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Abstract. Reactive systems are increasingly developed using high-level
modeling tools. Such modeling tools may facilitate formal reasoning
about concurrent programs, but provide little help when timing-related
problems arise and deadlines are missed when running a real system.
In these cases, the modeler has typically no information about timing
properties and costly parts of the model; there is little or no guidance
on how to improve the timing characteristics of the model. In this paper,
we propose a design methodology where interactive timing analysis is an
integral part of the modeling process. This methodology concerns how
to aggregate timing values in a user-friendly manner and how to define
timing analysis requests. We also introduce and formalize a new timing
analysis interface that is designed for communicating timing information
between a high-level modeling tool and a lower-level timing analysis tool.

Keywords: Worst-Case Execution Time, Reactive Systems, Worst-Case Re-
action Time, Synchronous Languages, Precision Timed Machines, Sequential
Constructiveness

1 Introduction

Cyber-physical systems (CPS) [1,2], such as automobiles and aircraft, include
a large number of embedded reactive systems. Such systems typically interact
with the physical environment by sensing, performing computations, and actu-
ating output data. Reactive systems are increasingly designed with the help of
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high-level modeling tools, where real-time is not part of the model abstraction.
This separation of functional and timing concerns enables formal reasoning and
provides a basis for determinism, as provided for example by synchronous lan-
guages [3]. Although such strict separation of concerns is valuable, it limits the
modeler’s control and ability to reason about execution time of the modeled
system. In particular, modeling languages and tools provide little help for the
modeler to determine where the time consuming parts are in the model. These
“hot spots” often contribute significantly to the execution time, but account only
for small sections of the model [4]. Moreover, state-of-the-art modeling tools offer
little guidance on how to improve timing and design of the model.

To improve the situation, a tool chain may be augmented with interactive
timing analysis capabilities. This means that the modeler gets direct feedback
concerning execution time for the whole or parts of the system. For a model
of a reactive system, the most essential timing information is the worst-case
reaction time (WCRT) [5], meaning the maximal time allowed to read sensor
input, perform computation, and actuate output. Such an input-output cycle is
also referred to as a tick, and the computation is performed in a tick function. The
interactive timing analysis problem concerns computing the worst-case execution
time (WCET) [6] of parts of such a tick function and propagating the timing
information back to the user at the level of abstraction of the modeling language.

Although there exists a large body of work in the area of WCET analy-
sis [7,8,9,10,11], surprisingly little has been done with interactive timing analsysis.
Previous work addresses fast WCET analysis [12], interactive C code analysis [13],
analysis of Java code [14] and timing analysis of Matlab/Simulink models [15].
Similar to previous work, we study the interactive timing analysis problem in the
context of a concrete modeling language: SCCharts [16], a visual language based
on the synchronous model of computation. However, in contrast to previous work
on interactive timing analysis, we describe a generic approach with a formal
interface between a modeling tool and a timing analysis tool.

More specifically, this work-in-progress paper addresses several technical
challenges. The first problem concerns classification of WCET information and
aggregation of timing values from hierarchical models. Aggregation of timing
information is particularly difficult when there is no direct mapping between
elements at different levels of abstraction in the tool chain. The second problem
concerns efficiency of the WCET analysis itself. The actual computation time
of the WCET analysis must be short and responsive, so that the user can
interactively use the timing information when developing a model. In contrast to
previous work on efficient WCET analysis [12], our approach advocates separation
of concerns between the analysis of the tick function and of functions it calls.

Contributions:

– We propose a design methodology where detailed interactive timing analysis
information is an integral part of the design processes. We introduce a
classification for timing values that defines the categories deep and flat for
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hierarchical model elements as well as the classes of fractional and local
timing values according to different methods of value aggregation (Sec. 2).

– We present work-in-progress of a tool chain, where timing information is
computed and propagated between various levels—from machine code level
up to high level modeling languages. We also propose the concept of timing
program points, specific annotations that are used for passing timing analysis
requests between optimization and translation phases (Sec. 3).

– We formally define a timing analysis interface that establishes interactive
communication between modeling and timing analysis tools. The interface
allows to separate the concerns of timing analysis for external function calls
and for the tick function, thus supporting efficiency, as the WCET of external
functions can be computed outside of the interactive timing analysis loop.
We present a formal interface description that also leverages the concept of
timing program points (Sec. 4).

