
SPLASH: Single-chip Planetary Low-power ASIC
Spectrometer with High-resolution

Rachel Hochman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-230
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-230.html

December 19, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

SPLASH: Single-chip Planetary Low-power ASIC Spectrometer with High-resolution

by Rachel Hochman

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at

Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Borivoje Nikolic

Research Advisor

Date

* * * * * *

Vladimir Stojanovic

Second Reader

Date

1

SPLASH Report

December 19, 2014

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Prior Work . 7

1.3 Goals of Project . 8

1.4 Scientific Significance . 9

1.5 Outline of Document . 10

2 Spectrometer Design 12

2.1 ADC . 12

2.1.1 TISAR Architecture . 12

2.1.2 SPLASH ADC Block . 13

2.2 DSP Design . 15

2.2.1 PFB and FFT . 15

2.2.2 Power, Bypass MUX, and Vector Accumulation . 17

2.2.3 Test Controller . 18

2.2.4 Verification in Simulink . 19

2.2.5 Verification on FPGA . 20

3 Design Flow 21

3.1 ASIC Design Flow . 21

3.2 Simulink Design Process . 21

3.3 Chip-In-A-Day Design Flow . 22

2

4 Implementation and Testing 24

4.1 Die Photo . 24

4.2 Test Setup . 25

4.3 PCB Design . 25

4.4 Test Software . 25

5 Conclusion and Future Work 27

6 Appendix 1- Full ’SPLASH-in-a-day’ Guide 28

6.1 Getting Started . 28

6.2 IP Generation . 29

6.2.1 Setup . 29

6.2.2 Usage . 29

6.3 RTL Generation . 30

6.3.1 Setup . 30

6.3.2 Usage . 30

6.3.3 Memory Replacement . 30

6.4 Synthesis . 31

6.4.1 Inputs . 31

6.4.2 Usage . 31

6.4.3 Outputs . 31

6.5 Place and Route (IC Compiler) . 31

6.5.1 Setup . 31

6.5.2 Constraints and Floorplanning . 32

6.5.3 Place and Route . 32

6.6 Finishing . 33

6.6.1 Export to Cadence . 33

6.6.2 DRC . 34

6.6.3 LVS . 34

7 Appendix 2 - Data Sheet 35

3

List of Figures

1 Die Photo of Mars Spec. 2.8x2.8mm . 8

2 Measurements Made by NASA’s Upper Atmosphere Research Satellite 11

3 Block Diagram of TISAR ADC . 13

4 Die Photo of TISAR ADC Analog core area: 0.4 x 0.45mm2 13

5 SPLASH ADC Block Diagram . 14

6 Digital Clock Generation . 14

7 Block Diagram of DSP Core . 15

8 Example of DFT Leakage . 16

9 Single Bin Response of PFB vs FFT . 16

10 PFB FIR Implementation . 17

11 Bit Widths Through DSP . 18

12 FFT Block Diagram . 18

13 Scan/Chain Test Controller . 19

14 DSP Functional Simulation Pre-Synthesis . 20

15 Single Bin Output . 20

16 PFB + FFT Output . 20

17 Design Flow . 22

18 Die Photo of SPLASH . 24

19 Block Diagram of Shuttle LX1 [4] . 25

20 Layout of SPLASH Carrier Board . 26

4

List of Tables

1 Key Specs . 35

2 Test Controller Modes . 35

3 Test Controller Instruction Descriptions . 36

4 Test Controller Registers . 36

5 Force Block Control Programming . 36

6 Bottom Side Pinout . 37

7 Right Side Pinout . 38

8 Top Side Pinout . 39

9 Left Side Pinout . 40

5

Acknowledgements

First of all, I would like to thank my advisor Bora Nikolic and my co-advisor Dan Werthimer; they have

guided and mentored me throughout this entire project. Furthermore, I must thank Luis Esteban-Hernandez

and Brian Richards, without whom SPLASH would not have been made. Juan Antonio Lopez Martin also

contributed to the design. I am grateful to all of the CASPER collaborators who have created the DSP

libraries in Simulink (especially Mark Wagner), the BWRC staff and students who worked on the Raven

project (in particular Stevo Bailey and Brian Zimmer), the Radio Astronomy Lab engineers who designed

the SPLASH PCB (Matt Dexter and Calvin Cheng), and our JPL collaborators (especially Bob Jarnot).

In addition, thanks to my other reader, Vladimir Stojanovic. Finally, none of this work would be possible

without the financial support of NASA, the EECS department, ST Microelectronics, and the Marie Curie

Fellowship Program.

As for the people who are always there for me, thanks to Sue and Roger, Adrienne, and Chris.

6

1 Introduction

1.1 Motivation

Spectrometers are one of the most useful instruments available to space scientists. Over the past several

years NASA’s Outer Planets Assessment Group (OPAG) has detailed several desired science goals and

objectives to be met by a future flagship mission to Jupiter or its moons, as well as investigations and

measurements that will fulfill these objectives. Many of these required measurements can be made with a

wideband submillimeter spectrometer. Two examples of investigations that can be conducted on Jupiter by

such a spectrometer are the study of the stratosphere, which links the troposphere to the upper atmosphere,

where effects of external supplies of energy through radiation and particle exchange are dominant, and the

characterization of the physical and chemical properties of Jupiter’s clouds and the processes that maintain

them. Further applications might be the study of other planets such as Saturn or Venus, exospheres around

satellites and asteroids, and cometary comae. Therefore a NASA Planetary Instrument Definition and

Development (NPIDD) project was defined, for which UC Berkeley and the Jet Propulsion Lab (JPL) have

developed an ASIC spectrometer designed specifically to provide an essential building block for a space

instrument that can address fundamental issues about the chemistry, evolution, and dynamics of planetary

atmospheres. This spectrometer chip has been named SPLASH, for Single-chip Planetary Low-power ASIC

Spectrometer with High-resolution.

1.2 Prior Work

At it’s most basic, a spectrometer instrument consists of a receiver, an analog to digital converter(ADC),

and digital signal processing (DSP) that performs a fast fourier transform (FFT). The FFT takes in time

domain data and returns frequency domain data, or a spectrum. Previous spectrometer instruments have

been made with separate receivers, ADCs, and DSP engines. In the past FPGAs have been used for the

DSP block rather than ASICs. An FPGA is a field programmable gate array, which is an integrated circuit

that contains programmable logic blocks and reconfigurable interconnect. This programmability makes the

development time much less than that of an ASIC (application specific integrated circuit). However, for high

bandwidth applications, FPGAs are less suitable, because they are power hungry and extremely sensitive

to errors caused by high-energy particles. In addition, currently available radiation tolerant FPGAs lack

the resources for a large, high-bandwidth spectrometer. Before 2008, state-of-the-art NASA spectrometers

included an acousto-optical spectrometer with a bandwidth of 1.5GHz but only 1000 channels and 5.5W

of power consumption. A chirp transform spectrometer had 4096 channels but only 800MHz of bandwidth

7

and consumed 10W. Therefore, in 2008, students and staff at UC Berkeley’s Space Sciences Lab (SSL) and

the Berkeley Wireless Research Center (BWRC) designed the ’Mars Spec’ ASIC, a precursor to SPLASH.

This chip was fabricated in ST 90nm technology, is 7.84mm2 and operates with clock rates up to 390MHz,

delivering a throughput of up to 1.56GS/s with 710 mW of power. The Mars spectrometer receives data from

an off-chip 1.5GS/s ADC that produces 4 parallel 8-bit streams at 375MS/s. An 8K FFT was performed to

produce a spectral resolution of 1.5GHz/8192 = 183KHz per bin, which is sufficient for studying mm- and

sub mm-thermal emissions from the atmospheres surrounding Earth, Venus, and Mars [2]. Figure 1 shows

a die photo of the Mars Spectrometer ASIC. This ASIC requires an external power hungry ADC (2 W) and

has half the bandwidth of the SPLASH chip.

Figure 1: Die Photo of Mars Spec. 2.8x2.8mm

1.3 Goals of Project

The stated goals of the project were to design and test a high bandwidth (1.5 GHz) and high resolution (183

kHz) single chip (mixed signal ASIC) digital spectrometer. One of the chief innovation goals of this rad-hard

spectrometer was to combine a 3GS/s ADC and high bandwidth DSP functions of previous implementations,

with unprecedented low power consumption, and excellent channel shapes (polyphase FFT implementation).

Its low mass, size and power footprint will allow the spectrometers of future microwave sounders to be

implemented within the IF subsystems, with significant savings in cost, mass, power and volume. One

8

of the proposed benefits of this ASIC is that it is appropriate for immediate application to several flight

missions; for a typical planetary mission, this technology can yield up to 10 watts of savings on a 30 watt

instrument. The key to this power savings is the utilization of the mixed signal ASIC, since several watts

are normally required for line driver circuitry to interconnect high speed chips. The power savings, is, in

turn, highly desirable on a spacecraft which has extremely strict weight and power budgets. In addition to

this new spectrometer technology, recent advances in submm-wave receivers such as: compact light weight

mixers, efficient multiplied THz local oscillators, low noise MMIC amplifiers and THz TACIT mixers, will

make future microwave radiometer instruments more competitive due to the savings in weight and power.

The improved precision of these radiometers, combined with the high bandwidth and excellent resolution of

the digital spectrometers, will also result in improved science data quality, strengthening proposals for such

instruments. In addition, the chip was designed to be resilient to soft-upsets, which happens when a high

energy particle strikes the chip and flips a stored bit. This is an especially important feature due to the high

radiation environment surrounding Jupiter.

