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Abstract

Multiple Optimality Guarantees in Statistical Learning

by

John C Duchi

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Martin J. Wainwright, Co-chair

Classically, the performance of estimators in statistical learning problems is measured in
terms of their predictive ability or estimation error as the sample size n grows. In modern
statistical and machine learning applications, however, computer scientists, statisticians, and
analysts have a variety of additional criteria they must balance: estimators must be efficiently
computable, data providers may wish to maintain anonymity, large datasets must be stored
and accessed. In this thesis, we consider the fundamental questions that arise when trading
between multiple such criteria—computation, communication, privacy—while maintaining
statistical performance. Can we develop lower bounds that show there must be tradeoffs?
Can we develop new procedures that are both theoretically optimal and practically useful?

To answer these questions, we explore examples from optimization, confidentiality pre-
serving statistical inference, and distributed estimation under communication constraints.
Viewing our examples through a general lens of constrained minimax theory, we prove
fundamental lower bounds on the statistical performance of any algorithm subject to the
constraints—computational, confidentiality, or communication—specified. These lower bounds
allow us to guarantee the optimality of the new algorithms we develop addressing the addi-
tional criteria we consider, and additionally, we show some of the practical benefits that a
focus on multiple optimality criteria brings.

In somewhat more detail, the central contributions of this thesis include the following:
we

• develop several new stochastic optimization algorithms, applicable to general classes
of stochastic convex optimization problems, including methods that are automatically
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adaptive to the structure of the underlying problem, parallelize naturally to attain
linear speedup in the number of processors available, and may be used asynchronously,

• prove lower bounds demonstrating the optimality of these methods,

• provide a variety of information-theoretic tools—strong data processing inequalities—
useful for proving lower bounds in privacy-preserving statistical inference, communication-
constrained estimation, and optimization,

• develop new algorithms for private learning and estimation, guaranteeing their opti-
mality, and

• give simple distributed estimation algorithms and prove fundamental limits showing
that they (nearly) optimally trade off between communication (in terms of the number
of bits distributed processors may send) and statistical risk.
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Chapter 1

Introduction

Modern techniques for data gathering—arising from medicine and bioinformatics [120], in-
ternet applications such as web-search [86], physics and astronomical experiments [2], mobile
data gathering platforms—have yielded an explosion in the mass and diversity of data. Yet
the amount of data is no panacea; even in medium scale settings, it is challenging to identify
the best ways to analyze and make inferences from information we collect. As a consequence
of these difficulties, it is important to develop procedures that intelligently use the available
data and trade among scarce resources: how can we balance multiple criteria—computation,
communication, privacy—while maintaining statistical performance? Can we be sure we do
not ask too much or make incorrect inferences?

In this thesis, we develop theoretically-motivated procedures address problems like these.
Broadly, we identify desiderata that—in addition to classical metrics of statistical efficiency—
we would like methods to have. In particular, we consider computational, privacy, and
communication-based considerations as axes along which to evaluate procedures. Devel-
opment along these axes has, for the most part, happened independently, as each of the
considerations presents challenges in isolation. Given the understanding built by the sub-
stantial research in optimization, information theory, computer science, and statistics and
the current challenges we face in statistical learning and data analysis, however, it is impor-
tant to bring together insights from multiple fields to develop methods that trade amongst
several criteria for improved (or optimal) performance. Progress in this direction is the goal
of this thesis.

1.1 Evaluating statistical learning procedures

The classical estimation problem in statistical decision theory [118, 175] is, given an unknown
distribution P , to estimate an (unknown) parameter θ(P ) of the distribution given a sample

X drawn from the distribution. We measure the performance of a method θ̂ according to its
expected loss, or risk,

R(θ̂) := EP

[
ℓ(θ̂(X), θ(P ))

]
, (1.1)
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where ℓ(θ, θ∗) denotes a loss incurred for taking the action (or making the prediction) θ when
the true state of the world is θ∗. The simplicity of the formulation (1.1) hides its complexity.
In statistical learning scenarios [176, 50, 94], the loss may measure the expected prediction
error of a binary classifier under the distribution P . In classical statistical problems [23, 118],

we may wish to measure error ‖θ̂ − θ∗‖22 made by θ̂ in recovering a parameter θ∗. In this
thesis, we generally use the minimax principle, originally suggested by Wald [178], to evaluate

a procedure: for a given family P of distributions, one chooses the procedure θ̂ minimizing

sup
P∈P

EP

[
ℓ(θ̂(X), θ(P ))

]
. (1.2)

There are, of course, a variety of approaches for evaluation of procedures, including Bayesian
approaches [23], but we choose to focus on minimax as a unifying principle.

The risk functional (1.1) necessarily focuses attention on performance relative to only

one metric: how well does the procedure θ̂ minimize the loss ℓ? This central question
has driven much of the theoretical work in statistics (and machine learning) over the last
several decades. But in the absence of other considerations, the risk (1.1) and minimax
principle (1.2) may lose practicality; there are often real-world considerations that drive
development of statistical procedures, such as the costs of collecting additional observations
of the process P or establishing a controlled trial rather than simply observing the process
P , questions of privacy [179, 75, 76], or the difficulty of computing particular estimators θ̂
that may have good risk performance [174, 107, 42]. The central question of this thesis,

then, is this: how does the worst-case risk (1.2) changes when we constrain the estimator θ̂
to belong to some restricted class of procedures? Below, we outline several practical criteria
that, when considered against notions of statistical efficiency for minimizing the risk (1.1),
can lead to the development of exciting new procedures and new techniques for attacking
statistical learning problems.

1.1.1 Computation

“What can be computed and how can we compute it? What is the best way to solve it?” As
Jeannette Wing [181] describes it, these questions—and others like them—are the central
tenets of what she terms computational thinking. Statistical learning problems present a new
flavor of problem different from standard computational tasks: there is noise inherent in the
problem (1.1), and even given infinite computational power, there often is no perfect solution,
just one that attains some type of optimal error. Thus we ask a more subtle question: for a
given “computational” budget, what is the best possible error of any method? The challenge
in such a question is the nebulous notion of computation [10]: the Turing machine model is
often too powerful for identifying subtle differences in computation, and other definitions of
computation are often more specialized.

We are not the first to ask this type of question, and several authors have attacked sim-
ilar problems, beginning with the work of Valiant [174] on Probably Approximately Correct
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(PAC) learning, which separates concepts that can be learned with polynomial sample size
from those that cannot. More recent work building out of this has often arrived at the
sometimes counterintuitive result that more data (larger problems) yields faster algorithms.
Bottou and Bousquet [30] and Shalev-Shwartz et al. [162, 161] describe settings in which
increased data set sizes allow faster learning of classifiers. Berthet and Rigollet [24] study
computation time/data tradeoffs in sparse principal component analysis, and work by Chan-
drasekaran and Jordan [42] show how the complexity of convex sets relates to estimation
performance in Gaussian sequence models. In another line of work, Agarwal, Bartlett, and
Duchi [5] study model selection under computational constraints, where they force proce-
dures to operate within a given abstract computational budget.

To give ourselves a model of computation that is both practically relevant and theo-
retically tractable, in this thesis, we identify optimization complexity with computational
complexity, using the tools of information-based complexity developed by Nemirovski and
Yudin [134] and Traub et al. [169] (see also the introductory survey by Traub and Werschulz
[168], the book of Plaskota [144], and the paper of Agarwal et al. [6], which is particularly
relevant to this thesis). In these settings, we usually assume we are minimizing a function

f(θ) := E[F (θ;X)]

over θ ∈ Θ ⊂ Rd, and we treat the computation of an instantaneous loss F (θ;X) or gradient
evaluation ∇θF (θ;X) as our computational unit. Given the prevalence of optimization
algorithms based on first-order (gradient) information [136, 32, 98, 134], this focus is both
natural and practically motivated. We may then study—for different classes of domains Θ,
types of losses F , and families of probability distributions P according to which the data X
are generated—the complexity of optimization.

In addition to asking about the fundamental complexity of optimization in terms of ze-
roth or first-order information, given the modern development of multi-core and distributed
computing infrastructure, it is also important to study aspects of parallel, asynchronous,
and distributed computation [26, 79, 14, 33, 49]. To what extent can we maintain opti-
mality of optimization procedures while leveraging parallel computation? We address such
questions in this thesis as well, giving algorithms that maintain both optimal complexity—
in terms of their number of gradient or function evaluations—while running in parallel or
asynchronously.

1.1.2 Privacy

As the scale of datasets—with the concomitant amount of information we collect about
individuals—increases, maintaining anonymity and privacy has become more important.
While the maintaining privacy is an old issue, dating at least to Warner’s 1960s work on
randomized response and survey sampling [179], it has become clear that modern data col-
lection poses new risks of disclosure. For example, Homer et al. [99] recently showed it is
possible to identify the presence of individual genotypes in high-density SNP arrays, leading
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to the removal of some publicly available genomics data [83]. A major challenge in statistical
inference has thus become that of characterizing and balancing statistical utility with the
privacy of individuals from whom we obtain data [63, 64, 76].

In the large body of research on privacy and statistical inference [e.g., 179, 75, 63, 64, 76],
a major focus has been on the problem of reducing disclosure risk: the probability that a
member of a dataset can be identified given released statistics of the dataset. The literature
has stopped short, however, of providing a formal treatment of disclosure risk that would
permit decision-theoretic tools to be used in characterizing tradeoffs between the utility of
achieving privacy and the utility associated with an inferential goal. Recently, a formal
treatment of disclosure risk known as “differential privacy” has been proposed by Dwork
and colleagues and studied in the cryptography, database and theoretical computer science
literatures [68, 65]. Differential privacy has strong semantic privacy guarantees that make
it a good candidate for declaring a statistical procedure private, and it has been the focus
of a growing body of recent work [65, 74, 91, 180, 164, 44, 105]. Direct connections between
statistical risk (1.1) and privacy, however, have been somewhat more challenging to make;
with modern issues in data collection, however, it is becoming more important to understand
quantitative tradeoffs between privacy and statistical efficiency.

1.1.3 Communication

While computational considerations are important for the development of estimation and in-
ferential procedures, the scale of modern datasets often necessitates distributed storage and
computation [86]. Perhaps even more saliently, computer processing speeds are beginning
to hit fundamental physical limits [79], and, as Fuller and Millett [79] point out in a survey
for the National Academy of Sciences, our only “known hope” for continued improvement in
computational performance is to leverage parallel and distributed computing. The relative
expense of communication with respect to computation, however, makes inter-processor or
inter-machine communication an especially important resource and measure of the perfor-
mance of algorithms [14, 79]. Moreover, the rates at which communication costs improve
are slower than those of other computing tasks, so communication is becoming both more
important—due to the rise in parallelism and large datasets—and its relative costs are also
increasing. Additionally, connecting the tools of information theory [47], which allow us
to describe the fundamental limits of communication and storage, with statistical inference
problems has been somewhat challenging [89]. It is thus important to understand funda-
mental limits in distributed statistical estimation problems and to discover new procedures
that attain these limits.

1.2 Thesis goals and contributions

The focus of this thesis is to develop, via examples in stochastic approximation, privacy-
preserving inference, and communication-constrained estimation, approaches for designing
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and analyzing methods whose performance is measured along multiple axes. Using classi-
cal statistical minimax theory as our starting point, we introduce a notion of constrained
minimax risk, and we using this measure of performance, we develop fundamental lower
bounds and procedures attaining them for a variety of problems. This development requires
a two-pronged approach, where we show the fundamental hardness of problems—giving lower
bounds, leveraging ideas from optimization, information theory, and statistics—and derive
efficient algorithms achieving these bounds. By attacking problems from both sides, it is pos-
sible to gain deeper insights into the underlying difficulties, relaxations and circumventions
of those difficulties, and essential structures of the problems being solved. Building on these
insights, we can derive algorithms that trade amongst a multitude of criteria for improved
performance, yielding more efficient procedures for real large-scale statistical, learning, and
optimization problems.

In particular, the goals of this thesis are to

(1) Introduce a notion of minimax risk for estimators constrained by particular resource (or
other) requirements and to develop tools for proving fundamental lower bounds on these
notions of risk, and

(2) Develop new procedures for different types of constraints, focusing on computational
(via optimization), confidentiality, and communication-based constraints.

More specifically, the central contributions of the thesis are the following:

• We review and extend several techniques for proving minimax lower bounds, developing
a few finer-grained information-theoretic inequalities that allow easier proofs of many
lower bounds

• We show new ways the performance of stochastic optimization algorithms depends on
the geometry underlying the problem, and we show how to give algorithms that are
optimal—and adaptive—to the underlying problem structure

• We show how the use of dual averaging algorithms allows (nearly) completely asyn-
chronous optimization schemes whose performance improves linearly with the number
of processors in parallel computing environments, as long as data obeys certain sparsity
restrictions

• We develop randomized smoothing techniques that (i) yield optimal algorithms for non-
smooth (sub)gradient-based optimization, even in parallel computing environments,
and (ii) extend these to zeroth order optimization schemes, providing new optimal
algorithms (as well as guarantees of their optimality)

• We develop quantitative data processing inequalities that allow the application of our
information-theoretic techniques to privacy-preserving data analyses, providing new
fundamental lower bounds on the performance of procedures that maintain privacy in
estimation problems
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• We provide new algorithms that attain the fundamental limits for privacy-preserving
estimation in “local-privacy” settings where data providers do not even trust the data
collector

• We review recent low-communication optimization and estimation schemes, and we
adapt our information-theoretic tools (again based on new data-processing inequalities)
to prove fundamental limits on communication-constrained estimation procedures.

A common theme in all of our algorithms is that they exploit problem structure—the sta-
tistical properties and the noise inherent to the problem—for more efficient methods. In
the stochastic optimization case, this comes in the form of adding additional noise that is
of lower order than that already in the problem, either via randomized smoothing or asyn-
chrony, and enjoying consequent speedups. In the privacy case, this comes in the form of
directly adding noise to data to protect confidentiality, while using the statistical structure
of the data to avoid adding more noise than necessary. In the low-communication case, this
consists of observing that averaging independent distributed solutions is nearly sufficient for
optimal solution of many statistical problems, because each processor’s local solution is sim-
ply a noisy approximation to the truth, rather than the solution to an adversarially chosen
problem. In a sense, the thesis simply studies what good a little noise can do.

1.3 Organization of the thesis and previously

published work

Several portions of this thesis are based on joint work of mine with collaborators, which I
describe (briefly) here, in addition to outlining the rest of the thesis. Part I of this thesis pro-
vides some background on minimax theory, setting up (at an abstract level) the constrained
minimax problem by which we evaluate our procedures in Chapter 2. Much of the material
in the chapter is classical, though some of it is based on joint work with Martin Wainwright
and Michael Jordan [51, 59].

In Part II of the thesis, we focus on stochastic optimization problems, investigating
computational limits (via information-based complexity) as well as distributed and asyn-
chronous optimization techniques. Chapters 3 and 4 study adaptive optimization schemes
and single-processor optimality guarantees (Chapter 3) and characteristics of data that allow
asynchronous parallel algorithms (Chapter 4). They contain some new material and some
based on joint work with Michael Jordan and Brendan McMahan [58], which builds off of
earlier research performed jointly with Elad Hazan and Yoram Singer [53]. Chapter 5 studies
randomized smoothing techniques to develop optimal optimization schemes for non-smooth
problems and is based on work with Peter Bartlett and Martin Wainwright [55], while Chap-
ter 6 extends these randomized smoothing ideas to attack optimization problems where only
zeroth order (function value) information is available, providing new (optimal) schemes and
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fundamental lower bounds for such problems. It is based on work with Michael Jordan,
Andre Wibisono, and Martin Wainwright [61].

Part III of the thesis is on tradeoffs between privacy and statistical utility, studying the
effects of imposing local privacy on convergence rates for statistical estimators, and builds
out of joint work with Michael Jordan and Martin Wainwright [60, 59].

Finally, Part IV of the thesis studies some effects of communication on distributed esti-
mators. Chapter 9 reviews simple distributed estimation algorithms developed jointly with
Yuchen Zhang and Martin Wainwright [189], and in Chapter 10, we develop information
theoretic tools to exhibit the fundamental limits and tradeoffs between statistical efficiency
and inter-machine communication. This final chapter is based off of joint work with Yuchen
Zhang, Michael Jordan, and Martin Wainwright [62].

1.4 Notation

Before proceeding to the thesis proper, we define notation and terminology that we commonly
use; our settings are essentially standard. Throughout, we use R to denote the real numbers
and N = {1, 2, . . .} to denote the counting numbers.

Asymptotic notation We use standard asymptotic notation throughout the thesis. In
particular, we use O(·), Ω(·), Θ(·), and o(·). Formally, for real-valued sequences {an}n∈N and
{bn}n∈N, we say that an = O(bn) if there exists a constant c < ∞ and an N ∈ N such that
an ≤ cbn for all n ≥ N . Similarly, we say an = Ω(bn) if bn = O(an), that is, there exists a
constant c > 0 and N ∈ N such that an ≥ cbn for n ≥ N , and an = Θ(bn) if an = O(bn) and
an = Ω(bn). We say an = o(bn) if |an|/|bn| → 0 as n → ∞. We use the notation an . bn to
denote an = O(bn), and an ≪ bn to denote an = o(bn), meaning that “an is at most on the
order of bn” and “an is significantly smaller than bn.” In general, unless otherwise specified,
our asymptotic notation will hide only numerical constants that do not depend on problem
parameters and will apply with N = 1.

Statistical notation We require standard statistical notation throughout the thesis. Given
a sequence of random variables {Xn} and another random variable (or constant) Y all tak-
ing values in a metric space X with distance ρ, we say that Xn converges in probability
to Y , meaning that Xn

p→ Y , if for all ǫ > 0 we have P(ρ(Xn, Y ) > ǫ) → 0 as n → ∞.
We say that Xn converges in distribution to Y (or, if Y is distributed according to P , de-
noted Y ∼ P , that Xn converges in distribution to P ) if for all bounded and continuous
functions f : X → R we have E[f(Xn)] → E[f(Y )] as n → ∞. See, for example, the Port-
manteau Theorem [e.g. 175] for equivalent definitions. We use statistical big-O notation as
well (see, for example, Lehmann and Casella [118]). Given two sequences of random vari-
ables or vectors {Xn} and {Yn} on spaces X and Y with norms ‖·‖X and ‖·‖Y , we say that
Xn = OP (Yn) if for each ǫ > 0, there exists a constant C(ǫ) and N ∈ N such that n ≥ N
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implies P(‖Xn‖X ≥ C(ǫ) ‖Yn‖Y) ≤ ǫ. A random variable X is sub-Gaussian [e.g. 36] with
parameter σ2 if for all λ ∈ R, we have E[exp(λX)] ≤ exp(λ2σ2/2).

Given two probability distributions P and Q on a space X , each assumed absolutely
continuous with respect to an underlying measure µ with densities p and q respectively,1 the
KL-divergence between P and Q is

Dkl (P ||Q) =
∫

X
p(x) log

p(x)

q(x)
dµ(x).

Given a discrete random variable X defined on a space X with probability mass func-
tion (p.m.f.) p, its (Shannon) entropy [47] is H(X) := −∑x∈X p(x) log p(x). The condi-
tional entropy of X given Y , where X and Y have joint p.m.f. p(x, y), is H(X | Y ) :=
−∑x,y p(x, y) log p(x | y). Given random variables X and Y with marginal distributions PX
and PY , respectively, and joint PX,Y , the mutual information between X and Y is

I(X;Y ) :=

∫

X×Y
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
dµ(x, y)

= EPX
[Dkl (PY (· | X)||PY (·))] =

∫

X
Dkl (PY (· | X = x)||PY (·)) dPX(x),

where µ is a measure assumed to dominate PX,Y and p is the density of P with respect to
µ. Throughout we use log base-e for our entropy and information theoretic calculations. If
σ(X ) denotes the σ-field on X , the total variation distance between two distributions P and
Q defined on (X , σ(X )) is

‖P −Q‖TV := sup
S∈σ(X )

|P (S)−Q(S)| = 1

2

∫

X
|p(x)− q(x)|dµ(x).

We use N(θ,Σ) to denote the normal distribution with mean θ and covariance matrix Σ
and Laplace(κ) to denote the Laplace distribution with inverse shape parameter κ, that is,
density p(x) ∝ exp(−κ|x|).

Analytic, matrix, and vector notation For vectors x ∈ Rd, we use ℓp to denote the

usual p-norms ‖x‖p = (
∑d

j=1 |xj|p)
1
p , where ‖x‖∞ = maxj |xj|. The ℓ2-operator norm of a

matrix A ∈ Rd1×d2 is its maximum singular value, defined by

|||A||| = |||A|||2 := sup
v∈Rd2 ,‖v‖2≤1

‖Av‖2 .

We use γi(A) to denote the ith singular value of A, and ‖A‖Fr to denote its Frobenius norm.
We let 〈·, ·〉 denote the standard inner product on Rd (or whatever space is being used), and
given a norm ‖·‖ on Rd, the dual norm ‖·‖∗ is given by

‖y‖∗ = sup
x∈Rd

{〈x, y〉 : ‖x‖ ≤ 1} .
1This is no loss of generality, as we may take µ = 1

2
P + 1

2
Q
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A set X ⊂ Rd is convex if x, y ∈ X implies that λx + (1 − λ)y ∈ X for all λ ∈ [0, 1]. A
function f is convex if its domain dom f is convex, and f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)
for all x, y ∈ dom f and λ ∈ [0, 1]. We denote the subgradient set of f at a point x by

∂f(x) := {g ∈ Rd : f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ Rd}.

For shorthand, we let ‖∂f(x)‖ = supg∈∂f(x) ‖g‖. We make the standard assumption [98, 152]
that f(y) = +∞ for all y 6∈ dom f for convex f . To avoid pathologies, any convex function f
in this thesis is assumed to be sub-differentiable over all of dom f . The Euclidean projection
of a point y onto a closed convex set C is

ΠC(y) := argmin
x∈C

{
‖x− y‖22

}
.

For any function f and a norm ‖·‖, we say that f isM -Lipschitz continuous with respect
to the norm ‖·‖ over X if

|f(x)− f(y)| ≤M ‖x− y‖ for all x, y ∈ X .

Similarly, for f differentiable on a set X , we say that ∇f is L-Lipschitz continuous with
respect to a norm ‖·‖ (with associated dual norm ‖·‖∗) if

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ for all x, y ∈ X .

We let ⊗ denote the Kronecker product, and for a pair of vectors u, v, we define the outer
product u ⊗ v = uv⊤. For a three-times differentiable function f : Rd → R, we denote the
third derivative tensor by ∇3f , so that for each x ∈ dom f the operator ∇3f(x) : Rd×d → Rd

is linear and satisfies the relation

[
∇3f(x)(v ⊗ v)

]
i
=

d∑

j,k=1

(
∂3

∂xi∂xj∂xk
f(x)

)
vjvk.

Miscellaneous notation We denote the indicator function of an event E by 1 {E}, which
is 1 if E occurs (or is true) and 0 otherwise. For an integer n, the notation [n] denotes the
set of integers {1, . . . , n}. We let ∨ and ∧ denote maximum and minimum, respectively, so
that a ∨ b = max{a, b} and a ∧ b = min{a, b}.
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Chapter 2

Minimax rates of convergence

Understanding the fundamental limits of estimation and optimization procedures is impor-
tant for a multitude of reasons. Indeed, developing bounds on the performance of procedures
can give complementary insights. By exhibiting fundamental limits of performance (perhaps
over restricted classes of estimators), it is possible to guarantee that an algorithm we have
developed is optimal, so that searching for estimators with better statistical performance
will have limited returns, though searching for estimators with better performance in other
metrics may be interesting. Moreover, exhibiting refined lower bounds on the performance
of estimators can also suggest avenues for developing alternative, new optimal estimators;
lower bounds need not be a fully pessimistic exercise.

In this chapter, we define and then discuss techniques for lower-bounding the minimax
risk, giving three standard techniques for deriving minimax lower bounds that have proven
fruitful in a variety of statistical learning problems [188]. In addition to reviewing these
standard techniques—the Fano, Assouad, and Le Cam methods—we also present a few
simplifications and extensions that may make them more “user friendly.”

2.1 Basic framework and minimax risk

Our first step here is to establish the minimax framework we use throughout the thesis.
Depending on the problem we study, we use either minimax risk or what is known as minimax
excess risk to evaluate optimality of our estimation procedures. Our setting is essentially
standard, and we refer to references [188, 185, 173] for further background. Let us begin
by defining the standard minimax risk, deferring temporarily our discussion of minimax
excess risk. Throughout, we let P denote a class of distributions on a sample space X ,
and let θ : P → Θ denote a function defined on P , that is, a mapping P 7→ θ(P ). The
goal is to estimate the parameter θ(P ) based on observations Xi drawn from the (unknown)
distribution P .

The space Θ in which the parameter θ(P ) takes values depends on the underlying statis-
tical problem; as an example, if the goal is to estimate the univariate mean θ(P ) = EP [X],
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we have Θ ⊂ R. To evaluate the quality of an estimator θ̂, we let ρ : Θ × Θ denote a
(semi)metric on the space Θ, which we use to measure the error of an estimator for the
parameter θ, and let Φ : R+ → R+ be a non-decreasing function with Φ(0) = 0 (for example,
Φ(t) = t2).

In classical settings, the statistician is given direct access to i.i.d. observations Xi drawn
according to some P ∈ P . Based on these {Xi}, the goal is to estimate the unknown

parameter θ(P ) ∈ Θ , and an estimator θ̂ is a measurable function θ̂ : X n → Θ. We then

assess the quality of the estimate θ̂(X1, . . . , Xn) in terms of the risk

EP

[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

For instance, for a univariate mean problem with ρ(θ, θ′) = |θ− θ′| and Φ(t) = t2, this risk is
the mean-squared error. Of course, for any fixed distribution P , it is easy to estimate θ(P ):
simply return θ(P ), which will have minimal risk. It is thus important to ask for a more
uniform notion of risk, which leads to the minimax principle, first suggested by Wald [178],

which is to choose the estimator (measurable function) θ̂ minimizing the maximum risk

sup
P∈P

EP

[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

An optimal estimator for this metric then gives the minimax risk, which is defined as

Mn(θ(P),Φ ◦ ρ) := inf
θ̂
sup
P∈P

EP

[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
, (2.1)

where we take the supremum (worst-case) over distributions P ∈ P , and the infimum is

taken over all estimators θ̂.
In some scenarios, we study a slightly different notion of risk, which is more appropriate

for some learning and optimization problems. In these settings, we assume there exists some
loss function ℓ : Θ×X → R, where for an observation x ∈ X , the value ℓ(θ; x) measures the
instantaneous loss associated with using θ as a predictor. In this case, we define the risk

RP (θ) := EP [ℓ(θ;X)] =

∫

X
ℓ(θ; x)dP (x) (2.2)

as the expected loss of the parameter vector θ. For a (potentially random) estimator θ̂ :
X n → Θ given access to a sample X1, . . . , Xn, we may define the associated maximum
excess risk for the family P by

sup
P∈P

{
EP

[
RP (θ̂(X1, . . . , Xn))

]
− inf

θ∈Θ
R(θ)

}
,

where the expectation is taken over Xi and any randomness in the procedure θ̂. This expres-
sion captures the difference between the (expected) risk performance of the procedure θ̂ and
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the best possible risk, available if the distribution P were known ahead of time. The mini-
max excess risk, defined with respect to the loss ℓ, domain Θ, and family P of distributions,
is then defined by the best possible maximum excess risk,

Mn(Θ,P , ℓ) := inf
θ̂
sup
P∈P

{
EP

[
RP (θ̂(X1, . . . , Xn))

]
− inf

θ∈Θ
RP (θ)

}
, (2.3)

where the infimum is taken over all estimators θ̂ : X n → Θ and the risk RP is implicitly
defined in terms of the loss ℓ. The techniques for providing lower bounds for the minimax
risk (2.1) or the excess risk (2.3) are essentially identical; we focus for the remainder of this
section on techniques for providing lower bounds on the minimax risk.

The minimax risk (2.1) is well-studied, beginning with work of Wald [178] and continuing
through a multitude of researchers; important references include the books by Le Cam [115]
and Ibragimov and Has’minskii [101], the papers of Birgé [27], Yu [188], and Yang and
Barron [185], and the recent introductory survey of Tsybakov [173] provides an overview
of minimax techniques in non-parametric estimation. In this thesis, however, we study a
variant of the minimax risk where we constrain our estimators θ̂ to belong to a particular
class C of estimators. In particular, letting C denote a subset of the (measurable) functions

θ̂ : X n → Θ, we define the constrained minimax risk

Mn(θ(P),Φ ◦ ρ, C) := inf
θ̂∈C

sup
P∈P

EP

[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
. (2.4)

In this thesis, we take a few steps—via examples in optimization, communication-constrained
estimation, and privacy-preserving statistical inference—toward the study of the object (2.4).

While the change to a constrained class of estimators may appear at first glance to be
superficial, it will become clear that study of such constrained estimators is both challenging
and can yield new, interesting procedures. The constrained minimax principle (2.4) is thus,
essentially, the driving force of this research. Indeed, in Part II of the thesis, we show how
such constraints and an understanding of minimax lower bounds can give rise to new and
efficient algorithms for optimization. In Part III, we develop techniques for proving minimax
lower bounds for statistical estimation when providers of the data wish to guarantee that their
data is private, and we give corresponding new (optimal) procedures for private estimation.
Finally, in Part IV, we analyze a few simple procedures for distributed statistical estimation,
showing that they in fact enjoy optimality guarantees both in statistical and communication-
theoretic senses.

2.2 Methods for lower bounds: Le Cam, Assouad,

and Fano

There are a variety of techniques for providing lower bounds on the minimax risk (2.1) (and,
by extension, (2.4)). Each of them transforms the maximum risk by lower bounding it via a
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Bayesian problem (e.g. [101, 115, 118]), then proving a lower bound on the performance of
all possible estimators for the Bayesian problem. In particular, let {Pv} ⊂ P be a collection
of distributions in P indexed by v and π be any probability mass function over v. Then for
any estimator θ̂, the maximum risk has lower bound

sup
P∈P

EP

[
Φ(ρ(θ̂(X1, . . . , Xn), θ(P )))

]
≥
∑

v

π(v)EPv

[
Φ(ρ(θ̂(X1, . . . , Xn), θ(Pv)))

]
.

While trivial, this lower bound serves as the departure point for each of the subsequent
techniques for lower bounding the minimax risk.

2.2.1 From estimation to testing

A standard first step in proving minimax bounds is to reduce the estimation problem to
a testing problem [188, 185, 173]. We use two types of testing problems: one a multiple
hypothesis test, the second based on multiple binary hypothesis tests. We begin with the
simpler of the two. Given an index set V of finite cardinality, consider a family of distributions
{Pv}v∈V contained within P . This family induces a collection of parameters {θ(Pv)}v∈V ; it
is a 2δ-packing in the ρ-semimetric if

ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′.

We use this family to define the canonical hypothesis testing problem:

• first, nature chooses V according to the uniform distribution over V ;

• second, conditioned on the choice V = v, the random sample X = (X1, . . . , Xn) is
drawn from the n-fold product distribution P n

v .

Given the observed sample X, the goal is to determine the value of the underlying index v.
We refer to any measurable mapping Ψ : X n → V as a test function. Its associated error
probability is P(Ψ(X1, . . . , Xn) 6= V ), where P denotes the joint distribution over the random
index V and X. The classical reduction from estimation to testing [e.g., 173, Section 2.2]
guarantees that the minimax error (2.1) has lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X1, . . . , Xn) 6= V ), (2.5)

where the infimum ranges over all testing functions.
To see this result, fix an arbitrary estimator θ̂. Suppressing dependence on X throughout

the derivation, first note that it is clear that for any fixed θ, we have

E[Φ(ρ(θ̂, θ))] ≥ E
[
Φ(δ)1

{
ρ(θ̂, θ) ≥ δ

}]
≥ Φ(δ)P(ρ(θ̂, θ) ≥ δ),
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θ̂
θv

θv′ 2δ

Figure 2.1. Example of a 2δ-packing of a set. The estimate θ̂ is contained in at most one
of the δ-balls around the points θv.

where the final inequality follows because Φ is non-decreasing. Now, let us define θv = θ(Pv),
so that ρ(θv, θv′) ≥ 2δ for v 6= v′. By defining the testing function

Ψ(θ̂) := argmin
v∈V

{ρ(θ̂, θv)},

breaking ties arbitrarily, we have that ρ(θ̂, θv) < δ implies that Ψ(θ̂) = v because of the tri-
angle inequality and 2δ-separation of the set {θv}v∈V . Equivalently, for v ∈ V , the inequality
Ψ(θ̂) 6= v implies ρ(θ̂, θv) ≥ δ. (See Figure 2.1.) By averaging over V , we find that

sup
P

P(ρ(θ̂, θ(P )) ≥ δ) ≥ 1

|V|
∑

v∈V
P(ρ(θ̂, θ(Pv)) ≥ δ | V = v) ≥ 1

|V|
∑

v∈V
P(Ψ(θ̂) 6= v | V = v).

Taking an infimum over all tests Ψ : X n → V gives inequality (2.5).
The remaining challenge is to lower bound the probability of error in the underlying

multi-way hypothesis testing problem, which we do by choosing the separation δ to trade off
between the loss Φ(δ) (large δ increases the loss) and the probability of error (small δ, and
hence separation, makes the hypothesis test harder). Usually, one attempts to choose the
largest separation δ that guarantees a constant probability of error. There are a variety of
techniques for this, and we present three: Le Cam’s method, Fano’s method, and Assouad’s
method, including extensions of the latter two to enhance their applicability.

2.2.2 Le Cam’s method

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple binary
hypothesis testing testing problems. That is, it is applicable when there are two values v, v′
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in V . It is a standard result [115, 188, Lemma 1] that the total variation distance has the
variational representation

inf
f≥0,g≥0:f+g≥1

{EP [f(X)] + EQ[g(X)]} = inf
Ψ
{P (Ψ(X) 6= 0) +Q(Ψ(X) 6= 1)}

= 1− ‖P −Q‖TV (2.6)

for any two distributions P,Q, where the first infimum is taken over all non-negative mea-
surable functions and the second over all tests. Thus, when V = v with probability 1

2
and v′

with probability 1
2
, we have

inf
Ψ

P (Ψ(X1, . . . , Xn) 6= V ) =
1

2
− 1

2
‖P n

v − P n
v′‖TV . (2.7)

In particular, this lower bound implies that for any pair of family P of distributions for
which there exists a pair P1, P2 ∈ P satisfying ρ(θ(P1), θ(P2)) ≥ 2δ, then

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1

2
− 1

2
‖P n

1 − P n
2 ‖TV

]
. (2.8)

Example: Bernoulli mean estimation As an illustrative application of Le Cam’s
method, consider the problem of estimating the mean θ ∈ [−1, 1] of a {±1}-valued Bernoulli
distribution under the squared error loss, where Xi ∈ {−1, 1}. In this case, by fixing some
δ > 0, we set V = {−1, 1}, and we define Pv so that

Pv(X = 1) =
1 + vδ

2
and Pv(X = −1) = 1− vδ

2
,

whence we see that the mean θ(Pv) = δv. Using the metric ρ(θ, θ′) = |θ − θ′| and loss
Φ(δ) = δ2, we have separation 2δ of θ(P−1) and θ(P1). Thus, via Le Cam’s method (2.8), we
have that

Mn(Bernoulli([−1, 1]), (·)2) ≥
1

2
δ2
(
1−

∥∥P n
−1 − P n

1

∥∥
TV

)
.

We would thus like to upper bound ‖P n
−1 − P n

1 ‖TV as a function of the separation δ and
sample size n; we do this using Pinsker’s inequality [e.g. 47]. Indeed, we have

∥∥P n
−1 − P n

1

∥∥2
TV
≤ 1

2
Dkl

(
P n
−1||P n

1

)
=
n

2
Dkl (P−1||P1) =

n

2
δ log

1 + δ

1− δ .

Noting that δ log 1+δ
1−δ ≤ 3δ2 for δ ∈ [0, 1/2], we obtain that ‖P n

−1 − P n
1 ‖TV ≤ δ

√
3n/2 for

δ ≤ 1/2. In particular, we can guarantee a high probability of error in the associated
hypothesis testing problem (recall inequality (2.7)) by taking δ = 1/

√
6n; this guarantees

‖P n
−1 − P n

1 ‖TV ≤ 1
2
. We thus have the minimax lower bound

Mn(Bernoulli([−1, 1]), (·)2) ≥
1

2
δ2
(
1− 1

2

)
=

1

24n
,

which is sharp to within constant factors.



17

2.2.3 Fano’s method

Fano’s method, originally proposed by Has’minskii [92] for providing lower bounds in non-
parametric estimation problems, gives a somewhat more general technique than Le Cam’s
method, and it applies when the packing set V has cardinality larger than two. The
method has played a central role in minimax theory, beginning with the pioneering work
of Has’minskii and Ibragimov [92, 101]. More recent work following this initial push contin-
ues to the present day (e.g. [27, 188, 185, 28, 148, 85, 37]).

We begin by stating Fano’s inequality, which provides a lower bound on the error in
a multi-way hypothesis testing problem. Let V be a random variable taking values in a
finite set V with cardinality |V| ≥ 2. If we define the binary entropy function h2(p) =
−p log p− (1− p) log(1− p), Fano’s inequality takes the following form [e.g. 47, Chapter 2]:

Lemma 2.1 (Fano). For any Markov chain V → X → V̂ , we have

h2(P(V̂ 6= V )) + P(V̂ 6= V ) log(|V| − 1) ≥ H(V | V̂ ). (2.9)

A standard simplification of Lemma 2.1 is to note that h2(p) ≤ log 2 for any p ∈ [0, 1], so
that if V is uniform on the set V and hence H(V ) = log |V|, then for a sample X, we have
the testing lower bound

inf
Ψ

P(Ψ(X) 6= V ) ≥ 1− I(V ;X) + log 2

log |V| (2.10)

in the canonical hypothesis testing problem from Section 2.2.1.
While the testing lower bound (2.10) is sufficient for proving lower bounds for many

estimation problems, for the sharpest results it sometimes requires a somewhat delicate con-
struction of a well-separated packing (e.g. [37, 60]). To that end, we also provide extensions
of inequalities (2.9) and (2.10) that more directly yield bounds on estimation error, allowing
more direct and simpler proofs of a variety of minimax lower bounds (see also reference [51]).

More specifically, suppose that the distance function ρV is defined on V , and we are
interested in bounding the estimation error ρV(V̂ , V ). We begin by providing analogues of
the lower bounds (2.9) and (2.10) that replace the testing error with the tail probability

P(ρV(V̂ , V ) > t). By Markov’s inequality, such control directly yields bounds on the expec-

tation E[ρV(V̂ , V )]. As we show in the sequel and in chapters to come, these distance-based
Fano inequalities allow more direct proofs of a variety of minimax bounds without the need
for careful construction of packing sets or metric entropy calculations as in other arguments.

We begin with the distance-based analogue of the usual discrete Fano inequality in
Lemma 2.1. Let V be a random variable supported on a finite set V with cardinality |V| ≥ 2,
and let ρ : V × V → R be a function defined on V × V . In the usual setting, the function ρ
is a metric on the space V , but our theory applies to general functions. For a given scalar
t ≥ 0, the maximum and minimum neighborhood sizes at radius t are given by

Nmax
t := max

v∈V
{card{v′ ∈ V | ρ(v, v′) ≤ t}} and Nmin

t := min
v∈V
{card{v′ ∈ V | ρ(v, v′) ≤ t}} .

(2.11)
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Defining the error probability Pt = P(ρV(V̂ , V ) > t), we then have the following generaliza-
tion of Fano’s inequality:

Proposition 2.1. For any Markov chain V → X → V̂ , we have

h2(Pt) + Pt log
|V| −Nmin

t

Nmax
t

+ logNmax
t ≥ H(V | V̂ ). (2.12)

Before proving the proposition, which we do in Section 2.4.1, it is informative to note
that it reduces to the standard form of Fano’s inequality (2.9) in a special case. Suppose
that we take ρV to be the 0-1 metric, meaning that ρV(v, v

′) = 0 if v = v′ and 1 otherwise.

Setting t = 0 in Proposition 2.1, we have P0 = P[V̂ 6= V ] and Nmin
0 = Nmax

0 = 1, whence
inequality (2.12) reduces to inequality (2.9). Other weakenings allow somewhat clearer
statements (see Section 2.4.2 for a proof):

Corollary 2.1. If V is uniform on V and (|V| −Nmin
t ) > Nmax

t , then

P(ρV(V̂ , V ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nmax

t

. (2.13)

Inequality (2.13) is the natural analogue of the classical mutual-information based form of
Fano’s inequality (2.10), and it provides a qualitatively similar bound. The main difference
is that the usual cardinality |V| is replaced by the ratio |V|/Nmax

t . This quantity serves as a
rough measure of the number of possible “regions” in the space V that are distinguishable—
that is, the number of subsets of V for which ρV(v, v

′) > t when v and v′ belong to different
regions. While this construction is similar in spirit to the usual construction of packing sets
in the standard reduction from testing to estimation (cf. Section 2.2.1), our bound allows us
to skip the packing set construction. We can directly compute I(V ;X) where V takes values
over the full space, as opposed to computing the mutual information I(V ′;X) for a random
variable V ′ uniformly distributed over a packing set contained within V . In some cases, the
former calculation can be much simpler, as illustrated in examples and chapters to follow.

We now turn to providing a few consequences of Proposition 2.1 and Corollary 2.1,
showing how they can be used to derive lower bounds on the minimax risk. Proposition 2.1 is
a generalization of the classical Fano inequality (2.9), so it leads naturally to a generalization
of the classical Fano lower bound on minimax risk, which we describe here. This reduction
from estimation to testing is somewhat more general than the classical reductions, since we
do not map the original estimation problem to a strict test, but rather a test that allows
errors. Consider as in the standard reduction of estimation to testing in Section 2.2.1 a family
of distributions {Pv}v∈V ⊂ P indexed by a finite set V . This family induces an associated
collection of parameters {θv := θ(Pv)}v∈V . Given a function ρV : V × V → R and a scalar t,
we define the separation δ(t) of this set relative to the metric ρ on Θ via

δ(t) := sup {δ | ρ(θv, θv′) ≥ δ for all v, v′ ∈ V such that ρV(v, v
′) > t} . (2.14)
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As a special case, when t = 0 and ρV is the discrete metric, this definition reduces to that of
a packing set: we are guaranteed that ρ(θv, θv′) ≥ δ(0) for all distinct pairs v 6= v′, as in the
classical approach to minimax lower bounds. On the other hand, allowing for t > 0 lends
greater flexibility to the construction, since only certain pairs θv and θv′ are required to be
well-separated.

Given a set V and associated separation function (2.14), we assume the canonical esti-
mation setting: nature chooses V ∈ V uniformly at random, and conditioned on this choice
V = v, a sample X is drawn from the distribution Pv. We then have the following corollary
of Proposition 2.1, whose argument is completely identical to that for inequality (2.5):

Corollary 2.2. Given V uniformly distributed over V with separation function δ(t), we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ
(δ(t)

2

) [
1− I(X;V ) + log 2

log |V|
Nmax

t

]
for all t. (2.15)

Notably, using the discrete metric ρV(v, v
′) = 1 {v 6= v′} and taking t = 0 in the lower

bound (2.15) gives the classical Fano lower bound on the minimax risk based on constructing
a packing [101, 188, 185]. We now turn to an example illustrating the use of Corollary 2.2
in providing a minimax lower bound on the performance of regression estimators.

Example: Normal regression model Consider the d-dimensional linear regression model
Y = Xθ + ε, where ε ∈ Rn is i.i.d. N(0, σ2) and X ∈ Rn×d is known, but θ is not. In this
case, our family of distributions is

PX :=
{
Y ∼ N(Xθ, σ2In×n) | θ ∈ Rd

}
=
{
Y = Xθ + ε | ε ∼ N(0, σ2In×n), θ ∈ Rd

}
.

We then obtain the following minimax lower bound on the minimax error in squared ℓ2-norm:
there is a universal (numerical) constant c > 0 such that

Mn(θ(PX , ‖·‖22) ≥ c
σ2d2

‖X‖2Fr
≥ c

γmax(X/
√
n)2
· σ

2d

n
, (2.16)

where γmax denotes the maximum singular value. Notably, this inequality is nearly the
sharpest known bound proved via Fano inequality-based methods [37], but our technique is
essentially direct and straightforward.

To see inequality (2.16), let the set V = {−1, 1}d be the d-dimensional hypercube, and
define θv = δv for some fixed δ > 0. Then letting ρV be the Hamming metric on V and ρ
be the usual ℓ2-norm, the associated separation function (2.14) satisfies δ(t) > max{

√
t, 1}δ.

Now, for any t ≤ ⌈d/3⌉, the neighborhood size satisfies

Nmax
t =

t∑

τ=0

(
d

τ

)
≤ 2

(
d

t

)
≤ 2

(
de

t

)t
.
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Consequently, for t ≤ d/6, the ratio |V|/Nmax
t satisfies

log
|V|
Nmax
t

≥ d log 2− log 2
(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√
6e

> max

{
d

6
, log 4

}

for d ≥ 12. (The case 2 ≤ d < 12 can be checked directly). In particular, by taking t = ⌊d/6⌋
we obtain via Corollary 2.2 that

Mn(θ(PX), ‖·‖22) ≥
max{⌊d/6⌋ , 2}δ2

4

(
1− I(Y ;V ) + log 2

max{d/6, 2 log 2}

)
.

But of course, for V uniform on V , we have E[V V ⊤] = Id×d, and thus for V, V ′ independent
and uniform on V ,

I(Y ;V ) ≤ n
1

|V|2
∑

v∈V

∑

v′∈V
Dkl

(
N(Xθv, σ

2In×n)||N(Xθv′ , σ2In×n)
)

=
δ2

2σ2
E
[
‖XV −XV ′‖22

]
=
δ2

σ2
‖X‖2Fr .

Substituting this into the preceding minimax bound, we obtain

Mn(θ(PX), ‖·‖22) ≥
max{⌊d/6⌋ , 2}δ2

4

(
1− δ2 ‖X‖2Fr /σ2 + log 2

max{d/6, 2 log 2}

)
.

Choosing δ2 ≍ dσ2/ ‖X‖2Fr gives the result (2.16).

2.2.4 Assouad’s method

Assouad’s method provides a somewhat different technique for proving lower bounds. In-
stead of reducing the estimation problem to a multiple hypothesis test or simpler estimation
problem, as with Le Cam’s method and Fano’s method from the preceding sections, here we
transform the original estimation problem into multiple binary hypothesis testing problems,
using the structure of the problem in an essential way. For some d ∈ N, let V = {−1, 1}d,
and let us consider a family {Pv}v∈V ⊂ P indexed by the hypercube. We say that the
the family Pv induces a 2δ-Hamming separation for the loss Φ ◦ ρ if there exists a function
v : θ(P)→ {−1, 1}d satisfying

Φ(ρ(θ, θ(Pv))) ≥ 2δ
d∑

j=1

1 {[v(θ)]j 6= vj} . (2.17)

As in the standard reduction from estimation to testing, we consider the following random
process: nature chooses a vector V ∈ {−1, 1}d uniformly at random, after which the sample
X1, . . . , Xn is drawn from the distribution Pv conditional on V = v. Then, if we let P±j denote
the joint distribution over the random index V and X conditional on the jth coordinate
Vj = ±1, we obtain the following sharper version of Assouad’s lemma [11] (see also the
paper [9]; we provide a proof in Section 2.4.3).
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Lemma 2.2. Under the conditions of the previous paragraph, we have

Mn(θ(P),Φ ◦ ρ) ≥ δ
d∑

j=1

inf
Ψ

[P+j(Ψ(X1:n) 6= +1) + P−j(Ψ(X1:n) 6= −1)] .

While Lemma 2.2 requires conditions on the loss Φ and metric ρ for the separation
condition (2.17) to hold, it is sometimes easier to apply than Fano’s method, and it appears to
allow easier application in so-called “interactive” settings: those for which the sampling of the
Xi may not be precisely i.i.d. It is closely related to Le Cam’s method, discussed previously,
as we see that if we define P n

+j = 21−d
∑

v:vj=1 P
n
v (and similarly for −j), Lemma 2.2 is

equivalent to

Mn(θ(P),Φ ◦ ρ) ≥ δ
d∑

j=1

[
1−

∥∥P n
+j − P n

−j
∥∥
TV

]
. (2.18)

We conclude this section with an example application of Assouad’s lemma to a minimax
lower bound for a normal mean estimation problem.

Example: Normal mean estimation For some σ2 > 0 and d ∈ N, we consider estima-
tion of mean parameter for the normal location family

N :=
{
N(θ, σ2Id×d) : θ ∈ Rd

}

in squared Euclidean distance. We now show how for this family, the sharp Assouad’s method
implies the lower bound

Mn(θ(N ), ‖·‖22) ≥
dσ2

8n
. (2.19)

Up to constant factors, this bound is sharp; the sample mean has mean squared error dσ2/n.
We proceed in (essentially) the usual way we have set up. Fix some δ > 0 and define

θv = δv, taking Pv = N(θv, σ
2Id×d) to be the normal distribution with mean θv. In this

case, we see that the hypercube structure is natural, as our loss function decomposes on
coordinates: we have ‖θv − θv′‖22 = 4δ2

∑d
j=1 1 {vj 6= v′j}. The family Pv thus induces a

4δ2-Hamming separation for the loss ‖·‖22, and by Assouad’s method (2.18), we have

Mn(θ(N ), ‖·‖22) ≥ 2δ2
d∑

j=1

[
1−

∥∥P n
+j − P n

−j
∥∥
TV

]
.

It remains to provide upper bounds on ‖P n
+j − P n

−j‖TV. By the convexity of ‖·‖2TV and
Pinsker’s inequality, we have

∥∥P n
+j − P n

−j
∥∥2
TV
≤ max

dham(v,v′)≤1
‖P n

v − P n
v′‖2TV ≤

1

2
max

dham(v,v′)≤1
Dkl (P

n
v ||P n

v′) .
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But of course, for any v and v′ differing in only 1 coordinate,

Dkl (P
n
v ||P n

v′) =
n

2σ2
‖θv − θv′‖22 =

2n

σ2
δ2,

giving the minimax lower bound

Mn(θ(N ), ‖·‖22) ≥ 2δ2
d∑

j=1

[
1−

√
2nδ2/σ2

]
.

Choosing δ2 = σ2/8n gives the claimed lower bound (2.19).

2.3 Summary

We have seen reductions to testing and the error bounds from Le Cam’s method (2.7),
the Fano method (2.10) and (2.15), and Assouad’s method (2.18). Consequently, to obtain
bounds on the minimax risk (2.1), we control divergences between probability distributions
of many forms: by controlling variation distances of the form ‖P n

1 − P n
2 ‖TV, mutual informa-

tion quantities between random parameter indices V and the sequence of random variables
X1, . . . , Xn, or other distances between mixtures of distributions. In addition to these (essen-
tially standard) techniques for providing minimax lower bounds, we also develop techniques
in this thesis for providing lower bounds for the more complicated constrained minimax
risk (2.4). In short, it is often the case that as a consequence of constraining our statistical

learning procedures θ̂ to belong to some class C, we see a sequence Z1, . . . , Zn related (but
not identical) to the original observations X1, . . . , Xn. To provide minimax bounds, we thus
must (i) develop an understanding of how these constraints give rise to the Zi and (ii) see
precisely how observing Z rather than X effects the divergence measures, such as I(V ;Z)
in Fano’s method (2.10), and the other associated probability distributions in our minimax
lower bounds. Developing an understanding of the probabilistic structure of the observed
variables Z becuase of the constraints place on the method θ̂ leads to several new challenges,
and we devote the remaining chapters to these tasks.

2.4 Proofs of results

2.4.1 Proof of Proposition 2.1

Our argument for proving the proposition parallels that of the classical Fano inequality
by Cover and Thomas [47]. Letting E be a {0, 1}-valued indicator variable for the event

ρ(V̂ , V ) ≤ t, we compute the entropy H(E, V | V̂ ) in two different ways. On one hand, by
the chain rule for entropy, we have

H(E, V | V̂ ) = H(V | V̂ ) +H(E | V, V̂ )︸ ︷︷ ︸
=0

, (2.20)
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where the final term vanishes since E is (V, V̂ )-measurable. On the other hand, we also have

H(E, V | V̂ ) = H(E | V̂ ) +H(V | E, V̂ ) ≤ H(E) +H(V | E, V̂ ),

using the fact that conditioning reduces entropy. Applying the definition of conditional
entropy yields

H(V | E, V̂ ) = P(E = 0)H(V | E = 0, V̂ ) + P(E = 1)H(V | E = 1, V̂ ),

and we upper bound each of these terms separately. For the first term, we have

H(V | E = 0, V̂ ) ≤ log(|V| −Nmin
t ),

since conditioned on the event E = 0, the random variable V may take values in a set of
size at most |V| −Nmin

t . For the second, we have

H(V | E = 1, V̂ ) ≤ logNmax
t ,

since conditioned on E = 1, or equivalently on the event that ρ(V̂ , V ) ≤ t, we are guaranteed
that V belongs to a set of cardinality at most Nmax

t .
Combining the pieces and and noting P(E = 0) = Pt, we have proved that

H(E, V | V̂ ) ≤ H(E) + Pt log
(
|V| −Nmin

)
+ (1− Pt) logNmax

t .

Combining this inequality with our earlier equality (2.20), we see that

H(V | V̂ ) ≤ H(E) + Pt log(|V| −Nmin
t ) + (1− Pt) logNmax

t .

Since H(E) = h2(Pt), the claim (2.12) follows.

2.4.2 Proof of Corollary 2.1

First, by the information-processing inequality [e.g. 47, Chapter 2], we have I(V ; V̂ ) ≤ I(V ;X),

and hence H(V | X) ≤ H(V | V̂ ). Since h2(Pt) ≤ log 2, inequality (2.12) implies that

H(V | X)− logNmax
t ≤ H(V | V̂ )− logNmax

t ≤ P(ρ(V̂ , V ) > t) log
|V| −Nmin

t

Nmax
t

+ log 2.

Rearranging the preceding equations yields

P(ρ(V̂ , V ) > t) ≥ H(V | X)− logNmax
t − log 2

log
|V|−Nmin

t

Nmax
t

. (2.21)

Note that his bound holds without any assumptions on the distribution of V .
By definition, we have I(V ;X) = H(V )−H(V | X). When V is uniform on V , we have

H(V ) = log |V|, and hence H(V | X) = log |V|− I(V ;X). Substituting this relation into the
bound (2.21) yields the inequality

P(ρ(V̂ , V ) > t) ≥
log |V|

Nmax
t

log
|V|−Nmin

t

Nmax
t

− I(V ;X) + log 2

log
|V|−Nmin

t

Nmax
t

≥ 1− I(V ;X) + log 2

log |V|
Nmax

t

.
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2.4.3 Proof of Lemma 2.2

Fix an (arbitrary) estimator θ̂. By assumption (2.17), we have

Φ(ρ(θ, θ(Pv))) ≥ 2δ
d∑

j=1

1 {[v(θ)]j 6= vj} .

Taking expectations, we see that

sup
P∈P

EP

[
Φ(ρ(θ̂(X1, . . . , Xn), θ(P )))

]
≥ 1

|V|
∑

v∈V
EPv

[
Φ(ρ(θ̂(X1, . . . , Xn), θv))

]

≥ 1

|V|
∑

v∈V
2δ

d∑

j=1

EPv

[
1
{
[ψ(θ̂)]j 6= vj

}]

as the average is smaller than the maximum of a set and using the separation assump-
tion (2.17). Recalling the definition of the mixtures P±j as the joint distribution of V and
X conditional on Vj = ±1, we swap the summation orders to see that

1

|V|
∑

v∈V
Pv

(
[v(θ̂)]j 6= vj

)
=

1

|V|
∑

v:vj=1

Pv

(
[v(θ̂)]j 6= vj

)
+

1

|V|
∑

v:vj=−1

Pv

(
[v(θ̂)]j 6= vj

)

=
1

2
P+j

(
[v(θ̂)]j 6= vj

)
+

1

2
P−j

(
[v(θ̂)]j 6= vj

)
.

This gives the statement claimed in the lemma, while taking an infimum over all testing
procedures Ψ : X n → {−1,+1} gives the claim (2.18).
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Part II

Optimization
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Chapter 3

Stochastic optimization and adaptive
gradient methods

In this part of the thesis, we consider a variety of stochastic convex optimization problems
and associated algorithms for solving them. Throughout this and the next several chapters,
we focus on a single mathematical program. For a fixed closed convex subset Θ ⊂ Rd of Rd,
consider the following optimization problem:

minimize f(θ) := E [F (θ;X)] =

∫

X
F (θ; x)dP (x), subject to θ ∈ Θ, (3.1)

where for P -almost every x ∈ X , the function θ 7→ F (θ; x) is convex. The problem (3.1) is
challenging for many reasons, though we focus mainly on one throughout: in many cases,
f cannot actually be evaluated. When x is high-dimensional, the integral (3.1) cannot
be efficiently computed, and in statistical learning problems we usually do not even know
what the distribution P is; indeed, inferring properties of the distribution P—such as the
minimizer of the objective (3.1)—is the main goal of statistical estimation. The applications
of such stochastic optimization problems are numerous: much of modern machine learning
relies on minimization of objectives of the form (3.1), and there has been a huge literature
on stochastic optimization (and closely related online learning) techniques off of which we
build (a partial list of references includes work by Nemirovski and Yudin [134], Zinkevich
[190], Cesa-Bianchi and Lugosi [39], Nemirovski et al. [135], Lan [114], Shalev-Shwartz [159],
Nesterov [138], and Xiao [182]).

It is of great interest to develop algorithms for solving the problem (3.1). In addition,
due to the potential complexity of such minimization algorithms, it is also essential to un-
derstand precisely the complexity of such schemes: are there notions under which different
schemes may be called optimal? Can we develop such optimal schemes? Can we leverage
the structure of the problem (3.1) to solve problems even more quickly, perhaps by using
parallel computation or randomization? In the coming chapters, we illustrate a few answers
to these questions.
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As part of our desire to guarantee optimality, we require a notion of the computational
complexity of optimization procedures as described in the introduction to this thesis. A
natural notion of complexity for numerical and optimization problems is information based
complexity, studied in depth by Nemirovski and Yudin [134], as well as by Traub et al. [169]
and Plaskota [144], which is often simpler to work with than Turing Machine or other models
of computation. Given the prevalence of function- and gradient-based optimization schemes,
it is natural in our setting to assume access to an oracle that, when queried with a point
θ ∈ Rd, draws a random sample X ∼ P and returns one (or both) of an instantaneous
function evaluation F (θ;X) or gradient ∇F (θ;X) of the loss F with respect to θ. The
computational question is then as follows: given a pre-specified ǫ > 0, how few function
(or gradient) evaluations do we require to solve the problem (3.1) to within accuracy ǫ?
Casting this in the minimax framework of Chapter 2, we let Cn denote the class of estimation
procedures using at most n function (or gradient) evaluations. In this case, the minimax
rate (2.3) (also (2.4)) associated with the problem (3.1) becomes

Mn(Θ,P , F, Cn) := inf
θ̂∈Cn

sup
P∈P

{
E[fP (θ̂(X1, . . . , Xn))]− inf

θ∈Θ
fP (θ)

}
,

where the risk functional fP (θ) =
∫
F (θ; x)dP (x) and the infimum is taken over all estimation

procedures in the class Cn. While this is a theoretical object, we will see how an understanding
of its properties prompts us to develop and evaluate new algorithms with good practical and
theoretical performance. We note in passing that this minimax risk is a somewhat more
fine-grained object than some similar quantities studied previously [134, 6]. In particular,
we provide lower bounds on this minimax risk for a fixed instantaneous loss function F rather
than considering an entire class of such loss functions; our upper bounds, on the other hand,
apply uniformly over classes of certain types of loss functions.

3.1 Stochastic optimization algorithms

We begin this chapter by reviewing several algorithms developed for stochastic optimization,
focusing on stochastic gradient-based algorithms for solving problem (3.1). The classical
gradient algorithm for minimization (e.g. [32]) is as follows: starting from a point θ1, we
repeatedly iterate

gk = ∇f(θk), θk+1 = θk − αgk,
where α > 0 is a stepsize. As noted previously, this algorithmic scheme is either expensive—
because the integral in expression (3.1) is difficult to compute—or impossible, because the
distribution P is not even known. To address these issues, several authors [134, 190, 40,
39, 162, 135] have suggested and analyzed stochastic and online gradient-based methods. In
this case, the iterative scheme is as follows: at iteration k, we draw a random Xk ∼ P , then
compute

gk ∈ ∂F (θk;Xk) and update θk+1 = ΠΘ

(
θk − αkgk

)
, (3.2)



28

where we recall that ΠΘ denotes the (Euclidean) projection onto the domain Θ and αk is
a non-increasing stepsize sequence (where αk may depend on the sequences θ1, . . . , θk and
g1, . . . , gk). More rigorously, we assume there exists a measurable subgradient selection

g : Θ×X → Rd such that g(θ; x) ∈ ∂F (θ; x) for all θ and P -a.e. x ∈ X , (3.3)

and we take gk = g(θk;Xk) for all k. When F is convex, this measureability implies the
containment E[g(θ;X)] ∈ ∂f(θ) for all θ (e.g. Bertsekas [25], Rockafellar and Wets [153]).

The convergence behavior of the method (3.2) is not challenging to analyze; for example,
see the lecture notes of Boyd and Mutapcic [31] for an elegant and standard proof based
on expanding the squared distance ‖θk − θ∗‖22 as a function of θk−1. The proposition is also
a consequence of more general results on mirror descent methods (also known as nonlinear
projected subgradient methods) due to Nemirovski and Yudin [134] and Beck and Teboulle
[18], which we present shortly.

Proposition 3.1. Let the gradient method (3.2) be run for n iterations and assume there
exists a finite radius r2 such that

∥∥θk − θ∗
∥∥
2
≤ r2 for all iterations k. Then

1

n
E

[ n∑

k=1

f(θk)− f(θ∗)
]
≤ E

[
1

2αn
r22 +

1

2

n∑

k=1

αk
∥∥gk
∥∥2
2

]
.

In passing, we note that if E[‖g(θ;X)‖22] ≤ M2 for all θ, then taking αk ≡ α = r2/M
√
n in

Proposition 3.1 gives

E[f(θ̂(n))− f(θ∗)] ≤ 1

n
E

[ n∑

k=1

f(θk)− f(θ∗)
]
≤ r2M√

n
, (3.4)

where θ̂(n) = 1
n

∑n
k=1 θ

k is the average parameter. This is the well-known O(n− 1
2 ) conver-

gence rate for stochastic gradient descent [134, 18, 190].
We now present the (stochastic) mirror descent method (following the presentation of

Beck and Teboulle [18]) and work through a few of its consequences, but we first rewrite
the method (3.2) in a manner more amenable to the coming generalization. First, the
update (3.2) is, via algebraic manipulation, equivalent to

θk+1 = argmin
θ∈Θ

{〈
gk, θ

〉
+

1

2α

∥∥θ − θk
∥∥2
2

}
.

Now, instead of using the Euclidean distance in the update (3.2), we can replace it with
another distance-like function to obtain mirror descent [134, 18]. For this, we require a few
definitions to develop our new distance-like functions.

Definition 3.1. A function f is c-strongly convex with respect to the norm ‖·‖ over a
domain Θ if for all θ, θ′ ∈ Θ and any g ∈ ∂f(θ),

f(θ′) ≥ f(θ) + 〈g, θ′ − θ〉+ c

2
‖θ − θ′‖2 .
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With this definition, we can define a proximal function:

Definition 3.2. A function ψ is a prox-function for the set Θ if ψ is differentiable and
1-strongly convex with respect to a norm ‖·‖ over Θ.

With a proximal function in hand, we may define the associated Bregman divergence

Dψ(θ, θ
′) := ψ(θ)− ψ(θ′)− 〈∇ψ(θ′), θ − θ′〉 . (3.5)

For any proximal function ψ, the divergence Dψ is always non-negative, convex in its first
argument, and satisfies Dψ(θ, θ

′) ≥ 1
2
‖θ − θ′‖2.

The mirror descent (MD) method generates a series of iterates {θk}∞k=1 contained in Θ
using (stochastic) gradient information to perform the update from iterate to iterate. The
algorithm is initialized at some point θ1 ∈ Θ. At iterations k = 1, 2, 3, . . ., the mirror descent
method receives a (subgradient) vector gk ∈ Rd, which it uses to compute the next iterate
via the Bregman divergence-based update

θk+1 = argmin
θ∈Θ

{〈
gk, θ

〉
+

1

αk
Dψ(θ, θ

k)

}
. (3.6)

In the standard stochastic mirror descent method, the vectors gk are stochastic (sub)gradients

satisfying gk = g(θk;Xk) ∈ ∂F (θk;Xk) for Xk
i.i.d.∼ P as in the standard (projected) stochastic

gradient descent method.
With this update scheme, we obtain the following proposition, whose proof (essentially

due to Beck and Teboulle [18], with some extensions by Nemirovski et al. [135]) we provide
for completeness in Section 3.5.1.

Proposition 3.2. Let θk be generated according to the stochastic mirror descent method (3.6)
and let θ∗ ∈ Θ. Additionally, assume that there is a radius rψ <∞ such that Dψ(θ

∗, θ) ≤ r2ψ
for all θ ∈ Θ. Then

1

n
E

[ n∑

k=1

f(θk)− f(θ∗)
]
≤ E

[
1

nαn
r2ψ +

1

2n

n∑

k=1

αk
∥∥gk
∥∥2
∗

]
.

To see how Proposition 3.2 implies 3.1, we take ψ(θ) = 1
2
‖θ‖22, in which case the diver-

gence Dψ(θ, θ
′) = 1

2
‖θ − θ′‖22, and we recover the results for stochastic gradient descent. Now

let us assume that there exists a constant M < ∞ such that E[‖∂F (θ;X)‖2∗] ≤ M2 for all

θ ∈ Θ. Taking θ̂(n) = 1
n

∑n
k=1 θ

k and using the convexity of f in Proposition 3.2 implies

E[f(θ̂(n))]− f(θ∗) ≤ E

[
1

nαn
r2ψ +

M2

2n

n∑

k=1

αk

]
,

and if we choose αk =
√
2rψ/M

√
n to minimize the preceding bound we obtain

E[f(θ̂(n))]− f(θ∗) ≤
√
2M rψ√
n

. (3.7)
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In Section 3.3, we specialize this result to give a few more concrete bounds and associated
optimality guarantees.

We also present one final algorithm, a variant of Nesterov’s dual averaging algorithm [138],
that provides similar convergence guarantees, but often proves more natural for certain
distributed and asynchronous algorithms (e.g. [54]). In this case, we assume there exists a
sequence {ψk} of proximal functions, each strongly convex over the domain Θ with respect
to a norm ‖·‖ψk

, whose dual norm we denote by ‖·‖ψ∗

k
. In the dual averaging algorithm, one

iteratively constructs a sequence of points θk via the following iteration: at iteration k, we
sample gk = g(θk;Xk) ∈ ∂F (θk;Xk), where Xk ∼ P , but we additionally maintain a dual
vector z, defined via

zk =
k∑

i=1

gi.

After computing this dual vector, the dual averaging update (we present a slightly more
general update that allows the proximal functions to change over time) then sets

θk+1 = argmin
θ∈Θ

{〈
zk, θ

〉
+

1

α
ψk+1(θ)

}
. (3.8)

While this method is perhaps not as intuitive as the simpler stochastic gradient methods (3.2)
or (3.6), its convergence behavior is similar. Indeed, if for all iterations k we have ψk(·) =
1
2
‖·‖22 and the domain Θ = Rd, then dual averaging (3.8) and stochastic gradient descent (3.2)

are identical with fixed stepsize α.
Because dual averaging is essential to our further arguments, we present a few “raw”

convergence results for the method here. We begin with a lemma that captures a regret
bound (see, e.g. Cesa-Bianchi and Lugosi [39] for definitions of regret) for the method (3.8),
but the result itself is new: for one, it allows the method to use non-standard vectors zk

at each iteration, and secondly, the method allows the proximal function to change between
iterations. For our theoretical development, we define the conjugate to ψk and associated
dual norm

ψ∗
k(z) := sup

θ∈Θ
{〈z, θ〉 − ψk(θ)} and ‖z‖ψ∗

k
:= sup

x

{
〈z, θ〉 | ‖θ‖ψk

≤ 1
}
.

In the lemma, we set θ0 = argminθ∈Θ ψ0(θ). With these definitions, we have

Lemma 3.1. Let θk be generated via the update (3.8) for all k, where zk is an arbitrary
sequence of vectors. In addition, let {xk} ⊂ X be an arbitrary sequence in X and assume
that gk ∈ ∂F (θk; xk). Define the “corrected” point sequence

θ̃k := argmin
θ∈Θ

{ k−1∑

i=1

〈
gi, θ

〉
+

1

α
ψk(θ)

}
.
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For any sequence of observations xk and any θ∗ ∈ Θ,

n∑

k=1

[
F (θk; xk)− F (θ∗; xk)

]
≤

n∑

k=1

α−1

[
ψ∗
k

(
−

k−1∑

i=1

gi
)
− ψ∗

k−1

(
−

k−1∑

i=1

gi
)]

+
α

2

n∑

k=1

∥∥gk
∥∥2
ψ∗

k

+
n∑

k=1

〈
gk, θk − θ̃k

〉
+

1

α

[
ψn(θ

∗)− ψ0(θ
0)
]
.

See Section 3.5.2 for a proof of Lemma 3.1.
As an immediate consequence of Lemma 3.1, we note that if we take ψk ≡ ψ for a fixed

proximal function ψ, which we assume is strongly convex with respect to the norm ‖·‖ over Θ
(with dual norm ‖·‖∗), and we let zk =

∑k
i=1 g

i be computed properly, then for any sequence
{xk} and θ∗ ∈ Θ, we have the regret bound

n∑

k=1

[
F (θk; xk)− F (θ∗; xk)

]
≤ 1

α

[
ψ(θ∗)− ψ(θ0)

]
+
α

2

n∑

k=1

∥∥gk
∥∥2
∗ .

In the stochastic optimization setting, we have xk = Xk
i.i.d.∼ P , and this implies the next

proposition, which holds when the proximal functions are fixed as ψk ≡ ψ.

Proposition 3.3. For any θ∗ ∈ Θ, dual averaging (3.8) has convergence guarantee

1

n
E

[ n∑

k=1

f(θk)− f(θ∗)
]
≤ 1

αn
E[ψ(θ∗)− ψ(θ0)] + α

2n
E

[ n∑

k=1

∥∥gk
∥∥2
∗

]
.

Proof Let Fk denote the σ-field containing X1, . . . , Xk and any additional randomness
used to construct θk+1. By construction, we have θk ∈ Fk−1 and ψk ∈ Fk−1, and by definition
of the risk functional (3.1), we have

E[F (θk;Xk)] = E
[
E[F (θk;Xk) | Fk−1]

]
= E[f(θk)].

Applying Lemma 3.1 and noting that ψ∗
k = ψ∗

k−1 completes the proof.

We remark that if we redefine r2ψ = ψ(θ∗)−ψ(θ0), then an argument paralleling inequal-

ity (3.7) guarantees that taking θ̂(n) = 1
n

∑n
k=1 θ

k with stepsize choice α =
√
2rψ/M

√
n

yields the same convergence rate, O(1)rψM/
√
n. Moreover, with additional restrictions on

the it is possible to convert the results of Propositions 3.1, 3.2, and 3.3 into convergence
guarantees with high probability, for example, under the sub-Gaussian type assumption

E

[
exp

(‖∂F (θ;X)‖2∗
M2

)]
≤ exp(1) for any θ ∈ Θ,

where the expectation is taken over X. For results of this type, see Nemirovski et al. [135].
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3.2 Adaptive optimization

Standard stochastic subgradient methods largely follow a predetermined procedural scheme
that is oblivious to the characteristics of the data being observed. Often, this can lead
to non-robust optimization schemes; for example, a pre-specified stepsize schedule may not
take advantage of the sizes of the observed gradient norms ‖gk‖2∗ in mirror descent or dual
averaging methods, yielding consequent oscillatory behavior or making too too little progress.
In this section, we show that it is possible to design algorithms that attain convergence rates
that are (nearly) optimal for a fixed, known domain Θ, but where no upper bound M is
known a-priori on the size of the gradient norms E[‖∂F (θ;X)‖2∗]. In addition, we review
some results due to Duchi, Hazan, and Singer [53] and McMahan and Streeter [130] on finer
grained adaptivity.

3.2.1 Adaptivity and robustness to gradient magnitude

To state and understand these results, we begin with a few preliminary justifications. Look-
ing at the convergence guarantee in Proposition 3.2 (also inequality (3.7)), assuming we use
a fixed stepsize α for all iterations k, the convergence rate is governed by the quantity

E

[
r2ψ

αn
+

α

2n

n∑

k=1

∥∥gk
∥∥2
∗

]
.

Notably, if it were possible to take the infimum over all α > 0 in the preceding expression,

we would choose α =
√
2rψ/(

∑n
k=1

∥∥gk
∥∥2
∗)

1
2 , yielding convergence guarantee

E[f(θ̂)− f(θ∗)] ≤
√
2rψ
n

E

[( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2
]
.

By Jensen’s inequality, this is always at least as good as the bound (3.7). Of course, it is
impossible to select such a stepsize, but it is possible to achieve convergence rates that are
qualitatively similar. With this in mind, let us assume that at each step k of the mirror
descent method (3.6) we choose αk as though we were optimizing the associated bound on
convergence: we choose

αk := α
rψ

(
δ2 +

∑k
i=1 ‖gi‖

2
∗
) 1

2

, where α > 0 and δ ≥ 0 are fixed. (3.9a)

In dual averaging, we can accomplish a similar type of adaptivity in the update (3.8) using
a non-decreasing sequence of proximal functions, where we choose

ψk+1(·) :=
(
δ2 +

k∑

i=1

∥∥gi
∥∥2
∗

) 1
2

ψ(·). (3.9b)
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The analysis of the stepsize choices (3.9) is made possible by the following lemma, which
shows that it is possible to nearly minimize the bound in Proposition 3.2 without knowing
the norms ‖gk‖∗ ahead of time:

Lemma 3.2 (Auer and Gentile [12], Duchi et al. [53] Lemma 4, McMahan and Streeter
[130]). For any non-negative sequence {ak}k, where we define 0/

√
0 = 0, we have

n∑

k=1

ak√∑k
i=1 ai

≤ 2

( n∑

k=1

ak

) 1
2

.