Our work is positioned in comparison to related work in Sec. 5 and we give an
outlook on planned future work in Sec. 6.

initial state

final state

model is clocked by ticks

normal transition 
(consumes tick)

             immediate transition 
(arbitrary number in one tick)

communication with environment

termination (all child 
regions in final state)

superstate

state

trigger /effect(s)

priority (small numbers first)

flat WCET / deep WCET

local variable

region

(a) Version 1, with WCRT 530 (b) Version 2, with WCRT 330

Fig. 1. An example of a small robot model, in which the timing values (right upper
edge of region, flat WCET / deep WCET) change with the model revision.
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2 Interactive Timing Analysis from the User Perspective

In this section we motivate our proposal for interactive timing analysis in reactive
system design from the user perspective.

Fig. 1(a) shows a simple robot control model expressed in SCCharts [16]. The
robot drives, takes images, stops upon hitting an obstacle, and then writes a log
file. The SCChart contains three different threads of execution, each expressed as
a region of the model. Regions are depicted as white rectangles, with the region
name in the upper left corner. The main thread initializes the output variable
and is then in state Driving or Stopped. Driving is a superstate that contains two
regions (threads): region HandleEmergency sets the boolean flag stop if the flag
bumper indicates hitting an obstacle; concurrently, region HandleMotor first calls
getImage and enters the Ready state. When stop turns true, it writes the log file
and moves to the Stop state; alternatively, when the accelerator pedal is pressed,
it moves to Start and starts over. Note that we assume no true parallelism in the
execution of concurrent threads for our example implementation, but our timing
analysis interface is not limited in that respect.

Our proposed interactive timing analysis augments regions with timing anno-
tations, shown in the upper right corner. In our prototype, they have the format
〈Flat WCET 〉/〈Deep WCET 〉, with the following meanings.

Flat timing values denote the WCET (BCET) of a region, but the execution
time of enclosed regions is not included in this value. In the robot example
this means that the flat timing value for main will include the execution time
for initialization and termination, but not the execution time for the threads
HandleEmergency and HandleMotor.

Deep timing values for a region on the contrary take the included regions into
account. The execution time of the regions HandleEmergency and HandleMotor
belong to the deep execution time value of region main.

In our prototype, the values are given as generic time units (more precisely,
elements of N⊥ε, see Sec. 4.2), abbreviated tu, with their interpretation depending
on processor clock rates. For fixed clock rates, they may also indicate concrete
physical time units, such as µsec.

The WCRT of the robot model, meaning the maximal time between reading
sensor values (such as bumper) and writing actuators (such as motor), corresponds
to main’s deep WCET. For reactive systems, the maximal permitted WCRT is
typically part of the design specification. In the following, let’s assume for example
that the WCRT must not exceed 400 tu. The actual WCRT of the model version
1 in Fig. 1(a) exceeds this constraint by 130 tu. However, this value alone does
not help in locating the most costly parts of the model, the “hot spots” where
the revision of the model should start.

Here the modeler is guided by the more detailed values for individual regions.
The flat WCET for Main, 30 tu, is so small that a reduction would not make a
sufficient difference. However, the WCET of HandleMotor alone (410 tu) exceeds
the timing specification. Now the modeler may revise the model to version 2 shown
in Fig. 1(b), where getImage() and writeLog() will not be executed in the same
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tick anymore. The automatically updated timing annotations confirm success;
the WCRT is now 330 tu.

In addition to the distinction of timing values into deep and flat, we propose
the following classification, which we explain with the help of the robot model
version 2.

Fractional WCET or BCET of a model element denote its share of the overall
WCET or BCET of the model. For a region, this is the execution time cost
of the part of the critical (or least critical for BCET) path that lies in the
region. In our example, suppose the critical path corresponds to the case that
the input from the bumper sensor is true. Then the part of the critical path
that lies in region HandleMotor means taking the transition with the priority
1, which is active, when stop is true. This transition will call writeLog(), which
costs 180 tu; with some additional execution time for the conditional, say 30
tu, this yields 210 tu as fractional WCET for HandleMotor.

Local WCET or BCET of a model element is the cost of the most (or least for
BCET) costly execution time path that lies in this element. In HandleMotor,
the transition with the priority 2, which is not part of the overall WCET path,
calls getImage(), which costs 200 tu; with some additional execution time,
here 40 tu, this results in 240 tu. This local WCET path of HandleMotor is
not part of the overall WCET path, but more costly than the path including
the transition with priority 1. The corresponding WCET of 240 tu is the
local WCET of HandleMotor.