The ASIC based, radiation-tolerant spectrometer described here will advance the state of the art for

digital, high resolution spectrometers designed for space applications. These spectrometers can be expected

to provide significant scientific advances to studies of planets, asteroids, and comets, when used in conjunction

with a heterodyne mixer receiver designed for planetary spacecraft. In summary, the new technology we

have developed for this program provides the following characteristics for digital space spectrometers: 1)

first radiation tolerant design needed for studies of the giant planets (e. g. Jupiter) and satellites, 2) low

mass and power needed for outer planet and space applications in general, 3) broad bandwidth, very high

spectral resolution with excellent band pass shape design, 4) ease of testing, calibration and use in space and

5) flexible programming to suit specific applications. These attributes will all contribute to the wide use of

these devices.

1.4 Scientific Significance

Spectrometers measure the properties of light over a portion of the electromagnetic spectrum, specifically

intensity, which can be used in studying the chemical makeup of atmospheres. This is possible because

of the nature of polar atmospheric molecules, which exist in specific states. Quantized energy is stored in

three modes: rotational, vibrational, and electric energy. When the molecule changes from a higher energy

state to a lower energy state it releases electromagnetic radiation. Changes in rotational energy lead to

microwave emissions, rotational and vibrational together give off infrared light, and changes in all three

modes emit ultraviolet light. Quantum mechanical models of molecules predict the specific frequency it

9

emits, and therefore, the intensity of light in certain frequency ranges corresponds with radiation emitted

by certain polar molecules. These spectral ’lines’ are also influenced by the temperature and pressure

of the molecule’s environment. Planetary scientists, in particular, benefit greatly from data gathered by

spectrometers, because they can determine atmospheric composition by examining the emission spectra

produced. Which lines match up with which molecules and environments has been well cataloged and

documented in various ’Spectral Line Catalogs’ including the one found at http://spec.jpl.nasa.gov,

which is a computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the

frequency range between 0 and 10,000 GHz.

The study of planetary atmospheres can tell us many things. One current satellite project is studying

the role that loss of volatiles from the Mars atmosphere to space has played through time, giving insight into

the history of Mars’ atmosphere and climate, liquid water, and planetary habitability [7]. Learning about

the evolution of atmospheres on other planets can provide insight into how our own might evolve. One of

the intended uses of SPLASH is to study the atmosphere of Europa, a moon orbiting Jupiter, specifically

looking for signs of water or life. Clearly, a large and diverse amount of information can be discovered

through spectroscopy. One of the most important experiments concerning our own planet resulted in the

image in Figure 2, made from data gathered by a Microwave Limb Sounder (a spectrometer that ”looks”

tangentially at the edge of the atmosphere, rather than a nadir sounder, which looks directly down through

the atmosphere at the Earth’s surface).

These results gave the definitive proof that industrial chemicals in our atmosphere are perfectly correlated

to the hole in the ozone layer. Such concrete information has led to international actions to slow depletion

of the ozone layer, and similarly convincing data may be able to spur future enactment of environmental

policy.

1.5 Outline of Document

The rest of this document describes the project as follows: The first section is a brief discussion about the

ADC used on this chip, how it works, and how it was integrated into the spectrometer. This is followed

by a more in-depth discussion about the DSP core of the chip including to what specifications it was

designed, the main blocks that make it up, and the verification done in Simulink and on an FPGA. Next

there is a description the tool flow of putting the entire chip together, along with the associated benefits

and challenges. An appendix contains full instructions on how to make a ’chip-in-a-day’ starting from the

Simulink and verilog descriptions. Also included is a die photo of the fabricated chip. The testing plan for

the chip is then described with information on the chip carrier board, the testing environment, and test

10

Figure 2: Measurements Made by NASA’s Upper Atmosphere Research Satellite

software. Finally, in another appendix, the data sheet is shown as it will be given to the engineers putting

together future radiometer instruments with this chip as a key component.

11

2 Spectrometer Design

2.1 ADC

The ADC implemented on the SPLASH chip was ported from a stand alone design [1]. It is a time-interleaved

successive approximation register (TISAR) ADC. This ADC was chosen in part because it was designed in

ST 65nm, meaning we could reuse large portions of the analog layout. In addition, the ADC has 8.16 effective

bits when running at 2.8GS/s and consumes only 44.6mW of power. For the purposes of this chip, the design

was improved for fs > 3 GS/s. This speed, precision, and energy efficiency were ideal to meet the data

conversion needs for SPLASH. Below is an explanation of the ADC architecture and information on how the

ADC portion of SPLASH was put together. Figure 3 and Figure 4 are taken from the VLSI paper about

this ADC [1].

2.1.1 TISAR Architecture

A high-level block diagram of the ADC is shown in Figure 3. It consists of M=24 time-interleaved channels,

with two additional channels used for calibration. Each channel is split in two parts: analog (SARx A, which

also includes SAR logic), and digital (SARx D). The analog part consists of the capacitive DAC and the

comparator. The digital part finds the final output by summing the weighted output bits from the analog

part with the respective channel offsets. The values of the digital weight coefficients and offsets are adaptive

and are iteratively calculated by a least-mean-squares (LMS) algorithm. This calculation takes place in the

linearity LMS block. There is also a ’timing LMS’ block, which calculates timing mismatches and tunes the

delay elements, ∆t. The raw output of each channel is 11 bits with a radix of 1.85. A reduced radix was

used to enable mismatch correction in the digital domain. The subsequent filter block converts to the data

to radix 2.

The ADC has a scan chain, into which you can input initial guesses for the various weight coefficients

and control the calibration procedure. Calibration type and timing calibration are set by bits written into

the scan chain first and then to a register at the edge of an external signal. Radix and offset calibration are

always enabled. The timing calibration is also always running although the tuning in the analog domain can

be disabled with the timing calibration enable bit.

Figure 4 shows the die photo of the TISAR chip. The analog core area occupies .18mm2 and the other

half of the core area is made up of the digital calibration logic and the memory that was used to store and

read out values. We only re-used the analog core roughly as is; the memory block was not re-used at all in

SPLASH and the digital logic was redesigned.

12

Figure 3: Block Diagram of TISAR ADC

Figure 4: Die Photo of TISAR ADC
Analog core area: 0.4 x 0.45mm2

2.1.2 SPLASH ADC Block

In order to integrate the TISAR with the SPLASH digital section, we made many additions, specifically to

the digital logic portion of the ADC. Figure 5 shows a block diagram of the ADC within the SPLASH chip.

The analog core and the filter block remained mostly unchanged. However, a filter select block was added in

order to output either the ’filtered’ (calibrated) outputs or the raw ADC outputs. This feature was added

to aid in debugging. The ’MUX’ block performs two important functions. The first is actually a demuxing

of the data. Since the data comes out of the ADC in 24 streams, but the DSP operates on 8 streams of

data, the 24 streams had to be demuxed into 8. The other function of the MUX block is to create the digital

clock.

A 3GHz clock is input into the ADC, and the clock circuitry divides this down so that each channel

13

M
U
X$

FI
LT
ER

$

AD
C$

clk$

adc1$[7:0]$

adc2$[7:0]$

adc3$[7:0]$
adc4$[7:0]$

adc5$[7:0]$
adc6$[7:0]$
adc7$[7:0]$

adc8$[7:0]$

Fi
lte

r$S
el
ec
t$

Figure 5: SPLASH ADC Block Diagram

Φ1#

Φ2#

Φ9#

Φ3#

Φ4#

Φ5#

Φ6#

Φ7#

Φ8#

Ts#############################(M01)Ts#

Φdig#

Figure 6: Digital Clock Generation

14

samples with a frequency of fs/M and a duty cycle of 1/M. The clocks for each channel are equally phase

shifted. The clock needed for the DSP, however, is equivalent to fs/8. The MUX block therefore generates

this clock based on the rising edge of every 4th channel clock (1, 5, 9, etc.) , as shown in Figure 6. The

outputs of the entire ADC block are the digital clock and the 8 streams of ADC data (either calibrated or

uncalibrated).

2.2 DSP Design

The complete DSP core was described in Simulink using PFB filter, FFT, detection and accumulator blocks

designed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). A

block diagram in Figure 7 outlines the main blocks as well as the data flow. The blocks are each explained

in detail below.

PFB$FIR'

<y
2>'

TVG'

Bypass'M
ul5plexer'

FFT'

<y
2>'

<y
2>'

Vacc'
Vacc'

Vacc'
Vacc'

TVG' <y
2>'

TX'

valid'

Data'

clk'

adc1'[7:0]'
adc2'[7:0]'

adc3'[7:0]'
adc4'[7:0]'

adc5'[7:0]'
adc6'[7:0]'
adc7'[7:0]'
adc8'[7:0]'

sync$gen'

Figure 7: Block Diagram of DSP Core

2.2.1 PFB and FFT

The primary function of any spectrometer is Fourier analysis, converting time-domain data into frequency-

domain data with a Discrete Fourier Transform (DFT). However, there is one main drawback to a straight-

forward application of the DFT: leakage.

Because a DFT operates on a finite length of samples, the frequency domain response of a complex

sinusoidal waveform using the DFT is the convolution of the Fourier transform of the sinusoid and that of

15

Figure 8: Example of DFT Leakage Figure 9: Single Bin Response of PFB vs FFT

a rectangular window. Since the Fourier transform of the complex sinusoid is a shifted delta function, the

result of the convolution is the Fourier transform of the window - a sinc function - centered at the location

of the delta function. Although they may line up perfectly for specific inputs and sample lengths, in general,

the frequency domain bin centers fall at non-zero locations on the sinc function. Therefore a single tone

appears with some level in all the frequency bins of the DFT output. Since the energy contained in the

input frequency bin ’leaks’ into other frequency bins, this effect is called DFT leakage. In certain use cases

this effect may be insignificant, but in astronomy, for example, the leakage from a strong radio frequency

interference (RFI) signal can drown out astronomical signals of interest in the nearby bins. An example of

this is shown in Figure 8; a tone at 5.1MHz, sampled at 128MHz, and Fourier-transformed with 64 points,

appears to varying levels in all the output frequency bins [3] .

