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Abstract
The proliferation of large High-Performance Computing
clusters executing computation-intensive jobs on large
data sets has made cluster power proportionality very
important [13]. Despite publicly available traces show-
ing that many clusters have a low average utilization,
existing power-proportionality techniques have seen low
adoption, a major reason being that these techniques re-
quire modifications to the existing cluster software and
network stack, and do not address the reliability con-
cerns that may arise during the course of server power-
cycling.

We present Hypnos, a defensive power proportionality
system which is unobtrusive, extensible and gracefully
handles possible server software and hardware failures
which may occur during server power-cycling. We de-
ployed Hypnos on a 57-server production cluster. From
a 21-day run, we obtained a 36% energy saving in spite
of multiple server and network failures.

1 Introduction
The use of High Performance Computing (HPC) in di-
verse fields ranging from machine learning and statisti-
cal physics to weather simulation, has led to a massive
increase in energy consumption of such clusters [13].
Clusters are generally provisioned for slightly more than
peak estimated load. The slight over-provisioning helps
the cluster handle unforeseen load spikes. However, re-
cent research has shown that in some clusters, the peak
load occurs rarely [13], resulting in the average load on
the servers being far below the peak. The implication is
that a lot of servers do no work, but consume energy
in their idle state. One of the key tenets of system de-
sign is: in making a design trade-off, favor the frequent
case over the infrequent case. The systems community,
for long, has focused on optimizing for performance —
making the common case fast [25]. But the common
case for many of the servers in such clusters is doing
nothing; that is, being idle. This common case of doing

nothing consumes power because servers are not power
proportional (i.e., power consumption is not directly pro-
portional to utilization [15]). If we are to design for the
common case from a power perspective, we need to “do
nothing well”.

Building power proportional clusters comprising of
servers which are not power-proportional is a well-
studied problem ( [14, 17, 18, 19, 22, 20, 21]), and has
been shown to provide large energy savings. In spite of
the large body of existing work, cluster power propor-
tionality has seen low adoption, especially in clusters
in academic settings, where the main job of the small
IT support staff is to ensure cluster uptime1. The large
emphasis on maintaining cluster uptime disincentivizes
cluster administrators from deploying new power man-
agement software which maybe need changes to soft-
ware configurations, change user job submission proce-
dures, or fail in unpredictable ways. Most prior research
in power-proportionality often require modifications to
the already complex cluster frameworks and configura-
tion scripts (§2.2). Also, some prior work does not deal
with the possibility of software and hardware failures
which can arise when servers are regularly power cy-
cled [24], making these solutions non-viable for deploy-
ment on such clusters.

In this paper, we tackle the challenge of implement-
ing power proportionality unobtrusively in a HPC clus-
ter with a shared centralized filesystem. An unobtrusive
power proportionality system would entail no changes
be made to the existing cluster software or network
stack. Thus, the new power management system would
have to use only the standard interfaces exposed by the
cluster’s existing job management framework to obtain
server state information and infer the cluster’s schedul-
ing logic .

Even though most commercial HPC cluster frame-
works are tolerant to server failures during normal op-
eration, frequent power-cycling of servers based on in-
ferred knowledge leads to failure scenarios that may

1Solutions such as [21] have been deployed in production clusters,
but mainly at big companies with large infrastructure support



confuse an unobtrusive power proportionality system.
For instance, a job may be stuck in a queue due to per-
user limits implemented inside the cluster’s job manage-
ment framework. In such a case, the power proportional-
ity algorithm should not power up a new server to serve
the queued job. Figuring out the difference between this
scenario, and one where a job is queued up due to a
shortage of powered-up servers is a challenge for an un-
obtrusive system. Also consider a scenario in which the
power proportionality algorithm wants to power down
an idle server. Suppose the server does not shut down
properly due to the ”power-down” command getting
dropped over the network, or some software process on
the server keeping the server from shutting down, leav-
ing the server in an undesirable state. A ”wakeup” com-
mand sent to this server at a later time would not have
any effect as neither had this server shut down, nor might
it be in a desirable state to run new jobs. The unobtru-
sive system should be able to detect this scenario and act
accordingly.

We present Hypnos, a defensive meta-system for
obtaining power-proportionality in production clusters
running an HPC framework with a shared centralized
filesystem. Hypnos has three main design principles -
unobtrusiveness, fault tolerance and extensibility. Hyp-
nos attains unobtrusiveness by sitting on top of the mas-
ter server and using existing HPC framework interfaces
to infer cluster state and server failures. Hypnos main-
tains a state-machine for each server, and checks for
failures when a server transitions from one state to an-
other. If a failure is inferred, Hypnos places the faulty
servers in a separate flagged state, and exposes this in-
formation to the power management algorithm, which
then re-assesses the set of servers to be woken up or
powered down. The modular design of Hypnos enables
its easy adaptation to different HPC frameworks by sim-
ply changing the framework specific parser. We evaluate
Hypnos by deploying it on a production cluster running
the HPC framework - Torque [10] in an academic envi-
ronment. Hypnos was able to achieve a 36% reduction in
energy consumption (compared to an optimal of 37.5%)
while circumventing over 1500 network and software
faults over a 21-day deployment.

