comprising an ORAM header
(i.e. block ID, leaf ID, whether it is a dummy or not and a nonce), an entry in the DRAM
buffer (to read from), and an entry in the stash (to write to). An offset determines which
row within the DRAM buffer and stash the descriptor’s data belongs to.

During the read phase, the control logic reads rows of data from the appropriate location
in the DRAM buffer and feeds them into the AES units. It also directs the output of the
AES units into the appropriate locations in the stash. In addition, the control logic checks
each decrypted block header to see if it is the block the CPU has requested. Once the block
is found, it is returned to the CPU and also remapped to a new, random leaf node in the
ORAM tree (overwriting the block’s header before writing it into the stash).

If the ORAM access is a read, the control logic forwards the requested block to the CPU
while it comes out of the AES units. The forwarding avoids the problem that each of the
BRAMs comprising the stash only has one read and one write port. If we allowed the CPU
to read the block from the stash at any time, it might clash with reads during the write-back.
By returning the data to the CPU before it is written to the stash, we avoid this problem.
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Figure 5.7: Phantom’s control logic. The arrows describe the flow of data.

The write phase uses the same pipeline and AES units, but with different descriptors.
As data is moved out of the stash to the DRAM buffer, the control logic queries the select
stage (Section 5.6) to determine whether the next block to be written is a dummy, and if
not, which entry from the stash to write back. During this step, all block headers are also
updated with a new nonce generated by the PRNG.

If the ORAM access is a write, the CPU’s block will be used to update the ORAM block
in the stash in parallel to the write-back phase, so that the updated ORAM block is available
for write-back at least one cycle ahead of the encryption unit – this is necessary since the
stash’s write port is only available during the write-back phase. In the case of a dummy, no
data is read from the stash and zeros are fed to the unit instead (since the nonce is randomly
generated and affects the whole block, zero-valued dummies do not affect security).

The remainder of the write phase resembles the read phase: data is written to the DRAM
Buffer in order from bottom to the top of the path and is guaranteed to arrive at 1,024 bits
per cycle, so that the memory system can write at full pin bandwidth (1,024 bits/cycle).
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5.8 Treetop Caching

An advantage of this design is that it enables us to implement a number of optimizations very
easily. To implement our Treetop Caching optimization (Section 4.6) that caches the top
levels of the tree, we only need to modify the control logic and memory request generation
logic to only read the bottom levels of the tree (which is a trivial change of a few lines of
code). As a result, any blocks that would be stored in the top levels of the tree remains
behind in the stash after an access, and will be in the stash already when an access begins.

It would be similarly easy to implement other optimizations such as LRU caching in the
stash. In that case, the min-heap logic could be modified to give a sorting value of ∞ to
each entry that should remain in the stash according to the LRU logic. As a result, these
entries will be the last to arrive at the select stage and can be ignored when writing the path
back to memory.

5.9 Utilizing Multiple FPGAs

The Convey HC-2ex features 4 FPGAs that provide additional logic and memory capacity
which can be used for ORAM state. For example, we experimented with splitting the position
map across the FPGAs adjacent to the one carrying the ORAM controller (since the FPGAs
on the HC-2ex are connected in a ring, each can directly signal both of its neighbors). This
allows us to scale to larger ORAM sizes.

When performing a position map access (which only happens at the start of an ORAM
request), we send the (encrypted) address of the block we are looking for, as well as the
new leaf ID to map it to, to both of the neighboring FPGAs. Both of them then send an
encrypted reply at the same time. Since it is public knowledge that an ORAM request was
initiated, this is secure.
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Chapter 6

Implementation on the HC-2ex

This Chapter describes how the ORAM controller is integrated with the RISC-V CPU and
how the resulting system is deployed on the Convey HC-2ex platform. It also shows details
of the Convey HC-2ex’s programming interface and how it is used to implement Phantom.
The remainder of our infrastructure, including the use of the Chisel hardware description
language and our experiences with both Chisel and the HC-2ex, are covered as well.

6.1 Integration with a RISC-V Processor

As described in Section 4.5, Phantom consists of our ORAM controller integrated with
an in-order RISC processor implementing the RISC-V instruction set [92]. The processor
(like our ORAM controller) is implemented using Chisel [8], a new hardware construction
language embedded in Scala (Section 6.4). The CPU features a full implementation of the
RISC-V instruction set, an uncore that communicates with the memory system and a host,
as well as instruction, data and last-level caches (LLC). For our prototype, we use a version

ORAM Controller 

RISC-V “Rocket” CPU 

Uncore 

Tile 

Icache 
(4KB) 

Dcache 
(4KB) 

LLC (8KB) 
Host 

Memory Request Converter 
& Buffer (8 Blocks) 

FPGA 

Convey Memory Controllers 

Host-target 
Interface 

Figure 6.1: Integration of the ORAM Controller with the RISC-V CPU. Components in
green are part of the RISC-V infrastructure while components in grey are part of Phantom.
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Figure 6.2: Overview of the Convey HC-2ex platform.

with very small caches (4KB instruction cache, 4KB data cache, 8KB LLC) and no floating-
point unit. The reason for this choice is that our Convey platform requires the CPU to
run at 75 MHz on an FPGA, and supporting larger cache sizes at this frequency would
have caused significant amounts of additional work (the CPU was optimized for an ASIC
implementation before we adopted it for Phantom and running at 75 MHz still slightly
overclocks the circuit). Such work is orthogonal to our proposed ORAM controller. For our
performance evaluation, we therefore simulate a CPU with realistic cache sizes to determine
results for a real deployment.