The polyphase filter bank (PFB) technique is a way to mitigate the negative effects of the straightforward

DFT. A comparison of the single bin response of both techniques is shown in Figure 9 [3]. The PFB results

in a flat rather than rounded response across the channel. It also lessens the leakage effect by providing

excellent suppression of the side-lobes of the the sinc function by changing the single-bin frequency response

of the DFT to approximate a rectangular function. Instead of taking a direct N-point DFT, a block of data

of size N x P = M is first multiplied point-by-point with a window function. This windowing is effectively a

filtering process; the elements of the window function act as the filter coefficients in a finite impulse response

filter (FIR). By the nature of the DFT, the shape of the single-bin frequency response is determined by the

shape of the window function. Therefore, to force the single-bin frequency response to resemble a rectangular

function as much as possible, we use its Fourier transform pair, the sinc function, as the window function.

After the windowing/weighting, the block of data is split into P subsets (each of length N) and added point-

by-point. Figure 10 shows the polyphase filter bank implementation with P = 4 taps and N sub-filters. The

16

commutator at the left rotates in the clockwise direction, and makes one complete rotation in the duration of

one unit delay. The resulting array, here denoted by y(n), then goes through an N-point DFT implemented

as an FFT. The 8 bit input data grows to 18 bits in the FIR. All bit widths though the design can be seen

in Figure 11.

z"1$ z"1$z"1$
x(0)$x(N)$x(2N)$x(3N)$

h(0)$h(N)$h(2N)$h(3N)$

z"1$ z"1$z"1$
x(1)$x(N+1)$x(2N+1)$x(3N+1)$

h(1)$h(N+1)$h(2N+1)$h(3N+1)$

z"1$ z"1$z"1$
x(N"1)$x(N+N"1)$x(2N+N"1)$x(3N+N"1)$

h(N"1)$h(N+N"1)$h(2N+N"1)$h(3N+N"1)$

Subfilter0

Subfilter1

Subfilter$N"1$

y(0)$
y(1)$

y(N"1)$

x(n)$

Figure 10: PFB FIR Implementation

The N-point FFT (for SPLASH, N = 16k) is computed with a biplex FFT followed by a direct FFT. A

block diagram is shown in Figure 12. The biplex FFT is a pipelined FFT implementation that reduces the

number of complex multipliers and adders needed for a given FFT size, fully utilizes the hardware, and has

distributed memory. It achieves this by realizing that only N/2 points need to be stored before processing

begins since the first butterfly operates on sample 0 and N/2. Each subsequent stage needs only to store

half the data of the previous stage. There are two 8K biplex FFT blocks. The direct-form FFT produces

the 16K FFT result as eight streams of 2K packets coming from the biplex cores. The outputs of this

decimation-in-frequency FFT are scrambled and must be reordered in software.

2.2.2 Power, Bypass MUX, and Vector Accumulation

The power of the complex streams is computed after the FFT by squaring the real and imaginary parts and

adding them together. Next in the flow is a bypass multiplexer that chooses between the outputs of the

ADC, PFB, FFT, and power blocks. This will be used for debugging and can be set via the scan chain as

described in the next section.

17

4"
Ta
p"
"

PF
B"
FI
R"

FF
T"

Po
w
er
"

Re
2 +
Im

2 "

8*8"bits"
(Re)"

Ve
ct
or
"

Ac
cu
m
m
ul
at
or

"

8*18"bits"
(Re)"

4*36"bits"
(Complex)"

4*32"bits"
(Re)" 4"bits"

Figure 11: Bit Widths Through DSP

Finally, the results are accumulated in the vector-accumulator (vacc) block for a programmable number

of packets. The vector-accumulator is an adder with feedback from a synchronous delay line, which sums

corresponding frequency bins from adjacent packets. Therefore, the frequency-domain data can be averaged

over a period from 10ms to several seconds to trade-off the spectrum update time for improved SNR. This

accumulation length is programmable via the test controller described below. The user can choose any length

in multiples of 2048 spectra, up to 1.048 million spectra. A transmitter block sends the data out in 4bits,

with a clock and valid signal.

Biplex'Core'

Biplex'Core'

Direct'
FFT'

8k'from'FIR'

8k'from'FIR'

16k'scrambled'

Figure 12: FFT Block Diagram

2.2.3 Test Controller

SPLASH includes dedicated datapath elements for ease of testing and to support run-time soft-upset detec-

tion. The chip can run in two modes, hard and soft. In the hard mode, operation does not depend on any

state registers; this prevents failures caused by soft upsets from high-energy particles. In the soft mode, some

control inputs are re-defined to support internal testing modes. A block diagram of the scan chain and test

controller is seen in Figure 13. There are three ’force’ registers, which are protected by triple-voting logic

and therefore against soft-upsets. The settings in these ’force-registers’ are the accumulation length, FFT

18

shift schedule, and the control of the bypass multiplexer. This MUX chooses which data goes into the vector

accumulator, thereby allowing the user to view intermediate datapath results. A snapshot can be uploaded

from the accumulator through the serial interface.

Additionally, multiple-input shift registers (MISRs) are included to monitor streams of data at predeter-

mined points between key function blocks. These registers can generate unique signatures from streams of

data during a preprogrammed interval. When combined with the internal test-vector generator, the same

signature should recur unless a soft-upset changes one or more of the data values, effectively turning the

entire spectrometer core area into a soft-upset detector. The MISR can also capture single-cycle data values

to assist with debugging. The scan chain total has 266 bits to be programmed and 501 bits in the MISRs.

To program the 266 configuration bits, the user must turn the serial program bit high while inputting the

266 bits. Once this is done, the user must set the serial force bit high. This will force the bits into the

correct registers (OFFLOAD), and the test controller will push the data into the force blocks. Specific bit

locations are described in Appendix 2.

State
Machine

Stop mask

Start mask

Start value

Command
Force block1

Force block2

Force block3

MISR´s

Stop value

Scan dump

Stop value

Ref start

Ref stop

Figure 13: Scan/Chain Test Controller

2.2.4 Verification in Simulink

The design flow optimizes for differences between FPGA and ASIC implementations by substituting datapath

blocks with cycle-accurate and bit-accurate subsystems that may have different micro-architectures. For

example, a memory-based synchronous delay line uses dual- port memories that have the same resource

cost on an FPGA as a single-port memory. The same function would be inefficient on an ASIC, and is

replaced by a single-port SRAM-based circuit that has the same I/O behavior. A Simulink testbench verifies

equivalence by co-simulating the FPGA and ASIC implementations side-by-side. The below simulation shows

a sinusoidal input, with the tone going into the vector accumulator, and below that the output of the vector

accumulator growing until the valid signal goes high.

19

Vacc$input$

Vacc$valid$

Vaccout

acc_len$=10$

Input$signal$

Figure 14: DSP Functional Simulation Pre-Synthesis

2.2.5 Verification on FPGA

The system was mapped to a ROACH2 FPGA board [8] and field tested (at a lower clock rate) using a 3

GS/s ADC board that plugs into the ROACH2 board. The plot in Figure 15 shows the results of a single tone

test, measuring the output power from a single tone in 700 bins (350 on each side). The plot in Figure 16

shows the results of a sweep of frequencies, with the output powers summed. Because this test was run on

the FPGA, these are the outputs of an 8K FFT, where each bin is 48.828KHz wide.

Figure 15: Single Bin Output
Figure 16: PFB + FFT Output

20

3 Design Flow

3.1 ASIC Design Flow

Traditional approaches to designing and implementing digital single processing on an ASIC can be compli-

cated, involving multiple phases overseen by multiple designers. Each design description must be translated

into the next, and during each translation an opportunity for error arises. Therefore, between each step,

additional verification is required to avoid logic errors. Generally, a design begins with an abstract algorithm,

the operation of which is verified in a floating-point simulation in a tool like Matlab. This simulation is used

to derive system specifications. Next, a system designer will map the system specifications into a system

architecture. This is done with a behavioral or structural description. At this point, the floating-point data

types must be converted to fixed-point, and the designer must verify that finite word lengths do not alter the

functionality of the algorithm. The third step involves implementing the architecture in Verilog or another

register-transfer level (RTL code), and again verifying functionality. The Verilog can then be synthesized

into standard cell netlists by a tool such as SYNOPSYS Design Complier. These standard cell net lists are

then given to a physical designer, who will use place-and-route tools (such as SYNOPSYS IC Complier) to

create a layout to provide to a fabrication house. During this step the designer needs to verify that all timing

constraints are met and of course this translation, like the previous two, necessitates another verification.

Throughout the process, opportunities to reduce power consumption and area are often unknown or ignored,

and any issues discovered during the physical design phase are unknown to the algorithm designer. This can

lead to the need for multiple iterations, which can greatly extend the design time.

Another issue slowing design time and complicating design procedures is the fact that simulation of

designs can be extremely lengthy and resource intensive. One way to speed up the simulation time is to

map the design onto an FPGA and actually perform hardware emulation. Taking advantage of the extensive

performance capacity and software support of FPGAs can greatly speed up design iterations but leads to

another issue of FPGA/ASIC microarchitecture incompatibility. Certain primitive components and memory

types can be implemented in an FPGA fabric, but not in an ASIC. To get around this issue, an ’in-house’

tool was developed, which is further discussed in the following section. Figure 17 contains a diagram of the

entire flow, which has been modified from [2].

