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Abstract

Developing Spin Devices for Logic and Memory Applications
by
Zheng Gu
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Jeffrey Bokor, Chair

Due to increasingly pervasive computation hardware, energy efficient electronics has
gained much research and development attention. One approach toward this goal is to use
spintronics, which leverages the spin degree of freedom of electrons. The fundamentally
smaller energy dissipation from flipping spins instead of moving charges may lead to
overall more efficient devices. This is in part due to the ability to retain information
without any power as well as smaller amounts of Joule heating.

In this dissertation, we focus on a subset of spin logic devices known as nanomagnetic logic.
Using a variety of modeling techniques and experimental imaging techniques, we
investigate the performance of these devices in terms of speed and reliability. We also use
optical techniques to investigate a spin-charge coupling mechanism known as the Spin Hall
Effect. This effect is a very power-efficient way to switch nanomagnets and has obvious
applications to both spin logic and memory. While spin logic devices still face many
challenges, spin memory devices have become fairly feasible. With the rapid pace of
innovation in this field, the outlook for spin devices in general is promising.



Contents

B D 00U 00 Y6 L 0 ) o 1

2: Spin Logic Systems

2.1: Field-Coupled Nanomagnetic LOZIC .ommmessssssssssssssssssssssssssssssssssssssssssssssssssssssssassssens 2
2.2: Torque-Coupled SPIN LOGIC. sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssens 4
3: Theoretical Models for the Behavior of Ferromagnets
3.1: The Stoner-Wohlfarth Model....ssns 8
3.2: The Landau-LifshitzZ EQUAatioN .. sssssssssssssssssssssssssens 10
3.3: The Addition of Thermal Effects .. 14
4: Configurational Anisotropy in Nearly-Single-Domain Magnets
4.1: Edges and Corners of Nearly-Single-Domain Magnets ... 16
4.2: Simulation Study of Configurational Phase Space ... 18
4.3: Design of Nanomagnet Shapes for Nanomagnetic LOZIC....ummmmnssssssssssssssessens 20
4.4: Simulation Extraction of AniSotropy CONSTaNtSs ... 21
4.5: Magneto-0ptic Kerr EffeCt. s ssssssssssssens 24
5: Information Transmission in Nanomagnetic Logic
5.1: Behavior of Chains in Nanomagnetic LOZIC...cmssssssssssssssssssssssssssssssssesses 31
5.2: Analytical Study of Chains of Nanomagnets with Biaxial AniSOtropy ... 34
5.3: Simulation Study of Chains of Nanomagnets with Biaxial AniSOtropy ... 41
5.4: Simulation Study of Chains of Nanomagnets with Configurational Anisotropy.......... 47
5.5: Signal Propagation Speed in Nanomagnetic LOZIC .cummnenmsmsessensssssssssesssssssesssssssssesses 49
6: Static Experimental Methods for Investigating Nanomagnetic Logic
6.1: X-ray Magnetic Circular DiChIroiSm . ssssssssssssssssssssssssssssens 53
6.2: Thermally Assisted Signal Propagation in Chains ... 55
6.3: Surface Quality Effects on Signal Propagation ... 58
6.4: Signal Propagation from Short Clock Field PulSes......oussssssssesens 61
6.5: Magnetic FOrce MiCTOSCOPY wummmmmmsmmssssssssssssssssssssssssssssssssssssssss s ssssssssssssssssssssssssens 65
7: Dynamics Experimental Methods for Investigating Nanomagnetic Logic
7.1: Stroboscopic X-ray Magnetic Circular DiChroiSm ... 68
7.2: Time-Resolved PEEM Experimental SEtUD ....omssssssssssssssssssssssssssssssesses 69
7.3: Signal Propagation Dynamics in Nanomagnetic Logic Chains ... 73

8: Spin-Transfer Torque and Energy-Efficient Switching
8.1: Spin-Transfer Torque Magnetic Random Access MEeMOTIES ..oummmmsressmssessssessessessassssessens 78
8.2: The Spin Hall Effect in Metals .. sssssssssssssssssssssssens 80



8.3: Two-Bit Free Layers using Configurational AniSOtropY ....msmssssssssssssssssssens 84

9: Dynamic Experimental Methods for Investigating the Spin Hall Effect

9.1: Optical Second Harmonic GENETatioN ...mssssmssssssssssssssssssssssssssssssssssssssssssssssssssssssens 88
9.2: Time-Resolved SHG Experimental SEtUP . mnsssssssssssssssssssssssssssssssssssssssssssssens 93
9.3: Detection of Spin Accumulation on Bare Platinum due to SHE ....nnncnnensensenesenens 96
3 IO 4 Tl L T ) 1 100
REfEIEINCES ... AR 101

A: OOMMF Programs

A.1: Exploring Configurational Phase Diagrams..... s 105

A.2: Characterizing Switching Magnetic Fields ... 106

A.3: Applying Piecewise Linear Magnetic Fields ... 109
B: MATLAB Programs

B.1: Exploring Chains with Second-Order ANiSOIrOPY .esssmssmsesssssssesessssssssssessssssssssesses 112

B.2: Reading and Processing SPE IMages ....cssssssssssssssssssssssssssssssssssssssses 115

B.3: Generating OOMMEF Image Atlases ...ssssssssssssssssssssssssssssssssssssses 118
C: Python Programs

C.1: Efficient Multi-Threading in OOMME ... 122
D: Fabrication Techniques

D.1: Bi-Layer Lift-Offs with Lift-Off RESISt cunenrssrisssssssessssssssssssssssssssssssssssssssssssesses 123

D.2: Surface Planarization with Spin-On DieleCtriCs ... 126

ii



Acknowledgements

[ would like to thank my advisor for his guidance and for the freedom to pursue
knowledge. I am grateful for the opportunities to explore the breadth and depth of my
disciplines both academically and practically. I was fortunate to have been granted a
proper graduate experience.