The CPU is integrated with Phantom through a Memory Request Converter unit that
translates memory requests from the LLC into ORAM requests, buffering 8 previously ac-
cessed ORAM blocks to handle the difference between 128B cache lines and 4KB ORAM
blocks (Figure 6.1). We use the CLOCK algorithm [86] to determine which ORAM block to
evict from the buffer when it fills up.

To translate from the CPU’s memory requests to ORAM requests, it is necessary to
divide the memory request’s address by the exact ORAM block size. Since 128b of the block
are used for the block header, this requires division by a non-power of two (an alternative
approach would be to store the headers separate from the payload). The memory request
converter in our current prototype uses a Xilinx divider IP core that takes an additional 36
cycles, but custom logic could exploit the fact that this division is by a power-of-two multiple
of 31, to reduce that latency to just a few cycles.

The CPU communicates with the host (in our case, the host CPU on the Convey HC-2ex)
via the host-target-interface (HTIF), a bidirectional communication channel. The software
that controls the RISC-V CPU is taken from the standard RISC-V infrastructure (which is
available for download from [87]). Specifically, the host CPU runs a frontend-server which is
responsible for loading an executable, initializing the RISC-V CPU through the HTIF and
handling any requests that the RISC-V CPU is sending through the HTIF. The RISC-V
processor itself runs a minimal proxy kernel that enables basic syscalls by forwarding them
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Figure 6.3: Building a communication channel between the host CPU and Phantom.

to the frontend-server on the host. While this would break security in Phantom (and is
therefore not used by our sample applications such as SQLite), we found this feature helpful
for debugging and timing measurements.

6.2 PHANTOM on the Convey HC-2ex

Convey provides a development kit for the HC-2ex which includes infrastructure IP and a
set of scripts for the Xilinx design tools that synthesize and package FPGA images into a
personality (a package that is automatically loaded by the Convey runtime to reprogram
the FPGAs for a particular purpose). Personality-specific logic is implemented in a Verilog
module that interfaces with the rest of the system (such as the memory controllers), and the
host CPU communicates with personalities through a management processor (MP) that is
connected to the FPGAs and runs code supplied by the host. The MP can access shared
registers within each personality and has special instructions that are directly dispatched
to personalities running on the FPGA. The Convey compiler bundles MP code (written in
assembly) with the host binary, and host applications can perform so called copcalls (”co-
processor calls”) to run a function on the MP. This workflow is shown in Figure 6.2.

Phantom is implemented as a personality and uses these mechanisms to implement the
host-target interface between the host CPU and the RISC-V core on the FPGA (Section 6.1).
We provide copcalls that access a set of shared registers, which we connect to the host-target
interface of the RISC-V uncore. This allows us to exchange commands with the RISC-V
system (such as accessing control registers or writing to memory).

Figure 6.3 shows how the different parts fit together: The front-end server is running on
the host and takes care of tasks such as loading programs. It will then send commands over
the HTIF by calling into copcalls that transfer the HTIF data into registers on the FPGA,
which are then fed into the RISC-V processor’s uncore.
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6.3 Debugging Support

During the development of Phantom, we built a significant amount of debugging function-
ality to debug the ORAM controller both in simulation and on the FPGA. Convey provides
an extensive debugging infrastructure for the HC-2ex, and we used this infrastructure with
Synopsys VCS. We make extensive use of the fact that host and Convey memory are coher-
ent: for example, we implemented a software version of the Path ORAM algorithm and use
it as a reference to compare against the state of the tree between ORAM accesses, to confirm
the correctness of our hardware implementation. In addition, we use this implementation to
initialize the ORAM tree for testing purposes.

We also added a number of debug ports to Phantom, for example to write to the position
map from the host. Finally, we implemented a visualization tool that shows us the current
state of the ORAM tree after every access, including the location of blocks.

6.4 Chisel as an Implementation Language

Phantom was almost entirely developed in Chisel [8] (except for some glue code to integrate
it with the Convey infrastructure). Chisel is a hardware description language embedded in
Scala. While it describes synthesizable circuits directly (similar to Verilog), it makes the full
Scala programming language available for circuit generation, enabling functional or recursive
descriptions of circuits. Chisel also has additional features compared to Verilog, such as width
inference and a type system for wires, support for structs (Bundles in Chisel terminology),
high-level description of state machines and bulk wiring.

Chisel supports a number of backends that enable it to (for example) generate a fast
RTL-level simulator implemented in C++, which is significantly faster than VCS (we used
this feature to test our min-heap implementation). Chisel can also generate synthesizable
Verilog code, which made it easy to interface with the Convey infrastructure.

To give an intuition about the clear coding style that Chisel enables, Figure 6.4 shows the
implementation of the insert step in the min-heap implementation. During this operation,
an entry is first added to the end of the min-heap tree. At every step, it is compared with
its parent: if it is larger or equal, the insert operation terminates, if the parent is larger, the
two are swapped and the insert operation proceeds at the next level.

One complication in our design is the fact that the heap is divided into four different
memories to reduce the critical path (Section 5.6). In Verilog, it would be difficult to de-
termine the right memory to read each node from. Chisel, however, makes this easy by
enabling us to implement functions read_buf and write_buf that take a node address and
transparently read or write to the correct memory. Similarly, cur_buf enables to extract a
node’s value from the set of nodes that were read in the last cycle.