Proof The proof is by induction. For n = 1, the result is obvious, so assume it holds for
n− 1. Define bk =

∑k
i=1 ak. Then

n∑

k=1

ak√∑k
i=1 ai

=
n−1∑

k=1

ak√∑k
i=1 ai

+
an√
bn
≤ 2
√
bn − an +

an√
bn
,

the inequality following from the inductive hypothesis. The concavity of x 7→ √x implies (via
the first-order concavity inequality) that

√
y ≤ √x+(2

√
x)−1(y−x), and setting y = bn−an

and x = bn gives 2
√
bn − an ≤ 2

√
bn − an/

√
bn, implying the lemma.

Using Lemma 3.2, we obtain the following corollary to Propositions 3.2 and 3.3. See
Section 3.5.3 for a proof of the corollary.

Corollary 3.1. Define θ̂ = 1
n

∑n
k=1 θ

k. For the mirror descent update (3.6), under the
conditions of Proposition 3.2, the stepsize choice (3.9a) with δ2 = 0 yields

E[f(θ̂)− f(θ∗)] ≤ 2max{α, α−1}rψ
n

E

[( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

]
. (3.10a)

For the dual averaging update (3.8), under the conditions of Proposition 3.3, the proximal
choice (3.9b) and any choice of δ such that δ2 ≥ E[‖∂F (θ;X)‖2∗] for all θ ∈ Θ yields

E[f(θ̂)− f(θ∗)] ≤ 2max{α, α−1}rψ
n

E

[( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

]
+
δrψ
αn

. (3.10b)

The corollary shows that it is possible to (essentially) achieve the optimal convergence
guarantee—to within a numerical constant factor of

√
2—of the “best” fixed stepsize se-

quence. This is a heuristic statement, as an adaptive choice of stepsizes may change the
observed gradient norm terms, but the corollary does show how the stepsize choice (3.9a)
is robust: so long as the radius of the optimization domain Θ is known, the mirror descent
or dual averaging methods do not need to know anything about the norms of the gradients.
The method adapts to these gradient sizes.
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3.2.2 Adaptive gradient (AdaGrad) algorithms and sparse data

The methods of the preceding section offer a limited type of adaptation to problem instances:
they look only at the sizes of the gradient norms ‖g‖. In many applications of online
and stochastic optimization, however, different dimensions may exhibit fairly heterogeneous
behavior. For a motivating set of problems, consider statistical learning problems for which
the input instances are of very high dimension, yet within any particular instance only a
few features are non-zero. It is often the case, however, that infrequently occurring features
are highly informative and discriminative. The informativeness of rare features has led
practitioners to craft domain-specific feature weightings, such as TF-IDF [157], which pre-
emphasize infrequently occurring features. As one example, consider a text classification
problem: data x ∈ Rd represents words appearing in a document, and we wish to minimize
a logistic loss F (θ; x) = log(1+ exp(〈x, θ〉)) on the data (we encode the label implicitly with
the sign of x). While instances may be very high dimensional, in any given instance, very
few entries of x are non-zero [126].

From a modelling perspective, it thus makes sense to allow a dense predictor θ: any non-
zero entry of x is potentially relevant and important. In a sense, this is dual to the standard
approaches to high-dimensional problems; one usually assumes that the data x may be dense,
but there are only a few relevant features, and thus a parsimonious model θ is desirous [35].
So while such sparse data problems are prevalent—natural language processing, information
retrieval, and other large data settings all have significant data sparsity—they do not appear
to have attracted as much study as their high-dimensional “duals” of dense data and sparse
predictors.

Such problems have led us [53] and McMahan and Streeter [130] to develop algorithms
that dynamically incorporate knowledge of the geometry of the data observed in earlier itera-
tions to perform more informative gradient-based learning. Informally, these procedures give
frequently occurring features very low learning rates and infrequent features high learning
rates, where the intuition is that each time an infrequent feature is seen, the learner should
“take notice.” Thus, the adaptation facilitates finding and identifying very predictive but
comparatively rare features.

The AdaGrad algorithm [53, 130] is a slightly more complicated extension of the pre-
ceding stochastic gradient methods. It maintains a diagonal matrix S, initialized as δ2Id×d,
where upon receiving a new data point x, AdaGrad performs the following: it computes
gk = g(θk; x) ∈ ∂F (θk; x), then updates

Sk+1
j = Skj + (gkj )

2 for j ∈ [d],

where Sj denotes the jth entry of the diagonal of S. We let G = S
1
2 denote the square root

of the diagonal matrix S (so that Gk = (Sk)
1
2 ). Depending on whether the dual averaging

or stochastic gradient descent (SGD) variant is being used, AdaGrad performs one of two
updates. In the dual averaging case, it maintains the dual vector zk, which is updated by
zk = zk−1 + gk; in the SGD case, the parameter θk is maintained. The updates for the two
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cases are then

θk+1 = argmin
θ∈Θ

{〈
gk, θ

〉
+

1

2α

〈
θ − θk, Gk(θ − θk)

〉}

for stochastic gradient descent and

θk+1 = argmin
θ∈Θ

{〈
zk, θ

〉
+

1

2α

〈
θ,Gkθ

〉}

for dual averaging, where α is a stepsize.
Showing the convergence of AdaGrad using our prior results, specifically Proposi-

tions 3.2 and 3.3 and Lemma 3.2, is not terribly difficult. In particular, letting θ∗ ∈
argminθ∈Θ f(θ), if we have r∞ ≥ supθ∈Θ ‖θ − θ∗‖∞, then choosing α = r∞ yields the fol-

lowing result. After n samples Xk, the averaged parameter vector θ̂(n) = 1
n

∑n
k=1 θ

k of
AdaGrad satisfies

E[f(θ̂(n))]− inf
θ∈Θ

f(θ) ≤ 3

2

r∞E[tr(Gn)]

n
. (3.11)

For a full proof for both dual averaging and the standard stochastic gradient variants, see,
for example, Sections 1.3 and Theorem 5 of Duchi et al. [53]. For completeness, we include
a proof of inequality (3.11) for the SGD case in Section 3.5.4. Specializing this bound to
the case of sparse data, we arrive at a bound that we will show presently is sharp. Let
g(θ;X) ∈ ∂F (θ;X) be a measurable (sub)gradient selection, and let us assume that for
all θ ∈ Θ, we have P (gj(θ;X) 6= 0) ≤ pj and |gj(θ;X)| ≤ M with probability 1. Then
inequality (3.11) specializes to

E[f(θ̂(n))]− inf
θ∈Θ

f(θ) ≤ 3

2

r∞M√
n

d∑

j=1

√
pj. (3.12)

In the next section we see that this rate is optimal.

3.3 A few optimality guarantees

Having given, in the preceding sections, a general exposition of some stochastic gradient-
based procedures for optimization, we now investigate some of their optimality properties.
We use the minimax excess risk measure (2.3), which we recall is

Mn(Θ,P , F ) := inf
θ̂
sup
P∈P

{
EP

[
fP (θ̂(X1, . . . , Xn))

]
− inf

θ∈Θ
fP (θ)

}

where fP = EP [F (θ;X)], as our evaluation metric. Our techniques in this section build off
of those developed by Agarwal et al. [6], who in turn were inspired by Nemirovski and Yudin
[134]. Using our coming results, we provide several optimality guarantees. Specifically,
stochastic gradient descent, mirror descent, and dual averaging—including their adaptive
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stepsize variants—are optimal, as is AdaGrad: to within numerical constant factors, their
rates of convergence are unimprovable. We show problems for which each attains the best
possible rate of convergence, for AdaGrad showing that it enjoys optimality properties in
those situations in which the data is sparse. These optimality guarantees can provide provide
some guidance in choosing which of stochastic gradient descent, mirror descent, and dual
averaging is likely to be effective for a given problem.

Let us give a more precise characterization of the set of optimization problems we consider
to provide the first of the two lower bounds we give. For the next proposition, we let P consist
distributions supported on X = {−1, 0, 1}d, and we let pj := P (Xj 6= 0) be the marginal
probability of appearance of feature j (j ∈ {1, . . . , d}). Assume that Θ ⊃ [−r∞, r∞]d, that
is, Θ contains the ℓ∞ ball of radius r∞. Now given x ∈ {−1, 0, 1}d, define the loss

F (θ; x) :=
d∑

j=1

Mj|xj||θj − r∞xj|.

This is essentially a multi-dimensional median, where one suffers a loss only when component
j of the vector x is non-zero. With this loss, we obtain the following proposition, whose proof
we provide in Section 3.5.5.

Proposition 3.4. Let the conditions of the preceding paragraph hold. Let r∞ be a constant
such that Θ ⊃ [−r∞, r∞]d. Then

Mn(Θ,P , F ) ≥
1

8
r∞

d∑

j=1

Mj min

{
pj,

√
pj√

n log 3

}
.

We provide a few remarks here. First, this minimax lower bound essentially matches
the AdaGrad rate of convergence (3.12), showing the optimality of AdaGrad (we discuss
this more subsequently). Second, an inspection of the proof shows that we may assume the
coordinates Xj are independent of one another in Proposition 3.4.

Third, Proposition 3.4 implies Theorem 1 of Agarwal et al. [6] as a special case, giving
their result with somewhat sharper constants. Indeed, let pj = 1/d and Mj = M for all j,
let the coordinates of X be independent, and assume for simplicity that d ≤ n. Then we
have the minimax lower bound

r∞M
√
d

8
√
n log 3

,

while the gradient mapping g(θ; x) ∈ ∂F (θ; x) satisfies E[‖g(θ;X)‖21] ≤ 2M2 for all θ ∈ Rd.
By inspection, this is a sharper version of the bound (9) of Agarwal et al. [6], and it implies
optimality guarantees for several stochastic gradient methods. For example, if Θ contains
an ℓ2-ball, that is, Θ ⊃ {θ ∈ Rd : ‖θ‖2 ≤ r2}, then the set of optimization problems
satisfying the conditions of Proposition 3.1 has minimax lower bound scaling as r2M/

√
n;

the convergence rate (3.4) is sharp to within a numerical constant factor of 8
√
log 3. We

recover Agarwal et al.’s bound (10) by taking pj = 1.
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Our fourth remark is to give a corollary to Proposition 3.4 that follows when the data x
obeys a type of power law: let p0 ∈ [0, 1], and assume that P (Xj 6= 0) = p0j

−α. We have

Corollary 3.2. Let α ≥ 0. Let the conditions of Proposition 3.4 hold with Mj ≡ M for
all j, and assume the power law condition P (Xj 6= 0) = p0j

−α on coordinate appearance
probabilities. Then

(1) If d > (p0n)
1/α,

Mn(Θ,P , F ) ≥
M r∞
8

[
2

2− α

√
p0
n

(
(p0n)

2−α
2α − 1

)
+

p0
1− α

(
d1−α − (p0n)

1−α
α

)]
.

(2) If d ≤ (p0n)
1/α,

Mn(Θ,P , F ) ≥
M r∞
8

√
p0
n

(
1

1− α/2d
1−α

2 − 1

1− α/2

)
.

The proof of the corollary follows by an (omitted) integration argument.
By inspection, the AdaGrad rate (3.12) matches the lower bound in Proposition 3.4

and is thus optimal. It is interesting to note, though, that in the power law setting of
Corollary 3.2, a calculation shows that the multiplier for the SGD guarantee (3.4) becomes
r∞
√
dmax{d(1−α)/2, 1}, whileAdaGrad attains rate at worst r∞max{d1−α/2, log d} (by eval-

uation of
∑

j

√
pj). Thus for α ∈ [0, 1], the AdaGrad rate is no worse, for α > 1, the

AdaGrad rate strictly improves, and for α ≥ 2, is more than
√
d/ log d better than SGD—

an exponential improvement in the dimension. In general, the difference between the two
rates is most apparent when the Cauchy-Schwarz inequality is loose: indeed, assume that
Θ = [−r∞, r∞]d is a scaled ℓ∞-ball. In the setting of Proposition 3.4, we find the convergence
rates of AdaGrad and stochastic gradient descent are

r∞M
∑d

j=1

√
pj√

n
[AdaGrad] and

r∞M
√
d
√∑d

j=1 pj√
n

[SGD],

as the radius of the set Θ in ℓ2 norm is r∞
√
d. The Cauchy-Schwarz inequality implies that

the first bound is always tighter than the second, and may be as much as a factor of
√
d

tighter if
∑d

j=1

√
pj = O(1).

Lastly, we state without proof a minimax lower bound for high-dimensional sparse—or
nearly sparse—optimization. It is important to understand such bounds for mirror descent
methods, as they often exhibit small but non-constant dimension dependence. (We prove
similar results in the sequel.) Fix M > 0 and for x ∈ {−1, 1}d, define the linear loss
F (θ; x) = 〈θ, x〉. Let P denote the family of distributions supported on {±1}d, and assume
that Θ = {θ ∈ Θ : ‖θ‖1 ≤ r1}. We obtain the following result:
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Corollary 3.3 (Theorem 1 of Duchi, Jordan, and Wainwright [57]). Under the conditions
of the previous paragraph, we have minimax lower bound

Mn(Θ,P , F ) ≥
1

8
r1M min

{
1,

√
log(2d)

2
√
n

}
.

This bound is sharp to within constant factors; consider the mirror descent algorithm (3.6)
or the dual averaging procedure (3.8) and assume without loss of generality that d ≥ 2. The
proximal function

ψ(θ) =
1

2(p− 1)
‖θ‖2p for p = 1 +

1

log d

is 1-strongly convex with respect to the norm ‖·‖p (e.g. Ben-Tal et al. [22]), and by setting

q = 1 + log d so that p−1 + q−1 = 1, Hölder’s inequality implies

‖θ‖1 ≤ ‖θ‖p ‖1‖q = ‖θ‖p d
1

1+log d ≤ e ‖θ‖p .

Thus ψ is e−2-strongly convex with respect to the ℓ1-norm, and using ψ as the proximal
function in mirror descent (3.6) or dual averaging (3.8) gives a rate of convergence in in-
equality (3.7) identical (up to constant factors) to that in the Corollary 3.3. (See also Beck
and Teboulle [18] and Nemirovski et al. [135]).

3.4 Summary

In this chapter, we have briefly reviewed several stochastic optimization algorithms and asso-
ciated techniques for proving their convergence. Additionally, we have developed techniques
based on Assouad’s method (cf. Lemma 2.2) for proving lower bounds on the performance
of gradient-based optimization methods, exhibiting specific losses that are difficult for any
method to optimize. We have also provided insights into the AdaGrad method, giving
some of its optimality properties. In the coming chapters, we show that in spite of our
lower bounds on optimization complexity in terms of the number of gradient evaluations
(or sample observations Xk), it is possible to develop faster optimization schemes by taking
advantage of specific structures of the problem at hand. More specifically, we show that by
allowing access to parallel computation, there are scenarios in which we can attain the same
“computational” complexity in terms of gradient evaluations, but we can evaluate gradient
information substantially faster, reaping real performance benefits. In addition, in Chap-
ter 6, we extend the techniques in this section to show that when there are restrictions on
the amount of information available to the method, such as observing only function val-
ues, there may be degradation in performance, but we can still develop procedures with
optimality guarantees.
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3.5 Proofs of convergence and minimax bounds

3.5.1 Proof of Proposition 3.2

The proof of this proposition hinges on the following lemma, which capture the behavior of
a single step of the mirror descent method.

Lemma 3.3. Let the sequence {θk} be generated by the mirror descent update (3.6) for any
(arbitrary) gk. Then for any θ∗ ∈ Θ,

〈
gk, θk − θ∗

〉
≤ 1

αk

[
Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)

]
+
αk
2

∥∥gk
∥∥2
∗ .

Proof Recall (e.g. [98, 151, 32]) that for any sub-differentiable convex function h defined
on a set C, the point x ∈ C minimizes h over C if and only if there exists some g ∈ ∂h(x)
such that

〈g, y − x〉 ≥ 0 for all y ∈ C. (3.13)

Applying this to the Bregman-divergence based update (3.6), we see that θk+1 satisfies

〈
gk +

1

αk

[
∇ψ(θk+1)−∇ψ(θk)

]
, θ − θk+1

〉
≥ 0 for all θ ∈ Θ.

In particular, by choosing θ = θ∗, we obtain

〈
gk, θk+1 − θ∗

〉
≤ 1

αk

〈
∇ψ(θk+1)−∇ψ(θk), θ∗ − θk

〉
.

Via a few algebraic manipulations, we have that

〈
∇ψ(θk+1)−∇ψ(θk), θ∗ − θk

〉
= Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)−Dψ(θ

k+1, θk). (3.14)

As a consequence, we have

〈
gk, θk − θ∗

〉
=
〈
gk, θk+1 − θ∗

〉
+
〈
gk, θk − θk+1

〉

≤ 1

αk

[
Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)−Dψ(θ

k+1, θk)
]
+
〈
gk, θk − θk+1

〉

Applying the Fenchel-Young inequality, we have

〈
gk, θk − θk+1

〉
≤ αk

2

∥∥gk
∥∥2
∗ +

1

2αk

∥∥θk − θk+1
∥∥2 ,

and noting that Dψ(θ
k+1, θk) ≥ 1

2
‖θk − θk+1‖2 gives the result.
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Let ek denote the error in the subgradient estimate used in the mirror descent up-
date (3.6), so that (at the risk of some abuse of notation) setting ∇f(θk) = E[g(θk;Xk) | θk]
to be the expected subgradient, we have ek = ∇f(θk) − gk = ∇f(θk) − g(θk;Xk). Then by
definition of the subgradient of the risk f , we have

f(θk)− f(θ∗) ≤
〈
∇f(θk), θk − θ∗

〉
=
〈
gk, θk − θ∗

〉
+
〈
ek, θk − θ∗

〉
. (3.15)

As a consequence, applying Lemma 3.3 gives

f(θk)− f(θ∗) ≤ 1

αk

[
Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)

]
+
αk
2

∥∥gk
∥∥2
∗ +

〈
ek, θk − θ∗

〉
.

By definition of the subgradient gk, the selection of the subgradient ∇f(θ), and the σ-fields
Fk, we have

E[
〈
ek, θk − θ∗

〉
] = E

[
E[
〈
ek, θk − θ∗

〉
| Fk−1]

]
= E

[〈
E[ek | Fk−1], θ

k − θ∗
〉]

= 0.

Thus, summing inequality (3.15) and taking expectations yields

n∑

k=1

E
[
f(θk)− f(θ∗)

]
≤ E

[ n∑

k=1

1

αk

[
Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)

] ]
+ E

[ n∑

k=1

αk
2

∥∥gk
∥∥2
∗

]
.

Rearranging the first summed divergences, we have

n∑

k=1

1

αk

[
Dψ(θ

∗, θk)−Dψ(θ
∗, θk+1)

]

=
n∑

k=2

(
1

αk
− 1

αk−1

)
Dψ(θ

∗, θk) +
1

α1

Dψ(θ
∗, θ1)− 1

αn+1

Dψ(θ
∗, θn+1)

≤
n∑

k=2

(
1

αk
− 1

αk−1

)
r2ψ +

1

α1

r2ψ =
1

αn
r2ψ,

where for the last inequality we used the compactness assumption of the proposition and the
fact that αk−1 ≥ αk.

3.5.2 Proof of Lemma 3.1

To prove this lemma, we recall a definition state an auxiliary result, which is essentially
standard. The result says that as ψk is strongly convex with respect to the norm ‖·‖ψk

, its
dual is smoothly differentiable and, more strongly, has Lipschitz derivative with respect to
the dual norm ‖·‖ψ∗

k
. For a proof of this type of standard result, see, for example, the book of

Hiriart-Urruty and Lemaréchal [98, Chapter X]; the result follows by algebraic manipulations
of the first-order optimality conditions for the update (3.8).



41

Lemma 3.4. The function ψ∗
k is 1-strongly smooth with respect to ‖·‖ψ∗

k
, meaning that

‖∇ψ∗
k(z)−∇ψ∗

k(z
′)‖ψk

≤ ‖z − z′‖ψ∗

k
,

and moreover ∇ψ∗
k(−zk−1) = θk.

We also recall the standard fact [e.g. 98] that if a function h has Lipschitz continuous deriva-
tive with respect to a norm ‖·‖, then h(θ′) ≤ h(θ) + 〈∇h(θ), θ′ − θ〉 + 1

2
‖θ − θ′‖2 for all

θ, θ′ ∈ domh.
Our proof is similar to other analyses of dual averaging (e.g. [138, 53]), but we track the

changing time indices. We also assume without loss of generality that α = 1; indeed, the
conjugate of θ 7→ α−1ψ(θ) is αψ∗(·). For shorthand throughout this proof, we define the
running sum g1:k :=

∑k
i=1 g

i. First, we note by convexity and the definition of gk ∈ ∂F (θ; xk)
that

n∑

k=1

[
F (θk; xk)− F (θ∗; xk)

]
≤

n∑

k=1

〈
gk, θk − θ∗

〉
. (3.16)

By definition of ψn and the conjugate ψ∗
k(z) = supθ∈Θ{〈z, θ〉 − ψk(θ)}, we find that

n∑

k=1

〈
gk, θk − θ∗

〉
=

n∑

k=1

〈
gk, θk

〉
+

n∑

k=1

〈
−gk, θ∗

〉
+ ψn(θ

∗)− ψn(θ∗)

≤ ψn(θ
∗) + ψ∗

n(−g1:n) +
n∑

k=1

〈
gk, θk

〉
. (3.17)

Now, by applying Lemma 3.4 and the definition of 1-strongly-smooth, we have that

ψ∗
k(−g1:k) ≤ ψ∗

k(−g1:k−1) +
〈
−gk,∇ψ∗

k(−g1:k−1)
〉
+

1

2

∥∥gk
∥∥2
ψ∗

k

.

By construction of θ and θ̃, we have θk = ∇ψ∗
k(−zk−1) and θ̃k = ∇ψ∗

k(−g1:k−1). Thus,
rearranging the preceding display, we have

0 ≤
〈
−gk, θ̃k

〉
− ψ∗

k(−g1:k)) + ψ∗
k(−g1:k−1) +

1

2

∥∥gk
∥∥2
ψ∗

k

,

and adding
〈
gk, θk

〉
to both sides of the above expression gives

〈
gk, θk

〉
≤
〈
gk, θk − θ̃k

〉
− ψ∗

k(−g1:k) + ψ∗
k(−g1:k−1) +

1

2

∥∥gk
∥∥2
ψ∗

k

. (3.18)
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Thus we obtain the inequalities
n∑

k=1

〈
gk, θk − θ∗

〉

(i)

≤ ψk(θ
∗) + ψ∗

n(−g1:n)) +
n∑

k=1

〈
gk, θk

〉

(ii)

≤ ψn(θ
∗) + ψ∗

n(−g1:n) +
n∑

k=1

[ 〈
gk, θk − θ̃k

〉
− ψ∗

k(−g1:k) + ψ∗
k(−g1:k−1) +

1

2

∥∥gk
∥∥2
ψ∗

k

]

= ψn(θ
∗) +

n∑

k=1

[ 〈
gk, θk − θ̃k

〉
+ ψ∗

k(−g1:k−1)− ψ∗
k−1(−g1:k−1) +

1

2

∥∥gk
∥∥2
ψ∗

k

]
+ ψ∗

0(0),

where for step (i) we have applied inequality (3.17), step (ii) follows from the bound (3.18),
and the last equality follows by re-indexing terms in the sum. Combining the above sum
with the first-order convexity inequality (3.16) proves the lemma.

3.5.3 Proof of Corollary 3.1

The proof of inequality (3.10a) is nearly immediate. The choice (3.9a), when applied in
Proposition 3.2, yields

E[f(θ̂)− f(θ∗)] ≤ E

[
rψ

nα

( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

+
αrψ
2n

n∑

k=1

∥∥gk
∥∥2
∗

(
∑k

i=1 ‖gi‖
2
∗)

1
2

]
.

Applying Lemma 3.2 and noting that a+ b ≤ 2max{a, b} gives the result.
For inequality (3.10b), we require a bit more work. Without loss of generality, we assume

that ψ(θ0) = 0. By the adaptive choice of the sequence of proximal functions, we have
ψk ≥ ψk−1 for all k, and consequently, ψ∗

k ≤ ψ∗
k−1 for all k. Inspecting Lemma 3.1, we thus

obtain
n∑

k=1

[
F (θk;Xk)− F (θ∗;Xk)

]
≤ α

2

n∑

k=1

∥∥gk
∥∥2
ψ∗

k

+
1

α
ψn(θ

∗)

In addition, as proximal functions ψk are only scaled multiples of ψ, the dual norms ‖·‖ψ∗

k
are

similarly scaled: we have ‖z‖ψ∗

k
= rψ(δ

2 +
∑k−1

i=1 ‖gi‖
2
∗)

− 1
2 ‖z‖∗. Thus, the preceding display

becomes
n∑

k=1

[
F (θk;Xk)− F (θ∗;Xk)

]
≤ αrψ

2

n∑

k=1

∥∥gk
∥∥2
∗

(δ2 +
∑k−1

i=1 ‖gi‖
2
∗)

1
2

+
1

αrψ

(
δ2 +

n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

ψ(θ∗)

≤ αrψ

( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

+
1

αrψ
r2ψ

( n∑

k=1

∥∥gk
∥∥2
∗

) 1
2

+
δr2ψ
αrψ

,

where we applied the adaptivity Lemma 3.2. Taking expectations, averaging, and using the
convexity of the risk f gives the result.
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3.5.4 Derivation of inequality (3.11)

We focus on the mirror descent case; see Duchi et al. [53] for the full arguments. For a positive
definite matrix A, we recall the definition of the Mahalanobis norm ‖x‖A via ‖x‖2A = 〈x,Ax〉.
Now, let ψk(θ) =

1
2
‖θ‖2Gk . Then the norm ‖·‖ψk

is the Mahalanobis norm ‖·‖Gk , with dual
norm defined by ‖g‖ψ∗

k
= ‖g‖(Gk)−1 . Then Lemma 3.3 implies

F (θk;Xk)− F (θ∗;Xk) ≤
1

2α

[∥∥θk − θ∗
∥∥2
Gk −

∥∥θk+1 − θ∗
∥∥2
Gk

]
+
α

2

∥∥gk
∥∥2
(Gk)−1

Summing this inequality gives

n∑

k=1

[F (θk;Xk)− F (θ∗;Xk)] ≤
1

2α

n∑

k=1

[∥∥θk − θ∗
∥∥2
Gk −

∥∥θk+1 − θ∗
∥∥2
Gk

]
+
α

2

n∑

k=1

∥∥gk
∥∥2
(Gk)−1

≤ 1

2α

n∑

k=1

[∥∥θk − θ∗
∥∥2
Gk −

∥∥θk+1 − θ∗
∥∥2
Gk

]
+ α

d∑

j=1

( n∑

k=1

(gkj )
2

) 1
2

,

where we apply Lemma 3.2. For the first sum in the preceding bound, we note that since G
is a diagonal matrix and Gk � Gk−1,

n∑

k=1

[∥∥θk − θ∗
∥∥2
Gk −

∥∥θk+1 − θ∗
∥∥2
Gk

]

=
n∑

k=2

[∥∥θk − θ∗
∥∥2
Gk −

∥∥θk − θ∗
∥∥2
Gk−1

]
+
∥∥θ1 − θ∗

∥∥2
G1 −

∥∥θn+1 − θ∗
∥∥2
Gn

≤
n∑

k=2

∥∥θk − θ∗
∥∥2
∞ tr(Gk −Gk−1) +

∥∥θ1 − θ∗
∥∥2
∞ tr(G1) ≤ r2∞ tr(Gn).

In particular, we have the convergence guarantee

n∑

k=1

[F (θk;Xk)− F (θ∗;Xk)] ≤
r2∞
2α

tr(Gn) + α tr(Gk).

Set α = r∞ and take expectations to complete the proof.

3.5.5 Proof of Proposition 3.4

Our proof proceeds in a few steps: we first define our family of loss functions, after which
we perform an essentially standard reduction of the estimation (optimization) problem to
testing. Following this step, we carefully lower bound the probabilities of error in our multiple
hypothesis testing problem (in a manner similar to Assouad’s method in Chapter 2.2.4) to
obtain the desired statement of the proposition. For simplicity in the proof, we assume that
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Mj =M for all j and use the shorthand r for r∞. We also note that any subscript j denotes a
coordinate subscript of a vector and subscripting by k denotes the subscript of an observation,
so Xj ∈ {−1, 0, 1} is the jth coordinate of X ∈ {−1, 0, 1}d, while Xk ∈ {−1, 0, 1}d denotes
the kth observation.

From estimation to testing Given x ∈ {−1, 0, 1}d, recall that the loss is defined as

F (θ; x) :=M
d∑

j=1

|xj||θj − rxj|.

Letting pj = P (Xj 6= 0), p+j = P (Xj = 1), and p−j = P (Xj = 1), we obtain that such a P ,
the associated risk fP is

fP (θ) := EP [F (θ;X)] =M

d∑

j=1

(
p+j |θj − r|+ p−j |θj + r|

)
,

so the objective f behaves like a weighted 1-norm type of quantity and its minimizer is a
multi-dimensional median.

Now we proceed through a reduction of estimation to testing. Fix δj > 0 for j ∈ {1, . . . , d}
(we optimize these choices later). Let V = {−1, 1}d, and for a fixed v ∈ V let Pv be the
distribution supported on {−1, 0, 1}d whose (independent) coordinate marginals are specified
by

Pv(Xj = 1) = pj
1 + δjvj

2
and Pv(Xj = −1) = pj

1− δjvj
2

. (3.19)

Now, we claim that for any estimator θ̂, we have the following analogue of the 2δ-Hamming
separation (2.17) that underlies Assouad’s method (cf. Lemma 2.2): for any estimator θ̂,

sup
P∈P

EP [fP (θ̂)− inf
θ∈Θ

fP (θ)] ≥ max
v∈V

EPv [fPv(θ̂)− inf
θ∈Θ

fPv(θ)]

≥M rmax
v∈V

d∑

j=1

pjδjPv

(
sign

(
θ̂j(X1, . . . , Xn)

)
6= vj

)
, (3.20)

where the last probability distribution is the product P n
v over the sample X1, . . . , Xn of size

n. To see that inequality (3.20) holds, define

θ∗v = argmin
θ∈Θ

EPv [F (θ;X)] = rv,

the last inequality following by inspection of the loss. We then have

fPv(θ̂)− inf
θ∈Θ

fPv(θ)

=M
d∑

j=1

pj

[
1 + δj

2

∣∣∣θ̂j − rvj

∣∣∣− 1− δj
2

∣∣∣θ̂j + rvj

∣∣∣ 1 + δj
2

∣∣θ∗v,j − rvj
∣∣− 1− δj

2

∣∣θ∗v,j + rvj
∣∣
]
.
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By inspecting the cases for the possible values of sign(θ̂j), we have

1 + δj
2

∣∣∣θ̂j − rvj

∣∣∣− 1− δj
2

∣∣∣θ̂j + rvj

∣∣∣+ 1 + δj
2

∣∣θ∗v,j − rvj
∣∣− 1− δj

2

∣∣θ∗v,j + rvj
∣∣

≥ rδj1
{
sign(θ̂j) 6= vj

}
.

Taking expectations of this quantity gives the result (3.20).

Bounding the test error Recalling the stronger variant of Assouad’s Lemma 2.2, we see
that if we let P n

±j = 21−d
∑

v:vj=±1 P
n
v be the mixture of several n-fold product distributions,

then inequality (3.20) implies the bound

max
v∈V

d∑

j=1

pjδjPv

(
sign(θ̂j(X1, . . . , Xn)) 6= vj

)
≥ 1

2

d∑

j=1

pjδj
∑

v∈V

(
1−

∥∥P n
+j − P n

−j
∥∥
TV

)
.

Using that the total variation distance is convex, if we define Pv,j to be the distrbution (3.19)
with vj constrained to be +1 (and similarly for Pv,−j), this bound implies the following (fairly
weak) lower bound:

max
v∈V

d∑

j=1

pjδjPv

(
sign(θ̂j(X1:n)) 6= vj

)
≥

d∑

j=1

pjδj
1

2|V|
∑

v∈V

(
1−

∥∥P n
v,j − P n

v,−j
∥∥
TV

)
. (3.21)

Simple hypothesis tests For the majority of the remainder of the proof, we derive bounds
on ‖P n

v,j − P n
v,−j‖TV to apply inequalities (3.20) and (3.21). Using Pinsker’s inequality, we

have
∥∥P n

v,j − P n
v,−j
∥∥2
TV
≤ 1

2
Dkl

(
P n
v,j||P n

v,−j
)
≤ n

2
Dkl (Pv,j||Pv,−j) .

Noting that Pv is a product distribution over the coordinates of the samples x (recall the
construction (3.19)), we have the equality

Dkl (Pv,j||Pv,−j) = pj

[
1 + δj

2
log

1 + δj
1− δj

+
1− δj

2
log

1− δj
1 + δj

]
= pj

[
δj log

1 + δj
1− δj

]
.

Now we use the fact that δ log 1+δ
1−δ ≤ 2 log(3)δ2 for δ ≤ 1/2, so

∥∥P n
v,j − P n

v,−j
∥∥2
TV
≤ npjδ

2
j log(3) for δj ∈ [0, 1/2]. (3.22)

Combining inequalities (3.20), (3.21) and (3.22), using the fact that θ̂ was an arbitrary
estimator, we find the minimax lower bound

1

M r
Mn(Θ,P , F ) ≥

1

2

d∑

j=1

pjδj
1

|V|
∑

v∈V

[
1− δj

√
npj log(3)

]

=
1

2

d∑

j=1

pjδj

[
1− δj

√
npj log(3)

]
. (3.23)
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Inequality (3.23) holds for all δj ∈ [0, 1/2], so we may maximize over such δj. By setting

δj = min

{
1

2
,

1

2
√
npj log(3)

}
,

we have

pjδj

[
1− δj

√
npj log(3)

]
≥ pj min

{
1

4
,

1

4
√
log 3

1
√
npj

}
.

In particular, our simplified Assouad analogue (3.23) implies

sup
P

EP [fP (θ̂)− inf
θ∈Θ

fP (θ)] ≥
M r

8

d∑

j=1

min

{
pj,

√
pj√

n log 3

}

for any estimator θ̂ based on the n observations Xk.
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Chapter 4

Data sparsity, asynchrony, and faster
stochastic optimization

In this chapter, we investigate a particular structure of optimization problems that allows
faster solution of stochastic optimization problems of the form (3.1) outlined in the previous
chapter. In particular, we study stochastic optimization problems when the data is sparse,
which is in a sense dual to the current understanding of high-dimensional statistical learning
and optimization. We highlight both the difficulties—in terms of increased sample complex-
ity that sparse data necessitates, as demonstrated in the previous chapter—and the potential
benefits, in terms of allowing parallelism and asynchrony in the design of algorithms. Lever-
aging sparsity allows us to develop (minimax optimal in terms of the number of gradient
evaluations) parallel and asynchronous algorithms that enjoy a linear speedup in the amount
of parallel computation available. We also provide experimental evidence complementing our
theoretical results on several medium to large-scale learning tasks.

4.1 Problem setting

First, we recall that we wish to solve the following optimization problem:

minimize
θ∈Θ

f(θ) := E[F (θ;X)] =

∫

X
F (θ; x)dP (x), (4.1)

where {F (·; x)}x∈X is a collection of real-valued convex functions, each of whose domains
contains the closed convex set Θ ⊂ Rd. As before, we assume that we have access to a
measurable (sub)gradient oracle

g : Θ×X → Rd satisfying g(θ; x) ∈ ∂F (θ; x)

for each θ ∈ Θ, x ∈ X .
In this chapter, we investigate the consequences of data sparsity, where the sampled data

x is sparse. In the settings considered here, this means we assume the observations x are in
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Rd, and if we define the support supp(x) of a vector x to the set of indices of its non-zero
components (and the support supp(C) of a set C ⊂ Rd to be the union ∪x∈C supp(x)), we
assume that

supp g(θ; x) ⊂ supp ∂F (θ; x) ⊂ supp x. (4.2)

The sparsity condition (4.2) means that F (θ; x) does not “depend” on the values of θj for
indices j such that xj = 0.1 This type of data sparsity is prevalent in statistical optimization
problems and machine learning applications, though in spite of its prevalence, study of such
problems has been somewhat limited.

In this chapter, we investigate algorithms and their inherent limitations for solving prob-
lem (4.1) under natural conditions on the data generating distribution. Recent work in
the optimization and machine learning communities has shown that data sparsity can be
leveraged to develop parallel optimization algorithms [141, 149, 166], but the authors do
not study the statistical effects of data sparsity, and there are no notions of optimality in
their work. Moreover, each of the previous works requires the objective (4.1) to be smooth
(have Lipschitz continuous gradient), which in some scenarios is a limitation. In the previous
chapter, we showed how the AdaGrad algorithms of Duchi et al. [53] and McMahan and
Streeter [130] adapt to data geometry to address problems in sparse data regimes, such as
those satisfying (4.2), and have certain (theoretical) optimality guarantees. Whether they
can leverage parallel computing, as in the papers [141, 166], has not been as clear.

To that end, in this chapter we study how sparsity may be leveraged in parallel computing
frameworks to give substantially faster algorithms still achieving optimal sample complexity
in terms of the number of observations x used. We develop two new algorithms, asynchronous
dual averaging (AsyncDA) and asynchronous AdaGrad (AsyncAdaGrad), which allow
asynchronous parallel solution of the problem (4.1) for general convex losses F and Θ. Com-
bining insights of Niu et al.’s Hogwild! [141] with a new analysis, we prove our algorithms
can achieve linear speedup in the number of processors while maintaining optimal statistical
guarantees. We also give experiments on text-classification and web-advertising tasks to
illustrate the benefits of the new algorithms.

4.2 Parallel and asynchronous optimization with

sparsity

As we note in the previous section, recent work, for example, that by Niu et al. [141] and
Takáč et al. [166], has suggested that sparsity can yield benefits in our ability to parallelize
stochastic gradient-type algorithms. Given the optimality of AdaGrad-type algorithms,
(recall Chapter 3.3) it is natural to focus on their parallelization in the hope that we can

1Formally, if we define πx as the coordinate projection that zeros all indices j of its argument where
xj = 0, then F (πx(θ);x) = F (θ;x) for all θ, x. This is implied by standard first order conditions for
convexity [98, Chapter VI.2]
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leverage their ability to “adapt” to sparsity in the data. To provide the setting for our
further algorithms, we first revisit Niu et al.’s Hogwild!.

Niu et al.’s Hogwild! algorithm [141] is an asynchronous (parallelized) stochastic gra-
dient algorithm that proceeds as follows. To apply Hogwild!, we must assume the domain
Θ in problem (4.1) is a product space, that it decomposes as Θ = Θ1 × · · · × Θd, where
Θj ⊂ R. Fix a stepsize α > 0. Then a pool of processors, each running independently,
performs the following updates asynchronously to a centralized vector θ:

1. Sample X ∼ P

2. Read θ and compute g = g(θ;X) ∈ ∂θF (θ;X)

3. For each j s.t. gj 6= 0, update θj ← ΠΘj
(θj − αgj)

Here ΠΘj
denotes projection onto the jth coordinate of the domain Θ, and we use← to denote

the update as it may be done asynchronously—there is no true time index. The difficulty
in Hogwild! is that in step 2, the parameter θ at which g is calculated may be somewhat
inconsistent—it may have received partial gradient updates from many processors—though
for appropriate problems, this inconsistency is negligible. Indeed, Niu et al. [141] show a
linear speedup in optimization time as the number of independent processors grow; they show
this empirically in many scenarios, and they provide a proof under the somewhat restrictive
assumptions that there is at most one non-zero entry in any gradient g, the risk f is strongly
convex, and that f has Lipschitz continuous gradient.

4.2.1 Asynchronous dual averaging

One of the weaknesses of Hogwild! is that, as written it appears to only be applicable
to problems for which the domain Θ is a product space, and the known analysis assumes
that ‖g‖0 = 1 for all gradients g. In effort to alleviate these difficulties, we now develop and
present our asynchronous dual averaging algorithm (recall the update (3.8)), AsyncDA.
In AsyncDA, instead of asynchronously updating a centralized parameter vector θ, we
maintain a centralized dual vector z. A pool of processors performs asynchronous additive
updates to z, where each processor repeatedly and independently performs the following
updates:

1. Read z and compute θ := argminθ∈Θ
{
〈z, θ〉+ 1

α
ψ(θ)

}
// Implicitly increment “time”

counter k and let θk = θ

2. Sample X ∼ P and let g = g(θ;X) ∈ ∂θF (θ;X) // Let gk = g.

3. For j ∈ [d] such that gj 6= 0, update zj ← zj + gj

The actual computation of the vector θ in asynchronous dual averaging (AsyncDA)
is performed locally on each processor in step 1 of the algorithm, so the algorithm can
be executed with any proximal function ψ and domain Θ. The only communication point
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between any of the processors is the addition operation in step 3. As noted by Niu et al.
[141], this operation can often be performed atomically on modern processors.

In our analysis of AsyncDA, and in our subsequent analysis of the adaptive methods,
we require a measurement of time elapsed. With that in mind, we let k denote an implicitly
existing time index, so that θk denotes the vector θ ∈ Θ computed in the “kth step” 1 of
the AsyncDA algorithm, that is, whichever is the kth θ actually computed by any of the
processors. We note that this quantity exists and is recoverable from the algorithm, and it
is also possible to track the running sum

∑k
i=1 θ

i.
Additionally, we require two assumptions that underly our analysis.

Assumption 4A. There is an upper bound m on the delay of any processor. In addition,
for each j ∈ [d] there is a constant pj ∈ [0, 1] such that P (Xj 6= 0) ≤ pj.

We also require an assumption about the continuity (Lipschitzian) properties of the loss
functions being minimized; the assumption amounts to a second moment constraint on the
sub-gradients of the instantaneous F along with a rough measure of the sparsity of the
gradients.

Assumption 4B. There exist constants M and (Mj)
d
j=1 such that the following bounds hold

for all θ ∈ Θ: E[‖g(θ;X)‖22] ≤ M2, and for each j ∈ [d] we have E[|gj(θ;X)|] ≤ pjMj.

With these definitions, we have the following theorem, which captures the convergence
behavior of AsyncDA under the assumption that Θ is a Cartesian product, meaning that
Θ = Θ1 × · · · × Θd, where Θj ⊂ R, and that ψ(θ) = 1

2
‖θ‖22. Note the algorithm itself can

still be efficiently parallelized for more general convex Θ, even if the theorem does not apply.
In the theorem, we superscript the observations Xk, as the coordinates Xk

j are important
throughout the analyses.

Theorem 4.1. Let Assumptions 4A and 4B and the conditions in the preceding paragraph
hold. Then for any θ∗ ∈ Θ,

E

[ n∑

k=1

F (θk;Xk)− F (θ∗;Xk)

]
≤ 1

2α
‖θ∗‖22 +

α

2
TM2 + αTm

d∑

j=1

p2jM
2
j .

We provide the proof of Theorem 4.1 in Section 4.4.1.
As stated, the theorem is somewhat unwieldy, so we provide a corollary and a few remarks

to explain and simplify the result. Under a more stringent condition that |gj(θ; x)| ≤ Mj ,

Assumption 4A implies E[‖g(θ;X)‖22] ≤
∑d

j=1 pjM
2
j . Thus, without loss of generality for

the remainder of this section we take M2 =
∑d

j=1 pjM
2
j , which serves as an upper bound on

the Lipschitz continuity constant of the objective function f . We then obtain the following
corollary.
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Corollary 4.1. Define θ̂(n) = 1
n

∑n
k θ

k and set α = ‖θ∗‖2 /M
√
n. Then

E[f(θ̂(n))− f(θ∗)] ≤ M ‖θ∗‖2√
n

+m
‖θ∗‖2
2M
√
n

d∑

j=1

p2jM
2
j

Corollary 4.1 is almost immediate. To see the result, note that since Xk is independent of
θk, we have E[F (θk;Xk) | θk] = f(θk); applying Jensen’s inequality to f(θ̂) and performing
an algebraic manipulation give the corollary.

If the data is suitably “sparse,” meaning that pj ≤ 1/m (which may also occur if the
data is of relatively high variance in Assumption 4B) the bound in Corollary 4.1 simplifies
to

E[f(θ̂)(n)− f(θ∗)] ≤ 3

2

M ‖θ∗‖2√
n

=
3

2

√∑d
j=1 pjM

2
j ‖θ∗‖2√

n
(4.3)

which is the convergence rate of stochastic gradient descent (and dual averaging) even in
non-asynchronous situations (3.4). (More generally, if

∑d
j=1 p

2
jM

2
j ≤ 1

m
M2, we obtain the

same inequality (4.3)). In non-sparse cases, setting α ∝ ‖θ∗‖2 /
√
mM2T in Theorem 4.1

recovers the bound

E[f(θ̂(n))− f(θ∗)] ≤ O(1)√m · M ‖θ
∗‖2√
n

.

The convergence guarantee (4.3) shows that after n gradient updates, we have error scaling
1/
√
n; however, if we have N processors, then updates can occur roughly N times as quickly,

as all updates are asynchronous. Thus, in time scaling as n/N , we can evaluate n gradients:
a linear speedup.

4.2.2 Asynchronous AdaGrad

We now turn to extending AdaGrad to asynchronous settings, developing AsyncAda-

Grad (asynchronousAdaGrad). As in theAsyncDA algorithm, AsyncAdaGradmain-
tains a shared dual vector z among the processors, which is the sum of gradients observed;
AsyncAdaGrad also maintains the matrix S, which is the diagonal sum of squares of
gradient entries (recall Section 3.2.2). The matrix S is initialized as diag(δ2), where δj ≥ 0
is an initial value. Each processor asynchronously performs the following iterations:

1. Read S and z and set G = S
1
2 . Compute θ := argminθ∈Θ

{
〈z, θ〉+ 1

2α
〈θ,Gθ〉

}

// Implicitly increment “time” counter k and let θk = θ, Sk = S

2. Sample X ∼ P and let g = g(θ;X) ∈ ∂F (θ;X)

3. For j ∈ [d] such that gj 6= 0, update Sj ← Sj + g2j and zj ← zj + gj

As in the description of AsyncDA, we note that θk is the vector θ ∈ Θ computed in the
kth “step” of the algorithm (step 1), and similarly associate Xk with θk.
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To analyze AsyncAdaGrad, we make a somewhat stronger assumption on the sparsity
properties of the instantaneous losses F than Assumption 4B.

Assumption 4C. There exist constants (Mj)
d
j=1 such that for any θ ∈ Θ and j ∈ [d], we

have E[gj(θ;X)2 | Xj 6= 0] ≤M2
j .

Taking M2 =
∑

j pjM
2
j shows that Assumption 4C implies Assumption 4B with specific

constants. We then have the following convergence result, whose proof we provide in Sec-
tion 4.4.2.

Theorem 4.2. In addition to the conditions of Theorem 4.1, let Assumption 4C hold. As-
sume that δ2 ≥M2

jm for all j and that Θ ⊂ [−r∞, r∞]d. Then

n∑

k=1

E
[
F (θk;Xk)− F (θ∗;Xk)

]

≤
d∑

j=1

min

{
1

α
r2∞E

[(
δ2 +

n∑

k=1

(gkj )
2

) 1
2

]
+ αE

[( n∑

k=1

(gkj )
2

) 1
2

]
(1 + pjm),Mjr∞pjn

}
.

At the expense of some additional notational overhead, we can also relax the condition
δ2 ≥M2

jm on the initial constant diagonal term δ slightly. This gives a qualitatively similar
result while allowing us to only require (roughly) that the initial matrix value δ2 be large
enough to overwhelm pjm updates rather than m of them. (See Section 4.4.5 for a proof.)

Corollary 4.2. Under the conditions of Theorem 4.2, assume additionally that for all j we
have δ2 ≥M2

j min{m, 6max{log T,mpj}}. Then

n∑

k=1

E
[
F (θk;Xk)− F (θ∗;Xk)

]

≤
d∑

j=1

min

{
1

α
r2∞E

[(
δ2 +

n∑

k=1

(gkj )
2

) 1
2

]
+

3

2
αE

[ n∑

k=1

(gkj )
2

] 1
2

(1 + pjm),Mjr∞pjn

}
.

It is natural to ask in which situations the bound Theorem 4.2 and Corollary 4.2 provides
is optimal. We note that, as in the case with Theorem 4.1, we may take an expectation with
respect to Xk and obtain a convergence rate for f(θ̂(n)) − f(θ∗), where θ̂(n) = 1

n

∑n
k=1 θ

k.
By Jensen’s inequality, we have for any δ that

E

[(
δ2 +

n∑

k=1

(gkj )
2

) 1
2

]
≤
(
δ2 +

n∑

k=1

E[(gkj )
2]

) 1
2

≤
√
δ2 + npjM2

j .

For interpretation, let us now make a few assumptions on the probabilities pj. If we assume
that pj ≤ c/m for a universal (numerical) constant c, then Theorem 4.2 guarantees that

E[f(θ̂(n))− f(θ∗)] ≤ O(1)
[
1

α
r2∞ + α

] d∑

j=1

Mj min

{√
n−1 log n+ pj√

n
, pj

}
, (4.4)
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which is the convergence rate of AdaGrad except for a small factor of min{√log n/n, pj}
in addition to the usual

√
pj/n rate. In particular, optimizing by choosing α = r∞, and

assuming pj &
1
n
log n, we have convergence guarantee

E[f(θ̂(n))− f(θ∗)] ≤ O(1)r∞
d∑

j=1

Mj min

{√
pj√
n
, pj

}
,

which is minimax-optimal by Proposition 3.4.
In fact, however, the bounds of Theorem 4.2 and Corollary 4.2 are somewhat stronger:

they provide bounds using the expectation of the squared gradients gkj rather than the max-
imal value Mj, though the bounds are perhaps clearer in the form (4.4). We note also
that our analysis applies to more adversarial settings than stochastic optimization (e.g. to
online convex optimization [95]). Specifically, an adversary may choose an arbitrary se-
quence of functions subject to the data sparsity constraint (4.2) and feature appearance
constraints in Assumptions 4A–4C, and our results provide an expected regret bound, which
is strictly stronger than the stochastic convergence guarantees provided (and guarantees
high-probability convergence in stochastic settings [40]). Moreover, our comments in Chap-
ter 3.3 about the relative optimality of AdaGrad versus standard gradient methods apply.
When the data is sparse, we indeed should use asynchronous algorithms, but using adaptive
methods yields even more improvement than simple gradient-based methods.

4.3 Experiments

In this section, we give experimental validation of our theoretical results on AsyncAda-

Grad and AsyncDA, giving results on two datasets selected for their high-dimensional
sparsity.2

4.3.1 Malicious URL detection

For our first set of experiments, we consider the speedup attainable by applying AsyncAda-

Grad and AsyncDA, investigating the performance of each algorithm on a malicious URL
prediction task [124]. The dataset in this case consists of an anonymized collection of URLs
labeled as malicious (e.g. spam, phishing, etc.) or benign over a span of 120 days. The data
in this case consists of 2.4 · 106 examples with dimension d = 3.2 · 106 (sparse) features. We
perform several experiments, randomly dividing the dataset into 1.2 · 106 training and test
samples for each experiment.

In Figure 4.1 and we compare the performance of AsyncAdaGrad and AsyncDA

after doing after single pass through the training dataset. (For each algorithm, we choose
the stepsize α for optimal training set performance.) We perform the experiments on a single

2We also performed experiments using Hogwild! instead of AsyncDA; the results are similar.
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Figure 4.1. Experiments with URL data. Left: speedup relative to 1 processor. Middle:
training dataset loss versus number of processors. Right: test set error rate versus number
of processors. A-AdaGrad abbreviates AsyncAdaGrad.
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Figure 4.2. Relative accuracy for various stepsize choices on an click-through rate
prediction dataset. A-AdaGrad abbreviates AsyncAdaGrad and A-DA abbreviates
AsyncDA.

machine running Ubuntu Linux with 6 cores (with two-way hyperthreading) and 32Gb of
RAM. From the left-most plot in Fig. 4.1, we see that up to 6 processors, both AsyncDA

and AsyncAdaGrad enjoy the expected linear speedup, and from 6 to 12, they continue
to enjoy a speedup that is linear in the number of processors though at a lesser slope (this
is the effect of hyperthreading). For more than 12 processors, there is no further benefit to
parallelism on this machine.

The two right plots in Figure 4.1 plot performance of the different methods (with standard
errors) versus the number of worker threads used. Both are essentially flat; increasing the
amount of parallelism does nothing to the average training loss or the test error rate for
either method. It is clear, however, that for this dataset, the adaptive AsyncAdaGrad

algorithm provides substantial performance benefits over AsyncDA.
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Figure 4.3. (A) Relative test-set log-loss for AsyncDA and AsyncAdaGrad, choosing
the best stepsize (within a factor of about 1.4×) individually for each number of passes.
(B) Effective speedup for AsyncAdaGrad. (C) The best stepsize η, expressed as a scaling
factor on the stepsize used for one pass. (D) Five runs with different random seeds for each
algorithm (with L2 = 80).

4.3.2 Click-through-rate prediction experiments

We also experimented on a proprietary datasets consisting of search ad impressions. Each
example corresponds to showing a search-engine user a particular text ad in response to a
query string. From this, we construct a very sparse feature vector based on the text of the ad
displayed and the query string (no user-specific data was used). The target label is 1 if the
user clicked the ad, and -1 otherwise. We fit logistic regression models using both AsyncDA

and AsyncAdaGrad. Rather than running few experiments on a large dataset, we ran
extensive experiments on a moderate-sized dataset (about 107 examples, split evenly between
training and testing). This allowed us to thoroughly investigate the impact of the stepsize
η, the number of training passes,3 and L2 regularization on accuracy. Section 4.3.1 shows
that AsyncAdaGrad achieves a similar speedup to AsyncDA, so for these experiments
we used 32 threads on 16 core machines for each run.

On this dataset, AsyncAdaGrad typically achieves an effective additional speedup over
AsyncDA of 4× or more. That is, to reach a given level of accuracy, AsyncDA generally
needs four times as many effective passes over the dataset. We measure accuracy with log-
loss (the logistic loss) averaged over 5 runs using different random seeds (which control the
order in which the algorithms sample examples during training). We report relative values
in Figures 4.2 and 4.3, that is, the ratio of the mean loss for the given datapoint to the lowest
(best) mean loss obtained. Our results are not particularly sensitive to the choice of relative

3Here “number of passes” more precisely means the expected number of times each example in the
dataset is trained on. That is, each worker thread randomly selects a training example from the dataset for
each update, and we continued making updates until (dataset size) × (number of passes) updates have been
processed.



56

log-loss as the metric of interest; we also considered AUC (the area under the ROC curve)
and observed similar results.

Figure 4.2 (A–B) shows relative log-loss as a function of the number of training passes
for various stepsizes. Without regularization, we see that AsyncAdaGrad is prone to
overfitting: it achieves significantly higher accuracy on the training data 4.2(A), but unless
the step-size is tuned carefully to the number of passes, it will overfit and predict poorly on
test data 4.2(B). Fortunately, the addition of L2 regularization largely solves this problem.
Figure 4.2(C) shows that adding an L2 penalty of 80 has very little impact on Hogwild!,
but effectively prevents the overfitting of AsyncAdaGrad.4

Fixing L2 = 80, for each number of passes and for each algorithm, we varied the stepsize
α over a multiplicative grid with resolution

√
2. Figure 4.3 reports the results obtained by

selecting the best stepsize in terms of test set log-loss for each number of passes. Figure 4.3(A)
shows relative log-loss of the best stepsize for each algorithm; 4.3(B) is based on the same
data, but considers on the x-axis relative losses between the 256-pass AsyncDA loss (about
1.001) and the 1-pass AsyncAdaGrad loss (about 1.008). For these values, we can take
the linear interpolation shown in 4.3(A), and look at the ratio of the number of passes
the two algorithms needed to achieve a fixed relative log-loss. This gives an estimate of
the relative speedup obtained by using AsyncAdaGrad over a range of different target
accuracies; speedups range from 3.6× to 12×. Figure 4.3(C) shows the optimal stepsizes as
a function of the best setting for one pass. The optimal stepsize decreases moderately for
AsyncAdaGrad, but are somewhat noisy for Hogwild!.

It is interesting to note that AsyncAdaGrad’s accuracy is largely independent of the
ordering of the training data, while Hogwild! shows significant variability. This can be
seen both in the error bars on Figure 4.3(A), and explicitly in Figure 4.3(D), where we plot
one line for each of the 5 random seeds used. Thus, while on the one hand Hogwild!

requires somewhat less tuning of the stepsize and L2 parameter to control overfitting, tuning
AsyncAdaGrad is much easier because of the predictable response.

4.4 Proofs of convergence

4.4.1 Proof of Theorem 4.1

Our proof begins by recalling Lemma 3.1, which has immediate implications in the context
of Theorem 4.1. Since ψk(θ) =

1
2α
‖θ‖22 in this case, Lemma 3.1 immediately implies

n∑

k=1

[
F (θk;Xk)− F (θ∗;Xk)

]
≤ 1

2α
‖θ∗‖22 +

α

2

n∑

k=1

∥∥gk
∥∥2
2
+

n∑

k=1

〈
gk, θk − θ̃k

〉
(4.5)

4For both algorithms, this is accomplished by adding the term η80 ‖x‖2
2
to the ψ function. We could

have achieved slightly better results for AsyncAdaGrad by varying the L2 penalty with the number of
passes (with more passes benefiting from more regularization).
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as ψ∗
k = ψ∗

k−1 and ψ∗(0) ≤ 0, and for any v

‖v‖2ψ =
1

α
‖v‖22 and ‖v‖2ψ∗ = α ‖v‖22 .

Now we return to the proof of Theorem 4.1. Each of the terms present in Theorem 4.1
is present in Eq. (4.5) except for the last, because

E[
∥∥gk
∥∥2
2
] = E[

∥∥g(θk;Xk)
∥∥2
2
] ≤ M2.

For the final term in the bound in the theorem, we note that by assumption that Θ is a
product domain,

〈
gk, θk − θ̃k

〉
≤

d∑

j=1

|gkj ||θkj − θ̃kj | ≤
d∑

j=1

α|gkj |
∣∣∣∣
k−1∑

i=1

gij − zkj
∣∣∣∣.

For the final inequality we have used that by the definition of the θ update (recall Lemma 3.4),

|θ̃kj − θkj | =
∣∣∣∣∇jψ

∗
(
−

k−1∑

i=1

gi
)
−∇jψ

∗(−zk)
∣∣∣∣ ≤ α

∣∣∣∣
k−1∑

i=1

gij − zij
∣∣∣∣.

Conditioned on the σ-field Fk−1 of {X i}k−1
i=1 , we have E[|gkj | | Fk−1] ≤ pjMj by assumption

(since Xk is independent of X i for i < t). Moreover, we have E[|∑k−1
i=1 g

i
j − zkj |] ≤ mpjMj

because the delay in each processor is assumed to be at most m and E[|gij|] ≤ pjMj. Thus
we find

E[
〈
gk, θk − θ̃k

〉
] ≤ α

d∑

j=1

E

[
E[|gkj | | Fk−1]

∣∣∣∣
k−1∑

i=1

gij − zkj
∣∣∣∣

]
≤ α

d∑

j=1

p2jM
2
jm.

This completes the proof.

4.4.2 Proof of Theorem 4.2

Before beginning, we establish a bit of notation. Throughout this proof, as the coordinates xj
of the vectors x ∈ X will be important, we index the individual observations by superscript,
so Xk is the kth data point. We recall the definitions of zk and Sk to be the values read
in the computation of step 1 of the algorithm to construct the vector θk in the definition
of AsyncAdaGrad. In addition, we define the two temporal inequalities ≺Sj

and ≺zj to
capture the order in which the updates are applied in the AsyncAdaGrad algorithm. We
say that i ≺Sj

k if the gradient term (gij)
2 has been incorporated into the matrix coordinate

Sj at the instant Sj is read in step (1) of the AsyncAdaGrad algorithm to compute θk,
and similarly, we say i ≺zj k if the gradient term gij has been incorporated in the dual vector
coordinate zj.
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The proof of this theorem follows from the general bound of Lemma 3.1 applied with a
particular choice of the proximal functions ψk. Before actually applying the general bound
of Lemma 3.1, we note that by convexity,

n∑

k=1

[
F (θk; xk)− F (θ∗; xk)

]
≤

n∑

k=1

〈
gk, θk − θ∗

〉
.

Considering a particular coordinate j, we have

n∑

k=1

E
[
gkj (θ

k
j − θ∗j )

]
≤ r∞

n∑

k=1

E[|gkj |] ≤ r∞TMjpj, (4.6)

where we have used the compactness assumption on Θ. The remainder of our proof bounds
the regret-like term

∑n
k=1

〈
gk, θk − θ∗

〉
in a per-coordinate way, and thus for each coordinate

we always have the bound (4.6), giving the min{·, pj} terms in the theorem statement. It
remains to show the bound that applies when pj is large.

We now re-state the general bound of Lemma 3.1 with some minor modifications in
notation. AsyncAdaGrad is dual averaging with the choice ψk(θ) :=

1
2α

〈
θ,Gkθ

〉
for the

proximal function. With this choice, the norm and dual norm ‖·‖ψk
and ‖·‖ψ∗

k
defined for

vectors v ∈ Rd are

‖v‖2ψk
:=

1

α
‖v‖2Gk and ‖v‖2ψ∗

k
:= α ‖v‖2(Gk)−1 .

Rewriting Lemma 3.1, we thus have

n∑

k=1

[
F (θk; xk)− F (θ∗; xk)

]
≤

n∑

k=1

[
ψ∗
k

(
−

k−1∑

i=1

gi
)
− ψ∗

k−1

(
−

k−1∑

i=1

gi
)]

+
α

2

n∑

k=1

∥∥gk
∥∥2
(Gk)−1

+
n∑

k=1

〈
gk, θk − θ̃k

〉
+

1

2α
‖θ∗‖2Gk (4.7)

for any sequence xk, where as in Lemma 3.1 we define the “corrected” sequences θ̃k =
∇ψ∗

k(−g1:k−1) where g1:k =
∑k

i=1 g
i. Note that the corrected sequences still use the proximal

functions ψ∗
k from the actual run of the algorithm.

We focus on bounding each of the terms in the sums (4.7) in turn, beginning with the
summed conjugate differences.

Lemma 4.1. Define the matrix Gn+ to be diagonal with jth diagonal entry (δ2+
∑n

k=1(g
k
j )

2)
1
2 .

For any sequence xk

n∑

k=1

[
ψ∗
k

(
−

k−1∑

i=1

gi
)
− ψ∗

k−1

(
−

k−1∑

i=1

gi
)]
≤ r2∞

2α
tr(Gn+).
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We defer the proof of Lemma 4.1 to Section 4.4.3, noting that the proof follows by carefully
considering the conditions under which ψ∗

k ≥ ψ∗
k−1, which may only occur when updates to

S (and hence G) are out of order, a rearrangement of the sum to put the updates to S in
the correct order, and an application of the AdaGrad Lemma 3.2.

To complete the proof of the theorem, we must bound the two summed gradient quantities
in expression (4.7). For shorthand, let us define

T1 :=
n∑

k=1

∥∥gk
∥∥2
(Gk)−1 and T2 :=

n∑

k=1

〈
gk, θk − θ̃k

〉
(4.8)

We provide the proof under the assumption that δ2 ≥ mM2
j for all j. At the end of the

proof, we show how to weaken this assumption while retaining the main conclusions of the
theorem.

Recalling the temporal ordering notation ≺Sj
, we see that

T1 =
d∑

j=1

n∑

k=1

(gkj )
2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2
.

Now, by our assumption that processors are at most m steps out of date and δ2 ≥ mM2
j , we

have
(gkj )

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2
≤ (gkj )

2

√∑k
i=1(g

i
j)

2

,

and thus the standard AdaGrad summation result (Lemma 3.2) implies

T1 ≤
d∑

j=1

n∑

k=1

(gkj )
2

√∑k
i=1(g

i
j)

2

≤
d∑

j=1

2

( n∑

k=1

(gkj )
2

) 1
2

. (4.9)

Thus we turn to T2 as defined in expression (4.8). We focus on a per-coordinate version
of T2, stating the following lemma, whose technical proof we defer to Section 4.4.4:

Lemma 4.2. Under the conditions of Theorem 4.2,

1

α

n∑

k=1

E[gkj (θ
k
j − θ̃kj )] ≤ 2pjmE

[( n∑

k=1

(gkj )
2

) 1
2

]
≤ 2pjmMj

√
pjn.

Applying the result of Lemma 4.2, we obtain the following bound on T2:

E[T2] ≤ 2α
d∑

j=1

pjmE

[( n∑

k=1

(gkj )
2

) 1
2

]
.
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Combining Lemma 4.1 with our bounds (4.9) on T1 and the preceding bound on T2, the basic
inequality (4.7) implies

E

[ n∑

k=1

(
F (θk;Xk)− F (θ∗;Xk)

) ]

≤ 1

2α
E
[
‖θ∗‖2Gk + r2∞ tr(Gn+)

]
+ α

d∑

j=1

E

[( n∑

k=1

(gkj )
2

) 1
2

]
(1 + 2pjm) .

Noting that

‖θ∗‖2Gk ≤ r2∞ tr(Gk) ≤ r2∞

d∑

j=1

(
δ2 +

n∑

k=1

(gkj )
2

) 1
2

completes the proof of Theorem 4.2 under the assumption that δ2 ≥ mM2
j for all j.

4.4.3 Proof of Lemma 4.1

Since the domain Θ = Θ1 × . . .×Θd is assumed Cartesian and the matrices S and G = S
1
2

are diagonal, we focus on the individual coordinate terms of ψ∗
k. With that in mind, consider

the difference

sup
θj∈Θj

{
−

k−1∑

i=1

gijθj −
1

2α
θjG

k
j θj

}
− sup

θj∈Θj

{
−

k−1∑

i=1

gijθj −
1

2α
θjG

k−1
j θj

}
. (4.10)

To understand the difference of the terms (4.10), we recall the temporal ordering ≺Sj

defined in the beginning of the proof of Theorem 4.2 (we say i �Sj
k if and only if i 6≺Sj

k).
Though throughout the algorithm, the matrix S (and the matrix G) is always increasing—
only positive updates are applied to S—when indexed by update time, we may have Gk−1

j ≶

Gk
j . The term (4.10), however, may be positive only when Gk

j < Gk−1
j , and this is possible

only if {
i ∈ N | i ≺Sj

k − 1
}
)
{
i ∈ N | i ≺Sj

k
}
.

Finally, we note that for any matrices A,B and vector z, that if we define

θ(A) := argmax
θ∈Θ

{〈z, θ〉 − 〈θ, Aθ〉}

then

sup
θ∈Θ
{〈z, θ〉 − 〈θ, Aθ〉} − sup

θ∈Θ
{〈z, θ〉 − 〈θ, Bθ〉}

≤ 〈z, θ(A)〉 − 〈θ(A), Aθ(A)〉 − 〈z, θ(A)〉+ 〈θ(A), Bθ(A)〉 ≤ sup
θ∈Θ
{〈θ, (B − A)θ〉} .
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By considering expression (4.10), we have

ψ∗
k

(
−

k−1∑

i=1

gi
)
− ψ∗

k−1

(
−

k−1∑

i=1

gi
)
≤ 1

2α

d∑

j=1

sup
θj∈Θj

{
θ2j (G

k−1
j −Gk

j )
}

(4.11)

≤ r2∞
2α

d∑

j=1

∣∣Gk
j −Gk−1

j

∣∣1
{
{i ≺Sj

k − 1} ) {i ≺Sj
k}
}
.

It thus remains to bound the sum, over all k, of the terms (4.11). To that end, we note
by concavity of

√· that for any a, b ≥ 0, we have
√
a+ b−√a ≤ b/2

√
a. Thus we find that

∣∣Gk
j −Gk−1

j

∣∣1
{
{i ≺Sj

k − 1} ) {i ≺Sj
k}
}

=

∣∣∣∣
(
δ2 +

∑

i≺Sj
k

(gij)
2

) 1
2

−
(
δ2 +

∑

i≺Sj
k−1

(gij)
2

) 1
2
∣∣∣∣1
{
{i ≺Sj

k − 1} ) {i ≺Sj
k}
}

≤
∑

i≺Sj
k−1,i�Sj

k(g
i
j)

2

2
√
δ2 +

∑
i≺Sj

k(g
i
j)

2
.

We note the following: the sequence of update sets ∆k := {i ∈ N : i ≺Sj
k − 1, i �Sj

k}
satisfies ∪nk=1∆k ⊂ [n], and since the incremental updates to S occur only once, we have
∆k ∩∆k′ = ∅ for all k 6= k′. That is, if i ∈ ∆k for some k, then i 6∈ ∆k′ for any k

′ 6= k. Using
the assumption that updates may be off by at most m time steps, we thus see that there
must exist some permutation {uk}nk=1 of [n] such that

n∑

k=1

∑
i∈∆k

(gij)
2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2
≤

n∑

k=1

(gukj )2
√
δ2 +

∑
i≤k−m(g

ui
j )2

. (4.12)

For our last step, we use our assumption that δ2 ≥ mM2
j and the standard AdaGrad

result (Lemma 3.2) to obtain

n∑

k=1

∑
i≺Sj

k−1,i�Sj
k(g

i
j)

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2
≤

n∑

k=1

(gukj )2
√∑k

i=1(g
ui
j )2
≤ 2

( n∑

k=1

(gkj )
2

) 1
2

.

Recalling inequality (4.11), we have

n∑

k=1

[
ψ∗
k

(
−

k−1∑

i=1

gi
)
− ψ∗

k−1

(
−

k−1∑

i=1

gi
)]
≤ r2∞

2α

d∑

j=1

( n∑

k=1

(gkj )
2

) 1
2

,

which gives the statement of the lemma.
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4.4.4 Proof of Lemma 4.2

Let us provide a bit of notation before proving the lemma. We define the batch of “out-
standing” updates for coordinate j at time k as Bkj := {i : k − 1 ≥ i �zj k}, and we define
the quantity that we wish to bound in expectation in Lemma 4.2 as

T j := 1

α

n∑

k=1

gkj (θ
k
j − θ̃kj ).

Turning to the proof of the lemma proper, we first note that zk does not include any
gradient terms gi for any i ≥ k by the definition of the AsyncAdaGrad algorithm. Thus

k−1∑

i=1

gij − zkj =
∑

i∈Bk
j

gij.

For brief notational convenience define κk = α(δ2 +
∑

i≺Sj
k(g

i
j)

2)
1
2 . Applying the definition

of the AsyncAdaGrad updates and Young’s inequality, we see that

gkj · (xkj − x̃kj ) ≤ κk|gkj |
∣∣g1:k−1
j − zkj

∣∣

= κk|gkj |
∣∣∣∣
∑

i∈Bk
j

gij

∣∣∣∣ ≤
1

2
κk|gkj |21

{
xkj 6= 0

}
+

1

2
κk1

{
xkj 6= 0

}(∑

i∈Bk
j

gij

)2

.

As a consequence, we find that

2E[T j] ≤
n∑

k=1

E


card({i ∈ B

k
j : X

i
j 6= 0})(gkj )2√

δ2 +
∑

i≺Sj
k(g

i
j)

2
+

1
{
Xk
j 6= 0

}∑
i∈Bk

j
(gij)

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2


 . (4.13)

Looking at the first term in the bound (4.13), we note that Bkj consists of time indices i such
that k �zj i ≤ k − 1, which consequently have not been incorporated into any vectors used
in the computation of gkj . Thus, if we let Fk,j denote the σ-field containing Xk

j and X i
j for

i ≺zj k, we have gij ∈ Fk,j for any i ≺Sj
k, the inclusion gkj ∈ Fk,j, and we also have that X i

j

is independent of Fk,j for i ∈ Bkj . Thus, iterating expectations, we find

E


card({i ∈ B

k
j : X

i
j 6= 0})(gkj )2√

δ2 +
∑

i≺Sj
k(g

i
j)

2


 = E


E[card({i ∈ B

k
j : X

i
j 6= 0})(gkj )2 | Fk,j]√

δ2 +
∑

i≺Sj
k(g

i
j)

2




≤ pjmE


 (gkj )

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2


 ,
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since E[card({i ∈ Bkj : X i
j 6= 0})] ≤ pjm because |Bkj | ≤ m by assumption. A similar iteration

of expectation—since Xk
j is independent of any gij for i ∈ Bkj—yields

E

[
1
{
Xk
j 6= 0

}∑

i∈Bk
j

(gij)
2

]
≤ pjE

[∑

i∈Bk
j

(gij)
2

]
.

We replace the relevant terms in the expectation (4.13) with the preceding bounds to obtain

2E[T j] ≤ pjm
n∑

k=1

E


 (gkj )

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2


+ pj

n∑

k=1

E




∑
i∈Bk

j
(gij)

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2


 .

For the second term, note each gij can occur in at mostm of the sets Bkj , and the maximum
delay is also at most m. Thus, following the same argument as (4.12), there must exist a
permutation {uk} of the indices [n] such that

n∑

k=1

∑
i∈Bk

j
(gij)

2

√
δ2 +

∑
i≺Sj

k(g
i
j)

2
≤

n∑

k=1

m(gukj )2
√
δ2 +

∑k−m
i=1 (guij )2

≤
n∑

k=1

m(gukj )2
√∑k

i=1(g
ui
j )2
≤ 2m

( n∑

k=1

(gkj )
2

) 1
2

,

where we have used the fact that δ2 ≥ mM2
j and Lemma 3.2. With this, we immediately

find that

2E[T j] ≤ pjm

n∑

k=1

E


 (gkj )

2

√∑k
i=1(g

i
j)

2


+ pj

n∑

k=1

E



∑k−1

i=k−m(g
i
j)

2

√∑k
i=1(g

i
j)

2


 ≤ 4pjmE

[( n∑

k=1

(gkj )
2

) 1
2

]
.

By inspection, this completes the proof of the lemma.