For their contributions to my work that include training, teaching, discussions,
resources, and direct assistance, [ would like to acknowledge the members of the research
group of professor Jeffrey Bokor, the members of the research group of professor Sayeef
Salahuddin, the members of the research group of professor Eli Yablonovitch, the members
of the research group of professor Ramamoorthy Ramesh, the staff of the Advanced Light
Source at Lawrence Berkeley National Laboratory, the staff of the Center for X-ray Optics at
Lawrence Berkeley National Laboratory, the staff of the Experimental Systems Group at
Lawrence Berkeley National Laboratory, the staff of the Molecular Foundry at Lawrence
Berkeley National Laboratory, the users and staff of the Marvell Nanofabrication
Laboratory at the University of California, the staff of the Cory Hall Machine Shop at the
University of California, the members of the lon Beam Technology group at Lawrence
Berkeley National Laboratory, the faculty of the department of Physics at the University of
California, the faculty of the department of Electrical Engineering at the University of
California, the faculty of the department of Materials Science at the University of California,
the staff of the Engineering Research Support Organization at the University of California,
and the programs that have funded my work.

Finally, for their love and support in life, I would like to thank my friends and family.

iii



Chapter 1. Introduction

Energy usage and waste is a significant challenge to modern societies worldwide.
On the one hand, much effort and progress has so far been made toward sustainable energy
generation. On the other hand, more efficient use of available energy has been another
major focus of research and development. Especially for situations limited by energy
generation throughput (whether by supply, demand, or cost) or energy storage capacity
(for battery-powered mobile devices), efficiency is very important. For example, electric
lighting has improved by almost a factor of twenty[1-3]. However, even more tremendous
has been the rapid progress in integrated electronics, which has seen multiple orders of
magnitude in improvement[1,2,4]. Unfortunately, this pace of scaling is now at an end[5,6]
and growing compute power demand (both on the infrastructure side due to cloud
computing and the consumer side due to mobile devices) results in an increasing interest
in energy-efficient electronics|[2,7].

Some promising visions toward more efficient devices are found in proposals of spin
devices[8,9] (spintronics). Such devices take advantage of the intrinsic spin degree of
freedom of electrons and are intended to supplant complementary metal-oxide-
semiconductor (CMOS) devices. Use of ferromagnetic elements is very common in spin
devices, since they fundamentally provide a couple of advantages. The first is non-
volatility, which rids devices of the need for standby power in order to retain information.
The second is lower switching energy, which arises due to the strongly-interacting nature
of spins[4,10]. Simulations have shown that at least fundamentally, spin switches need not
dissipate more energy than the thermodynamic limit[11,12]. Additionally, optical control
of spins has been demonstrated[13,14] and may lead to sophisticated devices integrating
multiple new technologies.

This work investigates the performance of a particular spin logic device, the physics
of a phenomenon that relates spin and charge, and the shape properties of nano-scale
ferromagnets. It also documents many specific experimental, fabrication, and simulation
details so that others may benefit by either continuing the work or applying the methods
elsewhere.



Chapter 2. Spin Logic Systems

1. Field-Coupled Nanomagnetic Logic

Spin logic has a rich variety of different designs. We introduce a selection of designs
categorized into two classifications. We describe designs that use magnetic fields (stray
fields) for interactions between logic elements in this section. In the next section, we
describe designs that use carriers of spin torque for interactions between logic elements.
The descriptions presented here will review at a high level how various architectures
perform logic operations.

Field-coupled nanomagnetic logic (NML) uses discrete nanomagnet islands
arranged in ordered patterns. The gaps between islands are small enough so that the stray
field interactions between islands are significant. In some variants known as magnetic
quantum-dot cellular automata[10,15] (MQCA), the islands are small and are treated as
single-domain. In these variants, interconnects are formed from line-like arrangements of
field-coupled islands called chains and gates are formed from intersection-like
arrangements of field-coupled islands. In other variants known as perpendicular
nanomagnetic logic[13] (pNML), the islands are large enough to form domains and can
have a wide range of shapes. We will use the term NML to refer to all of the above field-
coupled designs.

Figure 2.1 indicates the stray field directions around a magnetic dot (approximately
a dipole field) as well as two basic configurations of a pair of dots. If we take the magnetic
moment of any given dot projected along the easy anisotropy axis to represent a binary
state, then we can map the magnetic moment up and down states to represent digital zero
and one. Due to the Zeeman interaction from stray-field coupling, the pairwise
configurations shown in figure 2.1 become logically equivalent to an inverter and a buffer.
Respectively, these two pairwise arrangements are referred to as antiferromagnetic
coupling and ferromagnetic coupling. Interconnects can thus be formed from either a
straightforward extension of the buffer or any even number of cascaded inverters. To
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Figure 2. 1: A magnetic dot (left) with its magnetic moment (blue) and stray field (green)
indicated. A pair of field-coupled dots can be an inverter (center) or a buffer (right).
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Figure 2. 2: Layout (left) of MLG with inputs labeled 1, 2, and 3 and output labeled 4. Based
on equal stray field coupling from each input, the truth table (right) for the output is
produced. The leftmost (blue) column indicates the island whose state is given in the row.
Setting input 1 to 0 reduces it to an OR gate. Setting input 1 to 1 reduces it to an AND gate.

perform Boolean logic, NML makes use of the majority logic gate[1,15,16] (MLG) shown in
figure 2.2. The gate has three inputs surrounding an output magnet such that each input
contributes equally to the output. Since there are an odd number of binary inputs, there is
always a majority contribution from the inputs that determines the output state. The truth
table is given in figure 2.2 and we note that the functionality of either AND or OR binary
logic functions can be reproduced by holding the unused input constant.