Another interesting aspect to Chisel is how it hides the notion of clock cycles: instead
of operating at clock edges, it has when and otherwise statements that check whether a
statement is true during the current cycle and updates state for the next cycle.
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when (state === s_insert) {

// The current parent has been read last cycle, so we can extract the value.

val parent_entry = cur_buf(next_ptr);

// Read the next parent so it is ready in the next cycle

read_buf(next_ptr >> UInt(1));

when (last_ptr === UInt(1)) {

// Root has been reached

write_buf(last_ptr, next_entry);

state := s_delay;

}.elsewhen (compare_bits(parent_entry) > compare_bits(next_entry)) {

// The parent is larger and we need to swap them and continue

write_buf(last_ptr, parent_entry);

next_ptr := next_ptr >> UInt(1);

last_ptr := next_ptr;

}.otherwise {

// The parent is smaller and we can finish

write_buf(last_ptr, next_entry);

state := s_delay;

}

}

Figure 6.4: An example of Chisel code as it appears in Phantom. This code snippet
implements the insertion operation for the min-heap from Section 5.6. last ptr is the
location of the current node in the tree, next ptr is the location of its parent, next entry is
the value that is being inserted into the heap and parent entry is the value of the parent.

As a result, the insert implementation becomes comparatively simple: it distinguishes
three cases (the root has been reached, the parent is larger than the current node, or oth-
erwise). In the second case, the operation continues one level up in the tree, writing the
parent’s value into the current node location. The other two cases terminate the operation.

6.5 Experiences with the Infrastructure

Since we were using two pieces of infrastructure that are not very widely used at this point
– specifically the Convey HC-2ex and the Chisel Hardware Implementation language – we
want to make a few comments regarding their usefulness with regard to the research we were
conducting. Overall, we believe that an academic project of the size of Phantom would
have been significantly harder had it not been for the availability of these high-quality tools.
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Convey HC-2ex

We found the HC-2ex to be well-suited for ORAM research due to the simple interfacing of
host and FPGA. Further, the Convey memory system offers many opportunities for experi-
ments, e.g. with parallel requests or recursive ORAM.

Overall, the HC-2ex gave us most of the features that we needed for our research. How-
ever, one useful additional feature would have been the ability to handle cache misses from
the host CPU on the FPGA, since this would enable us to run the program on the host
CPU and send encrypted memory requests to an ORAM controller on the FPGA. However,
there appears to be no fundamental reason this could not be provided by the hardware in
the future, if there is demand for this feature.

Chisel

Chisel significantly helped the implementation of Phantom, since it made it much easier
to generate parts of the design automatically based on design parameters, and deal with
complex control logic (in particular due to interlocking in different parts of the pipeline).
As such, the implementation effort for Phantom would have been much higher had we not
been able to use Chisel.

6.6 Real-world Deployment

Phantom is a prototype, and would therefore require a number of additional changes to be
deployed in a security-critical cloud scenario. The most important omission of our prototype
are facilities for remote attestation, which would have to be provided in a real Phantom
deployment. Furthermore, our current prototype does not implement real AES units – these
could be implemented with commercially available IP blocks and Phantom leaves enough
remaining logic blocks on the FPGA for this to be possible. Other features that are currently
missing are integrity and freshness, as well as handling of the timing channel.

In addition to these microarchitectural features, a real deployment would require the
Convey HC-2ex’s FPGAs to be replaced by secure FPGAs instead [24]. Furthermore, some
more work would have to be done on the software side to enable time-sharing of Phantom
and forward requests between remote clients and the secure processor.

Overall, we believe that Phantom answers the questions we set out to answer – how to
implement an oblivious processor in real hardware and what microarchitectural challenges
need to be overcome. However, as with any prototype, more work is needed to make it
practically available and we believe that our results could help to guide this work.
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Chapter 7

Evaluation

This Chapter presents our evaluation of Phantom to determine the hardware and perfor-
mance overheads of obliviousness, as well as its performance impact on real applications. It
reports numbers from our hardware implementation for both individual ORAM accesses and
SQLite workloads. In addition, we use a timing model and simulator to extrapolate results
for different cache sizes.

7.1 Evaluation Highlights

In this section, we experimentally determine the cost of obliviousness on Phantom, as well
as its performance impact on real applications. Our evaluation demonstrates that:

1. ORAM latency to access a 4KB block is 32× over a non-secure access (44× for 128B
blocks1) for a 1GB ORAM. ORAM access latencies vary from 18us to 30us for ORAMs
of effective size 64MB to 4GB and a block size of 4KB. In comparison, a non-ORAM
access takes 812ns for a 4KB block and 592ns for a 128B block when using all of the
Convey HC-2ex’s memory channels.

2. Phantom utilizes 93% of the theoretical peak bandwidth of Convey’s memory system
for one FPGA, validating our memory layout and microarchitectural optimizations.

3. Phantom’s ORAM-controller requires less than 2% of the LUTs of the FPGA, and
varying amounts of BRAMs. Phantom’s prototype implements ORAMs of up to
1GB on a single FPGA (before on-chip memory is exhausted), and 2GB or larger by
splitting the position map across multiple FPGAs (Section 5.9).

4. Overall application performance depends on access patterns and working-set size. As
an example, we ran different SQLite queries on a population census database. The
overheads over a non-oblivious version ranged from 20% to 500%.

1Since the granularity of 4KB ORAM accesses is much larger than a cache line, we compare to 128B
reads to estimate the worst-case overhead, which occurs if only one cache line of the data is actually used.
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Figure 7.1: Average time per ORAM access for different ORAM configurations. The
numbers were gathered on the real hardware, performing 1M accesses per experiment with
block size 4KB. The 18 and 19 level design points are split across 3 FPGAs.