4.4.5 Sharpening the analysis (proof of Corollary 4.2)

We now demonstrate how to sharpen the analysis in the proof of Theorem 4.2 to allow the
initial matrix δ2 to be smaller than mM2

j . Roughly, we argue that for a smaller setting of

δ2, we can have δ2 ≥ ∑k
i=k−m+1(g

i
j)

2 for all t with high probability, in which case all the
previous arguments go through verbatim. In particular, we show how the terms T1 and T2
defined in expression (4.8) may be bounded under the weaker assumptions on δ2 specified in
Corollary 4.2.

For this argument, we focus on T1, as the argument for T2 is identical. We begin by
defining the event E to occur if δ2 ≥∑k

i=k−m+1(g
i
j)

2 for all k. We then have

1 {E}
n∑

k=1

(gkj )
2

√
δ2 +

∑
i≺Sjk

(gij)
2
≤ 1 {E}

n∑

k=1

(gkj )
2

∑k
i=1(g

i
j)

2
≤ 2

( n∑

k=1

(gkj )
2

) 1
2
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by Lemma 3.2. On the other hand, on Ec, we have by our assumption that δ2 ≥M2
j that

1 {Ec}
n∑

k=1

(gkj )
2

√
δ2 +

∑
i≺Sjk

(gij)
2
≤ 1 {Ec}

n∑

k=1

|gkj |,

so if we can show that Ec has sufficiently low probability, then we still obtain our desired
results. Indeed, by Hölder’s inequality we have

E

[ n∑

k=1

(gkj )
2

√
δ2 +

∑
i≺Sjk

(gij)
2

]
≤ 2E

[( n∑

k=1

(gkj )
2

) 1
2

]
+ E

[
1 {Ec}

n∑

k=1

(gkj )
2

√
δ2 +

∑
i≺Sjk

(gij)
2

]

≤ 2E

[( n∑

k=1

(gkj )
2

) 1
2

]
+ E[1 {Ec}] 12E

[( n∑

k=1

|gkj |
)2
] 1

2

. (4.14)

It thus remains to argue that P(Ec) is very small, since

E

[( n∑

k=1

|gkj |
)2
]
≤ nE

[
n∑

k=1

(gkj )
2

]

by Jensen’s inequality. Now, we note that (gkj )
2 ≤M2

j and that the Xk
j are i.i.d., so we can

define the sequence Yk = 1
{
Xk
j 6= 0

}
and we have

P(Ec) = P

(
∃ k ∈ [n] :

k+m−1∑

i=k

(gij)
2 > δ2

)
≤ P

(
∃ k ∈ [n] :

k+m−1∑

i=k

Yk > δ2/M2
j

)
.

Definine γ = δ2/M2
j , and let p = pj for shorthand. Since Yk ≤ 1, E[Yk] ≤ p, and Var(Yk) ≤

p(1− p), Bernstein’s inequality implies that for any fixed t and any ǫ ≥ 0

P

( k+m−1∑

i=k

Yk ≥ pm+ ǫ

)
≤ exp

(
− ǫ2

2mp(1− p) + 2ǫ/3

)
. (4.15)

By solving a quadratic, we find that if

ǫ ≥ 1

3
log

1

δ
+

√
1

9
log2

1

δ
+ 2mp(1− p) log 1

δ

then the quantity (4.15) is bounded by δ. By a union bound (and minor simplification), we
find

ǫ ≥ 2

3
log

1

δ
+

√
2mp(1− p) log 1

δ
implies P(Ec) ≤ nδ.
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Setting δ = n−2 means that P(Ec) ≤ 1/n, which in turn implies that

E[1 {Ec}] 12E
[( n∑

k=1

|gkj |
)2
] 1

2

≤ 1√
n

√
nE

[
n∑

k=1

(gkj )
2

] 1
2

.

Combining the preceding display with inequality (4.14), we find that the term T1 from
expression (4.8) is bounded by

E[T1] ≤
d∑

j=1

(
2E

[( n∑

k=1

(gkj )
2

) 1
2
]
+ E

[ n∑

k=1

(gkj )
2

] 1
2

)

whenever δ2 ≥ 4
3
log n + 2

√
mpj(1− pj) log n for all j ∈ [d]. This completes the sharper

proof for the bound on T1. To provide a similar bound for T2 in analogy to Lemma 4.2, we
recall the bound (4.13). Then following the above steps, mutatis mutandis, gives the desired
result.



66

Chapter 5

Randomized smoothing for stochastic
optimization

In this chapter of the thesis, we continue our study of efficient stochastic optimization algo-
rithms and structures we may leverage to derive faster algorithms. In particular, we analyze
convergence rates of stochastic optimization algorithms for non-smooth convex optimiza-
tion problems. By combining randomized smoothing techniques with accelerated gradient
methods, we obtain convergence rates that have optimal dependence on the variance of
the gradient estimates rather than their maximum magnitude. To the best of our knowl-
edge, these are the first variance-based rates for non-smooth optimization. We give several
applications of our results to statistical estimation problems, and provide experimental re-
sults that demonstrate the effectiveness of the proposed algorithms. We also describe how
a combination of our algorithm with recent work on decentralized optimization yields an
order-optimal distributed stochastic optimization algorithm. For our randomized smoothing
techniques to guarantee sufficient speedup over other standard methods, it is essential that
we solve stochastic optimization problems (3.1); the noise already inherent in the problem
means that adding a bit of additional randomness does not hurt.

5.1 Introduction

In this chapter, we develop and analyze randomized smoothing procedures for solving the
class of stochastic optimization problems introduced in Chapter 3 and described by the
problem (3.1). Recalling this family of problems for the sake of the exposition of the chapter,
we begin with the usual risk functional

f(θ) := E
[
F (θ;X)

]
=

∫

X
F (θ; x)dP (x).

We focus here on potentially non-smooth stochastic optimization problems of the form

minimize
θ∈Θ

{
f(θ) + ϕ(θ)

}
, (5.1)
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where ϕ : Θ→ R is a known regularizing function. We assume that ϕ is closed and convex,
but we allow for non-differentiability so that the framework includes the ℓ1-norm and related
regularizers.

While we do consider effects of the regularizer ϕ on our optimization procedures, our
primary focus is on the properties of the stochastic function f . The problem (5.1) is chal-
lenging mainly for two reasons. First, as mentioned in introducing the problem in Chapter 3,
in many cases f cannot actually be evaluated, either because the associated integral is com-
putationally intractable or P is not known. Thus, as usual, we assume only that we have
access to a stochastic oracle that allows us to obtain i.i.d. observations X ∼ P and may
compute (sub)gradients g(θ;X) ∈ ∂F (θ;X) as in expression (3.3). Second, in many cases,
the f function is non-smooth, that is, it is non-differentiable.

In order to address difficulties associated with non-smooth objective functions, several
researchers have considered techniques for smoothing the objective. Such approaches for
deterministic non-smooth problems are by now well-known, and include Moreau-Yosida reg-
ularization (e.g. [119]), methods based on recession functions [21]; and Nesterov’s approach
using conjugacy and proximal regularization [137]. Several works study methods to smooth
exact penalties of the form max{0, f(θ)} in convex problems, where smoothing is applied to
the max{0, ·} operator (for instance, see the paper [45] and references therein). The diffi-
culty of such approaches is that most require quite detailed knowledge of the structure of
the function f to be minimized and are thus impractical in stochastic settings.

Because the convex objective (5.1) cannot actually be evaluated except through stochastic
realization of f and its (sub)gradients, we develop an algorithm for solving problem (5.1)
based on stochastic subgradient methods. Such methods are classical [150, 73]; in recent
work, Juditsky et al. [104] and Lan [114] have shown that if f is smooth, meaning that its
gradients are Lipschitz continuous, and if the variance of the stochastic gradient estimator
is at most σ2, then the resulting stochastic optimization procedure has convergence rate
O(σ/√n). Of particular relevance to our study is the following fact: if the gradient oracle—
instead of returning just a single estimate—returnsm unbiased estimates of the gradient, the
variance of the gradient estimator is reduced by a factor ofm. Indeed, Dekel et al. [49] exploit
this fact to develop asymptotically order-optimal distributed optimization algorithms, as we
discuss in the sequel.

To the best of our knowledge, there is no work on non-smooth stochastic problems for
which a reduction in the variance of the stochastic estimate of the true subgradient gives an
improvement in convergence rates. For non-smooth stochastic optimization, known conver-
gence rates depend only on the Lipschitz constant of the functions F (·; x) and the number of
actual updates performed (recall Chapter 3.1). Within the oracle model of convex optimiza-
tion [134], the optimizer has access to a black-box oracle that, given a point θ ∈ Θ, returns
an unbiased estimate of a (sub)gradient of f at the point θ. In most stochastic optimization
procedures, an algorithm updates a parameter θk after each query of the oracle; we consider
the natural extension to the case when the optimizer issues several queries to the stochastic
oracle at every iteration.

The starting point for our approach is a convolution-based smoothing technique amenable
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to non-smooth stochastic optimization problems. A number of authors (e.g., Katkovnik and
Kulchitsky [106], Rubinstein [156], Lakshmanan and de Farias [113] and Yousefian et al.
[187]) have noted that random perturbation of the variable θ can be used to transform f into
a smooth function. The intuition underlying such approaches is that the convolution of two
functions is at least as smooth as the smoothest of the two original functions. In particular,
letting µ denote the density of a random variable with respect to Lebesgue measure, consider
the smoothed objective function

fu(θ) := Eµ[f(θ + uZ)] =

∫

Rd

f(θ + uz)µ(z)dz, (5.2)

where Z is a random variable with density µ. Clearly, the function fu is convex when f is
convex; moreover, since µ is a density with respect to Lebesgue measure, the function fu is
also guaranteed to be differentiable (e.g. Bertsekas [25]).

We analyze minimization procedures that solve the non-smooth problem (5.1) by using
stochastic gradient samples from the smoothed function (5.2) with appropriate choice of
smoothing density µ. The main contribution of this chapter is to show that the ability to
issue several queries to the stochastic oracle for the original objective can give faster rates
of convergence than a simple stochastic oracle. Our main theorem quantifies the above
statement in terms of expected values (Theorem 5.1). Under an additional reasonable tail
condition, it is possible to provide high-probability guarantees on convergence rate, but to
keep this chapter relatively compact and focused on the essential ideas, we leave such state-
ments to the paper off of which this chapter is based [55]. One consequence of our results is
that a procedure that queries the non-smooth stochastic oracle for m subgradients at itera-
tion k achieves rate of convergence O(r2M/

√
nm) in expectation and with high probability.

(Here M is the Lipschitz constant of the function f and r2 is the ℓ2-radius of the domain Θ.)
As we discuss in Section 5.2.4, this convergence rate is optimal up to constant factors. More-
over, this fast rate of convergence has implications for applications in statistical problems,
distributed optimization, and other areas, as discussed in Section 5.3.

The remainder of the chapter is organized as follows. In Section 5.2, we begin by pro-
viding background on some standard techniques for stochastic optimization, noting a few
of their deficiencies for our setting. We then describe an algorithm based on the random-
ized smoothing technique (5.2), and we state our main theorems guaranteeing faster rates of
convergence for non-smooth stochastic problems. In proving these claims, we make frequent
use of the analytic properties of randomized smoothing, many of which we collect in Sec-
tion 5.6. In Section 5.3, we discuss applications of our methods and provide experimental
results illustrating the merits of our approach. Finally, we provide the proofs of our results
in Section 5.5, with certain more technical aspects deferred.

5.2 Main results and some consequences

We begin by motivating the algorithm studied in this paper, and we then state our main
results on its convergence.



69

5.2.1 Some background

We focus on stochastic gradient descent methods1 based on dual averaging schemes (3.8)
(due to Nesterov [138], whose composite version, which incorporates the regularizer ϕ, Xiao
[183] develops) for solving the stochastic problem (5.1). We recall that, for the regularized
objective (5.1), the composite dual averaging update based on the strongly convex proximal
function ψ is as follows. Given a point θk ∈ Θ, the algorithm queries the stochastic oracle

gk = g(θk;Xk) ∈ ∂F (θk;Xk) where Xk
i.i.d.∼ P , and the algorithm then performs the update

θk+1 = argmin
θ∈Θ

{ k∑

i=1

〈
gi, θ

〉
+ kϕ(θ) +

1

αk
ψ(θ)

}
, (5.3)

where αk > 0 is a sequence of stepsizes. Recalling our results from Chapter 3.1, we note if ψ
is strongly convex with respect to the norm ‖·‖ and E[‖g(θ;X)‖2∗] ≤M2 for all θ ∈ Θ, then

with stepsize αk ∝
√
ψ(θ∗)/M

√
k and θ̂(n) = 1

n

∑n
k=1 θ

k we have

E
[
f(θ̂(n)) + ϕ(θ̂(n))

]
− f(θ∗)− ϕ(θ∗) ≤ O(1)M

√
ψ(θ∗)√
n

. (5.4)

We refer to the papers by Nesterov [138] and Xiao [183] for results of this type.
An unsatisfying aspect of the bound (5.4) is the absence of any role for the variance of

the (sub)gradient estimator gk. Even if an algorithm is able to obtain m > 1 samples of
the (sub)gradient of f at θk—giving a more accurate gradient estimate—this result fails to
capture the potential improvement of the method. We address this problem by stochastically
smoothing the non-smooth objective f and then adapt recent work on so-called accelerated
gradient methods [114, 170, 183], which apply only to smooth functions, to achieve variance-
based improvements. With this motivation in mind, we now turn to developing the tools
necessary for stochastic smoothing of the non-smooth objective function (5.1).

5.2.2 Description of algorithm

Our algorithm is based on observations of stochastically perturbed gradient information
at each iteration, where we slowly decrease the perturbation as the algorithm proceeds.
Consider the following scheme. Let {uk} ⊂ R+ be a non-increasing sequence of positive real
numbers; these quantities control the perturbation size. At iteration k, rather than query
the stochastic oracle at a fixed query point wk, the algorithm queries the oracle at m points
drawn randomly from some neighborhood around wk. Specifically, it performs the following
three steps:

(1) Draws random variables {Zk,t}mt=1 i.i.d. according to the distribution µ.

1We note in passing that essentially identical results can also be obtained for methods based on mirror
descent [134, 170], though we omit these to avoid overburdening the reader.
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(2) Queries the oracle at the m points wk+ukZk,t for t = 1, 2, . . . ,m, yielding the stochastic
(sub)gradients

gkt = g(wk + ukZk,t;Xk,t) ∈ ∂F (wk + ukZk,t;Xk,t), where Xk,t
i.i.d.∼ P for t ∈ [m].

(5.5)

(3) Computes the average gk = 1
m

∑m
t=1 g

k
t .

Here and throughout we denote the distribution of the random variable ukZ by µk, and we
note that this procedure ensures E[gk | wk] = ∇fut(wk) = ∇E[F (wk + ukZ;X) | wk], where

fu(θ) := E[f(θ + uZ)] =

∫

Rd

f(θ + uz)µ(z)dz

is the smoothed function (5.2) indexed by amount of smoothing u.
We combine the sampling scheme (5.5) with extensions of Tseng’s recent work on acceler-

ated gradient methods [170] and propose an update that is essentially a smoothed version of
the simpler method (5.3). The method uses three series of points, denoted {θk, wk, vk} ∈ Θ3.
We use wk as a “query point”, so that at iteration k, the algorithm receives a vector gk as
described in the sampling scheme (5.5). The three sequences evolve according to a dual-
averaging algorithm, which in our case involves three scalars (Lk, νk, ηk) ∈ R+ × [0, 1]× R+

to control step sizes. The recursions are as follows:

wk = (1− νk)θk + νkv
k (5.6a)

vk+1 = argmin
θ∈Θ

{ k∑

i=0

1

νi

〈
gi, θ

〉
+

k∑

i=0

1

νi
ϕ(θ) + Lk+1ψ(θ) +

ηk+1

νk+1

ψ(θ)

}
(5.6b)

θk+1 = (1− νk)θk + νkv
k+1. (5.6c)

In prior work on accelerated schemes for stochastic and non-stochastic optimization [170,
114, 183], the term Lk is set equal to the Lipschitz constant of ∇f ; in contrast, our choice
of varying Lk allows our smoothing schemes to be oblivious to the number of iterations
n. The extra damping term ηk/νk provides control over the fluctuations induced by using
the random vector gk as opposed to deterministic subgradient information. As in Tseng’s
work [170], we assume that ν0 = 1 and (1− νk)/ν2k = 1/ν2k−1; the latter equality is ensured

by setting νk = 2/(1 +
√
1 + 4/ν2k−1).

5.2.3 Convergence rates

We now state our two main results on the convergence rate of the randomized smoothing
procedure (5.5) with accelerated dual averaging updates (5.6a)–(5.6c). To avoid cluttering
the theorem statements, we begin by stating our main assumptions. Whenever we state that
a function f is Lipschitz continuous, we mean with respect to the norm ‖·‖, and we assume
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that ψ is nonnegative and is strongly convex with respect to the same norm ‖·‖. Our main
assumption ensures that the smoothing operator and smoothed function fu are relatively
well-behaved.

Assumption 5A (Smoothing). The random variable Z is zero-mean and has density µ
(with respect to Lebesgue measure on the affine hull aff(Θ) of Θ). There are constants M
and L such that for u > 0, E[f(θ + uZ)] ≤ f(θ) +Mu, and E[f(θ + uZ)] has L

u
-Lipschitz

continuous gradient with respect to the norm ‖·‖. Additionally, for P -almost every x ∈ X ,
the set domF (·; x) ⊇ u0 suppµ+Θ.

Recall our definition of the smoothed function fuk(θ) =
∫
f(θ+ ukz)dµ(z). The function

fuk is guaranteed to be smooth whenever µ is a density with respect to Lebesgue measure, so
Assumption 5A ensures that fuk is uniformly close to f and not too “jagged.” For Lipschitz
f , many smoothing distributions, including Gaussians and uniform distributions on norm
balls, satisfy Assumption 5A (see Section 5.6); we use such examples in the corollaries to
follow. The containment of u0 suppµ+Θ in domF (·; x) guarantees that the subdifferential
∂F (·; x) is non-empty at all sampled points wk + ukZ. Indeed, since µ is a density with
respect to Lebesgue measure on aff(Θ), with probability one wk + ukZ ∈ relint domF (·; x)
and thus [97] the subdifferential ∂F (wk + ukZ; x) 6= ∅.

In the algorithm (5.6a)–(5.6c), we set Lk to be an upper bound on the Lipschitz constant
L
uk

of the gradient of E[f(θ + ukZ)]; this choice ensures good convergence properties of the
algorithm. The following is our main theorem.

Theorem 5.1. Define uk = νku, use the scalar sequence Lk = L/uk, and assume that ηk is
non-decreasing. Under Assumption 5A, for any θ∗ ∈ Θ and n ≥ 4,

E[f(θn)+ϕ(θn)]− [f(θ∗)+ϕ(θ∗)] ≤ 6Lψ(θ∗)

nu
+

2ηkψ(θ
∗)

n
+

1

n

n−1∑

k=0

1

ηk
E[‖ek‖2∗] +

4Mu

n
, (5.7)

where ek := ∇fuk(wk)− gk is the error in the gradient estimate.

Remarks The convergence rate (5.7) involves the variance E[‖ek‖2∗] explicitly, which we
exploit in the corollaries to be stated shortly. In addition, Theorem 5.1 does not require a
priori knowledge of the number of iterations n to be performed, thereby rendering it suitable
to online and streaming applications. If n is known, a similar result holds for constant
smoothing parameter u, as formalized by Corollary 5.1, which uses a fixed setting of the
smoothing parameter uk:

Corollary 5.1. Suppose that uk ≡ u for all k and set Lk ≡ L/u. With the remaining
conditions as in Theorem 5.1, then for any θ∗ ∈ Θ, we have

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ 4Lψ(θ∗)

n2u
+

2ηnψ(θ
∗)

n
+

1

n

n−1∑

k=0

1

ηk
E
[
‖ek‖2∗

]
+Mu.
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It is clear that by setting u ∝ 1/n, the rates achieved by Theorem 5.1 and Corollary 5.1 are
identical to constant factors.

5.2.4 Some consequences

We now turn to corollaries of the above theorems and the consequential optimality guarantees
of the algorithm. More precisely, we establish concrete convergence bounds for algorithms
using different choices of the smoothing distribution µ. For each corollary, we impose the
assumptions that the point θ∗ ∈ Θ satisfies ψ(θ∗) ≤ r2ψ, the iteration number n ≥ 4, and
uk = uνk.

We begin with a corollary that provides bounds when the smoothing distribution µ is
uniform on the ℓ2-ball. The conditions on F in the corollary hold, for example, when F (·; x)
is M -Lipschitz with respect to the ℓ2-norm for P -a.e. sample of x.

Corollary 5.2. Let µ be uniform on the ℓ2-ball B2 of radius 1, use the proximal function
ψ(θ) = 1

2
‖θ‖22 and assume r22 ≥ ψ(θ∗). Also assume E[‖g(θ;X)‖22] ≤ M2 for θ ∈ Θ + uB2,

where we set u = r2d
1/4. With step sizes ηk =M

√
k + 1/r2

√
m and Lk =M

√
d/uk,

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ 10M r2d
1/4

n
+

5M r2√
nm

.

The following corollary shows that similar convergence rates are attained when smoothing
with the normal distribution using the same proximal function as that in Corollary 5.2.

Corollary 5.3. Let µ be the d-dimensional normal distribution with zero mean and identity
covariance Id×d and assume F (·; x) is M-Lipschitz with respect to the ℓ2-norm for P -a.e. x.
With smoothing parameter u = r2d

−1/4 and step sizes ηk =M
√
k + 1/r2

√
m and Lk =M/uk,

we have

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ 10M r2d
1/4

n
+

5M r2√
nm

.

We note here (deferring deeper discussion to Lemma 5.6) that the dimension dependence
of d1/4 on the 1/n term in the previous corollaries cannot be improved by more than a
constant factor. Essentially, functions f exist whose smoothed version fu cannot have both
Lipschitz continuous gradient and be uniformly close to f in a dimension-independent sense,
at least for the uniform or normal distributions.

The advantage of using normal random variables—as opposed to Z uniform on the ℓ2-ball
B2—is that no normalization of Z is necessary, though there are more stringent requirements
on f . The lack of normalization is a useful property in very high dimensional scenarios, such
as statistical natural language processing (NLP) [127]. Similarly, we can sample Z from an
ℓ∞ ball, which, like B2, is still compact, but gives slightly looser bounds than sampling from
B2. Nonetheless, it is much easier to sample from B∞ in high dimensional settings, especially
sparse data scenarios such as NLP where only a few coordinates of the random variable Z
are needed.
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There are several objectives f + ϕ with domains Θ for which the natural geometry is
non-Euclidean, which motivates the mirror descent family of algorithms [134]. Here we give
an example that is quite useful for problems in which the optimizer θ∗ is sparse; for example,
the optimization set Θ may be a simplex or ℓ1-ball, or ϕ(θ) = λ ‖θ‖1. The point here is that
we achieve a pair of dual norms that may give better optimization performance than the
ℓ2-ℓ2 pair above.

Corollary 5.4. Let µ be uniform on the ℓ∞-ball B∞ and assume that F (·; x) is M-Lipschitz
continuous with respect to the ℓ1-norm over Θ + uB∞ for x ∈ X , where we set u =
rψ
√
d log d. Use the proximal function ψ(θ) = 1

2(p−1)
‖θ‖2p for p = 1 + 1/ log d and set

ηk =
√
k + 1/rψ

√
m log d and Lk =M/uk. There is a universal constant C such that

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ C
M rψ
√
d

n
+ C

M rψ
√
log d√

nm

= O(1)
[
M ‖θ∗‖1

√
d log d

n
+
M ‖θ∗‖1 log d√

nm

]
.

The dimension dependence of
√
d log d on the leading 1/n term in the corollary is weaker

than the d1/4 dependence in the earlier corollaries, so for very large m the corollary is not
as strong as one might desire when applied to non-Euclidean geometries. Nonetheless, for
large n the 1/

√
nm terms dominate the convergence rates, and Corollary 5.4 can be an

improvement.

Remarks Let us pause to make some remarks concerning the corollaries given above.
First, if one abandons the requirement that the optimization procedure be an “any time”
algorithm, meaning that it is able to return a result at any iteration, it is possible to ob-
tain essentially the same results as Corollaries 5.2 through 5.4 by choosing a fixed setting
uk = u/n (recall Corollary 5.1). As a side benefit, it is then easier to satisfy the Lipschitz
condition that E[‖g(θ;X)‖2] ≤ M2 for θ ∈ Θ + u0 suppµ. Our second observation is that
Theorem 5.1 and the corollaries appear to require a very specific setting of the constant
Lk to achieve fast rates. However, the algorithm is robust to mis-specification of Lk since
the instantaneous smoothness constant Lk is dominated by the stochastic damping term ηk
in the algorithm. Indeed, since ηk grows proportionally to

√
k for each corollary, we have

Lk = L/uk = L/νku = O(ηk/
√
kνk); that is, Lk is order

√
k smaller than ηk/νk, so setting

Lk incorrectly up to order
√
k has essentially negligible effect. (See also the experimental

section of [56].)

We can show the bounds in the theorems above are tight, meaning unimprovable up to
constant factors, by exploiting the lower bounds we presented in Chapter 3.3 for stochas-
tic optimization problems (see also Nemirovski and Yudin [134] and Agarwal et al. [6]).
For instance, let us set Θ = {θ ∈ Rd | ‖θ‖2 ≤ r2}, and consider the class of all convex func-
tions f that are M0,2-Lipschitz with respect to the ℓ2-norm. Assume that the stochastic
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(sub)gradient oracle (3.3), for any fixed θ, satisfies E[‖g(θ;X)‖22] ≤ M2
0,2. Then for any

method that outputs a point θn ∈ Θ after n queries of the oracle, we have the minimax lower
bound

Ω(1)
M0,2r2√

n

(see Chapter 3.3, Proposition 3.4, or Section 3.1 of Agarwal et al. [6]). Moreover, similar
bounds hold for problems with non-Euclidean geometry. For instance, let us consider loss
functions F that are M0,∞-Lipschitz with respect to the ℓ1-norm, meaning that |F (θ; x) −
F (θ′; x)| ≤ M0,∞ ‖θ − θ′‖1. If we define Θ = {θ ∈ Rd | ‖θ‖1 ≤ r1}, we have the minimax
lower bound

1

8
M0,∞r1 min

{
1,

√
log(2d)

2
√
n

}
,

as given in Corollary 3.3. In either geometry, no method can have optimization error smaller
than O(M rψ/

√
n) after at most n queries of the stochastic oracle.

Let us compare the above lower bounds to the convergence rates in Corollaries 5.2 through
5.4. Examining the bound in Corollaries 5.2 and 5.3, we see that the dominant terms are
on the order of M rψ/

√
nm so long as m ≤ n/

√
d. Since our method issues nm queries to

the oracle, this is optimal. Similarly, the strategy of sampling uniformly from the ℓ∞-ball in
Corollary 5.4 is optimal for large enough n. In contrast to other optimization procedures,
however, our algorithm performs an update to the parameter θk only after every m queries
to the oracle; as we show in the next section, this is beneficial in several applications.

5.3 Applications and experimental results

In this section, we describe applications of our results and give experiments that illustrate
our theoretical predictions.

5.3.1 Some applications

The first application of our results is to parallel computation and distributed optimiza-
tion. Imagine that instead of querying the stochastic oracle serially, we can issue queries
and aggregate the resulting stochastic gradients in parallel. In particular, assume that we
have a procedure in which the m queries of the stochastic oracle occur concurrently. Then
Corollaries 5.2 through 5.4 imply that in the same amount of time required to perform n
queries and updates of the stochastic gradient oracle serially, achieving an optimization er-
ror of O(1/√n), the parallel implementation can process nm queries and consequently has
optimization error O(1/√nm).

We now briefly describe two possibilities for a distributed implementation of the above.
The simplest architecture is a master-worker architecture, in which one master maintains
the parameters (θk, wk, vk), and each of m workers has access to an uncorrelated stochastic
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oracle for P and the smoothing distribution µ. The master broadcasts the point wk to the
workers t ∈ [m], each of which independently sample Xt ∼ P and Zt ∼ µ, returning sample
gradients to the master. In a tree-structured network, broadcast and aggregation require at
most O(logm) steps; the relative speedup over a serial implementation is O(m/ logm). In
recent work, Dekel et al. [49] give a series of reductions showing how to distribute variance-
based stochastic algorithms and achieve an asymptotically optimal convergence rate. The
algorithm given here, as specified by equations (5.5) and (5.6a)–(5.6c), can be exploited
within their framework to achieve an O(m) improvement in convergence rate over a serial
implementation. More precisely, whereas achieving optimization error ǫ requires O(1/ǫ2)
iterations for a centralized algorithm, the distributed adaptation requires only O(1/(mǫ2))
iterations. Such an improvement is possible as a consequence of the variance reduction
techniques we have described.

A second application of interest involves problems where the set Θ and/or the function
ϕ are complicated, so that calculating the proximal update (5.6b) becomes expensive. The
proximal update may be distilled to computing

min
θ∈Θ

{
〈g, θ〉+ ψ(θ)

}
or min

θ∈Θ

{
〈g, θ〉+ ψ(θ) + ϕ(θ)

}
. (5.8)

In such cases, it may be beneficial to accumulate gradients by querying the stochastic oracle
several times in each iteration, using the averaged subgradient in the update (5.6b), and
thus solve only one proximal sub-problem for a collection of samples.

Let us consider some concrete examples. In statistical applications involving the estima-
tion of covariance matrices, the domain Θ is constrained in the positive semidefinite cone
{θ ∈ Sd | θ � 0}; other applications involve additional nuclear-norm constraints of the form

Θ = {θ ∈ Rd1×d2 | ∑min{d1,d2}
j=1 γj(θ) ≤ C}. Examples of such problems include covariance

matrix estimation, matrix completion, and model identification in vector autoregressive pro-
cesses (see the paper [132] and references therein for further discussion). Another example
is the problem of metric learning [184, 160], in which the learner is given a set of n points
{x1, . . . , xn} ⊂ Rd and a matrix Y ∈ Rn×n indicating which points are close together in an
unknown metric. The goal is to estimate a positive semidefinite matrix θ � 0 such that
〈(xi − xj), θ(xi − xj)〉 is small when xi and xj belong to the same class or are close, while
〈(xi − xj), θ(xi − xj)〉 is large when xi and xj belong to different classes. It is desirable that
the matrix θ have low rank, which allows the statistician to discover structure or guarantee
performance on unseen data. As a concrete illustration, suppose that we are given a matrix
Y ∈ {−1, 1}n×n, where yij = 1 if xi and xj belong to the same class, and yij = −1 other-
wise. In this case, one possible optimization-based estimator involves solving the non-smooth
program

min
θ,θ0

1(
n
2

)
∑

i<j

[
1 + yij(tr(θ(xi − xj)(xi − xj)⊤) + θ0)

]
+

s.t. θ � 0, tr(θ) ≤ C. (5.9)

Now let us consider the cost of computing the projection update (5.8) for the metric learning
problem (5.9). When ψ(θ) = 1

2
‖θ‖2Fr, the update (5.8) reduces for appropriate choice of V
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to

min
θ

1

2
‖θ − V ‖2Fr subject to θ � 0, tr(θ) ≤ C.

(As a side-note, it is possible to generalize this update to Schatten p-norms [52].) This
problem is equivalent to projecting the eigenvalues of V to the simplex {x ∈ Rd | x �
0, 〈1, x〉 ≤ C}, which after an O(d3) eigen-decomposition requires time O(d) [34]. To see
the benefits of the randomized perturbation and averaging technique (5.5) over standard
stochastic gradient descent (5.3), consider that the cost of querying a stochastic oracle for
the objective (5.9) for one sample pair (i, j) requires time O(d2). Thus, m queries require
O(md2) computation, and each update requires O(d3). So we see that after nmd2+nd3 units
of computation, our randomized perturbation method has optimization error O(1/√nm),
while standard stochastic gradient requires nmd3 units of computation to attain the same
error. In short, for m ≈ d the randomized smoothing technique (5.5) uses a factor O(d) less
computation than standard stochastic gradient; we give experiments corroborating this in
Section 5.3.2.2.

5.3.2 Experimental results

We now describe experimental results that confirm the sharpness of our theoretical predic-
tions. The first experiment explores the benefit of using multiple samples m when estimating
the gradient ∇f(wk) as in the averaging step (5.5). The second experiment studies the ac-
tual amount of time required to solve a statistical metric learning problem, as described in
the objective (5.9) above.

5.3.2.1 Iteration Complexity of Reduced Variance Estimators

In this experiment, we consider the number of iterations of the accelerated method (5.6a)–
(5.6c) necessary to achieve an ǫ-optimal solution to the problem (5.1). To understand how
the iteration scales with the number m of gradient samples, we consider our results in terms
of the number of iterations

T (ǫ,m) := inf
{
n ∈ {1, 2, . . .} | f(θn)− min

θ∗∈Θ
f(θ∗) ≤ ǫ

}

required to achieve optimization error ǫ when using m gradient samples in the averaging
step (5.5). We focus on the algorithm analyzed in Corollary 5.2, which uses uniform sampling
of the ℓ2-ball. The corollary implies there should be two regimes of convergence: one where
the M r2/

√
nm term is dominant, and the other when the number of samples m is so large

that the M rd1/4/n term is dominant. By inverting the first term, we see that for small m,
T (ǫ,m) = O(M2r22/mǫ

2), while the second gives T (ǫ,m) = O(M r2d
1/4/ǫ). In particular, our

theory predicts that

T (ǫ,m) = O
(
max

{
M2r22
mǫ2

,
M r2d

1/4

ǫ

})
. (5.10)
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Figure 5.1. The number of iterations T (ǫ,m) to achieve ǫ-optimal solution for the prob-
lem (5.11) as a function of the number of samplesm used in the gradient estimate (5.5). The
prediction (5.10) is the square black line in each plot; plot (a) shows results for dimension
d = 50, (b) for d = 400.

In order to assess the accuracy of this prediction, we consider a robust linear regression
problem, commonly studied in system identification and robust statistics [146, 100]. Specif-
ically, given a matrix X ∈ Rn×d and vector y ∈ Rn, the goal is to minimize the non-smooth
objective function

f(x) =
1

n
‖Xθ − y‖1 =

1

n

n∑

i=1

| 〈xi, θ〉 − yi|, (5.11)

where xi ∈ Rd denotes a transposed row of X. The stochastic oracle in this experiment,
when queried at a point θ, chooses an index i ∈ [n] uniformly at random and returns the
vector sign(〈xi, θ〉 − yi)xi.

In our experiments, we generated n = 1000 points with d ∈ {50, 100, 200, 400, 800, 1600}
dimensions, each with fixed norm ‖xi‖2 = M , and then assigned values yi by computing
〈xi, w〉 for a random vector w (adding normally distributed noise with variance 0.1). We
estimated the quantity T (ǫ,m) for solving the robust regression problem (5.11) for several
values of m and d. Figure 5.1 shows results for dimensions d ∈ {50, 400}, averaged over 20
experiments for each choice of dimension d. (Other settings of d exhibited similar behavior.)
Each panel in the figure shows—on a log-log scale—the experimental average T (ǫ,m) and
the theoretical prediction (5.10). The decrease in T (ǫ,m) is nearly linear for smaller numbers
of samples m; for larger m, the effect is quite diminished. We present numerical results in
Table 5.1 that allow us to roughly estimate the number m at which increasing the batch size
in the gradient estimate (5.5) gives no further improvement. For each dimension d, Table 5.1
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m 1 2 3 5 20 100 1000 10000

d = 50
Mean 612.2 252.7 195.9 116.7 66.1 52.2 47.7 46.6
Std 158.29 34.67 38.87 13.63 3.18 1.66 1.42 1.28

d = 100
Mean 762.5 388.3 272.4 193.6 108.6 83.3 75.3 73.3
Std 56.70 19.50 17.59 10.65 1.91 1.27 0.78 0.78

d = 200
Mean 1002.7 537.8 371.1 267.2 146.8 109.8 97.9 95.0
Std 68.64 26.94 13.75 12.70 1.66 1.25 0.54 0.45

d = 400
Mean 1261.9 656.2 463.2 326.1 178.8 133.6 118.6 115.0
Std 60.17 38.59 12.97 8.36 2.04 1.02 0.49 0.00

d = 800
Mean 1477.1 783.9 557.9 388.3 215.3 160.6 142.0 137.4
Std 44.29 24.87 12.30 9.49 2.90 0.66 0.00 0.49

d= 1600
Mean 1609.5 862.5 632.0 448.9 251.5 191.1 169.4 164.0
Std 42.83 30.55 12.73 8.17 2.73 0.30 0.49 0.00

Table 5.1. The number of iterations T (ǫ,m) to achieve ǫ-accuracy for the regression prob-
lem (5.11) as a function of number of gradient samples m used in the gradient estimate (5.5)
and the dimension d. Each box in the table shows the mean and standard deviation of
T (ǫ,m) measured over 20 trials.

indeed shows that from m = 1 to 5, the iteration count T (ǫ,m) decreases linearly, halving
again when we reach m ≈ 20, but between m = 100 and 1000 there is at most an 11%
difference in T (ǫ,m), while between m = 1000 and m = 10000 the decrease amounts to at
most 3%. The good qualitative match between the iteration complexity predicted by our
theory and the actual performance of the methods is clear.

5.3.2.2 Metric Learning

Our second set of experiments were based on instances of the metric learning problem. For
each i, j = 1, . . . , n, we are given a vector xi ∈ Rd, and a measure yij ≥ 0 of the similarity
between the vectors xi and xj. (Here yij = 0 means that xi and xj are the same). The
statistical goal is to learn a matrix θ—inducing a pseudo-norm via ‖x‖2θ := 〈x, θx〉—such
that 〈(xi − xj), θ(xi − xj)〉 ≈ yij . One method for doing so is to minimize the objective

f(θ) =
1(
n
2

)
∑

i<j

∣∣tr
(
θ(xi − xj)(xi − xj)⊤

)
− yij

∣∣ subject to tr(θ) ≤ C, θ � 0.

The stochastic oracle for this problem is simple: given a query matrix θ, the oracle chooses
a pair (i, j) uniformly at random, then returns the subgradient

sign [〈(xi − xj), θ(xi − xj)〉 − yij ] (xi − xj)(xi − xj)⊤.

We solve ten random problems with dimension d = 100 and n = 2000, giving an objective
with 4 · 106 terms and 5050 parameters. Performing stochastic optimization is more viable
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Figure 5.2. Optimization error f(θk) − infθ∗∈Θ f(θ∗) in the metric learning problem of
Section 5.3.2.2 as a function of time in seconds. Each line indicates optimization error over
time for a particular number of samples m in the gradient estimate (5.5); we set m = 2i for
i = {1, . . . , 7}.

for this problem than a non-stochastic method, as even computing the objective requires
O(n2d2) operations. We plot experimental results in Figure 5.2 showing the optimality gap
f(θk)− infθ∗∈Θ f(θ

∗) as a function of computation time. We plot several lines, each of which
captures the performance of the algorithm using a different number m of samples in the
smoothing step (5.5). As predicted by our theory and discussion in Section 5.3, receiving
more samples m gives improvements in convergence rate as a function of time. Our theory
also predicts that for m ≥ d, there should be no improvement in actual time taken to
minimize the objective; the plot in Figure 5.2 suggests that this too is correct, as the plots
for m = 64 and m = 128 are essentially indistinguishable.

5.3.2.3 Necessity of randomized smoothing

A reasonable question is whether the extra sophistication of the random smoothing (5.5) is
necessary. Can receiving more samples m from the stochastic oracle—all evaluated at the
same point—give the same benefit to the simple dual averaging method (5.3)? We do not
know the full answer to this question, though we give an experiment here that suggests that
the answer is negative, in that smoothing does give demonstrable improvement.

For this experiment, we use the objective

f(θ) =
1

n

n∑

i=1

‖θ − xi‖1 , (5.12)

where the xi ∈ {−1,+1}d, and each component j of the vector xi is sampled independently
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Figure 5.3. The number of iterations T (ǫ,m) to achieve an ǫ-optimal solution to (5.12)
for simple mirror descent and the smoothed gradient method.

from {−1, 1} and equal to 1 with probability 1/
√
j. Even as n ↑ ∞, the function f remains

non-smooth, since the xi belong to a discrete set and each value of xi occurs with positive
probability. As in Section 5.3.2.1, we compute T (ǫ,m) to be the number of iterations required
to achieve an ǫ-optimal solution to the objective (5.12). We compare two algorithms that
use m queries of the stochastic gradient oracle, which when queried at a point x chooses an
index i ∈ [n] uniformly at random and returns g(θ; xi) = sign(θ − xi) ∈ ∂ ‖θ − xi‖1. The
first algorithm is the dual averaging algorithm (5.3), where gk is the average of m queries to
the stochastic oracle at the current iterate θk. The second is the accelerated method (5.6a)–
(5.6c) with the randomized averaging (5.5). We plot the results in Figure 5.3. We plot
the best stepsize sequence αk for the update (5.3) of several we tested to make comparison
as favorable as possible for simple mirror descent. It is clear that while there is moderate
improvement for the non-smooth method when the number of samples m grows, and both
methods are (unsurprisingly) essentially indistinguishable for m = 1, the smoothed sampling
strategy has much better iteration complexity as m grows.

5.4 Summary

In this chapter, we have developed and analyzed smoothing strategies for stochastic non-
smooth optimization that are provably optimal in the stochastic oracle model of optimization
complexity and given—to our knowledge—the first variance reduction techniques for non-
smooth stochastic optimization. We think that at least two obvious questions remain. The
first is whether the randomized smoothing is necessary to achieve such optimal rates of
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convergence; it is clearly not when the data obeys certain nice characteristics, such as data
sparsity, as outlined in the previous chapter. The second question is whether dimension-
independent smoothing techniques are possible, that is, whether the d-dependent factors
in the bounds in Corollaries 5.2–5.4 are necessary. Answering this question would require
study of different smoothing distributions, as the dimension dependence for our choices
of µ is tight. We have outlined several applications for which smoothing techniques give
provable improvement over standard methods. Our experiments also show qualitatively
good agreement with the theoretical predictions we have developed.

5.5 Proofs of convergence

In this section, we provide the proofs of Theorem 5.1 as well as Corollaries 5.1 through
through 5.4. We begin with the proofs of the corollaries, after which we give the full proofs
of the theorems. In both cases, we defer some of the more technical lemmas to appendices.

The general technique for the proof of each corollary is as follows. First, we note that
the randomly smoothed function fu(θ) = E[f(θ + uZ)] has Lipschitz continuous gradient,
and it is uniformly close to the original non-smooth function f . This fact allows us to apply
Theorem 5.1. The second step is to realize that with the sampling procedure (5.5), the
variance E[‖ek‖2∗] decreases by a factor of approximately m, the number of gradient samples.
Choosing the stepsizes appropriately in the theorems then completes the proofs. Proofs of
these corollaries require relatively tight control of the smoothness properties of the smoothing
convolution (5.2), so we refer frequently to lemmas stated in Section 5.6.

5.5.1 Proof of Corollaries 5.2 and 5.3

We begin by proving Corollary 5.2. Recall the averaged quantity gk = 1
m

∑m
t=1 g

k
t defined in

expression (5.5), and that gkt ∈ ∂F (wk + utZk,t;Xk,t), where the random variables Zk,t are
distributed uniformly on the ℓ2-ball B2. From Lemma 5.4 in Section 5.6, the variance of gt
as an estimate of ∇fut(wk) satisfies

σ2 := E
[∥∥ek

∥∥2
2

]
= E

[∥∥gk −∇fuk(wk)
∥∥2
2

]
≤ M2

m
. (5.13)

Further, for Z distributed uniformly on B2, we have the bound

f(θ) ≤ E[f(θ + uZ)] ≤ f(θ) +Mu,

and moreover, the function θ 7→ E[f(θ + uZ)] has M
√
d/u-Lipschitz continuous gradient.

Thus, applying Lemma 5.4 and Theorem 5.1 with the setting Lk =M
√
d/uνk, we obtain

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ 6M r2
√
d

nu
+

2ηnr
2

n
+

1

n

n−1∑

k=0

1

ηk
· M

2

m
+

4Mu

n
,
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where we have used the bound (5.13).
Recall that ηk =M

√
k + 1/r

√
m by construction. Coupled with the inequality

n∑

k=1

1√
k
≤ 1 +

∫ n

1

1√
t
dt = 1 + 2(

√
n− 1) ≤ 2

√
n, (5.14)

we use that 2
√
n+ 1/n+ 2/

√
n ≤ 5/

√
n to obtain

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤ 6M r22
√
d

nu
+

5M r2√
nm

+
4Mu

n
.

Substituting the specified setting of u = r2d
1/4 completes the proof.

The proof of Corollary 5.3 is essentially identical, differing only in the setting of u =
r2d

−1/4 and the application of Lemma 5.5 instead of Lemma 5.4 in Section 5.6.

5.5.2 Proof of Corollary 5.4

Under the conditions of the corollary, Lemma 5.3 implies that when µ is uniform on B∞),
then the function fu(θ) := E[f(θ+uZ)] has M/u-Lipschitz continuous gradient with respect
to the ℓ1-norm, and moreover it satisfies the upper bound fu(θ) ≤ f(θ) + Mdu

2
. Fix θ ∈ Θ

and let gt = g(θ + Zt;Xt) ∈ ∂F (x + Zt;Xt), with g = 1
m

∑m
t=1 gt. We claim that for any u,

the error satisfies

E
[
‖g −∇fu(θ)‖2∞

]
≤ C

M2 log d

m
(5.15)

for some universal constant C. Indeed, Lemma 5.3 shows that E[g] = ∇fu(θ); moreover, com-
ponent j of the random vector gt is an unbiased estimator of the jth component of ∇fu(θ).
Since ‖gt‖∞ ≤ M and ‖∇fu(θ)‖∞ ≤ M , the vector gt −∇fu(θ) is a d-dimensional random
vector whose components are sub-Gaussian with sub-Gaussian parameter 4M2. Conditional
on θ, the gt are independent, so g−∇fu(θ) has sub-Gaussian components with sub-Gaussian
parameter at most 4M2/m (cf. Buldygin and Kozachenko [36]). By standard concentration
results [36], this immediately yields the claim (5.15).

Now, as in the proof of Corollary 5.2, we can apply Theorem 5.1. Recall as in our
discussion following Corollary 3.3 that 1

2(p−1)
‖θ‖2p is strongly convex over Rd with respect to

the ℓp-norm for p ∈ (1, 2] (e.g. [134, 22]). Thus, with the choice ψ(θ) = 1
2(p−1)

‖θ‖2p for p =

1+1/ log d, it is clear that the squared radius r2ψ of the set Θ is order ‖θ∗‖2p log d ≤ ‖θ∗‖
2
1 log d.

All that remains is to relate the Lipschitz constant M with respect to the ℓ1 norm to that
for the ℓp norm. Let q be conjugate to p, that is, 1/q + 1/p = 1. Under the assumptions of
the theorem, we have q = 1 + log d. For any g ∈ Rd, we have ‖g‖q ≤ d1/q ‖g‖∞. Of course,

d1/(log d+1) ≤ d1/(log d) = exp(1), so ‖g‖q ≤ e ‖g‖∞.
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Having shown that the Lipschitz constant L for the ℓp norm satisfies L ≤Me, where M
is the Lipschitz constant with respect to the ℓ1 norm, we apply Theorem 5.1 and the variance
bound (5.15) to obtain the result. Specifically, Theorem 5.1 implies

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)] ≤
6M r2ψ

nu
+

2ηnr
2
ψ

n
+
C

n

n−1∑

k=0

1

ηk
· M

2 log d

m
+

4Mdu

2n
.

Substituting u, ηk, and rψ ≤ ‖θ∗‖1
√
log d and using bound (5.14) completes the proof.

5.5.3 Proof of Theorem 5.1

This proof is more involved than that of the above corollaries. In particular, we build
on techniques used in the work of Tseng [170], Lan [114], and Xiao [183]. The changing
smoothness of the stochastic objective—which comes from changing the shape parameter of
the sampling distribution Z in the averaging step (5.5)—adds some challenge. The proof
begins by defining fuk(θ) := E[f(θ + ukZ)], where uk is the non-increasing sequence of
shape parameters in the averaging scheme (5.5). We show via Jensen’s inequality that
f(θ) ≤ fuk(θ) ≤ fuk−1

(θ) for all k, which is intuitive because the variance of the sampling
scheme is decreasing. Then we apply a suitable modification of the accelerated gradient
method [170] to the sequence of functions fuk decreasing to f , and by allowing uk to decrease
appropriately we achieve our result. At the end of this section, we prove Corollary 5.1, which
gives an alternative setting for u given a priori knowledge of the number of iterations.

We begin by stating two technical lemmas:

Lemma 5.1. Let fuk be a sequence of functions such that fuk has Lk-Lipschitz continuous
gradients with respect to the norm ‖·‖ and assume that fuk(θ) ≤ fuk−1

(θ) for any x ∈ Θ. Let
the sequence {θk, wk, vk} be generated according to the updates (5.6a)–(5.6c), and define the
error term ek = ∇fuk(wk)− gk. Then for any θ∗ ∈ Θ,

1

ν2k
[fuk(θ

k+1) + ϕ(θk+1)] ≤
k∑

i=0

1

νi
[fui(θ

∗) + ϕ(θ∗)] +

(
Lk+1 +

ηk+1

νk+1

)
ψ(θ∗)

+
k∑

i=0

1

2νiηi

∥∥ek
∥∥2
∗ +

k∑

i=0

1

νi

〈
ei, vi − θ∗

〉
.

See Section 5.5.4 for the proof of this claim.

Lemma 5.2. Let the sequence νk satisfy 1−νk
ν2k

= 1
ν2k−1

and ν0 = 1. Then

νk ≤
2

k + 2
and

k∑

i=0

1

νi
=

1

ν2k
.
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Tseng [170] proves the second statement; the first follows by induction.
We now proceed with the proof. Recalling fuk(θ) = E[f(θ + ukZ)], let us verify that

fuk(θ) ≤ fuk−1
(θ) for any x and t so we can apply Lemma 5.1. Since uk ≤ uk−1, we may

define a random variable U ∈ {0, 1} such that P(U = 1) = uk
uk−1
∈ [0, 1]. Then

fuk(θ) = E[f(θ + ukZ)] = E
[
f
(
θ + uk−1ZE[U ]

)]

≤ P[U = 1] E[f(θ + uk−1Z)] + P[U = 0] f(θ),

where the inequality follows from Jensen’s inequality. By a second application of Jensen’s
inequality, we have f(θ) = f(θ + uk−1E[Z]) ≤ E[f(θ + uk−1Z)] = fuk−1

(θ). Combined with
the previous inequality, we conclude that fuk(θ) ≤ E[f(θ + uk−1Z)] = fuk−1

(θ) as claimed.
Consequently, we have verified that the function fuk satisfies the assumptions of Lemma 5.1,
where ∇fuk has Lipschitz parameter Lk = L/uk and error term ek = ∇fuk(wk) − gk. We
apply the lemma momentarily.

Using Assumption 5A that f(θ) ≥ E[f(θ + ukZ)]−Muk = fuk(θ)−Muk for all x ∈ Θ,
Lemma 5.2 implies

1

ν2n−1

[f(θn) + ϕ(θn)]− 1

ν2n−1

[f(θ∗) + ϕ(θ∗)]

=
1

ν2n−1

[f(θn) + ϕ(θn)]−
n−1∑

k=0

1

νk
[f(θ∗) + ϕ(θ∗)]

≤ 1

ν2n−1

[fun−1(θ
n) + ϕ(θn)]−

n−1∑

k=0

1

νk
[fuk(θ

∗) + ϕ(θ∗)] +
n−1∑

k=0

Muk
νk

,

which by the definition of uk = νku is in turn bounded by

1

ν2n−1

[fun−1(θ
n) + ϕ(θn)]−

n−1∑

k=0

1

νk
[fuk(θ

∗) + ϕ(θ∗)] + nMu. (5.16)

Now we apply Lemma 5.1 to the bound (5.16), which gives us

1

ν2n−1

[f(θn) + ϕ(θn)− f(θ∗)− ϕ(θ∗)]

≤ Lnψ(θ
∗) +

ηn
νn
ψ(θ∗) +

n−1∑

k=0

1

2νkηk

∥∥ek
∥∥2
∗ +

n−1∑

k=0

1

νk

〈
ek, vk − θ∗

〉
+ nMu. (5.17)

The non-probabilistic bound (5.17) is the key to the remainder of this proof, as well as the
high probability guarantees presented in the paper off of which this chapter is based [55].
What remains here is to take expectations in the bound (5.17).
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Recall the filtration of σ-fields Fk, which satisfy θk, wk, vk ∈ Fk−1, that is, Fk contains the
randomness in the stochastic oracle to time t. Since gk is an unbiased estimator of ∇fuk(wk)
by construction, we have E[gk | Fk−1] = ∇fuk(wk) and

E[
〈
ek, vk − θ∗

〉
] = E

[
E[
〈
ek, vk − θ∗

〉
| Fk−1]

]
= E

[ 〈
E[ek | Fk−1], v

k − θ∗
〉 ]

= 0,

where we have used the fact that vk are measurable with respect to Fk−1. Now, recall from
Lemma 5.2 that νk ≤ 2

2+k
and that (1− νk)/ν2k = 1/ν2k−1. Thus

ν2k−1

ν2k
=

1

1− νk
≤ 1

1− 2
2+k

=
2 + k

k
≤ 3

2
for k ≥ 4.

Furthermore, we have νk+1 ≤ νk, so by multiplying both sides of our bound (5.17) by ν2n−1

and taking expectations over the random vectors gk,

E[f(θn) + ϕ(θn)]− [f(θ∗) + ϕ(θ∗)]

≤ ν2n−1Lnψ(θ
∗) + νn−1ηnψ(θ

∗) + ν2n−1nMu

+ νn−1

n−1∑

k=0

1

2ηk
E[
∥∥ek
∥∥2
∗] + νn−1

n−1∑

k=0

E[
〈
ek, vk − θ∗

〉
]

≤ 6Lψ(θ∗)

nu
+

2ηnψ(θ
∗)

n
+

1

n

n−1∑

k=0

1

ηk
E[
∥∥ek
∥∥2
∗] +

4Mu

n
,

where we used that Ln = L/un = L/νnu. This completes the proof of Theorem 5.1.

We conclude this section by proving Corollary 5.1, which uses a fixed setting of the
smoothing parameter uk. It is clear that by setting u ∝ 1/n, the rates achieved by Theo-
rem 5.1 and Corollary 5.1 are identical to constant factors. If we fix uk ≡ u for all k, then the
bound (5.17) holds with the last term nMu replaced by ν2n−1Mu, which we see by invoking
Lemma 5.2. The remainder of the proof follows unchanged, with Lk ≡ L for all k.

5.5.4 Proof of Lemma 5.1

Define the linearized version of the cumulative objective

Lk(θ) :=
k∑

i=0

1

νi
[fui(w

i) +
〈
gi, θ − wi

〉
+ ϕ(θ)], (5.18)

and let L−1(z) denote the indicator function of the set Θ. For conciseness, we temporarily
adopt the shorthand notation

α−1
k = Lk + ηk/νk and φk(θ) = fuk(θ) + ϕ(θ).
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By the smoothness of fuk , we have

fuk(θ
k+1) + ϕ(θk+1)︸ ︷︷ ︸
φk(θk+1)

≤ fuk(w
k) +

〈
∇fuk(wk), θk+1 − wk

〉
+
Lk
2

∥∥θk+1 − wk
∥∥2 + ϕ(θk+1).

From the definition (5.6a)–(5.6c) of the triple (θk, wk, vk), we obtain

φk(θ
k+1) ≤ fuk(w

k) +
〈
∇fuk(wk), νkvk+1 + (1− νk)θk

〉
+
Lk
2

∥∥νkvk+1 − νkvk
∥∥2

+ ϕ(νkv
k+1 + (1− νk)θk).

Finally, by convexity of the regularizer ϕ, we conclude

φk(θ
k+1) ≤ νk

[
fuk(w

k) +
〈
∇fuk(wk), vk+1 − wk

〉
+ ϕ(vk+1) +

Lkνk
2

∥∥vk+1 − vk
∥∥2
]

+ (1− νk)[fuk(wk) +
〈
∇fuk(wk), θk − wk

〉
+ ϕ(θk)]. (5.19)

By the strong convexity of ψ, we know that we have the lower bound

Dψ(θ, θ
′) = ψ(θ)− ψ(θ′)− 〈∇ψ(θ′), θ − θ′〉 ≥ 1

2
‖θ − θ′‖2 . (5.20)

On the other hand, by the convexity of fuk , we have

fuk(w
k) +

〈
∇fuk(wk), θk − wk

〉
≤ fuk(θ

k). (5.21)

Substituting inequalities (5.20) and (5.21) into the bound (5.19) and simplifying yields

φk(θ
k+1) ≤ νk

[
fuk(w

k) +
〈
∇fuk(wk), vk+1 − wk

〉
+ ϕ(vk+1) + LkνkDψ(v

k+1, vk)
]

+ (1− νk)[fuk(θk) + ϕ(θk)].

We now re-write this upper bound in terms of the error ek = ∇fuk(wk)− gk:
φk(θ

k+1) ≤ νk
[
fuk(w

k) +
〈
gk, vk+1 − wk

〉
+ ϕ(vk+1) + LkνkDψ(v

k+1, vk)
]

+ (1− νk)[fuk(θk) + ϕ(θk)] + νk
〈
ek, vk+1 − wk

〉

= ν2k
[
Lk(v

k+1)− Lt−1(v
k+1) + LkDψ(v

k+1, vk)
]

+ (1− νk)[fuk(θk) + ϕ(θk)] + νk
〈
ek, vk+1 − wk

〉
. (5.22)

The first order convexity conditions for optimality imply that for some g ∈ ∂Lk−1(v
k)

and all θ ∈ Θ, we have
〈
g + 1

αk
∇ψ(vk), θ − vk

〉
≥ 0 since vk minimizes Lk−1(θ) +

1
αk
ψ(θ).

Thus, first-order convexity gives

Lk−1(θ)− Lk−1(v
k) ≥

〈
g, θ − vk

〉
≥ − 1

αk

〈
∇ψ(vk), θ − vk

〉

=
1

αk
ψ(vk)− 1

αk
ψ(θ) +

1

αk
Dψ(θ, v

k).
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Adding Lk(v
k+1) to both sides of the above and substituting θ = vk+1, we conclude

Lk(v
k+1)− Lk−1(v

k+1) ≤ Lk(v
k+1)− Lk−1(v

k)− 1

αk
ψ(vk) +

1

αk
ψ(vk+1)− 1

αk
Dψ(v

k+1, vk).

Combining this inequality with the bound (5.22) and the definition α−1
k = Lk + ηk/νk,

fuk(θ
k+1)+ϕ(θk+1) ≤ ν2k

[
Lk(v

k+1)− Lk(v
k)− 1

αk
ψ(vk) +

1

αk
ψ(vk+1)− ηk

νk
Dψ(v

k+1, vk)

]

+ (1− νk)[fuk(θk) + ϕ(θk)] + νk
〈
ek, vk+1 − wk

〉

≤ ν2k

[
Lk(v

k+1)− Lk(v
k)− 1

αk
ψ(vk) +

1

αk+1

ψ(vk+1)− ηk
νk
Dψ(v

k+1, vk)

]

+ (1− νk)[fuk(θk) + ϕ(θk)] + νk
〈
ek, vk+1 − wk

〉

since α−1
k is non-decreasing. We now divide both sides by ν2k , and unwrap the recursion. By

construction (1− νk)/ν2k = 1/ν2k−1 and fuk ≤ fuk−1
, so we obtain

1

ν2k
[fuk(θ

k+1) + ϕ(θk+1)] ≤ 1− νk
ν2k

[fuk(θ
k) + ϕ(θk)]− 1

αk
ψ(vk) +

1

αk+1

ψ(vk+1)

+ Lk(v
k+1)− Lk(v

k)− ηk
νk
Dψ(v

k+1, vk) +
1

νk

〈
ek, v

k+1 − wk
〉

≤ 1

ν2k−1

[fuk−1
(θk) + ϕ(θk)]− 1

αk
ψ(vk) +

1

αk+1

ψ(vk+1)

+ Lk(v
k+1)− Lk(v

k)− ηk
νk
Dψ(v

k+1, vk) +
1

νk

〈
ek, v

k+1 − wk
〉
.

The second inequality follows by combination of the facts that (1 − νk)/ν
2
k = 1/ν2k−1 and

fuk ≤ fuk−1
. By applying the two steps above successively to [fuk−1

(θk) + ϕ(θk)]/ν2k−1, then
to [fuk−2

(θk−1) + ϕ(θk−1)]/ν2k−2, and so on until k = 0, we find

1

ν2k
[fuk(θ

k+1) + ϕ(θk+1)] ≤ 1− ν0
ν20

[fu0(θ
0) + ϕ(θ0)] + Lk(v

k+1) +
1

αk+1

ψ(vk+1)

−
k∑

i=0

ηi
νi
Dψ(v

i+1, vi) +
k∑

i=0

1

νi

〈
ei, vi+1 − wi

〉
− L−1(v

0)− 1

α0

ψ(v0)

By construction, ν0 = 1, we have L−1(v
0) = 0, and vk+1 minimizes Lk(θ) +

1
αk+1

ψ(θ) over

Θ. Thus, for any θ∗ ∈ Θ, we have

1

ν2k
[fuk(θ

k+1) + ϕ(θk+1)]

≤ Lk(θ
∗) +

1

αk+1

ψ(θ∗)−
k∑

i=0

ηi
νi
Dψ(v

i+1, vi) +
k∑

i=0

1

νi

〈
ei, vi+1 − wi

〉
.
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Recalling the definition (5.18) of Lk and noting that the first-order conditions for convexity
imply that fuk(w

k) +
〈
∇fuk(wk), x− wk

〉
≤ fuk(θ), we expand Lk and have

1

ν2k
[fuk(θ

k+1) + ϕ(θk+1)] ≤
k∑

i=0

1

νi
[fui(w

i) +
〈
gi, θ∗ − wi

〉
+ ϕ(θ∗)] +

1

αk+1

ψ(θ∗)

−
k∑

i=0

ηi
νi
Dψ(v

i+1, vi) +
k∑

i=0

1

νi

〈
ei, vi+1 − wk

〉

=
k∑

i=0

1

νi
[fui(w

i) +
〈
∇fui(wi), θ∗ − wi

〉
+ ϕ(θ∗)] +

1

αk+1

ψ(θ∗)

−
k∑

i=0

ηi
νi
Dψ(v

i+1, vi) +
k∑

i=0

1

νi

〈
ei, vi+1 − θ∗

〉

≤
k∑

i=0

1

νi
[fui(θ

∗) + ϕ(θ∗)] +
1

αk+1

ψ(θ∗)

−
k∑

i=0

ηi
νi
Dψ(v

i+1, vi) +
k∑

i=0

1

νi

〈
ei, vi+1 − θ∗

〉
. (5.23)

Now we apply the Fenchel-Young inequality to the conjugates 1
2
‖·‖2 and 1

2
‖·‖2∗, yielding

〈
ek, vk+1 − θ∗

〉
=
〈
ek, vk − θ∗

〉
+
〈
ek, vk+1 − vk

〉

≤
〈
ek, vk − θ∗

〉
+

1

2ηk

∥∥ek
∥∥2
∗ +

ηk
2

∥∥vk − vk+1
∥∥2 .

In particular,

−ηk
νk
Dψ(v

k+1, vk) +
1

νk

〈
ek, vk+1 − θ∗

〉
≤ 1

2ηkνk

∥∥ek
∥∥2
∗ +

1

νk

〈
ek, vk − θ∗

〉
.

Using this inequality and rearranging (5.23) proves the lemma.

5.6 Properties of randomized smoothing

In this section, we discuss the analytic properties of the smoothed function fu from the
convolution (5.2). We assume throughout that functions are sufficiently integrable with-
out bothering with measurability conditions (since F (·; x) is convex, this is no real loss of
generality [25, 153, 154]). By Fubini’s theorem, we have

fu(θ) =

∫

X

∫

Rd

F (θ + uz; x)µ(y)dydP (x) =

∫

X
Fu(θ; x)dP (x).
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Here Fu(θ; x) = (F (·; x) ∗µ(−·))(θ). We begin with the observation that since µ is a density
with respect to Lebesgue measure, the function fu is in fact differentiable [25]. So we have
already made our problem somewhat smoother, as it is now differentiable; for the remainder,
we consider finer properties of the smoothing operation. In particular, we will show that
under suitable conditions on µ, F (·; x), and P , the function fu is uniformly close to f over
Θ and ∇fu is Lipschitz continuous.

The next lemmas apply to general (possibly non-smooth) convex functions f , where we
let

fu(x) = E[f(x+ uZ)] =

∫

Rd

f(x+ uz)µ(z)dz

denote the function f smoothed by the scaled distribution µ. Because f is almost-everywhere
differentiable [98], we may without loss of generality compute ∇f(x + uZ) whenever Z has
a density (see also Bertsekas [25] and Rockafellar and Wets [153]). We give proofs of the
lemmas in the subsections to follow, for each we use the notation Bp = {x ∈ Rd : ‖x‖p ≤ 1}
to denote ℓp-ball of radius 1 and Bp(x, u) = {x+ y ∈ Rd : ‖y‖p ≤ u} to denote the ℓp-ball of
radius u centered at x.

Lemma 5.3. Let µ be the uniform density on the ℓ∞-ball B∞. Assume that f is convex and
M-Lipschitz with respect to the ℓ1-norm on int(dom f + uB∞). Then

(i) f(x) ≤ fu(x) ≤ f(x) + Md
2
u

(ii) fu is M-Lipschitz with respect to the ℓ1-norm over dom f .

(iii) fu is continuously differentiable; moreover, its gradient is M
u
-Lipschitz continuous with

respect to the ℓ1-norm.

There exists a function f for which each of the estimates (i)–(iii) are tight simultaneously.

A similar lemma can be proved when µ is the density of the uniform distribution on B2.
In this case, Yousefian et al. give (i)–(iii) of the following lemma [187] (though the tightness
of the bounds is new).

Lemma 5.4 (Yousefian, Nedić, Shanbhag). Let fu be defined as in (5.2) where µ is the
uniform density on the ℓ2-ball B2. Assume that f is convex and M-Lipschitz with respect to
the ℓ2-norm on int(dom f + uB2). Then

(i) f(x) ≤ fu(x) ≤ f(x) +Mu

(ii) fu is M-Lipschitz over dom f .

(iii) fu is continuously differentiable; moreover, its gradient is M
√
d

u
-Lipschitz continuous.

In addition, there exists a function f for which each of the bounds (i)–(iii) is tight—cannot
be improved by more than a constant factor—simultaneously.
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For situations in which f isM -Lipschitz with respect to the ℓ2-norm over all of Rd and for,
we can use the normal distribution to perform smoothing. The following lemma is similar
to a result of Lakshmanan and de Farias [113, Lemma 3.3], but they consider functions
Lipschitz-continuous with respect to the ℓ∞-norm, i.e. |f(x)− f(y)| ≤ L ‖x− y‖∞, which is
too stringent for our purposes, and we carefully quantify the dependence on the dimension
of the underlying problem.

Lemma 5.5. Let µ be the N(0, u2Id×d) distribution. Assume that f is M-Lipschitz with
respect to the ℓ2-norm. The following properties hold:

(i) f(x) ≤ fu(x) ≤ f(x) +Mu
√
d

(ii) fu is M-Lipschitz with respect to the ℓ2 norm

(iii) fu is continuously differentiable; moreover, its gradient is M
u
-Lipschitz continuous with

respect to the ℓ2-norm.

In addition, there exists a function f for which each of the bounds (i)–(iii) is tight (to within
a constant factor) simultaneously.

Our final lemma illustrates the sharpness of the bounds we have proved for functions
that are Lipschitz with respect to the ℓ2-norm. Specifically, we show that at least for the
normal and uniform distributions, it is impossible to obtain more favorable tradeoffs between
the uniform approximation error of the smoothed function fu and the Lipschitz continuity of
∇fu. We begin with the following definition of our two types of error (uniform and gradient),
then give the lemma:

EU(f) := inf
{
L ∈ R | sup

x∈dom f
|f(x)− fu(x)| ≤ L

}
(5.24)

E∇(f) := inf
{
L ∈ R | ‖∇fu(x)−∇fu(y)‖2 ≤ L ‖x− y‖2 ∀ x, y ∈ dom f

}
(5.25)

Lemma 5.6. There exists a universal (numerical) constant c > 0 such that the following
holds. If µ equal to either the uniform distribution on uB2 or N(0, u2Id×d), there exists an
M-Lipschitz continuous function f such that

EU(f)E∇(f) ≥ cM2
√
d.

Remarks Inspecting the convergence guarantee of Theorem 5.1 makes the importance
of the above bound clear. The terms L and M in the bound (5.7) can be replaced with
E∇(f) and EU(f), respectively. Minimizing over u, we see that the leading term in the

convergence guarantee (5.7) is of order

√
E∇(f)EU (f)ψ(x∗)

n
≥ cMd1/4

√
ψ(θ∗)

n
. In particular, this

result shows that our analysis of the dimension dependence of the randomized smoothing in
Lemmas 5.4 and 5.5 is sharp and cannot be improved by more than a constant factor (see
also Corollaries 5.2 and 5.3).
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5.6.1 Proofs of smoothing lemmas

The following technical lemma is a building block for our results; we provide a proof in
Sec. 5.6.1.4.

Lemma 5.7. Let f be convex and M-Lipschitz continuous with respect to a norm ‖·‖ over
the domain suppµ+ dom f . Let Z be distributed according to the distribution µ. Then

‖∇fu(x)−∇fu(y)‖∗ = ‖E [∇f(x+ Z) +∇f(y + Z)]‖∗ ≤M

∫
|µ(z − x)− µ(z − y))|dz.

(5.26)
If the norm ‖·‖ is the ℓ2-norm and the density µ(z) is rotationally symmetric and non-
increasing as a function of ‖z‖2, the bound (5.26) holds with equality for the function

f(x) =M

∣∣∣∣
〈

y

‖y‖2
, x

〉
− 1

2

∣∣∣∣ .

5.6.1.1 Proof of Lemma 5.3

To simplify notation, we redefine Z ∼ µ so that µ is the uniform density on B∞(0, u). Let
hu(x) denote the (shifted) Huber loss

hu(x) =

{
x2

2u
+ u

2
for x ∈ [−u, u]

|x| otherwise.
(5.27)

Now we prove each of the parts of the lemma in turn.

(i) Since E[Z] = 0, Jensen’s inequality shows f(x) = f(x+uE[Z]) ≤ E[f(x+uZ)] = fu(x),
by definition of fu. To get the upper uniform bound, note that by assumption, f is
M -Lipschitz continuous over dom f + uB∞ with respect to the ℓ1-norm, so

fu(x) = E[f(x+ uZ)] ≤ E[f(x)] + uME[‖Z‖1] = f(x) +
dMu

2
.

To see that the estimate is tight, note that for f(x) = ‖x‖1, we have fu(x) =
∑d

j=1 hu(xj),
where hu is the shifted Huber loss (5.27), and fu(0) = du/2, while f(0) = 0.

(ii) We now prove that fu isM -Lipschitz with respect to ‖·‖1. Under the stated conditions,
we have ‖∂f(x)‖∞ ≤M for all x ∈ dom f + suppµ, whence

‖∇fu(x)‖∞ = ‖E[∇f(x+ Z)]‖∞ ≤ E[‖∇f(x+ Z)‖∞] ≤M.

Tightness follows again by considering f(x) = ‖x‖1, where M = 1.
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(iii) Recall that differentiability is directly implied by earlier work of Bertsekas [25]. Since
f is a.e.-differentiable, we have ∇fu(x) = E[∇f(x+Z)] for Z uniform on [−u, u]d. We
now establish Lipschitz continuity of ∇fu(x).
For a fixed pair x, y ∈ dom f + B∞(0, u), we have from Lemma 5.7

‖E[∇f(x+ Z)]− E[∇f(y + Z)]‖∞ ≤M · 1

(2u)d
λ
(
B∞(x, u)∆B∞(y, u)

)
,

where λ denotes Lebesgue measure and ∆ denotes the symmetric set-difference. By a
straightforward geometric calculation, we see that

λ (B∞(x, u)∆B∞(y, u)) = 2

(
(2u)d −

d∏

j=1

[2u− |xj − yj|]+
)
. (5.28)

To control the volume term (5.28) and complete the proof, we need an auxiliary lemma
(which we prove at the end of this subsection).

Lemma 5.8. Let a ∈ Rd
+ and u ∈ R+. Then

∏d
j=1 [u− aj]+ ≥ ud − ‖a‖1 ud−1.

The volume (5.28) is easy to control using Lemma 5.8. Indeed, we have

1

2
λ (B∞(x, u)∆B∞(y, u)) ≤ (2u)d − (2u)d + ‖x− y‖1 (2u)d−1,

which implies the desired result, that is, that

‖E[∇f(x+ Z)]− E∇[f(y + Z)]‖∞ ≤
M ‖x− y‖1

u
.

To see the tightness claimed in the proposition, consider as usual f(x) = ‖x‖1 and let ej
denote the jth standard basis vector. Then M = 1, ∇fu(0) = 0, ∇fu(uej) = ej, and
‖∇fu(0)−∇fu(uej)‖∞ = 1 = M

u
‖0− uej‖1.

Proof of Lemma 5.8 We begin by noting that the statement of the lemma trivially
holds whenever ‖a‖1 ≥ u, as the right hand side of the inequality is then non-positive. Now,
fix some c < u, and consider the problem

min
a

d∏

j=1

(u− ai)+ s.t. a � 0, ‖a‖1 ≤ c. (5.29)

We show that the minimum is achieved when one index is set to ai = c and the rest to 0.
Indeed, suppose for the sake of contradiction that ã is the solution to (5.29) but that there
are indices i, j with ai ≥ aj > 0, that is, at least two non-zero indices. By taking a logarithm,
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it is clear that minimizing the objective (5.29) is equivalent to minimizing
∑d

j=1 log(u− aj).
Taking the derivative of a 7→ log(u− a) for ai and aj, we see that

∂

∂ai
log(u− ai) =

−1
u− ai

≤ −1
u− aj

=
∂

∂aj
log(u− aj).

Since −1
u−a is decreasing function of a, increasing ai slightly and decreasing aj slightly causes

log(u−ai) to decrease faster than log(u−aj) increases, thus decreasing the overall objective.
This is the desired contradiction.