Both timing values are zero if we can determine that the model element will
never be executed. For a formal definition of these terms, please see Section 4.

The two types of timing values serve different purposes. The fractional WCET
highlights the critical path, as a model element that is not on the critical path has
the fractional WCET zero. The local WCET values indicate the potential cost of
a model element even if it is not on the critical path in the current model context.
Our current tool prototype shows fractional WCETs, this could be replaced by
or augmented with local WCETs.

3 Timing Information Chain and Program Points

In this section we explain the concept of timing information flow along the chain
of compilation steps. We adress the tracing of model element representations
during model transformations, and how program points allow to link the structure
of the original model to generated code.

3.1 The Timing Information Chain and Model Element Tracing

We have to trace model element representation for all compilation steps, and we
must be able to map back timing values. Fig. 2 shows the timing information
flow for our work-in-progress tool chain. Though the concrete choice of modeling
language and processor has an effect on efficiency and tightness of interactive
analysis, the proposed timing information propagation concept is generic.
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SCCharts

SCG

C Code with PP 

LLVM Assembly 
     with PP

 Extended
RISC-V ISA

FlexPRET

Basic Block

SSA Timing Analysis

Use mapping to back 
annotate time values

Timing Analysis

between PP

SCCharts

Insert TPP for each thread  

Back End Compilation

Trace model elements,

CLANG

change, specify PP pairs and
assumptions in .ta file  

save mapping

Fig. 2. Compilation phases and the tim-
ing information flows. The boxes show the
different representations of the model, the
red arrows show the timing information
flow.

In the following we discuss the different
compilation steps.

1) Model transformation in the
same metamodel: Transforming a
model to its representation in a simple
kernel subset of the modeling language,
for example from Extended SCCharts to
Core SCCharts [16], eases further com-
pilation and is easy to trace, as the set
of structural elements is reduced and the
model of computation is kept.

2) Model transformation from
one metamodel to another: Even
transformations with source and target
models that belong to different metamod-
els can be easy to trace if the chosen in-
termediate representation adheres to the
same model of computation, and its struc-
tural description matches as directly as
possible the kernel structure set of the
modeling language. This is the case for

SCCharts and its intermediate representation, the SC Graph (SCG) [16]. Our
prototype traces the model element representation relations with every transfor-
mation. This mapping allows us to determine which elements of the final model
belong to the regions in the original model.

3) Host code generation: Usually the next step is the generation of host
language code. For our tool chain this is C code. To convey our preserved model
element mapping to the timing analysis tool, we propose to insert (timing)
program points (TPP) in the code between any two statements that belong to
different threads (see also Sec. 3.2). For our concrete implementation this is
simple, as the code synthesis preserves the structure of the SCG.

4) Translation to an intermediate low level language: We propose to
use an intermediate low level language, for example LLVM assembly. This shifts
the timing analysis for specified code segments to an intermediate level and
separates it from low level basic block timing analysis. We also propose to use an
extended intermediate format that maintains the inserted program points.

5) Translation to machine code: Step 4 is followed by a normal translation
to machine code, for which a basic block timing analysis is performed. We here use
the FlexPRET processor [17] with RISC-V ISA. The approach presented in this
paper is not specific to PRET architectures; however, the more “compositional”
the timing properties of the target architecture are, the more accurate is the
thread-specific timing information we convey to the user. In that respect, it
is very desirable if the timing properties for some sequence of instructions are
mostly independent from their execution context (e. g., cache and pipeline states),
as is the case for the FlexPRET.
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1 tick () {
2 //main
3 // implicit TPP
4 g0 = GO;
5 if (g0) {
6 motor = false ;
7 g0 F = true;
8 g4 T = true;
9 g10 T = true;

10 };
11 //handleEmergency
12 TPP(1);
13 g7 = g0;
14 if (g10 T) {
15 g9 = pre ( g8 );
16 g10 = g9 & bumper;
17 if (g10) {
18 stop = true;
19 g10 T = false;
20 };