7.2 ORAM Latency and Bandwidth

The primary metric of efficiency for an ORAM system is the time to service a single request
to the ORAM. This approximates the amount of overhead per memory access (i.e. last-level
cache miss). While this number says little about the performance impact on real applications,
it allows us to put an upper bound on the expected overheads.

We synthesized a set of different configurations of Phantom, with effective ORAM
storage capacity ranging from 64MB to 4GB (13-19 tree levels with a 4KB block size). Each
ORAM configuration includes a stash of 128 elements, which allows up to 3 levels of Treetop
Caching. For 18 and 19-level ORAMs, Phantom’s position map is stored on one and two
adjacent FPGAs respectively (Section 5.9). Note that none of these designs include support
for integrity and freshness, which would be required in a real deployment.

Figure 7.1 shows the total time per ORAM access for these configurations. The exper-
iments were conducted on the FPGAs of our Convey HC-2ex machine. We performed a
sequence of 1 million random ORAM accesses (i.e. block reads and writes) for each experi-
ment, and report the average times per access (note that times for accesses may vary without
compromising security, but only due to timing variations in the DRAM system).

For each data point, we also report how long it takes until the data is available – this is
important for reads, since a CPU using the memory system can continue execution as soon
as the data is returned from ORAM. For writes, execution can continue immediately.

We measured that Phantom’s latency until ORAM data is available ranges from 10us
for a 13-level (64MB) ORAM to 16us for a 19-level (4GB) ORAM. Compared to sequentially
reading a 4KB (812ns) or a 128B (592ns) block of data using all Convey memory controllers,
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Figure 7.2: DRAM bandwidth utilization over time.

this represents 12× to 27× overhead. An access that hits the stash takes 84 cycles (560ns).
When considering full ORAM accesses, latencies range from 19us to 30us. Much of

Phantom’s real-world performance is therefore determined by how much of the write-back
can be overlapped with computation, but is bounded above by 23× to 50× overhead.

Compared to the ideal numbers from Section 4.6, our prototype takes an average of 4,719
cycles per full ORAM access (for a 1GB ORAM without Treetop Caching), compared to the
theoretical minimum of 4,352 cycles. The difference in performance is due to the additional
overhead of encryption and the latencies in the DRAM system. This relatively small over-
head over the theoretical numbers shows the effectiveness of Phantom’s optimizations that
overlap the operation of the Path ORAM algorithm with the DRAM accesses.

7.3 DRAM Bandwidth Utilization

Figure 7.2 shows Phantom’s DRAM bandwidth utilization over a series of random ORAM
accesses. It shows that Phantom utilizes 93% of the theoretical peak DRAM bandwidth,
i.e., the actual number of cycles between receiving the first and last words from memory
relative to the number of cycles that would be taken if each memory controller returned
the maximum number of bits every cycle. For reference to a practical best-case – where an
application reads memory sequentially from DRAM – Phantom achieves 94% of the read
bandwidth2. Given that Phantom accesses no additional data beyond what is required by
the Path ORAM algorithm, this shows that our goal of making high use of the available
bandwidth has been achieved.

7.4 FPGA Resource Usage

Figure 7.3 reports Phantom’s hardware resource consumption through the percentage of
logic elements (LUTs) that are used by the different configurations, as well as the number of

2Response data ordering was enabled for all experiments.
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Figure 7.3: FPGA resource utilization. For sizes larger than 17 levels (1GB), the position
map is stored on other FPGAs.

on-chip SRAMs (BRAMs) used on the FPGA. The design itself uses 30-52% of memory and
about 2% of logic – the other resources are used by Convey’s interface logic that interacts
with the memory and the host CPU.

This breakdown shows (unsurprisingly) that the biggest contributors to BRAM usage
are the position map and the stash. As a result, once the ORAM tree grows to more than
17 levels (1GB), the position map will not fit onto a single FPGA anymore. To support
ORAM sizes larger than 1 GB, we therefore move the position map to another FPGA
and communicate through (encrypted) messages over Convey’s inter-FPGA communication
facilities (Section 5.9).

These results do not include the resources that would be consumed by real AES crypto
hardware. There exist optimized AES processor designs [39] that meet our bandwidth and
frequency requirements while consuming about 22K logic elements and no BRAM – our nine
required units would therefore fit onto our FPGA (as even large configurations of the ORAM
controller leave almost 90% of the FPGA’s logic elements available).

To give an intuition about the physical layout of Phantom, Figure 7.4 shows the floor
plan of the synthesized design (including both the ORAM controller and the CPU). The
figure shows how large parts of the logic are unused, but that many of the BRAMs (the
vertical lines) are used up by the ORAM controller.

7.5 Impact on Application Performance

After evaluating Phantom’s ORAM controller in isolation, we are now interested in how
Phantom’s ORAM latency translates into application slowdowns. Application performance
in the presence of ORAM is extremely workload-dependent and our evaluation is far from
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Figure 7.4: Synthesized design on a Virtex-6 LX760 FPGA.

extensive. Instead, we want to get a first-order approximation of what the performance of
real applications may look like on a system like Phantom.