3.2 Simulink Design Process

The most challenging part of the Simulink design process involves the transition from FPGA oriented Verilog

to ASIC specific Verilog. In order to emulate the DSP design in hardware, System Generator, a Xilinx tool,

21

Cross-Hardware
Equivalence

Emulation + Test

Simulink System Description
Function
Libraries IP Libraries Polyphase

FIR
Real → Complex
8K FFT

Power
r2 + i2

Vector
Accumulator
(64-bit x 4096)

CPU
TVG

Emulation on FPGA
Platform

IP Equivalence
Verification

Cross Simulation,
Simulink +
Modelsim

Layout Mask, Test
Board

ASIC HDL
Power, Area, Speed

Estimates

ROACH FPGA
HDL

FPGA Design Flow ASIC Design Flow

ASIC
IP

FPGA
IP

ROACH Design Flow Synth. Place & Route

Figure 17: Design Flow

was used to convert the Simulink design into VHDL, which could then be implemented on the ROACH2

board. Several iterations of the design were tested on the FPGA before settling on the final design with the

desired output bin shape and scalloping. Insecta is the in-house tool used to synthesize basic primitives based

on the behavioral RTL, and perform initial top-level synthesis for an ASIC based on a Simulink descrip-

tion. The tool also performs HDL simulation to confirm functional equivalency between the two hardware

descriptions [5]. However, Insecta is not equipped to deal with memory blocks, which are implemented as

dual-port memories for the FPGA, but must be single-port for the final chip. Therefore, once the design is

completed, custom memories must be inserted as blackboxes in the Simulink design, and the entire flow of

System Generator and Insecta must be run again. Finally, the results must be simulated in Modelsim against

the design with dual-port memories, in order to check that the memory behavior is bit and cycle-accurate.

Once this behavior has been proven the results can be passed into the place and route tools.

3.3 Chip-In-A-Day Design Flow

Our tool flow has been designed so that, in theory, one can begin with the ADC IP block and the Simulink

DSP design and end up with a physical layout design in one day. This greatly facilitates the revision process

by making it possible to change the source RTL and produce a new version of the chip in a day. This process

begins with manipulating the ADC to be used in the flow. Three files are needed describing the ADC block

in various ways: a Verilog module, a .lib file to describe the timing related to its pins, and a milkyway

file to describe the block physically for place and route. This milkyway must include the appropriate metal

22

layer blockages to avoid any routing over the design and pin cutouts to allow the routing tool to connect

its pins. The Simulink design must then be run through the Insecta flow to generate and RTL description

of the DSP core. At this point, a top-level Verilog description is needed which includes the I/O pads, the

ADC, the ADC’s digital circuits, and the DSP core. These are input into Design Compiler in order to map

the design to actual 65nm gates. Before importing the resulting .ddc file into IC Compiler, there are several

scripts that have been written to prepare the floorplan, pads, and power mesh for the chip. Once the floor

plan is laid out, the design is ready to have the gates placed and routed. These steps are also scripted, and

written into a makefile. The steps include placement, clock tree synthesis, clock routing, and signal routing,

and may be done incrementally or all at once. Once the design is completed and meets timing requirements.

The design must be ’streamed out’ to Cadence for finishing. Design rule checking (DRC) and layout vs

schematic checking (LVS) are done in virtuoso, and both must be error free before sending the .gds files to

be fabricated. A thorough, step-by-step guide to all of these actions can be found in Appendix 1.

23

4 Implementation and Testing

4.1 Die Photo

The chip was fabricated by ST Microelectronics with 65nm features; it was taped out in early July 2014 and

came back in October 2014. Figure 12 shows a die photo of the SPLASH chip, which measures 3.16mm per

side. Overlaid are indications of the largest blocks on the chip. Certain memories are clearly visible, the

largest of which are in the transmitter (TX) block. The analog I/O pads are concentrated in the bottom left

corner, near the ADC, and the digital I/O pads surround the rest of the chip. A full pinout is in Appendix

2.

ADC$ PFBFIR

FFT$

VACC$
TX$

Figure 18: Die Photo of SPLASH

24

4.2 Test Setup

The test setup used for SPLASH is based on the RAVEN setup. There are 3 boards used for testing- an

Opal Kelly Shuttle LX1, the RAVEN voltage supply board, and the SPLASH carrier board, described in

more detail in the next section. The Shuttle LX1 is a general-purpose FMC carrier the combines a Xilinx

Spartan-6 FPGA, high-speed USB 2.0, and the FrontPanel SDK, as seen in Figure 19. The RAVEN supply

board has an FMC connector and 4 Linear Technology VLDO linear regulators. The output voltages are

controlled by the FPGA via an I2C protocol.

Figure 19: Block Diagram of Shuttle LX1 [4]

4.3 PCB Design

This PCB was designed by Matt Dexter (Radio Astronomy Lab). It connects to the Raven supply board

with an FMC connector. Special considerations were taken when designing the high speed analog inputs

on the board to match wire lengths. Additionally, the power and ground rings and the I/O pads were very

carefully placed to ensure that the wires are roughly parallel leaving the die. Figure 20 shows the layout and

silkscreen of the carrier board.

The chip will be wire-bonded directly to the board- there is a gold plated ground pad on which the chip

can be glued, and then wire bonded by Corwil Technology Corporation. A ’dam and fill’ process will secure

the chip and wires to the board. All other components on the board are being assembled by Digicom.

4.4 Test Software

Verilog is used to program the FPGA interface and python scripting is used to control the FPGA. There

is specific Verilog that must be added for the Opal Kelly Host Interface, by which a computer can ’talk to’

25

C1

P0C101

P0C102

C6

P0C601

P0C602

C1
0 P0C1001

P0C1002

C1
3

P0C1301
P0C1302

C1
4

P0
C1
40
1

P0
C1
40
2

C1
7

P0C1701
P0C1702

C1
8 P0C1801

P0C1802

C1
9 P0C1901

P0C1902

C2
1

P0C2101
P0C2102

C2
4

P0C2401 P0C2402

C2
5

P0C2501 P0C2502

C2
8

P0C2801 P0C2802

C3
8

P0C3801 P0C3802

C3
9

P0C3901
P0C3902

C41 P0
C4
10
1

P0
C4
10
2

C5
1

P0
C5
10
1

P0
C5
10
2

C58
P0C5801 P0C5802 C59

P0
C5
90
1

P0
C5
90
2 C6
1

P0C6101 P0C6102

C62
P0C6201 P0C6202

C6
3

P0C6301 P0C6302

C6
4

P0C6401 P0C6402

C6
5

P0C6501 P0C6502

C7
9

P0C7901 P0C7902

C8
0

P0C8001 P0C8002

C8
1

P0C8101 P0C8102

D1
 P0

D1
01

P0
D1
02

J1
P0J101

P0J102

P0J103

P0J104

P0J105

P0J106

J2
P0J201

P0J202

P0
J2
03

P0
J2
04
 P0J205

P0J206

J3
P0J301

P0J302

P0
J3
03

P0
J3
04
 P0J305

P0J306

J4
P0J401

P0J402

P0
J4
03

P0
J4
04
 P0J405

P0J406

J5
P0J501

P0J502

P0J503

P0J504

P0J505

P0J506

J6
P0J601

P0
J6
02
 P0J603

P0J604

P0J605

P0
J6
06

J7

P0J701 P0J702

P0
J7
03

P0J704

P0
J7
05

P0J706

J8

P0J801

P0J802

P0J803 P0J804

P0J805

J9

P0J901

P0J902

P0J903

P0
J9
04

P0J905

L3

P0L301

P0L302

L4

P0L401

P0L402

MH
3

P0
MH
30
1

MH4

P0MH401

R1

P0R101 P0R102

R2

P0R201 P0R202

R3

P0R301 P0R302

R4

P0R401 P0R402

R5

P0R501 P0R502
R6

P0R601 P0R602

R7

P0R701 P0R702

R9

P0R901 P0R902
R11

P0R1101 P0R1102
R12

P0R1201 P0R1202

R1
3

P0R1301 P0R1302

R14

P0R1401 P0R1402

R15

P0R1501 P0R1502

R1
6 P0R1601 P0R1602 R17

P0R1701 P0R1702
R18

P0R1801 P0R1802
R19

P0R1901 P0R1902 R20

P0
R2
00
1

P0
R2
00
2

R21 P0R2101 P0R2102
R22 P0R2201 P0R2202

R23
P0R2301 P0R2302

R24
P0R2401 P0R2402

R2
5

P0R2501 P0R2502

R2
6

P0R2601 P0R2602

R2
7

P0R2701 P0R2702

R2
8

P0R2801 P0R2802

R2
9

P0R2901 P0R2902

R3
0

P0R3001 P0R3002

R3
1

P0R3101 P0R3102

R3
2

P0R3201 P0R3202

R3
3

P0R3301 P0R3302

T1
P0T101
P0T102
P0T103 P0T104

P0T106

T2

P0T201

P0
T2
02

P0T203

P0T204
P0T206

TP1 P0TP101

TP2 P0TP201

TP3 P0TP301

TP4 P0TP401 TP5 P0TP501

TP6 P0TP601

TP7 P0TP701

TP8 P0TP801

TP9

P0
TP
90
1 TP10

P0TP1001

TP
11
 P0TP1101

TP12
P0TP1201

TP
13

P0TP1301
TP14 P0TP1401

TP15 P0TP1501

U1

P0U100

P0U101 P0U102 P0U103 P0U104 P0U105 P0U106 P0U107 P0U108 P0U109 P0U1010 P0U1011 P0U1012 P0U1013 P0U1014 P0U1015 P0U1016 P0U1017 P0U1018 P0U1019
P0U1020 P0U1021
P0U1022
P0U1023
P0U1024
P0U1025
P0U1026 P0U1027 P0U1028 P0U1029
P0U1030
P0U1031 P0U1032 P0U1033 P0U1034
P0U1035