21 g8 = g7 |
22 ( g9 & ! bumper );
23 };
24 //handleMotor
25 TPP(2);
26 g1 = g0;
27 if (g4 T) {
28 g3 = pre ( g2 );
29 g3b = g3;
30 g4 = g3b & stop;
31 if (g4) {
32 writeLog ();
33 g4 T = false ;
34 };
35 g5 = g3b & ! stop;
36 g6 = g5 & accelerator ;

37 if (g6) {
38 getImage();
39 motor = true;
40 };
41 g2 = g1 |
42 ( g6 |
43 ( g5 & ! accelerator ));
44 };
45 //main
46 TPP(3);
47 g11 = g0 F &
48 ! ( g4 T | g10 T );
49 if (g11) {
50 g0 F = false ;
51 };
52 // implicit TPP
53 }

Fig. 3. The tick function for the improved robot example with inserted and implicit
timing program points.

3.2 Timing Program Points

Fig. 3 shows the tick function for the SCChart of Fig. 1(b). The code is divided
into a number of scheduling blocks. Their execution depends on boolean guards,
prefixed with g. The scheduling logic is less important here (we refer the interested
reader to [16]), essential is only that the different threads can be mapped to
scheduling blocks as marked in the listing. To retrieve timing information on
thread level, we insert timing program points wherever one statement belongs to
another thread than its predecessor, see again Fig. 3. There are implicit program
points at the start and the end of the tick function, called entry, short pe, and
exit, short px. Each explicit program point has a unique number. We specify a list
of program point pairs to convey for which parts of the code we request timing
information. Any pair of program points can be listed, but analysis will yield the
unknown value, if there is no controlflow path from the first to the second point.
The pairs are passed to timing analysis in a file that can include information
about desired time value types and about assumptions specified by the modeler.

4 Timing Analysis Interface

In this section we formally define a timing analysis interface used for commu-
nicating timing information between a high-level modeling tool and a timing
analysis tool.

4.1 Interface Formalization

The interactive timing analysis problem can be defined as follows.
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Definition 1 (Interactive Timing Analysis). Given a program consisting of
a set of functions F , a set of global variables G, and a timing analysis request
treq , return a timing response tres .

By function we mean a function in the sense of the C language, although the
problem formulation itself is not limited to C. Global variables may be of any
primitive type (e.g., integer or floating point) and be given initial values.

The essential component of the timing analysis interface is the syntax and
semantics of the timing analysis request treq and the timing response tres . More
specifically, a timing analysis request is a 6-tuple

treq = (f, a, g , e, P,R). (1)

The first element f ∈ F of the tuple is the function to be analyzed; a, g , and
e state assumptions for the analyzer; P is the set of timing program points in
function f ; R is the set of requested analyses. We now detail the assumptions (a,
g , e), followed by the program points (P ) and analyses requests (R).

4.2 Assumptions

The assumptions treq may be used by the timing analyzer to compute tighter
execution bounds. For instance, if only a specific set of values can be supplied
as arguments to function f , the analyzer may exclude infeasible paths, thus
providing tighter WCET or BCET. These assumptions are optional; by not
providing assumptions, the analysis may have to be more conservative.

Consider now again elements two to four of treq . Assumption a : N→ A is a
function that specifies assumptions for the arguments that may be applied to
function f . That is, expression a(n) returns, for argument n ∈ N, an abstract
value v ∈ Va. In this formalization, we do not specify which abstract domain
value v should be in, but for an integer type, a typical value could be represented
as an integer interval. Similarly, function g : G → Va specifies the assumption
for a value g(x) of a global variable x ∈ G. Finally, function e : F → N⊥ε × N⊥ε
specifies assumptions on execution time for functions that may be called by f .
More specifically, for a function f1 ∈ F , e(f1) denotes a tuple (tb, tw), where tb
and tw specify the assumptions of safe lower and upper bounds of the execution
time for f1, respectively. Note that we represent execution time as a natural
number that includes elements ⊥ and ε, that is N⊥ε = N∪ {⊥}∪ {ε}. Element ⊥
indicates that the function is non-terminating and ε that a safe bound cannot be
or has not been determined. For instance, if e(f1) = (200,⊥), we can assume that
200 is a safe lower bound, but that it does not exist any safe upper bound because
at least one path in the function is infinite (the function does not terminate for
some input).

4.3 Timing Program Points and Analyses Requests

The objective of treq is to specify precisely what timing information the high-level
modeling tool is interested in. To enable more precise specification than only at
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a function level, the modeling tool can insert timing program points within a
function. Using pairs of these program points, the tool can then request timing
analysis information about parts of the function.

