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Abstract 

To reduce the power consumption of bio-sensors which will be potentially implanted into human 

body, compressed sensing is introduced by taking advantage of the sparsity of bio-signals. Using 

32nm CMOS technology, the prototype is able to achieve 10-bit resolution under power 

consumption of 320 nW. The clock frequency is 20 kHz. The circuit described below is designed 

to compress bio-signal in time domain. [1] 

 

 

 

 

 

 

 

 



I. Introduction 

As the smart phone market has begun to saturate, the whole Integrated Circuit industry is seeking 

for the next growth point of the personal consumption microprocessor market. One possible 

answer is bio-sensor implanted into human body. According to the World Health Organization 

(WHO), almost 20 million people will die from heart disease in 2015. [2] With proper health care 

and patient monitoring system, this number would be significantly decreased. With such a 

significant demand remains unmet, implanted bio-sensor collecting bio-signals is a promising 

growth point in the near future. 

 

Nowadays, the most serious limitation for implanted biosensor is its battery life time. Due to the 

critical space limitation and difficulty for charging the battery, the total power consumption of the 

bio-sensor need to be small compared with the energy stored in battery. However, the transmitting 

power of the implanted antenna needs to be large enough to overcome the high losses caused by 

human body absorption. [3] So using compressed sensing algorithm, it can transmit less sample 

while representing the same signal, and by doing that it is able to save great amount of power. 

 

By taking advantage of the sparsity of bio-signals, it is possible to correlate the signal into a 

smaller data set. [4] Instead of transmitting the whole signal which consumes too much power, it 

is more power-economics to transmit only the small data set. The goal of this paper is to verify 

that the microprocessor adopting compressed sensing algorithm consumes less power when 

processing and transmitting sparse signals. 

 



This paper proceeds as following. In section II, the processor architecture and circuit topology 

used in our design will be described. In section III, the measured performance such as error to 

signal ratio and power consumption will be discussed. Final section concludes. 

 

II. Method and Material 

 

1. Overview 

The transmitter microprocessor has three sub blocks: ADC, Spike sorting and random matrix 

compressing. The input for the transmitter is neural signal which has sparsity in time domain. The 

neural signal is first converted into digital signal that has 10 bit resolution. Then the spike sorting 

block will filter out all the noise, so that only the spikes are passed to the random matrix 

compressing block. In the random matrix compressing block, Hybrid Linear Feedback Shift 

Register (HLFSR) is used to generate required random matrix. The overview block diagram is 

shown below.  

 

 Figure 1. Overview Architecture (Quoted from [1]) 



In this project, I am involved in the design of spike sorting and random matrix compressing blocks. 

I will focus more on the design of these two blocks and report about ADC can be found in Brain 

and Kevin’s paper. 

 

2. Spike Sorting 

The spike sorting block is used to reduce data rate, so that within a given amount of power budget, 

more channels can be supported and longer battery life is achieved. The idea of spike sorting is 

that a threshold voltage is determined at the beginning and signal that is under this threshold will 

be rejected while the others are passed. More detailed algorithm will be presented in the following 

paragraph. 

 

 

 

 

 

In order to balance the error rate and complexity [5], nonlinear energy operator (NEO) is chosen to 

implement. In the above block diagram, NEO block is used to calculate      from the following 

equation [6]: 

                            

The threshold value is defined as [6]: 

            
 

 
     

 

   

 

For the sample input file that contains 10,000 samples. The threshold value is determined by the 

Figure 2. Spike Sorting Block Diagram (Quoted from [5]) 



first 1024 samples. And C in the above equation is determined as 8. [5] 

If the signal is above the threshold value, a spike is detected. 22 signal samples before this 

threshold crossing point and 50 signals sample after this threshold crossing point would be send to 

memory block. The final output will contains 48 samples. Within the memory block signals will 

be aligned so that the maximum derivative happens at the 11
th
 sample of the final output. The 

maximum derivative is defined as the difference between the current original signal and one 

before that. [5] 

                            

 

3. Random Matrix Compressing 

A. Compressing 

In the transmitter side, compressed sensing is described by the following equation.     is a 

matrix with size of [N*M], where N>>M. Therefore, the input vector with size N is converted to 

an output vector with size M, that is to say compressed by a factor of N/M [1]. 

           

B. Reconstruction 

On the receiver side, accurate reconstruction can be realized when these two conditions are met: 1. [X] 

is sparse in time domain; 2. the sparsifying matrix [ ] (in time domain, [ ] is  identity matrix) and 

random matrix [ ] are incoherent. 