In comparison with charge-based logic, notable advantages[1] of NML include low
switching energy, non-volatility, and radiation-hardness. Calculations for energy
dissipated per switching event falls into the tens of kgT range[1,4,11,17], while non-
volatility eliminates leakage dissipation and thus further reduces power usage.
Unfortunately, slow speed is an inherent disadvantage[5,10,18] and poor reliability[7,19] is
currently a challenge. For MQCA specifically, race conditions[8,16] are also a complicating
issue. In pNML designs, race conditions are eliminated but speed is even slower due to use
of domain wall motion[10,16].

Due to out-of-plane anisotropy in pNML, if planar arrangements are used the only
pairwise arrangements are of the antiferromagnetic coupling type. Each island has
specifically engineered coupling sites known as artificial domain wall nucleation
centers[11,20] (created by focused ion beam irradiation) that have lower coercivity
compared to the rest of the island[13,20]. When influenced by the stray field of a nearby
island, a small applied field parallel to the stray field would nucleate a domain at the
coupling site, while an equally small applied field antiparallel to the stray field would not.
An arrangement of a coupling site of one island next to part of another island (that is not a
coupling site, since otherwise the islands would switch each other) forms an
inverter[10,21]. An MLG of essentially the same geometry as in MQCA can still be
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Figure 2. 3: A pNML MLG with inputs labeled 1, 2, and 3 and output labeled 4. Light gray
and dark gray areas indicate opposite out-of-plane magnetization. The dot labeled B
indicates the direction of applied field. The red speck indicates the coupling site. The
progression of switching goes from left to right. B causes a domain to nucleate at the
coupling site (left), which then expands (middle) by domain wall motion through magnet 4
until the whole magnet switches (right). The signal thus propagated from left to right.

constructed using a coupling site on the output magnet. Figure 2.3 shows the operation of
the pNML MLG as well as the domain wall motion. The combination of the applied field and
domain wall motion allows a single island to be an interconnect equivalent in pNML, since
the nucleated domain grows to span the entire island. A two-layer MLG[13] that uses both
ferromagnetic and antiferromagnetic coupling has also been demonstrated in pNML.

To implement a digital computation system, five device requirements[1,16]
(sometimes known as the fundamental tenets) need to be satisfied. These are: functionally
complete logic set, non-linear response characteristics, devices that can be concatenated,
devices that provide signal gain, and well-defined signal directionality. NML has been
demonstrated to satisfy all of these tenets[1]. The combination of the inverter and MLG
form a complete Boolean logic set. The switching behavior of magnets is non-linear as
observed in typical hysteresis curves. The stray field of one magnet controls the switching
of another magnet and thus magnets can be concatenated. Demonstrations of fan-
outs[11,17] show that one magnet’s stray field can control the switching of at least two
more, thus providing gain. Demonstrations of signal propagation[10,18] show clear
directionality of the movement of information. Satisfying these tenets is an important step
in showing that NML can be a viable spin logic system that is worth pursuing further. The
original work on NML described in this thesis pertains mostly to MQCA.

2. Torque-Coupled Spin Logic

Many torque-coupled spin logic schemes use spin-transfer torque internally in a
device, but use charge currents to interface (through electrical interconnects) between
devices. This allows them to be somewhat less exotic and makes for more straightforward
integration with CMOS circuits. Presumably, the benefit would be the ability to replace
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Figure 2. 4: STMG top view (left) and side view (right) with inputs labeled 1, 2, and 3 and
output labeled 4. Materials for the stack (spin valve sandwiched between contacts) are
indicated by the colors (all green layers are CoFe and red and blue are metal contacts).

certain parts of a CMOS logic circuit with spin logic if the spin logic is better suited for that
particular task. Such a spin logic device that is based on the MLG is the spin torque
majority gate[19] (STMG). Figure 2.4 shows a cartoon of an in-plane STMG, which consists
of four pillars on top of a larger base. Each pillar in combination with the base is a spin
valve structure that converts between charge current and spin current. Voltages are
applied to the input metal contacts (blue) and the current is measured through the output
metal contact (red), all while the base contact (orange) is grounded. The resistance of the
output pillar is determined by the majority vote of the input pillars, as in a field-coupled
MLG. Alternatively, for an out-of-plane STMG a cross geometry for the base is used, and a
pillar is placed on each arm of the cross. Due to non-volatility and re-configurability (as
either AND or OR), the STMG may be advantageous in certain circuits.