Element P of the timing request tuple treq specifies a set of timing program
points. A tool may specify any finite number of timing points, but two program
points pe and px representing the function entry point and exit point, respectively,
are always part of P .

Set R specifies the requested analyses. Each element of R is a triple (y, pa, pb),
where y ∈ Y is the type of requested analysis value, pa ∈ P the starting program
point for the analysis, and pb ∈ P the ending point. There are six possible types
of requests:

Y = {WCP, BCP, LWCET, LBCET, FWCET, FBCET} . (2)

WCP and BCP stand for worst-case path and best-case path, respectively. These are
the execution paths between timing program points that result either in longest
or shortest timing bound. The other four types request the worst-case execution
time (LWCET and FWCET) and best-case execution time (LBCET and FBCET). The
prefixes L and F stands for local and fractional, respectively (see Sec. 2 for an
informal description). The precise meaning of the different timing requests are
defined next.

4.4 Timing Response

The timing response tres for a specific timing request treq is a function

tres : R→ N⊥ε ∪ P(p̄) (3)

where r ∈ R is an analysis request and the resulting value is either an execution
time value t ∈ N⊥ε (for r ∈ {LWCET, LBCET, FWCET, FBCET} or r ∈ {WCP, BCP} for an
undefined or infinite path) or a finite path p̄ = 〈p1, p2, . . . , pn〉 (for r ∈ {WCP, BCP}).
By P(p̄) we mean the set of all possible finite paths.

We now formalize the meaning of the different types of timing requests. Let
G = (V,E) be a directed graph, representing an extended control-flow graph
(CFG) for a function f that is being analyzed. The set of vertexes V = B ∪ P is
the union of basic blocks B and timing program points P in f . From G, we can
derive a timing program points graph Gp = (P,Ep), where all vertices are program
points, and edges Ep = {(v, w) | v, w ∈ P and w is reachable from v in G}. We
require that Gp is a directed acyclic graph (DAG) with the motivation that
timing estimates should have a simple clear meaning1. Note, however, that G

1 As a consequence, timing program points cannot exist inside loops. Although enabling
timing program points inside loops would make the interface more expressive, its
formal meaning becomes significantly more complicated. For instance, what is the
meaning of computing the FWCET between two points inside a loop, where the order
that the program points are visited is different depending on input to the main
function? That is, between which points do we compute the WCET if the trace
for one input is p1, p2, p2, p1, p1 and for another input p2, p2, p1? We consider this
interesting problem as future work.
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does not have to be acyclic; loops may still exist between timing program points.
A path in G of length n is a sequence of vertices 〈v1, v2, . . . , vn〉. T (p̄) denotes a
path in Gp that is derived by removing all vertices v /∈ P from p̄. Because Gp is
required to be a DAG, T (p̄) is a simple path (all vertices are distinct).

We assume there exist functions cw : E → N and cb : E → N stating
the worst-case and best-case execution times for executing block v ∈ V and
transition to block w ∈ V , where (v, w) is an edge in E. If v is a basic block and
contains function calls, the timing analysis tool should use function e (assumptions
of execution time for function calls) as defined in (1). The execution time is
always zero for an edge that leaves from a timing program point vertex. We
also assume that there exist functions for computing the worst-case execution
time path v̄wp1,p2 = 〈v1, v2, . . . , vn〉, and a best-case execution time path v̄bp1,p2 =
〈v1, v2, . . . , vn〉, between two timing program points p1 and p2, respectively. If
p2 is not reachable from p1 or if the path between p1 and p2 can be proven to
be infinite (the execution is non-terminating), then ⊥ is returned. If the timing
analysis tool can neither prove that a worst-case or best-case path exists nor
prove that the path is infinite, ε is returned. Note that the worst-case execution
time path v̄wp1,p2 contains both basic block and timing program point vertices,
but the path returned by requesting WCP only contains timing program points.

Let Fp1,p2(p̄) be a subpath of p̄, that contains the contiguous sequence
of vertices between and including p1 and p2. That is, for a sequence p̄ =
〈v1, v2, . . . , p1, vn, . . . , vn+m, p2, vn+m+1, . . . , vn+m+k〉, Fp1,p2(p̄) = 〈p1, vn, . . . ,
vn+m, p2〉. If p̄ does not contain p1 or p2, the empty path is returned, even
though a path between p1 and p2 may still contain elements of p̄. If p̄ is equal to
⊥ or ε then ⊥ or ε is returned, respectively. Note that because timing program
points in a path are distinct, such subpaths are uniquely defined.