If the above two conditions are met, accurate reconstruction can be realized by using l1-norm algorithm. 

In this project l1-MAGIC program [7] is adopted that can find [X] to minimized ||[Y]-[ ][X]|| [8]. 

Since the receiver is usually less power constrained, in this project more effort is focused on the 



transmitter side. But MATLAB simulation for reconstruction is done in order to ensure accurate 

recovery. 

III. Result 

1. Spike Sorting 

A. Starting Point 

Without any optimization, the power dissipation for the Spike sorting block is summarized in the 

following table. With the functionality correct Verilog code, the total power dissipation is 1.74 

mW and it is dominated by the leakage. 

 

 Switch 

Power (uW) 

Int Power 

 (uW) 

Leak Power 

(mW) 

Total Power 

(mW) 

% 

Buffer 2.23e-3 7.07e-3 0.312 0.312 17.9 

NEO/Threshold 10.9e-3 29.5e-3 0.296 0.296 17 

Memory 4.57e-3 12.1e-3 0.821 0.821 47.1 

Clock Divider 103e-3 1.160 0.0155 0.0155 0.9 

Alignment 31.3e-3 71.3e-3 0.296 0.296 17.1 

Total 0.152 1.280 1.74 1.74 100 

 

In order to reduce the leakage power which dominated the total power dissipation, Power-gating, 

Clock gating, Muti-Vdd and High-threshold devices are used. I will report about the power gating, 

Table 1. Power Consumption for Spike Sorting Block without Optimization 



other optimization methods can be found in Kevin and Jun Kwang’s report. 

B. Power Gating 

Power gating technology is used to selectively shunt off current where the block is not used. In 

this design we use PMOS header in the real implement. 

 

 

The idea of power gating is that the Memory and Alignment blocks are turned off, when there is 

no spike detected signal, while the NEO, including spike detection and threshold calculation 

blocks, and buffer blocks are cut off when there is spike that is detected. As expected, the impact 

of power gating to the total power dissipation is heavily depends on the input vector. The equation 

used to calculate the power dissipation is shown as follows. 

                       

                    
           

             
                              

                                       

In order to determine the efficiency of the power gating, the leakage current of a simple 

inverter under different supply voltage is compared. 

 

 

 

Figure 3. Power Gating Sample 



 

 

Supply Voltage (V) Leakage Power Without PMOS 

header (pW) 

Leakage Power With PMOS 

header (pW) 

% Power 

Savings 

0.5 200.3 38.3 81 

0.6 335.5 49.4 85.3 

0.7 541.4 61.7 89 

0.8 849.2 75.3 91 

0.9 1303 90.4 93 

1.0 1964 107.1 94.5 

 

Based on the current simulation result and the equation shown before, the efficiency of power 

gating can be summarized in the following table. With power-gating technology, the total 

power dissipation is reduced by 59%. 

 

 

 Power with Power Gating (mW) % of performance % Saving 

Buffer 0.288 40 7.7 

NEO/Threshold 0.274 37.9 7.4 

Memory 0.106 14.8 87 

Clock Divider 0.0142 2.0 0 

Alignment 0.0384 5.3 87 

Total 0.721 100 58.6 

 

C. Optimized Result 

With all possible optimization techniques, including high-threshold device, clock-gating, power 

gating, VDD lowing and multi VDD, adopted, the final result is shown below. The power 

dissipation for spike sorting block is 240 nW. 

Table 2. Efficiency of Power Gating 

Table 3. Power Consumption of Spike Sorting Block with Power Gating 



 

 

 Switch Power (W) Int Power (W) Leak Power (W) Total Power (W) 

HVT library at 

VDD = 0.78V  

 6.54e-08 5.95E-07 1.30E-05 1.36E-05 

With scaled down 

to VDDH = 400 mV 

and VDDL = 300 

mV 

2.5e-9 2.28e-8 5.1e-7 5.2e-7 

With power gating 

(delay=703 ns) 
1.15e-9 1.05e-8 2.3e-7 2.4e-7 

 

2. Random Matrix Compressing 

In order to ensure accurate recovery, two explorations are done in order to find the optimized 

solution. 

(1) Is the spike sorting block is necessary for accurate reconstruction? Can it be removed? 

In order to verify whether the spike sorting block is necessary or not, two architectures are compared. 