P0
U1
03
6

P0U1037
P0U1038
P0U1039
P0U1040 P

0U
10
42

P0U1043

P0
U1
04
4

P0U1045 P0U1046

P0
U1
04
7

P0U1048 P0U1049 P0U1050 P0U1051 P0U1052 P0U1053

P0
U1
05
4

P0U1055 P0U1056 P0U1057 P0U1058 P0U1059 P0U1060

P0
U1
06
1

P0U1062 P0U1063 P0U1064 P0U1065

P0
U1
06
6

P0
U1
06
7

P0
U1
06
8

P0U1069 P0U1070

P0
U1
07
1

P0U1072 P0U1073

P0
U1
07
4

P0U1075 P0U1076 P0U1077 P0U1078

P0
U1
07
9

P0U1080 P0U1081 P0U1082

P0U1087
P0U1088 P0U1089 P0U1090 P0U1091
P0U1092
P0U1093
P0U1094
P0U1095
P0U1096
P0U1097
P0U1098 P0U1099 P0U10100 P0U10101
P0U10102
P0U10103
P0U10104
P0U10105
P0U10106
P0U10107
P0U10108 P0U10109 P0U10110 P0U10111
P0U10112
P0U10113 P0U10114 P0U10115 P0U10116
P0U10117
P0U10118
P0U10119
P0U10120
P0U10121
P0U10122
P0U10123 P0U10124 P0U10125 P0U10126
P0U10127

P0
U1
01
28

P0U10129

P0
U1
01
30

P0U10131

P0
U1
01
32

P0U10133 P0U10134 P0U10135 P0U10136 P0U10137 P0U10138

P0
U1
01
39

P0U10140

P0
U1
01
41

P0U10142

P0
U1
01
43

P0U10144

P0
U1
01
45

P0U10146

P0
U1
01
47

P0
U1
01
48

P0U10149

P0
U1
01
50

P0U10151 P0U10152 P0U10153

P0
U1
01
54

P0U10155 P0U10156

P0
U1
01
57

P0U10158

P0
U1
01
59

P0U10160 P0U10161 P0U10162 P0U10163 P0U10164 P0U10165

P0
U1
01
66

P0
U1
01
67

P0U10168

P0J901

P0T206

P0C6302
P0R1401

P0
U1
01
66

P0C6502
P0R1501

P0
U1
01
67

P0R101

P0U1020

P0R201
P0U1025
P0R301

P0U1030
P0R401

P0U1035
P0R501

P0U1040
P0R2401 P0

U1
04
2

P0R2301 P0
U1
04
7

P0R2201 P0U1052 P0R2101 P0U1057

P0
R2
00
1

P0U1062 P0R1901

P0
U1
06
7

P0R1801 P0U1072
P0R1701

P0U1077

P0R1601

P0U1082

P0R2502

P0U1087

P0R2602

P0U1092

P0R2702

P0U1097

P0R3001

P0U10102

P0R2802

P0U10107

P0R2902

P0U10112

P0R3102

P0U10117

P0R3202

P0U10122

P0R3302

P0U10127
P0R602

P0
U1
01
32

P0R702

P0U10137

P0R902

P0U10142

P0R1102

P0
U1
01
47

P0J801 P0T106

P0
C5
90
2

P0U10160 P0C6202 P0U10161

P0C102

P0C202

P0C302

P0C402

P0
C5
02

P0C602

P0C702

P0C802

P0
C9
02

P0C1002

P0C1102
P0C1202

P0C1302

P0
C1
40
2

P0C1502

P0C1602

P0C1702 P0C1802

P0C1902

P0C2002 P0C2102 P0C2202

P0C2302

P0C2401 P0C2502

P0
C2
60
2

P0C2702

P0C2802

P0
C2
90
2

P0C3002

P0
C3
10
2 P0C3202

P0
C3
30
2

P0C3402 P0C3502

P0C3602

P0C3702

P0C3802

P0C3902

P0C4002

P0
C4
10
2

P0C4202

P0C4302

P0C4402 P0C4502 P0C4602

P0
C4
70
2

P0
C4
80
2

P0C4902

P0C5002

P0
C5
10
2

P0C5202

P0C5302

P0
C5
40
2

P0C5502
P0C5602

P0C5702
P0C5802

P0C6002

P0C6102

P0C6402

P0C6602

P0C6702 P0C6802 P0C6902
P0C7002

P0C7102

P0C7202

P0C7302 P0
C7
40
2

P0C7502

P0C7602

P0C7702
P0C7802

P0C7902
P0C8002

P0C8102

P0C8202

P0C8302

P0C8402
P0C8502

P0C8602

P0C8702
P0C8802 P0C8902

P0
C9
00
2

P0
C9
10
2

P0
C9
20
2

P0
C9
30
2

P0
D1
01

P0J103

P0J104

P0
J2
03

P0
J2
04

P0
J3
03

P0
J3
04

P0
J4
03

P0
J4
04

P0J503

P0J504

P0J603

P0J604

P0
J7
03

P0J704

P0J802

P0J803 P0J804

P0J805

P0J902

P0J903

P0
J9
04

P0J905

P0P10A1

P0
P1
0A
3

P0P10A5

P0
P1
0A
7

P0P10A9

P0
P1
0A
11

P0P10A13

P0
P1
0A
15

P0
P1
0A
17

P0
P1
0A
19

P0
P1
0A
21

P0
P1
0A
23

P0
P1
0A
25

P0
P1
0A
27

P0
P1
0A
29

P0
P1
0A
31

P0
P1
0A
33

P0P10A35

P0
P1
0A
37

P0P10A39
P0P10B2 P0P10B4 P0P10B6 P0P10B8 P0P10B10 P0P10B12 P0P10B14 P0P10B16 P0P10B18 P0P10B20 P0P10B22 P0P10B24 P0P10B26 P0P10B28 P0P10B30 P0P10B32 P0P10B34 P0P10B36 P0P10B38 P0P10B40

P0P10C1 P0P10C3 P0P10C5 P0P10C7 P0P10C9 P0P10C11 P0P10C13 P0P10C15 P0P10C17 P0P10C19 P0P10C21 P0P10C23 P0P10C25 P0P10C27 P0P10C29 P0P10C31 P0P10C33 P0P10C35 P0P10C37 P0P10C39
P0P10D2 P0P10D4 P0P10D6 P0P10D8 P0P10D10 P0P10D12 P0P10D14 P0P10D16 P0P10D18 P0P10D20 P0P10D22 P0P10D24 P0P10D26 P0P10D28 P0P10D30 P0P10D32 P0P10D34 P0P10D36 P0P10D38 P0P10D40

P0P10E1 P0P10E3 P0P10E5 P0P10E7 P0P10E9 P0P10E11 P0P10E13 P0P10E15 P0P10E17 P0P10E19 P0P10E21 P0P10E23 P0P10E25 P0P10E27 P0P10E29 P0P10E31 P0P10E33 P0P10E35 P0P10E37 P0P10E39

P0
P1
0F
2

P0
P1
0F
4

P0
P1
0F
6

P0
P1
0F
8

P0
P1
0F
10

P0
P1
0F
12

P0P10F14

P0
P1
0F
16

P0P10F18

P0
P1
0F
20

P0P10F22

P0
P1
0F
24

P0P10F26

P0
P1
0F
28

P0P10F30

P0
P1
0F
32

P0P10F34

P0
P1
0F
36

P0
P1
0F
38

P0
P1
0F
40

P0P10G1 P0P10G3 P0P10G5 P0P10G7 P0P10G9 P0P10G11 P0P10G13 P0P10G15 P0P10G17 P0P10G19 P0P10G21 P0P10G23 P0P10G25 P0P10G27 P0P10G29 P0P10G31 P0P10G33 P0P10G35 P0P10G37 P0P10G39
P0P10H2 P0P10H4 P0P10H6 P0P10H8 P0P10H10 P0P10H12 P0P10H14 P0P10H16 P0P10H18 P0P10H20 P0P10H22 P0P10H24 P0P10H26 P0P10H28 P0P10H30 P0P10H32 P0P10H34 P0P10H36 P0P10H38 P0P10H40

P0P10J1 P0P10J3 P0P10J5 P0P10J6 P0P10J7 P0P10J9 P0P10J11 P0P10J13 P0P10J15 P0P10J17 P0P10J19 P0P10J21 P0P10J23 P0P10J25 P0P10J27 P0P10J29 P0P10J31 P0P10J33 P0P10J35 P0P10J37 P0P10J39

P0
P1
0K
2

P0
P1
0K
4

P0
P1
0K
6

P0
P1
0K
8

P0
P1
0K
10

P0
P1
0K
12

P0P10K14

P0
P1
0K
16

P0P10K18

P0
P1
0K
20

P0P10K22

P0
P1
0K
24

P0P10K26

P0
P1
0K
28

P0P10K30

P0
P1
0K
32

P0P10K34

P0
P1
0K
36

P0
P1
0K
38

P0
P1
0K
40

P0
R1
00
2

P0R1202

P0R1302
P0T102

P0T104

P0T204

P0
TP
90
1

P0TP1001

P0TP1101

P0TP1201

P0TP1301
P0TP1401

P0U100

P0U101 P0U104 P0U106 P0U109 P0U1012 P0U1013 P0U1015 P0U1017 P0U1019 P0U1022 P0U1024 P0U1027 P0U1029 P0U1032 P0U1034 P0U1037 P0U1039 P0
U1
04
4

P0U1046 P0U1049 P0U1051

P0
U1
05
4

P0U1056 P0U1059

P0
U1
06
1

P0U1064

P0
U1
06
6

P0U1069

P0
U1
07
1

P0
U1
07
4

P0U1076

P0
U1
07
9

P0U1081
P0U1089 P0U1091 P0U1093 P0U1095 P0U1099 P0U10101 P0U10103 P0U10105 P0U10109 P0U10111 P0U10114 P0U10116 P0U10118 P0U10120 P0U10124 P0U10126