2 Background

2.1 The Relevance for Cluster Power Pro-
portionality

Servers are not power-proportional and can consume 20-
80% (Figure 1) of their peak power even when idle, im-
plying that even largely idle clusters can consume co-
pious amounts of energy. Even though the processor

is becoming more power proportional through mecha-
nisms such as frequency scaling and clock gating, other
components (such as memory, IO, etc) and peripherals
( fans, etc) are still non-power proportional [22]. Sleep
states, which are common in mobile devices, are still
not widely available in servers [16]. Trends do show
that the server idle power consumption is decreasing.
However, it will a long time before legacy servers are
completely replaced by completely power proportional
servers, making cluster-level power proportionality the
only option to reduce the energy wastage.

Consider a cluster with n servers, each consuming
power Ppeak at peak utilization and Pidle when it is idle.
To get a very simple intuition into the energy savings
possible due to power-proportionality, let us assume that
each non-idle server is operating at its peak utilization,
and the cluster is not over-provisioned 2. Let the average
number of servers running jobs over a time period T be
navg.

The energy consumed by an ideal power-proportional
cluster (Epp) over the time period T would be

Epp = navg ×Ppeak ×T

The energy consumed by a non-power-proportional
cluster 3 (Enpp) would be

Enpp = Epp +(n−navg)×Pidle ×T

Hence, the percentage energy savings obtained by con-
verting a completely non-power proportional cluster to
an ideally power-proportional one would results in en-

2We consider the peak load in the trace to be the provisioned ca-
pacity

3a cluster which keeps all servers powered on the entire time
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Figure 1: Performance vs Power characteristics of different
servers according to spec power ssj2008 benchmark



ergy savings (%Esavings)given by

%Esavings =
(n−navg)×Pidle ×T

Enpp
×100

If we denote the ratio Pidle
Ppeak

by s4, and the ratio of the total
number of servers in the cluster to the average number
of servers utilized over the time period as fpeak/avg, we
can simplify the expression %Esavings as

%Esavings =
1

1
( fpeak/avg−1)×s +1

×100

Three interesting points spring out of this simple anal-
ysis. First, if individual servers were power proportional
(i.e., s = 0), there would be no possible energy savings
because the cluster would already be completely power-
proportional. Second, the higher the idle power of a
server in comparison to its peak (s), the higher is the en-
ergy savings possible. Finally, the most important factor
controlling the amount of energy savings is the peak to
average ratio ( fpeak/avg) of cluster utilization. The higher
the value of fpeak/avg, the more is the incentive to deploy
cluster-wide power proportionality mechanisms. A high
value of fpeak/avg indicates that the peak load the clus-
ter is provisioned for occurs rarely, and a much lower
average load keeps most of the servers spinning idly.

Table 1 shows the fpeak/avg and %Esavings of some
publicly available HPC traces from clusters in an aca-
demic setting, assuming s = 0.5 (i.e the server consumes
50% of its peak power when idle). From the analysis,
it is evident that cluster power proportionality need not
benefit all clusters. For instance, the NERSC clusters’
average utilization closely matches its provisioned ca-
pacity and has very few idle servers to power down. The
remaining clusters display considerable amount of idle-
ness and energy wastage. There is, thus, a strong case
for implementing power proportionality in such under-
utilized HPC clusters with %Esavings ranging from 38%-
82%.

2.2 Prior Work and Feasibility of Existing
Solutions

Despite the potential for significant energy savings and
the large body of existing research in this area, clus-
ter power proportionality has not been widely deployed
among HPC clusters. Through private conversations
with system administrators, the primary concerns seem
to be the obtrusiveness and reliability of the power man-
agement system.

4s quantifies the server non-power proportionality (or local power
proportionality)

Table 1: Statistics from different HPC clusters, whose utiliza-
tion is archived in [9]. The degree of under-utilization of a clus-
ter can be determined by its fpeak/avg value. The notation used
in the table is same as that in Section 2.1

Cluster Avg Util. fpeak/avg %Esavings

LCG 35% 2.9 49%
Grid 5000 17% 6 71%
Nordu Grid 10% 10 82%
AuverGrid 35% 2.9 49%
Berkeley PSI 45% 2.2 37.5%
NERSC Franklin 93% 1.08 3.8%
NERSC Hopper 88% 1.14 6.5%

Existing HPC Power Managers: There exists quite
a few existing power managers available for HPC job-
sharing frameworks. The licensed Green Computing
scheduler from Moab [1] integrates power management
into its framework and requires configuration files to be
modified to enable power proportionality. System ad-
ministrators are, thus, compelled to update the cluster
configuration files every time the power management
features need to be enabled or disabled. Also, reconfig-
uring a cluster setup increases the risk of misconfigura-
tions and failures. Rocks-Solid [8] has a feature to enable
power saving for a clustering running ROCKS [7], but
deploys a very naive algorithm which does not power
down any server if even as long as there exists queued
jobs. Also, it wakes all servers up until a queued job is
executed. This is clearly inefficient because a job can
be queued for fairness or other purposes, and waking up
servers may not enable it run. It is, thus, unreliable. R-
energy [6] is a remote energy management tool which
implements power proportionality only for IBM servers
which support IBM EnergyScale technology.