The worst-case execution time is defined as E(p̄) = cw(v1, v2)+. . .+cw(vn−1, vn),
where p̄ = 〈v1, v2, . . . , vn〉 is a path in G. The best-case execution time is defined
in the same way using cb. If p̄ is the empty path, E(p̄) = 0. We also define
E(⊥) = ⊥ and E(ε) = ε. The timing response time function is then defined as
follows:

tres(r) =



T (v̄wp1,p2) if r = (WCP, p1, p2)
T (v̄bp1,p2) if r = (BCP, p1, p2)
E(v̄wp1,p2) if r = (LWCET, p1, p2)
E(v̄bp1,p2) if r = (LBCET, p1, p2)
E(Fp1,p2(v̄wpe,px)) if r = (FWCET, p1, p2)
E(Fp1,p2(v̄bpe,px)) if r = (FBCET, p1, p2)

(4)

The different requested execution times are best illustrated using an example.
Consider Fig. 4 that shows a CFG for a function f . The graph has seven basic
blocks (b1 to b7) and six timing program points {pe, p1, p2, p3, p4, px} (shown in
small filled circles). In the example, we assume that the timing analysis tool
determines that the loop between b5 and b6 is executed at most ten times and
at least two times (either by using external flow facts or by computing the loop
bounds). We may then observe the following:
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if x == y

b1 b3
pe p1 px

b2

b4 b7

b5

if x != y

10

p3
10

05
0

20

10 5
15200

0

b6
20100

p2

0p4

Fig. 4. An extended control flow graph (CFG) that includes basic blocks (b1 to b7) and
timing program points (pe, p1, p2, p3, p4, and px). White arrows represent true-branches
and black arrows false-branches and unconditional branches. The graph is cyclic (nodes
b5 and b6), but a derived graph between timing program points is acyclic.

– If the timing analysis tool cannot handle infeasible paths, the true-branches at
b1 and b4 are in worst-case taken. Consequently, tres(WCP, pe, px) = 〈pe, p1, p2,
p3, px〉 and tres(LWCET, pe, px) = 10+200+5+15+10∗(100+20)+20+5 = 1455.
Note that LWCET and FWCET are the same when computed for the whole
function.

– If the timing analysis tool can handle infeasible paths, the tool can detect
that the path containing b2 and b5 is infeasible because variables x and
y cannot be equal and not equal at the same time (assuming x and y in
the if-expressions are not modified in basic blocks b1, b2, b3, or b4.). As a
consequence, tres(LWCET, pe, px) = 10+5+15+10∗ (100+20)+20+5 = 1255
(the false-branch is taken at b1 and the true-branch is taken at b4).

– If the tool handles infeasible paths, tres(LWCET, pe, p1) = 10 + 200 + 5 = 215,
but tres(FWCET, pe, p1) = 10 + 5 = 15. Note that fractional WCET states how
much the path between pe and p1 contributes to the global WCET between
pe and px. Because the tool is assumed to handle infeasible paths, the longest
global path contains edge (b1, b3). Local WCET does not consider the global
analysis.

– Note that tres(FBCET, p2, p3) = 2∗(100+20)+20 = 260, but tres(FBCET, p2, p4) =
0; the latter because there is no feasible path between p2 and p4 (the path
returned by v̄bpe,px does not contain p4).

5 Related Work

During the last decades, a significant amount of work has been done in the
area of WCET analysis. This includes, for instance, loop and infeasible paths
analyses [7,8], cache analysis [9], and path enumeration techniques [10]. There
exist several commercial tools, such as aiT2 and Bound-T3, as well as academic

2 http://www.absint.com/
3 http://www.bound-t.com/
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implementations, such as SWEET4 from Mälardalen University. A comprehensive
overview of the research field is given by Wilhelm et al. [6].