5.6.1.2 Proof of Lemma 5.5

Throughout this proof, we use Z to denote a random variable distributed as N(0, u2Id×d).

(i) As in the previous lemma, Jensen’s inequality gives f(x) = f(x+ EZ) ≤ Ef(x+Z) =
fu(x). By assumption, f is M -Lipschitz, so

fu(x) = E[f(x+ Z)] ≤ E[f(x)] +ME[‖Z‖2] ≤ f(x) +M

√
E[‖Z‖22] = f(x) +Mu

√
d.

(ii) This proof is analogous to that of part (ii) of Lemma 5.3. The tightness of the Lipschitz
constant can be verified by taking f(x) = 〈v, x〉 for v ∈ Rd, in which case fu(x) = f(x),
and both have gradient v.

(iii) Now we show that ∇fu is Lipschitz continuous. Indeed, applying Lemma 5.7 we have

‖∇fu(x)−∇fu(y)‖2 ≤M

∫
|µ(z − x)− µ(z − y)|dz.

︸ ︷︷ ︸
I2

(5.30)

What remains is to control the integral term (5.30), denoted I2.

In order to do so, we follow a technique used by Lakshmanan and Pucci de Farias [113].
Since µ satisfies µ(z − x) ≥ µ(z − y) if and only if ‖z − x‖2 ≥ ‖z − y‖2, we have

I2 =

∫
|µ(z − x)− µ(z − y)|dz = 2

∫

z:‖z−x‖2≤‖z−y‖2
(µ(z − x)− µ(z − y))dz.

By making the change of variable w = z− x for the µ(z− x) term in I2 and w = z− y
for µ(z − y), we rewrite I2 as

I2 = 2

∫

w:‖w‖2≤‖w−(x−y)‖2
µ(w)dw − 2

∫

w:‖w‖2≥‖w−(x−y)‖2
µ(w)dw

= 2Pµ(‖Z‖2 ≤ ‖Z − (x− y)‖2)− 2Pµ(‖Z‖2 ≥ ‖Z − (x− y)‖2)
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where Pµ denotes probability according to the density µ. Squaring the terms inside the
probability bounds, we note that

Pµ
(
‖Z‖22 ≤ ‖Z − (x− y)‖22

)
= Pµ

(
2 〈Z, x− y〉 ≤ ‖x− y‖22

)

= Pµ

(
2

〈
Z,

x− y
‖x− y‖2

〉
≤ ‖x− y‖2

)

Since (x − y)/ ‖x− y‖2 has norm 1 and Z ∼ N(0, u2I) is rotationally invariant, the

random variable W =
〈
Z, x−y

‖x−y‖2

〉
has distribution N(0, u2). Consequently, we have

I2
2

= P (W ≤ ‖x− y‖2 /2)− P (W ≥ ‖x− y‖2 /2)

=

∫ ‖x−y‖2/2

−∞

1√
2πu2

exp(−w2/(2u2))dw −
∫ ∞

‖x−y‖2/2

1√
2πu2

exp(−w2/(2u2))dw

≤ 1

u
√
2π
‖x− y‖2 ,

where we have exploited symmetry and the inequality exp(−w2) ≤ 1. Combining this
bound with the earlier inequality (5.30), we have

‖∇fu(x)−∇fu(y)‖2 ≤
2M

u
√
2π
‖x− y‖2 ≤

M

u
‖x− y‖2 .

That each of the bounds above is tight is a consequence of Lemma 5.6.

5.6.1.3 Proof of Lemma 5.6

Throughout this proof, c will denote a dimension independent constant and may change from
line to line and inequality to inequality. We will show the result holds by considering a convex
combination of the “difficult” functions f1(x) =M ‖x‖2 and f2(x) =M |〈x, y/ ‖y‖2〉 − 1/2|,
and choosing f = 1

2
f1 +

1
2
f2. Our first step in the proof will be to control EU .

By definition (5.24) of the constant EU , we have EU(
1
2
f1+

1
2
f2) ≥ 1

2
max{EU(f1), EU(f2)}

for any convex f1 and f2. Thus for Z ∼ N(0, u2Id×d) we have E[f1(Z)] ≥ cMu
√
d, i.e.

EU(f) ≥ cMu
√
d, and for Z uniform on B2(0, u), we have E[f1(Z)] ≥ cMu, implying

EU(f) ≥ cMu.
Turning to control of E∇, we note that for any random variable Z rotationally symmetric

about the origin, symmetry implies that

E[∇f1(Z + y)] =ME

[
Z + y

‖Z + y‖2

]
= azy

where az > 0 is a constant dependent on Z. Thus we have

E[∇f1(Z)]−E[∇f1(Z+y)]+E[∇f2(Z)]−E[∇f2(Z+y)] = 0−azy−M
y

‖y‖2

∫
|µ(z)−µ(z−y)|dz
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from Lemma 5.7. As a consequence (since azy is parallel to y/ ‖y‖2), we see that

E∇

(
1

2
f1 +

1

2
f2

)
≥ 1

2
M

∫
|µ(z)− µ(z − y)|dz.

So what remains is to lower bound
∫
|µ(z)− µ(z − y)|dz for the uniform and normal distri-

butions. As we saw in the proof of Lemma 5.5, for the normal distribution

∫
|µ(z)− µ(z − y)|dz = 1

u
√
2π

∫ ‖y‖2/2

−‖y‖2/2
exp(−w2/(2u2))dw =

1

u
√
2π
‖y‖2 +O

(
‖y‖22
u

)
.

By taking small enough ‖y‖2, we achieve the inequality E∇
(
1
2
f1 +

1
2
f2
)
≥ cM

u
when Z ∼

N(0, u2Id×d).
To show that the bound in the lemma is sharp for the case of the uniform distribution

on B2(0, u), we slightly modify the proof of Lemma 2 in [187]. In particular, by using a
Taylor expansion instead of first-order convexity in inequality (11) of [187], it is not difficult
to show that ∫

|µ(z)− µ(z − y)|dz = κ
d!!

(d− 1)!!

‖y‖2
u

+O
(
d ‖y‖22
u2

)
,

where κ = 2/π if d is even and 1 otherwise. Since d!!/(d−1)!! = Θ(
√
d), we have proved that

for small enough ‖y‖2, there is a constant c such that
∫
|µ(z)− µ(z − y)|dz ≥ c

√
d ‖y‖2 /u.

5.6.1.4 Proof of Lemma 5.7

Without loss of generality, we assume that x = 0 (a linear change of variables allows this).
Let g : Rd → Rd be a vector-valued function such that ‖g(z)‖∗ ≤M for all z ∈ {y}+suppµ.
Then

E[g(Z)− g(y + Z)] =

∫
g(z)µ(z)dz −

∫
g(y + z)µ(z)dz

=

∫
g(z)µ(z)dz −

∫
g(z)µ(z − y)dz

=

∫

I>

g(z)[µ(z)− µ(z − y)]dz −
∫

I<

g(z)[µ(z − y)− µ(z)]dz (5.31)

where I> = {z ∈ Rd | µ(z) > µ(z− y)} and I< = {z ∈ Rd | µ(z) < µ(z− y)}. It is now clear
that when we take norms we have

‖Eg(Z)− g(y + Z)‖∗ ≤ sup
z∈I>∪I<

‖g(z)‖∗
∣∣∣∣
∫

I>

[u(z)− u(z − y)]dz +
∫

I<

[u(z − y)− u(z)]dz
∣∣∣∣

≤M

∣∣∣∣
∫

I>

µ(z)− µ(z − y)dz +
∫

I<

µ(z − y)− µ(z)dz
∣∣∣∣

=M

∫
|µ(z)− µ(z − y)|dz.
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Taking g(z) to be an arbitrary element of ∂f(z) completes the proof of the bound (5.26).
To see that the result is tight when µ is rotationally symmetric and the norm ‖·‖ =

‖·‖2, we note the following. From the equality (5.31), we see that ‖E[g(Z)− g(y + Z)]‖2 is
maximized by choosing g(z) = v for z ∈ I> and g(z) = −v for z ∈ I< for any v such that
‖v‖2 =M . Since µ is rotationally symmetric and non-increasing in ‖z‖2,

I> =
{
z ∈ Rd | µ(z) > µ(z − y)

}
=
{
z ∈ Rd | ‖z‖22 < ‖z − y‖

2
2

}
=

{
z | 〈z, y〉 < 1

2
‖y‖22

}

I< =
{
z ∈ Rd | µ(z) < µ(z − y)

}
=
{
z ∈ Rd | ‖z‖22 > ‖z − y‖

2
2

}
=

{
z | 〈z, y〉 > 1

2
‖y‖22

}
.

So all we need do is find a function f for which there exists v with ‖v‖2 =M , and such that
∂f(x) = {v} for x ∈ I> and ∂f(x) = {−v} for x ∈ I<. By inspection, the function f defined
in the statement of the lemma satisfies these two desiderata for v =M y

‖y‖2
.
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Chapter 6

Zero-order optimization: the power of
two function evaluations

In this chapter, we consider derivative-free algorithms for stochastic and non-stochastic op-
timization problems that use only function values rather than gradients. It is of inter-
est to study such scenarios, as a variety of black-box optimization problems—for exam-
ple, simulation-based objectives—can only provide function evaluations. Focusing on non-
asymptotic bounds on convergence rates, we show that if pairs of function values are avail-
able, algorithms for d-dimensional optimization that use gradient estimates based on random
perturbations suffer a factor of at most

√
d in convergence rate over traditional stochastic

gradient methods. We establish such results for both smooth and non-smooth cases, sharp-
ening previous analyses that suggested a worse dimension dependence. We complement
our algorithmic development with information-theoretic lower bounds on the minimax con-
vergence rate of such problems, establishing the sharpness of our achievable results up to
constant factors. That is, when we are faced with an informational constraint that only
allows access to function values—a constraint in the notion of Chapter 2.1—we identify new
(and re-analyze old) algorithms, building off of the randomized smoothing tools developed
in the previous chapter, and prove their optimality in terms of minimax excess risk (2.3).

6.1 Introduction

Derivative-free optimization schemes have a long history in optimization; for instance, see the
book by Spall [165] for an overview. Such schemes are desirable in settings in which explicit
gradient calculations may be computationally infeasible, expensive, or impossible. Classical
techniques in stochastic and non-stochastic optimization, including Kiefer-Wolfowitz-type
procedures [e.g. 112], use function difference information to approximate gradients of the
function to be minimized rather than calculating gradients. There has been renewed interest
in optimization problems with only functional (zero-order) information available—rather
than first-order gradient information—in optimization, machine learning, and statistics.
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In machine learning and statistics, this interest has centered around the bandit convex
optimization setting, where a player and adversary compete, with the player choosing points
θ in some domain Θ and an adversary choosing a point x, forcing the player to suffer
a loss F (θ; x), where F (·; x) : Θ → R is a convex function [78, 17, 4]. The goal is to
choose an optimal point θ ∈ Θ based only on possibly noisy observations of function values
F (θ; x). Applications of such bandit problems include online auctions and advertisement
selection for search engines. Similarly, the field of simulation-based optimization provides
many examples of problems in which optimization is performed based only on function
values [165, 46, 139]. Finally, in many problems in statistics—including graphical model
inference problems [177] and structured-prediction problems [167]—the objective is defined
variationally (as the maximum of a family of functions), so explicit differentiation may be
difficult.

Despite the long history and recent renewed interest in such procedures, an understanding
of their finite-sample convergence rates remains elusive. In this chapter, we study algorithms
for solving stochastic convex risk minimization problems of the usual form (3.1), that is,

minimize
θ∈Θ

f(θ) := EP [F (θ;X)] =

∫

X
F (θ; x)dP (x),

where Θ ⊆ Rd is a compact convex set, P is a distribution over the space X , and for P -almost
every x ∈ X , the function F (·; x) is closed and convex. Our focus is on the convergence rates
of algorithms that observe only stochastic realizations of the function values f(θ), though
our algorithms naturally apply in the non-stochastic case as well.

One body of work focuses on problems where, for a given value x ∈ X , it is only possible
to observe a noisy versions of F (θ; x) at a single location θ. Nemirovski and Yudin [134,
Chapter 9.3] develop a randomized sampling strategy that estimates the gradient ∇F (θ; x)
via randomized evaluations of function values at samples from the surface of the ℓ2-sphere.
Flaxman et al. [78] further build on this approach, and establish some implications for ban-
dit convex optimization problems. The convergence rates given in these early papers are
sub-optimal, as shown by more recent work [139, 7]. For instance, Agarwal et al. [7] provide
algorithms that achieve convergence rates of O(poly(d)/√n), where poly(d) is a polynomial
in the dimension d; however, as the authors themselves note, the algorithms are quite com-
plicated. Jamieson et al. [102] present somewhat simpler comparison-based algorithms for
solving such problems, and Shamir [163] gives optimal algorithms for quadratic objectives, as
well as providing some lower bounds on optimization error when only single function values
are available.

Some of the difficulties inherent in optimization using only a single function evaluation
can be alleviated when the function F (·; x) can be evaluated at two points, as noted inde-
pendently by Agarwal et al. [4] and Nesterov [139]. The insight is that for a small non-zero
scalar u and a vector Z ∈ Rd, the quantity (F (θ+uZ; x)−F (θ; x))/u approximates a direc-
tional derivative of F (θ; x) in the direction Z. Such an approximation can be exploited by
first-order optimization schemes. Relative to schemes based on only a single function evalua-
tion at each iteration, such two-sample-based gradient estimators exhibit faster convergence
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rates [4, 139, 82]. In the current chapter, we take this line of work further, in particular
by characterizing the optimal rate of convergence over all iterative procedures based on
noisy function evaluations. Moreover, adopting the two-point perspective, we present simple
randomization-based algorithms that achieve these optimal rates.

More formally, we study algorithms that receive a vector of paired observations, Y (θ, w) ∈
R2, where θ and w are points selected by the algorithm. The kth observation takes the form

Y k(θk, wk) :=

[
F (θk;Xk)
F (wk;Xk)

]
, (6.1)

where Xk is an independent sample drawn from the distribution P . After n iterations, the
algorithm returns a vector θ̂(n) ∈ Θ. In this setting, we analyze stochastic gradient and
mirror-descent procedures [190, 134, 18, 135] that construct gradient estimators using the
two-point observations Y k. By a careful analysis of the dimension dependence of certain
random perturbation schemes, we show that the convergence rate attained by our stochastic
gradient methods is roughly a factor of

√
d worse than that attained by stochastic methods

that observe the full gradient∇F (θ;X). Under appropriate conditions, our convergence rates
are a factor of

√
d better than those attained in past work [4, 139]. For smooth problems,

Ghadimi and Lan [82] provide results sharper than those in the papers [4, 139], but do not
show optimality of their methods nor consider high-dimensional (non-Euclidean) problems.
In addition, although we present our results in the framework of stochastic optimization, our
analysis also applies to (two-point) bandit online convex optimization problems [78, 17, 4] and
non-stochastic problems [134, 139]; in these settings, we obtain the sharpest rates derived
to date. Our algorithms apply in both smooth and non-smooth cases. In sharp contrast
to gradient-based methods, we show that there is no difference—apart from a logarithmic
factor in the dimension—in the attainable convergence rates for the smooth versus non-
smooth settings. Finally, we establish that our achievable rates are sharp up to constant
factors, in particular by using information-theoretic techniques for proving lower bounds in
statistical estimation.

The remainder of this chapter is organized as follows: in the next section, we present
our two-point gradient estimators and their associated convergence rates, providing results in
Section 6.2.1 and 6.2.2 for smooth and non-smooth objectives F , respectively. In Section 6.3,
we provide information-theoretic minimax lower bounds on the best possible convergence
rates, uniformly over all schemes based on function evaluations. We devote Sections 6.5 and
Section 6.6 to proofs of the achievable convergence rates and the lower bounds, respectively,
deferring proofs of more technical results.

6.2 Algorithms

In this chapter, we use (variants of) stochastic mirror descent methods for solving the stochas-
tic convex optimization problem (3.1); recall Section 3.1 in Chapter 3. We recall that they
are based on a strongly convex proximal function ψ and its associated Bregman divergence
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Dψ(θ, w) = ψ(θ)− ψ(w)− 〈∇ψ(w), θ − w〉, with stochastic (sub)gradient updates

θk+1 = argmin
θ∈Θ

{〈
gk, θ

〉
+

1

αk
Dψ(θ, θ

k)

}
,

for a non-increasing sequence {αk}∞k=1 of positive stepsizes.
Throughout this chapter, we impose two assumptions that are standard in analysis of

mirror descent methods (cf. Section 3.1 and references [134, 18, 135]). Letting θ∗ denote
a minimizer of the problem (3.1), the first assumption concerns properties of the proximal
function ψ and the optimizaton domain Θ.

Assumption 6A. The proximal function ψ is 1-strongly convex with respect to the norm
‖·‖. The domain Θ is compact, and there exists rψ <∞ such that Dψ(θ

∗, θ) ≤ 1
2
r2ψ for θ ∈ Θ.

Our second assumption is standard for almost all first-order stochastic gradient methods [135,
183, 139], and it holds whenever the functions F (·; x) are M -Lipschitz with respect to the
norm ‖·‖. We use ‖·‖∗ to denote the dual norm to ‖·‖, and let g : Θ × X → Rd denote
a measurable subgradient selection for the functions F ; that is, g(θ; x) ∈ ∂F (θ; x) with
E[g(θ;X)] ∈ ∂f(θ).

Assumption 6B. There is a constant M < ∞ such that the (sub)gradient selection g

satisfies E[‖g(θ;X)‖2∗] ≤M2 for θ ∈ Θ.

When Assumptions 6A and 6B hold, as in Section 3.1, the behavior of stochastic mirror
descent methods is well understood [18, 135]. As noted in Proposition 3.2 and the subsequent

inquality (3.7), the stepsize choice αk = αrψ/M
√
k implies that the running average θ̂(n) =

1
n

∑n
k=1 θ

k satisfies

E[f(θ̂(n))]− f(θ∗) ≤ O(1)max{α, α−1} rψM√
n
.

For the remainder of this section, we explore the use of function difference information
to obtain subgradient estimates that can be used in mirror descent methods to achieve
statements similar to the convergence guarantee (3.7). We begin by analyzing the smooth
case—when the instantaneous functions F (·; x) have Lipschitz gradients—and proceed to
the more general (non-smooth) case in the subsequent section.

6.2.1 Two-point gradient estimates and convergence rates:
smooth case

Our first step is to show how to use two function values to construct nearly unbiased es-
timators of the gradient of the objective function f , under a smoothness condition. Using
analytic methods different from those from past work [4, 139], we are able to obtain optimal
dependence with the problem dimension d. In more detail, our procedure is based on a
non-increasing sequence of positive smoothing parameters {uk}∞k=1, and a distribution µ on
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Rd, to be specified, satisfying Eµ[ZZ
⊤] = Id×d. Given a smoothing constant u, vector z, and

observation x, we define the directional gradient estimate at the point θ as

gsm(θ; u, z, x) :=
F (θ + uz; x)− F (θ; x)

u
z. (6.2)

Using the estimator (6.2), we then perform the following two steps. First, upon receiving
the point Xk ∈ X , we sample an independent vector Zk and set

gk = gsm(θ
k; uk, Z

k, Xk) =
F (θk + ukZ

k;Xk)− F (θk;Xk)

uk
Zk. (6.3)

In the second step, we apply the standard mirror descent update (3.6) to the quantity gk to
obtain the next parameter θk+1.

A consideration of directional derivatives may give intuition for the estimator (6.2). The
directional derivative f ′(θ, z) of the function f at the point θ in the direction z is

f ′(θ, z) := lim
u↓0

1

u
(f(θ + uz)− f(θ)).

This limit always exists when f is convex [98, Chapter VI], and if f is differentiable at θ, then
f ′(θ, z) = 〈∇f(θ), z〉. With this background, the estimate (6.2) is motivated by the following
standard fact [139, equation (32)]: whenever ∇f(θ) exists, we have

E[f ′(θ, Z)Z] = E[〈∇f(θ), Z〉Z] = E[ZZ⊤∇f(θ)] = ∇f(θ),

where the final equality uses our assumption that E[ZZ⊤] = Id×d. Consequently, given
sufficiently small choices of uk, the vector (6.3) should be a nearly unbiased estimator of the
gradient ∇f(θk) of the risk.

In addition to the condition Eµ[ZZ
⊤] = I, we require that

domF (·; x) ⊃ Θ+ u1,1 suppµ for x ∈ X (6.4)

to ensure that the estimator gk of (6.3) is well-defined. If we apply smoothing with Gaussian
perturbation, the containment (6.4) implies domF (·; x) = Rd, though we still optimize over
the compact set Θ in the update (3.6). We also impose the following properties on the
smoothing distribution:

Assumption 6C. For Z ∼ µ, the quantityM(µ) :=
√
E[‖Z‖4 ‖Z‖2∗] is finite, and moreover,

there is a function s : N→ R+ such that

E[‖〈g, Z〉Z‖2∗] ≤ s(d) ‖g‖2∗ for any vector g ∈ Rd. (6.5)
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Although the quantity M(µ) is required to be finite, its value does not appear explicitly in
our theorem statements. On the other hand, the dimension-dependent quantity s(d) from
condition (6.5) appears explicitly in our convergence rates. As an example of these two
quantities, suppose that we take µ to be the distribution of the standard normal N(0, Id×d),
and use the ℓ2-norm ‖·‖ = ‖·‖2. In this case, a straightfoward calculation shows that
M(µ)2 . d3 and s(d) . d.

Finally, as previously stated, the analysis of this section requires a smoothness assump-
tion:

Assumption 6D. There is a function L : X → R+ such that for P -almost every x ∈ X ,
the function F (·; x) has L(x)-Lipschitz continuous gradient with respect to the norm ‖·‖, and
moreover the quantity L(P ) :=

√
E[(L(X))2] is finite.

As we have seen in Chapter 3, essential to stochastic gradient procedures is that the gradi-
ent estimator gk be nearly unbiased and have small norm. Accordingly, the following lemma
provides quantitative guarantees on the error associated with the gradient estimator (6.2).

Lemma 6.1. Under Assumptions 6C and 6D, the gradient estimate (6.2) has expectation

E[gsm(θ; u, Z,X)] = ∇f(θ) + uL(P )v (6.6)

for some vector v such that ‖v‖∗ ≤ 1
2
E[‖Z‖2 ‖Z‖∗]. Moreover, its expected squared norm is

bounded as

E[‖gsm(θ; u, Z,X)‖2∗] ≤ 2s(d)E
[
‖g(θ;X)‖2∗

]
+

1

2
u2L(P )2M(µ)2. (6.7)

See Section 6.5.2 for the proof. The bound (6.6) shows that the estimator gk is unbiased for
the gradient up to a correction term of order uk, while the second inequality (6.7) shows that
the second moment is—up to an order u2k correction—within a factor s(d) of the standard
second moment E[‖g(θ;X)‖2∗].

Our main result in this section is the following theorem on the convergence rate of the
mirror descent method using the gradient estimator (6.3).

Theorem 6.1. Under Assumptions 6A, 6B, 6C, and 6D, consider a sequence {θk}∞k=1 gen-
erated according to the mirror descent update (3.6) using the gradient estimator (6.3), with
step and perturbation sizes

αk = α
rψ

2M
√
s(d)
√
k

and uk = u
M
√
s(d)

L(P )M(µ)
· 1
k

for k = 1, 2, . . ..

Then for all n,

E
[
f(θ̂(n))− f(θ∗)

]
≤ 2

rψM
√
s(d)√
n

max
{
α, α−1

}
+ αu2

rψM
√
s(d)

n
+ u

rψM
√
s(d) log(2n)

n
,

(6.8)

where θ̂(n) = 1
n

∑n
k=1 θ

k, and the expectation is taken with respect to the samples X and Z.
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The proof of Theorem 6.1 builds on convergence proofs developed in the analysis of online
and stochastic convex optimization [190, 135, 4, 139], but requires additional technical care,
since we never truly receive unbiased gradients. We provide the proof in Section 6.5.1.

Before continuing, we make a few remarks. First, the method is reasonably robust to the
selection of the step-size multiplier α; Nemirovski et al. [135] previously noted this robust-
ness for gradient-based MD methods. As long as αk ∝ 1/

√
k, mis-specifying the multiplier

α results in a scaling at worst linear in max{α, α−1}. In addition, the convergence rate of
the method is independent of the Lipschitz continuity constant L(P ) of the instantaneous
gradients ∇F (·;X), suggesting that similar results might hold for non-differentiable func-
tions. Indeed, as we show in the next section, a slightly more complicated construction of
the estimator gk leads to analogous guarantees for general non-smooth functions.

Although we have provided only bounds on the expected convergence rate, it is possible
to give high-probability convergence guarantees [cf. 40, 135] under additional tail conditions
on g—for example, under a condition of the form E[exp(‖g(θ;X)‖2∗ /M2)] ≤ exp(1). Ad-
ditionally, though we have presented our results as convergence guarantees for stochastic
optimization problems, an inspection of our analysis in Section 6.5.1 shows that we obtain
(expected) regret bounds for bandit online convex optimization problems [cf. 78, 17, 4].

6.2.1.1 Examples and corollaries

We now provide examples of random sampling strategies that lead to concrete bounds for
the mirror descent algorithm based on the subgradient estimator (6.3). For each corollary,
we specify the norm ‖·‖, proximal function ψ, and distribution µ. We then compute the
values that the distribution µ implies in Assumption 6D and apply Theorem 6.1 to obtain a
convergence rate.

We begin with a corollary that characterizes the convergence rate of our algorithm with
the proximal function ψ(θ) := 1

2
‖θ‖22 under a Lipschitz continuity condition:

Corollary 6.1. Given an optimization domain Θ ⊆ {θ ∈ Rd | ‖θ‖2 ≤ r2}, suppose that µ is

uniform on the surface of the ℓ2-ball of radius
√
d, and that E[‖g(θ;X)‖22] ≤M2. Then

E
[
f(θ̂(n))− f(θ∗)

]
≤ 2

r2M
√
d√

n
max{α, α−1}+ αu2

r2M
√
d

n
+ u

r2M
√
d log n

n
.

Proof Since ‖Z‖2 =
√
d, we have M(µ) =

√
E[‖Z‖62] = d3/2. Since E[ZZ⊤] = I by

assumption, we see that

E[‖〈g, Z〉Z‖22] = dE[〈g, Z〉2] = dE[g⊤ZZ⊤g], valid for any g ∈ Rd,

showing that Assumption 6C holds with s(d) = d. The claim follows from Theorem 6.1.

The rate provided by Corollary 6.1 is the fastest derived to date for zero-order stochastic op-
timization using two function evaluations; both Agarwal et al. [4] and Nesterov [139] achieve
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rates of convergence of order r2Md/
√
n. In concurrent work, Ghadimi and Lan [82] provide

a result (their Corollary 3.3) that achieves a similar rate to that above, but their primary
focus is on non-convex problems. Moreover, we show in the sequel that this convergence rate
is actually optimal.

In high-dimensional scenarios, appropriate choices for the proximal function ψ yield better
scaling on the norm of the gradients [134, 81, 135]. In the setting of online learning or
stochastic optimization, suppose that one observes gradients g(θ;X). If the domain Θ is
the simplex, then exponentiated gradient algorithms [110, 18] using the proximal function
ψ(θ) =

∑
j θj log θj obtain rates of convergence dependent on the ℓ∞-norm of the gradients

‖g(θ;X)‖∞. This scaling is more palatable than bounds that depend on Euclidean norms

applied to the gradient vectors, which may be a factor of
√
d larger. Similar results apply

using proximal functions based on ℓp-norms [22, 18]. Concretely, if we make the choice
p = 1 + 1

log(2d)
and ψ(θ) = 1

2(p−1)
‖θ‖2p, we obtain the following corollary, which holds under

the conditions of Theorem 6.1.

Corollary 6.2. Suppose that E[‖g(θ;X)‖2∞] ≤M2, the optimization domain Θ is contained
in the ℓ1-ball {θ ∈ Rd | ‖θ‖1 ≤ r1}, and µ is uniform on the hypercube {−1, 1}d. There is a
universal constant C ≤ 2e such that

E
[
f(θ̂(n))− f(θ∗)

]
≤ C

r1M
√
d log(2d)√
n

max
{
α, α−1

}
+ C

r1M
√
d log(2d)

n

(
αu2 + u log n

)
.

Proof Recall that from the discussion following Corollary 3.3 that the stated choice of
proximal function ψ is strongly convex with respect to the norm ‖·‖p (see also [134, Appendix
1] or [22]). In addition, if we define q = 1+ log(2d), then we have 1/p+1/q = 1, and ‖v‖q ≤
e ‖v‖∞ for any v ∈ Rd. Consequently, we have E[‖〈g, Z〉Z‖2q] ≤ e2E[‖〈g, Z〉Z‖2∞], which
allows us to apply Theorem 6.1, with the norm ‖·‖ = ‖·‖1 and the dual norm ‖·‖∗ = ‖·‖∞.

We claim that Assumption 6C is satisfied with s(d) ≤ d. Since Z ∼ Uniform({−1, 1}d),
we have

E
[
‖〈g, Z〉Z‖2∞

]
= E

[
〈g, Z〉2

]
= g⊤E[ZZ⊤]g = ‖g‖22 ≤ d ‖g‖2∞ for any g ∈ Rd.

Finally, we have M(µ) =
√
E[‖Z‖41 ‖Z‖

2
∞] = d2, which is finite as needed. By the inclusion

of Θ in the ℓ1-ball of radius R and our choice of proximal function, we have

(p− 1)Dψ(θ, w) ≤
1

2
‖θ‖2p +

1

2
‖w‖2p + ‖θ‖p ‖w‖p .

(For instance, see Lemma 3 in the paper [81].) We thus find that Dψ(θ, w) ≤ 2r21 log(2d) for
any θ, w ∈ Θ, and using the step size choices of Theorem 6.1 gives the result.

Corollary 6.2 attains a convergence rate that scales with dimension as
√
d log d. This de-

pendence on dimension is much worse than that of (stochastic) mirror descent using full
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gradient information [134, 135]. The additional dependence on d suggests that while O(1/ǫ2)
iterations are required to achieve ǫ-optimization accuracy for mirror descent methods, the
two-point method requires O(d/ǫ2) iterations to obtain the same accuracy. A similar state-
ment holds for the results of Corollary 6.1. In Section 6.3 we show that this dependence
is sharp: apart from logarithmic factors, no algorithm can attain better convergence rates,
including the problem-dependent constants rψ and M .

6.2.2 Two-point gradient estimates and convergence rates:
general case

We now turn to the general setting, in which the function F (·; x), rather than having a
Lipschitz continuous gradient, satisfies only the milder condition of Lipschitz continuity.
The difficulty in this non-smooth case is that the simple gradient estimator (6.3) may have
overly large norm. For instance, a naive calculation using only the M -Lipschitz continuity
of the function f gives the bound

E
[
‖(f(θ + uZ)− f(θ))Z/u‖22

]
≤M2E

[
‖u ‖Z‖2 Z/u‖

2
2

]
=M2E[‖Z‖42]. (6.9)

This upper bound always scales at least quadratically in the dimension, since we have
the lower bound E[‖Z‖42] ≥ (E[‖Z‖22])2 = d2, where the final equality uses the fact that
E[ZZ⊤] = Id×d by assumption. This quadratic dependence on dimension leads to a sub-
optimal convergence rate. Moreover, this scaling appears to be unavoidable using a sin-
gle perturbing random vector: taking f(θ) = M ‖θ‖2 and setting θ = 0 shows that the
bound (6.9) may hold with equality.

Nevertheless, the convergence rate in Theorem 6.1 shows that near non-smoothness is
effectively the same as being smooth. This suggests that if we can smooth the objective f
slightly, we may achieve a rate of convergence even in the non-smooth case that is roughly the
same as that in Theorem 6.1. We have already seen in previous chapters how smoothing the
objective can yield faster convergence rates in stochastic optimization; Nesterov [137] has also
shown how such ideas can yield better performance for certain deterministic problems. In the
stochastic setting, of course, we can readily use convolution, as it is a smoothing operation,
and adding a bit of additional noise has essentially negligible effect on performance. As
noted in the previous chapter, the smoothed function

fu(θ) := E[f(θ + uZ)] =

∫
f(θ + uz)dµ(z), (6.10)

where Z ∈ Rd has density with respect to Lebesgue measure, is always differentiable; more-
over, if f is Lipschitz, then ∇fu is Lipschitz under mild conditions.

The smoothed function (6.10) leads us to a two-point strategy: we use a random direction
as in the smooth case (6.3) to estimate the gradient, but we introduce an extra step of
randomization for the point at which we evaluate the function difference. Roughly speaking,
this randomness has the effect of making it unlikely that the perturbation vector Z is near
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a point of non-smoothness, which allows us to apply results similar to those in the smooth
case.

More precisely, our construction uses two non-increasing sequences of positive parameters
{u1,k}∞k=1 and {u2,k}∞k=1 with u2,k ≤ u1,k/2, and two smoothing distributions µ1, µ2 on Rd.
Given smoothing constants u1, u2, vectors z1, z2, and observation x, we define the (non-
smooth) directional gradient estimate at the point θ as

gns(θ; u1, u2, z1, z2, x) :=
F (θ + u1z1 + u2z2; x)− F (θ + u1z1; x)

u2
z2. (6.11)

Using gns we may define our gradient estimator, which follows the same intuition as our
construction of the stochastic gradient (6.3) from the smooth estimator (6.2). Now, upon
receiving the point Xk, we sample independent vectors Zk

1 ∼ µ1 and Zk
2 ∼ µ2, and set

gk = gns(θ
k; u1,k, u2,k, Z

k
1 , Z

k
2 , Xk) =

F (θk + u1,kZ
k
1 + u2,kZ

k
2 ;Xk)− F (θk + u1,kZ

k
1 ;Xk)

u2,k
Zk

2 .

(6.12)
We then proceed as in the preceding section, using this estimator in the standard mirror
descent method.

To demonstrate the convergence of gradient-based schemes with gradient estimator (6.12),
we require a few additional assumptions. For simplicity, in this section we focus on results for
the Euclidean norm ‖·‖2. We impose the following condition on the Lipschitzian properties
of F (·; x), which is a slight strengthening of Assumption 6B.

Assumption 6B′. There is a function M : X → R+ such that for P -a.e. x ∈ X , the
function F (·; x) isM(x)-Lipschitz with respect to the ℓ2-norm ‖·‖2, and the quantityM(P ) :=√
E[M(X)2] is finite.

We also impose the following assumption on the smoothing distributions µ1 and µ2.

Assumption 6E. The smoothing distributions are one of the following pairs: (1) both µ1

and µ2 are standard normal in Rd with identity covariance, (2) both µ1 and µ2 are uniform
on the ℓ2-ball of radius

√
d+ 2, or (3) the distribution µ1 is uniform on the ℓ2-ball of radius√

d+ 2, whereas the distribution µ2 is uniform on the ℓ2-sphere of radius
√
d.

In all cases, we assume the domain containment condition

domF (·; x) ⊃ Θ+ u1,1 suppµ1 + u2,1 suppµ2 for x ∈ X .

Under this condition, we have the following analog of Lemma 6.1:

Lemma 6.2. Under Assumptions 6B′ and 6E, the gradient estimator (6.11) has expectation

E[gns(θ; u1, u2, Z1, Z2, X)] = ∇fu1(θ) +
u2
u1
Mv, (6.13)
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where v is a vector bounded as ‖v‖2 ≤ 1
2
E[‖Z2‖32]. Moreover, there exists a numerical constant

c (independent of u1 and u2) such that

E
[
‖gns(θ; u1, u2, Z1, Z2, X)‖22

]
≤ cM2d

(√
u2
u1
d+ 1 + log d

)
. (6.14)

See Section 6.5.4 for the proof of this lemma.
Comparing Lemma 6.2 to Lemma 6.1, both show that one can obtain nearly unbiased

gradient of the function f using two function evaluations, but additionally, they show that
the squared norm of the gradient estimator is at most d times larger than the expected
norm of the subgradients ∂F (θ; x), as captured by the quantity M2 from Assumption 6B
or 6B′. In our approach, non-smoothness introduces an additional logarithmic penalty in
the dimension; it may be possible to remove this factor, but we do not know how at this
time. The key is that taking the second smoothing parameter u2 to be small enough means
that, aside from the dimension penalty, the gradient estimator gk is essentially unbiased for
∇fu1,k(θk) and has squared norm at most M2d log d. This bound on size is essential for our
main result, which we now state.

Theorem 6.2. Under Assumptions 6A, 6B′, and 6E, consider a sequence {θk}∞k=1 generated
according to the mirror descent update (3.6) using the gradient estimator (6.12) with step
and perturbation sizes

αk = α
rψ

M
√
d log(2d)

√
k
, u1,k = u

rψ

k
, and u2,k = u

rψ

d2k2
.

Then there exists a universal (numerical) constant c such that for all n,

E
[
f(θ̂(n))− f(θ∗)

]
≤ cmax{α, α−1} rψM

√
d log(2d)√
n

+ curψM
√
d
log(2n)

n
, (6.15)

where θ̂(n) = 1
n

∑n
k=1 θ

k, and the expectation is taken with respect to the samples X and Z.

The proof of Theorem 6.2 roughly follows that of Theorem 6.1, except that we prove that
the sequence θk approximately minimizes the sequence of smoothed functions fu1,k rather
than f . However, for small u1,k, these two functions are quite close, which combined with
the estimates from Lemma 6.2 gives the result. We give the full argument in Section 6.5.3.

Remarks Theorem 6.2 shows that the convergence rate of our two-point stochastic gradi-
ent algorithm for general non-smooth functions is (at worst) a factor of

√
log d worse than

the rate for smooth functions in Corollary 6.1. Notably, the rate of convergence here has
substantially better dimension dependence than previously known results [4, 139, 82]. It is
interesting to note, additionally, that the difference between smooth and non-smooth op-
timization with only functional evaluations as feedback appears to be (nearly) negligible.
Using carefully constructed random perturbations, we can achieve rates of convergence of
rψM
√
d/
√
n in both cases, up to logarithmic factors in d.
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6.3 Lower bounds on zero-order optimization

Thus far in the chapter, we have presented two main results (Theorems 6.1 and 6.2) that
provide achievable rates for perturbation-based gradient procedures. It is natural to wonder
whether or not these rates are sharp. In this section, we show that our results are unimprov-
able up to either a constant factor (in most cases), or a logarithmic factor in dimension in
the remaining cases. These results show that no algorithm exists that can achieve a faster
convergence rate than those we have presented under the oracle model (6.1), that is, when
we constrain all procedures to use at most two function evaluations per observation Xk.

We begin by describing the constrained notion of minimax excess risk we consider here
(recall the standard definition (2.3)). Let Czon denote the collection of all zeroth-order (op-
timization) algorithms that observe a sequence of data points (Y 1, . . . , Y n) ⊂ R2 with

Y k = [F (θk, Xk) F (w
k, Xk)] and return an estimate in Θ. Given an algorithm θ̂ ∈ Czon ,

loss F , and data distribution P , we measure error via the optimality gap

fP (θ̂(n))− inf
θ∈Θ

fP (θ) where fP (θ) = EP
[
F (θ;X)

]

and θ̂(n) is the output of algorithm θ̂ on the sequence of observed function values. Taking
the expectation of the above quantity, we arrive at the constrained minimax excess risk

Mn(Θ,P , F, Czon ) := inf
θ̂∈Czo

n

sup
P∈P

EP [fP (θ̂)− inf
θ∈Θ

fP (θ)], (6.16)

where the expectation is taken over the observations (Y 1, . . . , Y n) and any randomness in θ̂.
This quantity measures the performance of the best algorithm in the restricted zero-order
class Czon , where performance is required to be uniformly good for all distributions P ∈ P .

We now turn to the statement of our lower bounds, which are based on relatively simple
choices of the classes P and loss functions F . We always use the linear functional

F (θ; x) = 〈θ, x〉
as our instantaneous loss, and given an ℓp-norm ‖·‖p, we consider the class of probability
distributions

PM,p := {P | EP [‖X‖2p] ≤M2
}
.

Note any paired loss F and distribution P ∈ P satisfies Assumption 6B′ by construction
(by taking p = 2), and moreover, ∇F (·; x) has Lipschitz constant 0 for all x. We state each
of our lower bounds assuming that the domain Θ is equal to some ℓq-ball of radius rq, that
is, Θ = {θ ∈ Rd | ‖θ‖q ≤ rq}. Our first result considers the case p = 2 with domain Θ an
arbitrary ℓq-ball with q ≥ 1, so we measure gradients in the ℓ2-norm.

Proposition 6.1. For the class PM,2 and Θ = {θ ∈ Rd | ‖θ‖q ≤ rq} and any d0 ≤ d, we
have

Mn(Θ,PM,2, F, Czon ) ≥ 1

12

(
1− 1

q

)
d
1−1/q
0 M rq√

n
min

{
1,
√
n/d0

}
. (6.17)



109

Combining the lower bound (6.17) with our algorithmic schemes in Section 6.2 shows that
they are optimal up to constant factors. More specifically, for q ≥ 2, the ℓ2-ball of radius
d1/2−1/qrq contains the ℓq-ball of radius rq, so Corollary 6.1 provides an upper bound on the

minimax rate of convergence of order rqM
√
dd1/2−1/q/

√
n = rqMd1−1/q/

√
n in the smooth

case, while for n ≥ d, Proposition 6.1 provides the lower bound rqMd1−1/q/
√
n. Theorem 6.2,

providing a rate of rqM
√
d log d/

√
n in the general (non-smooth) case, is also tight to within

logarithmic factors. Consequently, the stochastic mirror descent algorithm (3.6) (even the
simple stochastic gradient descent scheme (3.2)) coupled with the sampling strategies (6.3)
and (6.12) is optimal for stochastic problems with two-point feedback.

For our second lower bound, we investigate the minimax rates at which it is possible to
solve stochastic convex optimization problems in which the objective is Lipschitz continuous
in the ℓ1-norm, or equivalently, in which the gradients are bounded in ℓ∞-norm. As noted
earlier, such scenarios are suitable for high-dimensional problems [e.g. 135].

Proposition 6.2. For the class PM,∞ with Θ = {θ ∈ Rd | ‖θ‖1 ≤ r1}, we have

Mn(Θ,PM,∞, F, Czon ) ≥ 1

12
√
2

M r1√
n

min

{ √
n√

3 + log n
,

√
d√

3 + log d

}
.

This result also demonstrates the optimality of our mirror descent algorithms up to logarith-
mic factors. Recalling Corollary 6.2, the MD algorithm (3.6) with prox ψ(θ) = 1

2(p−1)
‖θ‖2p,

where p = 1+1/ log(2d), has convergence guaranteeM r1
√
d log(2d)/

√
n. On the other hand,

Proposition 6.2 provides the lower bound Mn(Θ,PM,∞, F, Czon ) & M r1
√
d/
√
n log d. These

upper and lower bounds are matching up to logarithmic factors in the dimension.
It is worth comparing these lower bounds to the achievable rates when full gradient

information is available—that is, when one has access to the subgradient selection g(θ;X).
Each of Propositions 6.1 and 6.2 has an additional

√
d factor as compared to analogous

lower bounds [6] applicable to the case of full gradient information. Similarly, the
√
d factors

disappear from the achievable convergence rates in Corollaries 6.1 and 6.2 when one uses
gk = g(θ;X) in the mirror descent updates (3.6) (e.g. [18, 135]). Consequently, our analysis
shows that in the zero-order setting—in addition to dependence on the radius rψ and second

momentM2—any algorithm must suffer at least an additional O(
√
d) penalty in convergence

rate, and optimal algorithms suffer precisely this penalty. This suggests that for high-
dimensional problems, it is preferable to use full gradient information if possible, even when
the cost of obtaining the gradients is somewhat nontrivial.

6.4 Summary

We have analyzed algorithms for optimization problems that use only random function
values—as opposed to gradient computations—to minimize an objective function. The al-
gorithms we present are optimal: their convergence rates cannot be improved (in the sense
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of minimax optimality (2.4) for procedures constrained to use only function evaluations)
by more than numerical constant factors. In addition to showing the optimality of sev-
eral algorithms for smooth convex optimization without gradient information, we have also
shown that the non-smooth case is no more difficult from an iteration complexity standpoint,
though it requires more carefully constructed randomization schemes. As a consequence of
our results, we note in passing that we have additionally attained sharp rates for bandit
online convex optimization problems with multi-point feedback.

In addition, our results show that constraining estimators to use only two-point feedback
(in the form of function evaluations) is a fairly stringent constraint: there is a necessary tran-
sition in convergence rates between gradient-based algorithms and those that compute only
function values. Broadly, when (sub)gradient information is available, attaining ǫ-accurate
solution to an optimization problem requires O(1/ǫ2) gradient observations, while at least
Ω(d/ǫ2) observations—but no more—are necessary using paired function evaluations. An
interesting open question is to understand optimization problems for which only a single
stochastic function evaluation is available per sample: what is the optimal iteration com-
plexity in this case?

6.5 Convergence proofs

We provide the proofs of the convergence results from Section 6.2 in this section, deferring
more technical arguments to subsequent sections.

6.5.1 Proof of Theorem 6.1

Before giving the proof of Theorem 6.1, we state a standard lemma on the mirror descent
iterates (recall Section 3.5.1 and Lemma 3.3, or see, for example, Nemirovski et al. [135,
Section 2.3] or Beck and Teboulle [18, Eq. (4.21)]).

Lemma 6.3. Let {gk}nk=1 ⊂ Rd be a sequence of vectors, and let θk be generated by the
mirror descent iteration (3.6). If Assumption 6A holds, then for any θ∗ ∈ Θ we have

n∑

k=1

〈
gk, θk − θ∗

〉
≤ 1

2αn
r2ψ +

n∑

k=1

αk
2

∥∥gk
∥∥2
∗ .

Defining the error vector ek := ∇f(θk)− gk, Lemma 6.3 implies

n∑

k=1

(
f(θk)− f(θ∗)

)
≤

n∑

k=1

〈
∇f(θk), θk − θ∗

〉
=

n∑

k=1

〈
gk, θk − θ∗

〉
+

n∑

k=1

〈
ek, θk − θ∗

〉

≤ 1

2αn
r2ψ +

n∑

k=1

αk
2

∥∥gk
∥∥2
∗ +

n∑

k=1

〈
ek, θk − θ∗

〉
. (6.18)
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For each iteration k = 2, 3, . . ., let Fk−1 denote the σ-field of X1, . . . , Xk−1 and Z
1, . . . , Zk−1.

Then Lemma 6.1 implies E[ek | Fk−1] = ukL(P )vk, where vk ≡ v(θk, uk) satisfies ‖vk‖∗ ≤
1
2
M(µ). Since θk ∈ Fk−1, we can first take an expectation conditioned on Fk−1 to obtain

n∑

k=1

E[
〈
ek, θk − θ∗

〉
] ≤ L(P )

n∑

k=1

ukE[‖vk‖∗
∥∥θk − θ∗

∥∥] ≤ 1

2
M(µ)rψL(P )

n∑

k=1

uk,

where in the last step above we have used the relation ‖θk − θ∗‖ ≤
√
2Dψ(θ∗, θ) ≤ rψ.

Statement (6.7) of Lemma 6.1 coupled with the assumption that E[‖g(θk;X)‖2∗ | Fk−1] ≤M2

yields

E
[∥∥gk

∥∥2
∗

]
= E

[
E
[∥∥gk

∥∥2
∗ | Fk−1

]]
≤ 2s(d)M2 +

1

2
u2kL(P )

2M(µ)2.

Applying the two estimates above to our initial bound (6.18),
∑n

k=1 E
[
f(θk)−f(θ∗)

]
is upper

bounded by

1

2αn
r2ψ + s(d)M2

n∑

k=1

αk +
1

4
L(P )2M(µ)2

n∑

k=1

u2kαk +
1

2
M(µ)rψL(P )

n∑

k=1

uk. (6.19)

Now we use our choices of the sample size αk and uk to complete the proof. For the
former, we have αk = αrψ/(2M

√
s(d)
√
k). Since

∑n
k=1 k

− 1
2 ≤

∫ n
0
t−

1
2dt = 2

√
n, we have

1

2αn
r2ψ + s(d)M2

n∑

k=1

αk ≤
rψM

√
s(d)

α

√
n+ αrψM

√
s(d)
√
n ≤ 2rψM

√
s(d)
√
nmax{α, α−1}.

For the second summation in the quantity (6.19), we have the bound

αu2
(

M2s(d)

L(P )2M(µ)2

)
rψL(P )

2M(µ)2

4M
√
s(d)

n∑

k=1

1

k5/2
≤ αu2rψM

√
s(d)

since
∑n

k=1 k
−5/2 ≤ 4. The final term in the inequality (6.19) is similarly bounded by

u

(
M
√
s(d)

L(P )M(µ)

)
rψL(P )M(µ)

2
(log n+ 1) = u

rψM
√
s(d)

2
(log n+ 1) ≤ urψM

√
s(d) log(2n).

Combining the preceding inequalities with Jensen’s inequality yields the claim (6.8).

6.5.2 Proof of Lemma 6.1

Let h be an arbitrary convex function with Lh-Lipschitz continuous gradient with respect
to the norm ‖·‖. Using the tangent plane lower bound for a convex function and the Lh-
Lipschitz continuity of the gradient, for any u > 0 we have

h′(θ, z) =
〈∇h(θ), uz〉

u
≤ h(θ + uz)− h(θ)

u

≤ 〈∇h(θ), uz〉+ (Lh/2) ‖uz‖2
u

= h′(θ, z) +
Lhu

2
‖z‖2 .
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Consequently, for any point θ ∈ relint domh and for any z ∈ Rd, we have

h(θ + uz)− h(θ)
u

z = h′(θ, z)z +
Lhu

2
‖z‖2 γ(u, θ, z)z, (6.20)

where γ is some function with range contained in [0, 1]. Since E[ZZ⊤] = Id×d by assumption,
equality (6.20) implies

E

[
h(θ + uZ)− h(θ)

u
Z

]
= E

[
h′(θ, Z)Z +

Lhu

2
‖Z‖2 γ(u, θ, Z)Z

]
= ∇h(θ) + uLhv(θ, u),

(6.21)

where v(θ, u) ∈ Rd is an error vector with ‖v(θ, u)‖∗ ≤ 1
2
E[‖Z‖2 ‖Z‖∗].

We now turn to proving the statements of the lemma. Recalling the definition (6.2) of
the gradient estimator, we see that for P -almost every x ∈ X , expression (6.21) implies that

E[gsm(θ; u, Z, x)] = ∇F (θ; x) + uL(x)v

for some vector v with 2 ‖v‖∗ ≤ E[‖Z‖2 ‖Z‖∗]. We have E[∇F (θ;X)] = ∇f(θk), and inde-
pendence implies that

E[L(X) ‖v‖∗] ≤
√

E[L(X)2]

√
E[‖v‖2∗] ≤

1

2
L(P )E[‖Z‖2 ‖Z‖∗],

from which the bound (6.6) follows.
For the second statement (6.7) of the lemma, apply equality (6.20) to F (·;X), obtaining

gsm(θ; u, Z,X) = 〈g(θ,X), Z〉Z +
L(θ)u

2
‖Z‖2 γZ

for some function γ ≡ γ(u, θ, Z,X) ∈ [0, 1]. The relation (a+ b)2 ≤ 2a2 + 2b2 then gives

E[‖gsm(θ; u, Z,X)‖2∗] ≤ E

[(
‖〈g(θ,X), Z〉Z‖∗ +

1

2

∥∥L(X)u ‖Z‖2 γZ
∥∥
∗

)2
]

≤ 2E
[
‖〈g(θ,X), Z〉Z‖2∗

]
+
u2

2
E
[
L(X)2 ‖Z‖4 ‖Z‖2∗

]
.

Finally, Assumption 6C coupled with the independence of X and Z gives the bound (6.7).

6.5.3 Proof of Theorem 6.2

The proof of Theorem 6.2 is similar to that of Theorem 6.1. To simplify our proof, we first
state a lemma bounding the moments of vectors that satisfy Assumption 6E.
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Lemma 6.4. Let the random vector Z be distributed as N(0, Id×d), uniformly on the ℓ2-ball
of radius

√
d+ 2, or uniformly on the ℓ2-sphere of radius

√
d. For any k ∈ N, there is a

constant ck (dependent only on k) such that

E
[
‖Z‖k2

]
≤ ckd

k
2 .

In all cases we have E[ZZ⊤] = Id×d, and ck ≤ 3 for k = 4 and ck ≤
√
3 for k = 3.

See Section 6.7.1 for the proof.
We now turn to the proof proper. From Lemmas 5.4 and 5.5 from the previous chapter,

the function fu defined in (6.10) satisfies f(θ) ≤ fu(θ) ≤ f(θ) + uM
√
d+ 2 for θ ∈ Θ.

Defining the error vector ek := ∇fu1,k(θk)− gk and noting that
√
d+ 2 ≤

√
3d, we thus have

n∑

k=1

(
f(θk)− f(θ∗)

)
≤

n∑

k=1

(
fu1,k(θ

k)− fu1,k(θ∗)
)
+
√
3M
√
d

n∑

k=1

u1,k

≤
n∑

k=1

〈
∇fu1,k(θk), θk − θ∗

〉
+
√
3M
√
d

n∑

k=1

u1,k

=
n∑

k=1

〈
gk, θk − θ∗

〉
+

n∑

k=1

〈
ek, θk − θ∗

〉
+
√
3M
√
d

n∑

k=1

u1,k,

where we have used the convexity of fu and the definition of ek. Applying Lemma 6.3 to the
summed

〈
gk, θk − θ∗

〉
terms as in the proof of Theorem 6.1, we obtain

n∑

k=1

(
f(θk)− f(θ∗)

)
≤

r2ψ

2αn
+

1

2

n∑

k=1

αk
∥∥gk
∥∥2
2
+

n∑

k=1

〈
ek, θk − θ∗

〉
+
√
3M
√
d

n∑

k=1

u1,k. (6.22)

The proof from this point is similar to the proof of Theorem 6.1 (cf. inequality (6.18)).
Specifically, we bound the squared gradient ‖gk‖22 terms, the error

〈
ek, θk − θ∗

〉
terms, and

then control the summed uk terms. For the remainder of the proof, we let Fk−1 denote the
σ-field generated by the random variables X1, . . . , Xk−1, Z

1
1 , . . . , Z

k−1
1 , and Z1

2 , . . . , Z
k−1
2 .

Bounding
〈
ek, θk − θ∗

〉
: Our first step is note that Lemma 6.2 implies E[ek | Fk−1] =

u2,k
u1,k

Mvk, where the vector vk ≡ v(θk, u1,k, u2,k) satisfies ‖vk‖2 ≤ 1
2
E[‖Z2‖32]. As in the proof

of Theorem 6.1, this gives

n∑

k=1

E[
〈
ek, θk − θ∗

〉
] ≤M

n∑

k=1

u2,k
u1,k

E[‖vk‖2
∥∥θk − θ∗

∥∥
2
] ≤ 1

2
E[‖Z2‖32] rψM

n∑

k=1

u2,k
u1,k

.

When Assumption 6E holds, Lemma 6.4 implies the expectation bound E[‖Z2‖32] ≤
√
3d3/2.

Thus
n∑

k=1

E[
〈
ek, θk − θ∗

〉
] ≤
√
3d
√
d

2
rψM

n∑

k=1

u2,k
u1,k

.
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Bounding ‖gk‖22: Turning to the squared gradient terms from the bound (6.22), Lemma 6.2
gives

E
[∥∥gk

∥∥2
2

]
= E

[
E
[∥∥gk

∥∥2
2
| Fk−1

]]
≤ cM2d

(√
u2,k
u1,k

d+ 1 + log d

)

≤ c′M2d

(√
u2,k
u1,k

d+ log(2d)

)
,

where c, c′ > 0 are numerical constants independent of {u1,k}, {u2,k}.

Summing out the smoothing penalties: Applying the preceding estimates to our ear-
lier bound (6.22), we get that for a numerical constant c,

n∑

k=1

E
[
f(θk)− f(θ∗)

]
≤

r2ψ

2αn
+ cM2d log(2d)

n∑

k=1

αk (6.23)

+ cM2d2
n∑

k=1

√
u2,k
u1,k

αk +

√
3

2
rψMd

√
d

n∑

k=1

u2,k
u1,k

+
√
3M
√
d

n∑

k=1

u1,k.

We bound the right hand side above using our choices of αk, u1,k, and u2,k. We also use the

relations
∑n

k=1 k
− 1

2 ≤ 2
√
n and

∑n
k=1 k

−1 ≤ 1 + log n ≤ 2 log n for n ≥ 3. With the setting

αk = αrψ/(M
√
d log(2d)

√
k), the first two terms in (6.23) become

r2ψ

2αn
+ cM2d log(2d)

n∑

k=1

αk ≤
rψM

√
d log(2d)

2α

√
n+ 2cαrψM

√
d log(2d)

√
n

≤ c′ max{α, α−1}rψM
√
d log(2d)

√
n

for a universal constant c′. Since we have chosen u2,k/u1,k = 1/(d2k), we may bound the
third term in expression (6.23) by

cM2d2
n∑

k=1

√
u2,k
u1,k

αk = cM2d2

(
αrψ

M
√
d log(2d)

)
1

d

n∑

k=1

1

k
≤ c′αrψM

√
d√

log(2d)
log(2n).

Similarly, the fourth term in the bound (6.23) becomes
√
3

2
rψMd

√
d

n∑

k=1

u2,k
u1,k

=

√
3

2
rψMd

√
d
1

d2

n∑

k=1

1

k
≤
√
3rψM√
d

log(2n).

Finally, since u1,k = urψ/k, we may bound the last term in expression (6.23) with

√
3M
√
d

n∑

k=1

u1,k =
√
3M
√
d urψ

n∑

k=1

1

k
≤ 2
√
3urψM

√
d log(2n).

Using Jensen’s inequality to note that E[f(θ̂(n)) − f(θ∗)] ≤ 1
n

∑n
k=1 E

[
f(θk)− f(θ∗)

]
and

eliminating lower-order terms, we obtain the claim (6.15).
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6.5.4 Proof of Lemma 6.2

The proof of Lemma 6.2 relies on the following key technical result:

Lemma 6.5. Let k ≥ 1 and u ≥ 0. Let Z1 ∼ µ1 and Z2 ∼ µ2 be independent random
variables in Rd, where µ1 and µ2 satisfy Assumption 6E. There exists a constant ck, depending
only on k, such that for every 1-Lipschitz convex function h,

E
[
|h(Z1 + uZ2)− h(Z1)|k

]
≤ cku

k
[
ud

k
2 + 1 + log

k
2 (d+ 2k)

]
.

The proof is fairly technical, so we defer it to section 6.7.2. It is based on the dimension-free
concentration of Lipschitz functions of standard Gaussian vectors and vectors uniform on
the ℓ2 ball.

We return now to the proof of Lemma 6.2 proper, providing arguments for inequali-
ties (6.13) and (6.14). For convenience we recall the definition M(x) as the Lipschitz con-
stant of F (·; x) (Assumption 6B′) and the definition (6.11) of the non-smooth directional
gradient

gns(θ; u1, u2, z1, z2, x) =
F (θ + u1z1 + u2z2; x)− F (θ + u1z1; x)

u2
z2.

We begin with the second statement (6.14) of Lemma 6.2. By applying Lemma 6.5 to the
1-Lipschitz convex function h(w) = 1

u1M(X)
F (θ + u1w;X) and setting u = u2/u1, we obtain

E
[
‖gns(θ; u1, u2, Z1, Z2, x)‖22

]
=
u21M(x)2

u22
E
[
(h(Z1 + (u2/u1)Z2)− h(Z1))

2 ‖Z2‖22
]

≤ M(x)2

u2
E
[
(h(Z1 + uZ2)− h(Z1))

4] 1
2 E
[
‖Z2‖42

] 1
2 . (6.24)

Lemma 6.4 implies that E[‖Z2‖42]
1
2 ≤

√
3d for smoothing distributions satisfying Assump-

tion 6E.
It thus remains to bound the first expectation in the product (6.24). By Lemma 6.5,

E
[
(h(Z1 + uZ2)− h(Z1))

4] ≤ cu4
[
ud2 + 1 + log2 d

]

for a numerical constant c > 0. Taking the square root of both sides of the preceding display,
then applying inequality (6.24), yields

E
[
‖gns(θ; u1, u2, Z1, Z2, x)‖22

]
≤ c

M(x)2

u2
u2 d

[√
ud+ 1 + log d

]
.

Integrating over x using the Lipschitz Assumption 6B′ proves the inequality (6.14).
For the first statement of the lemma, we define the shorthand Fu(θ; x) = E[F (θ+uZ1; x)],

where the expectation is over Z1 ∼ µ1, and note that by Fubini’s theorem, E[Fu(θ;X)] =
fu(θ). By taking the expectation of gns with respect to Z1 only, we get

E [gns(θ; u1, u2, Z1, z2, x)] =
Fu1(θ + u2z2; x)− Fu1(θ; x)

u2
z2.
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Since θ 7→ F (θ; x) is M(x)-Lipschitz, Lemmas 5.4(iii) and 5.5(iii) of the previous chapter
imply Fu(·; x) isM(x)-Lipschitz, hasM(x)/u-Lipschitz continuous gradient, and satisfies the
unbiasedness condition E[∇Fu(θ;X)] = ∇fu(θ). Therefore, the same argument bounding
the bias (6.6) in the proof of Lemma 6.1 (recall inequalities (6.20) and (6.21)) yields the
claim (6.13).

6.6 Proofs of lower bounds

We now present the proofs for our lower bounds on the minimax error (6.16). Our lower
bounds follow the techniques outlined in Chapter 2, specifically Section 2.2.4 on Assouad’s
method, where we reduce the optimization problem to several binary hypothesis testing
problems. Specifically, as described in Section 2.2.4, we choose a finite set of functions, show
that optimizing well implies that one can solve each of the hypothesis tests, and then, as in
statistical minimax theory [185, 188, 173, 9], apply divergence-based lower bounds for the
probability of error in hypothesis testing problems. Our proofs are similar and somewhat
inspired by recent work of Arias-Castro et al. [9] and Shamir [163].

6.6.1 Proof of Proposition 6.1

The basic outline of both of our proofs is similar to the proof of Proposition 3.4 in Sec-
tion 3.5.5, which builds off of the strengthened version of Assouad’s method (Lemma 2.2).

In detail, we proceed as follows, giving a separation lower bound of the form (2.17) to be
able to apply the techniques of the sharper Assouad’s method developed in Lemma 2.2 via
the canonical multiple binary hypothesis testing problem. Consider (instantaneous) objective
functions of the form F (θ; x) = 〈θ, x〉. Let V = {−1, 1}d denote the Boolean hypercube, and
for each v ∈ V , let Pv denote the Gaussian distribution N(δv, σ2Id×d), where δ > 0 is a
parameter to be chosen. Then the risk functionals defined as

fv(θ) := EPv [F (θ;X)] = δ 〈θ, v〉

are “well-separated” enough to apply Assouad’s method, as we formalize presently. For each
v ∈ V , we define θv = argminθ∈Θ fv(θ), where Θ := {θ ∈ Rd | ‖θ‖q ≤ rq}. A calculation

shows that θv = −rq d1/q v, so that sign(θvj ) = −vj. Next we claim that, for any vector

θ̂ ∈ Rd,

fv(θ̂)− fv(θv) ≥
1− 1/q

d1/q
δrq

d∑

j=1

1
{
sign(θ̂j) 6= sign(θvj )

}
. (6.25)

Inequality (6.25) shows that if it is possible to optimize well—that is, to find a vector θ̂ with
a relatively small optimality gap—then it is also possible to estimate the signs of v, and it
is our analogue of the risk separation (2.17) necessary for our applications of the sharpened
Assouad method. To establish inequality (6.25), we first state a simple lemma:
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Lemma 6.6. For a given integer i ∈ [d], consider the two optimization problems (over
θ ∈ Rd)

(A)
minimize θ⊤1
subject to ‖θ‖q ≤ 1

and (B)
minimize θ⊤1
subject to ‖θ‖q ≤ 1, θj ≥ 0 for j ∈ [i],

with optimal solutions θA and θB, respectively. Then
〈
1, θA

〉
≤
〈
1, θB

〉
− (1− 1/q)i/d1/q.

See Section 6.8.1 for a proof. Returning to inequality (6.25), we note that fv(θ̂)− fv(θv) =
δ〈v, θ̂−θv〉. By symmetry, Lemma 6.6 implies that for every coordinate j such that sign(θ̂j) 6=
sign(θvj ), the objective value fv(θ̂) must be at least a quantity (1− 1/q)δrq/d

1/q larger than
the optimal value fv(θ

v), which yields inequality (6.25).
Now we use inequality (6.25) to give a probabilistic lower bound. Consider the mixture

distribution P := (1/|V|)∑v∈V Pv. For any estimator θ̂, we have

max
v

EPv [fv(θ̂)− fv(θv)] ≥
1

|V|
∑

v∈V
EPv [fv(θ̂)− fv(θv)] ≥

1− 1/q

d1/q
δrq

d∑

j=1

P(sign(θ̂j) 6= −Vj).

Consequently, in parallel to Lemma 2.2, the minimax error is lower bounded as

Mn(Θ,PM,2, F, Czon ) ≥ 1− 1/q

d1/q
δ rq

{
inf
Ψ

d∑

j=1

P(Ψj(Y
1, . . . , Y n) 6= Vj)

}
, (6.26)

where Ψ denotes any testing function mapping from the observations {Y k}nk=1 to {−1, 1}d.
Next we lower bound the testing error by a total variation distance. By Le Cam’s

inequality (2.6), for any setA and distributions P,Q, we have P (A)+Q(Ac) ≥ 1−‖P −Q‖TV.
We apply this inequality to the “positive jth coordinate” and “negative jth coordinate”
sampling distributions

P+j :=
1

2d−1

∑

v∈V:vj=1

Pv and P−j :=
1

2d−1

∑

v∈V:vj=−1

Pv,

corresponding to conditional distributions over Y k given the events {vj = 1} or {vj = −1}.
Applying Le Cam’s inequality yields

P(Ψj(Y
1:n) 6= Vj) =

1

2
P+j(Ψj(Y

1:n) 6= 1)+
1

2
P−j(Ψj(Y

1:n) 6= −1) ≥ 1

2

(
1− ‖P+j − P−j‖TV

)
.

Combined with the upper bound
∑d

j=1 ‖P+j − P−j‖TV ≤
√
d(
∑d

j=1 ‖P+j − P−j‖2TV)
1
2 via the

Cauchy-Schwartz inequality, we obtain (recall inequality (2.18))

Mn(Θ,PM,2, F, Czon ) ≥
(
1− 1

q

)
δrq
2d1/q

d∑

j=1

(
1− ‖P+j − P−j‖TV

)

≥
(
1− 1

q

)
d1−1/qδrq

2

(
1− 1√

d

( d∑

j=1

‖P+j − P−j‖2TV

) 1
2

)
. (6.27)
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The remainder of the proof provides sharp enough bounds on
∑

j ‖P+j − P−j‖2TV to lever-
age inequality (6.27). Define the covariance matrix

Σ := σ2

[
‖θ‖22 〈θ, w〉
〈θ, w〉 ‖w‖22

]
= σ2 [θ w]⊤ [θ w] , (6.28)

with the corresponding shorthand Σk for the covariance computed for the kth pair (θk, wk).
We have:

Lemma 6.7. For each j ∈ {1, . . . , d}, the total variation norm is bounded as

‖P+j − P−j‖2TV ≤ δ2
n∑

k=1

E

[[
θkj
wkj

]⊤
(Σk)−1

[
θkj
wkj

]]
. (6.29)

See Section 6.8.2 for a proof of this lemma.
Now we use the bound (6.29) to provide a further lower bound on inequality (6.27). We

first note the identity
d∑

j=1

[
θj
wj

] [
θj
wj

]⊤
=

[
‖θ‖22 〈θ, w〉
〈θ, w〉 ‖w‖22

]
.

Recalling the definition (6.28) of the covariance matrix Σ, Lemma 6.7 implies that

d∑

j=1

‖P+j − P−j‖2TV ≤ δ2
n∑

k=1

E

[ d∑

j=1

tr

(
(Σk)−1

[
θkj
wkj

] [
θkj
wkj

]⊤)]

=
δ2

σ2

n∑

k=1

E
[
tr
(
(Σk)−1Σk

)]
= 2

nδ2

σ2
. (6.30)

Returning to the estimation lower bound (6.27), we thus find the nearly final lower bound

Mn(Θ,PM,2, F, Czon ) ≥
(
1− 1

q

)
d1−1/qδrq

2

(
1−

(
2nδ2

dσ2

) 1
2
)
. (6.31)

The last thing we must do is enforce that P ∈ PM,2, which amounts to choosing the
parameters σ2 and δ2 so that E[‖X‖22] ≤ M2 for X ∼ N(δv, σ2Id×d), after which we may
use inequality (6.31) to complete the proof of the lower bound. By construction, we have
E[‖X‖22] = (δ2+σ2)d, so choosing σ2 = 8M2/9d and δ2 = (M2/9)min{1/n, 1/d} guarantees
that

1−
(
2nδ2

dσ2

) 1
2

≥ 1−
(
18

72

) 1
2

=
1

2
and E[‖X‖22] =

8M2

9
+
M2d

9
min

{
1

n
,
1

d

}
≤M2.
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Substituting these choices of δ and σ2 in inequality (6.31) gives the lower bound

Mn(Θ,PM,2, F, Czon ) ≥ 1

12

(
1− 1

q

)
d1−1/qrqM min

{
1√
n
,
1√
d

}

=
1

12

(
1− 1

q

)
d1−1/qrqM√

n
min

{
1,
√
n/d

}
.

To complete the proof of the claim (6.17), we note that the above lower bound also applies
to any d0-dimensional problem for d0 ≤ d. More rigorously, we choose V = {−1, 1}d0 ×
{0}d−d0 , and define the sampling distribution Pv on X so that given v ∈ V , the coordinate
distributions of X are independent with Xj ∼ N(δvj, σ

2) for j ≤ d0 and Xj = 0 for j > d0. A
reproduction of the preceding proof, substituting d0 ≤ d for each appearance of the dimension
d, then yields the claimed bound (6.17).

6.6.2 Proof of Proposition 6.2

The proof is similar to that of Proposition 6.1, except instead of using the set V = {−1, 1}d,
we use the 2d standard basis vectors and their negatives, that is, V = {±ej}dj=1. We use
the same sampling distributions as in the proof of Proposition 6.1, so under Pv the random
vectors X ∼ N(δv, σ2Id×d), and we have fv = EPv [F (θ;X)] = δ 〈θ, v〉. Let us define Pj to be
the distribution Pv for v = ej and similarly for P−j, and let

θv = argmin
θ
{fv(θ) | ‖θ‖1 ≤ r1} = −r1v.

We now provide the reduction from optimization to testing, which is similar to our
previous uses of Assouad’s method, but somewhat different as we use V = {±ej}dj=1. First,

if v = ±ej, then any estimator θ̂ satisfying sign(θ̂j) 6= sign(θvj ) must have fv(θ̂)−fv(θv) ≥ δr1.
Defining the coordinate sign function sgnj(x) := sign(xj), we see that for v ∈ {±ej},

fv(θ̂)− fv(θv) ≥ δ r1 1
{
sgnj(θ̂) 6= sgnj(θ

v)
}
.

Consequently, we obtain the multiple binary hypothesis testing lower bound

max
v

EPv [fv(θ̂)− fv(θv)] ≥
1

2d

∑

v∈V
EPv [fv(θ̂)− fv(θv)]

≥ δr1
2d

d∑

j=1

[
Pj(sgnj(θ̂) 6= −1) + P−j(sgnj(θ̂) 6= 1)

] (i)

≥ δr1
2d

d∑

j=1

[
1− ‖Pj − P−j‖TV

]
.

For the final inequality (i), we applied Le Cam’s inequality as in the proof of Proposition 6.1.
Thus, as in the derivation of inequality (6.27) from the Cauchy-Schwarz inequality, this yields

Mn(Θ,PM,∞, F, Czon ) ≥ δr1
2

(
1− 1√

d

( d∑

j=1

‖Pj − P−j‖2TV

) 1
2

)
. (6.32)
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We now turn to providing a bound on
∑d

j=1 ‖Pj − P−j‖2TV analogous to that in the proof
of Proposition 6.1. We claim that

d∑

j=1

‖Pj − P−j‖2TV ≤ 2
nδ2

σ2
. (6.33)

Inequality (6.33) is nearly immediate from Lemma 6.7. Indeed, given the pair W = [θ w] ∈
Rd×2, the observation Y = W⊤X is distributed (conditional on v and W ) as N(δW⊤v,Σ)
where Σ = σ2W⊤W is the covariance (6.28). For v = ej and v′ = −ej, we know that
〈θ, v − v′〉 = 2θj and so

Dkl

(
N(δW⊤v,Σ)||N(δW⊤v′,Σ)

)
= 2δ2

[
θj
wj

]⊤
Σ−1

[
θj
wj

]
.

By analogy with the proof of Lemma 6.7, we may repeat the derivation of inequalities (6.29)
and (6.30) mutatis mutandis to obtain inequality (6.33). Combining inequalities (6.32)
and (6.33) then gives the lower bound

Mn(Θ,PM,∞, F, Czon ) ≥ δr1
2

(
1−

(
2δ2n

dσ2

) 1
2

)
.

It thus remains to choose δ and σ2 to guarantee the containment P ∈ PM,∞. Equivalently,
we must establish the gradient bound E[‖X‖2∞] ≤M2.

Lemma 6.8. Given any vector with ‖v‖∞ ≤ 1, and the random vector X ∼ N(δv, σ2Id×d),
we have

E[‖X‖2∞] ≤ 2σ2(3 + log d) + 2δ2.

Proof The vector Z = X − δv has N(0, σ2Id×d) distribution. Letting (X1, . . . , Xd) and
(Z1, . . . , Zd) denote the components of X and Z, respectively, we see that X2

j ≤ 2Z2
j +2δ2v2j ,

so
‖X‖2∞ ≤ 2max{Z2

1 , . . . , Z
2
d}+ 2δ2 max{v21, . . . , v2d} ≤ 2 ‖Z‖2∞ + 2δ2.

Each Zj is a random variable with N(0, σ2) distribution, and standard results [36, Chapter
2] imply that E[‖Z‖2∞] ≤ σ2(1 + log(3

√
3d)), from which the lemma follows.