Prior research in Power Proportionality: One way
to reduce operating expenditure in a data center is to re-
duce the amount of non-sever related power expenditure
in a data center. Efforts in reducing the Power Utilization
Efciency (PUE) of large scale data centers5, has resulted
in the typical values reducing from 2 or greater, to state-
of-the-art facilities having PUEs as low as 1.12 [2], i.e.,
much closer to the ideal value of 1.0.

For data centers with low PUE values, the next chal-
lenge is to reduce the amount of computing work done
per unit energy. Existing research has looked into reduc-
ing the energy consumed by individual servers (i.e., re-
ducing idle energy consumed by servers) by using low-
power processors [12] or by introducing sleep states

5PUE is the ratio of total data center consumption to that consumed
by the computing equipment



into servers [23, 16]. However, sleep states and low
power processors are still not widely available in data
center type servers. The alternate approach of enabling
cluster-level power proportionality has been explored by
[14, 17, 18, 19, 20].

[19] deploys a covering subset scheme where they
keep one replica of every Hadoop file system block on
a small subset of servers. This server subset is always
kept powered on to ensure high data availability. This
technique, thus, requires modification of the file place-
ment code inside Hadoop. Likewise, [17] modifies the
file placement to to partition data into disjoint hot (al-
ways powered up) and cold zones. [18] power down en-
tire clusters and run jobs in a batch mode by periodically
powering then entire cluster up. This leads to delays for
unpredictable arrivals of interactive jobs. [14] adopts this
technique only for long jobs, while keeping a small sub-
set of servers on for interactive jobs. This technique re-
quires control over data placement module of the cluster
framework, where the algorithm transfers data required
for the interactive jobs to the servers that are powered
up. [20] provides an online algorithm changing the num-
ber of active servers to match the workload, evaluating
their technique on production workloads. While Hypnos
could be strengthened by the addition of such a tech-
nique, the focus of Hypnos was to build a fault-tolerant
unobtrusive system which different power management
algorithms could leverage.

2.3 Loitering
To harness the idleness for energy savings, Hypnos uti-
lizes the well-established technique of powering down
servers when idle. However, if a job request arrives for
a powered down server, that request will incur very high
latency because the server must be woken up before that
request can be served. This takes on the order of minutes.
So care must be taken; we cannot put servers to sleep as
soon as they become idle without harming performance.

Loiter time is the duration of time a server will remain
idle before going it is powered down. Shorter loiter times
means servers switch off more frequently, causing more
job requests to suffer performance penalties. Longer loi-
ter times keep servers remaining idle longer, decreasing
energy savings. The loiter time for servers in a cluster
needs to be set only after evaluating these tradeoffs.

2.4 Torque
While the architecture of Hypnos can be applied to dif-
ferent HPC cluster management frameworks, we de-
scribe it in the context of the open-source cluster man-
agement framework called Torque [10] and a job sched-
uler called Maui [4]. Torque manages the availability

of and requests for compute node resources in a cluster
and Maui implements and manages scheduling policies,
dynamic priorities, reservations and fair shares of jobs.
The Torque server and Maui scheduler resides centrally
on the master node of a cluster. The remaining compute
servers runs a Torque daemon which executed submitted
jobs.

A sample job flow involves a script submitted to
Torque specifying constraints. Maui periodically re-
trieves from Torque a list of potential jobs, available
nodes, etc. When desired servers become available,
Maui instructs Torque to execute jobs on them. Torque
then dispatches the jobs to the compute servers, which
then execute the job script. Maui periodically updates its
information regarding job execution status. A job spools
its output data on to local storage, and at the completion
of job execution copies them to the user’s NFS directory.

3 Hypnos
Hypnos is a defensive meta-system which unobtrusively
provides power proportionality for an HPC cluster. We
explain Hypnos in the context of Torque [10], but it can
be easily extended to the other HPC job-sharing frame-
works such as IBM Load Sharing Facility (LSF) [3] and
the Oracle (formerly Sun) Grid Engine (SGE) [5]. The
principles guiding the design of Hypnos were

• Unobtrusiveness : Hypnos should not interfere with
any existing cluster software or network stack. The
administrator should be able to turn the power man-
agement feature on or off without having to change
any cluster configuration.

• Fault-Tolerance : Hypnos should be able to tolerate
various software and network faults which might
result due to frequent power-cycling, and should
not stall or in any way affect the functioning of the
underlying cluster framework or scheduler.

• Extensibility: Hypnos should should be easily
adaptable to different HPC cluster frameworks and
should allow easy deployment of different power
management algorithms.