Another spin logic device that uses purely electrical interconnects is the spin
switch[16]. Figure 2.5 shows a cartoon of a spin switch device with the appropriate
connections. Designed as a replacement for the CMOS transistor, the spin switch has input
and output voltages and a pair of voltage rails (specifically both positive and negative with
respect to ground). An applied input voltage passes a current through a spin hall effect
metal (blue), which converts charge current to spin current and switches the magnet
adjacent to it (green). This magnet is strongly stray field coupled to another magnet
separated by an insulator between them (red). This other magnet is part of a spin valve
with each of two pillars on top of it. The two pillars are oppositely magnetized so that one
spin valve has high resistance while the other has low resistance. The output voltage at the
base contact of this structure (orange) thus takes on the value of either voltage rail
depending on the base layer magnetization. Switching the voltage rail contacts essentially
switches between N and P equivalents. The spin switch can potentially be a low-power
non-volatile switch that can also implement reconfigurable logic[16].

A switch design with many similarities to NML is all-spin logic[20] (ASL). ASL also
stores bits in nanomagnets, but instead of stray field coupling the magnets are coupled by a
non-local spin-transfer torque that flows through a spin-coherent interconnect. Figure 2.6
shows a cartoon of the ASL device with two interconnected bits. Basic operation entails

5
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Figure 2. 5: Spin switch with write (left) and read (right) components. The materials are
metal contacts (orange), spin hall effect metal (blue), ferromagnet (green), insulator (red),
and spin valve spacer (gray). Since the large ferromagnets are strongly coupled, their
orientations (black) are opposite each other. Voltage rails (Vs) are usually constant, though
can be used as inputs for certain non-Boolean logic operations.

applying clock voltage pulses across one magnet (green, V1) to generate spin polarization in
the interconnect (blue) that switches the other magnet (green) through spin torque. The
process is concatenable so that applying another clock voltage pulse across this magnet
(V2) can switch yet another magnet downstream. Isolation layers (red) serve to contain the
spin polarization in the region between the two magnets that are intended to be coupled.
Tunneling layers (gray) enhance spin injection into the interconnect and inhibit spin
absorption from the interconnect. This determines the directionality of the system such
that the side with the tunneling layers switches the side without and not vice versa.
Structures consisting of 3 input magnets coupled to 1 output can function analogously to an
MLG[20]. An obvious advantage of ASL over NML is the added flexibility in choosing the
positions of the magnets.

Domain wall logic devices[21] based on current-driven domain wall motion[22]
have also been investigated. These devices place a short spin valve on top of a longer
magnetic strip containing a single domain wall that separates two regions of opposing
magnetization. By applying spin-polarized current (generated by passing charge current
through a magnet) through the strip, the domain wall moves and the magnetization under
the spin valve can change. Therefore, an output voltage or current is controlled by the
direction of current through the strip. Additionally, the domain wall motion requires that a
threshold current be reached[21], and so if two inputs contact the strip at either or both
ends, binary logic functions can be implemented that depend on the sum or difference of
the input currents. Both in-plane and out-of-plane magnets may be used for domain wall
logic. Theoretical work[21] predicts low operating voltages but also slow speeds.

Experimental work demonstrating fabricated torque-coupled spin logic devices is
somewhat lacking. Moreover, devices using voltage or current as a state variable also
inherit the problem of leakage from CMOS transistors. However, we believe that these spin
logic systems have at least as much potential as NML if realized devices are consistent with
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Figure 2. 6: All-spin logic segment with an input magnet (left) and an output magnet (right).
The materials are metal contacts (orange), spin-coherent interconnect (blue), ferromagnet
(green), spin-isolation layer (red), and spin tunneling layer (gray). Magnetic orientation
(black) and spin polarization (white) are shown.

predictions. In general comparison with CMOS, spin logic systems (both field-coupled and
torque-coupled) attempt to push non-volatility and potentially low-power switching as
advantages while suffering slower speeds as a disadvantage. Thus, for applications that are
extremely sensitive to power consumption and not as demanding in performance, spin
logic is a promising area of research with efforts that also strongly benefit magnetic
memory research.



Chapter 3. Theoretical Models for the Behavior of
Ferromagnets

1. The Stoner-Wohlfarth Model

Recent ferromagnetic devices applicable in electronic devices are typically small
enough to be considered single-domain. In such magnets, the exchange interactions
dominate and the parallel (ferromagnetic) alignment of all spins is energetically favorable.
Thus, if we simply assume that all spins in the magnet are exactly parallel so that the
magnetization is constant throughout the volume, then the Stoner-Wohlfarth model[23] is
valid. The Stoner-Wohlfarth model is purely static (referred to as adiabatic in this work]) in
the sense that it describes magnets in equilibrium. Figure 3.1 shows a diagram of the
canonical model for a magnetic particle with uniaxial anisotropy, in which a particular axis
(designated as easy) is energetically favorable. Since u actually indicates an axis rather
than a vector, the energy of the interaction between m and u is proportional to (m - @) (m -
—1) or —|m - ©i|?. On the other hand, B is a true vector and the interaction energy is the

Zeeman energy —i - B. Letting K. be the proportionality constant of the uniaxial

anisotropy energy and m = MV with magnetization M and volume V, the energy density of
the particle is:

—

U=—K,M-4?>—M-B 3.1)

Using the convention of figure 3.1 with the angular parameterization and letting M= M¢M
we can also rewrite equation 3.1 as:

.
0
.
.
.
.
-
.
.
.
.
.
.
.