As a consequence of Lemma 6.8, by taking

σ2 =
4M2

9(3 + log d)
and δ2 =

M2

18(3 + log d)
min

{
1,
d

n

}

we obtain the bounds

E[‖X‖2∞] ≤ 8M2

9
+

2M2

18
=M2 and 1−

(
2δ2n

dσ2

) 1
2

≥ 1−
(
18

72

) 1
2

=
1

2
.
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Noting that
√
18 = 3

√
2 and substituting into the lower bound on Mn yields

Mn(Θ,PM,∞, F, Czon ) ≥ 1

12
√
2
√
3 + log d

M r1√
n

min
{√

n,
√
d
}
.

Modulo this lower bound holding for each dimension d0 ≤ d, this completes the proof.
To complete the proof, we note that as in the proof of Proposition 6.1, we may provide

a lower bound on the optimization error for any d0 ≤ d-dimensional problem. In particular,
fix d0 ≤ d and let V = {±ej}d0j=1 ⊂ Rd. Now, conditional on v ∈ V , let Pv denote the
distribution on X with independent coordinates whose distributions are Xj ∼ N(δvj, σ

2) for
j ≤ d0 and Xj = 0 for j > d0. As in the proof Proposition 6.1, we may reproduce the
preceding arguments by substituting d0 ≤ d for every appearance of the dimension d, giving
that for all d0 ≤ d,

Mn(Θ,PM,∞, F, Czon ) ≥ 1

12
√
2
√
3 + log d0

M r1√
n

min
{√

n,
√
d0

}
.

Choosing d0 = min{d, n} completes the proof of Proposition 6.2.

6.7 Technical results for convergence arguments

In this section, we collect the proofs of the various lemmas used in our convergence arguments.
Throughout the section, we recall that the notation B2 denotes the ℓ2-ball of radius 1, and
B2(x, u) = x + uB2 denotes the ℓ2-ball of radius u centered at x. (We let Bd

2 denote the
d-dimensional ball if we wish to make the dimension explicit.)

6.7.1 Proof of Lemma 6.4

We consider each of the distributions in turn. When Z has N(0, Id×d) distribution, standard
χ2-distributed random variable calculations imply

E
[
‖Z‖k2

]
= 2

k
2
Γ(k

2
+ d

2
)

Γ(d
2
)

.

That E[ZZ⊤] = Id×d is immediate, and the constant values ck for k ≤ 4 follow from direct
calculations. For samples Z from the ℓ2-sphere, it is clear that ‖Z‖2 =

√
d, so we may take

ck = 1 in the statement of the lemma. When Z ∼ Uniform(Bd
2), the density p(t) of ‖Z‖2 is

given by d · td−1; consequently, for any k > −d we have

E[‖Z‖k2] =
∫ 1

0

tkp(t) dt = d

∫ 1

0

td+k−1 dt =
d

d+ k
. (6.34)

Thus for Z ∼ Uniform(
√
d+ 2Bd

2) we have E[ZZ
⊤] = Id×d, and E[‖Z‖k2] = (d+2)k/2d/(d+k).
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6.7.2 Proof of Lemma 6.5

The proof of Lemma 6.5 is based on a sequence of auxiliary results. Since the Lipschitz
continuity of h implies the result for d = 1 directly, we focus on the case d ≥ 2. First, we have
the following standard result on the dimension-independent concentration of rotationally
symmetric sub-Gaussian random vectors. We use this to prove that the perturbed h is close
to the unperturbed h with high probability.

Lemma 6.9 (Rotationally invariant concentration). Let Z be a random variable in Rd having
one of the following distributions: N(0, Id×d), Uniform(

√
d+ 2Bd

2), or Uniform(
√
d Sd−1).

There is a universal (numerical) constant c > 0 such that for any M-Lipschitz continuous
function h,

P (|h(θ + uZ)− E[h(θ + uZ)]| > ǫ) ≤ 2 exp

(
− c ǫ

2

M2

)
.

In the case of the normal distribution, we may take c = 1
2
.

These results are standard (e.g., see Propositions 1.10 and 2.9 of Ledoux [117]).

Our next result shows that integrating out Z2 leaves us with a smoother deviation prob-
lem, at the expense of terms of order at most uk logk/2(d). To state the lemma, we define the
difference function ∆u(θ) = E[h(θ+uZ2)]−h(θ). Note that since h is convex and E[Z2] = 0,
Jensen’s inequality implies ∆u(θ) ≥ 0.

Lemma 6.10. Under the conditions of Lemma 6.5, we have

E
[
|h(Z1 + uZ2)− h(Z1)|k

]
≤ 2k−1E[∆u(Z1)

k] + c−
k
2 2k−1k

k
2uk log

k
2 (d+ 2k) +

√
2uk

for any k ≥ 1. Here c is the same constant in Lemma 6.9.

Proof For each θ ∈ Θ, the function w 7→ h(θ + uw) is u-Lipschitz, so that Lemma 6.9
implies that

P
(∣∣h(θ + uZ2)− E[h(θ + uZ2)]

∣∣ > ǫ
)
≤ 2 exp

(
−c ǫ

2

u2

)
.

On the event Aθ(ǫ) := {|h(θ + uZ2)− E[h(θ + uZ2)]| ≤ ǫ}, we have

|h(θ + uZ2)− h(θ)|k ≤ 2k−1 |h(θ + uZ2)− E[h(θ + uZ2)|k+2k−1∆u(θ)
k ≤ 2k−1ǫk+2k−1∆u(θ)

k,

which implies

E
[
|h(θ + uZ2)− h(θ)|k · 1 {Aθ(ǫ)}

]
≤ 2k−1∆u(θ)

k + 2k−1ǫk. (6.35a)

On the complement Acθ(ǫ), which occurs with probability at most 2 exp(−cǫ2/u2), we use the
Lipschitz continuity of h and Cauchy-Schwarz inequality to obtain

E
[
|h(θ + uZ2)− h(θ)|k · 1 {Aθ(ǫ)c}

]
≤ E

[
uk ‖Z2‖k2 · 1 {Aθ(ǫ)c}

]
≤ ukE[‖Z2‖2k2 ]

1
2 ·P (Aθ(ǫ)

c)
1
2 .
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By direct calculations, Assumption 6E implies that E[‖Z2‖2k2 ] ≤ (d+ 2k)k. Thus,

E
[
|h(θ + uZ2)− h(θ)|k · 1 {Aθ(ǫ)c}

]
≤ uk(d+ 2k)

k
2 ·
√
2 exp

(
− c ǫ

2

2u2

)
. (6.35b)

Combining the estimates (6.35a) and (6.35b) gives

E
[
|h(θ + uZ2)− h(θ)|k

]
≤ 2k−1∆u(θ)

k + 2k−1ǫk +
√
2uk(d+ 2k)

k
2 exp

(
− c ǫ

2

2u2

)
.

Setting ǫ2 = k
c
u2 log(d+ 2k) and taking expectations over Z1 ∼ µ1 gives Lemma 6.10.

By Lemma 6.10, it suffices to control the bias E[∆u(Z1)] = E[h(Z1 + uZ2)− h(Z1)]. The
following result allows us to reduce this problem to one of bounding a certain one-dimensional
expectation.

Lemma 6.11. Let Z and W be random variables in Rd with rotationally invariant dis-
tributions and finite first moments. Let H denote the set of 1-Lipschitz convex functions
h : Rd → R, and for h ∈ H, define V (h) = E[h(W )− h(Z)]. Then

sup
h∈H

V (h) = sup
a∈R+

E [| ‖W‖2 − a| − | ‖Z‖2 − a|] .

Proof First, we note that V (h) = V (h ◦ U) for any unitary transformation U ; since V is
linear, if we define ĥ as the average of h◦U over all unitary U then V (h) = V (ĥ). Moreover,
for h ∈ H, we have ĥ(θ) = ĥ1(‖θ‖2) for some ĥ1 : R+ → R, which is necessarily 1-Lipschitz
and convex.

Letting H1 denote the 1-Lipschitz convex h : R → R satisfying h(0) = 0, we thus
have suph∈H V (h) = suph∈H1

E[h(‖W‖2) − h(‖Z‖2)]. Now, we define G1 to be the set of
measurable non-decreasing functions bounded in [−1, 1]. Then by known properties of convex
functions [98], for any h ∈ H1, we can write h(t) =

∫ t
0
g(s)ds for some g ∈ G1. Using this

representation, we have

sup
h∈H

V (h) = sup
h∈H1

{E[h(‖W‖2)− h(‖Z‖2)]}

= sup
g∈G1

{
E[h(‖W‖2)− h(‖Z‖2)], where h(t) =

∫ t

0

g(s)ds

}
. (6.36)

Let ga denote the {−1, 1}-valued function with step at a, that is, ga(t) = −1 {t ≤ a} +
1 {t > a}. We define G(n)1 to be the set of non-decreasing step functions bounded in [−1, 1]
with at most n steps, that is, functions of the form g(t) =

∑n
i=1 bigai(t), where |g(t)| ≤ 1

for all t ∈ R. We may then further simplify the expression (6.36) by replacing G1 with G(n)1 ,
that is,

sup
h∈H

V (h) = sup
n∈N

sup
g∈G(n)

1

{
E[h(‖W‖2)− h(‖Z‖2)], where h(t) =

∫ t

0

g(s)ds

}
.
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The extremal points of G(n)1 are the step functions {ga | a ∈ R}, and since the supre-
mum (6.36) is linear in g, it may be taken over such ga. Lemma 6.11 then follows by noting
the integral equality

∫ t
0
ga(s)ds = |t− a| − |a|. The restriction to a ≥ 0 in the lemma follows

since ‖v‖2 ≥ 0 for all v ∈ Rd.

By Lemma 6.11, for any 1-Lipschitz h, the associated difference function has expectation
bounded as

E[∆u(Z1)] = E[h(Z1 + uZ2)− h(Z1)] ≤ sup
a∈R+

E [|‖Z1 + uZ2‖2 − a| − |‖Z1‖2 − a|] .

For the distributions identified by Assumption 6E, we can in fact show that the preceding
supremum is attained at a = 0.

Lemma 6.12. Let Z1 ∼ µ1 and Z2 ∼ µ2 be independent, where µ1 and µ2 satisfy Assump-
tion 6E. For any u ≥ 0, the function

a 7→ ζ(a) := E [| ‖Z1 + uZ2‖2 − a| − | ‖Z1‖2 − a|]

is non-increasing in a ≥ 0.

We return to prove this lemma at the end of the section.
With the intermediate results above, we can complete our proof of Lemma 6.5. In view

of Lemma 6.10, we only need to bound E[∆u(Z1)
k], where ∆u(θ) = E[h(θ + uZ2)] − h(θ).

Recall that ∆u(θ) ≥ 0 since h is convex. Moreover, since h is 1-Lipschitz,

∆u(θ) ≤ E
[∣∣h(θ + uZ2)− h(θ)

∣∣] ≤ E
[
‖uZ2‖2

]
≤ uE

[
‖Z2‖22

]1/2
= u
√
d,

where the last equality follows from the choices of Z2 in Assumption 6E. Therefore, we have
the crude but useful bound

E[∆u(Z1)
k] ≤ uk−1d

k−1
2 E[∆u(Z1)] = uk−1d

k−1
2 E[h(Z1 + uZ2)− h(Z1)], (6.37)

where the last expectation is over both Z1 and Z2. Since Z1 and Z2 both have rotationally
invariant distributions, Lemmas 6.11 and 6.12 imply that the expectation in expression (6.37)
is bounded by

E[h(Z1 + uZ2)− h(Z1)] ≤ E [‖Z1 + uZ2‖2 − ‖Z1‖2] .
Lemma 6.5 then follows by bounding the norm difference in the preceding display for each
choice of the smoothing distributions in Assumption 6E. We claim that

E [‖Z1 + uZ2‖2 − ‖Z1‖2] ≤
1√
2
u2
√
d. (6.38)

To see this inequality, we consider the possible distributions for the pair Z1, Z2 under As-
sumption 6E.
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1. Let Td have χ2-distribution with d degrees of freedom. Then for Z1, Z2 indepen-

dent and N(0, Id×d)-distributed, we have the distributional identities ‖Z1 + uZ2‖2
d
=√

1 + u2
√
Td and ‖Z1‖2

d
=
√
Td. Using the inequalities

√
1 + u2 ≤ 1 + 1

2
u2 and

E[
√
Td] ≤ E[Td]

1
2 =
√
d, we obtain

E [‖Z1 + uZ2‖2 − ‖Z1‖2] =
(√

1 + u2 − 1
)
E[
√
Td] ≤

1

2
u2
√
d.

2. By assumption, if Z1 is uniform on
√
d+ 2Bd

2 then Z2 has either Uniform(
√
d+ 2Bd

2)
or Uniform(

√
d Sd−1) distribution. Using the inequality

√
a+ b−√a ≤ b/(2

√
a), valid

for a ≥ 0 and b ≥ −a, we may write

‖Z1 + uZ2‖2 − ‖Z1‖2 =
√
‖Z1‖22 + 2u 〈Z1, Z2〉+ u2 ‖Z2‖22 −

√
‖Z1‖22

≤ 2u 〈Z1, Z2〉+ u2 ‖Z2‖22
2 ‖Z1‖2

= u

〈
Z1

‖Z1‖2
, Z2

〉
+

1

2
u2
‖Z2‖22
‖Z1‖2

.

Since Z1 and Z2 are independent and E[Z2] = 0, the expectation of the first term on
the right hand side above vanishes. For the second term, the independence of Z1 and
Z2 and moment calculation (6.34) imply

E [‖Z1 + uZ2‖2 − ‖Z1‖2] ≤
1

2
u2 E

[
1

‖Z1‖2

]
E
[
‖Z2‖22

]

=
1

2
u2 · 1√

d+ 2

d

(d− 1)
· d ≤ 1√

2
u2
√
d,

where the last inequality holds for d ≥ 2.

We thus obtain the claim (6.38), and applying inequality (6.38) to our earlier computa-
tion (6.37) yields

E[∆u(Z1)
k] ≤ 1√

2
uk+1d

k
2 .

Plugging in this bound on ∆u to Lemma 6.10, we obtain the result

E
[
|h(Z1 + uZ2)− h(Z1)|k

]
≤ 2k−

3
2uk+1d

k
2 + c−

k
2 2k−1k

k
2uk log

k
2 (d+ 2k) +

√
2uk

≤ cku
k
[
ud

k
2 + 1 + log

k
2 (d+ 2k)

]
,

where ck is a numerical constant that only depends on k. This is the desired statement of
Lemma 6.5.

We now return to prove the remaining intermediate lemma.
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Proof of Lemma 6.12 Since the quantity ‖Z1 + uZ2‖2 has a density with respect to
Lebesgue measure, standard results on differentiating through an expectation [e.g., 25] imply

d

da
E [|‖Z1 + uZ2‖2 − a|] = E[sign(a− ‖Z1 + uZ2‖2)]

= P(‖Z1 + uZ2‖2 ≤ a)− P(‖Z1 + uZ2‖2 > a),

where we used that the subdifferential of a 7→ |v − a| is sign(a − v). As a consequence, we
find that

d

da
ζ(a) = P(‖Z1 + uZ2‖2 ≤ a)− P(‖Z1 + uZ2‖2 > a)− P(‖Z1‖2 ≤ a) + P(‖Z1‖2 > a)

= 2 [P (‖Z1 + uZ2‖2 ≤ a)− P (‖Z1‖2 ≤ a)] . (6.39)

If we can show the quantity (6.39) is non-positive for all a, we obtain our desired result. It
thus remains to prove that ‖Z1 + uZ2‖2 stochastically dominates ‖Z1‖2 for each choice of
µ1, µ2 satisfying Assumption 6E. We enumerate each of the cases below.

1. Let Td have χ2-distribution with d degrees of freedom and Z1, Z2 ∼ N(0, Id×d). Then

by definition we have ‖Z1 + uZ2‖2
d
=
√
1 + u2

√
Td and ‖Z1‖2

d
=
√
Td, and

P (‖Z1 + uZ2‖2 ≤ a) = P

(√
Td ≤

a√
1 + u2

)
≤ P

(√
Td ≤ a

)
= P (‖Z1‖2 ≤ a)

as desired.

2. Now suppose Z1, Z2 are independent and distributed as Uniform(r Bd
2); our desired

result will follow by setting r =
√
d+ 2. Let p0(t) and pu(t) denote the densities of

‖Z1‖2 and ‖Z1 + uZ2‖2, respectively, with respect to Lebesgue measure on R. We now
compute them explicitly. For p0, for 0 ≤ t ≤ r we have

p0(t) =
d

dt
P(‖Z1‖2 ≤ t) =

d

dt

(
t

r

)d
=
d td−1

rd
,

and p0(t) = 0 otherwise. For pu, let λ denote the Lebesgue measure in Rd and σ denote
the (d − 1)-dimensional surface area in Rd. The random variables Z1 and uZ2 have
densities, respectively,

q1(x) =
1

λ(r Bd
2)

=
1

rdλ(Bd
2)

for x ∈ rBd
2

and

qu(x) =
1

λ(ur Bd
2)

=
1

udrdλ(Bd
2)

for x ∈ urBd
2 ,
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and q1(x) = qu(x) = 0 otherwise. Then the density of Z1 + uZ2 is given by the
convolution

q̃(z) =

∫

Rd

q1(x)qu(z − x) λ(dx) =
∫

E(z)

1

rdλ(Bd
2)
· 1

udrdλ(Bd
2)
λ(dx) =

λ(E(z))

ud r2dλ(Bd
2)

2
.

Here E(z) := Bd
2(0, r) ∩ Bd

2(z, ur) is the domain of integration, in which the densities
q1(x) and qu(z−x) are nonzero. The volume λ(E(z))—and hence also q̃(z)—depend on
z only via its norm ‖z‖2. Therefore, the density pu(t) of ‖Z1 + uZ2‖2 can be expressed
as

pu(t) = q̃(te1) σ(tS
d−1) =

λ(E(te1)) t
d−1 σ(Sd−1)

ud r2d λ(Bd
2)

2
= d

λ(E(te1)) t
d−1

ud r2d λ(Bd
2)

,

where the last equality above follows from the relation σ(Sd−1) = dλ(Bd
2). Since

E(te1) ⊆ Bd
2(te1, ur) by definition,

λ(E(te1)) ≤ λ
(
Bd

2(te1, ur)
)
= udrd λ(Bd

2),

so for all 0 ≤ t ≤ (1 + u)r we have

pu(t) = d
λ(E(te1)) t

d−1

ud r2d λ(Bd
2)
≤ d td−1

rd
,

and clearly pu(t) = 0 for t > (1 + u)r. In particular, pu(t) ≤ p1(t) for 0 ≤ t ≤ r, which
gives us our desired stochastic dominance inequality (6.39): for a ∈ [0, r],

P(‖Z1 + uZ2‖2 ≤ a) =

∫ a

0

pu(t) dt ≤
∫ a

0

p0(t) dt = P(‖Z1‖2 ≤ a),

and for a > r we have P(‖Z1 + uZ2‖2 ≤ a) ≤ 1 = P(‖Z1‖2 ≤ a).

3. Finally, consider the case when Z1 ∼ Uniform(
√
d+ 2Bd

2) and Z2 ∼ Uniform(
√
d Sd−1).

As in the previous case, we will show that p0(t) ≤ pu(t) for 0 ≤ t ≤
√
d+ 2, where

p0(t) and pu(t) are the densities of ‖Z1‖2 and ‖Z1 + uZ2‖2, respectively. We know that
the density of ‖Z1‖2 is

p0(t) =
d td−1

(d+ 2)
d
2

for 0 ≤ t ≤
√
d+ 2,

and p0(t) = 0 otherwise. To compute pu, we first determine the density q̃(z) of the
random variable Z1 + uZ2 with respect to the Lebesgue measure λ on Rd. The usual
convolution formula does not directly apply as Z1 and Z2 have densities with respect
to different base measures (λ and σ, respectively). However, as Z1 and Z2 are both
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uniform, we can argue as follows. Integrating over the surface u
√
dSd−1 (essentially

performing a convolution), each point uy ∈ u
√
d Sd−1 contributes the amount

1

σ(u
√
d Sd−1)

· 1

λ(
√
d+ 2Bd

2)
=

1

ud−1 d
d−1
2 (d+ 2)

d
2 σ(Sd−1)λ(Bd

2)

to the density q̃(z), provided ‖z − uy‖2 ≤
√
d+ 2. For fixed z ∈ (

√
d+ 2 + u

√
d)Bd

2 ,
the set of such contributing points uy can be written as E(z) = Bd

2(z,
√
d+ 2) ∩

Sd−1(0, u
√
d). Therefore, the density of Z1 + uZ2 is given by

q̃(z) =
σ(E(z))

ud−1 d
d−1
2 (d+ 2)

d
2 σ(Sd−1)λ(Bd

2)
.

Since q̃(z) only depends on z via its norm ‖z‖2, the formula above also gives us the
density pu(t) of ‖Z1 + uZ2‖2:

pu(t) = q̃(te1) σ(tS
d−1) =

σ(E(z)) td−1

ud−1 d
d−1
2 (d+ 2)

d
2 λ(Bd

2)
.

Noting that E(z) ⊆ Sd−1(0, u
√
d) gives us

pu(t) ≤
σ(u
√
d Sd−1) td−1

ud−1 d
d−1
2 (d+ 2)

d
2 λ(Bd

2)
=

d td−1

(d+ 2)
d
2

.

In particular, we have pu(t) ≤ p0(t) for 0 ≤ t ≤
√
d+ 2, which, as we saw in the

previous case, gives us the desired stochastic dominance inequality (6.39).

6.8 Technical proofs associated with lower bounds

In this section, we prove the technical results necessary for the proofs of Propositions 6.1
and 6.2.

6.8.1 Proof of Lemma 6.6

First, note that the optimal vector θA = −d−1/q
1 with optimal value −d1−1/q, and θB =

−(d− i)−1/q
1i+1:d, where 1i+1:d denotes the vector with 0 entries in its first i coordinates and

1 elsewhere. As a consequence, we have
〈
θB,1

〉
= −(d − i)1−1/q. Now we use the fact that

by convexity of the function x 7→ −x1−1/q for q ∈ [1,∞],

−d1−1/q ≤ −(d− i)1−1/q − 1− 1/q

d1/q
i,

since the derivative of x 7→ −x1−1/q at x = d is given by −(1 − 1/q)/d1/q and the quantity
−x1−1/q is non-increasing in x for q ∈ [1,∞].
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6.8.2 Proof of Lemma 6.7

For notational convenience, let the distribution Pv,+j be identical to the distribution Pv but
with the jth coordinate vj forced to be +1 and similarly for Pv,−j . Using Pinsker’s inequality
and the joint convexity of the KL-divergence, we have

‖P+j − P−j‖2TV ≤
1

4
[Dkl (P+j||P−j) +Dkl (P−j||P+j)]

≤ 1

2d+2

∑

v∈V
[Dkl (Pv,+j||Pv,−j) +Dkl (Pv,−j||Pv,+j)] .

By the chain-rule for KL-divergences [47], if we define P k
v (· | Y 1:k−1) to be the distribution

of the kth observation Y k conditional on v and Y 1:k−1, then we have

Dkl (Pv,+j||Pv,−j) =
n∑

k=1

∫

Yk−1

Dkl

(
P k
v,+j(· | Y 1:k−1 = y)||P k

v,−j(· | Y 1:k−1 = y)
)
dPv,+j(y).

We show how to bound the preceding sequence of KL-divergences for the observational
scheme based on function-evaluations we allow. Let W = [θ w] ∈ Rd×2 denote the pair
of query points, so we have by construction that the observation Y = W⊤X where X |
V = v ∼ N(δv, σ2Id×d). In particular, given v and the pair W , the vector Y ∈ Rd is
normally distributed with mean δW⊤v and covariance σ2W⊤W = Σ, where the covari-
ance Σ is defined in equation (6.28). The KL divergence between normal distributions is
Dkl (N(µ1,Σ)||N(µ2,Σ)) = 1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2). Note that if v and v′ differ in only
coordinate j, then 〈v − v′, θ〉 = (vj − v′j)θj. We thus obtain

Dkl

(
P k
v,+j(· | y1:k−1)||P k

v,−j(· | y1:k−1)
)
≤ 2δ2E

[[
θkj
wkj

]⊤
(Σk)−1

[
θkj
wkj

]
| y1:k−1

]

where the expectation is taken with respect to any additional randomness in the construction
of the pair (θk, wk) (as, aside from this randomness, they are measureable Y 1:n−1). Combining
the sequence of inequalities from the preceding paragraph, we obtain

‖P+j − P−j‖2TV

≤ δ2

2d+1

n∑

k=1

∑

v∈V

∫

Yk−1

E

[[
θkj
wkj

]⊤
(Σk)−1

[
θkj
wkj

]
| y1:k−1

]
(dPv,+j(y

1:k−1) + dPv,−j(y
1:k−1))

=
δ2

2

n∑

k=1

∫

Yk−1

E

[[
θkj
wkj

]⊤
(Σk)−1

[
θkj
wkj

]
| y1:k−1

]
(
dP+j(y

1:k−1) + dP−j(y
1:k−1)

)
,

where for the equality we used the definitions of the distributions Pv,±j and P±j. Integrating
over the observations y proves the claimed inequality (6.29).
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Part III

Privacy
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Chapter 7

Privacy, minimax rates of
convergence, and data processing
inequalities

In this chapter, we study another type of constraint on inference and estimation procedures
that has growing importance: we would like our estimators to remain confidential. With
this in mind, working under a model of privacy in which data remains private even from the
statistician, we study the tradeoff between privacy guarantees and the utility of the resulting
statistical estimators. To do this, our first step is to define a notion of (minimax) optimality
for private estimation. To control these new constrained minimax risks, we prove bounds
on information-theoretic quantities, including mutual information and Kullback-Leibler di-
vergence, that depend on the privacy guarantees. When combined with standard minimax
techniques, including the Le Cam, Fano, and Assouad methods of outline in Chapter 2,
these inequalities allow for a precise characterization of statistical rates under local privacy
constraints. We provide a treatment of several canonical families of problems: mean esti-
mation, parameter estimation in fixed-design regression, multinomial probability estimation,
and nonparametric density estimation. For all of these families, we provide lower and upper
bounds that match up to constant factors, and exhibit new (optimal) privacy-preserving
mechanisms and computationally efficient estimators that achieve the bounds.

7.1 Introduction

A major challenge in statistical inference is that of characterizing and balancing statistical
utility with the privacy of individuals from whom data is obtained [63, 64, 76]. Such a
characterization requires a formal definition of privacy, and differential privacy has been put
forth as one such formalization [e.g., 68, 29, 69, 90, 91]. In the database and cryptography
literatures from which differential privacy arose, early research was mainly algorithmic in fo-
cus, and researchers have used differential privacy to evaluate privacy-retaining mechanisms
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for transporting, indexing, and querying data. More recent work aims to link differential
privacy to statistical concerns [66, 180, 88, 164, 44, 155]; in particular, researchers have de-
veloped algorithms for private robust statistical estimators, point and histogram estimation,
and principal components analysis, among others. Guarantees of optimality in this line of
work have typically been with respect to estimators, where the goal is to approximate an
estimator itself under privacy-respecting transformations of the data. There has also been
recent work within the context of classification problems and the “probably approximately
correct” framework of statistical learning theory [e.g. 105, 20] that treats the data as random
and aims to recover aspects of the underlying population.

In this chapter, we take a fully inferential point of view on privacy by bringing differential
privacy into contact with statistical decision theory. Our focus is on the fundamental limits
of differentially-private estimation. By treating differential privacy as an abstract constraint
on estimators, we obtain independence from specific estimation procedures and privacy-
preserving mechanisms. Within this framework, we derive both lower bounds and matching
upper bounds on minimax risk. We obtain our lower bounds by integrating differential
privacy into the classical paradigms for bounding minimax risk via the inequalities of Le Cam,
Fano, and Assouad, while we obtain matching upper bounds by proposing and analyzing
specific private procedures.

We study the setting of local privacy, in which providers do not even the statistician
collecting the data. Although local privacy is a relatively stringent requirement, we view
this setting as a natural step in identifying minimax risk bounds under privacy constraints.
Indeed, local privacy is one of the oldest forms of privacy: its essential form dates to Warner
[179], who proposed it as a remedy for what he termed “evasive answer bias” in survey
sampling. We hope that we can leverage deeper understanding of this classical setting to
treat other privacy-preserving approaches to data analysis.

More formally, let X1, . . . , Xn ∈ X be observations drawn according to a distribution
P , and let θ = θ(P ) be a parameter of this unknown distribution. We wish to estimate
θ based on access to obscured views Z1, . . . , Zn ∈ Z of the original data. The original
random variables {Xi}ni=1 and the privatized observations {Zi}ni=1 are linked via a family of
conditional distributions Qi(Zi | Xi = x, Z1:i−1 = z1:i−1). To simplify notation, we typically
omit the subscript in Qi. We refer to Q as a channel distribution, as it acts as a conduit from
the original to the privatized data, and we assume it is sequentially interactive, meaning the
channel has the conditional independence structure

{Xi, Z1, . . . , Zi−1} → Zi and Zi ⊥ Xj | {Xi, Z1, . . . , Zi−1} for j 6= i,

illustrated on the left of Figure 7.1. A special case of a such a channel is the non-interactive
case, in which each Zi depends only on Xi (Fig. 7.1, right).

Our work is based on the following definition of privacy. For a given privacy parameter
α ≥ 0, we say that Zi is an α-differentially locally private view of Xi if for all z1, . . . , zi−1

and x, x′ ∈ X we have

sup
S∈σ(Z)

Qi(Zi ∈ S | Xi = x, Z1 = z1, . . . , Zi−1 = zi−1)

Qi(Zi ∈ S | Xi = x′, Z1 = z1, . . . , Zi−1 = zi−1)
≤ exp(α), (7.1)
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Z1 Z2 Zn

X1 X2 Xn

Z1 Z2 Zn

X1 X2 Xn

Figure 7.1. Left: graphical structure of private Zi and non-private data Xi in interactive
case. Right: graphical structure of channel in non-interactive case.

where σ(Z) denotes an appropriate σ-field on Z. Definition (7.1) does not constrain Zi to be
a release of data based on exclusively on Xi: the channel Qi may be interactive [68], changing
based on prior private observations Zj. We also consider the non-interactive case [179, 74]
where Zi depends only on Xi (see the right side of Figure 7.1); here the bound (7.1) reduces
to

sup
S∈σ(Z)

sup
x,x′∈X

Q(Zi ∈ S | Xi = x)

Q(Zi ∈ S | Xi = x′)
≤ exp(α). (7.2)

These definitions capture a type of plausible-deniability: no matter what data Z is re-
leased, it is nearly equally as likely to have come from one point x ∈ X as any other. It is
also possible to interpret differential privacy within a hypothesis testing framework, where
α controls the error rate in tests for the presence or absence of individual data points in a
dataset [180]. Such guarantees against discovery, together with the treatment of issues of
side information or adversarial strength that are problematic for other formalisms, have been
used to make the case for differential privacy within the computer science literature; see, for
example, the papers [74, 68, 16, 80].

Although differential privacy provides an elegant formalism for limiting disclosure and
protecting against many forms of privacy breach, it is a stringent measure of privacy, and it is
conceivably overly stringent for statistical practice. Indeed, Fienberg et al. [77] criticize the
use of differential privacy in releasing contingency tables, arguing that known mechanisms for
differentially private data release can give unacceptably poor performance. As a consequence,
they advocate—in some cases—recourse to weaker privacy guarantees to maintain the utility
and usability of released data. There are results that are more favorable for differential
privacy; for example, Smith [164] shows that the non-local form of differential privacy [68] can
be satisfied while yielding asymptotically optimal parametric rates of convergence for some
point estimators. Resolving such differing perspectives requires investigation into whether
particular methods have optimality properties that would allow a general criticism of the
framework, and characterizing the trade-offs between privacy and statistical efficiency. Such
are the goals of this part of the thesis.
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7.1.1 Our contributions

The main contribution of this chapter is to provide general techniques for deriving minimax
bounds under local privacy constraints and to illustrate these techniques by computing min-
imax rates for several canonical problems: (a) mean estimation; (b) parameter estimation in
fixed design regression; (c) multinomial probability estimation; and (d) density estimation.
We now outline our main contributions. Because a deeper comparison of the current work
with prior research requires formally defining our minimax framework and presentation of
our main results, we defer more expansive discussion of related work to Section 7.6. We
emphasize, however, that our minimax rates are for estimation of population quantities, in
accordance with our connections to statistical decision theory; most prior work in the privacy
literature focuses on accurate approximation of estimators in a conditional analysis in which
the data are treated as fixed.

Many methods for obtaining minimax bounds involve information-theoretic quantities
relating distributions that may have generated the data [188, 185, 173]. In particular, let
P1 and P2 denote two distributions on the observations Xi, and for v ∈ {1, 2}, define the
marginal distribution Mn

v on Zn by

Mn
v (S) :=

∫
Qn(S | x1, . . . , xn)dPv(x1, . . . , xn) for S ∈ σ(Zn). (7.3)

Here Qn(· | x1, . . . , xn) denotes the joint distribution on Zn of the private sample Z1:n, condi-
tioned on X1:n = x1:n. The mutual information of samples drawn according to distributions
of the form (7.3) and the KL divergence between such distributions are key objects in statis-
tical discriminability and minimax rates [92, 27, 188, 185, 173], where they are often applied
in one of three lower-bounding techniques: Le Cam’s, Fano’s, and Assouad’s methods.

Keeping in mind the centrality of these information-theoretic quantities, we summarize
our main results at a high-level as follows. Theorem 7.1 bounds the KL divergence between
distributions Mn

1 and Mn
2 , as defined by the marginal (7.3), by a quantity dependent on the

differential privacy parameter α and the total variation distance between P1 and P2. The
essence of Theorem 7.1 is that

Dkl (M
n
1 ||Mn

2 ) . α2n ‖P1 − P2‖2TV ,

where . denotes inequality up to numerical constants. When α2 < 1, which is the usual
region of interest, this result shows that for statistical procedures whose minimax rate of
convergence can be determined by classical information-theoretic methods, the additional
requirement of α-local differential privacy causes the effective sample size of any statistical
procedure to be reduced from n to at most α2n. Section 7.3.1 contains the formal statement
of this theorem, while Section 7.3.2 provides corollaries showing its application to minimax
risk bounds. We follow this in Section 7.3.3 with applications of these results to estimation of
one-dimensional means and fixed-design regression problems, providing corresponding upper
bounds on the minimax risk. In addition to our general analysis, we exhibit some striking
difficulties of locally private estimation in non-compact spaces: if we wish to estimate the
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mean of a random variable X satisfying Var(X) ≤ 1, the minimax rate of estimation of E[X]
decreases from the parametric 1/n rate to 1/

√
nα2.

Theorem 7.1 is appropriate for many one dimensional problems, but it does not address
difficulties inherent in higher dimensional problems. With this motivation, our next two
main results (Theorems 7.2 and 7.3) generalize Theorem 7.1 and incorporate dimensionality
in an essential way: each provides bounds on information-theoretic quantities by dimension-
dependent analogues of total-variation. Somewhat more specifically, Theorem 7.2 provides
bounds on mutual information quantities essential in information theoretic techniques such
as Fano’s method [188, 185], while Theorem 7.3 provides analogous bounds on summed pairs
of KL-divergences useful in applications of Assouad’s method [11, 188, 9].

As a consequence of Theorems 7.2 and 7.3, we obtain that for many d-dimensional esti-
mation problems the effective sample size is reduced from n to nα2/d; as our examples illus-
trate, this dimension-dependent reduction in sample size can have dramatic consequences.
We provide the main statement and consequences of Theorem 7.2 in Section 7.4, showing
its application to obtaining minimax rates for mean estimation in both classical and high-
dimensional settings. In Section 2.2.4, we present Theorem 7.3, showing how it provides
(sharp) minimax lower bounds for multinomial and probability density estimation. Our re-
sults enable us to derive (often new) optimal mechanisms for these problems. One interesting
consequence of our results is that Warner’s randomized response procedure [179] from the
1960s is an optimal mechanism for multinomial estimation.

7.2 Background and problem formulation

We first recall the minimax framework established in Chapter 2, in use throughout the thesis,
putting the general constrained minimax quantities (2.4) in the setting of private estimation.
As previously, we let P denote a class of distributions on the sample space X , let θ(P ) ∈ Θ
denote a function defined on P , the function ρ : Θ × Θ → R+ denote a semi-metric on the
space Θ, which we use to measure the error of an estimator for the parameter θ, and let
Φ : R+ → R+ be a non-decreasing function with Φ(0) = 0 (for example, Φ(t) = t2).

In the classical setting, the statistician is given direct access to i.i.d. observations Xi

drawn according to some P ∈ P . The local privacy setting involves an additional ingredient,
namely, a conditional distribution Q that transforms the sample {Xi}ni=1 into the private
sample {Zi}ni=1 taking values in Z. Based on these Zi, our goal is to estimate the unknown

parameter θ(P ) ∈ Θ. An estimator θ̂ in the locally private setting is a measurable function

θ̂ : Zn → Θ, and we assess the quality of the estimate θ̂(Z1, . . . , Zn) in terms of the risk

EP,Q

[
Φ
(
ρ(θ̂(Z1, . . . , Zn), θ(P ))

)]
.

For any fixed conditional distribution Q, the minimax rate is

Mn(θ(P),Φ ◦ ρ,Q) := inf
θ̂
sup
P∈P

EP,Q

[
Φ
(
ρ(θ̂(Z1, . . . , Zn), θ(P ))

)]
, (7.4)
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where we take the supremum (worst-case) over distributions P ∈ P , and the infimum is

taken over all estimators θ̂. This is identical to the classical minimax risk (2.1), but the data

passes through the channel Q before being observed by the estimator θ̂.
For α > 0, let Qα denote the set of all conditional distributions guaranteeing α-local

privacy (7.1). By minimizing the minimax risk (7.4) over all Q ∈ Qα, we obtain the central
object of study for this chapter, which characterizes the optimal rate of estimation in terms
of the privacy parameter α.

Definition 7.1. Given a family of distributions θ(P) and a privacy parameter α > 0, the
α-minimax rate in the metric ρ is

Mn(θ(P),Φ ◦ ρ, α) := inf
Q∈Qα

inf
θ̂
sup
P∈P

EP,Q

[
Φ(ρ(θ̂(Z1, . . . , Zn), θ(P )))

]
. (7.5)

Notably, the quantity (7.5) is simply a variant of the constrained minimax risk (2.4), the
central theoretical object of study in this thesis.

From estimation to testing in private settings We now show how to adapt the mini-
max framework of Chapter 2, especially Section 2.2, to the private setting, which essentially
amounts to tracking the appearance of the channel distribution Q in the standard reductions
from estimation to testing.

We begin by recalling the settings of Section 2.2. Given an index set V of finite cardinality,
consider a family of distributions {Pv}v∈V contained within P and the induced collection of
parameters {θ(Pv)}v∈V . In the classical setting, the statistician directly observes the sample
X, while the local privacy constraint means that a new random sample Z = (Z1, . . . , Zn) is
generated by sampling Zi from the distribution Q(· | X1:n). By construction, if the data X1:n

is generated according to the distribution Pv, the private sample Z is distributed according
to the marginal measure Mn

v defined in equation (7.3).
Recalling the canonical hypothesis testing setting of Section 2.2.1, we consider determin-

ing the value of the underlying index v given the observed vector Z. Then, if V is drawn
uniformly at random from V , whenever the set θ(Pv) forms a 2δ-packing in the ρ-semimetric,
we have the following analogue of the classical lower bound (2.5): the minimax error (7.4)
has lower bound

Mn(Θ,Φ ◦ ρ,Q) ≥ Φ(δ) inf
Ψ

P(Ψ(Z1, . . . , Zn) 6= V ),

where the infimum ranges over all testing functions, and P denotes the joint distribution
over the random index V and Z.

We can then use Le Cam’s or Fano’s methods to lower bound the probability of error in
the private hypothesis testing problem. In particular, by applying Le Cam’s method (2.7),
we obtain the analogue of the minimax lower bound (2.8): for any pair P1, P2 ∈ P satisfying
ρ(θ(P1), θ(P2)) ≥ 2δ, then

Mn(θ(P),Φ ◦ ρ,Q) ≥ Φ(δ)

[
1

2
− 1

2
‖Mn

1 −Mn
2 ‖TV

]
,
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where the marginal Mv is defined as in expression (7.3). We can also extend the non-private
Fano method from Section 2.2.3: given the separation function δ(t) associated with the set
V and parameter θ (as defined by (2.14)), Corollary 2.2 implies

Mn(θ(P),Φ ◦ ρ,Q) ≥ Φ
(δ(t)

2

) (
1− I(Z1, . . . , Zn;V ) + log 2

log |V|
Nmax

t

)
for all t, (7.6)

where we recall from the definition (2.11) that Nmax
t = maxv∈V card{v′ ∈ V : ρ(v, v′) ≤ t}.

In addition, Assouad’s method from Section 2.2.4 applies. Assume that the index set
V = {−1, 1}d and the family P induces a 2δ-Hamming separation (2.17), that is, there
exists a function v satisfying Φ(ρ(θ, θ(Pv))) ≥ 2δ

∑d
j=1 1 {[v(θ)]j 6= vj} for all θ ∈ Θ. Then if

we define the marginals Mn
±j = 2−d+1

∑
v:vj=±1M

n
v , Lemma 2.2 and its equivalent minimax

lower bound (2.18) become

Mn(θ(P),Φ ◦ ρ,Q) ≥ δ
d∑

j=1

[
1−

∥∥Mn
+j −Mn

−j
∥∥
TV

]
. (7.7)

As a consequence of the reductions to testing from Chapter 2 and the error bounds above,
we obtain bounds on the private minimax rate (7.5) by controlling variation distances of the
form ‖Mn

1 −Mn
2 ‖TV or the mutual information between the random parameter index V

and the sequence of random variables Z1, . . . , Zn. We devote the following sections to these
tasks.

7.3 Pairwise bounds under privacy: Le Cam and local

Fano methods

We begin with results upper bounding symmetrized Kullback-Leibler divergence under a
privacy constraint, developing consequences of this result for both Le Cam’s method and a
local form of Fano’s method. Using these methods, we derive sharp minimax rates under local
privacy for estimating 1-dimensional means and for d-dimensional fixed design regression.

7.3.1 Pairwise upper bounds on Kullback-Leibler divergences

Many statistical problems depend on comparisons between a pair of distributions P1 and P2

defined on a common space X . Any channel Q transforms such a pair of distributions into
a new pair (M1,M2) via the marginalization (7.3), that is, Mv(S) =

∫
X Q(S | x)dPv(x) for

v = 1, 2. Our first main result bounds the symmetrized Kullback-Leibler (KL) divergence
between these induced marginals as a function of the privacy parameter α > 0 associated
with the conditional distribution Q and the total variation distance between P1 and P2.
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Theorem 7.1. For any α ≥ 0, let Q be a conditional distribution that guarantees α-
differential privacy. Then for any pair of distributions P1 and P2, the induced marginals
M1 and M2 satisfy the bound

Dkl (M1||M2) +Dkl (M2||M1) ≤ min{4, e2α}(eα − 1)2 ‖P1 − P2‖2TV . (7.8)

Remarks Theorem 7.1 is a type of strong data processing inequality [8], providing a quan-
titative relationship from the divergence ‖P1 − P2‖TV to the KL-divergence Dkl (M1||M2)
that arises after applying the channel Q. The result of Theorem 7.1 is similar to a result
due to Dwork et al. [69, Lemma III.2], who show that Dkl (Q(· | x)||Q(· | x′)) ≤ α(eα − 1)
for any x, x′ ∈ X , which implies Dkl (M1||M2) ≤ α(eα − 1) by convexity. This upper bound
is weaker than Theorem 7.1 since it lacks the term ‖P1 − P2‖2TV. This total variation term
is essential to our minimax lower bounds: more than providing a bound on KL divergence,
Theorem 7.1 shows that differential privacy acts as a contraction on the space of probability
measures. This contractivity holds in a strong sense: indeed, the bound (7.8) shows that
even if we start with a pair of distributions P1 and P2 whose KL divergence is infinite, the
induced marginals M1 and M2 always have finite KL divergence.

We provide the proof of Theorem 7.1 in Section 8.1. Here we develop a corollary that
has useful consequences for minimax theory under local privacy constraints. Suppose that
conditionally on V = v, we draw a sample X1, . . . , Xn from the product measure

∏n
i=1 Pv,i,

and that we draw the α-locally private sample Z1, . . . , Zn according to the channelQ(· | X1:n).
Conditioned on V = v, the private sample is distributed according to the measureMn

v defined
previously (7.3). Because we allow interactive protocols, the distribution Mn

v need not be a
product distribution in general. Given this set-up, we have the following:

Corollary 7.1. For any α-locally differentially private (7.1) conditional distribution Q and
any paired sequences of distributions {Pv,i} and {Pv′,i},

Dkl (M
n
v ||Mn

v′) +Dkl (M
n
v′ ||Mn

v ) ≤ 4(eα − 1)2
n∑

i=1

‖Pv,i − Pv′,i‖2TV . (7.9)

See Section 8.1.2 for the proof, which requires a few intermediate steps to obtain the additive
inequality. Inequality (7.9) also immediately implies a mutual information bound, which may
be useful in applications of Fano’s inequality. In particular, if we define the mean distribution
M

n
= 1

|V|
∑

v∈V M
n
v , then by the definition of mutual information, we have

I(Z1, . . . , Zn;V ) =
1

|V|
∑

v∈V
Dkl

(
Mn

v ||M
n) ≤ 1

|V|2
∑

v,v′

Dkl (M
n
v ||Mn

v′)

≤ 4(eα − 1)2
n∑

i=1

1

|V|2
∑

v,v′∈V
‖Pv,i − Pv′,i‖2TV , (7.10)

the first inequality following from the joint convexity of the KL divergence and the final
inequality from Corollary 7.1.
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Remarks Mutual information bounds under local privacy have appeared previously. Mc-
Gregor et al. [129] study relationships between communication complexity and differential
privacy, showing that differentially private schemes allow low communication. They pro-
vide a result [129, Prop. 7] guaranteeing I(X1:n;Z1:n) ≤ 3αn; they strengthen this bound to
I(X1:n;Z1:n) ≤ (3/2)α2n when the Xi are i.i.d. uniform Bernoulli variables. Since the total
variation distance is at most 1, our result also implies this scaling (for arbitrary Xi), but
it is stronger since it involves the total variation terms ‖Pv,i − Pv′,i‖TV, which are essential
in our minimax results. In addition, Corollary 7.1 allows for any (sequentially) interactive
channel Q; each Zi may depend on the private answers Z1:i−1 of other data providers.

7.3.2 Consequences for minimax theory under local privacy
constraints

We now turn to some consequences of Theorem 7.1 for minimax theory under local privacy
constraints. For ease of presentation, we analyze the case of independent and identically
distributed (i.i.d.) samples, meaning that Pv,i ≡ Pv for i = 1, . . . , n. We show that in
both Le Cam’s inequality and the local version of Fano’s method, the constraint of α-local
differential privacy reduces the effective sample size (at least) from n to 4α2n.

Consequence for Le Cam’s method We have seen in Section 2.2.2 how Le Cam’s
method provides lower bounds on the classical minimax risk via a binary hypothesis test.
By applying Pinsker’s inequality, one version of Le Cam’s method (2.8) asserts that, for any
pair of distributions {P1, P2} such that ρ(θ(P1), θ(P2)) ≥ 2δ, we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)
{1
2
− 1

2
√
2

√
nDkl (P1||P2)

}
. (7.11)

Returning to the α-locally private setting, in which the estimator θ̂ depends only on the
private variables (Z1, . . . , Zn), we measure the α-private minimax risk (7.5). By applying
Le Cam’s method to the pair (M1,M2) along with Corollary 7.1 in the form of inequality (7.9),
we find:

Corollary 7.2 (Private form of Le Cam bound). Given observations from an α-locally
differential private channel for some α ∈ [0, 22

35
], the α-private minimax risk has lower bound

Mn(θ(P),Φ ◦ ρ, α) ≥ Φ(δ)
{1
2
− 1

2
√
2

√
8nα2 ‖P1 − P2‖2TV

}
. (7.12)

Using the fact that ‖P1 − P2‖2TV ≤ 1
2
Dkl (P1||P2), comparison with the original Le Cam

bound (7.11) shows that for α ∈ [0, 22
35
], the effect of α-local differential privacy is to reduce

the effective sample size from n to 4α2n. We illustrate use of this private version of Le Cam’s
bound in our analysis of the one-dimensional mean problem to follow.
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Consequences for local Fano’s method We now turn to consequences for the so-called
local form of Fano’s method. This method is based on constructing a family of distributions
{Pv}v∈V that defines a 2δ-packing, meaning ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′, satisfying

Dkl (Pv||Pv′) ≤ κ2δ2 for some fixed κ > 0. (7.13)

We refer to any such construction as a (δ, κ) local packing. Recalling Fano’s inequality (2.10),
the pairwise upper bounds (7.13) imply I(X1, . . . , Xn;V ) ≤ nκ2δ2 by a convexity argument.
We thus obtain the local Fano lower bound [92, 27] on the classical minimax risk:

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)
{
1− nκ2δ2 + log 2

log |V|
}
. (7.14)

We now state the extension of this bound to the α-locally private setting.

Corollary 7.3 (Private form of local Fano inequality). Consider observations from an α-
locally differential private channel for some α ∈ [0, 22

35
]. Given any (δ, κ) local packing, the

α-private minimax risk has lower bound

Mn(Θ,Φ ◦ ρ, α) ≥ Φ(δ)
{
1− 4nα2κ2δ2 + log 2

log |V|
}
. (7.15)

Once again, by comparison to the classical version (7.14), we see that, for all α ∈ [0, 22
35
],

the price for privacy is a reduction in the effective sample size from n to 4α2n. The proof is
again straightfoward using Theorem 7.1. By Pinsker’s inequality, the pairwise bound (7.13)
implies that

‖Pv − Pv′‖2TV ≤
1

2
κ2δ2 for all v 6= v′.

We find that I(Z1, . . . , Zn;V ) ≤ 4nα2κ2δ2 for all α ∈ [0, 22
35
] by combining this inequality

with the upper bound (7.10) from Corollary 7.1. The claim (7.15) follows by combining this
upper bound with the usual local Fano bound (7.14).

7.3.3 Some applications of Theorem 7.1

In this section, we illustrate the use of the α-private versions of Le Cam’s and Fano’s inequal-
ities, established in the previous section as Corollaries 7.2 and 7.3 of Theorem 7.1. First, we
study the problem of one-dimensional mean estimation. In addition to demonstrating how
the minimax rate changes as a function of α, we also reveal some interesting (and perhaps
disturbing) effects of enforcing α-local differential privacy: the effective sample size may be
even polynomially smaller than α2n. Our second example studies fixed design linear regres-
sion, where we again see the reduction in effective sample size from n to α2n. We state
each of our bounds assuming α ∈ [0, 1]; the bounds hold (with different numerical constants)
whenever α ∈ [0, C] for some universal constant C.
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7.3.3.1 One-dimensional mean estimation

For some k > 1, consider the family

Pk :=
{
distributions P such that EP [X] ∈ [−1, 1] and EP [|X|k] ≤ 1

}
,

and suppose that our goal is to estimate the mean θ(P ) = EP [X]. The next proposition
characterizes the α-private minimax risk in squared ℓ2-error

Mn(θ(Pk), (·)2, α) := inf
Q∈Qα

inf
θ̂

sup
P∈Pk

E
[(
θ̂(Z1, . . . , Zn)− θ(P )

)2]
.

Proposition 7.1. There exist universal constants 0 < cℓ ≤ cu < ∞ such that for all k > 1
and α ∈ [0, 1], the minimax error Mn(θ(Pk, (·)2, α) is bounded as

cℓmin

{
1,
(
nα2

)− k−1
k

}
≤Mn(θ(Pk), (·)2, α) ≤ cumin

{
1, uk

(
nα2

)− k−1
k

}
, (7.16)

where uk = max{1, (k − 1)−2}.

We prove this result using the α-private version (7.12) of Le Cam’s inequality, as stated in
Corollary 7.2. See Section 8.1.3 for the details.

To understand the bounds (7.16), it is worthwhile considering some special cases, be-
ginning with the usual setting of random variables with finite variance (k = 2). In the
non-private setting in which the original sample (X1, . . . , Xn) is observed, the sample mean

θ̂ = 1
n

∑n
i=1Xi has mean-squared error at most 1/n. When we require α-local differential

privacy, Proposition 7.1 shows that the minimax rate worsens to 1/
√
nα2. More generally, for

any k > 1, the minimax rate scales as Mn(θ(Pk), (·)2, α) ≍ (nα2)−
k−1
k , ignoring k-dependent

pre-factors. As k ↑ ∞, the moment condition E[|X|k] ≤ 1 becomes equivalent to the bound-
edness constraint |X| ≤ 1 a.s., and we obtain the more standard parametric rate (nα2)−1,
where there is no reduction in the exponent.

More generally, the behavior of the α-private minimax rates (7.16) helps demarcate sit-
uations in which local differential privacy may or may not be acceptable. In particular,
for bounded domains—where we may take k ↑ ∞—local differential privacy may be quite
reasonable. However, in situations in which the sample takes values in an unbounded space,
local differential privacy provides much stricter constraints.

7.3.3.2 Linear regression with fixed design

We turn now to the problem of linear regression. Concretely, for a given design matrix
X ∈ Rn×d, consider the standard linear model

Y = Xθ∗ + ε, (7.17)
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where ε ∈ Rn is a sequence of independent, zero-mean noise variables. By rescaling as
needed, we may assume that θ∗ ∈ Θ = B2, the Euclidean ball of radius one. Moreover, we
assume that a scaling constant σ <∞ such that the noise sequence |εi| ≤ σ for all i. Given
the challenges of non-compactness exhibited by the location family estimation problems (cf.
Proposition 7.1), this type of assumption is required for non-trivial results. We also assume
that X has rank d; otherwise, the design matrix X has a non-trivial nullspace and θ∗ cannot
be estimated even when σ = 0.

With the model (7.17) in place, let us consider estimation of θ∗ in the squared ℓ2-error,
where we provide α-locally differentially private views of the response Y = {Yi}ni=1. By
following the outline established in Section 7.3.2, we provide a sharp characterization of the
α-private minimax rate. In stating the result, we let γj(A) denote the jth singular value of
a matrix A. (See Section 8.1.4 for the proof.)

Proposition 7.2. In the fixed design regression model where the variables Yi and are α-
locally differentially private for some α ∈ [0, 1],

min

{
1,

σ2d

nα2γ2max(X/
√
n)

}
. Mn

(
Θ, ‖·‖22 , α

)
. min

{
1,

σ2d

α2nγ2min(X/
√
n)

}
. (7.18)

To interpret the bounds (7.18), it is helpful to consider some special cases. First consider
the case of an orthonormal design, meaning that 1

n
X⊤X = Id×d. The bounds (7.18) imply

that Mn(Θ, ‖·‖22 , α) ≍ σ2d/(nα2), so that the α-private minimax rate is fully determined
(up to constant pre-factors). Standard minimax rates for linear regression problems scale
as σ2d/n; thus, by comparison, we see that requiring differential privacy indeed causes an
effective sample size reduction from n to nα2. More generally, up to the difference between
the maximum and minimum singular values of the designX, Proposition 7.2 provides a sharp
characterization of the α-private rate for fixed-design linear regression. As the proof makes
clear, the upper bounds are attained by adding Laplacian noise to the response variables Yi
and solving the resulting normal equations as in standard linear regression. In this case, the
standard Laplacian mechanism [68] is optimal.

7.4 Mutual information under local privacy: Fano’s

method

As we have previously noted, Theorem 7.1 provides indirect upper bounds on the mutual
information. However, since the resulting bounds involve pairwise distances only, as in
Corollary 7.1, they must be used with local packings. Exploiting Fano’s inequality in its
full generality requires a more sophisticated upper bound on the mutual information under
local privacy, which is the main topic of this section. We illustrate this more powerful
technique by deriving lower bounds for mean estimation problems in both classical as well
as high-dimensional settings under the non-interactive privacy model (7.2).
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7.4.1 Variational bounds on mutual information

We begin by introducing some definitions needed to state the result. Let V be a discrete
random variable uniformly distributed over some finite set V . Given a family of distributions
{Pv, v ∈ V}, we define the mixture distribution

P :=
1

|V|
∑

v∈V
Pv.

A sample X ∼ P can be obtained by first drawing V from the uniform distribution over V ,
and then conditionally on V = v, drawing X from the distribution Pv. By definition, the
mutual information between the random index V and the sample X is

I(X;V ) =
1

|V|
∑

v∈V
Dkl

(
Pv||P

)
,

a representation that plays an important role in our theory. As in the definition (7.3), any
conditional distribution Q induces the family of marginal distributions {Mv, v ∈ V} and the
associated mixture M := 1

|V|
∑

v∈V Mv. Our goal is to upper bound the mutual information

I(Z1, . . . , Zn;V ), where conditioned on V = v, the random variables Zi are drawn according
to Mv.

Our upper bound is variational in nature: it involves optimization over a subset of the
space L∞(X ) :=

{
f : X → R | ‖f‖∞ <∞

}
of uniformly bounded functions, equipped with

the usual norm ‖f‖∞ = sup
x∈X
|f(x)|. We define the 1-ball of the supremum norm

B∞(X ) := {γ ∈ L∞(X ) | ‖γ‖∞ ≤ 1} . (7.19)

We show that this set describes the maximal amount of perturbation allowed in the condi-
tional Q. Since the set X is generally clear from context, we typically omit this dependence.
For each v ∈ V , we define the linear functional ϕv : L

∞(X )→ R by

ϕv(γ) =

∫

X
γ(x)(dPv(x)− dP (x)).

With these definitions, we have the following result:

Theorem 7.2. Let {Pv}v∈V be an arbitrary collection of probability measures on X , and let
{Mv}v∈V be the set of marginal distributions induced by an α-differentially private distribu-
tion Q. Then

1

|V|
∑

v∈V

[
Dkl

(
Mv||M

)
+Dkl

(
M ||Mv

)]
≤ (eα − 1)2

|V| sup
γ∈B∞(X )

∑

v∈V
(ϕv(γ))

2 . (7.20)
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It is important to note that, at least up to constant factors, Theorem 7.2 is never weaker
than the results provided by Theorem 7.1, including the bounds of Corollary 7.1. By defini-
tion of the linear functional ϕv, we have

sup
γ∈B∞(X )

∑

v∈V
(ϕv(γ))

2
(i)

≤
∑

v∈V
sup

γ∈B∞(X )

(ϕv(γ))
2 = 4

∑

v∈V

∥∥Pv − P
∥∥2
TV
,

where inequality (i) follows by interchanging the summation and supremum. Overall, we
have

I(Z;V ) ≤ 4(eα − 1)2
1

|V|2
∑

v,v′∈V
‖Pv − Pv′‖2TV .

The strength of Theorem 7.2 arises from the fact that inequality (i)—the interchange of the
order of supremum and summation—may be quite loose.

We now present a corollary that extends Theorem 7.2 to the setting of repeated sam-
pling, providing a tensorization inequality analogous to Corollary 7.1. Let V be distributed
uniformly at random in V , and assume that given V = v, the observations Xi are sampled
independently according to the distribution Pv for i = 1, . . . , n. For this corollary, we require
the non-interactive setting (7.2) of local privacy, where each private variable Zi depends only
on Xi.

Corollary 7.4. Suppose that the distributions {Qi}ni=1 are α-locally differentially private in
the non-interactive setting (7.2). Then

I(Z1, . . . , Zn;V ) ≤ n(eα − 1)2
1

|V| supγ∈B∞

∑

v∈V
(ϕv(γ))

2 . (7.21)

We provide the proof of Corollary 7.4 in Section 8.2.2. We conjecture that the bound (7.21)
also holds in the fully interactive setting, but given well-known difficulties of characterizing
multiple channel capacities with feedback [47, Chapter 15], it may be challenging to show.

Theorem 7.2 and Corollary 7.4 relate the amount of mutual information between the
random perturbed views Z of the data to geometric or variational properties of the underlying
packing V of the parameter space Θ. In particular, Theorem 7.2 and Corollary 7.4 show that
if we can find a packing set V that yields linear functionals ϕv whose sum has good “spectral”
properties—meaning a small operator norm when taking suprema over L∞-type spaces—we
can provide sharper results. This requirement of nice “spectral” properties helps to exhibit
the use of the generalized Fano construction in Corollary 2.1: it is often easy to find sets V , for
example {−1, 1}d, for which randomly sampled vectors have nice independence properties—
making for easier mutual information calculations—but individual vectors may not be well
separated.
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7.4.2 Applications of Theorem 7.2 to mean estimation

In this section, we show how Theorem 7.2, coupled with Corollary 7.4, leads to sharp char-
acterizations of the α-private minimax rates for classical and high-dimensional mean estima-
tion problems. Our results show that for in d-dimensional mean-estimation problems, the
requirement of α-local differential privacy causes a reduction in effective sample size from
n to nα2/d. Throughout this section, we assume that the channel Q is non-interactive,
meaning that the random variable Zi depends only on Xi, and so that local privacy takes
the simpler form (7.2). We also state each of our results for privacy parameter α ∈ [0, 1],
but note that all of our bounds hold for any constant α, with appropriate changes in the
numerical pre-factors.

Before proceeding, we describe two sampling mechanisms for enforcing α-local differential
privacy. Our methods for achieving the upper bounds in our minimax rates are based on
unbiased estimators of a data vector, often the observation X. Let us assume we wish to
construct an α-private unbiased estimate Z for the vector v ∈ Rd. The following sampling
strategies are based on a radius r > 0 and a bound B > 0 specified for each problem, and
they require the Bernoulli random variable

T ∼ Bernoulli(πα), where πα := eα/(eα + 1).

Strategy A: Given a vector v with ‖v‖2 ≤ r, set ṽ = rv/ ‖v‖2 with probability 1
2
+ ‖v‖2 /2r

and ṽ = −rv/ ‖v‖2 with probability 1
2
− ‖v‖2 /2r. Then sample T ∼ Bernoulli(πα) and set

Z ∼
{
Uniform(z ∈ Rd : 〈z, ṽ〉 > 0, ‖z‖2 = B) if T = 1

Uniform(z ∈ Rd : 〈z, ṽ〉 ≤ 0, ‖z‖2 = B) if T = 0.
(7.22a)

Strategy B: Given a vector v with ‖v‖∞ ≤ r, construct ṽ ∈ Rd with coordinates ṽj sampled
independently from {−r, r} with probabilities 1/2− vj/(2r) and 1/2 + vj/(2r). Then sample
T ∼ Bernoulli(πα) and set

Z ∼
{
Uniform(z ∈ {−B,B}d : 〈z, ṽ〉 > 0) if T = 1

Uniform(z ∈ {−B,B}d : 〈z, ṽ〉 ≤ 0) if T = 0.
(7.22b)

See Figure 7.2 for visualizations of these sampling strategies. By inspection, each is α-
differentially private for any vector satisfying ‖v‖2 ≤ r or ‖v‖∞ ≤ r for Strategy A or B,
respectively. Moreover, each strategy is efficiently implementable: Strategy A by normalizing
a sample from the N(0, Id×d) distribution, and Strategy B by rejection sampling over the
scaled hypercube {−B,B}d.

Our sampling strategies specified, we study the d-dimensional problem of estimating the
mean θ(P ) := EP [X] of a random vector. We consider a few different metrics for the error
of a mean estimator to flesh out the testing reduction in Section 7.2. Due to the difficulties
associated with differential privacy on non-compact spaces (recall Section 7.3.3.1), we focus
on distributions with compact support. We defer all proofs to Section 8.4; they use a
combination of Theorem 7.2 with Fano’s method.
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Figure 7.2. Private sampling strategies. (a) Strategy (7.22a) for the ℓ2-ball. Outer
boundary of highlighted region sampled uniformly with probability eα/(eα + 1). (b) Strat-
egy (7.22b) for the ℓ∞-ball. Circled point set sampled uniformly with probability eα/(eα+1).

7.4.2.1 Minimax rates

We begin by bounding the minimax rate in the squared ℓ2-metric. For a parameter p ∈ [1, 2]
and radius r <∞, consider the family

Pp,r :=
{
distributions P supported on Bp(r) ⊂ Rd

}
. (7.23)

where Bp(r) = {x ∈ Rd | ‖x‖p ≤ r} is the ℓp-ball of radius r.

Proposition 7.3. For the mean estimation problem, for all p ∈ [1, 2] and privacy levels
α ∈ [0, 1],

1

40
r2 min

{
1,

1

3
√
nα2

,
d

9nα2

}
≤Mn(θ(Pp,r), ‖·‖22 , α) . r2 min

{
d

nα2
, 1

}
.

This bound does not depend on the norm p bounding X so long as p ∈ [1, 2], which is
consistent with the classical mean estimation problem. Proposition 7.3 demonstrates the
substantial difference between d-dimensional mean estimation in private and non-private
settings: more precisely, the privacy constraint leads to a multiplicative penalty of d/α2 in
terms of mean-squared error. Indeed, in the non-private setting, the standard mean estimator
θ̂ = 1

n

∑n
i=1Xi has mean-squared error at most r2/n, since ‖X‖2 ≤ ‖X‖p ≤ r by assumption.

Thus, Proposition 7.3 exhibits an effective sample size reduction of n 7→ nα2/d.
To show the applicability of the general metric construction in Section 7.2, we now

consider estimation in ℓ∞-norm; estimation in this metric is natural in scenarios where one
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wishes only to guarantee that the maximum error of any particular component in the vector
θ is small. We focus in this scenario on the family P∞,r of distributions P supported on
B∞(r) ⊂ Rd.

Proposition 7.4. For the mean estimation problem, for all α ∈ [0, 1],

r

12
min

{
1,

√
d log(2d)

2
√
3nα2

}
≤Mn(θ(P∞,r), ‖·‖∞ , α) . min

{
r,
r
√
d log(2d)√
nα2

}
.

Proposition 7.4 provides a similar message to Proposition 7.3 on the loss of statistical effi-
ciency. This is clearest from an example: let Xi be random vectors bounded by 1 in ℓ∞-norm.
Then classical results on sub-Gaussian random variables [e.g., 36]) immediately imply that

the standard non-private mean θ̂ = 1
n

∑n
i=1Xi satisfies E[‖θ̂ − E[X]‖∞] ≤

√
log(2d)/n.

Comparing this result to the rate
√
d log(2d)/n of Proposition 7.4, we again see the effective

sample size reduction n 7→ nα2/d.
Recently, there has been substantial interest in in high-dimensional problems, in which

the dimension d is larger than the sample size n, but there is a low-dimensional latent
structure that makes inference possible. (See the paper by Negahban et al. [133] for a general
overview.) Accordingly, let us consider an idealized version of the high-dimensional mean
estimation problem, in which we assume that θ(P ) = E[X] ∈ Rd has (at most) one non-zero
entry, so ‖E[X]‖0 ≤ 1. In the non-private case, estimation of such a s-sparse predictor in

the squared ℓ2-norm is possible at rate E[‖θ̂ − θ‖22] ≤ s log(d/s)/n, so that the dimension
d can be exponentially larger than the sample size n. With this context, the next result
exhibits that privacy can have a dramatic impact in the high-dimensional setting. Consider
the family

Ps∞,r :=
{
distributions P supported on B∞(r) ⊂ Rd with ‖EP [X]‖0 ≤ s

}
.

Proposition 7.5. For the 1-sparse means problem, for all α ∈ [0, 1],

r2 min

{
1,
d log(2d)

nα2

}
. Mn

(
θ(P1

∞,r), ‖·‖22 , α
)
. r2 min

{
1,
d log(2d)

nα2

}
.

See Section 8.4.3 for a proof. From Proposition 7.5, it becomes clear that in locally private
but non-interactive (7.2) settings, high dimensional estimation is effectively impossible.

7.4.2.2 Optimal mechanisms: attainability for mean estimation

In this section, we describe how to achieve matching upper bounds in Propositions 7.3 and 7.4
using simple and practical algorithms—namely, the “right” type of stochastic perturbation
of the observations Xi coupled with a standard mean estimator. We show the optimality of
privatizing via the sampling strategies (7.22a) and (7.22b); interestingly, we also show that
privatizing via Laplace perturbation is strictly sub-optimal. To give a private mechanism,
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we must specify the conditional distribution Q satisfying α-local differential privacy used
to construct Z. In this case, given an observation Xi, we construct Zi by perturbing Xi in
such a way that E[Zi | Xi = x] = x. Each of the strategies (7.22a) and (7.22b) also requires
a constant B, and we show how to choose B for each strategy to satisfy the unbiasedness
condition E[Z | X = x] = x.

We begin with the mean estimation problem for distributions Pp,r in Proposition 7.3, for
which we use the sampling scheme (7.22a). That is, let X = x ∈ Rd satisfy ‖x‖2 ≤ ‖x‖p ≤ r.
Then we construct the random vector Z according to strategy (7.22a), where we set the initial
vector v = x in the sampling scheme. To achieve the unbiasedness condition E[Z | x] = x,
we set the bound

B = r
eα + 1

eα − 1

d
√
πΓ(d−1

2
+ 1)

Γ(d
2
+ 1)

(7.24)

(see Section 8.4.5 for a proof that E[Z | x] = x with this choice of B). Notably, the
choice (7.24) implies B ≤ cr

√
d/α for a universal constant c <∞, since dΓ(d−1

2
+ 1)/Γ(d

2
+

1) .
√
d and eα−1 = α+O(α2). As a consequence, generating each Zi by this perturbation

strategy and using the mean estimator θ̂ = 1
n

∑n
i=1 Zi, the estimator θ̂ is unbiased for E[X]

and satisfies

E
[
‖θ̂ − E[X]‖22

]
=

1

n2

n∑

i=1

Var(Zi) ≤
B2

n
≤ c

r2d

nα2

for a universal constant c.
In Proposition 7.4, we consider the family P∞,r of distributions supported on the ℓ∞-

ball of radius r. In our mechanism for attaining the upper bound, we use the sampling
scheme (7.22b) to generate the private Zi, so that for an observation X = x ∈ Rd with
‖x‖∞ ≤ r, we resample Z (from the initial vector v = x) according to strategy (7.22b).
Again, we would like to guarantee the unbiasedness condition E[Z | X = x] = x, for which
we use an earlier result of ours [57]. In that paper, we show that taking

B = c
r
√
d

α
(7.25)

for a (particular) universal constant c, we obtain the desired unbiasedness [57, Corollary 3].
Since the random variable Z satisfies Z ∈ B∞(r) with probability 1, each coordinate [Z]j of
Z is sub-Gaussian. As a consequence, we obtain via standard bounds [36] that

E[‖θ̂ − θ‖2∞] ≤ B2 log(2d)

n
= c2

r2d log(2d)

nα2

for a universal constant c, proving the upper bound in Proposition 7.4.
To conclude this section, we note that the strategy of adding Laplacian noise to the

vectors X is sub-optimal. Indeed, consider the the family P2,1 of distributions supported
on B2(1) ⊂ Rd as in Proposition 7.3. To guarantee α-differential privacy using independent
Laplace noise vectors for x ∈ B2(1), we take Z = x+W where W ∈ Rd has components Wj
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that are independent and distributed as Laplace(α/
√
d). We have the following information-

theoretic result: if the Zi are constructed via the Laplace noise mechanism,

inf
θ̂
sup
P∈P

EP

[
‖θ̂(Z1, . . . , Zn)− EP [X]‖22

]
& min

{
d2

nα2
, 1

}
. (7.26)

See Section 8.4.4 for the proof of this claim. The poorer dimension dependence exhibted by
the Laplace mechanism (7.26) in comparison to Proposition 7.3 demonstrates that sampling
mechanisms must be chosen carefully, as in the strategies (7.22a)—(7.22b), in order to obtain
statistically optimal rates.

7.5 Bounds on multiple pairwise divergences:

Assouad’s method

Thus far, we have seen how Le Cam’s method and Fano’s method, in the form of Theo-
rem 7.2 and Corollary 7.4, can give sharp minimax rates for various problems. However,
their application appears to be limited to simpler models: either problems whose minimax
rates can be controlled via reductions to binary hypothesis tests (Le Cam’s method) or
for non-interactive channels satisfying the simpler definition (7.2) of local privacy (Fano’s
method). In this section, we show that a privatized form of Assouad’s method (in the form
of Lemma 2.2 via inequality (7.7)) can be used to obtain sharp minimax rates in interactive
settings. In particular, it can be applied when the loss is sufficiently “decomposable”, so
that the coordinate-wise nature of the Assouad construction can be brought to bear. Con-
cretely, we show an upper bound on a sum of paired KL-divergences, which combined with
Assouad’s method provides sharp lower bounds for several problems, including multinomial
probability estimation and nonparametric density estimation. Each of these problems can
be characterized in terms of an effective dimension d, and our results (paralleling those of
Section 7.4) show that the requirement of α-local differential privacy causes a reduction in
effective sample size from n to nα2/d.

7.5.1 Variational bounds on paired divergences

For a fixed d ∈ N, we consider collections of distributions indexed using the Boolean hyper-
cube V = {−1, 1}d. For each i ∈ [n] and v ∈ V , we let the distribution Pv,i be supported on
the fixed set X , and we define the product distribution P n

v =
∏n

i=1 Pv,i. Then for j ∈ [d] we
define the paired mixtures

P n
+j =

1

2d−1

∑

v:vj=1

P n
v , P n

−j =
1

2d−1

∑

v:vj=−1

P n
v , and P±j,i =

1

2d−1

∑

v:vj=±1

Pv,i. (7.27)
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(Note that P n
+j is generally not a product distribution.) Recalling the marginal channel (7.3),

we may then define the marginal mixtures

Mn
+j(S) :=

1

2d−1

∑

v:vj=1

Mn
v (S) =

∫
Qn(S | x1:n)dP n

+j(x1:n) for j = 1, . . . , d,

with the distributionsMn
−j defined analogously. For a given pair of distributions (M,M ′), we

let Dsy
kl (M ||M ′) = Dkl (M ||M ′) +Dkl (M

′||M) denote the symmetrized KL-divergence. Re-
calling the 1-ball of the supremum norm (7.19), with these definitions we have the following
theorem:

Theorem 7.3. Under the conditions of the previous paragraph, for any α-locally differen-
tially private (7.1) channel Q, we have

d∑

j=1

Dsy
kl

(
Mn

+j||Mn
−j
)
≤ 2(eα − 1)2

n∑

i=1

sup
γ∈B∞(X )

d∑

j=1

(∫

X
γ(x)dP+j,i(x)− dP−j,i(x)

)2

.