Brief Overview of Hypnos: Hypnos uses the obser-
vation that most existing HPC frameworks (e.g [10, 5])
expose three interfaces which allow unobtrusive power
management - (a) An interface to add / remove servers
from the cluster framework’s purview (b) An interface
to expose server state information, and (c) An interface
to specify job constraints.

To build an unobtrusive power management system,
Hypnos uses the cluster framework’s APIs to identify
idle servers and shut them down (maintaining a small
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Figure 2: Component diagram of the various components of Hypnos (enclosed in the brown-shaded box). Hypnos lies on top of the
Torque deployment on the cluster master node. It uses the pbsnodes, qstat and checkjob interfaces provided by Torque and Maui.
For each server, the Server State Manager implements the state diagram shown in Figure 4

spinning-reserve of servers which are powered-up so as
to lower response times for new jobs). The cluster state
information is obtained through the Framework Inter-
face Layer, which can be re-written for different frame-
works thus decoupling the working of Hypnos from the
vagaries of the specific cluster frameworks.

However, power-cycling servers may lead to certain
software and hardware failures which the power man-
agement algorithm may not handle gracefully- e.g a
server may not receive a wakeup command, or a server
might have a variable wakeup time due to failure to load
necessary boot-time networked services (such as NFS,
NIS, etc), or the frequent actions of taking a server in
and out of the cluster framework’s purview might lead
to race conditions which may lead the cluster framework
to schedule a job on a server which is about to be shut
down. Hypnos achieves fault tolerance in such cases by
maintaining a state machine for each server6. The state
machine approach allows Hypnos to reason exactly what
failures can occur during each state transition, and how
to circumvent them. If any software or hardware fault is
inferred on a transition between two states, Hypnos tran-
sitions the server instead to a separate Problematic state
(Figure 4).

The Power Management Algorithm (PMA) imple-
ments a wakeup control loop and a shutdown control
loop on the servers that are not marked as Problematic. It
wakes up servers if existing queued jobs cannot be bin-

6It maintains a Server State Manager Module(SSM) and Failure
Handler(FH) for each server

packed on to the set of already powered-up free7 servers
(or the set of servers that are currently waking up). The
shutdown control loop shuts down servers in case they
have been idling for too long provided powering them
down does not affect the minimum idle spinning-reserve.

Going back to our original goals, Hypnos thus
achieves unobtrusiveness by virtue of its meta-system
design, where it sits on top of the cluster frame-
work’s (Torque’s) master node, and only uses informa-
tion available through the interfaces exposed by it. Hyp-
nos achieves fault-tolerance by using a state-machine for
each server. Hypnos achieves extensibility by decoupling
the framework-specific parser, the power-management
algorithm and the failure handler modules. The Power
Management Algorithm can be optimized in isolation
without modifying the other modules, to take into ac-
count cluster-specific workload features like its diurnal
patterns or its burstiness [26].

Assumptions: We assume, that each server has a
health-check script, which is integrated with the cluster
framework (such as [11]). The health-check script runs
periodically to ensure that all the services required to
run jobs are mounted/loaded on the server. If the health-
check script fails on a server, the cluster framework is
notified which then marks the server as ”non-schedule-
able”. Also, we assume that the master node has the abil-
ity to power cycle servers remotely8. In the following
sections, we will describe complete server shutdowns as

7powered-up servers that are not fully utilized
8These assumptions are satisfied by most production clusters



Table 2: Hypnos obtains cluster state information using three
Torque interfaces. The following table lists the analogous in-
terfaces Hypnos could use on other HPC frameworks - IBM
Load Sharing Facility (LFS), and the Sun Grid Engine (SGE)

Torque/Maui LSF SGE
pbsnodes badmin qmod
qstat bjobs qstat
checkjob bjobs qstat

a mechanism to eliminate server idle energy consump-
tion. Instead, servers could simply be sent to the most ef-
ficient sleep state (S3), and this does not change Hypnos’
system design9. Also, we do not make use of frequency
scaling in our implemented system, although this capa-
bility could be easily added to enable further energy sav-
ings. The Hypnos system design is shown in Figure 2. In
the following subsections, we describe in detail the Hyp-
nos design and the rationale behind each of its modules.

3.1 Framework Interface Layer

The Framework Interface Layer abstracts out the process
of obtaining cluster information and actuation from the
rest of the Hypnos system, and provides an API which
the remaining modules use. This ensures easy adaptabil-
ity of Hypnos to different cluster frameworks.

To implement power-proportionality in a cluster run-
ning a job-sharing framework with a shared file system,
one only needs three pieces of information : (a) the status
of each node ( e.g whether it is active, idle, unable to run
jobs or powered off), (b) the list of jobs currently exe-
cuting or queued up on the cluster, and (c) the placement
constraints of each of those jobs. Hypnos obtains this in-
formation from the Torque’s pbsnodes, qstat and Maui’s
checkjob interfaces respectively. On the actuation side,
a power-proportionality software only needs the ability
to manipulate the state of each server. Hypnos achieves
this through Torque’s pbsnodes interface and through the
cluster’s shutdown script. The description of each of the
used interfaces is shown in Figure 3(a). The analogous
interfaces on other HPC cluster frameworks is listed in
Table 2.