‘U

Figure 3. 1: Diagram of Stoner-Wohlfarth uniaxial magnetic particle. The vector u indicates
the direction of the easy axis, m indicates the direction of magnetic moment with angle 6 to
u, and B indicates the direction of applied magnetic induction, with angle ¢ to m.
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U= —K,cos*(0) — MgBcos(¢) (3.2)

Since the magnetization is constant throughout the volume, it only changes by
coherent rotation. We can determine the stable equilibrium states of m in an adiabatic
approximation by picturing the position (angle) of m as a ball resting on the plot of U and
assuming that the ball retains no kinetic energy and thus rolls in the direction —VU until it
comes to rest in a local minimum. The very fundamental ferromagnetic phenomenon of
hysteresis can be predicted[23] using this method.

For applications described in this work, the more complex model of adding biaxial
anisotropy to a standard Stoner-Wohlfarth magnetic particle has more relevance. Figure
3.2 shows a diagram of the geometry for the special choice of anisotropy axes directions
used in this work. The uniaxial easy axis is still u, while the biaxial easy axes are by and ba.
The energy of the interaction between m and b is proportional to:

(- b1) (10 - —by) (17 - bo ) (170 - —ba) = |17 - by 2| - bo? (3.3)

Letting Ky be the proportionality constant of the biaxial anisotropy energy, the energy
density of the particle is:

U= —Ky|M-a|> +Ky|M-b;|*)|M-by]* — M - B (34)
Using the angular parameterization convention of figure 3.2, we have:

U = —K,cos*(0) + Kysin®(0)cos*(0) — MgBcos(¢)
2 K (35)
= —K,cos°(0) + - sin (20) — MsBcos(¢)

Finally, adopting the convention used in the rest of this work that all anisotropy energies

o}

B

Figure 3. 2: Diagram of Stoner-Wohlfarth magnetic particle with both uniaxial and biaxial
anisotropy axes, where the biaxial axes by and b are orthogonal and the uniaxial axis u is
parallel to one of the biaxial axes b1 so that u, b1, and bz are contained in one plane.

9



are negative and therefore replacing sin?(26) by sin?(20) — 1 = —cos?(260) we end have:

K
U= —K,cos*(0) — Zb6082(29) — Mg Bcos(¢) (3.6)

Alternatively, we can see the combination of uniaxial and biaxial anisotropy as a
second-order power series expansion of a more general anisotropy function. Due to time-
reversal symmetry[24], only the even powers of sinusoids can be used in order to satisfy
spatial inversion symmetry for the anisotropy energy density F,,;s(60) = Fy,;s(6 + m). We
choose Fanis to be even so that the expansion is in terms of cos?. If we align the anisotropy
axes as in figure 3.2, then we can drop the phases and we end up with:

Fonis = Ko + Kicos?*(0) + Kycos*(0)

KQ K2 (3.7)
= Koy — R + (K1 4 K>)cos*(0) + TCOSQ(29)
To match our earlier formulation requires the following substitutions: K, = —K}, ; K, =
-Kp
— K, =K, — K.

4 )

Finally, we introduce the quantity of anisotropy field[25] Hanis. For a purely uniaxial
case itis uoHynis = ZMﬁ and for a purely biaxial case it is puoHgpnis = ZMﬂ The anisotropy field
S S

is the amount of magnetic field needed to either rotate the magnetization to the hard axis

or reverse the magnetization along an easy axis (in the process rotating through at least
one hard axis since coherent rotation is assumed).

2. The Landau-Lifshitz Equation

The Landau-Lifshitz equation treats the time dynamics of magnetic moments.
Unlike the Stoner-Wohlfarth model, this equation also applies to the continuum case when
magnetization is non-uniform[26]. This equation expresses both Larmor precession and
energy dissipation. For magnetization M, effective magnetic field Hefr, gyromagnetic ratio y,
and phenomenological damping constant a, the Landau-Lifshitz equation is:

ot  1+a? Ms(1+ o?)

The effective magnetic field has contributions from external fields as well as magnetic

M x (M x f[eff) (3.8)

anisotropy (both crystalline and shape) and exchange interactions. Equation 3.8 is an
explicit form of the completely equivalent (but implicit) equation 3.9, known as the
Landau-Lifshitz-Gilbert (LLG) equation:

10



a—M:—’yMXHeff—{——MX a—M (3.9)
ot Mg ot
Figure 3.3 shows a cartoon of the vectors and their motion.

To capture the phenomenon of spin-transfer torque (STT) describing the transfer of
magnetic moment through charge current, more terms are added to the equation. The
result is known as the Landau-Lifshitz-Slonczewski (LLS) equation. For the case of a 2-
magnetic-layer device with a spacer (spin valve), the equation describing the free layer
magnetization M is[27,28]:

oM . . OM
M xH, Yo 2
ot X fW+M' * ot

(3.10)
ol L .
+MMA@@LJM%MXMM+M@Q

Here, Msix is the fixed layer magnetization, [ is the charge current, V is the free layer volume,
q+

e is the fundamental charge, pus is the Bohr magneton, and r](IVI . Mfix) = B
M fix

q-
A-B(M-Miy)
B is the phenomenological non-adiabaticity constant that describes the inefficiency of spin
current absorption. Note that the added adiabatic term has the same form as the damping
term in equation 3.8. In a typical spin valve structure, if the effective field aligns with the
easy axis (for example out of plane due to interfacial anisotropy) and the fixed layer also
aligns with the easy axis, then the adiabatic Slonczewski term can be merged into the
damping term (and the non-adiabatic term merged into the precession term) as a change in
the magnitude of the effective field. Depending on the direction of charge current and
whether the free layer is parallel or antiparallel to the fixed layer, this change in effective

is a function that encapsulates the layer structure into the constants g, A, and B.