Theorem 7.3 generalizes Theorem 7.1, which corresponds to the special case d = 1, though
has parallels with Theorem 7.2, as taking the supremum outside the summation is essential
to obtain sharp results. We provide the proof of Theorem 7.2 in Section 8.3.

Theorem 7.3 allows us to prove sharper lower bounds on the minimax risk. As in the
proof of Proposition 6.1 in Chapter 6 (recall inequality (6.27)), a combination of Pinsker’s
and the Cauchy-Schwarz inequalities implies

d∑

j=1

∥∥Mn
+j −Mn

−j
∥∥
TV
≤ 1

2

√
d

( d∑

j=1

Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

−j||Mn
+j

)) 1
2

.

Thus, in combination with the sharper Assouad inequality (7.7), whenever Pv induces a
2δ-Hamming separation for Φ ◦ ρ we have

Mn(θ(P),Φ ◦ ρ) ≥ dδ

[
1−

(
1

4d

d∑

j=1

Dsy
kl

(
Mn

+j||Mn
−j
)) 1

2

]
. (7.28)

The combination of inequality (7.28) with Theorem 7.3 is the foundation for the remainder of
this section: multinomial estimation in Section 7.5.2, and density estimation in Section 7.5.3.

7.5.2 Multinomial estimation under local privacy

For our first illustrative application of Theorem 7.3, we return to the original motivation for
local privacy [179]: avoiding survey answer bias. Consider the probability simplex

∆d :=
{
θ ∈ Rd | θ ≥ 0 and

d∑

j=1

θj = 1
}
.
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Any vector θ ∈ ∆d specifies a multinomial random variable taking d states, in particular with
probabilities Pθ(X = j) = θj for j ∈ {1, . . . , d}. Given a sample from this distribution, our
goal is to estimate the probability vector θ. Warner [179] studied the Bernoulli variant of this
problem (corresponding to d = 2), proposing a mechanism known as randomized response:
for a given survey question, respondents answer truthfully with probability p > 1/2 and a
lie with probability 1− p. Here we show that an extension of this mechanism is optimal for
α-locally differentially private (7.1) multinomial estimation.

7.5.2.1 Minimax rates of convergence for multinomial estimation

Our first result provides bounds on the minimax error measured in either the squared ℓ2-norm
or the ℓ1-norm for (sequentially) interactive channels. The ℓ1-norm norm is sometimes more
appropriate for probability estimation due to its connections with total variation distance
and testing.

Proposition 7.6. For the multinomial estimation problem, for any α-locally differentially
private channel (7.1), there exist universal constants 0 < cℓ ≤ cu < 5 such that for all
α ∈ [0, 1],

cℓ min

{
1,

1√
nα2

,
d

nα2

}
≤Mn

(
∆d, ‖·‖22 , α

)
≤ cu min

{
1,

d

nα2

}
, (7.29)

and

cℓmin

{
1,

d√
nα2

}
≤Mn (∆d, ‖·‖1 , α) ≤ cumin

{
1,

d√
nα2

}
. (7.30)

See Section 8.5 for the proofs of the lower bounds. We provide simple estimation strategies
achieving the upper bounds in the next section.

As in the previous section, let us compare the private rates to the classical rate in which
there is no privacy. The maximum likelihood estimate θ̂ sets θ̂j as the proportion of samples
taking value j; it has mean-squared error

E
[
‖θ̂ − θ‖22

]
=

d∑

j=1

E
[
(θ̂j − θj)2

]
=

1

n

d∑

j=1

θj(1− θj) ≤
1

n

(
1− 1

d

)
<

1

n
.

An analogous calculation for the ℓ1-norm yields

E[‖θ̂ − θ‖1] ≤
d∑

j=1

E[|θ̂j − θj|] ≤
d∑

j=1

√
Var(θ̂j) ≤

1√
n

d∑

j=1

√
θj(1− θj) <

√
d√
n
.

Consequently, for estimation in ℓ1 or ℓ2-norm, the effect of providing α-differential privacy
causes the effective sample size to decrease as n 7→ nα2/d.
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7.5.2.2 Optimal mechanisms: attainability for multinomial estimation

An interesting consequence of the lower bound (7.29) is the following: a minor variant of
Warner’s randomized response strategy is an optimal mechanism. There are also other
relatively simple estimation strategies that achieve convergence rate d/nα2; the Laplace
perturbation approach [68] is another. Nonetheless, its ease of use, coupled with our opti-
mality results, provide support for randomized response as a desirable probability estimation
method.

Let us demonstrate that these strategies attain the optimal rate of convergence. Since
there is a bijection between multinomial observations x ∈ {1, . . . , d} and the d standard
basis vectors e1, . . . , ed ∈ Rd, we abuse notation and represent observations x as either when
designing estimation strategies. In randomized response, we construct the private vector
Z ∈ {0, 1}d from a multinomial observation x ∈ {e1, . . . , ed} by sampling d coordinates
independently via the procedure

[Z]j =

{
xj with probability exp(α/2)

1+exp(α/2)

1− xj with probability 1
1+exp(α/2)

.
(7.31)

The distribution (7.31) is α-differentially private: indeed, for x, x′ ∈ ∆d and any z ∈ {0, 1}d,
we have

Q(Z = z | x)
Q(Z = z | x′) = exp

(α
2
(‖z − x‖1 − ‖z − x′‖1)

)
∈ [exp(−α), exp(α)] ,

where the triangle inequality guarantees | ‖z − x‖1 − ‖z − x′‖1 | ≤ 2. We now compute the
expected value and variance of the random variables Z. Using the definition (7.31), we have

E[Z | x] = eα/2

1 + eα/2
x+

1

1 + eα/2
(1− x) = eα/2 − 1

eα/2 + 1
x+

1

1 + eα/2
1.

Since the random variables Z are Bernoulli, we have the variance bound E[‖Z‖22] ≤ d. Letting
Π∆d

denote the projection operator onto the simplex, we arrive at the natural estimator

θ̂part :=
1

n

n∑

i=1

(
Zi − 1/(1 + eα/2)

) eα/2 + 1

eα/2 − 1
and θ̂ := Π∆d

(
θ̂part

)
. (7.32)

The projection of θ̂part onto the probability simplex can be done in time linear in the dimen-
sion d of the problem [34], so the estimator (7.32) is efficiently computable. Since projections
onto convex sets are non-expansive, any pair of vectors in the simplex are at most ℓ2-distance√
2 apart, and Eθ[θ̂part] = θ by construction, we have

E
[
‖θ̂ − θ‖22

]
≤ min

{
2,E

[
‖θ̂part − θ‖22

]}

≤ min

{
2,
d

n

(
eα/2 + 1

eα/2 − 1

)2}
. min

{
1,

d

nα2

}
.
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Similar results hold for the ℓ1-norm: using the same estimator, since Euclidean projections
to the simplex are non-expansive for the ℓ1 distance,

E
[
‖θ̂ − θ‖1

]
≤ min

{
1,

d∑

j=1

E
[
|θ̂part,j − θj|

]}
. min

{
1,

d√
nα2

}
.

7.5.3 Density estimation under local privacy

In this section, we show that the effects of local differential privacy are more severe for
nonparametric density estimation: instead of just a multiplicative loss in the effective sample
size as in previous sections, imposing local differential privacy leads to a different convergence
rate. This result holds even though we solve a problem in which the function estimated and
the observations themselves belong to compact spaces.

A probability density with respect to Lebesgue measure on the interval [0, 1] is a non-

negative integrable function f : [0, 1]→ R+ that is normalized (
∫ 1

0
f(x)dx = 1). The Sobolev

classes [e.g., 173, 70] are subsets of densities that satisfy certain generalized smoothness
conditions. More precisely, let {ϕj}∞j=1 be any orthonormal basis for L2([0, 1]). Then any
function f ∈ L2([0, 1]) can be expanded as a sum

∑∞
j=1 θjϕj in terms of the basis coefficients

θj :=
∫
f(x)ϕj(x)dx. By Parseval’s theorem, we are guaranteed that {θj}∞j=1 ∈ ℓ2(N). The

Sobolev space Fβ[C] is obtained by enforcing a particular decay rate on the basis coefficients,
as formalized in the following:

Definition 7.2 (Elliptical Sobolev space). For a given orthonormal basis {ϕj} of L2([0, 1]),
smoothness parameter β > 1/2 and radius C, the Sobolev class of order β is given by

Fβ[C] :=
{
f ∈ L2([0, 1]) | f =

∞∑

j=1

θjϕj such that
∞∑

j=1

j2βθ2j ≤ C2

}
.

If we choose the trignometric basis as our orthonormal basis, membership in the class
Fβ[C] corresponds to smoothness constraints on the derivatives of f . More precisely, for
j ∈ N, consider the orthonormal basis for L2([0, 1]) of trigonometric functions:

ϕ0(t) = 1, ϕ2j(t) =
√
2 cos(2πjt), ϕ2j+1(t) =

√
2 sin(2πjt). (7.33)

Let f be a β-times almost everywhere differentiable function for which |f (β)(x)| ≤ C for
almost every x ∈ [0, 1] satisfying f (k)(0) = f (k)(1) for k ≤ β − 1. Then, uniformly over all
such f , there is a universal constant c ≤ 2 such that that f ∈ Fβ[cC] (see, for instance, [173,
Lemma A.3]).

Suppose our goal is to estimate a density function f ∈ Fβ[C] and that quality is measured
in terms of the squared error (squared L2[0, 1]-norm)

‖f̂ − f‖22 :=
∫ 1

0

(f̂(x)− f(x))2dx.
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The well-known [188, 185, 173] (non-private) minimax squared risk scales as

Mn

(
Fβ, ‖·‖22 ,∞

)
≍ n− 2β

2β+1 . (7.34)

The goal of this section is to understand how this minimax rate changes when we add an
α-privacy constraint to the problem. Our main result is to demonstrate that the classical
rate (7.34) is no longer attainable when we require α-local differential privacy. In particular,
we prove a lower bound that is substantially larger. In Sections 7.5.3.2 and 7.5.3.3, we show
how to achieve this lower bound using histogram and orthogonal series estimators.

7.5.3.1 Lower bounds on density estimation

We begin by giving our main lower bound on the minimax rate of estimation of densities
when observations from the density are differentially private. We provide the proof of the
following proposition in Section 8.6.1.

Proposition 7.7. Consider the class of densities Fβ defined using the trigonometric ba-
sis (7.33). There exists a constant cβ > 0 such that for any α-locally differentially private
channel (7.1) with α ∈ [0, 1], the private minimax risk has lower bound

Mn

(
Fβ[1], ‖·‖22 , α

)
≥ cβ

(
nα2

)− 2β
2β+2 . (7.35)

The most important feature of the lower bound (7.35) is that it involves a different poly-
nomial exponent than the classical minimax rate (7.34). Whereas the exponent in classical
case (7.34) is 2β/(2β + 1), it reduces to 2β/(2β + 2) in the locally private setting. For
example, when we estimate Lipschitz densities (β = 1), the rate degrades from n−2/3 to
n−1/2.

Interestingly, no estimator based on Laplace (or exponential) perturbation of the ob-
servations Xi themselves can attain the rate of convergence (7.35). This fact follows from
results of Carroll and Hall [38] on nonparametric deconvolution. They show that if obser-
vations Xi are perturbed by additive noise W , where the characteristic function φW of the
additive noise has tails behaving as |φW (t)| = O(|t|−a) for some a > 0, then no estimator
can deconvolve X+W and attain a rate of convergence better than n−2β/(2β+2a+1). Since the
Laplace distribution’s characteristic function has tails decaying as t−2, no estimator based
on the Laplace mechanism (applied directly to the observations) can attain rate of conver-
gence better than n−2β/(2β+5). In order to attain the lower bound (7.35), we must thus study
alternative privacy mechanisms.

7.5.3.2 Achievability by histogram estimators

We now turn to the mean-squared errors achieved by specific practical schemes, beginning
with the special case of Lipschitz density functions (β = 1). In this special case, it suffices
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to consider a private version of a classical histogram estimate. For a fixed positive integer
k ∈ N, let {Xj}kj=1 denote the partition of X = [0, 1] into the intervals

Xj = [(j − 1)/k, j/k) for j = 1, 2, . . . , k − 1, and Xk = [(k − 1)/k, 1].

Any histogram estimate of the density based on these k bins can be specified by a vector
θ ∈ k∆k, where we recall ∆k ⊂ Rk

+ is the probability simplex. Letting 1E denote the
characteristic (indicator) function of the set E, any such vector θ ∈ Rk defines a density
estimate via the sum

fθ :=
k∑

j=1

θj1Xj
.

Let us now describe a mechanism that guarantees α-local differential privacy. Given a
sample {X1, . . . , Xn} from the distribution f , consider vectors

Zi := ek(Xi) +Wi, for i = 1, 2, . . . , n, (7.36)

where ek(Xi) ∈ ∆k is a k-vector with j
th entry equal to one if Xi ∈ Xj and zeroes in all other

entries, and Wi is a random vector with i.i.d. Laplace(α/2) entries. The variables {Zi}ni=1

so-defined are α-locally differentially private for {Xi}ni=1. Using these private variables, we

form the density estimate f̂ := fθ̂ =
∑k

j=1 θ̂j1Xj
based on the vector θ̂ := Πk

(
k
n

∑n
i=1 Zi

)
,

where Πk denotes the Euclidean projection operator onto the set k∆k. By construction,
we have f̂ ≥ 0 and

∫ 1

0
f̂(x)dx = 1, so f̂ is a valid density estimate. The following result

characterizes its mean-squared estimation error:

Proposition 7.8. Consider the estimate f̂ based on k = (nα2)1/4 bins in the histogram. For
any 1-Lipschitz density f : [0, 1]→ R+, the MSE is upper bounded as

Ef

[∥∥f̂ − f
∥∥2
2

]
≤ 5(α2n)−

1
2 +
√
αn−3/4. (7.37)

For any fixed α > 0, the first term in the bound (7.37) dominates, and the O((α2n)−
1
2 ) rate

matches the minimax lower bound (7.35) in the case β = 1. Consequently, the privatized
histogram estimator is minimax-optimal for Lipschitz densities, providing a private analog
of the classical result that histogram estimators are minimax-optimal for Lipshitz densities.
See Section 8.6.2 for a proof of Proposition 7.8. We remark that a randomized response
scheme parallel to that of Section 7.5.2.2 achieves the same rate of convergence, showing
that this classical mechanism is again an optimal scheme.

7.5.3.3 Achievability by orthogonal projection estimators

For higher degrees of smoothness (β > 1), standard histogram estimators no longer achieve
optimal rates in the classical setting [158]. Accordingly, we now turn to developing estimators
based on orthogonal series expansion, and show that even in the setting of local privacy, they
can achieve the lower bound (7.35) for all orders of smoothness β ≥ 1.
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Recall the elliptical Sobolev space (Definition 7.2), in which a function f is represented in
terms of its basis expansion f =

∑∞
j=1 θjϕj. This representation underlies the orthonormal

series estimator as follows. Given a sample X1:n drawn i.i.d. according to a density f ∈
L2([0, 1]), compute the empirical basis coefficients

θ̂j =
1

n

n∑

i=1

ϕj(Xi) for j ∈ {1, . . . , k}, (7.38)

where the value k ∈ N is chosen either a priori based on known properties of the estimation
problem or adaptively, for example, using cross-validation [70, 173]. Using these empirical

coefficients, the density estimate is f̂ =
∑k

j=1 θ̂jϕj.
In our local privacy setting, we consider a mechanism that, instead of releasing the

vector of coefficients
(
ϕ1(Xi), . . . , ϕk(Xi)

)
for each data point, employs a random vector Zi =

(Zi,1, . . . , Zi,k) satisfying E[Zi,j | Xi] = ϕj(Xi) for each j ∈ [k]. We assume the basis functions
are B0-uniformly bounded, that is, supj supx |ϕj(x)| ≤ B0 <∞. This boundedness condition
holds for many standard bases, including the trigonometric basis (7.33) that underlies the
classical Sobolev classes and the Walsh basis. We generate the random variables from the
vector v ∈ Rk defined by vj = ϕj(X) in the hypercube-based sampling scheme (7.22b),
where we assume that the outer bound B > B0. With this sampling strategy, iteration of
expectation yields

E[[Z]j | X = x] = ck
B

B0

√
k

(
eα

eα + 1
− 1

eα + 1

)
ϕj(x), (7.39)

where ck > 0 is a constant (which is bounded independently of k). Consequently, it suffices
to take B = O(B0

√
k/α) to guarantee the unbiasedness condition E[[Zi]j | Xi] = ϕj(Xi).

Overall, the privacy mechanism and estimator perform the following steps:

• given a data point Xi, set the vector v = [ϕj(Xi)]
k
j=1

• sample Zi according to the strategy (7.22b), starting from the vector v and using the
bound B = B0

√
k(eα + 1)/ck(e

α − 1).

• compute the density estimate

f̂ :=
1

n

n∑

i=1

k∑

j=1

Zi,jϕj. (7.40)

The resulting estimate enjoys the following guarantee, which (along with Proposition 7.8)
makes clear that the private minimax lower bound (7.35) is sharp, providing a variant of the
classical rates with a polynomially worse sample complexity. (See Section 8.6.3 for a proof.)
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Proposition 7.9. Let {ϕj} be a B0-uniformly bounded orthonormal basis for L2([0, 1]).
There exists a constant c (depending only on C and B0) such that, for any f in the Sobolev
space Fβ[C], the estimator (7.40) with k = (nα2)1/(2β+2) has MSE upper bounded as

Ef

[
‖f − f̂‖22

]
≤ c

(
nα2

)− 2β
2β+2 . (7.41)

Before concluding our exposition, we make a few remarks on other potential density
estimators. Our orthogonal series estimator (7.40) and sampling scheme (7.39), while similar
in spirit to that proposed by Wasserman and Zhou [180, Sec. 6], is different in that it is locally
private and requires a different noise strategy to obtain both α-local privacy and the optimal
convergence rate. Lastly, similarly to our remarks on the insufficiency of standard Laplace
noise addition for mean estimation, it is worth noting that density estimators that are based
on orthogonal series and Laplace perturbation are sub-optimal: they can achieve (at best)

rates of (nα2)−
2β

2β+3 . See Section 8.6.4 for this result. This rate is polynomially worse than
the sharp result provided by Proposition 7.9. Again, we see that appropriately chosen noise
mechanisms are crucial for obtaining optimal results.

7.6 Comparison to related work

There has been a substantial amount of work in developing differentially private mechanisms,
both in local and non-local settings, and a number of authors have attempted to characterize
optimal mechanisms. For example, Kasiviswanathan et al. [105], working within a local
differential privacy setting, study Probably-Approximately-Correct (PAC) learning problems
and show that the statistical query model [108] and local learning are equivalent up to
polynomial changes in the sample size. In our work, we are concerned with a finer-grained
assessment of inferential procedures—that of rates of convergence of procedures and their
optimality. In the remainder of this section, we discuss further connections of our work to
previous research on optimality, global (non-local) differential privacy, as well as error-in-
variables models.

7.6.1 Sample versus population estimation

The standard definition of differential privacy, due to Dwork et al. [68], is somewhat less
restrictive than the local privacy considered here. In particular, a conditional distribution
Q with output space Z is α-differentially private if

sup

{
Q(S | x1:n)
Q(S | x′1:n)

| xi, x′i ∈ X , S ∈ σ(Z), dham(x1:n, x′1:n) ≤ 1

}
≤ exp(α), (7.42)

where dham denotes the Hamming distance between sets. Local privacy as previously de-
fined (7.1) is more stringent.
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Several researchers have considered quantities similar to our minimax criteria under lo-
cal (7.2) or non-local (7.42) differential privacy [19, 91, 88, 48]. However, the objective has
often been substantially different from ours: instead of bounding errors based on population-
based quantities, they provide bounds in which the data are assumed to be held fixed. More
precisely, let θ : X n → Θ denote an estimator, and let θ(x1:n) be a sample quantity based
on x1:n. Prior work is based on conditional minimax risks of the form

M
cond

n (θ(X ),Φ ◦ ρ, α) := inf
Q

sup
x1:n∈Xn

EQ

[
Φ
(
ρ
(
θ(x1:n), θ̂

))
| X1:n = x1:n

]
, (7.43)

where θ̂ is drawn according to Q(· | x1:n), the infimum is taken over all α-differentially
private channels Q, and the supremum is taken over all possible samples of size n. The only
randomness in this conditional minimax risk is provided by the channel; the data are held
fixed, so there is no randomness from an underlying population distribution. A partial list
of papers that use definitions of this type include Beimel et al. [19, Section 2.4], Hardt and
Talwar [91, Definition 2.4], Hall et al. [88, Section 3], and De [48].

The conditional (7.43) and population minimax risk (7.5) can differ substantially, and
such differences are precisely those addressed by the theory of statistical inference. The
goal of inference is to draw conclusions about the population-based quantity θ(P ) based on
the sample. Moreover, lower bounds on the conditional minimax risk (7.43) do not imply
bounds on the rate of estimation for the population θ(P ). In fact, the conditional minimax
risk (7.43) involves a supremum over all possible samples x ∈ X , so the opposite is usually
true: population risks provide lower bounds on the conditional minimax risk, as we show
presently.

An illustrative example is useful to understand the differences. Consider estimation of
the mean of a normal distribution with known standard deviation σ2, in which the mean
θ = E[X] ∈ [−1, 1] is assumed to belong to the unit interval. As our Proposition 7.1 shows, it
is possible to estimate the mean of a normally-distributed random variable even under α-local
differential privacy (7.1). In sharp contrast, the following result shows that the conditional
minimax risk is infinite for this problem:

Lemma 7.1. Consider the normal location family {N(θ, σ2) | θ ∈ [−1, 1]} under α-differential
privacy (7.42). The conditional minimax risk of the mean is Mcond

n (θ(R), (·)2, α) =∞.

Proof Assume for sake of contradiction that δ > 0 satisfies

Q(|θ̂ − θ(x1:n)| > δ | x1:n) ≤
1

2
for all samples x1:n ∈ Rn.

Fix N(δ) ∈ N and choose points 2δ-separated points θv, v ∈ [N(δ)], that is, |θv − θv′ | ≥ 2δ
for v 6= v′. Then the sets {θ ∈ R | |θ − θv| ≤ δ} are all disjoint, so for any pair of samples
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x1:n and xv1:n with dham(x1:n, x
v
1:n) ≤ 1,

Q(∃v ∈ V s.t. |θ̂ − θv| ≤ δ | x1:n) =
N(δ)∑

v=1

Q(|θ̂ − θv| ≤ δ | x1:n)

≥ e−α
N(δ)∑

v=1

Q(|θ̂ − θv| ≤ δ | xv1:n).

We may take each sample xv1:n such that θ(xv1:n) = 1
n

∑n
i=1 x

v
i = θv (for example, for each

v ∈ [N(δ)] set xv1 = nθv −
∑n

i=2 xi) and by assumption,

1 ≥ Q(∃v ∈ V s.t. |θ̂ − θv| ≤ δ | x1:n) ≥ e−αN(δ)
1

2
.

Taking N(δ) > 2eα yields a contradiction. Our argument applies to an arbitrary δ > 0, so
the claim follows.

There are variations on this result. For instance, even if the output of the mean estimator
is restricted to [−1, 1], the conditional minimax risk remains constant. Similar arguments
apply to weakenings of differential privacy (e.g., δ-approximate α-differential privacy [67]).
Conditional and population risks are very different quantities.

More generally, the population minimax risk usually lower bounds the conditional mini-
max risk. Suppose we measure minimax risks in some given metric ρ (so the loss Φ(t) = t).

Let θ̃ be any estimator based on the original sample X1:n, and let θ̂ be any estimator based
on the privatized sample. We then have the following series of inequalities:

EQ,P [ρ(θ(P ), θ̂)] ≤ EQ,P [ρ(θ(P ), θ̃)] + EQ,P [ρ(θ̃, θ̂)]

≤ EP [ρ(θ(P ), θ̃)] + sup
x1:n∈Xn

EQ,P [ρ(θ̃(x1:n), θ̂) | X1:n = x1:n]. (7.44)

The population minimax risk (7.5) thus lower bounds the conditional minimax risk (7.43)

via M
cond

n (θ̃(X ), ρ, α) ≥Mn(θ(P), ρ, α)−EP [ρ(θ(P ), θ̃)]. In particular, if there exists an esti-

mator θ̃ based on the original (non-private data) such that EP [ρ(θ(P ), θ̃)] ≤ 1
2
Mn(θ(P), ρ, α)

we are guaranteed that

M
cond

n (θ̃(X ), ρ, α) ≥ 1

2
Mn(θ(P), ρ, α),

so the conditional minimax risk is lower bounded by a constant multiple of the population
minimax risk. This lower bound holds for each of the examples in Sections 7.3–7.5; lower
bounds on the α-private population minimax risk (7.5) are stronger than lower bounds on
the conditional minimax risk.

To illustrate one application of the lower bound (7.44), consider the estimation of the
sample mean of a data set x1:n ∈ {0, 1}n under α-local privacy. This problem has been
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considered before; for instance, Beimel et al. [19] study distributed protocols for this problem.
In Theorem 2 of their work, they show that if a protocol has ℓ rounds of communication, the
squared error in estimating the sample mean (1/n)

∑n
i=1 xi is Ω(1/(nα

2ℓ2)). The standard

mean estimator θ̃(x1:n) = (1/n)
∑n

i=1 xi has error E[|θ̃(x1:n)− θ|] ≤ n− 1
2 . Consequently, the

lower bound (7.44) with combined with Proposition 7.1 implies

c
1√
nα2
− 1√

n
≤Mn(θ(P), | · |, α)− sup

θ∈[−1,1]

E[|θ̃(x1:n)− θ|] ≤M
cond

n (θ({−1, 1}), | · |, α).

for some numerical constant c > 0. A corollary of our results is thus such an Ω(1/(nα2))
lower bound on the conditional minimax risk for mean estimation, allowing for sequential
interactivity but not multiple “rounds.” An inspection of Beimel et al.’s proof technique [19,
Section 4.2] shows that their lower bound also implies a lower bound of 1/nα2 for estimation
of the population mean E[X] in one dimension in non-interactive (7.2) settings; it is, however,
unclear how to extend their technique to other settings.

7.6.2 Local versus non-local privacy

It is also worthwhile to make some comparisons to work on non-local forms of differential
privacy, mainly to understand the differences between local and global forms of privacy.
Chaudhuri and Hsu [43] provide lower bounds for estimation of certain one dimensional
statistics based on a two-point family of problems. Their techniques differ from those of the
current paper, and do not appear to provide bounds on the statistic being estimated, but
rather one that is near to it. Beimel et al. [20] provide some bounds on sample complexity in
the “probably approximate correct” (PAC) framework of learning theory, though extensions
to other inferential tasks are unclear. Other work on non-local privacy [e.g., 88, 44, 164]
shows that for various types of estimation problems, adding Laplacian noise leads to degraded
convergence rates in at most lower-order terms. In contrast, our work shows that the Laplace
mechanism may be highly sub-optimal in local privacy.

To understand convergence rates for non-local privacy, let us return to estimation of a
multinomial distribution in ∆d, based on observations Xi ∈ {ej}dj=1. In this case, adding
a noise vector W ∈ Rd with i.i.d. entries distributed as Laplace(αn) provides differential
privacy [67]; the associated mean-squared error is at most

Eθ

[∥∥∥∥
1

n

n∑

i=1

Xi +W − θ
∥∥∥∥
2

2

]
= E

[∥∥∥∥
1

n

n∑

i=1

Xi − θ
∥∥∥∥
2

2

]
+ E[‖W‖22] ≤

1

n
+

d

n2α2
.

In particular, in the asymptotic regime n≫ d, there is no penalty from providing differential
privacy except in higher-order terms. Similar results hold for histogram estimation [88],
classification problems [44], and classical point estimation problems [164]; in this sense, local
and global forms of differential privacy can be rather different.
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7.7 Summary

In this chapter, we have linked minimax analysis from statistical decision theory with differ-
ential privacy, bringing some of their respective foundational principles into close contact.
Our main technique, in the form of the divergence inequalities in Theorems 7.1 and 7.2, and
their Corollaries 7.1–7.4, shows that applying differentially private sampling schemes essen-
tially acts as a contraction on distributions. These contractive inequalities allow us to give
sharp minimax rates for estimation in locally private settings. As we see in Chapter 10 to
come, these types of results—strong data processing inequalities for certain restricted obser-
vation models—are more generally applicable, for example, to distributed estimation. With
our examples in Sections 7.4.2, 7.5.2, and 7.5.3, we have developed a set of techniques that
show that roughly, if one can construct a family of distributions {Pv} on the sample space
X that is not well “correlated” with any member of f ∈ L∞(X ) for which f(x) ∈ {−1, 1},
then providing privacy is costly: the contraction Theorems 7.2 and 7.3 provide is strong.

By providing sharp convergence rates for many standard statistical estimation procedures
under local differential privacy, we have developed and explored some tools that may be
used to better understand privacy-preserving statistical inference. We have identified a
fundamental continuum along which privacy may be traded for utility in the form of accurate
statistical estimates, providing a way to adjust statistical procedures to meet the privacy or
utility needs of the statistician and the population being sampled.

There are a number of open questions raised by our work. It is natural to wonder whether
it is possible to obtain tensorized inequalities of the form of Corollary 7.4 even for interactive
mechanisms. Another important question is whether the results we have provided can be
extended to settings in which standard (non-local) differential privacy holds. Such extensions
could yield insights into optimal mechanisms for differentially private procedures.
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Chapter 8

Technical arguments for private
estimation

In this chapter, we collect proofs of all the unproven results from the previous chapter. As
the chapter is entirely technical, it may be skipped by the uninterested reader.

8.1 Proof of Theorem 7.1 and related results

We now turn to the proofs of our results, beginning with Theorem 7.1 and related results.
In all cases, we defer the proofs of more technical lemmas to subsequent sections.

8.1.1 Proof of Theorem 7.1

Observe thatM1 andM2 are absolutely continuous with respect to one another, and there is
a measure µ with respect to which they have densities m1 and m2, respectively. The channel
probabilities Q(· | x) and Q(· | x′) are likewise absolutely continuous, so that we may assume
they have densities q(· | x) and write mi(z) =

∫
q(z | x)dPi(x). In terms of these densities,

we have

Dkl (M1||M2) +Dkl (M2||M1) =

∫
m1(z) log

m1(z)

m2(z)
dµ(z) +

∫
m2(z) log

m2(z)

m1(z)
dµ(z)

=

∫ (
m1(z)−m2(z)

)
log

m1(z)

m2(z)
dµ(z).

Consequently, we must bound both the difference m1−m2 and the log ratio of the marginal
densities. The following two auxiliary lemmas are useful:

Lemma 8.1. For any α-locally differentially private conditional, we have

|m1(z)−m2(z)| ≤ cα inf
x
q(z | x) (eα − 1) ‖P1 − P2‖TV , (8.1)

where cα = min{2, eα}.
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Lemma 8.2. Let a, b ∈ R+. Then
∣∣log a

b

∣∣ ≤ |a−b|
min{a,b} .

We prove these two results at the end of this section.
With the lemmas in hand, let us now complete the proof of the theorem. From Lemma 8.2,

the log ratio is bounded as

∣∣∣∣log
m1(z)

m2(z)

∣∣∣∣ ≤
|m1(z)−m2(z)|

min {m1(z),m2(z)}
.

Applying Lemma 8.1 to the numerator yields

∣∣∣∣log
m1(z)

m2(z)

∣∣∣∣ ≤
cα (e

α − 1) ‖P1 − P2‖TV infx q(z | x)
min{m1(z),m2(z)}

≤ cα (e
α − 1) ‖P1 − P2‖TV infx q(z | x)

infx q(z | x)
,

where the final step uses the inequality min{m1(z),m2(z)} ≥ infx q(z | x). Putting together
the pieces leads to the bound

∣∣∣∣log
m1(z)

m2(z)

∣∣∣∣ ≤ cα(e
α − 1) ‖P1 − P2‖TV .

Combining with inequality (8.1) yields

Dkl (M1||M2) +Dkl (M2||M1) ≤ c2α (e
α − 1)2 ‖P1 − P2‖2TV

∫
inf
x
q(z | x)dµ(z).

The final integral is at most one, which completes the proof of the theorem.

It remains to prove Lemmas 8.1 and 8.2. We begin with the former. For any z ∈ Z, we
have

m1(z)−m2(z) =

∫

X
q(z | x) [dP1(x)− dP2(x)]

=

∫

X
q(z | x) [dP1(x)− dP2(x)]+ +

∫

X
q(z | x) [dP1(x)− dP2(x)]−

≤ sup
x∈X

q(z | x)
∫

X
[dP1(x)− dP2(x)]+ + inf

x∈X
q(z | x)

∫

X
[dP1(x)− dP2(x)]−

=

(
sup
x∈X

q(z | x)− inf
x∈X

q(z | x)
)∫

X
[dP1(x)− dP2(x)]+ .

By definition of the total variation norm, we have
∫
[dP1 − dP2]+ = ‖P1 − P2‖TV, and hence

|m1(z)−m2(z)| ≤ sup
x,x′
|q(z | x)− q(z | x′)| ‖P1 − P2‖TV . (8.2)
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For any x̂ ∈ X , we may add and subtract q(z | x̂) from the quantity inside the supremum,
which implies that

sup
x,x′
|q(z | x)− q(z | x′)| = inf

x̂
sup
x,x′
|q(z | x)− q(z | x̂) + q(z | x̂)− q(z | x′)|

≤ 2 inf
x̂
sup
x
|q(z | x)− q(z | x̂)|

= 2 inf
x̂
q(z | x̂) sup

x

∣∣∣∣
q(z | x)
q(z | x̂) − 1

∣∣∣∣ .

Similarly, we have for any x, x′

|q(z | x)− q(z | x′)| = q(z | x′)
∣∣∣∣
q(z | x)
q(z | x′) − 1

∣∣∣∣ ≤ eα inf
x̂
q(z | x̂)

∣∣∣∣
q(z | x)
q(z | x′) − 1

∣∣∣∣ .

Since for any choice of x, x̂, we have q(z | x)/q(z | x̂) ∈ [e−α, eα], we find that (since
eα − 1 ≥ 1− e−α)

sup
x,x′
|q(z | x)− q(z | x′)| ≤ min{2, eα} inf

x
q(z | x) (eα − 1) .

Combining with the earlier inequality (8.2) yields the claim (8.1).
To see Lemma 8.2, note that for any x > 0, the concavity of the logarithm implies that

log(x) ≤ x− 1.

Setting alternatively x = a/b and x = b/a, we obtain the inequalities

log
a

b
≤ a

b
− 1 =

a− b
b

and log
b

a
≤ b

a
− 1 =

b− a
a

.

Using the first inequality for a ≥ b and the second for a < b completes the proof.

8.1.2 Proof of Corollary 7.1

Let us recall the definition of the induced marginal distribution (7.3), given by

Mv(S) =

∫

X
Q(S | x1:n)dP n

v (x1:n) for S ∈ σ(Zn).

For each i = 2, . . . , n, we let Mv,i(· | Z1 = z1, . . . , Zi−1 = zi−1) = Mv,i(· | z1:i−1) denote the
(marginal over Xi) distribution of the variable Zi conditioned on Z1 = z1, . . . , Zi−1 = zi−1.
In addition, use the shorthand notation

Dkl (Mv,i||Mv′,i) :=

∫

Zi−1

Dkl (Mv,i(· | z1:i−1)||Mv′,i(· | z1:i−1)) dM
i−1
v (z1, . . . , zi−1)
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to denote the integrated KL divergence of the conditional distributions on the Zi. By the
chain-rule for KL divergences [84, Chapter 5.3], we obtain

Dkl (M
n
v ||Mn

v′) =
n∑

i=1

Dkl (Mv,i||Mv′,i) .

By assumption (7.1), the distribution Qi(· | Xi, Z1:i−1) on Zi is α-differentially private
for the sample Xi. As a consequence, if we let Pv,i(· | Z1 = z1, . . . , Zi−1 = zi−1) denote the
conditional distribution of Xi given the first i− 1 values Z1, . . . , Zi−1 and the packing index
V = v, then from the chain rule and Theorem 7.1 we obtain

Dkl (M
n
v ||Mn

v′) =
n∑

i=1

∫

Zi−1

Dkl (Mv,i(· | z1:i−1)||Mv′,i(· | z1:i−1)) dM
i−1
v (z1:i−1)

≤
n∑

i=1

4(eα − 1)2
∫

Zi−1

‖Pv,i(· | z1:i−1)− Pv′,i(· | z1:i−1)‖2TV dM
i−1
v (z1, . . . , zi−1).

By the construction of our sampling scheme, the random variables Xi are conditionally
independent given V = v; thus the distribution Pv,i(· | z1:i−1) = Pv,i, where Pv,i denotes the
distribution of Xi conditioned on V = v. Consequently, we have

‖Pv,i(· | z1:i−1)− Pv′,i(· | z1:i−1)‖TV = ‖Pv,i − Pv′,i‖TV ,

which gives the claimed result.

8.1.3 Proof of Proposition 7.1

The minimax rate characterized by equation (7.16) involves both a lower and an upper
bound, and we divide our proof accordingly. We provide the proof for α ∈ (0, 1], but note
that a similar result (modulo different constants) holds for any finite value of α.

Lower bound We use Le Cam’s method to prove the lower bound in equation (7.16). Fix
a given constant δ ∈ (0, 1], with a precise value to be specified later. For v ∈ V ∈ {−1, 1},
define the distribution Pv with support {−δ−1/k, 0, δ1/k} by

Pv(X = δ−1/k) =
δ(1 + v)

2
, Pv(X = 0) = 1− δ, and Pv(X = −δ−1/k) =

δ(1− v)
2

.

By construction, we have E[|X|k] = δ(δ−1/k)k = 1 and θv = Ev[X] = δ
k−1
k v, whence the mean

difference is given by θ1 − θ−1 = 2δ
k−1
k . Applying Le Cam’s method (2.7) and the minimax

bound (2.5) yields

Mn(Θ, (·)2, Q) ≥
(
δ

k−1
k

)2(1

2
− 1

2

∥∥Mn
1 −Mn

−1

∥∥
TV

)
,
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whereMn
v denotes the marginal distribution of the samples Z1, . . . , Zn conditioned on θ = θv.

Now Pinsker’s inequality implies that
∥∥Mn

1 −Mn
−1

∥∥2
TV
≤ 1

2
Dkl

(
Mn

1 ||Mn
−1

)
, and Corollary 7.1

yields
Dkl

(
Mn

1 ||Mn
−1

)
≤ 4(eα − 1)2n ‖P1 − P−1‖2TV = 4(eα − 1)2nδ2.

Putting together the pieces yields
∥∥Mn

1 −Mn
−1

∥∥
TV
≤ (eα − 1)δ

√
2n. For α ∈ (0, 1], we have

eα − 1 ≤ 2α, and thus our earlier application of Le Cam’s method implies

Mn(Θ, (·)2, α) ≥
(
δ

k−1
k

)2(1

2
− αδ

√
2n

)
.

Substituting δ = min{1, 1/
√
32nα2} yields the claim (7.16).

Upper bound We must demonstrate an α-locally private conditional distribution Q and
an estimator that achieves the upper bound in equation (7.16). We do so via a combination of
truncation and addition of Laplacian noise. Define the truncation function [·]T : R→ [−T, T ]
by

[x]T := max{−T,min{x, T}},
where the truncation level T is to be chosen. LetWi be independent Laplace(α/(2T )) random
variables, and for each index i = 1, . . . , n, define Zi := [Xi]T +Wi. By construction, the

random variable Zi is α-differentially private for Xi. For the mean estimator θ̂ := 1
n

∑n
i=1 Zi,

we have

E
[
(θ̂ − θ)2

]
= Var(θ̂) +

(
E[θ̂]− θ

)2
=

4T 2

nα2
+

1

n
Var([X1]T ) + (E[Z1]− θ)2 . (8.3)

We claim that

E[Z] = E [[X]T ] ∈
[
E[X]− 1

(k − 1)T k−1
,E[X] +

1

(k − 1)T k−1

]
. (8.4)

Indeed, by the assumption that E[|X|k] ≤ 1, we have by a change of variables that

∫ ∞

T

xdP (x) =

∫ ∞

T

P (X ≥ x)dx ≤
∫ ∞

T

1

xk
dx =

1

(k − 1)T k−1
.

Thus

E[[X]T ] ≥ E[min{X,T}] = E[min{X,T}+ [X − T ]+ − [X − T ]+]

= E[X]−
∫ ∞

T

(x− T )dP (x) ≥ E[X]− 1

(k − 1)T k−1
.

A similar argument yields the upper bound in equation (8.4).
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From the bound (8.3) and the inequalities that since [X]T ∈ [−T, T ] and α2 ≤ 1, we have

E
[
(θ̂ − θ)2

]
≤ 5T 2

nα2
+

1

(k − 1)2T 2k−2
valid for any T > 0.

Choosing T = (5(k − 1))−
1
2k (nα2)1/(2k) yields

E
[
(θ̂ − θ)2

]
≤ 5(5(k − 1))

−1
k (nα2)

1
k

nα2
+

1

(k − 1)2(5(k − 1))−1+1/k(nα2)1−1/k

= 51−1/k

(
1 +

1

k − 1

)
1

(k − 1)
1
k (nα2)1−

1
k

.

Since (1 + (k − 1)−1)(k − 1)−
1
k < (k − 1)−1 + (k − 1)−2 for k ∈ (1, 2) and is bounded by

1 + (k − 1)−1 ≤ 2 for k ∈ [2,∞], the upper bound (7.16) follows.

8.1.4 Proof of Proposition 7.2

We now turn to the proof of minimax rates for fixed design linear regression.

Lower bound We use a slight generalization of the α-private form (7.15) of the local Fano
inequality from Corollary 7.3. For concreteness, we assume throughout that α ∈ [0, 23

35
], but

analogous arguments hold for any bounded α with changes only in the constant pre-factors.
Consider an instance of the linear regression model (7.17) in which the noise variables {εi}ni=1

are drawn i.i.d. from the uniform distribution on [−σ,+σ]. Our first step is to construct a
suitable packing of the unit sphere Sd−1 = {u ∈ Rd : ‖u‖2 = 1} in ℓ2-norm:

Lemma 8.3. There exists a 1-packing V = {v1, . . . , vN} of the unit sphere Sd−1 with N ≥
exp(d/8).

Proof By the Varshamov-Gilbert bound [e.g., 188, Lemma 4], there is a packing Hd of
the d-dimensional hypercube {−1, 1}d of size |Hd| ≥ exp(d/8) satisfying ‖a− a′‖1 ≥ d/2

for all a, a′ ∈ Hd with a 6= a′. For each a ∈ Hd, set va = a/
√
d, so that ‖va‖2 = 1 and

‖va − va′‖22 ≥ d/d = 1 for a 6= a′ ∈ Hd. Setting V = {va | a ∈ Hd} gives the desired
result.

For a fixed δ ∈ (0, 1] to be chosen shortly, define the family of vectors {θv, v ∈ V} with
θv := δv. Since ‖v‖2 ≤ 1, we have ‖θv − θv′‖2 ≤ 2δ. Let Pv,i denote the distribution of Yi
conditioned on θ∗ = θv. By the form of the linear regression model (7.17) and our assumption
on the noise variable εi, Pv,i is uniform on the interval [〈θv, xi〉−σ, 〈θv, xi〉+σ]. Consequently,
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for v 6= v′ ∈ V , we have

‖Pv,i − Pv′,i‖TV =
1

2

∫
|pv,i(y)− pv′,i(y)|dy

≤ 1

2

[
1

2σ
| 〈θv, xi〉 − 〈θv′ , xi〉 |+

1

2σ
| 〈θv, xi〉 − 〈θv′ , xi〉 |

]
=

1

2σ
|〈θv − θv′ , xi〉| .

Letting V denote a random sample from the uniform distribution on V , Corollary 7.1 implies
that the mutual information is upper bounded as

I(Z1, . . . , Zn;V ) ≤ 4(eα − 1)2
n∑

i=1

1

|V|2
∑

v,v′∈V
‖Pv,i − Pv′,i‖2TV

≤ (eα − 1)2

σ2

n∑

i=1

1

|V|2
∑

v,v′∈V
(〈θv − θv′ , xi〉)2

=
(eα − 1)2

σ2

1

|V|2
∑

v,v′∈V
(θv − θv′)⊤X⊤X(θv − θv′).

Since θv = δv, we have by definition of the maximum singular value that

(θv − θv′)⊤X⊤X(θv − θv′) ≤ δ2 ‖v − v′‖22 γmax(X
⊤X) ≤ 4δ2γ2max(X) = 4nδ2γ2max(X/

√
n).

Putting together the pieces, we find that

I(Z1, . . . , Zn;V ) ≤ 4nδ2(eα − 1)2

σ2
γ2max(X/

√
n) ≤ 8nα2δ2

σ2
γ2max(X/

√
n),

where the second inequality is valid for α ∈ [0, 23
35
]. Consequently, Fano’s inequality combined

with the packing set V from Lemma 8.3 implies that

Mn

(
θ, ‖·‖22 , α

)
≥ δ2

4

(
1− 8nδ2α2γ2max(X/

√
n)/σ2 + log 2

d/8

)
.

We split the remainder of the analysis into cases.
Case 1: First suppose that d ≥ 16. Then setting δ2 = min{1, dσ2

128nγ2max(X/
√
n)
} implies that

8nδ2α2γ2max(X/
√
n)/σ2 + log 2

d/8
≤ 8

[
log 2

d
+

64

128

]
<

7

8
.

As a consequence, we have the lower bound

Mn

(
θ, ‖·‖22 , α

)
≥ 1

4
min

{
1,

dσ2

128nγ2max(X/
√
n)

}
· 1
8
,
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which yields the claim for d ≥ 16.

Case 2: Otherwise, we may assume that d < 16. In this case, a lower bound for the case
d = 1 is sufficient, since apart from constant factors, the same bound holds for all d < 16.
We use the Le Cam method based on a two point comparison. Indeed, let θ1 = δ and
θ2 = −δ so that the total variation distance is at upper bounded ‖P1,i − P2,i‖TV ≤ δ

σ
|xi|. By

Corollary 7.2, we have

Mn

(
θ, (·)2, α

)
≥ δ2

(
1

2
− δ (e

α − 1)

σ

( n∑

i=1

x2i

) 1
2

)
.

Letting x = (x1, . . . , xn) and setting δ2 = min{1, σ2/(16(eα − 1)2 ‖x‖22)} gives the desired
result.

Upper bound We now turn to the upper bound, for which we need to specify a private
conditional Q and an estimator θ̂ that achieves the stated upper bound on the mean-squared
error. Let Wi be independent Laplace(α/(2σ)) random variables. Then the additively per-
turbed random variable Zi = Yi +Wi is α-differentially private for Yi, since by assumption
the response Yi ∈ [〈θ, xi〉 − σ, 〈θ, xi〉 + σ]. We now claim that the standard least-squares
estimator of θ∗ achieves the stated upper bound. Indeed, the least-squares estimate is given
by

θ̂ = (X⊤X)−1X⊤Y = (X⊤X)−1X⊤(Xθ∗ + ε+W ).

Moreover, from the independence of W and ε, we have

E
[
‖θ̂ − θ∗‖22

]
= E

[
‖(X⊤X)−1X⊤(ε+W )‖22

]
= E

[
‖(X⊤X)−1X⊤ε‖22

]
+E

[
‖(X⊤X)−1X⊤W )‖22

]
.

Since ε ∈ [−σ, σ]n, we know that E[εε⊤] � σ2In×n, and for the given choice of W , we have
E[WW⊤] = (4σ2/α2)In×n. Since α ≤ 1, we thus find

E
[
‖θ̂ − θ∗‖22

]
≤ 5σ2

α2
tr
(
X(X⊤X)−2X⊤) = 5σ2

α2
tr
(
(X⊤X)−1

)
.

Noting that tr((X⊤X)−1) ≤ d/γ2min(X) = d/nγ2min(X/
√
n) gives the claimed upper bound.

8.2 Proof of Theorem 7.2 and related results

In this section, we collect together the proof of Theorem 7.2 and related corollaries.

8.2.1 Proof of Theorem 7.2

Let Z denote the domain of the random variable Z. We begin by reducing the problem to
the case when Z = {1, 2, . . . , k} for an arbitrary positive integer k. Indeed, in the general
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setting, we let K = {Ki}ki=1 be any (measurable) finite partition of Z, where for z ∈ Z we
let [z]K = Ki for the Ki such that z ∈ Ki. The KL divergence Dkl

(
Mv||M

)
can be defined as

the supremum of the (discrete) KL divergences between the random variables [Z]K sampled
according to Mv and M over all partitions K of Z; for instance, see Gray [84, Chapter 5].
Consequently, we can prove the claim for Z = {1, 2, . . . , k}, and then take the supremum
over k to recover the general case. Accordingly, we can work with the probability mass
functions m(z | v) =Mv(Z = z) and m(z) =M(Z = z), and we may write

Dkl

(
Mv||M

)
+Dkl

(
M ||Mv

)
=

k∑

z=1

(m(z | v)−m(z)) log
m(z | v)
m(z)

. (8.5)

Throughout, we will also use (without loss of generality) the probability mass functions
q(z | x) = Q(Z = z | X = x), where we note that m(z | v) =

∫
q(z | x)dPv(x).

Now we use Lemma 8.2 from the proof of Theorem 7.1 to complete the proof of Theo-
rem 7.2. Starting with equality (8.5), we have

1

|V|
∑

v∈V

[
Dkl

(
Mv||M

)
+Dkl

(
M ||Mv

)]
≤
∑

v∈V

1

|V|
k∑

z=1

|m(z | v)−m(z)|
∣∣∣∣log

m(z | v)
m(z)

∣∣∣∣

≤
∑

v∈V

1

|V|
k∑

z=1

|m(z | v)−m(z)| |m(z | v)−m(z)|
min {m(z),m(z | v)} .

Now, we define the measure m0 on Z = {1, . . . , k} by m0(z) := infx∈X q(z | x). It is clear
that min {m(z),m(z | v)} ≥ m0(z), whence we find

1

|V|
∑

v∈V

[
Dkl

(
Mv||M

)
+Dkl

(
M ||Mv

)]
≤
∑

v∈V

1

|V|
k∑

z=1

(m(z | v)−m(z))2

m0(z)
.

It remains to bound the final sum. For any constant c ∈ R, we have

m(z | v)−m(z) =

∫

X
(q(z | x)− c)

(
dPv(x)− dP (x)

)
.

We define a set of functions f : Z × X → R (depending implicitly on q) by

Fα :=
{
f | f(z, x) ∈ [1, eα]m0(z) for all z ∈ Z and x ∈ X

}
.

By the definition of differential privacy, when viewed as a joint mapping from Z × X → R,
the conditional p.m.f. q satisfies {(z, x) 7→ q(z | x)} ∈ Fα. Since constant (with respect to
x) shifts do not change the above integral, we can modify the range of functions in Fα by
subtracting m0(z) from each, yielding the set

F ′
α :=

{
f | f(z, x) ∈ [0, eα − 1]m0(z) for all z ∈ Z and x ∈ X

}
.
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As a consequence, we find that

∑

v∈V
(m(z | v)−m(z))2 ≤ sup

f∈Fα

{
∑

v∈V

(∫

X
f(z, x)

(
dPv(x)− dP (x)

))2
}

= sup
f∈F ′

α

{
∑

v∈V

(∫

X

(
f(z, x)−m0(z)

) (
dPv(x)− dP (x)

))2
}
.

By inspection, when we divide by m0(z) and recall the definition of the set B∞ ⊂ L∞(X ) in
the statement of Theorem 7.2, we obtain

∑

v∈V
(m(z | v)−m(z))2 ≤

(
m0(z)

)2
(eα − 1)2 sup

γ∈B∞

∑

v∈V

(∫

X
γ(x)

(
dPv(x)− dP (x)

))2

.

Putting together our bounds, we have

1

|V|
∑

v∈V

[
Dkl

(
Mv||M

)
+Dkl

(
M ||Mv

)]

≤ (eα − 1)2
k∑

z=1

1

|V|
(m0(z))

2

m0(z)
sup
γ∈B∞

∑

v∈V

(∫

X
γ(x)

(
dPv(x)− dP (x)

))2

≤ (eα − 1)2
1

|V| supγ∈B∞

∑

v∈V

(∫

X
γ(x)

(
dPv(x)− dP (x)

))2

,

since
∑

zm
0(z) ≤ 1, which is the statement of the theorem.

8.2.2 Proof of Corollary 7.4

In the non-interactive setting (7.2), the marginal distribution Mn
v is a product measure

and Zi is conditionally independent of Z1:i−1 given V . Thus by the chain rule for mutual
information [84, Chapter 5] and the fact (as in the proof of Theorem 7.2) that we may assume
w.l.o.g. that Z has finite range

I(Z1, . . . , Zn;V ) =
n∑

i=1

I(Zi;V | Z1:i−1) =
n∑

i=1

[H(Zi | Z1:i−1)−H(Zi | V, Z1:i−1)] .

Since conditioning reduces entropy and Z1:i−1 is conditionally independent of Zi given V , we
have H(Zi | Z1:i−1) ≤ H(Zi) and H(Zi | V, Z1:i−1) = H(Zi | V ). In particular, we have

I(Z1, . . . , Zn;V ) ≤
n∑

i=1

I(Zi;V ) =
n∑

i=1

1

|V|
∑

v∈V
Dkl

(
Mv,i||M i

)
.

Applying Theorem 7.2 completes the proof.



172

8.3 Proof of Theorem 7.3

The proof of this theorem combines the techniques we used in the proofs of Theorems 7.1
and 7.2; the first handles interactivity, while the techniques to derive the variational bounds
are reminiscent of those used in Theorem 7.2. Our first step is to note a consequence of the
independence structure in Fig. 7.1 that is essential to our tensorization steps. More precisely,
we claim that for any set S ∈ σ(Z),

M±j(Zi ∈ S | z1:i−1) =

∫
Q(Zi ∈ S | Z1:i−1 = z1:i−1, Xi = x)dP±j,i(x). (8.6)

We postpone the proof of this intermediate claim to the end of this section.
Now consider the summed KL-divergences. Let M±j,i(· | z1:i−1) denote the conditional

distribution of Zi under P±j, conditional on Z1:i−1 = z1:i−1. As in the proof of Corollary 7.1,
the chain-rule for KL-divergences [e.g. 84, Chapter 5] implies

Dkl

(
Mn

+j||Mn
−j
)
=

n∑

i=1

∫

Zi−1

Dkl (M+j(· | z1:i−1)||M−j(· | z1:i−1)) dM
i−1
+j (z1:i−1).

For notational convenience in the remainder of the proof, we recall that the symmetrized KL
divergence between measures M and M ′ as Dsy

kl (M ||M ′) = Dkl (M ||M ′) +Dkl (M
′||M).

Defining P := 2−d
∑

v∈V P
n
v , we have 2P = P+j + P−j for each j simultaneously, We also

introduce M(S) =
∫
Q(S | x1:n)dM(x1:n), and let E±j denote the expectation taken under

the marginals M±j. We then have

Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

−j||Mn
+j

)

=
n∑

i=1

(
E+j[Dkl (M+j,i(· | Z1:i−1)||M−j,i(· | Z1:i−1))] + E−j[Dkl (M−j,i(· | Z1:i−1)||M+j,i(· | Z1:i−1))]

)

≤
n∑

i=1

(
E+j[D

sy
kl (M+j,i(· | Z1:i−1)||M−j,i(· | Z1:i−1))] + E−j[D

sy
kl (M+j,i(· | Z1:i−1)||M−j,i(· | Z1:i−1))]

)

= 2
n∑

i=1

∫

Zi−1

Dsy
kl (M+j,i(· | z1:i−1)||M−j,i(· | z1:i−1)) dM

i−1
(z1:i−1),

where we have used the definition of M and that 2P = P+j + P−j for all j. Summing over
j ∈ [d] yields

d∑

j=1

Dsy
kl

(
Mn

+j||Mn
−j
)
≤ 2

n∑

i=1

∫

Zi−1

d∑

j=1

Dsy
kl (M+j,i(· | z1:i−1)||M−j,i(· | z1:i−1))︸ ︷︷ ︸

=:Tj,i

dM
i−1

(z1:i−1).

(8.7)

We bound the underlined expression in inequality (8.7), whose elements we denote by Tj,i.
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Without loss of generality (as in the proof of Theorem 7.2), we may assume Z is finite,
and that Z = {1, 2, . . . , k} for some positive integer k. Using the probability mass functions
m±j,i and omitting the index i when it is clear from context, Lemma 8.2 implies

Tj,i =
k∑

z=1

(m+j(z | z1:i−1)−m+j(z | z1:i−1)) log
m+j(z | z1:i−1)

m−j(z | z1:i−1)

≤
k∑

z=1

(m+j(z | z1:i−1)−m+j(z | z1:i−1))
2 1

min{m+j(z | z1:i−1),m−j(z | z1:i−1)}
.

For each fixed z1:i−1, define the infimal measure m0(z | z1:i−1) := inf
x∈X

q(z | Xi = x, z1:i−1).

By construction, we have min{m+j(z | z1:i−1),m−j(z | z1:i−1)} ≥ m0(z | z1:i−1), and hence

Tj,i ≤
k∑

z=1

(m+j(z | z1:i−1)−m+j(z | z1:i−1))
2 1

m0(z | z1:i−1)
.

Recalling equality (8.6), we have

m+j(z | z1:i−1)−m+j(z | z1:i−1) =

∫

X
q(z | x, z1:i−1)(dP+j,i(x)− dP−j,i(x))

= m0(z | z1:i−1)

∫

X

(
q(z | x, z1:i−1)

m0(z | z1:i−1)
− 1

)
(dP+j,i(x)− dP−j,i(x)).

From this point, the proof is similar to that of Theorem 7.2. Define the collection of
functions

Fα := {f : X × Z i → [0, eα − 1]}.
Using the definition of differential privacy, we have q(z|x,z1:i−1)

m0(z|z1:i−1)
∈ [1, eα], so there exists f ∈ Fα

such that

d∑

j=1

Tj,i ≤
d∑

j=1

k∑

z=1

(m0(z | z1:i−1))
2

m0(z | z1:i−1)

(∫

X
f(x, z, z1:i−1)(dP+j,i(x)− dP−j,i(x))

)2

=
k∑

z=1

m0(z | z1:i−1)
d∑

j=1

(∫

X
f(x, z, z1:i−1)(dP+j,i(x)− dP−j,i(x))

)2

.

Taking a supremum over Fα, we find the further upper bound

d∑

j=1

Tj,i ≤
k∑

z=1

m0(z | z1:i−1) sup
f∈Fα

d∑

j=1

(∫

X
f(x, z, z1:i−1)(dP+j,i(x)− dP−j,i(x))

)2

.
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The inner supremum may be taken independently of z and z1:i−1, so we rescale by (eα − 1)
to obtain our penultimate inequality

d∑

j=1

Dsy
kl (M+j,i(· | z1:i−1)||M−j,i(· | z1:i−1))

≤ (eα − 1)2
k∑

z=1

m0(z | z1:i−1) sup
γ∈B∞(X )

d∑

j=1

(∫

X
γ(x)(dP+j,i(x)− dP−j,i(x))

)2

.

Noting that m0 sums to a quantity ≤ 1 and substituting the preceding expression in inequal-
ity (8.7) completes the proof.

Finally, we return to prove our intermediate marginalization claim (8.6). We have that

M±j(Zi ∈ S | z1:i−1) =

∫
Q(Zi ∈ S | z1:i−1, x1:n)dP±j(x1:n | z1:i−1)

(i)
=

∫
Q(Zi ∈ S | z1:i−1, xi)dP±j(x1:n | z1:i−1)

(ii)
=

∫
Q(Zi ∈ S | Z1:i−1 = z1:i−1, Xi = x)dP±j,i(x),

where equality (i) follows by the assumed conditional independence structure of Q (recall
Figure 7.1) and equality (ii) is a consequence of the independence of Xi and Z1:i−1 under
P±j. That is, we have P+j(Xi ∈ S | Z1:i−1 = z1:i−1) = P+j,i(S) by the definition of P n

v as a
product and that P±j are a mixture of the products P n

v .

8.4 Proofs of multi-dimensional mean-estimation

results

In this section, we prove the main results in Section 7.4.2 from the previous chapter. At a
high level, our proofs of these results consist of three steps, the first of which is relatively
standard, while the second two exploit specific aspects of the local privacy setting. We
outline them here:

(1) The first step is a standard reduction, based on inequalities (2.5)–(2.15) in Section 2.2,
from an estimation problem to a multi-way testing problem that involves discriminating
between indices v contained within some subset V of Rd. (Recall also inequalities (7.6)
and (7.7) in Section 7.2.)

(2) The second step is the selection of the set V , then choosing the appropriate separation
radius δ to apply inequality (7.6); essentially, we require the existence of a well-separated
set: one for which ratio of the packing set size |V| to neighborhood size Nmax

t is large
enough relative to the separation δ(t) defined by expression (2.14).
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(3) The final step is to apply Theorem 7.2 in order to control the mutual information associ-
ated with the testing problem. Doing so requires bounding the supremum in Corollary 7.4
via the operator norm of Cov(V ), which is easy to control because of the uniformity of
the sampling scheme allowed by our extension (2.15) of the Fano method.

The estimation to testing reduction of Step 1 was previously described in Sections 2.2.1 and
7.2. Accordingly, the proofs to follow are devoted to the second and third steps in each case.

8.4.1 Proof of Proposition 7.3

We provide a proof of the lower bound, as we provided the argument for the upper bound
in Section 7.4.2.2.

Constructing a well-separated set Let k be an arbitrary integer in {1, 2, . . . , d}, and
let Vk = {−1, 1}k denote the k-dimensional hypercube. We extend the set Vk ⊆ Rk to a
subset of Rd by setting V = Vk × {0}d−k. For a parameter δ ∈ (0, 1/2] to be chosen, we
define a family of probability distributions {Pv}v∈V constructively. In particular, the random
vector X ∼ Pv (a single observation) is formed by the following procedure:

Choose index j ∈ {1, . . . , k} uniformly at random and set X =

{
rej w.p.

1+δvj
2

−rej w.p.
1−δvj

2
.

(8.8)

By construction, these distributions have mean vectors

θv := EPv [X] =
δr

k
v.

Consequently, given the properties of the packing V , we have X ∈ B1(r) with probability 1,
and fixing t ≤ k/3, we have that the associated separation function (2.14) satisfies

δ2(t) ≥ min
{
‖θv − θv′‖22 | ‖v − v′‖1 ≥ t

}
≥ r2δ2

k2
2t.

Moreover, as in the derivation of inequality (2.16) in Section 2.2.3, we have that so long as
t ≤ k/3 and k ≥ 3, then

log
|V|
Nmax
t

> max

{
k

6
, 2

}
.

Thus we see that the mean vectors {θv}v∈V provide us with an rδ
√
2t/k-separated set (in

ℓ2-norm) with log ratio of its size at least max{k/6, 2}.
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Upper bounding the mutual information Our next step is to bound the mutual in-
formation I(Z1, . . . , Zn;V ) when the observations X come from the distribution (8.8) and V
is uniform in the set V . We have the following lemma, which applies so long as the channel
Q is non-interactive and α-locally private (7.2). See Section 8.7.1 for the proof.

Lemma 8.4. Fix k ∈ {1, . . . , d}. Let Zi be α-locally differentially private for Xi, and let X
be sampled according to the distribution (8.8) conditional on V = v. Then

I(Z1, . . . , Zn;V ) ≤ n
δ2

4k
(eα − 1)2.

Applying testing inequalities We now show how a combination the sampling scheme (8.8)
and Lemma 8.4 give us our desired lower bound. Fix k ≤ d and let V = {−1, 1}k × {0}d−k.
Combining Lemma 8.4 and the fact that the vectors θv provide a rδ/

√
2t/k-separated set

of log-cardinality at least max{k/6, 2}, the generalized minimax Fano bound (2.15) (and its
private version (7.6)) imply that for any k ∈ {1, . . . , d} and t ≤ k/3, we have

Mn(θ(P), ‖·‖22 , α) ≥
r2δ2t

2k2

(
1− nδ2(eα − 1)2/(4k) + log 2

max{k/6, 2}

)
.

Because of the 1-dimensional mean-estimation lower bounds provided in Section 7.3.3.1, we
may assume w.l.o.g. that k ≥ 12. Setting t = k/3 and δ2n,α,k = min{1, k2/(3n(eα − 1)2)}, we
obtain

Mn(θ(P), ‖·‖22 , α) ≥
r2δ2n,α,k
6k

(
1− 1

2
− log 2

2

)
≥ 1

40
r2 min

{
1

k
,

k

3n(eα − 1)2

}

for a universal (numerical) constant c. Since (eα − 1)2 < 3α2 for α ∈ [0, 1], we obtain the
lower bound

Mn(θ(P), ‖·‖22 , α) ≥
1

40
r2max

k∈[d]

{
min

{
1

k
,

k

9nα2

}}

for α ∈ [0, 1]. Setting k in the preceding display to be the integer in {1, . . . , d} nearest
√
nα2

gives the result of the proposition.

8.4.2 Proof of Proposition 7.4

Since the upper bound was established in Section 7.4.2.2, we focus on the lower bound.

Constructing a well-separated set In this case, the packing set is very simple: set
V = {±ej}dj=1 so that |V| = 2d. Fix some δ ∈ [0, 1], and for v ∈ V , define a distribution Pv
supported on X = {−r, r}d via

Pv(X = x) = (1 + δv⊤x/r)/2d.
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In words, for v = ej, the coordinates of X are independent uniform on {−r, r} except for
the coordinate j, for which Xj = r with probability 1/2 + δvj and Xj = −r with probability
1/2 − δvj. With this scheme, we have θ(Pv) = rδv, and since ‖δrv − δrv′‖∞ ≥ δr, we have
constructed a δr packing in ℓ∞-norm.

Upper bounding the mutual information Let V be drawn uniformly from the packing
set V = {±ej}dj=1. With the sampling scheme in the previous paragraph, we may provide the
following upper bound on the mutual information I(Z1, . . . , Zn;V ) for any non-interactive
private distribution (7.2):

Lemma 8.5. For any non-interactive α-differentially private distribution Q, we have

I(Z1, . . . , Zn;V ) ≤ 2n

d
(eα − 1)2 δ2.

See Section 8.7.2 for a proof.

Applying testing inequalities Finally, we turn to application of the testing inequalities.
Lemma 8.5, in conjunction with the standard testing reduction and Fano’s inequality (2.9),
implies that

Mn(θ(P), ‖·‖∞ , α) ≥ rδ

2

(
1− 2δ2n(eα − 1)2/d+ log 2

log(2d)

)
.

There is no loss of generality in assuming that d ≥ 4, in which case the choice

δ2 = min

{
1,

d log(2d)

4(eα − 1)2n

}

yields the proposition.

8.4.3 Proof of Proposition 7.5

For this proposition, the construction of the packing and lower bound used in the proof
of Proposition 7.4 also apply. Under these packing and sampling procedures, note that the
separation of points θ(Pv) = rδv in ℓ2-norm is rδ. It thus remains to provide the upper bound.
In this case, we use the sampling strategy (7.22b), as in Proposition 7.4 and Section 7.4.2.2,
noting that we may take the bound B on ‖Z‖∞ to be B = c

√
dr/α for a constant c. Let

θ∗ denote the true mean, assumed to be s-sparse. Now consider estimating θ∗ by the ℓ1-
regularized optimization problem

θ̂ := argmin
θ∈Rd

{
1

2n

∥∥∥∥
n∑

i=1

(Zi − θ)
∥∥∥∥
2

2

+ λ ‖θ‖1

}
,

Defining the error vector W = θ∗ − 1
n

∑n
i=1 Zi, we claim that

λ ≥ 2 ‖W‖∞ implies that ‖θ̂ − θ‖2 ≤ 3λ
√
s. (8.9)
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This result is a consequence of standard results on sparse estimation (e.g., Negahban et al.
[133, Theorem 1 and Corollary 1]).

Now we note if Wi = θ∗−Zi, then W = 1
n

∑n
i=1Wi, and by construction of the sampling

mechanism (7.22b) we have ‖Wi‖∞ ≤ c
√
dr/α for a constant c. By Hoeffding’s inequality

and a union bound, we thus have for some (different) universal constant c that

P(‖W‖∞ ≥ t) ≤ 2d exp

(
−cnα

2t2

r2d

)
for t ≥ 0.

By taking t2 = r2d(log(2d) + ǫ2)/(cnα2), we find that ‖W‖2∞ ≤ r2d(log(2d) + ǫ2)/(cnα2)
with probability at least 1 − exp(−ǫ2), which gives the claimed minimax upper bound by
appropriate choice of λ = c

√
d log d/nα2 in inequality (8.9).

8.4.4 Proof of inequality (7.26)

We prove the bound by an argument using the private form of Fano’s inequality from Corol-
lary 7.3. The proof uses the classical Varshamov-Gilbert bound (e.g. [188, Lemma 4]):

Lemma 8.6 (Varshamov-Gilbert). There is a packing V of the d-dimensional hypercube
{−1, 1}d of size |V| ≥ exp(d/8) such that

‖v − v′‖1 ≥ d/2 for all distinct pairs v, v′ ∈ V.

Now, let δ ∈ [0, 1] and the distribution Pv be a point mass at δv/
√
d. Then θ(Pv) = δv/

√
d

and ‖θ(Pv)− θ(Pv′)‖22 ≥ δ2. In addition, a calculation implies that if M1 and M2 are d-
dimensional Laplace(κ) distributions with means θ1 and θ2, respectively, then

Dkl (M1||M2) =
d∑

j=1

(exp(−κ|θ1,j − θ2,j|) + κ|θ1,j − θ2,j| − 1) ≤ κ2

2
‖θ1 − θ2‖22 .

As a consequence, we have that under our Laplacian sampling scheme for the Z and with V
chosen uniformly from V ,

I(Z1, . . . , Zn;V ) ≤ 1

|V|2n
∑

v,v′∈V
Dkl (Mv||Mv′) ≤

nα2

2d|V|2
∑

v,v′∈V

∥∥∥(δ/
√
d)(v − v′)

∥∥∥
2

2
≤ 2nα2δ2

d
.

Now, applying Fano’s inequality (2.9) in the context of the testing inequality (2.5), we find
that

inf
θ̂
sup
v∈V

EPv

[
‖θ̂(Z1, . . . , Zn)− θ(Pv)‖22

]
≥ δ2

4

(
1− 2nα2δ2/d+ log 2

d/8

)
.

We may assume (based on our one-dimensional results in Proposition 7.1) w.l.o.g. that
d ≥ 10. Taking δ2 = d2/(48nα2) then implies the result (7.26).
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8.4.5 Proof of unbiasedness for sampling strategy (7.22a)

We compute the expectation of a random variable Z sampled according to the strategy (7.22a),
i.e. we compute E[Z | v] for a vector v ∈ Rd. By scaling, it is no loss of generality to assume
that ‖v‖2 = 1, and using the rotational symmetry of the ℓ2-ball, we see it is no loss of
generality to assume that v = e1, the first standard basis vector.

Let the function sd denote the surface area of the sphere in Rd, so that

sd(r) =
dπd/2

Γ(d/2 + 1)
rd−1

is the surface area of the sphere of radius r. (We use sd as a shorthand for sd(1) when
convenient.) Then for a random variable W sampled uniformly from the half of the ℓ2-ball
with first coordinateW1 ≥ 0, symmetry implies that by integrating over the radii of the ball,

E[W ] = e1
2

sd

∫ 1

0

sd−1

(√
1− r2

)
rdr.

Making the change of variables to spherical coordinates (we use φ as the angle), we have

2

sd

∫ 1

0

sd−1

(√
1− r2

)
rdr =

2

sd

∫ π/2

0

sd−1 (cosφ) sinφ dφ =
2sd−1

sd

∫ π/2

0

cosd−2(φ) sin(φ) dφ.

Noting that d
dφ

cosd−1(φ) = −(d− 1) cosd−2(φ) sin(φ), we obtain

2sd−1

sd

∫ π/2

0

cosd−2(φ) sin(φ) dφ = −cosd−1(φ)

d− 1

∣∣∣∣
π/2

0

=
1

d− 1
,

or that

E[W ] = e1
(d− 1)π

d−1
2 Γ(d

2
+ 1)

dπ
d
2Γ(d−1

2
+ 1)

1

d− 1
= e1

Γ(d
2
+ 1)√

πdΓ(d−1
2

+ 1)︸ ︷︷ ︸
=:cd

, (8.10)

where we define the constant cd to be the final ratio.
Allowing again ‖v‖2 ≤ r, with the expression (8.10), we see that for our sampling strategy

for Z, we have

E[Z | v] = v
B

r
cd

(
eα

eα + 1
− 1

eα + 1

)
=
B

r
cd
eα − 1

eα + 1
.

Consequently, the choice

B =
eα + 1

eα − 1

r

cd
=
eα + 1

eα − 1

r
√
πdΓ(d−1

2
+ 1)

Γ(d
2
+ 1)

yields E[Z | v] = v. Moreover, we have

‖Z‖2 = B ≤ r
eα + 1

eα − 1

3
√
π
√
d

2

by Stirling’s approximation to the Γ-function. By noting that (eα + 1)/(eα − 1) ≤ 3/α for
α ≤ 1, we see that ‖Z‖2 ≤ 8r

√
d/α.



180

8.5 Proofs of multinomial estimation results

In this section, we prove the lower bounds in Proposition 7.6. Before proving the bounds,
however, we outline our technique, which borrows from that in Section 8.4, and which we
also use to prove the lower bounds on density estimation. The outline is as follows:

(1) As in step (1) of Section 8.4, our first step is a standard reduction using the sharper
version of Assouad’s method (Lemma 2.2 and inequality (7.7)) from estimation to a mul-
tiple binary hypothesis testing problem. Specifically, we perform a (essentially standard)
reduction of the form (2.17).