The Framework Interface Layer, with the three meth-
ods listed in Figure 3(b), enables Hypnos to decouple the
failure handling, sever state management and its power
management logic from specific syntax and semantics of
Torque and Maui.

Waking

Offline

Down

Problematic

STATE DIAGRAM 
FOR EACH SERVER

Online

Figure 4: The different states and possible transitions of each
server implemented by the Server State Manager

3.2 Server State Manager
Hypnos implements a state machine and a failure han-
dler for each server under its control. The Server State
Managers (SSMs) implements the state machine shown
in Figure 4. Each server can be in 5 possible states.
The transitions can be effected either by the server’s
SSM or by the common Power Management Algorithm
(PMA) module. The objective of the SSM is to decou-
ple the power management logic from failure handling
and server state tracking, ensuring a simple and easy-to-
improve PMA.

The SSM has a timer associated with each state, which
tracks how long a server has been in a particular state.
The meaning of a server being in each of the states is
elaborated below :10

Online: This state signifies that the server is powered
up and is either executing jobs or is idle. When a server is
Online, the timer associated with this state is kept fixed
to 0. Thus, the timer associated with this state indicates
how long a server has been idle.

Offline: The Offline is a transitory state a server goes
through before it is shut down. In this state, no job can
be scheduled on the server. Torque (as well as other
HPC frameworks) has the capability to put a server in
a non-schedule-able but powered up state. Hypnos puts
a server in this Offline state for a sufficient period of
time before it is powered down. This state ensures that
a race condition between the Power Management Algo-
rithm (PMA) and cluster scheduler is avoided. Such a
race condition may take place when a server being shut
down by the PMA, lingers in the cluster framework’s on-

9It is important to note that sleep states are still not available or
enabled by default in a lot of the newer servers [16]. Our test cluster
also did not have the ability to put servers to S3.

10Note that these set of states are different in semantics from the set
of states Torque uses internally (which was shown in Figure 3(a))
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Figure 3: Description of the interfaces used between Hypnos modules, and between Hypnos and job sharing framework. The
establishment of these interfaces ensures that the Framework specific library or the Power Management Algorithm can be easily
modified or extended

line server list for a brief period, leading it to schedule a
job on that server.

Down: This state signifies that the server is powered
off. A server is not transitioned to the Down state until
the cluster framework (Torque) reports that the node is
unreachable.

Waking : Once the Power Management Algorithm
(PMA) wants a server powered up, the SSM wakes the
server up11, and transitions the server to the Waking
state. This state is an intermediate transition state to ac-
count for the time elapsed between servers being pow-
ered up to when they become ready to execute jobs.
Once the cluster framework’s interfaces confirm that the
server is online, the state of the server is changed to On-
line.

Problematic: A server is in the problematic state, if
the PMA or the SSM detects some kind of failure associ-
ated with the server. Failure inference may happen when
a server is transitioning from either the Online, Offline,or
Waking states. We consider the reasons for such failures,
and elucidate the way to detect and gracefully handle
them in the next section.

3.3 Failure Handling

When a server ends up in the Problematic state, the
server-specific Failure Handler records the state the
server last was in, and takes action accordingly.

Last state - Waking : For a server to successfully ex-
ecute jobs, it might have to load multiple different soft-
ware services over the network (such as the networked

11This can be achieved through a wakeonlan packet or other
mechanisms

file system, DHCP configuration, working directories,
etc), the failure of any of which might render it inca-
pable of running jobs. Typically, a health-check script
integrated with the cluster framework is run at boot-time
to check whether the list of necessary services is run-
ning properly [11]. If any of the required services are not
loaded properly, Torque is instructed by the health-check
script to mark the server as non-schedule-able. This fail-
ure is important to handle so as to give the Power Man-
agement Algorithm certainty over whether a woken up
server can schedule currently queued jobs, or whether
another server needs to be woken up as a replacement.

Once a server is powered on, the SSM waits for a con-
figured time interval12 to check if the node is reported to
be schedule-able by Torque. In case, the node contin-
ues to be marked as non-schedule-able by Torque, the
SSM changes the state of the server to Problematic, as-
sumes that the wakeup mechanism might have failed or
the necessary software services may not have loaded.
It keeps checking the Torque interfaces for any update
in the server’s status, while periodically repeating the
wakeup mechanism just in case the fault was caused by
network failure.

Last state - Offline: This happens mostly when some
running service prevents the server from shutting down,
or the shutdown command packets are lost in the net-
work. If this failure was not handled, when the Power
Management Algorithm wanted this server woken up to
service a new job, the server would not respond to a
wakup command because it had never shut down. Bring-

125 minutes in our deployment cluster. This was a reasonable
amount of time for servers to shut down or wake up in our cluster. This
value is taken as a parameter by Hypnos and can be cluster-specific.



ing such a server back online would not be correct, as the
server might have unmounted the services necessary to
execute jobs. Also, a failure to shut down would lead to
a reduction in the energy savings. To tackle it, once the
SSM wants a server to be powered down, the SSM sends
the shutdown command over the network, and waits for
fixed time interval to check if the server is reported as
shutdown by the cluster framework (Torque). In case,
Torque does not report the server to be shutdown, the
shutdown command is resent periodically.