P0
U1
01
28

P0
U1
01
30

P0U10134 P0U10136

P0
U1
01
39

P0
U1
01
41

P0
U1
01
43

P0
U1
01
45

P0U10149 P0U10151 P0U10152 P0U10153

P0
U1
01
59

P0U10162 P0U10163 P0U10164 P0U10165 P0U10168

P0P10J22

P0R701

P0
P1
0K
23

P0R3301

P0P10J24

P0R3201

P0
P1
0K
25

P0R3101

P0P10J26

P0R2901

P0
P1
0K
27

P0R2801

P0P10J28

P0R2701

P0
P1
0K
29

P0R2601

P0P10J30

P0R2501

P0
P1
0K
31

P0R1702

P0P10J32

P0R2302

P0
P1
0K
33

P0R2402

P0P10J38

P0R502

P0P10K39

P0R402

P0P10J40

P0R202

P0
P1
0A
2 P0TP801

P0
P1
0A
40

P0TP601

P0P10B39 P0TP401

P0
P1
0K
17

P0R102

P0P10J16

P0R302
P0
P1
0K
15

P0R2202

P0P10J14

P0R2102

P0P10K13

P0
R2
00
2

P0P10J12

P0R1902
P0
P1
0K
11

P0R1802

P0P10J10

P0R1602

P0P10K9

P0R3002

P0P10J8

P0R601
P0
P1
0K
7

P0R901

P0P10K5

P0R1101

P0P10E40
P0TP701

P0C6301
P0T201 P0C6501

P0T203
P0
C5
90
1

P0R1201 P0T101
P0C6201 P0R1301 P0T103

P0P10B1 P0TP501
P0P10C2

P0TP301 P0P10D1

P0TP201

P0P10E2

P0TP101

P0C701

P0
C9
01

P0C2501 P0C2601
P0C2701

P0
L2
02

P0U107 P0U108

P0C201

P0
C4
01

P0
C5
50
1

P0C5601

P0C5701

P0L102

P0R801

P0U10155 P0U10156

P0C1801

P0C2801 P0C2901
P0C3001

P0
D1
02
 P0J402 P0J406

P0U1010 P0U1011

P0C5801

P0R802 P0
R1
00
1

P0
U1
01
54
 P0C1901

P0C2001
P0C2101

P0C2402 P0C6401

P0J702

P0J706

P0R1402 P0R1502
P0
T2
02

P0U105

P0C101

P0C4001

P0
C4
10
1

P0C4201

P0C5201

P0C5301

P0
C5
40
1 P0C7501

P0C7601
P0C7701

P0C8701
P0C8801 P0

C8
90
1

P0J102 P0J106

P0U1021

P0
U1
03
6 P0U1055

P0U1070

P0U1094 P0U10104 P0U10119

P0U10129
P0U10144

P0C1001

P0
C3
10
1

P0C3201

P0
C3
30
1

P0C3401
P0C3501

P0
C3
60
1

P0C4301

P0C4401 P0C4501 P0C4601

P0
C4
70
1

P0
C4
80
1

P0C6601

P0C6701 P0C6801 P0C6901
P0C7001

P0C7101

P0C7801

P0C7901
P0C8001

P0C8101

P0C8201

P0C8301

P0J302 P0J306

P0U1014 P0U1016 P0U1018 P0U1026 P0U1028 P0U1031 P0U1033
P0U1043 P0U1045 P0U1048 P0U1050 P0U1058 P0U1060 P0U1063 P0U1065 P0U1073 P0U1075 P0U1078 P0U1080

P0U1088 P0U1090 P0U1098 P0U10100 P0U10108 P0U10110 P0U10113 P0U10115 P0U10123 P0U10125
P0U10133 P0U10135 P0U10138 P0U10140

P0
U1
01
48

P0
U1
01
50

P0C601

P0C3701

P0C3801

P0C3901
P0C4901

P0C5001

P0
C5
10
1 P0C7201

P0C7301
P0C7401 P0C8401 P0C8501

P0C8601

P0J202 P0J206

P0U1023 P0U1038

P0U1053 P0
U1
06
8 P0U1096 P0U10106 P0U10121

P0U10131
P0U10146 P0C1501

P0C1601 P0C6001
P0C6101

P0L402

P0
U1
01
57

P0U10158

P0C1301

P0
C1
40
1

P0C1701

P0
J6
02

P0
J6
06

P0L301 P0L401

P0C1101

P0C1201

P0C2201

P0C2301

P0L302

P0U102 P0U103

Figure 20: Layout of SPLASH Carrier Board

the FPGA through the USB. The python script then works by sending bits to specific wires into Opal Kelly.

Additionally an I2C controller must be programmed into the FPGA, to set the voltages on the supply board.

Examples and tutorials on Opal Kelly programming, a start-up script for SPLASH, and the I2C controller

Verilog module can be found in:

/tools/scratch/lilrayray/opal-kelly-testing

26

5 Conclusion and Future Work

In this report, I have explained the design and testing of an ASIC spectrometer with a bandwidth of 1.5GS/s

and a spectral resolution of 183kHz, hence offering substantially enhanced functionality over previous state-

of-the-art spectrometers. In addition, this spectrometer has a footprint of less than 10mm2, and consumes

less than 1W of power, making it an ideal component for use on a satellite mission, on which space and

power are heavily constrained. I re-purposed a previous stand-alone ADC for use in this project and created

a design flow procedure for making the physical design. The chip was fabricated in 65nm technology by ST

Microelectronics, a carrier board has been designed on which the chip will be tested, and I have written the

test software. Future work will involve testing the chip once it has been bonded onto the test board. If

successful, the chip is slated to fly to Europa as part of a microwave spectrometer.

The next step in designing ASIC spectrometers will rely heavily on the development of a faster ADC.

The goal for the successor of SPLASH is to have a 20GS/s ADC on chip. This will involve much work in

designing an ADC that can achieve such a high sampling rate with a moderate effective number of bits (5-

7). Possible candidates for this ADC design include another time-interleaved SAR ADC, which will require

precise digital calibration to correct for timing and bandwidth mismatch, or a time-interleaved flash ADC.

Another important change will be the vast improvement of the design flow. Rather than using Insecta to

obtain Verilog from a Simulink description, the DSP will be described in CHISEL, a hardware construction

language which has been developed at UC Berkeley [9]. CHISEL generates low-level Verilog designed to pass

on to standard ASIC or FPGA tools, so in this way, the design process will be even faster and easier than

before.

27

6 Appendix 1- Full ’SPLASH-in-a-day’ Guide

This section describes in some detail the steps required to build SPLASH from a combinations of sources:

Simulink, Verilog, and custom analog layout. To begin from scratch, check out the SPLASH git repo,

preferably into a /scratch directory on one of the BWRC servers:

git clone /tools/designs/CASPER/projects/lilrayray/gitsplash/splash-icc-par/.git

6.1 Getting Started

All of the build steps require that VLSI software (e.g., Synopsys Design Compiler) as well as ST’s libraries

and scripts (e.g, FrontendKit) be set up correctly and in your path. The easiest way to accomplish this is

to source the top-level script written for this purpose:

cd splash-icc-par

source splash.bashrc

This script calls the bash script to set up the environment and it may clobber existing environment

variables that you’ve defined. It will work as intended for running all of the tools in this flow, but may break

other setups.

The script mostly sources Synopsys and Cadence tools and is largely generic to any use of those tools

on the BWRC servers. To work in cadence you will need to source another ST 65nm specific environment,

which will be described later in this section. These scripts are roughly modeled after the reference version

maintained by Brian Richards in /tools/stalpha/local/setup working dir.

There may come a time when ST releases a new design kit and we need to update our tool versions.

The approximate way to do this is to run the command uk-conf, which will launch a graphical view that

will allow you to select appropriate versions of each tool and generate a new .ucdprod file. (You can also

generate the .ucdprod file by hand if you know the version numbers exactly.) Once you’ve done this, source

the new tools as described above. To link in any new libraries, you need to do the following:

uk-lib-link -workspace ‘pwd‘

Unfortunately, this will replace the entire LIBRARIES directory. As we have many of our own custom

libraries linked into this directory (as well as hacked ST libraries for which we’ve replaced the simlinks with

our own) you’ll need to recreate our custom build structure after running this command. Git can help you

with this.

28

6.2 IP Generation

All custom IP needs to be packaged correctly such that the digital flow integrates the IP correctly. This

includes:

• .lib/.db to describe the block for synthesis/timing. The .lib is a textual description of the timing

related to every pin, and the .db is a compiled binary version of the .lib file. There is generally a

different .lib and .db file for every process corner used in timing analysis, as setup/hold/transition will

all change.

• .lef/FRAM/CEL to describe the block physically for place and route. P&R needs to know where it is

allowed to connect each pin to. For example, you might have a signal routed in M2, M3, and M4, but

you only want the tool to be able to connect to this signal from the edge—you need to describe this

in the .lef/FRAM/CEL view. The .lef file is a textual description of pin locations, that is generated

from an abstract view inside Virtuoso. The FRAM and CEL are compiled binary Milkyway views of

the .lef file.

• .v to describe the block behaviorally. Even if there is no digital-like behavior, you need an empty

Verilog (.v) file.

6.2.1 Setup

For this task, you must run the following commands:

cd cmos065

source .cshrc_cmos065

6.2.2 Usage

In order to generate the .db file, You must first open the attract tool and generate an attract with pins in

metal layer 7 with pin cutouts in the M7 blockage and full blockages in all other layers. Once you have

generated the abstract, you must run make in the lib/ directory, which generates the .lib and .db files

that contain information about the pins. To generate the .lef/FRAM/CEL files which contain the physical

information for place and route, run make in the lef/ directory, which will create the milky way view. You

must make sure these are pointed to in the mw dir and db dir with all of the standard cells and memories

so that the tools can access them. You can set up these pointers in the common settings script.