One with spike sorting block, while the other architecture without spike sorting block. Using ideal 

Bernoulli random matrix generated by MATLAB, compressing factor of 4 and input vector of neural 

signal with sparsity in time domain, the difference between uncompressed signal and reconstructed 

signal is presented in the following picture. 

Table 4. Optimized Power Consumption of Spike Sorting Block 



 

 

 

To quantify the result, the error to signal ratio is defined in the following equation: 

    
             

 
 
   

       
   

 

The result is summarized in the following table: 

 

 Without Spike Sorting Block With Spike Sorting Block 

ESR 0.84 0.02 

From the table with spike sorting block, the reconstructed signal has less error. Since accurate 

Figure 4. (a) Input signal to random matrix without spike sorting block (b) Recovered signal 

without spike sorting block (c) Input signal to random matrix with spike sorting block (d) 

Recovered signal with spike sorting block 

Table 5. ESR Comparison between with and without Spike Sorting Block 



reconstruction requires that the signal is sparse with respect to sparsifying matrix [ ], with noise 

removed, the sparsity of the signal is improved. Therefore, more accurate reconstruction can be 

achieved. So, spike sorting block indeed helps to improve the sparsity of the signal by removing the 

noise. 

(2) How many bits of coefficient are necessary for the random matrix? 

The criteria to compare different random matrix is to check the Restricted Isometry Property (RIP). 

For a random matrix [ ] with size M*N, there exist a isometry constant δs. So that for any 

sub-matrix [ s] with size M*S, (1<S<N), and any vector [X], the following equation holds [1]: 

  δ  
             

 

       
    δ  

But due to the complexity of checking RIP, coherence is used as a substitution. It is defined as the 

following equation. The lower the coherence value implies a more accurate reconstruction [1]. 

            
        

   
 
  

 
    

Linear feedback shift register (LFSR) [7] is used to generate the random matrix with size of 64*16. 

Adopting the idea of Monta Carlo method, in simulation 1000 seed vectors are randomly 

generated to better compare the coherence for random matrix with different number of coefficient.  

 

Number of Bits 1 2 3 4 5 6 

Mean 1.18 1.57 2.14 2.14 2.16 2.16 

Standard Diviation 0.09 0.12 0.19 0.18 0.18 0.17 

 

 

 

Table 6. Statistic Number for Coherence Distribution 



The detailed distribution is plotted in the following picture: 

 

 

From the plot and table shown above, it can be shown that 1 bit coefficient random matrix is able 

to generate a lower coherence compared with others. In the next section, it is also shown that 1-bit 

coefficient will have smaller power dissipation. 

From the above analysis, 1-bit coefficient random matrix is used in the final design. More detailed 

information about how the 1-bit coefficient random matrix can be found in Jun Kwang’s report. 

We also made a 6-bits coefficient random matrix for rough comparison. 

The architecture is adopted from [1]. A 6 bits Fibonacci LFSR is constructed to generate one 6 bits 

element in matrix, using the tap table in [10]. With such connection, a feedback primitive 

polynomial of x
6
+x

5
+1 is formed and it is able to achieve a maximized length of 63. 8 such cells 

are connected to generate a 48 bits Fibonacci/Galois hybrid linear feedback shift register; finally, 

eight such blocks are cascade to generate the total 384 random bits that is required. The plot is 

shown below and from Verilog simulation, the power result is shown in the following table. 

Figure 5. Coherence Distribution Histogram 



 

 

 

Block Power Dissipation for 6-bits Random Matrix (nW) 

6 bits LFSR 3 

48 bits LFSR 52 

324 bits LFSR 421 

To compare the power dissipation between 1-bit coefficient and 6-bits coefficient random 

matrix, a rough analysis is to compare the number of registers that is needed to generate the 

random matrix. For an M*N random matrix, the number of registers that is needed is 6*M*N 

for 6-bits random matrix, while for Bernoulli random matrix this number can be divided by 6. 

Roughly speaking, the Bernoulli random matrix would have a power consumption of 70nW. 

More detailed information about the 1-bit random matrix is included in Daniel’s report. 

Figure 6. Hybrid Linear Feedback Shift Register Architecture (Quoted from [1]) 

Table 6. Power Consumption for 6-bits Coefficient Random Matrix  



IV. Conclusion 

Wearable implanted microchip has potentially large market ahead. But the technology barrier is 

high due to the severe ultra-low power environment. The system presented is designed to 

compress neural signal that has sparsity in time domain. Compressed sensing technology in this 

paper enables a large reduction of data rate needed to be transmitted. Moreover, the total power 

dissipation for its own is low.  
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