As an end-to-end example, we used Phantom to run the SQLite workload from our
attack in Section 2.3. We ran several SQLite queries on the 7.5MB census database [20],
using our real Phantom hardware (Figure 7.5). Due to the hardware prototype’s extremely
small cache sizes, a very large percentage of memory accesses are cache misses (we ran the
same workloads on an ISA simulator with cache models and found 7.7% dcache misses, and
55.5% LLC misses). As a result, we observed slowdowns of 6.5× to 14.7× for a set of different
SQLite queries (which are described in more detail later in this section). This experiment
shows how crucial caching is to achieve good ORAM performance: with high miss rates, the
overhead of ORAM compared to regular memory accesses leads to order-of-magnitude slow-
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Figure 7.5: Performance numbers on our real FPGA hardware and in simulation. All
numbers are for a 1GB ORAM and are normalized to the same application running on the
real hardware with the RISC-V processor directly connected to the Convey memory system.

downs compared to a baseline without ORAM. While there is no fundamental reason we
could not have larger caches in our hardware prototype, this would have required significant
work that is largely orthogonal to the questions we set out to investigate in Phantom. We
therefore chose to use simulation to investigate the impact of larger cache sizes.

We investigate the effect on applications in the presence of realistic cache sizes (namely a
16KB icache, 32KB dcache and 1MB LLC) by extending the RISC-V ISA-level simulator [87]
with a timing model derived from our real Phantom prototype to simulate how our system
would perform with realistic cache sizes. The model assumes an in-order pipelined RISC-V
processor with 1 cycle per instruction, 2 cycles for branch misses, 2 cycles to access the data
cache, 14 cycles to access the LLC, and 89 cycles to access a 128B cache line from DRAM
(using our measurement for the full Convey memory system) and our access latencies for
different ORAM configurations (Table 7.1).

While this approach is not cycle-accurate, it gives us an estimate of the performance we
could expect on a realistic system with larger cache sizes. We chose our model parameters
conservatively: we assume the processor runs at full speed (150 MHz instead of 75 MHz),
and is therefore stressing the memory system more than our actual implementation would.
We also assumed that the processor waits for a full ORAM request to finish before continuing
execution (in reality, it can continue after the read phase) and always needs to evict a block
from the ORAM buffer, causing an up to 4× longer ORAM latency than in a real execution.
At the same time, we allow the baseline to use the full Convey memory system, i.e. all 16
memory-channels in parallel (albeit with only one memory request in flight – a processor
tuned to Convey’s very wide memory system could still achieve better performance).

We see that a real-world workload, such as SQLite, can absorb a fair amount of our
memory access overheads and make use of our relatively large block size of 4KB. Figure 7.6
shows our results for applying our timing model to several SQLite queries on the 7.5MB
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Model Parameters
Processor Model functional, no FPU, no branch prediction
ORAM Block Size 4KB (-128b block headers)
L1 Instruction Cache 16KB, 64B cache line size, 2-way set-associative
L1 Data Cache 32KB, 64B cache line size, 4-way set-associative
L2 Unified Cache 1MB, 128B cache line size, 8-way set-associative
ORAM Block Buffer 8 blocks (8 × 4KB = 32KB)

Instruction Latencies
Divide / Multiply 70 cycles
Branch taken / L1 data cache hit 2 cycles
L1 cache miss hitting in L2 14 cycles
L1 cache miss missing in L2 4 cycles + DRAM/ORAM access time
All other instructions 1 cycle
DRAM access 89 cycles
ORAM Block Buffer hit 4 cycles
13/15/17/19-level ORAM access 2839 / 3436 / 3949 / 4550 cycles

Table 7.1: Parameters of the timing model for our simulation.

census database from Figure 7.5. All four queries were executed within the same run – as
such, caches survive from one query to the next. We therefore run sqlite-query1 twice,
where the first run (sqlite-warmup) is to warm up the caches.

Table 7.2 shows the detailed queries we are executing. sqlite-warmup and sqlite-query1

are a JOIN operation between two large tables. The difference in execution times shows the
impact of caching: in the second query, much of the tables are already in the cache and the
impact of ORAM accesses is much lower. sqlite-query2 on the other hand shows fetching
a single column of a relatively small table – here, Phantom performs more poorly due to its
large block size. sqlite-query3 represents a full scan through all fields of a large table – this
is an example where Phantom fares particularly well since it can make use of the locality
(we would like to point out that the baseline would also benefit from pipelining requests,
which we do not account for).

sqlite-query1 SELECT zctas.zcta, zctas.population_female_total,

zctas.population_male_total FROM zctas,states_zctas WHERE

zctas.id=states_zctas.zcta_id AND states_zctas.state_id=29;

sqlite-query2 SELECT state FROM states;

sqlite-query3 SELECT * FROM counties;

Table 7.2: Queries executed on the census database from [20].

In summary, our evaluation shows that the overheads added by Phantom are indeed
reasonable for some real-world workloads, especially given that the fundamental cost of
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Figure 7.6: Simulated SQLite Performance. We simulated the performance of SQLite
running on a timing model of Phantom with and without ORAM. We assume a 1MB L2
cache, 16KB icache, 32KB dcache and an extra buffer for 8 ORAM blocks (32KB).

obliviousness is a bandwidth overhead of greater than 100×. Note that these numbers depend
on the application’s last-level cache miss-rate and the overheads are small because most of the
application’s working set fits in the cache. For applications that access a very large amount
of memory and exhibit little locality, the overheads can be much higher (bounded above
by 50× as we saw in Section 7.2). As such, additional algorithmic and microarchitectural
ORAM research is needed to bring these overheads down as well.
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Chapter 8

Related Work

This chapter summarizes existing work that is related to Phantom. In particular, it covers
work on secure processors, obliviousness and Oblivious RAM. Work that is related to attacks
through memory address traces is covered as well.