29

6.3 RTL Generation

6.3.1 Setup

Make sure you are back in the bash environment and have sourced the splash.bashrc script.

6.3.2 Usage

The top-level Verilog description of the chip includes the pads (and some other ST IP), the ADC block,

and the DSP core. Because the DSP core is described in Simulink, extra steps are required to generate the

Verilog needed for synthesis.

Insecta is used to generate a .ddc file. To set up the Insecta tool, follow the commands in:

tools/designs/luis/ficherosfinales/scripts/insectastart

Once you have started Insecta, make sure the settings are as follows before clicking ’Run Insecta’:

Tech: 5.3.4 (ST)

Corner: WC_0.9

Effort: MED

Optimize: Target Clock

Period: 2ns

Hier: Boundary Opt

Select: Check Input through Export Schematics

Once you have the Verilog and ddc files for the DSP core, you must make sure that the name of the

module in the top level Verilog matches the name of what you just generated. The tool adds a random hash

to the name, so each time you re-run this part of the flow you must change the reference.

6.3.3 Memory Replacement

The memories are more pieces of ST IP that must be inserted into the design. In order to do so, run the

following commands:

write_file -hier -format ddc {spec_entity_xxxx} -0 -splash_core.ddc

exit

dc_shell

start

open splash_core.ddc

source ../scripts/mem_replace.tcl

link

uniquify

current_design spec*

compile_ultra

30

6.4 Synthesis

6.4.1 Inputs

• splash toplevel.v and splash core luis.v

These are the top level chip Verilog file and top level spectrometer Verilog.

• crc04081120.ddc

This is the compiled spectrometer entity core, the name will change every time you recompile.

• st verilog/*.v

These files (tisar mux, filter, cal slice, etc.) make up the digital calibration section of the ADC.

• clocks.tcl

This is the script that sets up the clocks.

6.4.2 Usage

Now you must synthesize the entire design. Before doing so, make sure the specific name of the spectrometer

matches the one listed in the script you will run below and inside of the splash core luis.v file. Once you

have saved the pre-compiled version of the entire thing run the following commands:

dc_shell -64bit

source scripts/splash_top_level_make.tcl

6.4.3 Outputs

Now the results are mapped to actual gates, and the file should be saved as splash pads mmdd.mapped.ddc,

where mmdd is the month and date. Now you must copy this into the ’ddc’ folder within the ICC folder.

mv splash_pads_mmdd.mapped.ddc splash-icc-par/ddc/splash_pads.mapped.ddc

6.5 Place and Route (IC Compiler)

6.5.1 Setup

There are no extra actions needed to setup the environment for this step if you are continuing straight from

the previous step.

31

6.5.2 Constraints and Floorplanning

There are a number of constraint and floorplanning files that you must have in order to begin the place and

route process.

• floorplan/splash phy constraints3 11.con

This file sets up the pad ring. First it creates the corner cells, the power and ground pads, the filler cut

cells, and the esd protection cells. It then tells the tools in which order to place the pads and specifies

the spacing between each pad.

• create top pins.tcl

This script creates IO Ports for assorted power IO pads defined in the constraint file.

• basic ring.tpl and pg mesh.tpl

These files are the templates for creating the power and ground rings and mesh for power distribution

throughout the chip.

• floorplan bounds.tcl

This is the script that sets up the bounds that certain groups of cells have to fit within.

• memory placement.tcl

This is the script that places the memories in specific locations. These specific placements, in combi-

nation with the floor plan bounds, were chosen after many iterations of placing the memories, having

the tools automatically place the standard cells, and then analyzing density and congestion maps.

6.5.3 Place and Route

Place and route is controlled by a Makefile. It is possible to simply navigate to splash-icc-par and type

make. Each step is run sequentially, so running make will run each step along the way. However, it is

highly recommended to first type make init design icc and then view the results of floorplanning before

continuing. This step is relatively quick and allows you to double check that the padring, memories, and

power mesh all look correct. After this first step, the design is saved as build-icc-yyyy-mm-dd hh-mm and

can be viewed by opening IC Complier and opening the specific design as follows:

icc_shell -64bit

start

open_mw_lib splash-icc-par/build-icc-xxxx-xx-xx_xx-xx/splash_pads_LIB

open_mw_cel splash_pads

32

If the floor plan is satisfactory, then you can exit IC Compiler and run make again. The tool will begin

with the already floorplanned design and run the sequential steps of placement optimization, clock tree

synthesis, clock optimization, clock routing, signal routing, route optimization, and chip finishing. The

design is now saved as build-iccdp-yyyy-mm-dd hh-mm. Again, if necessary, you can run up to a certain

step and open and examine the design at that point. It is often a good idea to run the design all the way

through clock tree synthesis and then open the design to verify the existence of the clock tree.

Note that each time you make a new version the most recent results of init design icc are pointed to

by the symbolic link current icc@ and the final results are pointed to by current iccdp@.

6.6 Finishing

6.6.1 Export to Cadence

In order to view the final design in Cadence, you must first export a GDS file from IC Compiler. To do so

run the following (where the name at the end of the command is the name you want to give the GDS file) :

source ../icc_script/filler.tcl #fixes notching errors in the filler cells

source ../floorplan/create_top_pins.tcl to add supply pin terminals to the layout.

source ../icc_scripts/streamout.tcl to generate splash_pads.gds

Once you have exported the GDS file, you can stream it into Cadence by making sure you are back in the

cshell cmos065 environment and opening Cadence Virtuoso. Open the stream in dialog under File >Import

>Stream. For ’Stream File’ choose the GDS file you just created. Then choose the library in which you want

to place it, the top level cell name (probably splash pads) and attach it to the existing technology library

cmos065. Finally, click ’Translate.’ You should now be able to open the design in the Library Manager.

One step that needs to be done on this specific design is to make sure all of the power and ground pads

have the view of layout 50u rather than abstract or layout 40u. For some reason certain pads in the ST

libraries have all three views available and some of them get imported with the wrong view. Do this by:

Press Shift-S to start the search and replace dialog
Search for inst
Add Criteria, view name == abstract, Apply. Figure count should be >0
Replace view name ->layout 50u
Press Replace All
Change criteria view name == layout 40u, Apply. Figure count should be >0
Press Replace All again
Save the design

33

6.6.2 DRC

To run DRC, open the DRC dialog under Calibre >Run DRC and click ’Run DK DRC.’ Click ’OK’ for the

Customization Settings.

Under the Setup Menu, make sure the ’DRC Options’ box is checked, and click on DRC Options in the

sidebar menu. Click on the tab called ’Connect’ and check the box that says ’Connect nets named.’ This

makes sure that all nets called GND are connected to those named gnd, etc. Under the tab ’Include,’ make

sure to check the box ’Include Rule Files After Main DRC Rules File.’ Then in the text box below that type

in bbox nofiller.rul. Now click ’Run DRC.’ The results will appear in a new window.

If there are DRC errors, the errors should be fixed within IC compiler, and the GDS needs to be recreated.

Inside IC Compiler, go Verification — Read 3rd-party DRC Error file to open the .results.db from Calibre.

Then, delete vias, move wires, etc to fix DRC errors. One useful command is route zrt eco, which will fix

DRC errors on wires and route all open nets.

One main cause for errors is at the boundary of IP. You can modify the IP to prevent the error from

occurring (update the GDS and FRAM/CEL view), delete all offending routes, then reopen IC Compiler.

The new IP should be visible with the changes, and you can run a route zrt eco.

Once you are done, export a new GDS, then rerun DRC.

6.6.3 LVS

The goal of LVS is to compare: the Verilog: splash-icc-par/current-icc/results/splash pads.output.pg.lvs.v

(or another verilog in the same directory) with the GDS: splash-icc-par/current-icc/splash pads.gds

The above file was generated by:

Load the change-names-icc design in icc shell
Run the command: source ../floorplan/create top pins.tcl
Run the command: source ../icc scripts/streamout.tcl

34

7 Appendix 2 - Data Sheet

Sampling Rate 3GHz

Bandwidth 1.5GHz

Resolution 183kHz

Filter Type 4-tap Polyphase FIR filter

FFT Size 16384 point

Input 1.8 Vpp−diff

Technology ST 65nm

Supply Voltage 1.2 V

Chip Area 9.98mm2

ADC 0.18mm2

DSP 8mm2

Chip Power 950mW (predicted)

ADC 44.6mW

DSP 900mW (predicted)

Table 1: Key Specs

Table 1 outlines the key specs for the chip. On the next pages are tables describing the various modes

and register values as well as the pinout for the chip with pin name, I/O direction, and description. The

pin numbering begins with 1 on the bottom side of the chip in the left hand corner and counts up counter

clockwise to 168 on the bottom of the left side of the chip.