Last state - Online: It may happen that the cluster
framework’s failure detector incorrectly assumes that a
powered up server can properly execute jobs. For in-
stance, one failure mode we encountered during de-
ployment was that a few servers ran out of local disk
space rendering them unable to run jobs. This resulted
in jobs getting queued up, in spite of Torque report-
ing these servers as schedule-able. The Power Manage-
ment Algorithm, which depends on Torque’s interfaces
for server state information, incorrectly inferred that jobs
were getting queued despite the presence of free Online
servers due to some user-specific limits set by the clus-
ter administrator or other Torque fairness mechanisms.
To counter such a failure in the Online state, the SSM
tries to run small dummy jobs periodically on an Online
server which has been idle for a fixed amount of time, to
ensure that they can still execute jobs. The Hypnos Di-
rector discounts these jobs while calculating server idle
time. A successful execution of the small job implies that
the target server is in a correct state and is schedule-able,
else it is transferred to the Problematic state.

3.4 Power Management Algorithm
The Power Management Algorithm (PMA) module de-
fines the logic behind powering idle servers down and
waking them up when new jobs arrive. The PMA in
Hypnos is executed periodically (taken as a parame-
ter in Hypnos; every 60 seconds in our deployment)
and contains the wakeup and shutdown control logic for
each servers. The frequency of execution of the Hypnos
Power Management Algorithm can be adjusted to match
with the HPC framework’s scheduler frequency.

3.4.1 Wakeup Control Loop

There are the two objectives of the PMA in the wakeup
control loop. First, the PMA obtains a list of currently
queued jobs (obtained from the Framework Interface
Layer) and determines which servers to wake up. Hyp-
nos achieves this through a naive bin-packing algorithm,
where it goes through the list of free13 Online, Offline,
Waking and Down servers (in that order) to look for

13powered-up servers that are not fully utilized

servers to run the queued jobs. The order is impor-
tant because, we want to avoid powering up servers for
jobs which can be scheduled on those that are currently
powered-up or is in the process of being powered up.
If a queued job can be packed into an Online server14,
Hypnos assumes that job arrived in-between two cluster
scheduling iterations, and will be scheduled at the next
scheduling iteration. If a job can be run on an Offline
server, Hypnos brings the server back Online because
this is faster than to wake up a powered down server. If a
job can only be run on a powered down server, or the
Online, Offline and Waking servers have already been
filled by the bin-packing algorithm, Hypnos instructs
that server’s state machine to wake the server up15.

Second, the PMA maintains a constant headroom of
idle servers. A typical cluster may contain servers of
different configurations and capabilities. Jobs may have
associated constraints that force them to be scheduled
on a specific type of server. The PMA automatically
groups the server configurations into different classes
(each class consists of servers having the exact same
configuration), and ensures that there is a headroom of
idle spinning servers in each distinct server class. This
is done to ensure that all servers of an infrequently used
server class do not get powered down.

3.4.2 Shutdown Control Loop

The shutdown control loop moves Online servers that
have been idling for more than a specified period of time
to the Offline state, provided it does not reduce the min-
imum spinning reserve for its server class. Then, Offline
servers, which have been spinning idly for more than
the configured amount of time and have not accidentally
been scheduled jobs by the cluster framework are pow-
ered down. Note that the PMA runs the wakeup control
loop before the shutdown control loop to ensure that if
Offline servers can serve queued jobs, they are brought
back Online and not shutdown.

3.4.3 PMA in the face of Server Failures

The Power Management Algorithm thus designed can
circumvent server failures. If a Waking server fails to
come Online, it is flagged as problematic by the SSM.
While running the next iteration, the PMA (which disre-
gards Problematic servers during its bin-packing phase),
will automatically bin-pack the jobs on to a new Down

14This is a strange occurrence because if a job was schedule-able on
an online server, the cluster scheduler should already have scheduled
it

15A Down server is only woken up if a sufficient time has passed
since it was transitioned to the Down state. This time period ensures
that the server shuts down safely, and can be configured by changing a
parameter in Hypnos



server, which will then be woken up. This ensures that
enough servers are eventually woken up to serve a
queued job. In case an Online server cannot run the
SSM’s dummy jobs and is transitioned to the Problem-
atic state, the PMA in its next iteration will wake up
a Down server to ensure a constant headroom of On-
line servers. Thus, the headroom will always consists
only of non-problematic servers which can successfully
run jobs. The PMA assumes that a queued job exceeded
cluster fairness/user-specific limits when the job can run
on a free Online server but is not being scheduled by the
cluster scheduler. In such a scenario, the PMA will not
power up an extra server to service the queued job.