8.1 Secure Processors

The concept of tamper-resistant devices that perform secure computation is as old as comput-
ing itself – for instance, early supercomputers would be protected by some form of physical
security (e.g. guards to keep unauthorized users out of the room where the computer was
located). Over time, the security perimeter would shrink to comprise e.g. a secure circuit
board, micro-controller or authentication token (such as with smartcards).

One of the early mentions of the secure processor model as we consider it in the context
of Phantom can be found in a 1980 paper (and associated patents) by Best [10]. This
work introduces a model where not only sensitive data is encrypted but also the programs
in memory. An on-chip decryption unit then transparently decrypts programs as they are
being read from memory. While the original purpose of this work was to protect against
piracy1, it already introduces many of the concepts that exist in secure processors today,
such as the processor as physical protection domain, and executing encrypted programs.

A unified model of secure computation was later proposed by Kuhn [48]. In this model,
both code and data are encrypted in RAM and only decrypted within the security perimeter
of a trusted (tamper-resistant) microprocessor chip. This model was later used by the XOM
(eXecute Only Memory) project [88] to propose a microprocessor that provides compart-
mentalized memory for different applications and protects them from each other as well as
from an external attacker with access to the machine’s memory (but not the internals of the
chip). Another example of a XOM-style secure processor is AEGIS [84].

A related line of work are secure co-processors such as those available from IBM [3]. While
these processors provide a tamper-proof hardware platform for security-sensitive computa-

1Interestingly, this is the same motivation as for the original Oblivious RAM paper [30]
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tion, they are less concerned about systems aspects such as multiprogramming or untrusted
operating systems, and therefore differ from XOM-style secure processors.

As of today, secure processors are not widely used in mainstream computing – IBM’s cryp-
tographic co-processors find applications in mainframes and other commercial applications,
and secure micro-controllers find use in security-critical embedded applications. However,
there appears to be an increasing commercial interest in bringing secure processor concepts
to mainstream cloud computing: Intel recently announced their Software Guard Extensions
(SGX) [57], which are based on a XOM-style model and encrypt all data and code in mem-
ory while protecting applications from each other and the OS. At the same time, companies
like PrivateCore [66] are attempting to provide similar guarantees in software by managing
caches on commodity machines explicitly and encrypting all data in memory.

Protecting the Address Channel in Secure Processors

Since XOM and AEGIS, there has been further work on secure processors, and protect-
ing the address channel has been one of the extensions that have been investigated. The
HIDE project [100] investigated a simple approach that continuously permutes the memory
space and uses a special cache management policy to prevent information leakage. While
this approach is efficient (with only 1.3% overhead), it does not provide full and provable
obliviousness – as such, it is difficult to ensure that no critical information leakage remains.

In contrast, Phantom aims to provide provable obliviousness, albeit at a higher per-
formance cost. Another (concurrently) proposed secure processor design is Ascend [21]. Its
high-level design has close resemblance to Phantom and proposes to use the same ORAM
algorithm – Path ORAM – to provide provable obliviousness. In contrast to Phantom,
Ascend only exists in high-level simulation and the authors focused on algorithmic trade-offs
rather than microarchitectural details. As such, while similar on the surface, it is largely
orthogonal to our work.

8.2 Oblivious RAM

Obliviousness as a formal property was first defined by Pippenger and Fischer [64] and
applied to security by Goldreich in 1987 [30], who also coined the term “Oblivious RAM”.
The first approaches to ORAM had prohibitive overheads, but there has since been a long
history of work to improve its performance. While Section 3.3 gives an overview of work in
this area, here we point out some additional work that is particularly relevant to Phantom.

The Path ORAM algorithm [83] is the ORAM technique underlying Phantom. It was
also investigated by the Ascend project, which looked at different algorithmic aspects, trade-
offs and extensions for Path ORAM when applied to secure processors [69, 22, 70, 71].

An alternative to ORAM is work on Memory-Trace Oblivious Data Structures, which
aims to achieve improved performance by exploiting data-structure-specific properties rather
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than using a generalized ORAM scheme [91]. This is a more general form of domain-specific
approaches to obliviousness such as in databases [2] or online advertising [9].

Another way to achieve better ORAM performance is to enable the compiler to split
variables into different ORAMs, which can individually be smaller and faster to access.
This requires transforming the program to prevent leakage through learning which of the
ORAMs is accessed at a given time. Liu et al. present a formal type system and program
transformation that achieves this goal within a custom compiler [51].

The compiler approach is particularly interesting in the context of Phantom, since it
would enable Phantom to use the information available through the compiler’s type system
to tune itself to the given workload program (e.g., by choosing the optimal ORAM size, block
size, etc). We are currently collaborating with the authors to make this possible.

8.3 Attacks through Memory Addresses

In addition to work directly related to Phantom, there is also a range of work related to
our attack from Chapter 2. A large existing body of work has analyzed address traces –
for varying purposes – and some of it is related to attacking programs through information
leakage from their memory address trace.

As part of the HIDE project, Zhuang et al. [100] used Control Flow Graphs as fingerprints
to match against a database of existing code and then used this knowledge to reconstruct
the control flow of a program from captured memory address traces. This allowed them
to extract cryptographic key bits from a modular exponentiation kernel, which is used in
Diffie-Hellman and RSA. While very successful, this approach requires access to existing
control flow graphs, which cannot be reconstructed from address traces alone. Furthermore,
it requires a large portion of instruction fetches to miss in the cache, which usually requires
a way to run malicious code on the secure processor.