(2) Having constructed appropriately separated binary hypothesis tests, we use apply The-
orem 7.3 via inequality (7.28) to control the testing error in the binary testing problem.
Applying the theorem requires bounding certain suprema related to the covariance struc-
ture of randomly selected elements of V = {−1, 1}d, as in the arguments in Section 8.4.
In this case, though, the symmetry of the binary hypothesis testing problems eliminates
the need for carefully constructed packings of step 8.4(2).

With this outline in mind, we turn to the proofs of inequalities (7.29) and (7.30). As
we proved the upper bounds in Section 7.5.2.2, this section focuses on the argument for the
lower bound. We provide the full proof for the mean-squared Euclidean error, after which
we show how the result for the ℓ1-error follows.

Our first step is to provide a lower bound of the form (2.17), giving a Hamming separation
for the squared error. To that end, fix δ ∈ [0, 1], and for simplicity, let us assume that d
is even. In this case, we set V = {−1, 1}d/2, and for v ∈ V let Pv be the multinomial
distribution with parameter

θv :=
1

d
1+ δ

1

d

[
v
−v

]
∈ ∆d.

For any estimator θ̂, by defining v̂j = sign(θ̂j − 1/d) for j ∈ [d/2] we have the lower bound

‖θ̂ − θv‖22 ≥
δ2

d2

d/2∑

j=1

1 {v̂j 6= vj} ,

so that by the sharper variant (7.28) of Assouad’s Lemma, we obtain

max
v∈V

EPv [‖θ̂ − θv‖22] ≥
δ2

4d


1−

(
1

2d

d/2∑

j=1

Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

−j||Mn
+j

)) 1
2


 . (8.11)

Now we apply Theorem 7.3, which requires bounding sums of integrals
∫
γ(dP+j − dP−j),

where P+j is defined in expression (7.27). We claim the following inequality:

sup
γ∈B∞(X )

d/2∑

j=1

(∫

X
γ(x)dP+j(x)− dP−j(x)

)2

≤ 8δ2

d
. (8.12)
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Indeed, by construction P+j is the multinomial with parameter (1/d)1+(δ/d)[e⊤j −e⊤j ]⊤ ∈ ∆d

and similarly for P−j, where ej ∈ {0, 1}d/2 denotes the jth standard basis vector. Abusing
notation and identifying γ with vectors γ ∈ [−1, 1]d, we have

∫

X
γ(x)dP+j(x)− dP−j(x) =

2δ

d
γ⊤
[
ej
−ej

]
,

whence we find

d/2∑

j=1

(∫

X
γ(x)dP+j(x)− dP−j(x)

)2

=
4δ2

d2
γ⊤

d/2∑

j=1

[
ej
−ej

] [
ej
−ej

]⊤
γ =

4δ2

d2
γ⊤
[
I −I
−I I

]
γ ≤ 8δ2

d
,

because the operator norm of the matrix is bounded by 2. This gives the claim (8.12).
Substituting the bound (8.12) into the bound (8.11) via Theorem 7.3, we obtain

max
v∈V

EPv [‖θ̂ − θv‖22] ≥
δ2

4d

[
1−

(
4n(eα − 1)2δ2/d2

) 1
2

]
.

Choosing δ2 = min{1, d2/(16n(eα − 1)2)} gives the lower bound

Mn(∆d, ‖·‖22 , α) ≥ min

{
1

4d
,

d

64n(eα − 1)2

}
.

To complete the proof, we note that we can prove the preceding upper bound for any even
d0 ∈ {2, . . . , d}; this requires choosing v ∈ V = {−1, 1}d0/2 and constructing the multinomial
vectors

θv =
1

d0

[
1d0

0d−d0

]
+

δ

d0




v
−v
0d−d0


 ∈ ∆d, where 1d0 = [1 1 · · · 1]⊤ ∈ Rd0 .

Repeating the proof mutatis mutandis gives the bound

Mn(∆d, ‖·‖22 , α) ≥ max
d0∈{2,4,...,2⌊d/2⌋}

min

{
1

4d0
,

d0
64n(eα − 1)2

}
.

Choosing d0 to be the even integer closest to
√
nα2 in {1, . . . , d} and noting that (eα−1)2 ≤

3α2 for α ∈ [0, 1] gives the claimed result (7.29).
In the case of measuring error in the ℓ1-norm, we provide a completely identical proof,

except that we have the separation ‖θ̂ − θv‖1 ≥ (δ/d)
∑d/2

j=1 1 {v̂j 6= vj}, and thus inequal-

ity (8.11) holds with the initial multiplier δ2/(4d) replaced by δ/(4d). Parallel reasoning to
the ℓ22 case then gives the minimax lower bound

Mn(∆d, ‖·‖1 , α) ≥
δ

4d0

[
1− (4n(eα − 1)2δ2/d20)

1
2

]

for any even d0 ∈ {2, . . . , d}. Choosing δ = min{1, d20/(16n(eα−1)2)} gives the claim (7.30).
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Figure 8.1. Panel (a): illustration of 1-Lipschitz continuous bump function g1 used to
pack Fβ when β = 1. Panel (b): bump function g2 with |g′′2(x)| ≤ 1 used to pack Fβ when
β = 2.

8.6 Proofs of density estimation results

In this section, we provide the proofs of the results stated in Section 7.5.3 on density esti-
mation. We defer the proofs of more technical results to later appendices. Throughout all
proofs, we use c to denote a universal constant whose value may change from line to line.

8.6.1 Proof of Proposition 7.7

As with our proof for multinomial estimation, the argument follows the general outline de-
scribed at the beginning of Section 8.5. We remark that our proof is based on an explicit
construction of densities identified with corners of the hypercube, a more classical approach
than the global metric entropy approach of Yang and Barron [185] (cf. [188]). We use the
local packing approach since it is better suited to the privacy constraints and information
contractions that we have developed. In comparison with our proofs of previous propositions,
the construction of a suitable packing of Fβ is somewhat more challenging: the identification
of densities with finite-dimensional vectors, which we require for our application of Theo-
rem 7.3, is not immediately obvious. In all cases, we guarantee that our density functions
f belong to the trigonometric Sobolev space, so we may work directly with smooth density
functions f .

Constructing well-separated densities We begin by describing a standard framework
for defining local packings of density functions. Let gβ : [0, 1] → R be a function satisfying
the following properties:
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(a) The function gβ is β-times differentiable with

0 = g
(i)
β (0) = g

(i)
β (1/2) = g

(i)
β (1) for all i < β.

(b) The function gβ is centered with
∫ 1

0
gβ(x)dx = 0, and there exist constants c, c1/2 > 0

such that
∫ 1/2

0

gβ(x)dx = −
∫ 1

1/2

gβ(x)dx = c1/2 and

∫ 1

0

(
g
(i)
β (x)

)2
dx ≥ c for all i < β.

(c) The function gβ is non-negative on [0, 1/2] and non-positive on [1/2, 1], and Lebesgue
measure is absolutely continuous with respect to the measures Gj, j = 1, 2, given by

G1(A) =

∫

A∩[0,1/2]
gβ(x)dx and G2(A) = −

∫

A∩[1/2,1]
gβ(x)dx. (8.13)

(d) Lastly, for almost every x ∈ [0, 1], we have |g(β)β (x)| ≤ 1 and |gβ(x)| ≤ 1.

As illustrated in Figure 8.1, the functions gβ are smooth “bump” functions.
Fix a positive integer k (to be specified in the sequel). Our first step is to construct a

family of “well-separated” densities for which we can reduce the density estimation prob-
lem to one of identifying corners of a hypercube, which allows application of Lemma 2.2.
Specifically, we must exhibit a condition similar to the separation condition (2.17). For each
j ∈ {1, . . . , k define the function

gβ,j(x) :=
1

kβ
gβ

(
k
(
x− j − 1

k

))
1
{
x ∈

[
j−1
k
, j
k

]}
.

Based on this definition, we define the family of densities

{
fv := 1 +

k∑

j=1

vjgβ,j for v ∈ V
}
⊆ Fβ. (8.14)

It is a standard fact [188, 173] that for any v ∈ V , the function fv is β-times differentiable,
satisfies |f (β)(x)| ≤ 1 for all x. Now, based on some density f ∈ Fβ, let us define the sign
vector v(f) ∈ {−1, 1}k to have entries

vj(f) := argmin
s∈{−1,1}

∫

[ j−1
k
, j
k
]

(f(x)− sgβ,j(x))2 dx.

Then by construction of the gβ and v, we have for a numerical constant c (whose value may
depend on β) that

‖f − fv‖22 ≥ c
k∑

j=1

1 {vj(f) 6= vj}
∫

[ j−1
k
, j
k
]

(gβ,j(x))
2dx =

c

k2β+1

k∑

j=1

1 {vj(f) 6= vj} .
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By inspection, this is the Hamming separation required in inequality (2.17), whence the
sharper version (7.28) of Assouad’s Lemma 2.2 gives the result

Mn

(
Fβ[1], ‖·‖22 , α

)
≥ c

k2β

[
1−

(
1

4k

k∑

j=1

(Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

−j||Mn
+j

)
)

) 1
2

]
, (8.15)

where we have defined P±j to be the probability distribution associated with the averaged
densities f±j = 21−k

∑
v:vj=±1 fv.

Applying divergence inequalities Now we must control the summed KL-divergences.
To do so, we note that by the construction (8.14), symmetry implies that

f+j = 1 + gβ,j and f−j = 1− gβ,j for each j ∈ [k]. (8.16)

We then obtain the following result, which bounds the averaged KL-divergences.

Lemma 8.7. For any α-locally private conditional distribution Q, the summed KL-divergences
are bounded as

k∑

j=1

(
Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

+j||Mn
−j
))
≤ 4c21/2 n

(eα − 1)2

k2β+1
.

The proof of this lemma is fairly involved, so we defer it to Section 8.7.3. We note that,
for α ≤ 1, we have (eα − 1)2 ≤ 3α2, so we may replace the bound in Lemma 8.7 with the
quantity cnα2/k2β+1 for a constant c. We remark that standard divergence bounds using
Assouad’s lemma [188, 173] provide a bound of roughly n/k2β; our bound is thus essentially
a factor of the “dimension” k tighter.

The remainder of the proof is an application of inequality (8.15). In particular, by
applying Lemma 8.7, we find that for any α-locally private channel Q, there are constants
c0, c1 (whose values may depend on β) such that

Mn

(
Fβ, ‖·‖22 , Q

)
≥ c0
k2β

[
1−

(
c1nα

2

k2β+2

) 1
2

]
.

Choosing kn,α,β = (4c1nα
2)

1
2β+2 ensures that the quantity inside the parentheses is at least

1/2. Substituting for k in the preceding display proves the proposition.

8.6.2 Proof of Proposition 7.8

Note that the operator Πk performs a Euclidean projection of the vector (k/n)
∑n

i=1 Zi
onto the scaled probability simplex, thus projecting f̂ onto the set of probability densities.
Given the non-expansivity of Euclidean projection, this operation can only decrease the
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error ‖f̂ − f‖22. Consequently, it suffices to bound the error of the unprojected estimator; to

reduce notational overhead we retain our previous notation of θ̂ for the unprojected version.
Using this notation, we have

E
[∥∥f̂ − f

∥∥2
2

]
≤

k∑

j=1

Ef

[∫ j
k

j−1
k

(f(x)− θ̂j)2dx
]
.

Expanding this expression and noting that the independent noise variablesWij ∼ Laplace(α/2)
have zero mean, we obtain

E
[∥∥f̂ − f

∥∥2
2

]
≤

k∑

j=1

Ef

[∫ j
k

j−1
k

(
f(x)− k

n

n∑

i=1

[ek(Xi)]j

)2

dx

]
+

k∑

j=1

∫ j
k

j−1
k

E

[(
k

n

n∑

i=1

Wij

)2]

=
k∑

j=1

∫ j
k

j−1
k

Ef

[(
f(x)− k

n

n∑

i=1

[ek(Xi)]j

)2
]
dx+ k

1

k

4k2

nα2
. (8.17)

We now bound the error term inside the expectation (8.17). Defining the probabilities
pj := Pf (X ∈ Xj) =

∫
Xj
f(x)dx, we have

kEf [[ek(X)]j ] = kpj = k

∫

Xj

f(x)dx ∈
[
f (x)− 1

k
, f (x) +

1

k

]
for any x ∈ Xj,

by the Lipschitz continuity of f . Thus, expanding the bias and variance of the integrated
expectation above, we find that

Ef

[(
f(x)− k

n

n∑

i=1

[ek(Xi)]j

)2
]
≤ 1

k2
+Var

(
k

n

n∑

i=1

[ek(Xi)]j

)

=
1

k2
+
k2

n
Var([ek(X)]j) =

1

k2
+
k2

n
pj(1− pj).

Recalling the inequality (8.17), we obtain

Ef

[∥∥f̂ − f
∥∥2
2

]
≤

k∑

j=1

∫ j
k

j−1
k

(
1

k2
+
k2

n
pj(1− pj)

)
dx+

4k2

nα2
=

1

k2
+

4k2

nα2
+
k

n

k∑

j=1

pj(1− pj).

Since
∑k

j=1 pj = 1, we find that

Ef

[∥∥f̂ − f
∥∥2
2

]
≤ 1

k2
+

4k2

nα2
+
k

n
,

and choosing k = (nα2)
1
4 yields the claim.
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8.6.3 Proof of Proposition 7.9

We begin by fixing k ∈ N; we will optimize the choice of k shortly. Recall that, since
f ∈ Fβ[C], we have f =

∑∞
j=1 θjϕj for θj =

∫
fϕj. Thus we may define Zj =

1
n

∑n
i=1 Zi,j for

each j ∈ {1, . . . , k}, and we have

‖f̂ − f‖22 =
k∑

j=1

(θj − Zj)
2 +

∞∑

j=k+1

θ2j .

Since f ∈ Fβ[C], we are guaranteed that
∑∞

j=1 j
2βθ2j ≤ C2, and hence

∑

j>k

θ2j =
∑

j>k

j2β
θ2j
j2β
≤ 1

k2β

∑

j>k

j2βθ2j ≤
1

k2β
C2.

For the indices j ≤ k, we note that by assumption, E[Zi,j ] =
∫
ϕjf = θj, and since |Zi,j| ≤ B,

we have

E
[
(θj − Zj)

2
]
=

1

n
Var(Z1,j) ≤

B2

n
=
B2

0

ck

k

n

(
eα + 1

eα − 1

)2

,

where ck = Ω(1) is the constant in expression (7.39). Putting together the pieces, the
mean-squared L2-error is upper bounded as

Ef

[
‖f̂ − f‖22

]
≤ c

(
k2

nα2
+

1

k2β

)
,

where c is a constant depending on B0, ck, and C. Choose k = (nα2)1/(2β+2) to complete the
proof.

8.6.4 Insufficiency of Laplace noise for density estimation

Finally, we consider the insufficiency of standard Laplace noise addition for estimation in
the setting of this section. Consider the vector [ϕj(Xi)]

k
j=1 ∈ [−B0, B0]

k. To make this vector
α-differentially private by adding an independent Laplace noise vector W ∈ Rk, we must
take Wj ∼ Laplace(α/(B0k)). The natural orthogonal series estimator [e.g., 180] is to take
Zi = [ϕj(Xi)]

k
j=1 +Wi, where Wi ∈ Rk are independent Laplace noise vectors. We then use

the density estimator (7.40), except that we use the Laplacian perturbed Zi. However, this
estimator suffers the following drawback:

Observation 8.1. Let f̂ = 1
n

∑n
i=1

∑k
j=1 Zi,jϕj, where the Zi are the Laplace-perturbed

vectors of the previous paragraph. Assume the orthonormal basis {ϕj} of L2([0, 1]) contains
the constant function. There is a constant c such that for any k ∈ N, there is an f ∈ Fβ[2]
such that

Ef

[
‖f − f̂‖22

]
≥ c(nα2)−

2β
2β+3 .
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Proof We begin by noting that for f =
∑

j θjϕj, by definition of f̂ =
∑

j θ̂jϕj we have

E
[
‖f − f̂‖22

]
=

k∑

j=1

E
[
(θj − θ̂j)2

]
+
∑

j≥k+1

θ2j =
k∑

j=1

B2
0k

2

nα2
+
∑

j≥k+1

θ2j =
B2

0k
3

nα2
+
∑

j≥k+1

θ2j .

Without loss of generality, let us assume ϕ1 = 1 is the constant function. Then
∫
ϕj = 0 for

all j > 1, and by defining the true function f = ϕ1 + (k + 1)−βϕk+1, we have f ∈ Fβ[2] and∫
f = 1, and moreover,

E
[
‖f − f̂‖22

]
≥ B2

0k
3

nα2
+

1

(k + 1)−2β
≥ Cβ,B0(nα

2)−
2β

2β+3 ,

where Cβ,B0 is a constant depending on β and B0. This final lower bound comes by mini-
mizing over all k. (If (k+ 1)−βB0 > 1, we can rescale ϕk+1 by B0 to achieve the same result
and guarantee that f ≥ 0.)

This lower bound shows that standard estimators based on adding Laplace noise to

appropriate basis expansions of the data fail: there is a degradation in rate from n− 2β
2β+2 to

n− 2β
2β+3 . While this is not a formal proof that no approach based on Laplace perturbation

can provide optimal convergence rates in our setting, it does suggest that finding such an
estimator is non-trivial.

8.7 Information bounds

In this section, we collect the proofs of lemmas providing mutual information and KL-
divergence bounds.

8.7.1 Proof of Lemma 8.4

Our strategy is to apply Theorem 7.2 to bound the mutual information. Without loss of
generality, we may assume that r = 1 so the set X = {±ej}kj=1, where ej ∈ Rd. Thus, under
the notation of Theorem 7.2, we may identify vectors γ ∈ L∞(X ) by vectors γ ∈ R2k. Noting
that v = 1

|V|
∑

v∈V v = 0 is the mean element of the “packing” set by our construction, the
linear functional ϕv defined in Theorem 7.2 is

ϕv(γ) =
1

2k

k∑

j=1

[
δ

2
γ(ej)vj −

δ

2
γ(−ej)vj

]
=

δ

4k
γ⊤
[
Ik×k 0k×d−k
−Ik×k 0k×d−k

]
v.

Define the matrix

A :=

[
Ik×k 0k×d−k
−Ik×k 0k×d−k

]
∈ {−1, 0, 1}2k×d.
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Then we have that

1

|V|
∑

v∈V
ϕv(γ)

2 =
δ2

(4k)2
γ⊤A

1

|V|
∑

v∈V
vv⊤A⊤γ =

δ2

(4k)2
γ⊤ACov(V )A⊤γ

=
δ2

(4k)2
γ⊤AA⊤γ =

(
δ

4k

)2

γ⊤
[
Ik×k −Ik×k
−Ik×k Ik×k

]
γ. (8.18)

Here we have used that ACov(V )A⊤ = AId×dA
⊤ by the fact that V = {−1, 1}k × {0}d−k.

We complete our proof using the bound (8.18). The operator norm of the matrix specified
in (8.18) is 2. As a consequence, since we have the containment

B∞ =
{
γ ∈ R2k : ‖γ‖∞ ≤ 1

}
⊂
{
γ ∈ R2k : ‖γ‖22 ≤ 2k

}

we have the inequality

sup
γ∈B∞

1

|V|
∑

v∈V
ϕv(γ)

2 ≤ δ2

16k2
· 2 · 2k =

1

4

δ2

k
.

Applying Theorem 7.2 completes the proof.

8.7.2 Proof of Lemma 8.5

It is no loss of generality to assume the radius r = 1. We use the notation of Theorem 7.2,
recalling the linear functionals ϕv : L∞(X ) → R. Because the set X = {−1, 1}d, we can
identify vectors γ ∈ L∞(X ) with vectors γ ∈ R2d . Moreover, we have (by construction) that

ϕv(γ) =
∑

x∈{−1,1}d
γ(x)pv(x)−

∑

x∈{−1,1}d
γ(x)p(x)

=
1

2d

∑

x∈X
γ(x)(1 + δv⊤x− 1) =

δ

2d

∑

x∈X
γ(x)v⊤x.

For each v ∈ V , we may construct a vector uv ∈ {−1, 1}2d , indexed by x ∈ {−1, 1}d, with

uv(x) = v⊤x =

{
1 if v = ±ej and sign(vj) = sign(xj)

−1 if v = ±ej and sign(vj) 6= sign(xj).

For v = ej, we see that ue1 , . . . , ued are the first d columns of the standard Hadamard
transform matrix (and u−ej are their negatives). Then we have that

∑
x∈X γ(x)v

⊤x = γ⊤uv,
and

ϕv(γ) = γ⊤uvu
⊤
v γ.

Note also that uvu
⊤
v = u−vu

⊤
−v, and as a consequence we have

∑

v∈V
ϕv(γ)

2 =
δ2

4d
γ⊤
∑

v∈V
uvu

⊤
v γ =

2δ2

4d
γ⊤

d∑

j=1

ueju
⊤
ej
γ. (8.19)
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But now, studying the quadratic form (8.19), we note that the vectors uej are orthogonal.
As a consequence, the vectors (up to scaling) uej are the only eigenvectors corresponding to

positive eigenvalues of the positive semidefinite matrix
∑d

j=1 ueju
⊤
ej
. Thus, since the set

B∞ =
{
γ ∈ R2d : ‖γ‖∞ ≤ 1

}
⊂
{
γ ∈ R2d : ‖γ‖22 ≤ 2d

}
,

we have via an eigenvalue calculation that

sup
γ∈B∞

∑

v∈V
ϕv(γ)

2 ≤ 2δ2

4d
sup

γ:‖γ‖22≤2d
γ⊤

d∑

j=1

ueju
⊤
ej
γ

=
2δ2

4d
‖ue1‖42 = 2δ2

since ‖uej‖22 = 2d for each j. Applying Theorem 7.2 and Corollary 7.4 completes the proof.

8.7.3 Proof of Lemma 8.7

This result relies on Theorem 7.3, along with a careful argument to understand the extreme
points of γ ∈ L∞([0, 1]) that we use when applying the result. First, we take the packing
V = {−1, 1}β and densities fv for v ∈ V as in the construction (8.14). Overall, our first
step is to show for the purposes of applying Theorem 7.3, it is no loss of generality to
identify γ ∈ L∞([0, 1]) with vectors γ ∈ R2k, where γ is constant on intervals of the form
[i/2k, (i + 1)/2k]. With this identification complete, we can then provide a bound on the
correlation of any γ ∈ B∞ with the densities f±j defined in (8.16), which completes the proof.

With this outline in mind, let the sets Di, i ∈ {1, 2, . . . , 2k}, be defined as Di =
[(i− 1)/2k, i/2k) except that D2k = [(2k− 1)/2k, 1], so the collection {Di}2ki=1 forms a parti-
tion of the unit interval [0, 1]. By construction of the densities fv, the sign of fv − 1 remains
constant on each Di. Let us define (for shorthand) the linear functionals ϕj : L

∞([0, 1])→ R

for each j ∈ {1, . . . , k} via

ϕj(γ) :=

∫
γ(dP+j − dP−j) =

2k∑

i=1

∫

Di

γ(x)(f+j(x)− f−j(x))dx = 2

∫

D2j−1∪D2j

γ(x)gβ,j(x)dx,

where we recall the definitions (8.16) of the mixture densities f±j = 1 ± gβ,j. Since the set
B∞ from Theorem 7.3 is compact, convex, and Hausdorff, the Krein-Milman theorem [143,
Proposition 1.2] guarantees that it is equal to the convex hull of its extreme points; moreover,
since the functionals γ 7→ ϕ2

j(γ) are convex, the supremum in Theorem 7.3 must be attained
at the extreme points of B∞([0, 1]). As a consequence, when applying the divergence bound

k∑

j=1

(
Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

−j||Mn
+j

))
≤ 2n(eα − 1)2 sup

γ∈B∞

k∑

j=1

ϕ2
j(γ), (8.20)
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we can restrict our attention to γ ∈ B∞ for which γ(x) ∈ {−1, 1}.
Now we argue that it is no loss of generality to assume that γ, when restricted to Di,

is a constant (apart from a measure zero set). Fix i ∈ [2k], and assume for the sake of
contradiction that there exist sets Bi, Ci ⊂ Di such that γ(Bi) = {1} and γ(Ci) = {−1},
while λ(Bi) > 0 and λ(Ci) > 0 where λ denotes Lebesgue measure.1 We will construct
vectors γ1 and γ2 ∈ B∞ and a value λ ∈ (0, 1) such that

∫

Di

γ(x)gβ,j(x)dx = λ

∫

Di

γ1(x)gβ,j(x)dx+ (1− λ)
∫

Di

γ2(x)gβ,j(x)dx

simultaneously for all j ∈ [k], while on Dc
i = [0, 1] \Di, we will have the equivalence

γ1|Dc
i
≡ γ2|Dc

i
≡ γ|Dc

i
.

Indeed, set γ1(Di) = {1} and γ2(Di) = {−1}, otherwise setting γ1(x) = γ2(x) = γ(x) for
x 6∈ Di. For the unique index j ∈ [k] such that [(j − 1)/k, j/k] ⊃ Di, we define

λ :=

∫
Bi
gβ,j(x)dx∫

Di
gβ,j(x)dx

so 1− λ =

∫
Ci
gβ,j(x)dx∫

Di
gβ,j(x)dx

.

By the construction of the function gβ, the functions gβ,j do not change signs on Di, and the
absolute continuity conditions on gβ specified in equation (8.13) guarantee 1 > λ > 0, since
λ(Bi) > 0 and λ(Ci) > 0. We thus find that for any j ∈ [k],
∫

Di

γ(x)gβ,j(x)dx =

∫

Bi

γ1(x)gβ,j(x)dx+

∫

Ci

γ2(x)gβ,j(x)dx

=

∫

Bi

gβ,j(x)dx−
∫

Ci

gβ,j(x)dx = λ

∫

Di

gβ,j(x)dx− (1− λ)
∫

Di

gβ,j(x)dx

= λ

∫
γ1(x)gβ,j(x)dx+ (1− λ)

∫
γ2(x)gβ,j(x)dx.

(Notably, for j such that gβ,j is identically 0 on Di, this equality is trivial.) By linearity and
the strong convexity of the function x 7→ x2, then, we find that for sets Ej := D2j−1 ∪D2j,

k∑

j=1

ϕ2
j(γ) =

k∑

j=1

(∫

Ej

γ(x)gβ,j(x)dx

)2

< λ
k∑

j=1

(∫

Ej

γ1(x)gβ,j(x)dx

)2

+ (1− λ)
∑

v∈V

(∫

Ej

γ2(x)gβ,j(x)dx

)2

.

Thus one of the densities γ1 or γ2 must have a larger objective value than γ. This is
our desired contradiction, which shows that (up to measure zero sets) any γ attaining the
supremum in the information bound (8.20) must be constant on each of the Di.

1For a function f and set A, the notation f(A) denotes the image f(A) = {f(x) | x ∈ A}.
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Having shown that γ is constant on each of the intervals Di, we conclude that the
supremum (8.20) can be reduced to a finite-dimensional problem over the subset

B1,2k :=
{
u ∈ R2k | ‖u‖∞ ≤ 1

}

of R2k. In terms of this subset, the supremum (8.20) can be rewritten as the the upper
bound

sup
γ∈B∞

k∑

j=1

ϕj(γ)
2 ≤ sup

γ∈B1,2k

k∑

j=1

(
γ2j−1

∫

D2j−1

gβ,j(x)dx+ γ2j

∫

D2j

gβ,j(x)dx

)2

By construction of the function gβ, we have the equality

∫

D2j−1

gβ,j(x)dx = −
∫

D2j

gβ,j(x)dx =

∫ 1
2k

0

gβ,1(x)dx =

∫ 1
2k

0

1

kβ
gβ(kx)dx =

c1/2
kβ+1

.

This implies that

1

2eα(eα − 1)2n

k∑

j=1

(
Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

+j||Mn
−j
))
≤ sup

γ∈B∞

k∑

j=1

ϕj(γ)
2

≤ sup
γ∈B1,2k

k∑

j=1

( c1/2
kβ+1

γ⊤(e2j−1 − e2j)
)2

=
c21/2
k2β+2

sup
γ∈B1,2k

γ⊤
k∑

j=1

(e2j−1 − e2j)(e2j−1 − e2j)⊤γ,

(8.21)

where ej ∈ R2k denotes the jth standard basis vector. Rewriting this using the Kronecker
product ⊗, we have

k∑

j=1

(e2j−1 − e2j)(e2j−1 − e2j)⊤ = Ik×k ⊗
[
1 −1
−1 1

]
� 2I2k×2k.

Combining this bound with our inequality (8.21), we obtain

k∑

j=1

(
Dkl

(
Mn

+j||Mn
−j
)
+Dkl

(
Mn

+j||Mn
−j
))
≤ 4n(eα − 1)2

c21/2
k2β+2

sup
γ∈B1,2k

‖γ‖22 = 4c21/2
n(eα − 1)2

k2β+1
.
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Part IV

Communication
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Chapter 9

Communication efficient algorithms

The broad question in this part of the thesis is the extent to which it is possible to avoid
communication in solving distributed estimation problems; such problems arise in settings
involving large-scale data sets. As we show in this chapter, for suitable (classical) statistical
problems, it is possible to have extremely low communication: for d-dimensional problems
distributed across m processors, it is possible for each of the m processors to communicate
only a single (quantized) vector in Rd.

In this chapter, which is based off of a paper by Zhang, Duchi, and Wainwright [189],
we present three communication-efficient procedures for distributed statistical optimization.
These set the stage for several optimality guarantees we give in Chapter 10 for procedures
constrained to communicate small numbers of bits; the current chapter shows that our coming
lower bounds are in fact sharp. This chapter’s purpose is mainly illustrative, motivating
Chapter 10, so we present a proof only of the first major theorem, as the proof is gentler
than previous arguments [189] while suggesting the main techniques. We refer otherwise
to the paper [189], as we simply wish to give intuition for the potential successes (and
drawbacks) of low-communication algorithms.

The basic problem in the chapter is the following: we have N observations distributed
across m machines, and we wish to construct estimates as statistically efficient as those with
access to a full sample of size N . The first algorithm is a standard averaging method that
distributes the N data observations evenly to m machines, performs separate minimization
on each subset, and then averages the estimates. We provide a sharp analysis of this average
mixture algorithm, showing that under a reasonable set of conditions, the combined param-
eter is asymptotically normal with variance decreasing as OP (N−1 + (N/m)−2). Whenever
m ≪

√
N , this guarantee matches the best possible rate achievable by a centralized algo-

rithm having access to all N samples; indeed, the estimator is even locally asymptotically
minimax [115, 116].

In addition, we also review a novel method due to Zhang et al. [189] based on an appro-
priate form of bootstrap subsampling, known as the subsampled average mixture (Savgm)
algorithm. Requiring only a single round of communication, it has mean-squared error that
decays as O(N−1 + (N/m)−3), and so is more robust to the amount of parallelization. We
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also describe a stochastic gradient-based method that attains mean-squared error decaying
as O(N−1 + (N/m)−3/2), easing computation at the expense of a potentially slower mean-
squared-error (MSE) rate.

As this chapter is meant mostly as motivation to show how low-communication schemes
may be effective, we omit experimental results complementing these theoretical results, re-
ferring to Zhang et al.’s paper [189]. We note in passing, however, that our paper [189]
investigates the performance of these methods both on simulated data and on a large-scale
regression problem from the internet search domain. In particular, we show that the meth-
ods can be used to efficiently solve an advertisement prediction problem from the Chinese
SoSo Search Engine, which involves logistic regression with N ≈ 2.4 × 108 samples and
d ≈ 740,000 covariates, and moreover, the experiments show how the Savgm can offer
improved performance over more naive approaches.

9.1 Introduction

Many procedures for statistical estimation are based on a form of (regularized) empirical risk
minimization, meaning that a parameter of interest is estimated by minimizing an objective
function defined by the average of a loss function over the data. Given the current explosion
in the size and amount of data available in statistical studies, a central challenge is to
design efficient algorithms for solving large-scale problem instances. In a centralized setting,
there are many procedures for solving empirical risk minimization problems, among them
standard convex programming approaches [e.g. 32] as well as stochastic approximation and
optimization algorithms [150, 96, 135]. When the size of the dataset becomes extremely
large, however, it may be infeasible to store all of the data on a single computer, or at least
to keep the data in memory. Accordingly, the focus of this chapter is the study of some
distributed and communication-efficient procedures for empirical risk minimization.

Recent years have witnessed a flurry of research on distributed approaches to solving
very large-scale statistical optimization problems. Although we cannot survey the litera-
ture adequately—the papers Nedić and Ozdaglar [131], Ram et al. [147], Johansson et al.
[103], Duchi et al. [54], Dekel et al. [49], Agarwal and Duchi [3], Niu et al. [141] and references
therein contain a sample of relevant work—we touch on a few important themes here. It can
be difficult within a purely optimization-theoretic setting to show explicit benefits arising
from distributed computation. In statistical settings, however, distributed computation can
lead to gains in computational efficiency, as shown by a number of authors [3, 49, 141, 55].
Within the family of distributed algorithms, there can be significant differences in communi-
cation complexity: different computers must be synchronized, and when the dimensionality
of the data is high, communication can be prohibitively expensive. It is thus interesting
to study distributed estimation algorithms that require fairly limited synchronization and
communication while still enjoying the greater statistical accuracy that is usually associated
with a larger dataset.

With this context, perhaps the simplest algorithm for distributed statistical estimation
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is what we term the average mixture (Avgm) algorithm. It is an appealingly simple method:
given m different machines and a dataset of size N , first assign to each machine a (distinct)
dataset of size n = N/m, then have each machine i compute the empirical minimizer θi
on its fraction of the data, and finally average all the parameter estimates θi across the
machines. This approach has been studied for some classification and estimation problems
by Mann et al. [125] and McDonald, Hall, and Mann [128], as well as for certain stochastic
approximation methods by Zinkevich et al. [191]. Given an empirical risk minimization
algorithm that works on one machine, the procedure is straightforward to implement and
is extremely communication efficient, requiring only a single round of communication. It is
also relatively robust to possible failures in a subset of machines and/or differences in speeds,
since there is no repeated synchronization. When the local estimators are all unbiased, it is
clear that the the Avgm procedure will yield an estimate that is essentially as good as that
of an estimator based on all N samples. Many estimators used in practice are biased, so it
is natural to ask whether the method has any guarantees in a more general setting.

This chapter reviews several natural one-shot—requiring one round of communication—
distributed algorithms. First, in Section 9.3, we provide a sharp analysis of the Avgm

algorithm, showing that under a reasonable set of conditions on the population risk, the
Avgm procedure is asymptotically normal with optimal covariance, with additional error
terms scaling as OP (

√
m/n). Whenever the number of machines m is less than the num-

ber of samples n per machine, this guarantee matches the best possible rate achievable by
a centralized algorithm having access to all N = nm observations. We also present re-
sults showing that the result extends to stochastic programming approaches, exhibiting a
stochastic gradient-descent based procedure that also attains convergence rates scaling as
O((nm)−1), but with slightly worse dependence on different problem-specific parameters.

We also study a novel extension of simple averaging based on an appropriate form of
resampling [71, 87, 145], which we refer to as the subsampled average mixture (Savgm)
approach. At a high level, the Savgm algorithm distributes samples evenly among m pro-
cessors or computers as before, but instead of simply returning the empirical minimizer, each
processor further subsamples its own dataset in order to estimate its estimate’s bias and re-
turns a subsample-corrected estimate. Under appropriate conditions, which we provide, the
Savgm algorithm has mean-squared error decaying as O(m−1n−1+n−3). As long as m < n2,
the subsampled method again matches the centralized gold standard in the first-order term,
and has a second-order term smaller than the standard averaging approach.

9.2 Background and Problem Set-up

We begin by establishing our framework for risk minimization, which closely follows that
studied in Part II of this thesis on stochastic optimization problems. After this, we describe
our algorithms and provide a few assumptions we require for our main theoretical results.
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Empirical Risk Minimization

Let {ℓ(·; x), x ∈ X} be a collection of real-valued and convex loss functions, each defined on
a set containing the convex set Θ ⊆ Rd. Let P be a probability distribution over the sample
space X . Assuming that each function x 7→ ℓ(θ; x) is P -integrable, the population risk
R : Θ → R is given by the standard formula (2.2), R(θ) := EP [ℓ(θ;X)] =

∫
X ℓ(θ; x)dP (x).

Our goal is to estimate the parameter vector minimizing the population risk,

θ∗ := argmin
θ∈Θ

R(θ) = argmin
θ∈Θ

∫

X
ℓ(θ; x)dP (x),

which we assume to be unique. In practice, the population distribution P is unknown to us,
but we have access to a collection S = {x1, . . . , xN} of observations from the distribution
P . Given centralized access to the entire sample S, a natural procedure is empirical risk
minimization [118, 175, 176] which estimates θ∗ by solving the optimization problem

θ̂ ∈ argmin
θ∈Θ

{
1

N

N∑

i=1

ℓ(θ; xi)

}
. (9.1)

Averaging Methods

Consider a data set consisting of N = mn observations, drawn i.i.d. according to the dis-
tribution P . In the distributed setting, we divide this N -observation data set evenly and
uniformly at random among a total of m processors. (For simplicity, we have assumed
the total number of observations is a multiple of m.) For i = 1, . . . ,m, we let S1,i denote
the data set assigned to processor i; by construction, it is a collection of n observations
drawn i.i.d. according to P , and the observations in subsets S1,i and S1,j are independent

for i 6= j. In addition, for each processor i we define the (local) empirical objective R̂1,i via

R̂1,i(θ) :=
1

|S1,i|
∑

x∈S1,i
ℓ(θ; x). With this notation, the Avgm algorithm is simple to describe.

Average mixture algorithm:

(1) For each i ∈ {1, . . . ,m}, processor i uses its local dataset S1,i to compute a local
empirical minimizer

θ1,i ∈ argmin
θ∈Θ

R̂1,i(θ) = argmin
θ∈Θ

{ 1

|S1,i|
∑

x∈S1,i

ℓ(θ; x)
}
. (9.2)

(2) These m local estimates are then averaged together—that is, we compute

θAvgm =
1

m

m∑

i=1

θ1,i. (9.3)

The subsampled average mixture (Savgm) algorithm is based on an additional level of
sampling on top of the first, involving a fixed subsampling rate r ∈ [0, 1]. It consists of the
following additional steps:
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Subsampled average mixture algorithm:

(1) Each processor i draws a subset S2,i of size ⌈rn⌉ by sampling uniformly at random
without replacement from its local data set S1,i.

(2) Each processor i computes both the local empirical minimizers θ1,i from equation (9.2)
and the empirical minimizer

θ2,i ∈ argmin
θ∈Θ

{ 1

|S2,i|
∑

x∈S2,i

ℓ(θ; x)
}
.

(3) In addition to the previous average (9.3), the Savgm algorithm computes the bootstrap
average θ2 :=

1
m

∑m
i=1 θ2,i, and then returns the weighted combination

θSavgm :=
θAvgm − rθ2

1− r . (9.4)

The intuition for the weighted estimator (9.4) is similar to that for standard bias cor-
rection procedures using the bootstrap or subsampling [71, 87, 145]. Roughly speaking, if
b0 = θ∗ − θAvgm is the bias of the first estimator, then we may approximate b0 by the sub-
sampled estimate of bias b1 = θ∗ − θ2. But because b1 ≈ b0/r, it is possible to argue that
θ∗ ≈ (θAvgm − rθ2)/(1 − r). The re-normalization enforces that the relative “weights” of
θAvgm and θ2 sum to 1.

Our goal is to understand under what conditions—and in what sense—the estimators (9.3)
and (9.4) approach the oracle performance, by which we mean the error of a centralized risk
minimization procedure that is given access to all N = nm observations. When is it possible
to achieve the performance of the empirical risk minimizer (9.1)?

9.3 Theoretical Results

Having described the Avgm and Savgm algorithms, we now turn to statements of our main
theorems on their statistical properties, along with some consequences and comparison to
past work.

9.3.1 Smoothness Conditions

Throughout the paper, we impose some regularity conditions on the parameter space, the
risk function R, and the instantaneous loss functions ℓ(·; x) : Θ → R. These conditions
are standard in classical statistical analysis of M -estimators [e.g. 118, 109]; our first set of
assumptions is the weakest and is required for all the results, while subsequent assumptions
appear to be necessary only for stronger theoretical guarantees. Throughout, without further
notice, we assume that the parameter space Θ ⊂ Rd is convex, and we also require that
θ∗ ∈ intΘ. In addition, the risk function is required to have some amount of curvature. We
formalize this notion in terms of the Hessian of the risk R:
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Assumption 9A (Local strong convexity). The population risk is twice differentiable, and
there exists a parameter λ > 0 such that ∇2R(θ∗) � λId×d.

This local condition is milder than a global strong convexity condition and is required to
hold only for the population risk R evaluated at θ∗. Of course, some type of curvature of
the risk is required for any method to consistently estimate the parameters θ∗.

In addition, we require regularity conditions on the empirical risk functions. It is simplest
to state these in terms of the functions θ 7→ ℓ(θ; x); it is possible to obtain convergence
guarantees for Avgm and Savgm while requiring this assumption to hold only locally around
the optimal point θ∗, but we opt for simpler statements.

Assumption 9B (Smoothness). For any x ∈ X , the function θ 7→ ℓ(x; θ) has H(x)-Lipschitz
continuous Hessian with respect to the operator norm on matrices, meaning that

∣∣∣∣∣∣∇2ℓ(θ′; x)−∇2ℓ(θ; x)
∣∣∣∣∣∣
2
≤ H(x) ‖θ′ − θ‖2 , (9.5)

where E[H(X)2] ≤ H2. Around θ∗, the gradients have finite variance: there exists a constant
M <∞ such that E[‖∇ℓ(θ∗;X)‖22] ≤M2.

It important to note that some type of smoothness condition on the Hessian matrix, as
in the Lipschitz condition (9.5), is essential in order for simple averaging methods to work.
This necessity is illustrated by the following example:

Example 9.1 (Necessity of Hessian conditions). Let X be a Bernoulli variable with parameter
1
2
, and consider the loss function

ℓ(θ; x) =

{
θ2 − θ if x = 0

θ21 {θ ≤ 0}+ θ if x = 1,
(9.6)

where 1 {θ ≤ 0} is the indicator of the event {θ ≤ 0}. The associated population risk is
R(θ) = 1

2
(θ2+ θ21 {θ ≤ 0}). Since |R′(w)−R′(v)| ≤ 2|w− v|, the population risk is strongly

convex and smooth, but it has discontinuous second derivative. The unique minimizer of
the population risk is θ∗ = 0, and by an asymptotic expansion (see [189, Appendix A]), we

have E[θ1,i] = Ω(n− 1
2 ). Consequently, the bias of θAvgm is Ω(n− 1

2 ), and the Avgm algorithm
using N = mn observations must suffer mean squared error E[(θAvgm − θ∗)2] = Ω(n−1).

The previous example establishes the necessity of a smoothness condition. However, in a
certain sense, it is a pathological case: both the smoothness condition given in Assumption 9B
and the local strong convexity condition given in Assumption 9A are relatively innocuous for
practical problems. For instance, both conditions will hold for standard forms of regression,
such as linear and logistic, as long as the population data covariance matrix is not rank
deficient and the data has suitable moments.
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9.3.2 Bounds for Simple Averaging

We now turn to our first theorem that provides guarantees on the statistical error associated
with the Avgm procedure. We recall that θ∗ denotes the minimizer of the population risk
function R, and that for each i ∈ {1, . . . ,m}, we use Si to denote a dataset of n independent
samples. For each i, we use θi ∈ argminθ∈Θ{ 1n

∑
x∈Si

ℓ(θ; x)} to denote a minimizer of the

empirical risk for the dataset Si, and we define the averaged vector θAvgm = 1
m

∑m
i=1 θi. The

following simple result provides an asymptotic expansion of the averaged vector θAvgm in
terms of θ∗, which we can use to show asymptotic normality of θAvgm. In the theorem, we
let X i

j denote the jth observation in subsampled data set i. This is the only theorem we
prove in this chapter, as its proof is substantially simpler than the mean-squared error proofs
presented in the original work [189] off of which this chapter is based. (See Section 9.5.)

Theorem 9.1. With the definitions and assumptions above, we have

θAvgm − θ∗ = −[∇2R(θ∗)]−1 1

N

m∑

i=1

n∑

j=1

∇ℓ(θ∗;X i
j) +OP

(
1

n

)
. (9.7)

As an immediate consequence of Theorem 9.1, we obtain the following corollary.

Corollary 9.1. Define the matrix

Σ = [∇2R(θ∗)]−1E[∇ℓ(θ∗;X)∇ℓ(θ∗;X)⊤][∇2R(θ∗)]−1.

Then so long as m/n→ 0 as n→∞, we have

√
N
(
θAvgm − θ∗

) d→ N (0,Σ) .

Proof Multiplying both sides of the equality (9.7) by
√
N =

√
nm, we obtain

√
N(θ − θ∗) = − 1√

N
[∇2R(θ∗)]−1

m∑

i=1

n∑

j=1

∇ℓ(θ∗;X i
j) +OP

(√
N

n

)
. (9.8)

Because
√
N/n =

√
m/n, the remainder term is OP (

√
m/n)→ 0 if m/n→ 0, and Slutsky’s

theorem (see, e.g. [175]) guarantees that as long as the first term converges in distribution,
the OP term is negligible. The first term in the preceding display is asymptotically normal
with mean 0 and covariance Σ, because E[∇ℓ(θ∗;X)] = 0.

Under stronger conditions explored in our paper [189], it is possible to give mean-squared
error convergence guarantees for the average mixture parameter θAvgm. In particular, under
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some additional moment conditions on the Hessian smoothness constant H and a compact-
ness assumption on Θ, Theorem 1 of Zhang, Duchi, and Wainwright [189] states the following
(after a bit of inspection of the proof): for any ǫ > 0,

E
[∥∥θAvgm − θ∗

∥∥2
2

]
≤ (1 + ǫ)

N
E
[∥∥∇2R(θ∗)−1∇ℓ(θ∗;X)

∥∥2
2

]
+ C

(
1 +

1

ǫ

)
m2

λ2N2
, (9.9)

where the constant C hides several problem-dependent constants. This upper bound shows
that the leading term decays proportionally to (nm)−1, with the pre-factor depending in-
versely on the strong convexity constant λ and growing proportionally with the bound M
on the loss gradient, and is what one would heuristically expect from the expansion (9.8).

The leading term in the upper bound (9.9) involves the product of the gradient ∇ℓ(θ∗;X)
with the inverse Hessian. In many statistical settings, including linear regression, the effect
of this matrix-vector multiplication is to perform some type of standardization. When the
loss ℓ(·; x) : Θ→ R is actually the negative log-likelihood ℓlog(x | θ) for a parametric family
of models {Pθ}, we can make this intuition precise. In particular, under suitable regularity
conditions [e.g. 118, Chapter 6], we can define the Fisher information matrix

I(θ∗) := E
[
∇ℓlog(X | θ∗)∇ℓlog(X | θ∗)⊤

]
= E[∇2ℓlog(X | θ∗)].

Recalling that N = mn is the total sample size, let us define the neighborhood B2(θ, t) :=
{θ′ ∈ Rd : ‖θ′ − θ‖2 ≤ t}. Under our assumptions, the Hájek-Le Cam minimax theorem [116,

175, Theorem 8.11] guarantees for any estimator θ̂N based on N observations that

lim
δ→∞

lim inf
N→∞

sup
θ∈B2(θ∗,δ/

√
N)

N Eθ

[∥∥θ̂N − θ
∥∥2
2

]
≥ tr(I(θ∗)−1).

In connection with Theorem 9.1, we obtain the following result under the conditions of
the theorem, whenever the loss functions are negative log-likelihoods (a mean-squared error
bound based on inequality (9.9) is also possible).

Corollary 9.2. If m/n→ 0 as n→∞, then

√
mn

(
θAvgm − θ∗

) d→ N
(
0, I(θ∗)−1

)
.

Proof In the notation of Theorem 9.1, we have ∇ℓlog(x | θ∗) = ∇ℓ(θ∗; x), and

I(θ∗)−1 = E
[
I(θ∗)−1∇ℓlog(X | θ∗)∇ℓlog(X | θ∗)⊤I(θ∗)−1

]

= E
[ (
∇2R(θ∗)−1∇ℓ(θ∗;X)

) (
∇2R(θ∗)−1∇ℓ(θ∗;X)

)⊤ ]

by the definition of Fisher information.
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Corollary 9.2 and inequality (9.9) show that under appropriate conditions, the Avgm

algorithm essentially achieves the best possible result. The important aspect of our bound,
however, is that Avgm obtains this convergence guarantee without calculating an estimate
on all N = mn observations: instead, we calculate m independent estimators, and then
average them to attain the convergence guarantee.

As noted in the introduction, these bounds are certainly to be expected for unbiased
estimators, since in such cases averaging m independent solutions reduces the variance by
1/m. In this sense, our results are similar to classical distributional convergence results in
M -estimation: as Theorem 9.1 shows, for smooth enough problems, M -estimators behave
asymptotically like averages [175, 118], and averaging multiple independent realizations re-
duces their variance. However, it is often desirable to use biased estimators, and such bias
introduces difficulty in the analysis, which we explore more in the next section. The finite
sample mean-squared error results, summarized in inequality (9.9), of our work [189] are also
sharper than classical analyses, applicable to finite samples, and give explicit upper bounds.
Lastly, our results are not tied to a specific model, which allows for fairly general sampling
distributions.

9.3.3 Bounds for Subsampled Mixture Averaging

When the number of machines m is relatively small, Theorem 9.1, inequality (9.9) and
Corollary 9.2 show that the convergence rate of the Avgm algorithm is mainly determined
by the first term in the bound (9.9), which is at most M2

λ2mn
. In contrast, when the number

of processors m grows, the second term in the bound (9.9), in spite of being O(n−2), may
have non-negligible effect (that is, the constants hidden in the OP (

√
N/n) in expression (9.8)

may be large). This issue is exacerbated when the local strong convexity parameter λ of the
risk R is close to zero or the Lipschitz continuity constant L of ∇ℓ is large. This concern
motivated our development of the subsampled average mixture (Savgm) algorithm; we now
review a few theoretical results available for the method (see [189]).

We begin by explicitly codifying our assumptions. First, we assume that the parameter
space Θ is compact (in addition to being convex). In addition to our previously stated
assumptions, we require a few additional regularity conditions on the empirical risk functions,
which are necessary due to the additional randomness introduced by the subsampling in
Savgm (and because we provide mean-squared-error bounds). It is simplest to state these
in terms of the functions θ 7→ ℓ(θ; x), and we note that, as with Assumption 9A, we require
these to hold only locally around the optimal point θ∗, in particular within some Euclidean
ball U = {θ ∈ Rd | ‖θ∗ − θ‖2 ≤ ρ} ⊆ Θ of radius ρ > 0.

Assumption 9C (Smoothness). There are finite constants M,L such that the first and the
second partial derivatives of f exist and satisfy the bounds

E[‖∇ℓ(θ;X)‖82] ≤M8 and E[
∣∣∣∣∣∣∇2ℓ(θ;X)−∇2R(θ)

∣∣∣∣∣∣8
2
] ≤ L8 for all θ ∈ U .
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In addition, for any x ∈ X , the Hessian matrix ∇2ℓ(θ; x) is H(x)-Lipschitz continuous,
meaning that

∣∣∣∣∣∣∇2ℓ(θ′; x)−∇2ℓ(θ; x)
∣∣∣∣∣∣

2
≤ H(x) ‖θ′ − θ‖2 for all θ, θ′ ∈ U .

We require that E[H(X)8] ≤ H8 and E[(H(X) − E[H(X)])8] ≤ H8 for a constant H < ∞.
Lastly, for each x ∈ X , the third derivatives of ℓ are G(x)-Lipschitz continuous,
∥∥(∇3ℓ(θ; x)−∇3ℓ(θ′; x)

)
(u⊗ u)

∥∥
2
≤ G(x) ‖θ − θ′‖2 ‖u‖

2
2 for all θ, θ′ ∈ U , and u ∈ Rd,

where E[G8(X)] ≤ G8 for some constant G <∞.

It is easy to verify that Assumption 9C holds for least-squares regression with G = 0. It
also holds for various types of non-linear regression problems (e.g., logistic, multinomial) as
long as the covariates have finite eighth moments. With this set-up, the Savgm method—
averaging with bootstrap resampling—enjoys improved performance [189, Theorem 4, sharp-
ened]:

Theorem 9.2. Under Assumptions 9A and 9C, the output θSavgm = (θAvgm − rθ2)/(1 − r)
of the bootstrap Savgm algorithm has mean-squared error bounded, for any ǫ > 0, as

E
[∥∥θSavgm − θ∗

∥∥2
2

]
≤ 1 + ǫ+ 3r

(1− r)2 ·
1

nm
E
[∥∥∇2R(θ∗)−1∇ℓ(θ∗;X)

∥∥2
2

]
(9.10)

+ c

(
G2M6

λ6
+
M4H2d log d

λ4

)(
1 + 1

ǫ

r(1− r)2
)
n−3 +O

(
1

(1− r)2m
−1n−2

)

for a numerical constant c.

Inspecting the conclusions of Theorem 9.2, we see that the the O(n−2) term in the
bound (9.9) has been eliminated. The reason for this elimination is that subsampling at
a rate r reduces the bias of the Savgm algorithm to O(n−3), whereas in contrast, the
bias of the Avgm algorithm induces terms of order n−2. Theorem 9.2 suggests that the
performance of the Savgm algorithm is affected by the subsampling rate r; in order to
minimize the upper bound (9.10) in the regime m < N2/3, the optimal choice is of the form
r ∝ C

√
m/n = Cm3/2/N . Roughly, as the number of machines m becomes larger, we may

increase r, since we enjoy averaging affects from the Savgm algorithm.
Let us consider the relative effects of having larger numbers of machines m for both the

Avgm and Savgm algorithms, which provides some guidance to selecting m in practice. We
define σ2 = E[‖∇2R(θ∗)−1∇ℓ(θ∗;X)‖22] to be the asymptotic variance. Then to obtain the
optimal convergence rate of σ2/N , we must have

m≪ N
1
2 , or m≪ n (9.11)

in Theorem 9.1 and expression (9.9). Applying the bound of Theorem 9.2, we find that to
obtain the same rate after setting r = Cm3/2/N as in the previous paragraph, that

m≪ N
2
3 or m≪ n2. (9.12)
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Comparing inequalities (9.11) and (9.12), we see that in both casesmmay grow polynomially
with the global sample size N while still guaranteeing optimal convergence rates, and this
asymptotic growth may be faster in the subsampled case (9.12). Averaging methods are, of
course, not a panacea: the allowed number of partitions m does not grow linearly in either
case, so blindly increasing the number of machines proportionally to the total sample size
N will not lead to a useful estimate.

9.3.4 Stochastic Gradient Descent with Averaging

The previous strategy involved a combination of stochastic gradient descent and standard
gradient descent. In many settings, it may be appealing to use only a stochastic gradient
algorithm, due to their ease of their implementation and limited computational requirements.
In this section, we describe an extension of the Avgm algorithm to the case in which each
machine computes an approximate minimizer using only stochastic gradient descent, which
we presented and reviewed in Chapter 3, Section 3.1.

More precisely, the averaged stochastic gradient algorithm (SGDavgm) is performs the
following two steps:

(1) Given some constant c > 1, each machine performs n iterations of stochastic gradient
descent (3.2) on its local dataset of n samples using the stepsize αk =

c
λk
, then outputs

the resulting local parameter θ′i.

(2) The algorithm computes the average θ
n
= 1

m

∑m
i=1 θ

′
i.

To prove convergence of our stochastic gradient-based averaging algorithms, we require
the following smoothness and strong convexity condition, which is an alternative to the
assumptions used previously.

Assumption 9D (Smoothness and Strong Convexity II). There exists a function H : X →
R+ such that

∣∣∣∣∣∣∇2ℓ(θ; x)−∇2ℓ(θ∗; x)
∣∣∣∣∣∣
2
≤ H(x) ‖θ − θ∗‖2 for all x ∈ X ,

and E[H2(X)] ≤ H2 <∞. There are finite constants M and L such that

E[‖∇ℓ(θ;X)‖42] ≤M4, and E[
∣∣∣∣∣∣∇2ℓ(θ∗;X)

∣∣∣∣∣∣4
2
] ≤ L4 for each fixed θ ∈ Θ.

In addition, the population function R is λ-strongly convex over the space Θ, that is,

∇2R(θ) � λId×d for all θ ∈ Θ.

Assumption 9D does not require as many moments as does Assumption 9C, but it does re-
quire each moment bound to hold globally, that is, over the entire space Θ, rather than only
in a neighborhood of the optimal point θ∗. Similarly, the necessary curvature—in the form



204

of the lower bound on the Hessian matrix ∇2R—is also required to hold globally, rather than
only locally. Nonetheless, Assumption 9D holds for many common problems; for instance, it
holds for any linear regression problem in which the covariates have finite fourth moments
and the domain Θ is compact.

The following result [189, Theorem 5] characterizes the mean-squared error of this pro-
cedure in terms of the constants

α := 4c2 and β := max

{⌈
cL

λ

⌉
,
cα3/4M3/2

(c− 1)λ5/2

(
α1/4HM1/2

λ1/2
+

4M + Lr2
ρ3/2

)}
.

Theorem 9.3. Under Assumption 9D, the output θ
n
of the Savgm algorithm has mean-

squared error upper bounded as

E
[∥∥θn − θ∗

∥∥2
2

]
≤ αM2

λ2mn
+

β2

n3/2
. (9.13)

Theorem 9.3 shows that the averaged stochastic gradient descent procedure attains the
optimal convergence rate O(N−1) as a function of the total number of observations N = mn.
The constant and problem-dependent factors are certainly worse than those in the earlier
results we presented in Theorems 9.1 and 9.2, but the practical implementability of such a
procedure may in some circumstances outweigh those differences.

9.4 Summary

Large scale statistical inference problems are challenging, and the difficulty of solving them
will only grow as data becomes more abundant: the amount of data we collect is growing
much faster than the speed or storage capabilities of our computers. The Avgm, Savgm,
and SGDavgm methods provide strategies for efficiently solving such large-scale risk min-
imization problems, enjoying performance comparable to an oracle method that is able to
access the entire large dataset. That said, these methods may not always have good practical
performance; it may be that they provide good initialization for further efficient optimiza-
tion. An understanding of the interplay between statistical efficiency and communication is
of general interest as well: given the expense of communication in modern systems, minimiz-
ing it is of increasing importance [14, 79]. The algorithms in this chapter have shown that,
in some scenarios, it is possible to perform very little communication; in the next, we show
that these procedures are (essentially) communication optimal.

9.5 Proof of Theorem 9.1

The proof of this theorem follows those of similar standard distributional convergence results;
see, for example, Lehmann and Casella [118]. We begin by considering a somewhat simpler
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problem: we assume that m = 1 and study the convergence of

θ̂ := argmin
θ∈Θ

R̂(θ) =
1

n

n∑

i=1

ℓ(θ;Xi)

for Xi sampled i.i.d. according to P . By assumption, ℓ is twice continuously differentiable,
and as a consequence, we have by a Taylor expansion that

0 = ∇R̂(θ̂) = ∇R̂(θ∗) +∇2R̂(θ̃)(θ̂ − θ∗),

where θ̃ = tθ∗ + (1 − t)θ̂ for some t ∈ [0, 1]. Expanding this expression by adding and

subtracting ∇2R(θ∗)(θ̂ − θ∗), we have

0 = ∇R̂(θ∗) +∇2R(θ∗)(θ̂ − θ∗) + (∇2R̂(θ̃)−∇2R(θ∗))(θ̂ − θ∗).

In particular, we find that since ∇2R(θ∗) ≻ 0 by assumption,

θ̂ − θ∗ = −[∇2R(θ∗)]−1∇R̂(θ∗)− [∇2R(θ∗)]−1(∇2R̂(θ̃)−∇2R(θ∗))(θ̂ − θ∗)︸ ︷︷ ︸
=:T

. (9.14)

To complete the proof, it remains to show that T = OP (1/n), because the average of m
independent terms T , each with T = OP (n−1), will still be OP (n−1). We show the result

in three steps. First, we assume that θ̂ − θ∗ = OP (n− 1
2 ); we will show that this implies the

result. After this, we will assume simply the consistency guarantee that θ̂ − θ∗ = oP (1),

which we show will imply θ̂ − θ∗ = OP (n− 1
2 ). After this, we simply cite standard results

guaranteeing consistency of M -estimators [118, 175].

Beginning under the assumption that θ̂ − θ∗ = OP (n− 1
2 ), we always have that

∇2R̂(θ̃)−∇2R(θ∗) = ∇2R̂(θ̃)−∇2R̂(θ∗)︸ ︷︷ ︸
=:T1

+∇2R̂(θ∗)−∇2R(θ∗)︸ ︷︷ ︸
=:T2

.

For the first term T1, we have by the Lipschitz Assumption 9B on ∇2ℓ that

∣∣∣
∣∣∣
∣∣∣∇2R̂(θ̃)−∇2R̂(θ∗)

∣∣∣
∣∣∣
∣∣∣ ≤ 1

n

n∑

i=1

H(Xi)
∥∥θ̃ − θ∗

∥∥
2
≤ 1

n

n∑

i=1

H(Xi)
∥∥θ̂ − θ∗

∥∥
2
.

For any ǫ > 0, there exists a C(ǫ) such that

P (‖θ̂ − θ∗‖2 ≥ C(ǫ)/
√
n) ≤ ǫ,

and similarly we have that 1
n

∑n
i=1H(Xi) = OP (1) by Assumption 9B. Now we show that

T1 = OP (n− 1
2 ). Indeed, for fixed t > 0, to have 1

n

∑n
i=1H(Xi)‖θ̂ − θ∗‖2 ≥ t/

√
n requires

that at least one of 1
n

∑n
i=1H(Xi) ≥

√
t or ‖θ̂ − θ∗‖2 ≥

√
t/n, and consequently, we see
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that |||T1||| = |||∇2R̂(θ̃)−∇2R̂(θ∗)||| = OP (n− 1
2 ). The central limit theorem implies that

T2 = OP (n− 1
2 ), and revisiting the equality (9.14), we have that

T = V (θ̂ − θ∗) for some random V ∈ Rd×d with V = OP (n− 1
2 ).

Since θ̂ − θ∗ = OP (n− 1
2 ) by assumption, we see that inequality (9.7) holds.

Now, we show that under the consistency condition that θ̂ − θ∗ p→ 0, we have θ̂ − θ∗ =
OP (n− 1

2 ). Indeed, recalling expression (9.14), we have

(
Id×d + [∇2R(θ∗)]−1(∇2R̂(θ̃)−∇2R(θ∗))

)
(θ̂ − θ∗) = −[∇2R(θ∗)]−1∇R̂(θ∗).

Using reasoning identical to the previous paragraph, we have that∇2R̂(θ̃)−∇2R(θ∗) = oP (1)
under our assumptions, so that

(Id×d + V )(θ̂ − θ∗) = −[∇2R(θ∗)]−1∇R̂(θ∗) for some V = oP (1).

By the central limit theorem, it is clear that ∇R̂(θ∗) = OP (n− 1
2 ), and since for sufficiently

large n we have |||V ||| < ǫ with probability at least 1 − ǫ, we have θ̂ − θ∗ = OP (n− 1
2 ). But

now we are simply in the first case, in which case our previous reasoning implies the desired
result.

Lastly, we must argue that under the assumptions of the theorem, the empirical risk
minimizer θ̂ is consistent for the population minimizer θ∗. But by the positive definiteness
of ∇2R(θ∗), we know that θ∗ is unique, and the smoothness of θ 7→ ∇2R(θ) guarantees
consistency (cf. [175, 118, Chapter 6.3]).
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Chapter 10

Optimality guarantees for distributed
estimation

In this final chapter of the thesis, we complement the results in Chapter 9 by establishing
lower bounds on minimax risk for distributed statistical estimation under communication
constraints. In the language of Chapter 2, we formulate a question of constrained minimax
risk (2.4), asking for (and establishing) lower bounds on the best possible rates of convergence
for estimation procedures constrained to use a limited communication budget. Such lower
bounds reveal the minimum amount of communication required by any procedure to achieve
the centralized minimax-optimal rates of convergence for statistical estimation problems. We
study two classes of protocols: one in which machines send messages independently (over
channels without feedback), and a second allowing for interactive communication (specifi-
cally, protocols in which machines may freely broadcast any messages they send to a central
server to all other machines). We establish lower bounds for a variety of problems, including
several types of location models and for parameter estimation in regression models.

10.1 Introduction

Rapid growth in the size and scale of datasets has fueled increasing interest in statistical es-
timation in distributed settings (a highly incomplete list includes the works [33, 49, 128, 140,
54, 166], as well as some of our own work in the previous chapters). As noted in Chapter 9,
modern data sets are often too large to be stored on a single machine, and so it is natural
to consider methods that involve multiple machines, each assigned a smaller subset of the
full dataset. Yet communication between machines or processors is often expensive, slow,
or power-intensive; as noted by Fuller and Millett [79] in a survey of the future of comput-
ing, “there is no known alternative to parallel systems for sustaining growth in computing
performance,” yet the power consumption and latency of communication is often relatively
high. Indeed, bandwidth limitations on network and inter-chip communication often impose
significant bottlenecks on algorithmic efficiency. It is thus important to study the amount of
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communication required between machines or chips in algorithmic development, especially
as we scale to larger and larger datasets.

Building off of the low-communication algorithms of the previous chapter, the focus of this
chapter is the communication complexity of a few classes of statistical estimation problems.
Suppose we are interested in estimating some parameter θ(P ) of an unknown distribution P ,
based on a dataset of N i.i.d. observations. In the classical setting, one considers centralized
estimators that have access to all N observations. In contrast, in the distributed setting, one
is given m different machines, and each machine is assigned a subset of the sample of size
n = ⌊N

m
⌋. Each machine may perform arbitrary operations on its own subset of data, and it

then communicates results of these intermediate computations to the other processors or to
a central fusion node. In this chapter, we try to answer the following question: what is the
minimal number of bits that must be exchanged in order to achieve the optimal estimation
error achievable by centralized schemes?

More precisely, we study problems of the following form (recall Chapter 2 and the con-
strained minimax risk (2.4)): given a budget B of the total number of bits that may be com-
municated from the m distributed datasets, what is the minimax risk of any estimator based
on the communicated messages? While there is a rich literature connecting information-
theoretic techniques with the risk of statistical estimators (e.g. [101, 188, 185, 173]), little
of it characterizes the effects of limiting communication. In this chapter, we present min-
imax lower bounds for distributed statistical estimation. For some problems, we show an
exponential gap between the number of bits required to describe a problem (and solutions
to the problem to optimal statistical precision) and the amount of communication required
to solve the problem (see Theorems 10.1 and 10.2). By comparing our lower bounds with
recent results in statistical estimation, we can identify the minimal communication cost that
a distributed estimator must pay to have performance comparable to classical centralized
estimators. Moreover, the results of Chapter 9 show that these fundamental limits are, to
within logarithmic factors, achievable; it is possible to provide estimators that are optimal
both from statistical and communication-focused perspectives.

10.2 Problem setting

We begin with a formal description of the statistical estimation problems considered here.
As we have done throughout the thesis, let P denote a family of distributions and let θ :
P → Θ ⊆ Rd denote a function defined on P . A canonical example throughout the chapter
is the problem of mean estimation, in which θ(P ) = EP [X]. Suppose that, for some fixed
but unknown member P of P , there are m sets of data stored on individual machines, where
each subset X(i) is an i.i.d. sample of size n from the unknown distribution P .1 Given this
distributed collection of local data sets, our goal is to estimate θ(P ) based on the m samples
X(1), . . . , X(m), but using limited communication.

1 Although we assume in this chapter that every machine has the same amount of data, our technique
generalizes to prove tight lower bounds for distinct data sizes on different machines.
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We consider a class of distributed protocols Π, in which at each round t = 1, 2, . . .,
machine i sends a message Yt,i that is a measurable function of the local data X(i), and
potentially of past messages. It is convenient to model this message as being sent to a
central fusion center. Let Y t = {Yt,i}i∈[m] denote the collection of all messages sent at
round t. Given a total of T rounds, the protocol Π collects the sequence (Y 1, . . . , Y T ), and

constructs an estimator θ̂ := θ̂(Y 1, . . . , Y T ). The length Lt,i of message Yt,i is the minimal

number of bits required to encode it, and the total L =
∑T

t=1

∑m
i=1 Lt,i of all messages sent

corresponds to the total communication cost of the protocol. Note that the communication
cost is a random variable, since the length of the messages may depend on the data, and the
protocol may introduce auxiliary randomness.

It is useful to distinguish two different classes, namely independent versus interactive
protocols. An independent protocol Π is based on a single round (T = 1) of communication,
in which machine i sends message Y1,i to the fusion center. Since there are no past messages,
the message Y1,i can depend only on the local sample X(i). Given a family P , the class of
independent protocols with budget B ≥ 0 is given by

Aind(B,P) =
{

independent protocols Π s.t. sup
P∈P

EP

[ m∑

i=1

Li

]
≤ B

}
. (10.1)

(For simplicity, we use Yi to indicate the message sent from processor i and Li to denote its
length in the independent case.) It can be useful in some situations to have more granular
control on the amount of communication, in particular by enforcing budgets on a per-machine
basis. In such cases, we introduce the shorthand B1:m = (B1, . . . , Bm) and define

Aind(B1:m,P) = {independent protocols Π s.t. EP [Li] ≤ Bi for i ∈ [m] and P ∈ P} .
(10.2)

In contrast to independent protocols, the class of interactive protocols allows for interac-
tion at different stages of the message passing process. In particular, suppose that machine i
sends message Yt,i to the fusion center at time t, who then posts it on a “public blackboard,”
where all machines can read Yt,i. We think of this as a global broadcast system, which may
be natural in settings in which processors have limited power or upstream capacity, but the
centralized fusion center can send messages without limit. In the interactive setting, the
message Yt,i should be viewed as a measurable function of the local data X(i), and the past
messages Y 1:t−1. The family of interactive protocols with budget B ≥ 0 is given by

Ainter(B,P) =
{
interactive protocols Π such that sup

P∈P
EP [L] ≤ B

}
. (10.3)

We conclude this section by specializing the general minimax framework of Chapter 2 to
that used throughout this chapter. We wish to characterize the best achievable performance
of estimators θ̂ that are functions of only the messages (Y 1, . . . , Y T ). We measure the quality

of a protocol and estimator θ̂ by the mean-squared error

EP,Π

[
‖θ̂(Y 1, . . . , Y T )− θ(P )‖22

]
,
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where the expectation is taken with respect to the protocol Π and the m i.i.d. samples X(i)

of size n from distribution P . Now we cast the constrained minimax risk (2.4) outlined in
Chapter 2 in the framework of this chapter. Given a class of distributions P , parameter
θ : P → Θ, and communication budget B, the minimax risk for independent protocols is

M
ind(θ,P , B) := inf

Π∈Aind(B,P)
inf
θ̂
sup
P∈P

EP,Π

[∥∥∥θ̂(Y1, . . . , Ym)− θ(P )
∥∥∥
2

2

]
. (10.4)

Here, the infimum is taken jointly over all independent procotols Π that satisfy the budget
constraint B, and over all estimators θ̂ that are measurable functions of the messages in the
protocol. This minimax risk should also be understood to depend on both the number of
machines m and the individual sample size n. The minimax risk for interactive protocols,
denoted by M

inter, is defined analogously, where the infimum is instead taken over the class
of interactive protocols. These communication-dependent minimax risks are the central
objects in this chapter: they provide a sharp characterization of the optimal rate of statistical
estimation as a function of the communication budget B.

10.3 Related Work

There is of course a substantial literature on communication complexity in many areas,
ranging from theoretical computer science (beginning with the work of Yao [186] and Abelson
[1]) to decentralized detection and estimation (e.g. in work by Tsitsiklis and Luo [171, 123])
and information theory (see, for example, Han and Amari [89] and El Gamal and Kim [72]).
In addition, our work builds from the long literature on minimax rates of convergence in
statistics (recall Chapter 2, or see, e.g. Ibragimov and Has’minskii [101], Yu [188], and Yang
and Barron [185]). We review a few of these and highlight their main results in the coming
paragraphs.

In the computer science literature, Yao [186] and Abelson [1] initiated the study of com-
munication complexity (see also the survey by Kushilevitz and Nisan [111]). Using our
notation, the prototypical problem in this setting is as follows. Consider two sets X and Y
and a function θ : X ×Y → Θ with range Θ. We assume there are two parties (usually given
the names Alice and Bob), one of which holds a point x ∈ X and the other y ∈ Y , and we
wish to compute the value θ(x, y). The (classical) communication complexity problem is to
find the protocol using the fewest bits that guarantees that θ(x, y) is computed correctly for
all possible settings of x ∈ X and y ∈ Y . More recent work studies randomization and intro-
duces information-theoretic measures for communication complexity (e.g. Chakrabarti et al.
[41] and Bar-Yossef et al. [15]), where the problem is to guarantee that θ(x, y) is computed
correctly with high probability under a given (known) distribution P on x and y. In contrast,
our goal—indeed, the goal of most of statistical inference and estimation—is to recover char-
acteristics of the distribution P (which we assume to be unknown) based on observations X
drawn from P . Though this difference is somewhat subtle, it makes work on communication
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complexity difficult to apply in our settings. However, lower bounds on the estimation of pop-
ulation quantities θ(P ) based on communication-constrained observations—including those
we present here—do imply lower bounds in classical communication complexity settings.
(For related issues, see also the discussion in the introduction to Chapter 7 and Section 7.6.1
on privacy.) We also prove our results assuming only an expected bound on communication.

Work in decentralized detection and estimation also studies limits of communication. For
example, Tsitsiklis and Luo [172] provide lower bounds on the difficulty of distributed con-
vex optimization, and in subsequent work also study limits on certain distributed algebraic
computations [122, 123]. In these problems, as in other early work in communication com-
plexity, data held by the distributed parties may be chosen adversarially, which precludes
conclusions about statistical estimation. Other work in distributed control provides lower
bounds on consensus and averaging, but in settings where messages sent are restricted to
be of particular smooth forms [142]. Study of communication complexity has also given rise
to interesting algorithmic schemes; for example, Luo [121] considers architectures in which
machines may send only a single bit to a centralized processor; for certain problems, he
shows that if each machine receives a single one-dimensional sample, it is possible to achieve
the optimal centralized rate to within constant factors.