State enable reset shift

HOLD 0 x x

INIT 1 1 x

SHIFT 1 0 1

CAPTURE 1 0 0

Table 2: Test Controller Modes

35

Code State Function

2’b00 WAIT START ACQUISITION wait to start acquisition

2’b01 DATA ACQUISITION acquire data in the signature registers

2’b10 WAIT OUTPUT AVAILABLE wait for the output to be available to

dump the scan data on the output pin

2’b11 SCAN DATA OFFLOAD wait for the scan dump to be complete

and return to the wait state

Table 3: Test Controller Instruction Descriptions

Register Length Functionality

scan dump duration 10 total length of chain

command 4 triggering options

start value 8 trigger start

stop value 8 trigger stop

start mask 4 trigger mask

stop mask 4 trigger masks

ref count 44 acquisition count

ref start 44 start acquisition

ref stop 44 stop acquisition

forceblock1 32 accumulation length

forceblock2 32 shift schedule

forceblock3 32 control bits

Table 4: Test Controller Registers

Register Bits Description

Register 3 31:23 unused

22 single mode

21:9 unused

8 ADC diff en

7 ADC ref en

6 ADC rs ds en

5 ADC cal type

4 ADC t cal en

3 ADC rs ds en

2 filter select. 0= raw ADC output, 1=weighted, radix 2 output

1:0 bypass mux. 00=ADC, 01=PFB, 10=FFT, 11=power

Table 5: Force Block Control Programming

36

Pin Number Name Direction Description

1 esdcell in ESD protection cell, tie to analog ground

2 vrp2 in ref voltage for CAPDAC in even channels

3 vrp2 in ref voltage for CAPDAC in even channels

4 tisarvss in analog ground

5 vcmrst out analog even common mode

6 tisarvss in analog ground

7 tisarvd1 in analog power: even channels, comparators, switches

8 tisarvd1 in analog power: even channels, comparators, switches

9 tisarvss in analog ground

10 tidarvd3 in power for digital circuitry in ADC (buffers, etc.)

11 tisarvd3 in power for digital circuitry in ADC (buffers, etc.)

12 tisarvss in analog ground

13 tisarvss in analog ground

14 vddcore1 2 in digital power

15 gndcore1 2 in digital ground

16 vddcore1 2 in digital power

17 gndcore1 2 in digital ground

18 vddcore1 2 in digital power

19 gndcore1 2 in digital ground

20 io sclko out analog scan clock out

21 vdd in power

22 gnd in ground

23 vdde in pad supply power

24 gnde in pad supply ground

25 io sclki in clock in

26 vddcore1 2 in digital power

27 gndcore1 2 in digital ground

28 vddcore1 2 in digital power

29 gndcore1 2 in digital ground

30 io scno out scan out

31 vddcore1 2 in digital power

32 gndcore1 2 in digital ground

33 vddcore1 2 in digital power

34 gndcore1 2 in digital ground

35 io ser clk in in determines sample time for TC serial input data

36 vdd in power

37 gnd in ground

38 vdde in pad supply power

39 gnde in pad supply ground

40 io rst in reset transmitter

41 NC - -

Table 6: Bottom Side Pinout

37

Pin Number Name Direction Description

42 io scan in scan

43 vddcore1 2 in digital power

44 gndcore1 2 in digital ground

45 vddcore1 2 in digital power

46 gndcore1 2 in digital ground

47 io scni in scan in

48 vddcore1 2 in digital power

49 gndcore1 2 in digital ground

50 vddcore1 2 in digital power

51 gndcore1 2 in digital ground

52 serial data out 0 out serial data out bit0

53 vdde in pad supply power

54 gnde in pad supply ground

55 vdd in power

56 gnd in ground

57 serial data out 1 out serial data out bit1

58 vddcore1 2 in digital power

59 gndcore1 2 in digital ground

60 vddcore1 2 in digital power

61 gndcore1 2 in digital ground

62 serial data out 2 out serial data out bit2

63 vddcore1 2 in digital power

64 gndcore1 2 in digital ground

65 vddcore1 2 in digital power

66 gndcore1 2 in digital ground

67 serial data out 3 out serial data out bit3

68 vdde in pad supply power

69 gnde in pad supplyl ground

70 vdd in power

71 gnd in ground

72 io serial sync out out indicates the beginning of a scan dump

73 vddcore1 2 in digital power

74 gndcore1 2 in digital ground

75 vddcore1 2 in digital power

76 gndcore1 2 in digital ground

77 io tvg in test vector generator select DATA=0 TVG=1

78 vddcore1 2 in digital power

79 gndcore1 2 in digital ground

80 vddcore1 2 in digital power

81 gndcore1 2 in digital ground

82 io valid out data out is valid

83 NC - -

84 NC - -

Table 7: Right Side Pinout

38

Pin Number Name Direction Description

85 NC - -

86 NC - -

87 io spec reset in reset DSP and test controller

88 vddcore1 2 in digital power

89 gndcore1 2 in digital ground

90 vddcore1 2 in digital power

91 gndcore1 2 in digital ground

92 io tc mode in test controller mode HARD=0, SOFT=1

93 gnd in ground

94 vdd in power

95 gnde in pad supply ground

96 vdde in pad supply power

97 io tc busy in flag, set to 1 if reading data out

98 vddcore1 2 in digital power

99 gndcore1 2 in digital ground

100 vddcore1 2 in digital power

101 gndcore1 2 in digital ground

102 serial misr chain out data out from test controller

103 gnd in ground

104 vdd in power

105 gnde in pad supply ground

106 vdde in pad supplyl power

107 io serial program in valid program flag

108 vddcore1 2 in digital power

109 gndcore1 2 in digital ground

110 vddcore1 2 in digital power

111 gndcore1 2 in digital ground

112 io serial force in in push state machine to OFFLOAD

113 vddcore1 2 in digital power

114 gndcore1 2 in digital ground

115 vddcore1 2 in digital power

116 gndcore1 2 in digital ground

117 io scan reset in analog scan chain reset

118 gnd in ground

119 vdd in power

120 gnde in pad supply ground

121 vdde in pad supply power

122 io serial data in in test controller serial data in

123 vddcore1 2 in digital power

124 gndcore1 2 in digital ground

125 vddcore1 2 in digital power

126 gndcore1 2 in digital ground

127 io start stop in single spectrum=1, accumulation=0

Table 8: Top Side Pinout

39

Pin Number Name Direction Description

128 gnd in ground

129 vdd in power

130 gnde in pad supply ground

131 vdde in pad supply power

132 io serial clock in test controller clock must be 4x slower

133 vddcore1 2 in digital power

134 gndcore1 2 in digital ground

135 vddcore1 2 in digital power

136 gndcore1 2 in digital ground

137 io sar rst in analog reset

138 vddcore1 2 in digital power

139 gndcore1 2 in digital ground

140 vddcore1 2 in digital power

141 gndcore1 2 in digital ground

142 io misr out out data out from MISR

143 gnd in ground

144 vdd in power

145 gnde in pad supply ground

146 vdde in pad supply power

147 io clkout out digital clock out

148 vddcore1 2 in digital power

149 gndcore1 2 in digital ground

150 vddcore1 2 in digital power

151 gndcore1 2 in digital ground

152 tisarvss in analog ground

153 tisarvss in analog ground

154 vcmb in odd channel common mode

155 tisarvd2 in analog power: odd channels, clock circuitry

156 tisarvd2 in analog power: odd channels, clock circuitry

157 vrp1 in ref voltage for CAPDAC in odd channels

158 vrp1 in ref voltage for CAPDAC in odd channels

159 tisarvss in analog ground

160 io adc clkp in high speed clock inp

161 io adc clkn in high speed clock inn

162 tisarvss in analog ground

163 tisarvss in analog ground

164 tisarvss in analog ground

165 tisarvss in analog ground

160 io adc inn in high speed input n

161 io adc inp in high speed input p

168 tisarvss in analog ground

Table 9: Left Side Pinout

40

References

[1] Stepanovic, D.; Nikolic, B., ”A 2.8GS/s 44.6mW time-interleaved ADC achieving 50.9dB SNDR and 3dB

effective resolution bandwidth of 1.5GHz in 65nm CMOS,” VLSI Circuits (VLSIC), 2012 Symposium on

, vol., no., pp.84,85, 13-15 June 2012.

[2] Richards, B.; Nicolici, N.; Chen, H.; Chao, K.; Abiad, R.; Werthimer, D.; Nikolic, B., ”A 1.5GS/s 4096-

point digital spectrum analyzer for space-borne applications,” Custom Integrated Circuits Conference,

2009. CICC ’09. IEEE , vol., no., pp.499,502, 13-16 Sept. 2009.

[3] https://casper.berkeley.edu/wiki/The Polyphase Filter Bank Technique

[4] http://assets00.opalkelly.com/library/WP-SemiconductorEval.pdf

[5] Markovic, D.; Chang, C.; Richards, B.; So, H.; Nikolic, B.; Brodersen, R.W., ”ASIC Design and Verifi-

cation in an FPGA Environment,” Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE , vol.,

no., pp.737,740, 16-19 Sept. 2007.

[6] Davis, W.R.; Ning Zhang; Camera, K.; Markovic, D.; Smilkstein, T.; Ammer, M.J.; Yeo, E.; Augsburger,

S.A.; Nikolic, B.; Brodersen, R.W., ”A design environment for high-throughput low-power dedicated

signal processing systems,” Solid-State Circuits, IEEE Journal of , vol.37, no.3, pp.420,431, Mar 2002.

[7] http://www.nasa.gov/mission pages/maven/main/index.html

[8] https://casper.berkeley.edu/wiki/ROACH2

[9] https://chisel.eecs.berkeley.edu/

41

	Introduction
	Motivation
	Prior Work
	Goals of Project
	Scientific Significance
	Outline of Document

	Spectrometer Design
	ADC
	TISAR Architecture
	SPLASH ADC Block

	DSP Design
	PFB and FFT
	Power, Bypass MUX, and Vector Accumulation
	Test Controller
	Verification in Simulink
	Verification on FPGA

	Design Flow
	ASIC Design Flow
	Simulink Design Process
	Chip-In-A-Day Design Flow

	Implementation and Testing
	Die Photo
	Test Setup
	PCB Design
	Test Software

	Conclusion and Future Work
	Appendix 1- Full 'SPLASH-in-a-day' Guide
	Getting Started
	IP Generation
	Setup
	Usage

	RTL Generation
	Setup
	Usage
	Memory Replacement

	Synthesis
	Inputs
	Usage
	Outputs

	Place and Route (IC Compiler)
	Setup
	Constraints and Floorplanning
	Place and Route

	Finishing
	Export to Cadence
	DRC
	LVS

	Appendix 2 - Data Sheet