Closely related to our statistical attack (Section 2.5), Itai et al. [41] presented initial
work on classifying data structures based on address traces - for optimization purposes.
They successfully used Support Vector Machines (SVMs), as well as Näıve Bayes and C4.5
classifiers and found the SVM to be the most accurate approach.

Physical Attacks

There have been a number of attacks against real systems that target the memory bus.
The most prominent one is likely Huang’s attack against the original Xbox [40]. He used an
FPGA-based probe to tap the Xbox’s HyperTransport bus and extract the Xbox’s encryption
keys, fully breaking the system’s security. This attack shows one example how memory
address traces could be extracted from a system. Alternative approaches to physical attacks
(including attacks targeting busses) have been summarized by Anderson and Kuhn [1].



CHAPTER 8. RELATED WORK 67

Side-channel Attacks in the Cloud

Protecting workloads in cloud data centers has been investigated in a number of works. Ris-
tenpart et al. analyzed how to determine and achieve co-location with other (target) work-
loads in a cloud service [72], based on which Zhang et al. showed a side-channel attack [99]
to classify the code paths of a different VM running on the same server, to reconstruct
cryptographic keys. Their approach is based on a Hidden Markov Model and inspired ours,
modeling program execution as a Markov Chain. However, they also use SVMs to classify
cache behavior based on timing properties.

A similar paper by Chen et al. [13] uses a range of different side channels (such as network
packet or image sizes) to reconstruct data from three real-world web applications that deal
with confidential information. They model the application as a series of state transitions and
keep track of an ambiguity set of possible states, which they reduce as they collect evidence.

Orthogonal to this work, Köpf et al. created an information theoretic model of side-
channel attacks [52], which applies to the cloud as well.

Hidden Markov Models in Security

Machine Learning and Hidden Markov Models have been used quite frequently in a security
context. For example, Song et al. used them to classify keystroke timing in SSH to extract
passwords [79]. Intrusion detectors have used HMMs to model program behavior and detect
unexpected system calls [67]. This is similar to our HMM-based attack, except that their
input data is known and they only want to classify the code, not data. This work shows how
the states of the Markov Chain can effectively model different program stages.

Workload Characterization and Prefetching

Some research on workload characterization has similarities to our attacks as well. For exam-
ple, Sherwood et al. used k-means clustering to classify different program phases [76]. They
capture the number of times each basic block was executed during a particular time interval;
by randomly projecting the resulting high-dimensional vectors to a low-dimensional space
and performing k-means clustering, they were able to divide the program into structurally
similar phases, which allowed them to skip duplicate phases in benchmarks. This approach
differs from our goals in that both data and code are known to the analyzer. On the other
hand, the approach of counting basic block occurrences and using random projection on
them could be essential in scaling our attack to larger programs.

A completely different application of workload characterization based on address traces
is prefetching in microprocessors. Liao et al. [50] present a survey of the effectiveness of
various machine learning approaches in this area.
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Chapter 9

Discussion & Future Work

This chapter discusses why we believe the work on Phantom is important and the impact
that it could have in the future. It also discusses what we have learnt while building Phantom
and summarizes promising directions for future work.

9.1 Importance of the Attack Model

Confidentiality concerns associated with outsourcing computation are beginning to affect
cloud providers. For instance, European digital policy regulation “requires all data transfers
from a cloud inside the EU to a cloud maintained elsewhere to be accompanied with a
notification to the data subject of such transfer and its legal effects” [11]. The US cloud
industry is estimated to lose $22 billion to $35 billion in revenues (in a projected $207 billion
worldwide cloud market) over the next three years due to surveillance concerns [12]. Given
this fear among users, deploying a system like Phantom in data centers can enable cloud
providers to fulfill the strong security requirements of cloud customers and regulators.

Physical attacks have emerged as a major threat because observing signals on a moth-
erboard or measuring fine-grained power traces are possible without expensive equipment
(examples include Huang’s attack against the original Xbox [40] and attacks presented by
Anderson et al. [1]). The availability of technology such as NVDIMMs shows that hardware
that could enable capturing address traces from a running system can be bought off-the-shelf
today. Combined with recent revelations that hardware probes are in widespread use in the
intelligence community [25], the memory bus has become a very realistic attack vector.

This is confirmed by a large body of work both in the research community and indus-
try. In principle, one could use homomorphic encryption to securely outsource computation
without trusting the remote machine. However, since such schemes have many orders of
magnitude slowdown over native, most industry solutions rely on trusted hardware to pro-
vide confidentiality guarantees (combined with work on tamper-evident/resistant chips and
inspection resistant architectures). In the last decade, hardware manufacturers have intro-
duced several such features, e.g., Intel’s TXT and SGX instruction-set extensions to create
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isolated containers, and Trusted Platform Modules (TPMs) to store sealed secrets and au-
thenticate the hardware. While TPMs are the de-facto standard for encrypting hard-disks
and attesting the software stack on a remote machine, they cannot protect against physical
attacks such as a probe on the front-side bus. SGX aims to protect this channel by encrypt-
ing data on the memory bus, but does not protect the memory address trace. There are
also application-specific solutions that encrypt data at rest (e.g., CryptDB [65]), but these
solutions are vulnerable to address-based attacks as well. Phantom closes this vulnerability.