Figure 3. 3: Cartoon of motion of a magnetic moment about an applied field according to
the LLG equation. Larmor precession (blue) is around the dark green rim of the cone while
Gilbert damping (red) acts to shrink the precession cone to align M and H.
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field magnitude can be either positive or negative (and can be to such a degree as to flip the
sign of the damping term). For this reason, the added term is also known as the anti-
damping term.

In the case of a spin current acting upon a non-uniformly magnetized continuum,
the current-driven domain wall motion is described by[29,30]:
a—M:—VMXﬁeff+iMXa—M

ot Mg ot
p

LM x [(¢-V)M]
S

(3.11)
—(T-V)M +

Here, v is known as the spin velocity field (with units of velocity). For charge current
density |, spin polarization P, and g-factor g, the spin velocity field is:
7 B
Jp g
2e M S
The spin polarization is a factor between -1 and +1 calculated with respect to the majority

spin direction of the magnet. If spin-up is the majority spin direction then N, is the
number of carriers polarized toward spin-up and:

_M-N
_NT-FNJ(

Note that equation 3.11 also has a non-adiabatic term that can be combined with the
precession term.

Micromagnetics uses discretization of space and time to numerically compute M in a
given problem[26,31]. The treatment most often used in this work is a discretized LLG
equation acting on a regular grid of finite elements over fixed time steps to produce finite
differences. Each grid point (element) is considered to have uniform magnetization
(single-domain) of magnitude Ms. To calculate the effective magnetic field, the total energy
Etotal = Eexch + Eanis + Edemag + Ezeeman (additional terms such as magnetostriction are of

U= — (3.12)

(3.13)

course possible) is first calculated. The combination of the Zeeman energy and anisotropy
(both crystalline and interfacial) has the form of the usual Stoner-Wohlfarth energy with
U(M,B,Kj) from equation 3.4:

Eanis + Ezeceman = / U(M, B; K@)dv (3.14)
1%

The volume of integration is the volume of the simulation space. The exchange energy is

characterized by the exchange stiffness constant A and favors very gradual spatial variation

of magnetization (the constant magnetization assumption of the single-domain model

essentially sets exchange energy to 0):
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Here, VM is the Jacobian matrix and ||VM|| =tr [(VM)(VM) ] is the square of the

Frobenius norm. Since each element is single-domain, it is possible to rewrite the exchange
energy in another form that is easier to derive the effective field from:

A — —

2
vV s

Finally, the demagnetizing energy considers the magnetic fields produced by the

magnetization and is commonly referred to as shape anisotropy. The demagnetizing field
Hp can be found by solving the following Maxwell’s equations for the magnetostatic case:

6'B)D:,LL06°<FID—I—M):0 (3.17)
. - . 8D
VX Hp= Jf + %t 0 (3.18)

For r as the vector pointing from the integration location to the location of Hp:
Hp=— / V- M dV (3.19)

The demagnetizing energy takes the expected form of the Zeeman energy except for a
factor of half due to reciprocity:

1 L.
Edemag — 7 /V,U'OM - HpdV (3.20)

Once the energy terms are summed to express total energy as a function of M, we can
calculate the effective magnetic field as:

3 -1 aE’total
Hepp=—Vy (7)

Ko
(3.21)
= VM - —V -U(M,B,K;)+ Hp
po M3 po M ( )

A few issues arise in optimizing micromagnetic simulations for specific problems.
Though it is of course more accurate to use ever-smaller element sizes and time steps, it is
also completely impractical given limited computation resources. Instead, spatial grid sizes
should be less than the smallest critical length of interest. In nanomagnetism, this is
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typically the exchange length so that exchange-related effects can be captured. Time steps
should also be smaller than the period of precession about the exchange field. Smaller
element sizes demand smaller time steps, as the stronger exchange interactions increase
stiffness. If we observe neighboring elements that spontaneously begin oscillating out-of-
phase with each other, it typically indicates too large of a time step. Another important
issue concerns the choice of damping constant[26]. Though the true (microscopic)
phenomenological damping constant a is a material-dependent parameter, the apparent
(macroscopic) damping constant aapp also depends on grid size. It can be shown using the
Cauchy-Schwarz inequality that aapp monotonically increases for ever-larger ensembles of
spins. Thus, larger grid sizes correspond to larger aapp values.

3. The Addition of Thermal Effects

In the absence of thermal fluctuations, a Stoner-Wohlfarth particle would seek and
stay at the local energy minimum. However, thermal fluctuations can randomly switch the
particle by supplying it with the energy pass over one of its energy barriers. If a single-
domain magnet has exceptionally small energy barriers, this spontaneous switching may
happen so often that in the time scales of interest it appears to have zero magnetic moment
(more precisely, the average magnetic moment integrated over the time period of interest
is 0). This phenomenon is called superparamagnetism. The intuition is that larger energy
barriers are needed to make single-domain magnets more thermally stable. The formal
statement of this is the Néel-Arrhenius equation[32,33]:

Ep
TN = TO@kBT (3.22)

T is the temperature, kg is the Boltzmann constant, Eg is the energy barrier, tv is the
average time between thermally-driven switching events, and t¢ is a phenomenological
characteristic time known as the attempt period and is typically in the range 0.1 to 1 ns. In
the magnetic memory industry, a common metric is the data retention time, which is
equivalent to tn. For long-term storage applications such as hard disks, the target is
typically 10 years[34], which typically needs an Eg of 60kgT. In the purely uniaxial case, the
energy barrier is simply Eg = K\V. For the combination of uniaxial and biaxial anisotropy
according to equation 3.6 with B = 0, an additional energy barrier forms when Ky > Ky such
that local minimums form and the two biaxial easy axes effectively become a major and a
minor easy axis. The energy barrier Eg, seen going from the minor to the major easy axis is
not equal to the energy barrier Eg, seen going from the major to the minor easy axis:

(Kb - KU)2

V 3.23
e (3.23)

EB¢:
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Vv (3.24)

The time dynamics of a magnetic continuum at finite temperature is usually treated
by adapting the Landau-Lifshitz equations as a stochastic differential equation. The
adaptation most relevant to this work is the stochastic LLG equation written as a Langevin
equation where a random field is added to the effective field:
oM - = = a - OM
I , - - 3.25

9 yM X [Heff —|—Hnm$e(t)] + MSM X 5 (3.25)
Hioise(t) is a Gaussian white noise term that satisfies expectation and correlation
properties[31] according to the Einstein relation (fluctuation dissipation theorem):

<ﬁnoise(7?7 t)> =0 (3.26)

- 2]€BT05
Hnoisei Fyt Hnoise ' Tlat/ - T I _
(Foiee (7 Hosse (7)) = 2221

Equation 3.27 states that the noise field is uncorrelated in space and time and uncorrelated

5i;6(F—1)0(t —t') @27

between orthogonal spatial components. The discretized version of this treatment is used
in micromagnetic simulations in this work.

We have introduced the basic physical models for analyzing the ferromagnetic
systems in this work. Many methods used in this work are extensions of the concepts
introduced here. However, some of these extensions are not necessarily straightforward,
with details that are outside the scope of this work. An example is the discretization
procedures used to be able to perform numerical simulations[35]. Further information on
these procedures can be found by reading the documentation of the respective
software[36].
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Chapter 4. Configurational Anisotropy in Nearly-Single-
Domain Magnets

1. Edges and Corners of Nearly-Single-Domain Magnets

It is well-known[37] that bulk magnets form domain patterns in order to minimize
their demagnetizing energy. As the size of the magnets decrease, the exchange energy
increasingly dominates until the magnet is an isolated single spin (an electron). At this
point, both the exchange energy and demagnetizing energy vanish. Single-domain
nanomagnets are thus an approximation, and some domain patterns are preserved as well
(though patterns that change gradually in space are far more energetically favorable to the
point where it may be difficult to use the concepts of domains and domain walls in the
traditional sense). In this more exact treatment where the magnetization of nearly-single-
domain magnets is still spatially non-uniform, the shape anisotropy due to the competition
of demagnetizing energy and exchange energy is called configurational anisotropy[38].

It was found by micromagnetic simulation[39] that for square thin-film
nanomagnets made of permalloy (an alloy of 80% nickel and 20% iron that has no
crystalline anisotropy), the larger sizes had the vortex energetic ground state. As the sizes
were reduced and the nanomagnets became nearly-single-domain, the buckle became the
ground state. Further reduction toward smaller sizes produced the leaf and flower states.
Figure 4.1 shows diagrams that qualitatively depict the magnetic orientations of the states.
Most importantly, the leaf configuration has “convex” magnetization curvature with net
moment along the diagonal of the square, while the flower configuration has “concave”
magnetization curvature with net moment along the side of the square. Whether the leaf or
the flower becomes the energetic ground state is determined by the aspect ratio, which is
the ratio of the thickness to the side length. It was found[25] that for permalloy, an aspect
ratio of around 2.7 is the boundary between the two states up to a critical point near 45 nm
side length and 17 nm thickness, where the buckle state enters the phase space. Below
around 12 nm thickness, aspect ratios less than the boundary produce the flower state
while aspect ratios more than the boundary produce the leaf state. For thicker squares, the
boundary is not sharp but instead forms a linear combination of both states.

Figure 4. 1: The vortex, buckle, leaf, and flower configurations (left to right).
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The phase boundary between ground states can be explained[25] by considering
both leaf and flower states as perturbations to a true single-domain state. The regions that
are perturbed more develop a larger magnetization difference compared to the single-
domain state. These are also the regions that contribute more to the total demagnetizing
energy. For the flower, these are the corners. For the leaf, these are the middles of the
edges. It follows that removing these configuration-defining regions should make the
configuration more unfavorable. Since the flower and leaf have different high-contribution
regions, it should be possible to bias a square nanomagnet toward one of the two
configurations by removing magnetic material from said regions. To induce the flower, we
remove the straight edges. To induce the leaf, we remove the sharp corners. Figure 4.2
shows the magnetic configuration of such shapes. The ground states show curvature, while
the unfavorable states are forced using an applied magnetic field and are therefore single-
domain.

Another point of view to explain the ground states is to solve equations 3.17 and
3.18 by introducing the magnetic scalar potential and Poisson’s equation for the
potential[24]:

H=-VA (4.1)
VZA=V-M (4.2)

Equation 4.2 has a form that suggests V-Mis naively analogous to magnetic charge density.
For the surface normal vector n to the magnet, the boundary conditions (obtained from
continuity) and solution are:
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Figure 4. 2: Magnetization configuration and demagnetizing energy (or magnetic charge
density) for concave-sided squares (left) and convex-sided squares (right) in the side-
aligned configuration (top) and the diagonal-aligned configuration (bottom).
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Here, S is the surface of the magnet and V is the enclosed volume. Analogous to a
macroscopic bar magnet with north and south poles, the contributions to the potential can
be thought of as microscopic poles. The first and second terms of equation 4.4 are the
volume and surface poles, respectively. The configuration that minimizes demagnetizing
energy also minimizes the density of poles. The color-mapped diagrams[18] in figure 4.2
show that the forced single-domain configurations produce greater densities of surface
poles. Note that these dense-pole regions are the same as the high-contribution regions
(from the surface of which we removed magnetic material) mentioned earlier.