The PMA could be augmented with predictive models
of the cluster-specific workload. For example, the PMA
could take into account the burstiness and the diurnal
nature of the workload and power up idle servers before
hand. This forms part of our future work, where Hypnos
would have a module to automatically analyze existing
traces (using techniques similar to [26]) on the cluster
where it is being deployed, in order to anticipate server
power ups.

4 Implementation and Results

We deployed Hypnos on an academic cluster in Berke-
ley. The cluster is used by about 40 Artificial Intelli-
gence, Machine Learning and Computer Vision graduate
students.

Server configurations: We deployed Hypnos on 57
servers of a cluster for 21 days. 51 of the servers were
Dell PowerEdge 1850 servers having 2 cores running
at 3.0GHz, 3GB RAM, consuming 192 W at idle and
292W at peak utilization. The remaining 6 servers were
Dell PowerEdge 1950 servers with 8 cores at 2.3GHz,
16GB RAM, with an idle power of 253W and a peak
power of 387W. The servers were automatically grouped
into five classes based on the queues they belonged to
and their hardware configurations, according to Torque’s
node configuration file.

Hypnos configuration: Hypnos is written in Python
and the entire system is 1349 lines long. The Power
Management Algorithm module is only 346 lines. Hyp-
nos is deployed on the cluster head node, where the
Torque master resides. A 285-line health-check script
was already deployed on each compute server. Servers
were powered down remotely using the shutdown
command in a bash script which had administrator priv-
ileges on all servers. Servers were powered up using the
wakeonlan command.

4.1 Characteristics of the test cluster
In order to optimize the parameters of Hypnos for the
most possible energy savings and to demonstrate that our
testbed was a representative academic cluster, we ana-
lyzed a 68-day trace taken from the cluster when power
proportionality was not deployed. During this period the
cluster had executed about 169,000 jobs, and the average
cluster utilization was 45%.

Figure 5(a) shows the CDF of the job durations sub-
mitted to the cluster during this period of time. Approx-
imately 50% of the jobs take less than 10 minutes du-
ration. This is probably due to the fact that users of
the cluster have a debug cycle, where they run their
jobs on small portions of data in order to check cor-
rectness of their code before running it on the full data
set. This graph shows the need for a spinning reserve
of idle servers (headroom). A headroom provides fast
turnaround times for small jobs. Without the headroom,
small jobs (of less than 10 minutes duration) may have
to wait for a powered-down server to spin up (which
may take 4-5 minutes), resulting in users’ debug cycle
being extended by at least 40-50%. There is a trade-
off in choosing the number of servers to keep as head-
room — a large headroom results in lower energy sav-
ings (because fewer idle servers will be powered down),
while a smaller headroom impacts completion times for
small/debug jobs. In our experiments we choose a point
in this tradeoff, keeping a headroom of 3 idle servers
each server class.

Figure 5(b) shows the characteristics of the idle du-
rations of the various servers in the cluster. The graph
shows the CDF of idle durations, as well as the CDF of
an idle period’s contribution to the sum of all idle dura-
tions during the period. 40% of the idle periods are less
than 10 minutes in duration, following which the CDF
curve begins to flatten out. The contribution of the idle
durations of less than 10 minutes to the whole cluster
idle is about 0.7%. This indicates that large idle dura-
tions are responsible for most idle-energy wastage. The
conclusion is that some servers in the cluster run jobs
very infrequently, and just powering them down would
yield large energy savings without very little impact on
job performance. We choose the total loiter time16 of an
idle server to be 10 minutes because it allows us to be
moderately aggressive in shutting down servers, and yet
harness most of the idleness in the cluster for energy sav-
ings.

Figure 5(c) shows the impact of various loiter times on
energy savings and the amount of time a job would have
to spend in the queue waiting for a powered down server
to spin up. Too small a loiter time would have resulted
in lot of energy savings, but increased the job response

16The time before a powered up idle server is shut down
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Figure 5: Characteristics of the test cluster before Hypnos was deployed

times. We see that a 10 minute loiter time would increase
average job queue times by only 20 seconds, while sav-
ing almost 40% of the energy. Note that increasing loiter
times does not have a marked response on the amount of
energy saved. As explained in the previous paragraph,
the servers contributing most to the total cluster idleness
run jobs rarely. So, even if we increase the loiter time
these servers will eventually get powered down, result-
ing in large energy savings.

During our experiments, we divide the 10-minute loi-
ter time into 7min loiter in the Online state and a 3min
loiter in the Offline state. The Offline state loitering is
done to ensure that Torque does not mistakenly schedule
jobs on a server soon-to-be-powered-down due a race
condition between Torque and Hypnos.

4.2 Results from deployment

Hypnos was deployed without any changes to the exist-
ing Torque deployment. The energy reduction summary
and performance impact from the Hypnos deployment
is shown in Table 3. During our 21-day deployment,
the cluster utilization rose marginally from the previous
value to 46%.