To overcome the complexity of analyzing unpredictable hardware, several
research groups have been developing predictable hardware platforms. The PRET
initiative [18,19] focuses on both compilers and hardware to achieve tight bounds
on WCET. Previous work exists on, for instance, ARM based predictable pro-
cessors [20] and Java processors [21]. Our current work-in-progress uses Flex-
PRET [17], a processor platform designed for mixed-criticality systems. Special
WCET analysis techniques have been designed for these kinds of predictable
hardware platforms. For instance, Kim et al. [22] show how Scratchpad memory
management can be combined with WCET analysis and Schoeberl et al. [23]
present how to perform WCET analysis on Java processors. Falk and Lukuciejew-
ski [11] present a compiler for improving WCET and Seshia and Rakhlin [24]
develop methods for performing WCET analysis in a game theoretic setting.

Most work within the WCET analysis area focus on techniques for computing
safe and tight bounds of WCET; less attention has been given to how such
techniques fit in a development environment and only a few attempts exist on
performing interactive timing analysis. Harmon et al. [12] have developed a tool
chain for interactive WCET analysis, where the performance of the analysis time
is favored before tightness of the WCET bound. Their approach is implemented in
a Java development environment, where the user can obtain timing values directly
on functions and program statements. Instead of using the IPET [10] (the most
commonly used path enumeration technique), they use a tree based approach
that does not handle infeasible paths. Kirner et al. [15] show how interactive
timing analysis can be incorporated in the Matlab/Simulink environment. They
describe how start and stop markers are inserted into C code, but do not give
a precise formal meaning. Persson and Hedin [25] present an interactive timing
environment for Java, where WCET analysis is performed at the byte-code level.
Ko et al. [13] have developed an interactive timing analysis environment for C
programs, where portions of the program can be selected and analyzed. Bernat et
al. [4] show how a commercial tool RapiTime can be used to identify worst-case
hot-spots. The RapiTime tool only uses static analysis for program analysis and
makes use of measurements to obtain execution time numbers when executing
on the processor. The tool aiT is integrated into SCADE5 for timing feedback,
but to our knowledge there is no publication of a general formal interface.

In all above described previous work on interactive timing analysis, the focus
has been to develop interactive and efficient analysis techniques for specific
environments. By contrast, our work in this paper focuses on the interface for
interactive timing analysis between a high level tool and the timing analysis tool.
In particular, none of the related work formalizes this interface and discusses the
difference between different kinds of WCET/BCET values, as discussed in this
paper.

4 http://www.mrtc.mdh.se/projects/wcet/sweet/
5 http://www.esterel-technologies.com/products/scade-suite/
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There have also been some investigations of WCET/WCRT analysis for
synchronous languages, for example for Esterel by Bertin et al. [26] and for the
Esterel-like Quartz language by Logothetis et al. [27,28]. Boldt et al. [29] propose
a flow-based method for WCRT analysis of Esterel programs running on a reactive
processor with fully predictable timing [30]; the WCRT analysis results are then
used to annotate a program with timing annotations that the processor uses to
check timing overruns due to hardware failures. Mendler et al. [31] propose an
algebraic approach for the WCRT analysis for Esterel programs running on a
reactive processor. Raymond et al. [32] propose an approach to improve WCET
analysis by checking feasibility of computed longest paths using model checking
at the modeling level. Want et al. propose an ILP-based approach that exploits
concurrency explicitly in the ILP formulation to avoid state space explosion [33].
These techniques could be combined with our proposal regarding WCET-feedback
at the modeling level. Perhaps closest in spirit to our work is the work by Ju et
al. [34], which back-annotate an Esterel program with information regarding the
timing-critical path. However, they don’t break down specific timing information
as we propose here. Our current usage of timing program points is related to
the control points of the Saxo-RT compiler [35] in that both indicate possible
context switches; however, control points are finer grain since they also express
scheduling properties within a thread, not only across threads.

6 Conclusion

In this paper, we have briefly described a methodology for interactive timing
analysis as well as introduced a formal timing analysis interface that connects
high-level modeling tools to execution time analysis tools. The interface has
the potential of enabling efficient interactive timing analysis loops because it
separates the concerns of analysis of tick functions from WCET analysis of
external functions. We have also discussed our work-in-progress of a tool chain that
compiles SCCharts models into RISC-V machine code and performs interactive
timing analysis. This tool chain enables us to provide timing feedback not only
for the model as a whole, but also for specific model elements.

As for future work, we plan to experimentally study which types of timing
information and at what granularity timing feedback are most valuable for the
modeler. Additionally, we intend to explore a model checking problem, where
the user wants to improve execution time and at the same time guarantee the
preservation of functional behavior.
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