9.2 Why Architectural ORAM Research?

So far, ORAM research had focussed on the algorithm level and simulations. We believe it
was necessary to build a synthesizable prototype of an ORAM controller to boot-strap mi-
croarchitectural research in this domain. How well ORAM algorithms translate to hardware
had received little consideration before our work, while being crucial for real-world adoption.
An algorithm with good theoretical overhead can fail in hardware if its operations cannot be
removed from the critical path of the system and prevent it from fully utilizing the available
memory bandwidth (ORAM’s main bottleneck).

These aspects are not readily visible – it was necessary to design a real implementation
to discover them. For example, when we first started Phantom in 2011, we began with
a software simulation model using DRAMSim2, but the model missed the important detail
that sorting the on-chip Path ORAM data structure on every ORAM access became a major
bottleneck when scaling to a wide memory bus, causing memory stalls. As future research
improves Path ORAM through optimizations, their microarchitectural impact needs to be
considered to tell the real overhead in the context of secure CPUs. We believe that Phantom
can raise awareness of this problem and become a platform for future ORAM research.

9.3 Using Heterogeneous Systems for Security

Phantom relies on a major trend towards domain-specific accelerators in the architecture
community and shows how to apply it to an important problem in security. By targeting a
platform such as the HC-2ex, where custom accelerators are deployed on FPGAs rather than
ASICs, we show how such accelerators and platforms can be used for security (rather than
improving performance or energy efficiency). This approach also shows a realistic deployment
path for future security extensions.

One advantage of FPGA-based platforms is that they can be reconfigured to be tuned for
specific workloads – we believe that this opens up many exciting research opportunities. We
also think that the design patterns that Phantom uses to avoid timing leaks can help with
the design of future security-related accelerators, many of which will also have to ensure not
to leak timing information. Showing how to make Path ORAM work at the low frequencies
that an FPGA provides is an important contribution as well.
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9.4 Future Work

We see Phantom as a starting point for integrating ORAMs into real systems. While it
taught us about the architectural trade-offs when implementing ORAM in hardware, and
potential pitfalls that a real implementation needs to take into account, there is much more
work to be done to extend it to other areas. Here, we present a subset of possible directions
for follow-on work, some of which we are actively investigating at the time of writing.

Design-Space Exploration

Phantom only investigates a small part of the design space – other parameters include block
size, hierarchical ORAM, multiple ORAM controllers split across multiple FPGAs on the
HC-2ex (to make use of the full available memory bandwidth, which can only be achieved
by using all four FPGAs) and trade-offs between different caching approaches in both the
CPU and the ORAM controller. While some of these approaches have been investigated at
an algorithmic level [69], there are additional trade-offs at the microarchitectural level, such
as chip-area and communication cost between different FPGAs.

Our Convey prototype also provides a unique testbed for tuning the hardware ORAM
implementation to specific workloads. The design space is enormous and spans both algo-
rithmic and microarchitectural parameters. By enabling compilers to tap into this flexibility,
Phantom could enable opportunities for research that may bring down ORAM overheads
by another order of magnitude.

ORAM Optimizations

There are numerous optimization and extensions to Path ORAM that could be implemented
in Phantom as well [69, 71]. Furthermore, Phantom does not yet prevent information
leakage through the timing of ORAM accesses, which could be implemented in a future
version as well. Some previous work by Fletcher et al. could be a starting point for this [22].

Compiler Support

One direction we are actively investigating are compilers and OSs that target Phantom
directly as a peripheral, which can reduce application slowdowns significantly.

Liu et al. present a compiler that can transform a program to use multiple ORAM banks
which can be accessed much faster than a large monolithic ORAM [51]. This technique can
improve ORAM performance significantly, since it makes it possible to:

1. Only store sensitive data that affects the address trace in ORAM (for data that is
accessed in a fixed pattern, encryption without ORAM is sufficient), and

2. Store sensitive data that is mutually non-interfering in separate, smaller ORAM banks
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Their compiler directly targets Phantom, and we are investigating modifications to Phan-
tom that enable our hardware to execute these programs efficiently without leaking addi-
tional information. Initial results are promising and show significant reduction in ORAM
overheads for kernels like k-means and Dijkstra’s algorithm.

Operating System Support

Since Phantom is designed as a co-processor, the host operating system needs to provide a
way to securely share it between multiple cloud customers. While it is possible to manage
Phantom like a traditional peripheral device, optimizations such as better context switching
or batching oblivious executions may improve performance significantly.
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Chapter 10

Conclusion

In this thesis, we presented Phantom, a secure processor with a practical oblivious memory
system that achieves high performance by exploiting memory parallelism and using a mi-
croarchitecture that scales to a large number of memory channels. Importantly for adoption,
we implemented Phantom as a prototype on the Convey HC-2ex FPGA-based platform.
This makes obliviousness available today.

Our Phantom prototype runs on real hardware and executes real-world applications such
as SQLite. During its development, we learnt about microarchitectural trade-offs related to
Path ORAM that would not have been apparent in high-level simulation and can help to
guide future research on ORAM. As ORAM research is starting to become of interest to the
computer architecture community, we believe that such research is crucial to guide research
at the algorithmic level; it is hard to evaluate something without building it.

Starting from our Phantom prototype, we can now investigate further design trade-offs
and learn how they influence the microarchitectural level. In the future, Phantom will
be able to expose a memory composed of DRAM, encrypted DRAM, and ORAM banks to
software and thus open the door to compiler analyses that improves performance without
compromising obliviousness.
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