Figure 6(a) shows the variability of the power profile
of the cluster after Hypnos was deployed. Hypnos was
able to save 36% energy compared to a scenario if it
had not been deployed(The ideal possible energy savings
was 37.5%). Figure 6(b) shows that the power profile
closely matched cluster utilization, showing that Hypnos
was able to switch the idle servers off effectively. Also,
the number of servers switched on at any point of time
was only slightly more than the number of active servers
(servers running jobs).This demonstrates Hypos’ relia-
bility in powering servers up and down, and maintaining
server headroom.

Figure 6(c) shows the impact of our parameter choices

for loiter time and headroom on job performance. The
CDF of the percentage of time a job spent in the queue
time as compared to its execution time is shown sepa-
rately for relatively small jobs ( less than 30 min du-
ration) and larger jobs ( greater than 30 min duration).
Almost 50% of all jobs faced less no increase in exe-
cution time. This is because of the headroom in each
server class, which was able to serve jobs as soon as
they were submitted. Almost 80% of the larger jobs had
a less than 10% increase in their execution time because
of encountering powered down servers. The remaining
50% of smaller jobs had a larger percentage increase in
their job duration because the time for a server to wake
up is large compared to the job’s execution time. Some
large as well as small jobs showed more than a 50% in-
crease in their execution times. This was due to certain
users submitting a large number of jobs at once, result-
ing in the cluster getting fully utilized, resulting in large
queueing times.

If the test cluster had consisted of newer 2010 HP
Proliant DL385 servers (instead of the older PowerEdge
1850 and 1950 servers) with the same workload, Hypnos
would have saved 23% energy (with the optimal being
26%). Also, such a new cluster equipped with the latest
version of Linux (which brings boot times to 2 minutes),
would have seen an average job delay of 9s (as opposed
to 22s on our test cluster).

4.3 Failure handling

Since Hypnos was deployed on a server that was in con-
stant use, Hypnos had to deal with several software fail-
ures arising out of frequent server power cycling. This
section shows certain failure modes that Hypnos was ef-
fectively able to deal with.

Figure 7(a) shows the variable server wakeup times
in the test cluster. At boot time, each server in our test
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Metric Value
Avg. Utilization 46%

Avg. Energy Savings 36%
Ideal Energy Savings Possible 37.5%

Number of submitted Jobs 3651
Total number of Server Reboots 1094

Table 3: Usage statistics from the Hypnos deployment over 21
days on 57 servers

cluster has to contact the Network File System (NFS)
server, the Network Information Service (NIS) server,
and a server to load separate work directories before it
is ready to run a job. Depending on the load on the NIS
and NFS and work directory servers, the wakeup time
of the cluster nodes may vary. While the median server
wakeup time for most servers was 240 seconds, a server
reboot might take as long as 720 seconds due to failure
in mounting the NFS file system, working directories,
or contacting the NIS server. Hypnos ensures fault toler-
ance by enforcing a restart timeout of 5 minutes, before
which it powers up another similar server.

Also, during the course of the deployment, the build-
ing network developed some transient network failures.
This resulted in the NFS and NIS servers responding too
slowly, causing every server reboot to take much longer
(Figure 7(b)). The median server wakeup time across
all servers jumped from 240 seconds to almost 420 sec-
onds on that day. Hypnos effectively circumvented this
temporary drop in network performance through its fail-
ure handlers. Figure 7(c) shows the number of times re-
quired software services failed on servers in the cluster
during the deployment. These software service failures
resulted in a delay in server wakeup, or rendered a server
unable to run jobs. Again, Hypnos was able to circum-
vent these failures by powering up other servers in its
place.

5 Conclusion and Discussion

In this paper, we have demonstrated Hypnos - a power-
proportionality meta-system, which is unobtrusive, reli-
able and flexible in its design. We argued that a meta-
system approach is more general (applicable to differ-



ent resource managers), cost-efficient (in terms of code
maintenance and ease of deployment) and felixble (al-
lows the resource management software to update its
code base without considering power proportionality).
Although, we deployed and tested Hypnos on a Torque
cluster, the design decisions and interfaces used have
analogues in other HPC job-sharing frameworks such as
LFS and SGE. The main aim behind developing Hypnos
was to provide an open-source solution to cut down on
the idle energy consumed in under-utilized clusters. We
report results from Hypnos over a 21-day period, where
it was able to save 36% of the energy without succumb-
ing to hardware or software faults.

There are various ways to improve on the Hypnos
architecture and algorithms. A more optimized power
management algorithm could be written which consid-
ers the server wakeup actuation as stochastic. It can keep
track of the average wakeup times of each server, and
power on servers with a low wakeup time. Also, in in-
stances where past data shows that a server wakeup time
is unreliable ( has a high variance), it could power on
more servers than required in order to serve the queued
jobs. Second, the power management algorithm in Hyp-
nos, though effective, can be further augmented with
predictive techniques such as [20, 26]. We believe that
these power management algorithms can be easily incor-
porated into the Hypnos architecture against the server
state-machine abstraction.
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