Han and Amari [89] provide a survey of distributed estimation problems from an informa-
tion theoretic perspective. In particular, they focus on the problem of testing a hypothesis
or estimating a parameter from samples {(xi, yi)}ni=1 where {(xi)}ni=1 and {(yi)}ni=1 are cor-
related but stored separately in two machines. Han and Amari study estimation error for
fixed encoding rates R > 0, meaning 2nR messages may be sent. In all the settings we study,
however, this setting is essentially trivial: any non-zero rate allows distributed estimation
at the statistically optimal mean-squared error (i.e. that attainable with no communication
constraints). They also address some zero-rate statistical inference problems, that is, those
for which they have a sequence of rates Rn and Rn → 0 as n→∞. Even these are too lenient
for the distributed statistical estimation settings we consider. As an example, assume that
m machines have n i.i.d. observations according to a Bernoulli(θ) distribution. Then each
can send a message capturing perfectly the number of non-zero observations using at most
⌈log2 n⌉ bits—so that the rate is Rn = 1

n
log2 n—and attain (statistically) optimal estima-

tion. In our settings, we are interested in more quantitative results, such as understanding
at what rates Rn may go to zero or the consequences of setting Rn ≤ t/n for specific values
t > 0, while still attaining optimal statistical estimation; these are somewhat more stringent
conditions.

10.4 Main results

With our setup in place, we now turn to the statement of our main results, along with some
discussion of their consequences. Our first set of results applies in essentially all situations by
providing bounds exclusively based on metric entropy, which implies (somewhat trivially)
that any procedure must communicate at least as many bits as are required to describe
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a problem solution. Subsequently, we extend these results for interactive communication
schemes, showing that these bounds are (essentially) tight for some problems, but can be
made considerably stronger for some types of mean estimation problems. We conclude the
section by giving our sharpest results for non-interactive communication, outlining a few
open questions.

10.4.1 Lower bound based on metric entropy

We begin with a general but relatively naive lower bound that depends only on the geometric
structure of the parameter space, as captured by its metric entropy. As in Chapter 2, given
a subset Θ ⊂ Rd, we say {θ1, . . . , θK} are δ-separated if ‖θi − θj‖2 ≥ δ for i 6= j. We then
define the packing number of Θ as

MΘ(δ) := max
{
K ∈ N | {θ1, . . . , θK} ⊂ Θ are δ-separated

}
. (10.5)

The packing entropy of Θ is simply the logarithm of the packing number, log2MΘ(δ). The
function δ 7→ log2MΘ(δ) is continuous from the right and non-increasing in δ, so we may de-
fine the inverse function log2M

−1
Θ (B) := sup{δ | log2MΘ(δ) ≥ B}, and if δ = log2M

−1
Θ (B),

then log2MΘ(δ) ≥ B. With this definition, we have the following (essentially standard)
proposition.

Proposition 10.1. For any family of distributions P and parameter set θ = θ(P), the
interactive minimax risk is lower bounded as

M
inter(θ,P , B) ≥ 1

8

(
log2M

−1
Θ (2B + 2)

)2
. (10.6)

Proof We prove the lower bound via a standard information-theoretic argument. Fix
δ > 0, and let V = [MΘ(2δ)] index a maximal 2δ-packing of Θ, which we identify by
{θv}v∈V ⊂ Θ. Fix an (arbitrary) protocol Π for communication.

Following the standard reduction from estimation to testing and using Fano’s method
as in Chapter 2, Section 2.2.3, let V be sampled uniformly from V . Then for any messages
Y = (Y1, . . . , YT ) sent by the protocol Π, Fano’s inequality implies

max
v∈V

E
[
‖θ̂(Y )− θv‖22

]
≥ δ2

(
1− I(V ;Y ) + 1

log2MΘ(2δ)

)
.

Because I(V ;Y ) ≤ H(Y ), Shannon’s source coding theorem [47, Chapter 5] guarantees the
lower bound I(V ;Y ) ≤ H(Y ) ≤ B. Since the protocol Π was arbitrary, we have as an
immediate consequence of the previous display that

M
inter(θ,P , B) ≥ δ2

(
1− B + 1

log2MΘ(2δ)

)
for any δ ≥ 0. (10.7)
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Using inequality (10.7), the remainder of the proof is straightforward. Indeed, we have

1− B + 1

log2MΘ(2δ)
≥ 1

2
if and only if

log2MΘ(2δ)

B + 1
≥ 2,

which is implied by 2δ ≤ log2M
−1
Θ (2B + 2). Setting δ = 1

2
log2M

−1
Θ (2B + 2) thus gives the

result.

Of course, the same lower bound also holds for M
ind(θ,P , B), since any independent

protocol is a special case of an interactive protocol. Although Proposition 10.1 is a relatively
generic statement, not exploiting any particular structure of the problem, it is in general
unimprovable by more than constant factors, as the following example illustrates.

Example: Bounded mean estimation. Suppose that our goal is to estimate the mean
θ = θ(P ) of a class of distributions P supported on the interval [0, 1], so that Θ = θ(P) =
[0, 1]. Suppose that a single machine (m = 1) receives n i.i.d. observations Xi according
to P . Since the packing entropy is lower bounded as log2MΘ(δ) ≥ log2(1/δ), the lower
bound (10.6) implies

M
ind(θ,P , B) ≥M

inter(θ,P , B) ≥ 1

8

(
1

4
2−2B

)2

.

Thus, setting B = 1
4
log2 n yields the lower bound M

ind(θ,P([0, 1]), B) ≥ 1
128n

. This lower
bound is sharp up to the constant pre-factor, since it can be achieved by a simple method.
Given its n observations, the single machine can compute the sample mean Xn = 1

n

∑n
i=1Xi.

Since the sample mean lies in the interval [0, 1], it can be quantized to accuracy 1/n using

log2 n bits, and this quantized version θ̂ can be transmitted. A straightforward calculation

shows that E[(θ̂ − θ)2] ≤ 2
n
, so Proposition 10.1 yields an order-optimal bound in this case.

10.4.2 Independent protocols in multi-machine settings

We now turn to the more interesting multi-machine setting (m > 1). We would like to study
how the budget B—the of bits required to achieve the minimax rate—scales with the number
of machines m. For our first set of results in this setting, we consider the non-interactive
case, where each machine i sends messages Yi independently of all the other machines. We
can obtain our most precise results in this setting, and the results here serve as pre-cursors
to the results in the next section, where we allow feedback.

We first provide lower bounds for the problem of mean estimation in the parameter for
the d-dimensional normal location family model

Nd = {N(θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}. (10.8)
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Here each machine receives an i.i.d. sample of size n from a normal distribution N(θ, σ2Id×d)
with unknown mean θ. In this case—with independent communication—we obtain the
following result on estimating the unknown mean θ, whose proof we provide in Section 10.9.3.

Theorem 10.1. For i = 1, . . . ,m, assume that each machine has communication budget Bi,
and receives an i.i.d. sample of size n from a distribution P ∈ Nd. There exists a universal
(numerical) constant c such that

M
ind(θ,Nd, B1:m) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

logm
,

m

(
∑m

i=1 min{1, Bi

d
}) logm ∨ 1

}
. (10.9)

Given centralized access to the full mn-sized sample, a reasonable procedure would be
to compute the sample mean, leading to an estimate with mean-squared error σ2d

mn
, which

is minimax optimal [118]. Consequently, the lower bound (10.9) shows that each machine
individually must communicate at least d/ logm bits for a decentralized procedure to match
the centralized rate. If we ignore logarithmic factors, this lower bound is achievable by a
simple procedure: each machine computes the sample mean of its local data and quantizes
each coordinate to precision σ2/n (truncating if the sample mean is outside the region [−1−
σ/
√
n, 1+σ/

√
n]), which requires O(d log(n/σ2)) bits. These quantized sample averages are

communicated to the fusion center using B = O(dm log(n/σ2)) total bits. The fusion center
averages them, obtaining an estimate with mean-squared error of optimal order σ2d/(mn)
as required.

The techniques we develop also apply to other families of probability distributions, and
we finish this section by presenting a result that gives lower bounds that are sharp to nu-
merical constant prefactors. In particular, we consider mean estimation for the family Pd of
distributions supported on the compact set [−1, 1]d, which include (for example) Bernoulli
{±1}-valued random variables, among others.

Proposition 10.2. Assume that each of m machines receives a single observation (n = 1)
from a distribution in Pd. There exists a universal (numerical) constant c such that

M
ind(θ,Pd, B1:m) ≥ c

d

m
min

{
m,

m∑m
i=1 min{1, Bi

d
}

}
, (10.10)

where Bi is the budget for machine i.

See Section 10.9.1 for a proof.
The standard minimax rate for d-dimensional mean estimation on Pd scales as d/m,

which is achieved by the sample mean. The lower bound (10.10) shows that to achieve this
scaling, we must have

∑m
i=1 min{1, Bi

d
} & m, showing that each machine must send Bi & d

bits. In addition, a simple scheme achieves this lower bound, so we describe it here. Suppose
that machine i receives a d-dimensional vector Xi ∈ [−1, 1]d. Based on Xi, it generates
a Bernoulli random vector Zi = (Zi1, . . . , Zid) with Zij ∈ {0, 1} taking the value 1 with
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probability (1 + Xij)/2, independently across coordinates. Machine i uses d bits to send
the vector Zi ∈ {0, 1}d to the fusion center. The fusion center then computes the average

θ̂ = 1
m

∑m
i=1(2Zi−1). This average is unbiased, and its expected squared error is bounded by

d/m. We note in passing that for both the normal location family of Theorem 10.1 and the
simpler bounded single observation model in Proposition 10.2, there is an exponential gap
between the information required to describe the problem to the minimax mean squared error
of d

mn
—scaling as as O(d log(mn))—and the number of bits that must be communicated,

which scales nearly linearly in m. See also our discussion following Theorem 10.2.

10.4.3 Interactive protocols in multi-machine settings

Having provided results on mean estimation in the non-interactive setting, we now turn to
the substantially harder setting of distributed statistical inference where feedback is allowed
on the channels. As described in the introduction problem setup, we allow a substantial
amount of communication: there exists a public blackboard upon which every message sent
to the fusion is stored (i.e. freely broadcast to all other nodes in the network). This makes
providing lower bounds on communication substantially more challenging, but also (in some
cases) allows somewhat more powerful algorithms.

We begin by considering the uniform location family Ud = {Pθ, θ ∈ [−1, 1]d}, where Pθ
is the uniform distribution on the rectangle [θ1 − 1, θ1 + 1] × · · · × [θd − 1, θd + 1]. For this
problem, a direct application of Proposition 10.1 gives a nearly sharp result.

Proposition 10.3. Consider the uniform location family Ud with n i.i.d. observations per
machine:

(a) There are universal (numerical) constants c1, c2 > 0 such that

M
inter(θ,U , B) ≥ c1 max

{
exp

(
−c2

B

d

)
,

d

(mn)2

}
.

(b) Conversely, given a budget of B = d [2 log2(2mn) + log(m)(⌈log2 d⌉+ 2 log2(2mn))]
bits, there is a universal constant c such that

M
inter(θ,U , B) ≤ c

d

(mn)2
.

If each of the m machines receives n observations, we have a total sample size of mn, so
the minimax rate over all centralized procedures scales as d/(mn)2 (for instance, see [118]).
Consequently, Proposition 10.3(b) shows that the number of bits required to achieve the
centralized rate has only logarithmic dependence on the number m of machines. Part (a)
shows that this logarithmic dependence on m is unavoidable: at least B & d log(mn) bits
are necessary to attain the optimal rate of d/(mn)2.
Proof We prove Proposition 10.3 in two parts: the upper bound (part (b)) by exhibiting
an interactive protocol Π∗ and the lower bound (part (a)) by applying Proposition 10.1.
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Upper bound on the minimax risk : We consider the following communication protocol
Π∗ ∈ Ainter(B,P):

1. Machine i ∈ {1, . . . ,m} computes its local minimum a
(i)
j = min{X(i,k)

j : k = 1, . . . , n}
for each coordinate j ∈ [d].

2. Machine 1 broadcasts the vector a(1), where each of its components is quantized to
accuracy (mn)−2 in [−2, 2], using 2d log(2mn) bits. Upon receiving the broadcast, all

machines initialize global minimum variables sj ← a
(1)
j for j = 1, . . . , d.

3. In the order i = 2, 3, . . . ,m, machine i performs the following operations:

(i) Find all indices j such that a
(i)
j < sj, call them Ji. For each j ∈ Ji, ma-

chine i updates sj ← a
(i)
j , and then broadcasts the list of indices Ji (which re-

quires |Ji| ⌈log d⌉ bits) and the associated values sj, using a total of |Ji| ⌈log d⌉+
2|Ji| log(2mn) bits.

(ii) All other machines update their local vectors s after receiving machine i’s update.

4. One machine outputs θ̂ = s+ 1.

Using the protocol Π∗ above, it is clear that for each j ∈ [d] we have computed a global
minimum

sj = min
{
X

(i,k)
j | i ∈ [m], k ∈ [n]

}

to within accuracy 1/(mn)2 (because of quantization). As a consequence, classical conver-

gence analyses (e.g. [118]) yield that the estimator θ̂ = s+ 1 achieves the minimax optimal

convergence rate E[‖θ̂ − θ‖22] ≤ Cd/(mn)2, where C is a numerical constant.
It remains to understand the communication complexity of the protocol Π∗. To do so,

we study steps 2 and 3. In Step 2, machine 1 sends a 2d log(2mn)-bit message as Y1. In Step
3, machine i sends |Ji|(⌈log d⌉+ 2 log(2mn)) bits, that is,

d∑

j=1

1
{
a
(i)
j < min{a(1)j , . . . , a

(i−1)
j }

}
(⌈log d⌉+ 2 log(2mn))

bits, as no message is sent for index j if a
(i)
j ≥ min{a(1)j , . . . , a

(i−1)
j }. This event happens with

probability bounded by 1/i, so we find that the expected length of message Yi is

E[Li] ≤
d(⌈log d⌉+ 2 log(2mn))

i
.

Putting all pieces together, we obtain that

E[L] =
m∑

i=1

E[Li] ≤ 2d log(2mn) +
m∑

i=2

d(⌈log d⌉+ 2 log(2mn))

i

≤ d [2 log(2mn) + ln(m)(⌈log d⌉+ 2 log(2mn))] .
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Lower bound on the minimax risk: To prove the lower bound, we simply evaluate packing
entropies by using a volume argument [13]. Since Θ = [−1, 1]d, the size of a maximal 2δ-
packing can be lower bounded by

MΘ(2δ) ≥
Volume(Θ)

Volume({x ∈ Rd : ‖x‖2 ≤ 2δ}) ≥
(

1

2δ

)d
. (10.11)

Taking logarithms and inverting B = log2MΘ(1/(mn)) yields the lower bound.

It is natural to wonder whether such logarithmic dependence holds more generally. The
following result shows that it does not: for some problems, the dependence on m must
be (nearly) linear. In particular, we reconsider estimation in the normal location family
model (10.8), showing a lower bound that is nearly identical to that of Theorem 10.1. We
prove Theorem 10.1 in Section 10.10.

Theorem 10.2. For i = 1, . . . ,m, assume that each machine receives an i.i.d. sample of
size n from a normal location model (10.8) and that there is a total communication budget
B. Then there exists a universal (numerical) constant c such that

M
inter(θ,Nd, B) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

(B/d+ 1) logm
∨ 1

}
. (10.12)

Theorem 10.2 provides a somewhat weaker lower bound than the non-interactive case
we present in Theorem 10.1. In particular, the lower bound (10.12) shows that at least
B = Ω

(
dm

logm

)
bits are required for any decentralized procedure—even allowing fully inter-

active communication—to attain the (centralized) minimax rate of convergence σ2d
mn

. That
is, to achieve an order-optimal mean-squared error, the total number of bits communicated
must (nearly) scale with the product of the dimension d and number of machines m. This is
somewhat weaker than the bound in Theorem 10.1, which shows that each machine individ-
ually must communicate at least d/ logm bits, while the present bound requires only that
the total number of bits be md/ logm.

Theorems 10.1 and 10.2 show that there is an exponential gap between the “informa-
tion” content of the estimation problem and what must be communicated. More specifically,
assuming (for simplicity) that σ2 = 1, describing a solution of the normal mean estima-
tion problem to accuracy d/(mn) in squared ℓ2-error requires at most O(d log(mn)) bits;
Theorems 10.1 and 10.2 show that nearly dm bits must be communicated. This type of
scaling—that the amount of communication must grow linearly in m—is dramatically differ-
ent than the logarithmic scaling for the uniform family. This scaling is disctinct from other
familiar source coding scenarios; in Slepian-Wolf coding, for example, it is possible to have
a communication rate at the joint entropy rate of the sequences being communicated, while
here, this is impossible (admittedly, we are working in a fairly different type of one-shot
regime). Establishing sharp communication-based lower bounds thus requires careful study
of the underlying family of distributions.
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For both Theorems 10.2 and 10.1, there are logarithmic gaps in the amount of commu-
nication the minimax lower bound requires and that of the procedures we propose (quantize
and communicate). It will be quite interesting if it is possible to make these gaps tighter,
though we leave such questions for further work. It would also be interesting if the interac-
tive setting for the Gaussian location family, while requiring the nearly linear Ω( dm

logm
) bits

of communication, was still asymptotically smaller than the non-interactive case presented
in Theorem 10.1.

10.5 Consequences for regression

Having identified (to within logarithmic factors) the minimax rates of convergence for several
mean estimation problems, we now show how they imply lower bounds on the communication-
constrained minimax rates for other, more complex estimation problems. In particular, we
focus on two standard, but important, linear models [93]: linear regression and probit re-
gression.

10.5.1 Linear regression

We consider a distributed instantiation of linear regression with fixed design matrices. Con-
cretely, suppose that each of m machines has stored a fixed design matrix A(i) ∈ Rn×d and
then observes a response vector b(i) ∈ Rd from the standard linear regression model

b(i) = A(i)θ + ε(i), (10.13)

where ε(i) ∼ N(0, σ2In×n) is a noise vector. Our goal is to estimate the unknown regression
vector θ ∈ θ = [−1, 1]d, identical for each machine, in a distributed manner. To state our
result, we assume uniform upper and lower bounds on the eigenvalues of the rescaled design
matrices, namely

0 < λ2min ≤ min
i∈{1,...,m}

γmin((A
(i))⊤A(i))

n
and max

i∈{1,...,m}

γmax((A
(i))⊤A(i))

n
≤ λ2max. (10.14)

Corollary 10.1. Consider an instance of the linear regression model (10.13) under condi-
tion (10.14).

(a) Then there is a universal positive constant c such that

M
inter(θ,P , B1:m) ≥ c

σ2d

λ2maxmn
min

{
λ2maxmn

σ2
,

m

(B/d+ 1) logm

}
.

(b) Conversely, given total budget B ≥ dm log(mn), there is a universal constant c′ such
that

M
inter(θ,P , B1:m) ≤

c′

λ2min

σ2d

mn
.
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It is a classical fact (e.g. [118]) that the minimax rate for d-dimensional linear regression
scales as dσ2/(nm). Part (a) of Corollary 10.1 shows this optimal rate is attainable only if
the total budget B grows as dm

logm
. Part (b) of the corollary shows that the minimax rate is

achievable with budgets that match the lower bound up to logarithmic factors.
Proof The proof of part (b) follows from Chapter 9 (the convergence guarantee (9.9)),
which shows that solving each regression problem separately, quantizing the (local) solution

vectors θ̂(i) ∈ [−1, 1]d to accuracy 1/(mn) using Bi = d log(mn) bits, and then performing
averaging achieves the minimax rate up to constant prefactors.

To prove part (a), we show that solving an arbitrary Gaussian mean estimation problem
can be reduced to solving a specially constructed linear regression problem. This reduction
allows us to apply the lower bound from Theorem 10.1. Given θ ∈ Θ, consider the Gaussian
mean model

X(i) = θ + w(i), where w(i) ∼ N

(
0,

σ2

λ2maxn
Id×d

)
.

Each machine i has its own design matrix A(i), and we use it to construct a response vector
b(i) ∈ Rn. Since γmax(A

(i)/
√
n) ≤ λmax, the matrix Σ(i) := σ2In×n− σ2

λ2maxn
A(i)(A(i))⊤ is positive

semidefinite. Consequently, we may form a response vector via

b(i) = A(i)X(i) + z(i) = A(i)θ + A(i)w(i) + z(i), z(i) ∼ N
(
0,Σ(i)

)
independent of w(i).

(10.15)

The independence of w(i) and z(i) guarantees that b(i) ∼ N(A(i)θ, σ2In×n), so the pair
(b(i), A(i)) is faithful to the regression model (10.13).

Now consider any protocol Π ∈ Ainter(B,P) that can solve any regression problem to

within accuracy δ, so that E[‖θ̂ − θ‖22] ≤ δ2. By the previously described reduction, the
protocol Π can also solve the mean estimation problem to accuracy δ, in particular via the
pair (A(i), b(i)) described in expression (10.15). Combined with this reduction, the corollary
thus follows from Theorem 10.1.

10.5.2 Probit regression

We now turn to the problem of binary classification, in particular considering the probit
regression model. As in the previous section, each of m machines has a fixed design matrix
A(i) ∈ Rn×d, where A(i,k) denotes the kth row of A(i). Machine i receives n binary responses
Z(i) = (Z(i,1), . . . , Z(i,n)), drawn from the conditional distribution

P(Z(i,k) = 1 | A(i,k), θ) = Φ(A(i,k)θ) for some fixed θ ∈ θ = [−1, 1]d, (10.16)

where Φ(·) denotes the standard normal CDF. The log-likelihood of the probit model (10.16)
is concave [32, Exercise 3.54]. Under condition (10.14) on the design matrices, we have:
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Corollary 10.2. Consider the probit model (10.16) under condition (10.14). Then

(a) There is a universal constant c such that

M
inter(θ,P , B1:m) ≥ c

d

λ2maxmn
min

{
λ2maxmn,

m

(B/d+ 1) logm

}
.

(b) Conversely, given total budget B ≥ dm log(mn), there is a universal constant c′ such
that

M
ind(θ,P , B1:m) ≤

c′

λ2min

d

mn
.

Proof As in the previous case with linear regression, the results of Chapter 9 give part
(b): each machine solves the local probit regression separately, quantizes its local solution
to accuracy 1/mn using Bi = d log(mn) bits, after which the fusion center averages all the
quantized local solutions.

To prove part (a), we show that linear regression problems can be solved via estimation
in a specially constructed probit model. Consider an arbitrary θ ∈ Θ; assume we have a
regression problem of the form (10.13) with noise variance σ2 = 1. We construct the binary
responses for our probit regression (Z(i,1), . . . , Z(i,n)) by

Z(i,k) =

{
1 if b(i,k) ≥ 0,

0 otherwise.
(10.17)

By construction, we have P(Z(i,k) = 1 | A(i), θ) = Φ(A(i,k)θ) as desired for our model (10.16).
By inspection, any protocol Π ∈ Ainter(B,P) solving the probit regression problem provides
an estimator with the same mean-squared error as the original linear regression problem via
the construction (10.17). Corollary 10.1 provides the desired lower bound.

10.6 Summary

In this chapter, we have developed several results showing fundamental bounds on the
amount of communication required for several statistical estimation problems. In partic-
ular, we have shown that—even when broadcasts from a fusion center to all nodes in a
network are free—estimation of the mean in a d-dimensional normal location model with
data across m machines requires communicating at least Ω(dm/ logm) bits. Several open
questions remain. First, our arguments are somewhat complex; simplifying them could lead
to much wider applicability of results of this form. Second, our data processing inequalities,
those inequalities of the form (10.20), build off of likelihood ratio bounds similar to those
of Chapter 7, but we require strong independence assumptions in the chains V → X → Y .
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In fact, these necessitate use of the variant Fano inequalities developed in Section 2.2.3.
In particular, our random vectors V must have independent coordinates, and we similarly
require the vectors X to have independent coordinates. In standard “packing” constructions
for lower bounds, however (e.g. [185, 148, 9, 37]), it seems difficult to construct vectors with
independent coordinates, for example, in high-dimensional settings in which the “true” mean
vectors θ are sparse [148, 9]. If we could obtain data processing inequalities that were in
some way less dependent on the particular structure of the problems we solve, this might
yield broader insights into the interaction of communication, computational, statistical, and
geometric conditions underlying distributed inference problems.

10.7 Proof outline of major results

Having stated each of our main results, in this section we outline the major steps in developing
the lower bounds—converse inequalities—we establish for distributed estimation problems.
Our lower bounds follow the basic strategy introduced in Chapter 2: we reduce the estimation
problem to a testing problem, and following this reduction, we use the distance-based Fano
method described in Corollary 2.1 to relate the probability of error in the test to the number
of bits contained in the messages Yi sent from each machine. Establishing these links is the
most technically challenging aspect of our results.

We now describe the setting for our reduction. Let V denote an index set of finite
cardinality, where v ∈ V indexes a family of probability distributions {P (· | v)}v∈V . To
each member of this family we associate a parameter θv := θ(P (· | v)) ∈ Θ, where Θ
denotes the parameter space. In our proofs applicable to d-dimensional problems, we set
V = {−1, 1}d, and we index vectors θv by v ∈ V . Now, we sample V uniformly at random
from V . Conditional on V = v, we then sample X from a distribution PX(· | V = v)
satisfying θv := θ(PX(· | v)) = δv, where δ > 0 is a fixed quantity that we control. We define
dham(v, v

′) to be the Hamming distance between v, v′ ∈ V . This construction gives

‖θv − θv′‖2 = 2δ
√
dham(v, v′).

Then for fixed t ∈ R, Corollary 2.2 (via the separation function (2.14)) implies that

sup
P∈P

EP

[
‖θ̂ − θ(P )‖22

]
≥ δ2 (⌊t⌋+ 1)

[
1− I(V ;Y ) + log 2

log |V|
Nmax

t

]
, (10.18)

where Nmax
t = max

v∈V
|{v′ ∈ V : dham(v, v

′) ≤ t}| is the size of the largest t-neighborhood

in V . The lower bound involves the information I(V ;Y ) because our distributed protocol

enforces that the estimator θ̂ may observe only Y rather than the sample X off of which it
is based, and hence we have the Markov chain V → X → Y . As noted in our discussion of
Corollaries 2.1 and 2.2 in our explanation of Fano-type methods for minimax lower bounds
in Section 2.2.3, inequality (10.18) allows flexibility in its application. If there is a large set
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V for which it is easy to control I(V ;X) while neighborhoods in V are relatively small (i.e.,
Nmax
t is small), we can obtain sharp lower bounds.
Now we show how to apply inequality (10.18) in our minimax bounds; these calculations

parallel those for the lower bound for the normal regression model (2.16) in Section 2.2.3.
First, with the choice V = {−1, 1}d and the Hamming metric dham, for 0 ≤ t ≤ ⌈d/3⌉, we
have Nmax

t =
∑t

τ=0

(
d
τ

)
≤ 2
(
d
t

)
. Since

(
d
t

)
≤ (de/t)t, for t ≤ d/6 we have

log
|V|
Nmax
t

≥ d log 2− log 2

(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√
6e

>
d

6

for d ≥ 12 (the case d < 12 can be checked directly). Substituting this into inequality (10.18),
we find that for t = ⌊d/6⌋,

sup
P∈P

E
[
‖θ̂(Y )− θ(P )‖22

]
≥ δ2(⌊d/6⌋+ 1)

(
1− I(Y ;V ) + log 2

d/6

)
. (10.19)

Inequality (10.19) is the essential point of departure for the proofs of our major results.
Using the inequality, it remains to upper bound the mutual information I(Y ;V ), which is
our main technical difficulty. At a very high level, our results give sharper characterizations
of the mutual information between the random variable V and each machine’s message Yi.
For most scenarios, we show (roughly) that there exists a problem-dependent constant κ
such that

I(V ;Yi) ≤ κδ2I(X(i);Yi). (10.20)

We prove such quantitative data processing inequalities using techniques similar to those of
Chapters 7 and 8, where we provide similar data-processing inequalities based on likelihood
ratio bounds.

Because the random variable Yi takes discrete values, we have I(X(i);Yi) ≤ H(Yi) ≤ Bi

by Shannon’s source coding theorem [47] (recall that Bi is the communication budget on
machine i). In particular, inequality (10.20) establishes the inequality I(V ;Yi) ≤ κδ2Bi.
For independent communication schemes, I(V ;Y1:m) ≤

∑m
i=1 I(V ;Yi), whence we have the

simplification

M
ind(θ,P , B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− κδ2

∑m
i=1Bi + log 2

d/6

)
.

Thus, by choosing δ2 = cmin{1, d/(κ∑m
i=1Bi)} for an appropriate numerical constant, we

see that

M
ind(θ,P , B1:m) ≥ c′δ2(⌊d/6⌋+ 1) = cc′dmin

{
1,

d

κ
∑m

i=1Bi

}

for numerical constants c, c′. This then implies that the sum of the communication budgets
Bi must be sufficiently large to allow small estimation error. We make these calculations
more explicit in the sections to follow.
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Outline of proofs In the coming sections, we provide the proofs of all our major results.
Before presenting our results, however, we give a brief outline of the remainder of the chapter,
as we do not prove the results completely in their order of presentation in the text: they
build on one another, so we present them in (rough) order of most basic to most complex.
In the first section, Section 10.8, we provide a few techniques that are useful throughout
our results. Section 10.9 begins the proofs of our major (multi-machine) lower bounds by
proving our results on independent protocols, which lay the groundwork and develop most of
our major techniques, which also prove useful in the interactive case. Section 10.9.1 contains
the proof of Proposition 10.2, the simplest of our major (multi-machine) lower bounds, while
we prove Theorem 10.1 in Section 10.9.3. We prove Theorem 10.2 in Section 10.10.

Notation For our proofs, we require a bit of additional notation. For a random variable
X, we let PX denote the probability measure on X, so that PX(S) = P (X ∈ S), and we
abuse notation by writing pX for the probability mass function or density of X, depending
on the situation, so that pX(x) = P (X = x) in the discrete case and denotes the density of
X at x when pX is a density.

10.8 Techniques, tools, and setup for proofs

In this section, we provide a bit more setup for the proofs of Proposition 10.2 and Theo-
rems 10.1 and 10.2. We begin by reviewing a few of the basic techniques for minimax bounds
from Chapter 2 that are essential for our results, and we also state an important technical
lemma, paralleling Lemma 8.1 (and similar inequalities from the proofs of Theorems 7.1, 7.2,
and 7.3 from Chapter 8).

10.8.1 Common techniques

Le Cam’s method

In low-dimensional settings (when the dimension d is small), it is difficult to apply the
incarnation Fano’s inequality we outline in Section 10.7. In such settings, we use the two-
point lower bound technique of Le Cam’s method from Section 2.2.2. By the basic minimax
bound (2.8), we see that if V = {−1, 1} and θv = θ(Pv), then if the pair {θv} is 2δ-separated,

max
v∈V

EPv

[
‖θ̂(Y )− θv‖22

]
≥ δ2

(
1

2
− 1

2
‖PY (· | V = 1)− PY (· | V = −1)‖TV

)
.

Here, as usual, we assume that V is uniform on V and we have the Markov chain V → X →
Y , where Y is the message available to the estimator θ̂. We claim this inequality implies

max
v∈V

EPv

[
‖θ̂(Y )− θv‖22

]
≥ δ2

(
1

2
− 1√

2

√
I(Y ;V )

)
. (10.21)
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It is clear that inequality (10.21) will hold if we can show the following: for any pair of
random variables V → Y , if V is chosen uniformly in a set V = {v, v′}, then

‖PY (· | V = v)− PY (· | V = v′)‖2TV ≤ 2I(Y, V ). (10.22)

To see inequality (10.22), let Pv be shorthand for PY (· | V = v). The triangle inequality
implies that

‖Pv − Pv′‖TV ≤ ‖Pv − (1/2)(Pv + Pv′)‖TV +
1

2
‖Pv − Pv′‖TV ,

and by swapping the roles of v′ and v, we obtain

‖Pv − Pv′‖TV ≤ 2min{‖Pv − (1/2)(Pv′ + Pv)‖TV , ‖Pv′ − (1/2)(Pv′ + Pv)‖TV}.

By Pinsker’s inequality, we thus have the upper bound

‖Pv − Pv′‖2TV ≤ 2min{Dkl (Pv||(1/2)(Pv + Pv′)) , Dkl (Pv′ ||(1/2)(Pv + Pv′))}
≤ Dkl (Pv||(1/2)(Pv + Pv′)) +Dkl (Pv′ ||(1/2)(Pv + Pv′)) = 2I(Y ;V ).

Tensorization of information

We also require a type of tensorization inequality in each of our proofs for independent
protocols. When Yi is constructed based only on X(i), we have

I(V ;Y1:m) =
m∑

i=1

I(V ;Yi | Y1:i−1) =
m∑

i=1

H(Yi | Y1:i−1)−H(Yi | V, Y1:i−1)

≤
m∑

i=1

H(Yi)−H(Yi | V, Y1:i−1)

=
m∑

i=1

H(Yi)−H(Yi | V ) =
m∑

i=1

I(V ;Yi) (10.23)

where we have used that conditioning reduces entropy and Yi is conditionally independent
of Y1:i−1 given V .

10.8.2 Total variation contraction

Our results rely on certain data processing inequalities—contractions of mutual information
and other divergences—inspired by results on information contraction under privacy con-
straints we developed in Chapters 7 and 8. Consider four random variables A,B,C,D, of
which we assume that A, C, and D have discrete distributions. We denote the conditional
distribution of A given B by PA|B and their full joint distribution by PA,B,C,D. We assume
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A B

C D

Figure 10.1: Graphical model for Lemma 10.1

that the random variables have conditional indpendence structure specified by the graphical
model in Figure 10.1, that is, that we can write the joint distribution as the product

PA,B,C,D = PAPB|APC|A,BPD|B,C . (10.24)

We denote the domain of a random variable by the identical calligraphic letter, so A ∈ A,
B ∈ B, and so on. We write σ(A) for the sigma-field on A with respect to which our
measures are defined. Sometimes we write PA(· | B) for the conditional distribution of A
given B. In addition to the conditional independence assumption (10.24), we assume that
the conditional distribution of C given A,B factorizes in the following specific form. There
exist functions Ψ1 : A×σ(C)→ R+ and Ψ2 : B×σ(C)→ R+ such that for any (measureable)
set S in the range C of C, we have

PC(S | A,B) = Ψ1(A, S)Ψ2(B, S). (10.25)

Since C is assumed discrete, we abuse notation and write P (C = c | A,B) = Ψ1(A, c)Ψ2(B, c).
Lastly, we assume that for any a, a′ ∈ A, we have the following likelihood ratio bound:

sup
S∈σ(B)

PB(S | A = a)

PB(S | A = a′)
≤ exp(α). (10.26)

Lemma 10.1. Under assumptions (10.24), (10.25), and (10.26), the following inequality
holds:

|P (A = a | C,D)− P (A = a | C)|
≤ 2

(
e2α − 1

)
min {P (A = a | C), P (A = a | C,D)} ‖PB(· | C,D)− PB(· | C)‖TV .

Proof By assumption, A is independent of D given {B,C}. Thus we may write

P (A = a | C,D)− P (A = a | C) =
∫
P (A = a | B = b, C) (dPB(b | C,D)− dPB(b | C))
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Combining this equation with the inequality
∫
P (A = a | C) (dPB(b | C,D)− dPB(b | C)) = 0

we find that

P (A = a | C,D)− P (A = a | C)

=

∫
(P (A = a | B = b, C)− P (A = a | C)) (dPB(b | C,D)− dPB(b | C)) .

Using the fact that |
∫
f(b)dµ(b)| ≤ supb{|f(b)|}

∫
|dµ(b)| for any signed measure µ on B,

we conclude from the previous equality that for any version PA(· | B,C) of the conditional
probability of A given {B,C} that since

∫
|dµ| = ‖µ‖TV,

|P (A = a | C,D)− P (A = a | C)|
≤ 2 sup

b∈B
{|P (A = a | B = b, C)− P (A = a | C)|} ‖PB(· | C,D)− PB(· | C)‖TV .

Thus, to prove the lemma, it is sufficient to show (for some version of the conditional
distribution2 PA(· | B,C)) that for any b ∈ B

|P (A = a | B = b, C)− P (A = a | C)| ≤ (e2α − 1)min{P (A = a | C), P (A = a | C,D)}.
(10.27)

To prove this upper bound, we consider the joint distribution (10.24) and likelihood ratio
bound (10.26). The distributions {PB(· | A = a)}a∈A are all absolutely continuous with
respect to one another by assumption (10.26), so it is no loss of generality to assume that
there exists a density pB(· | A = a) for which P (B ∈ S | A = a) =

∫
pB(b | A = a)dµ(b), for

some fixed measure µ, and for which the ratio pB(b | A = a)/pB(b | A = a′) ∈ [e−α, eα] for
all b. By elementary conditioning we have for any Sb ∈ σ(B) and c ∈ C

P (A = a | B ∈ Sb, C = c)

=
P (A = a,B ∈ Sb, C = c)

P (B ∈ Sb, C = c)

=
P (B ∈ Sb, C = c | A = a)P (A = a)∑

a′∈A P (A = a′)P (B ∈ Sb, C = c | A = a′)

=
P (A = a)

∫
Sb
P (C = c | B = b, A = a)pB(b | A = a)dµ(b)

∑
a′∈A P (A = a′)

∫
Sb
P (C = c | B = b, A = a′)pB(b | A = a′)dµ(b)

,

where for the last equality we used the conditional independence assumptions (10.24). But
now we recall the decomposition formula (10.25), and we can express the likelihood functions

2If P (A = a | C) is undefined, we simply set it to have value 1 and assign P (A = a | B,C) = 1 as well.
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by

P (A = a | B ∈ Sb, C = c) =
P (A = a)

∫
Sb
Ψ1(a, c)Ψ2(b, c)pB(b | A = a)dµ(b)

∑
a′ P (A = a′)

∫
Sb
Ψ1(a′, c)Ψ2(b, c)pB(b | A = a′)dµ(b)

.

As a consequence, there is a version of the conditional distribution of A given B and C such
that

P (A = a | B = b, C = c) =
P (A = a)Ψ1(a, c)pB(b | A = a)∑
a′ P (A = a′)Ψ1(a′, c)pB(b | A = a′)

. (10.28)

Define the shorthand

β =
P (A = a)Ψ1(a, c)∑

a′∈A P (A = a′)Ψ1(a′, c)
.

We claim that

e−αβ ≤ P (A = a | B = b, C = c) ≤ eαβ. (10.29)

Assuming the correctness of bound (10.29), we establish inequality (10.27). Indeed, P (A =
a | C = c) is a weighted average of P (A = a | B = b, C = c), so we also have the same upper
and lower bound for P (A = a | C), that is

e−αβ ≤ P (A = a | C) ≤ eαβ,

while the conditional independence assumption that A is independent of D given B,C (recall
Figure 10.1 and the product (10.24)) implies

P (A = a | C = c,D = d) =

∫

B
P (A = a | B = b, C = c,D = d)dPB(b | C = c,D = d)

=

∫

B
P (A = a | B = b, C = c)dPB(b | C = c,D = d),

and the final integrand belongs to β[e−α, eα]. Combining the preceding three displayed
expressions, we find that

|P (A = a | B = b, C)− P (A = a | C)| ≤
(
eα − e−α

)
β

≤
(
eα − e−α

)
eαmin {P (A = a | C), P (A = a | C,D)} .

This completes the proof of the upper bound (10.27).
It remains to prove inequality (10.29). We observe from expression (10.28) that

P (A = a | B = b, C) =
P (A = a)Ψ1(a, C)∑

a′∈A P (A = a′)Ψ1(a′, C)
pB(b|A=a′)
pB(b|A=a)

.

By the likelihood ratio bound (10.26), we have pB(b | A = a′)/pB(b | A = a) ∈ [e−α, eα], and
combining this with the above equation yields inequality (10.29).
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10.9 Proofs of lower bounds for independent

protocols

10.9.1 Proof of Proposition 10.2

The proof of this proposition follows the basic outline described in Section 10.7.
We first describe the distribution of the step V → X. Given v ∈ V , we assume that each

machine i receives a d-dimensional sample X(i) with coordinates independently sampled
according to

P (Xj = vj | v) =
1 + δvj

2
and P (Xj = −vj | v) =

1− δvj
2

.

Then θv = Ev[X]; to apply Lemma 10.1, we require the the likelihood ratio bound

P (Xj ∈ S | v)
P (Xj ∈ S | v′)

≤ 1 + δ

1− δ = exp

(
log

1 + δ

1− δ

)

We now present a lemma that relates this ratio bound to a quantitative data processing
inequality. The lemma is somewhat more general than what we require, and we prove it
in Section 10.9.2. The result is similar to the results in Theorems 7.1, 7.2, and 7.3 in the
preceding chapters, which show similar strong data processing inequalities in the context of
privacy-preserving data analysis. The current proof, however is different, as we have the
Markov chain V → X → Y , and instead of a likelihood ratio bound on the channel X → Y ,
we place a likelihood ratio bound on V → X.

Lemma 10.2. Let V be sampled uniformly at random from {−1, 1}d. For any (i, j), assume

that X
(i)
j is independent of {X(i)

j′ : j′ 6= j}∪{Vj′ : j′ 6= j} given Vj. Let PXj
be the probability

measure of X
(i)
j and assume in addition that

sup
S∈σ(Xj)

PXj
(S | V = v)

PXj
(S | V = v′)

≤ exp(α).

Then
I(V ;Yi) ≤ 2(e2α − 1)2I(X(i);Yi).

Lemma 10.2 provides a quantitative data processing inequality relating the mutual in-
formation in the channel X(i) → Yi to that in V → Yi. In particular, we find that

I(V ;Yi) ≤ 2
(
e2 log

1+δ
1−δ − 1

)2
I(X(i);Yi) = 2

(
(1 + δ)2

(1− δ)2 − 1

)2

≤ 80δ2I(X(i);Yi)

for δ ∈ [0, 1/5]. Recalling our outline from Section 10.7, this is the claimed strong data
processing inequality (10.20). Recalling the tensorization inequality (10.23), we also have

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi) ≤ 80δ2
m∑

i=1

I(Yi;X
(i)). (10.30)
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The remainder of the proof we break into two cases: when d ≥ 10 and when d < 10.
In either case, we have θ(P (· | V = v)) = E[X | v] = δv, which controls the sepa-
ration of the points θv. For the case d ≥ 10, our proof sketch in Section 10.7, begin-
ning from inequality (10.20) with κ = 80, essentially completes the proof. Since Yi sat-
isfies H(Yi) ≤ Bi by Shannon’s source coding theorem [47] and H(X(i)) ≤ d, we have
I(Yi;X

(i)) ≤ min{H(Yi), H(X(i))} ≤ min{Bi, d}. Thus we have the inequality

M
ind(θ,P , B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− 80δ2

∑m
i=1 min{Bi, d}+ log 2

d/6

)
.

The choice δ2 = min{1/25, d/960∑m
i=1 min{Bi, d}} guarantees that the expression inside

parentheses in the previous display is lower bounded by 2/25, which gives the proposition
for d ≥ 10.

When d < 10, we use a slightly different argument. By a reduction to a smaller dimen-
sional problem, we may assume without loss of generality that d = 1, and we set V = {−1, 1}.
In this case, Le Cam’s method (10.21) coupled with the subsequent information implies

M
ind(θ,P , B1:m) ≥ δ2

(
1

2
− 1

2

√
2I(V ;Y1:m)

)
. (10.31)

Applying the bound (10.30), that I(V ;Y1:m) ≤ 80δ2
∑m

i=1 I(Yi;X
(i)), and noting that I(X(i);Yi) ≤

min{1, H(Yi)} as X(i) ∈ {−1, 1}, we obtain

M
ind(θ,P , B1:m) ≥ δ2

(
1

2
− 7

(
δ2

m∑

i=1

min{1, H(Yi)}
) 1

2

)
.

Because H(Yi) ≤ Bi, setting

δ2 = min

{
1,

1

400
∑m

i=1 min{1, Bi}

}

completes the proof.

10.9.2 Proof of Lemma 10.2

Let Y = Yi; we suppress the dependence on the index i (and similarly let X = X(i) denote
a single fixed sample). We begin with the observation that by the chain rule for mutual
information,

I(V ;Y ) =
d∑

j=1

I(Vj;Y | V1:j−1).

Using the definition of mutual information and non-negativity of the KL-divergence, we have

I(Vj;Y | V1:j−1) = EV1:j−1

[
EY
[
Dkl

(
PVj(· | Y, V1:j−1)||PVj(· | V1:j−1)

)
| V1:j−1

]]

≤ EV1:j−1

[
EY
[
Dkl

(
PVj(· | Y, V1:j−1)||PVj(· | V1:j−1)

)

+Dkl

(
PVj(· | V1:j−1)||PVj(· | Y, V1:j−1)

)
| V1:j−1

]]
.
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Now, we require an argument that builds off of our technical Lemma 10.1. We claim that
Lemma 10.1 implies that

|P (Vj = vj | V1:j−1, Y )− P (Vj = vj | V1:j−1)|
≤ 2(e2α − 1)min {P (Vj = vj | V1:j−1, Y ), P (Vj = vj | V1:j−1)}
×
∥∥PXj

(· | V1:j−1, Y )− PXj
(· | V1:j−1)

∥∥
TV
. (10.32)

Indeed, making the identification

Vj ≡ A, Xj ≡ B, V1:j−1 ≡ C, Y ≡ D

satisfies the condition (10.24) clearly, condition (10.25) because V1:j−1 is independent of
Vj and Xj, and condition (10.26) by construction. This gives inequality (10.32) by our
independence assumptions. Expanding our KL divergence bound, we have

Dkl

(
PVj(· | Y, V1:j−1)||PVj(· | V1:j−1)

)

≤
∑

vj

(
PVj(vj | Y, V1:j−1)− PVj(vj | V1:j−1)

)
log

PVj(vj | Y, V1:j−1)

PVj(vj | V1:j−1)
.

Now, using the elementary inequality for a, b ≥ 0 that

∣∣∣log a
b

∣∣∣ ≤ |a− b|
min{a, b} ,

inequality (10.32) implies that

(
PVj(vj | Y, V1:j−1)− PVj(vj | V1:j−1)

)
log

PVj(vj | Y, V1:j−1)

PVj(vj | V1:j−1)

≤ (PVj(vj | Y, V1:j−1)− PVj(vj | V1:j−1))
2

min{PVj(vj | Y, V1:j−1), PVj(vj | V1:j−1)}
≤ 4(e2α − 1)2min

{
PVj(vj | Y, V1:j−1), PVj(vj | V1:j−1)

}∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2
TV
.

Substituting this into our bound on KL-divergence, we obtain

I(Vj;Y | V1:j−1)

= EV1:j−1

[
EY
[
Dkl

(
PVj(· | Y, V1:j−1)||PVj(· | V1:j−1)

)
| V1:j−1

]]

≤ 4(e2α − 1)2EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]
.

Using Pinsker’s inequality, we then find that

EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]

≤ 1

2
EV1:j−1

[
EY
[
Dkl

(
PXj

(· | Y, V1:j−1)||PXj
(· | V1:j−1)

)
| V1:j−1

]]
=

1

2
I(Xj;Y | V1:j−1).
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In particular, we have

I(Vj;Y | V1:j−1) ≤ 2
(
e2α − 1

)2
I(Xj;Y | V1:j−1). (10.33)

Lastly, we argue that I(Xj;Y | V1:j−1) ≤ I(Xj;Y | X1:j−1). Indeed, we have by definition
3

that

I(Xj;Y | V1:j−1)
(i)
= H(Xj)−H(Xj | Y, V1:j−1)

(ii)

≤ H(Xj)−H(Xj | Y, V1:j−1, X1:j−1)

(iii)
= H(Xj | X1:j−1)−H(Xj | Y,X1:j−1) = I(Xj ;Y | X1:j−1).

Here, equality (i) follows since Xj is independent of V1:j−1, inequality (ii) because condition-
ing reduces entropy, and equality (iii) because Xj is independent of X1:j−1. Thus

I(V ;Y ) =
d∑

j=1

I(Vj ;Y | V1:j−1) ≤ 2(e2α − 1)2
d∑

j=1

I(Xj;Y | X1:j−1) = 2(e2α − 1)2I(X;Y ),

which completes the proof.

10.9.3 Proof of Theorem 10.1

In this section, we represent the ith sample by an d× ni sample matrix X(i) ∈ Rd×ni , where
we denote the kth column of X(i) by X(i,k) and the jth row of X(i) by X

(i)
j . As we describe

in our proof outline in Section 10.7, we assume the testing Markov chain V → X(i) → Yi.
Throughout this argument, we assume that m ≥ 5; otherwise the interactive lower bound
Proposition 10.1 provides a stronger result.

Our first result is a quantitative data processing inequality, analogous to Lemma 10.2 in
Section 10.9.1. For the lemma, we do not need to assume normality of the sample X; the
full conditions on X are specified in the conditions in the lemma.

Lemma 10.3. Let V be uniformly random on {−1, 1}d. For any (i, j), assume that X
(i)
j is

independent of {X(i)
j′ : j′ 6= j}∪ {Vj′ : j′ 6= j} given Vj. Let PXj

be the probability measure of

X
(i)
j and assume in addition that there exist (measureable) sets Bj ⊂ range(X

(i)
j ) such that

sup
S∈σ(Bj)

PXj
(S | V = v)

PXj
(S | V = v′)

≤ exp(α).

Define the random variable Ej to be 1 if X
(i)
j ∈ Bj and 0 otherwise. Then

I(V ;Yi) ≤ 2
(
e4α − 1

)2
I(X(i);Yi) +

d∑

j=1

H(Ej) +
d∑

j=1

P (Ej = 0).

3We assume for simplicity and with no loss of generality that X is discrete or has a density with respect
to Lebesgue measure.
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Now, we provide concrete bounds on each of the terms in the conclusion of Lemma 10.3.
Fixing δ ≥ 0, for each v ∈ {−1, 1}d define θv = δv, and conditional on V = v ∈ {−1, 1}d, let
X(i,k), k = 1, . . . , ni, be drawn i.i.d. from a N(θv, σ

2Id×d) distribution. That is, each machine
has a sample of size ni from a normal distribution with mean θv = δv. Under the preceding
assumptions, we obtain

Lemma 10.4. Let a > 0 and δ > 0 be chosen such that for all i ∈ {1, . . . ,m},
√
niaδ

σ2 ≤ 1.2564
4

and a ≥ δ
√
ni. Let h2(p) = −p log(p)− (1− p) log(1− p) denote binary entropy. Then

I(V ;Yi) ≤
dniδ

2

σ2
, and (10.34a)

I(V ;Yi) ≤ 128
δ2a2

σ4
niH(Yi) (10.34b)

+ d h2

(
min

{
2 exp

(
−(a−√niδ)2

2σ2

)
,
1

2

})
+ 2d exp

(
−(a−√niδ)2

2σ2

)
.

With the bounds (10.34a) and (10.34b) on the mutual information I(Yi;V ), we may now
divide our proof into two cases: when d ≥ 10 and d < 10. Let us being with d ≥ 10. We
claim that by combining inequalities (10.34a), (10.34b), and our basic information-theoretic
minimax bound (10.19), we have

M
ind(θ,P , B1:m) ≥ δ2 (⌊d/6⌋+ 1)

(
1

3
− 6δ2

∑m
i=1 nimin{128 · 16 logm ·H(Yi), d}

dσ2

)

(10.35)
for all 0 ≤ δ ≤ σ/16

√
maxi ni logm. Deferring the proof of inequality (10.35), we show how

our desired minimax bound follows essentially immediately. Indeed, by Shannon’s source
coding theorem we have H(Yi) ≤ Bi, whence the minimax bound (10.35) becomes

δ2 (⌊d/6⌋+ 1)

(
1

3
− 6δ2

∑m
i=1 nimin{128 · 16Bi logm, d}

dσ2

)
.

In particular, if we choose

δ2 = min

{
1,

σ2

162maxi ni logm
,

dσ2

36
∑m

i=1 nimin{128 · 16Bi logm, d}

}
,

we obtain
1

3
− δ26

∑m
i=1 nimin{128 · 16Bi logm, d}

dσ2
≥ 1

6
,

which yields the minimax lower bound

M
ind(θ,P , B1:m)

≥ 1

6
(⌊d/6⌋+ 1)min

{
1,

σ2

162 maxi ni logm
,

dσ2

36
∑m

i=1 nimin{128 · 16Bi logm, d}

}
.
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To obtain inequality (10.9), we simplify by assuming that ni ≡ n for all i and perform
simple algebraic manipulations, noting that the minimax lower bound dσ2/(nm) holds inde-
pendently of any communication budget.

Finally, we return to the case when d ≤ 10, an appeal to Le Cam’s method (2.7), as in
the proof of Proposition 10.2 (recall inequality (10.31)), and an identical series of steps to
bound the mutual information using inequality (10.36) (i.e. applying the same sequence of
steps following definition (10.37)) completes the proof.

Showing inequality (10.35) We return to proving the lower bound (10.35), which requires
careful data-processing inequalities. First, by inequalities (10.34a) and (10.34b), we have the
mutual information bound

I(V ;Yi) ≤
niδ

2

σ2
min

{
128

a2

σ2
H(Yi), d

}
+ d h2

(
min

{
2 exp

(
−(a−√niδ)2

2σ2

)
,
1

2

})

+ 2d exp

(
−(a−√niδ)2

2σ2

)
,

(10.36)

true for all a, δ ≥ 0 and ni, σ
2 such that

√
niaδ ≤ 1.2564σ2/4 and a ≥ δ

√
ni.

Now, we consider each of the terms in the bound in inequality (10.36) in turn, finding
settings of δ and a so that each term is small. Let us set a = 4σ

√
logm. We begin with the

third term in the bound (10.36), where we note that by definining

δ23 :=
σ2

16 · 16 log(m)maxi ni
(10.37)

then for δ2 ≤ δ23 the conditions
√
niaδ

σ2 ≤ 1.2564
4

and
√
niδ ≤ a in Lemma 10.4 are satisfied. In

addition, we have (a−√niδ)2 ≥ (4− 1/256)2σ2 logm ≥ 15σ2 logm for |δ| ≤ |δ3|, so for such
δ

m∑

i=1

2 exp

(
−(a−√niδ)2

2σ2

)
≤ 2m exp (−(15/2) logm) =

2

m15/2
< 2 · 10−5.

Secondly, we have h2(q) ≤ (6/5)
√
q for q ≥ 0. As a consequence, we see that for δ22 chosen

identically to the choice (10.37) for δ3, we have

m∑

i=1

2h2

(
2 exp

(
−(a−√niδ2)2

2σ2

))
≤ 12m

5

√
2 exp (−(15/4) logm) <

2

49
.

In particular, with the choice a = 4σ
√
logm and for all |δ| ≤ |δ3|, inequality (10.36) implies

that
m∑

i=1

I(V ;Yi) ≤ δ2
m∑

i=1

ni
σ2

min {128 · 16 logm ·H(Yi), d}+ d

(
2

49
+ 2 · 10−5

)
.

Substituting this upper bound into the minimax lower bound (10.19), then noting that for
d ≥ 10, we have 6(2/49 + 2 · 10−5) + 6 log 2/d ≤ 2/3, gives inequality (10.35).
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10.9.4 Proof of Lemma 10.3

The proof of this lemma is similar to that of Lemma 10.2, but we must be careful when
conditioning on events of the form X

(i)
j ∈ Bj. For notational simplicity, we again suppress

all dependence of X and Y on the machine index i.
We begin by noting that given Ej, the variable Vj is independent of V1:j−1, X1:j−1, Vj+1:d,

and Xj+1:d. Moreover, by the assumption in the lemma we have for any S ∈ σ(Bj) that

PXj
(S | V = v, Ej = 1)

PXj
(S | V = v′, Ej = 1)

=
PXj

(S | V = v)

PXj
(Xj ∈ Bj | V = v)

PXj
(Xj ∈ Bj | V = v′)

PXj
(Xj ∈ S | V = v′)

≤ exp(2α).

We thus obtain the following analogue of the bound (10.32): by Lemma 10.1, we have

P (Vj = vj | V1:j−1, Y, Ej = 1)− P (Vj = vj | V1:j−1, Ej = 1)

≤ 2
(
e4α − 1

) ∥∥PXj
(· | V1:j−1, Y, Ej = 1)− PXj

(· | V1:j−1, Ej = 1)
∥∥
TV
· . . . (10.38)

min {P (Vj = vj | V1:j−1, Y, Ej = 1), P (Vj = vj | V1:j−1, Ej = 1)} .
Proceeding as in the proof of Lemma 10.2 (applying the argument preceding inequality (10.33)),
the expression (10.38) implies

I(Vj;Y | V1:j−1, Ej = 1) ≤ 2
(
e4α − 1

)2
I(Xj;Y | V1:j−1, Ej = 1). (10.39)

The bound (10.39) as stated conditions on Ej, which makes it somewhat unwieldy. We
turn to removing this conditioning. By the definition of (conditional) mutual information,
we have

P (Ej = 1)I(Vj;Y | V1:j−1, Ej = 1)

= I(Vj;Y | V1:j−1, Ej)− I(Vj;Y | V1:j−1, Ej = 0)P (Ej = 0)

= I(Vj;Ej, Y | V1:j−1)− I(Vj;Ej | V1:j−1)− I(Vj;Y | V1:j−1, Ej = 0)P (Ej = 0).

Conditioning reduces entropy, so

I(Vj;Ej , Y | V1:j−1) = H(Vj | V1:j−1)−H(Vj | Ej, Y, V1:j−1)

≥ H(Vj | V1:j−1)−H(Vj | Y, V1:j−1) = I(Vj;Y | V1:j−1),

and noting that I(Vj;Y | V1:j−1, Ej = 0) ≤ H(Vj) ≤ 1 and I(Vj;Ej | V1:j−1) ≤ H(Ej) gives

P (Ej = 1)I(Vj;Y | V1:j−1, Ej = 1) ≥ I(Vj;Y | V1:j−1)−H(Ej)− P (Ej = 0). (10.40)

We now combine inequalities (10.40) and (10.39) to complete the proof of the lemma.
By the definition of conditional mutual information,

I(Xj;Y | V1:j−1, Ej = 1) ≤ I(Xj;Y | V1:j−1, Ej)

P (Ej = 1)
≤ I(Xj;Y | V1:j−1)

P (Ej = 1)
.

Combining this with inequalities (10.40) and (10.39) yields

I(Vj;Y | V1:j−1) ≤ H(Ej) + P (Ej = 0) + 2
(
e4α − 1

)2
I(Xj;Y | V1:j−1).

Up to the additive terms, this is equivalent to the earlier bound (10.33) in the proof of
Lemma 10.2; proceeding mutatis mudandis we complete the proof.
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10.9.5 Proof of Lemma 10.4

To prove inequality (10.34a), we note that V → X(i) → Yi forms a Markov chain. Thus, the
data-processing inequality [47] implies that

I(V ;Yi) ≤ I(V ;X(i)) ≤
ni∑

k=1

I(V ;X(i,k)).

Let Pv denote the conditional distribution of X(i,k) given V = v. Then the convexity of the
KL-divergence establishes inequality (10.34a) via

I(V ;X(i,k)) ≤ 1

|V|2
∑

v,v′∈V
Dkl (Pv||Pv′) =

δ2

2σ2

1

|V|2
∑

v,v′∈V
‖v − v′‖22 =

dδ2

σ2
.

To prove inequality (10.34b), we apply Lemma 10.3. First, consider two one-dimensional
normal distributions, each with ni independent observations and variance σ2, but where one
has mean δ and the other mean −δ. For fixed a ≥ 0, the ratio of their densities is

exp(− 1
2σ2

∑ni

l=1(xl − δ)2)
exp(− 1

2σ2

∑ni

l=1(xl + δ)2)
= exp

(
δ

σ2

ni∑

l=1

xl

)
≤ exp

(√
niδa

σ2

)

whenever |∑l xl| ≤
√
nia. As a consequence, we see that by taking the sets

Bj =

{
x ∈ Rni :

∣∣∣∣
ni∑

l=1

xl

∣∣∣∣ ≤
√
nia

}
,

we satisfy the conditions of Lemma 10.3 with the quantity α defined as α =
√
niδa/σ

2. In
addition, when α ≤ 1.2564, we have exp(α)− 1 ≤ 2α, so under the conditions of the lemma,
exp(4α) − 1 = exp(4

√
niδa/σ

2) − 1 ≤ 8
√
niδa/σ

2. Recalling the definition of the event

Ej = {X(i)
j ∈ Bj} from Lemma 10.3, we obtain

I(V ;Yi) ≤ 128
δ2a2

σ4
niI(X

(i);Yi) +
d∑

j=1

H(Ej) +
d∑

j=1

P (Ej = 0). (10.41)

Comparing this inequality with inequality (10.34b), we see that we must bound the proba-
bility of the event Ej = 0.

Bounding P (Ej = 0) is not challenging, however. From standard Gaussian tail bounds,
we have for Zl distributed i.i.d. according to N(δ, σ2) that

P (Ej = 0) = P

(∣∣∣∣
ni∑

l=1

Zl

∣∣∣∣ ≥
√
nia

)

= P

( ni∑

l=1

(Zl − δ) ≥
√
nia− nδ

)
+ P

( ni∑

l=1

(Zl − δ) ≤ −
√
nia− nδ

)

≤ 2 exp

(
−(a−√niδ)2

2σ2

)
. (10.42)
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Since h2(p) ≤ h2(
1
2
), this provides the bounds on the entropy and probability terms in

inequality (10.41) to yield the result (10.34b).

10.10 Proofs of interactive lower bounds for Gaussian

observations

In this section, we prove Theorem 10.2 as well as a few auxiliary lemmas on (essentially)
data-processing inequalities in interactive settings.

10.10.1 Proof of Theorem 10.2

As in the proof of Theorem 10.1, we choose V ∈ {−1, 1}d uniformly at random, defining
θ := δV for some δ > 0, and we assume machine i draws a sample X(i) ∈ Rd×n of size n i.i.d.
according to N(θ, σ2Id×d). We denote the full sample—across all machines—along dimension
j by Xj . In addition, for each j ∈ [d], we let V\j denote the coordinates of V ∈ {−1, 1}d
except the jth coordinate.

However, in this situation, while the local samples are independent, the messages are
not: the sequence of random variables Y = (Y1, . . . , YT ) is generated in such a way that the
distribution of Yt is (X(it), Y1:t−1)-measurable, where it ∈ {1, . . . ,m} is the machine index
upon which Yt is based (i.e. the machine sending message Yt). We assume without loss of
generality that the sequence {i1, i2, . . . , } is fixed in advance: if the choice of index it is not
fixed but chosen based on Y1:t−1 and X, we simply say there exists a default value (say no
communication or Yt =⊥) that indicates “nothing” and is 0 bits.

We begin with a lemma that parallels Lemma 10.3 in the proof of Theorem 10.1, though
the lemma’s conditions are a bit more stringent.

Lemma 10.5. Assume that |V| = 2 and let V be uniformly random on V. Let PX(i) de-
note the probability measure of the ith sample X(i). In addition, assume that there is a
(measurable) set B such that for any v, v′ ∈ V we have

sup

{
PX(i)(S | v)
PX(i)(S | v′) | S ∈ σ(B), v, v′ ∈ V

}
≤ eα. (10.43)

Define the random variable E to be 1 if X(i) ∈ B for all i and 0 otherwise. Then

I(V ;Y ) ≤ 2
(
e4α − 1

)2
I(X;Y ) +H(E) + P (E = 0).

See Section 10.10.2 for a proof of Lemma 10.5.
Now we can provide a concrete bound on mutual information that parallels that of

Lemma 10.4. Under the conditions in the preceding paragraphs, we obtain the following
lemma. See Section 10.10.3 for a proof of the lemma.
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Lemma 10.6. Let a > 0 and δ > 0 be chosen such that
√
naδ
σ2 ≤ 1.2564

4
and a ≥ δ

√
n. Let

h2(p) = −p log(p)− (1− p) log(1− p) denote binary entropy. Then

I(Vj;Y | V\j) ≤ 128
δ2na2

σ4
I(Xj;Y | V\j) (10.44)

+mh2

(
min

{
2 exp

(
−(a−√nδ)2

2σ2

)
,
1

2

})
+ 2m exp

(
−(a−√nδ)2

2σ2

)
.

To apply the result of inequality (10.44), we need two intermediate inequalities. By
construction, Vj is independent of V\j, so we have

I(V ;Y ) =
d∑

j=1

I(Vj ;Y | V1:j−1) =
d∑

j=1

[H(Vj | V1:j−1)−H(Vj | Y, V1:j−1)]

≤
d∑

j=1

[H(Vj | V\j)−H(Vj | Y, V\j)] =
d∑

j=1

I(Vj;Y | V\j) (10.45)

because conditioning reduces entropy. Similarly, as Xj is independent of V\j and the {Xj}dj=1

are mutually independent, we have the upper bound

d∑

j=1

I(Xj;Y | V−j) =
d∑

j=1

[H(Xj | V\j)−H(Xj | Y, V\j)]
(i)
= H(X)−

d∑

j=1

H(Xj | Y, V\j)

(ii)

≤ H(X)−
d∑

j=1

H(Xj | Y, V )
(iii)

≤ H(X)−H(X|Y, V ) = I(X;Y, V ),

where equality (i) follows by the independence of Xj and V\j , inequality (ii) because con-
ditioning reduces entropy, and inequality (iii) because H(X | Y, V ) ≤ ∑j H(Xj | Y, V ).
Noting that I(X;V, Y ) ≤ H(V, Y ) ≤ H(Y ) + d, we see that

d∑

j=1

I(Xj;Y | V\j) ≤ I(X;V, Y ) ≤ H(Y ) + d. (10.46)

Beginning with our original (strong) data-processing bound (10.44), we may combine in-
equalities (10.45) and (10.46) to obtain

I(V ;Y ) ≤ 128
δ2na2

σ4
(H(Y ) + d) (10.47)

+mdh2

(
min

{
2 exp

(
−(a−√nδ)2

2σ2

)
,
1

2

})
+ 2md exp

(
−(a−√nδ)2

2σ2

)
.

Inequality (10.47) parallels inequality (10.34b) in Lemma 10.4, whence we may follow the
proof of Theorem 10.1 to complete our proof. We now outline the proof for completeness—
there are a few minor differences—focusing on the case d ≥ 10 (the proof in the case that
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d < 10 is completely parallel to the previous proof). By choosing a = 4σ
√
logm and

0 ≤ δ < σ/16
√
n logm, we have

I(V ;Y ) ≤ δ2
128 · 16n logm

σ2
(H(Y ) + d) + d

(
2

49
+ 2 · 10−5

)
.

By the minimax lower bound (10.19), we obtain

M
inter(θ,P , B) ≥ δ2(⌊d/6⌋+ 1)

(
1

3
− (128 · 16 · 6)δ2 (H(Y ) + d)n logm

dσ2

)
.

By Shannon’s source-coding theorem, we have H(Y ) ≤ B, and consequently, by setting

δ2 = min

{
1,

σ2

256n logm
,

dσ2

2048 · 36 · n(B + d) logm

}
= min

{
1,

dσ2

2048 · 36 · n(B + d) logm

}

we obtain M
inter(θ,P , B) ≥ δ2(⌊d/6⌋ + 1)/6. Combining with the above assignment to δ2,

and noting that Minter(θ,P ,∞) & σ2d/(nm) gives the result.

10.10.2 Proof of Lemma 10.5

We state an intermediate claim from which Lemma 10.5 follows quickly. Let us temporarily
assume that the set B in the statement of the lemma is B = range(X(i)), so that there is no
restriction on the distributions PX(i) , that is, the likelihood ratio bound (10.43) holds for all
measurable sets S. We claim that in this case,

I(V ;Y ) ≤ 2
(
e2α − 1

)2
I(X;Y ). (10.48)

Assuming that we have established inequality (10.48), the proof of Lemma 10.5 follows,
mutatis mutandis, as in the proof of Lemma 10.3 from Lemma 10.2. Thus, it only remains
to prove our claim (10.48).

Proof of the data processing inequality (10.48) By the chain-rule for mutual infor-
mation, we have that

I(V ;Y ) =
T∑

t=1

I(V ;Yt | Y1:t−1).

Let PYt(· | Y1:t−1) denote the (marginal) distribution of Yt given Y1:t−1 and define PV (· | Y1:t)
to be the distribution of V conditional on Y1:t. Then we have by marginalization that

PV (· | Y1:t−1) =

∫
PV (· | Y1:t−1, yt)dPYt(yt | Y1:t−1)

and thus

I(V ;Yt | Y1:t−1) = EY1:t−1

[
EYt [Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) | Y1:t−1]

]
. (10.49)
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We now bound the above KL divergence using the assumed likelihood ratio bound on PX in
the lemma (when B = X , the entire sample space).

By the nonnegativity of the KL divergence, we have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1))

≤ Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

=
∑

v∈V
(pV (v | Y1:t−1)− pV (v | Y1:t)) log

pV (v | Y1:t−1)

pV (v | Y1:t)

where pV denotes the p.m.f. of V . We claim that Lemma 10.1 implies that

|pV (v | Y1:t−1)− pV (v | Y1:t)|
≤ 2

(
e2nα − 1

)
min {pV (v | Y1:t−1), pV (v | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖TV .

(10.50)

Deferring the proof of inequality (10.50) to the end of this section, we give the remainder
of the proof. First, by a first-order convexity argument, we have that for any a, b > 0

log
a

b
≤ |a− b|

min{a, b} .

As a consequence, we find

(pV (v | Y1:t−1)− pV (v | Y1:t)) log
pV (v | Y1:t−1)

pV (v | Y1:t)
≤ (pV (v | Y1:t−1)− pV (v | Y1:t))2

min{pV (v | Y1:t−1), pV (v | Y1:t)}
≤ 4

(
e2nα − 1

)2
min {pV (v | Y1:t−1), pV (v | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

by using inequality (10.50). Using the fact that pV is a p.m.f., we thus have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))
≤ 4

(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

∑

v∈V
min {pV (v | Y1:t−1), pV (v | Y1:t)}

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV .

Using Pinsker’s inequality, we then find that

EY1:t−1

[
EYt
[
‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV | Y1:t−1

]]

≤ 1

2
EY1:t−1 [EYt [Dkl (PX(it)(· | Y1:t)||PX(it)(· | Y1:t−1)) | Y1:t−1]] =

1

2
I(X(it);Yt | Y1:t−1).

Since conditioning reduces entropy and Y is discrete, we have

I(X(it);Yt | Y1:t−1) = H(Yt | Y1:t−1)−H(Yt | X(it), Y1:t−1)

≤ H(Yt | Y1:t−1)−H(Yt | X, Y1:t−1) = I(X;Yt | Y1:t−1).

This completes the proof of the lemma, since
∑T

t=1 I(X;Yt | Y1:t−1) = I(X;Y ) by the chain
rule for information.
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Proof of inequality (10.50) To establish the inequality, we give a one-to-one correspon-
dence between the variables in Lemma 10.1 and the variables in inequality (10.50). We make
the following identifications:

V ↔ A X(it) ↔ B Y1:t−1 ↔ C Yt ↔ D.

For Lemma 10.1 to hold, we must verify conditions (10.24), (10.25), and (10.26). For condi-
tion (10.24) to hold, Yt must be independent of V given {Y1:t−1, X

(it)}. Since the distribution
of PYt(· | Y1:t−1, X

(it)) is measurable-{Y1:t−1, X
(it)}, Condition (10.26) is satisfied by the as-

sumption in the lemma.
Finally, for condition (10.25) to hold, we must be able to factor the conditional probability

of Y1:t−1 given {V,X(it)} as

P (Y1:t−1 = y1:t−1 | V,X(it)) = Ψ1(V, y1:t−1)Ψ2(X
(it), y1:t−1). (10.51)

To prove this decomposition, notice that

P (Y1:t−1 = y1:t−1 | V,X(it)) =
t−1∏

k=1

P (Yk = yk | Y1:k−1, V,X
(it)).

For any k ∈ {1, . . . , t− 1}, if ik = it—that is, the message Yk is generated based on sample
X(it) = X(ik)—then Yk is independent of V given {X(it), Y1:k−1}. Thus, PYk(· | Y1:k−1, V,X

(it))
is measurable-{X(it), Y1:k−1}. If the kth index ik 6= it, then Yk is independent of X(it)

given {Y1:k−1, V } by construction, which means PYk(· | Y1:k−1, V,X
(it)) = PYk(· | Y1:k−1, V ).

The decomposition (10.51) thus holds, and we have verified that each of the conditions of
Lemma 10.1 holds. We thus establish inequality (10.50).

10.10.3 Proof of Lemma 10.6

To prove inequality (10.44), fix an arbitrary realization v\j ∈ {−1, 1}d−1 of V\j. Conditioning
on V\j = v\j , note that vj ∈ {−1, 1}, and consider the distributions of the jth coordinate of

each (local) sample X
(i)
j ∈ Rn,

P
X

(i)
j
(· | Vj = vj, V\j = v\j) and P

X
(i)
j
(· | Vj = −vj, V\j = v\j).

We claim that these distributions—with appropriate constants—satisfy the conditions of
Lemma 10.5. Indeed, fix a ≥ 0, take the set B = {x ∈ Rn | ‖x‖1 ≤

√
na}, and set the

log-likelihood ratio parameter α =
√
nδa/σ2. Then the random variable Ej = 1 if X

(i)
j ∈ B

for all i = 1, . . . ,m, and the proof of Lemma 10.5 proceeds immediately (we still obtain the
factorization (10.51) by conditioning everything on V\j = v\j). Thus we obtain

I(Vj;Y | V\j = v\j) ≤ 2
(
e4α − 1

)2
I(Xj;Y | V\j = v\j)

+H(Ej | V\j = v\j) + P (Ej = 0 | V\j = v\j).
(10.52)
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Of course, the event Ej is independent of V\j by construction, so that P (Ej = 0 | V\j) =
P (Ej = 0), and H(Ej | V\j = v\j) = H(Ej), and standard Gaussian tail bounds (cf. the
proof of Lemma 10.4 and inequality (10.42)) imply that

H(Ej) ≤ mh2

(
2 exp

(
−(a−√nδ)2

2σ2

))
and P (Ej = 0) ≤ 2m exp

(
−(a−√nδ)2

2σ2

)
.

Thus by integrating over V\j = v\j , inequality (10.52) implies the lemma.
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