The strength of configurational anisotropy was found[18,38] to be fairly strong in
nanomagnets: on the order of a few hundred Oe in anisotropy field, and tunable as well by
varying shape and dimensions. The potential applications include nanomagnetic memory
and logic devices where control over anisotropy is needed or more complex anisotropy is
desired.

121

~

(T)dS’ (4.4)

2. Simulation Study of Configurational Phase Space

We can quantitatively analyze configurational anisotropy by micromagnetic
simulation. In this work, we use the Object-Oriented Micro-Magnetic Framework
(OOMMF), which is an open-source finite element simulator[36]. A common way to define
the elements in OOMMF is to use an atlas, which is an image mapping of mesh cells. Figure
4.3 shows examples of atlases we used to map the adjusted square-like shapes designed for
inducing the flower and leaf configurations. Each pixel represents a mesh cell, the colors
differentiate properties of the cell (in this case, black or gray is permalloy while white is
vacuum), and the image is extruded in the out-of-plane direction to form the mesh (so that
each position along the thickness axis looks alike). We started with a 27 nm x 27 nm x 10
nm square magnet (each mesh cell is 1 nm x 1 nm x 1 nm) so that its aspect ratio is 2.7, the
nominal phase space boundary between the flower and leaf configurations. Then we
removed triangular sections from the middles of the edges and the corners, respectively for
concave and convex shapes. Each section removed is an isosceles right triangle with
altitude n pixels (for the edges this is the bisecting altitude, while for the corners this is the
side altitude) and is recolored to white, where n is a parameter representing the degree of
tuning. The black atlases in the figure have n = 2, while the gray atlases have n = 4. Though
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these designs do not optimally minimize demagnetizing energy, they are simple to define

especially in the context of discrete cubic elements.

Following the simulation script in appendix A.1, we chose standard permalloy

parameters: saturation magnetization of 8 x 10> A/m and exchange stiffness of 13 x 10-12

J/m. An apparent damping constant of 0.02 was used (0.01 is usually considered the true

damping constant of permalloy), though larger values would also have worked since the

simulations are purely relaxation toward a ground state. We started each simulation with

the magnetization uniformly oriented toward an angle of g with respect to the edge (the

angle halfway between the net magnetic moments of the flower and leaf configurations).

We then allowed the system to relax at zero temperature until the maximum rate of change

of any mesh cell’s magnetization is less than 1 degree per nanosecond. Once this point was

reached, the simulation terminated and stored the result as the ground state. We

performed a large number of these simulations in a parameter spaced that included

different values of n for both concave and convex shapes as well as different thicknesses
varying in steps of 1 nm. To better parallelize the simulations for single-threaded OOMMF
installations on multi-core processors, we used the script in appendix C.1 as a launcher for

the simulations.
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Figure 4. 3: OOMMF simulations for shapes that induce the flower (left half) and the leaf
(right half). The ground state magnetization configurations (bottom) and atlases (top,

black) as well as atlases for stronger effects (top, gray) are shown.
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Figure 4. 4: Phase space diagram for convex and concave adjustments of squares with
aspect ratio equal to the side length divided by the thickness. The independent parameter
n is related to the number of mesh cells removed from the square.

Figure 4.4 shows how the configuration phase space changes when the square-like
shape is tuned in the manner described above. The point at n = 0 represents a perfect
square and has a phase boundary at 2.7 aspect ratio, as expected. The figure shows that at
this aspect ratio, making the shape more concave induces the flower state while making the
shape more convex induces the leaf state. In addition, the phase boundary changes with n
so that in general, the flower is more favorable for concave shapes while the leaf is more
favorable for convex shapes. Using this technique, we can engineer the orientation of a
nanomagnet’s anisotropy axes for various thicknesses.

3. Design of Nanomagnet Shapes for Nanomagnetic Logic

As is, the adjusted square-like shapes used in section 4.2 have applications in
magnetic memory due to the ability to store four distinct states (two bits) and the ability to
engineer the energy barrier height. For magnetic logic, the ability to combine
configurational anisotropy with more conventional shape anisotropy has important
applications. For example, we can use a flower configuration-inducing shape that is also
elongated along one of the easy axes. This still provides two orthogonal axes along which
stable flower configurations form, but one such axis is easier than the other. In other
words, this combines a uniaxial shape anisotropy with a biaxial configurational anisotropy.
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Figure 4. 5: Flower magnetization configurations for elongated concave nanomagnet found
by OOMMF along the strong easy axis (left) and the weak easy axis (right).

The configurations of such a shape are seen in figure 4.5. The application of similar shapes
is to provide meta-stability for a between-state that is neither pointing up nor down. This
state would therefore be digitally equivalent to a state that represents no binary
information. This application is further described in section 5.1, which refers to it as the
null state.

Figure B.1 shows a simplified version of the same concept intended for easier
nanofabrication. The 4 protrusions from the rectangle can be separately exposed with
higher dosage in order to better reproduce the desired shape. The figure also shows a
biased version of the shape that introduces an asymmetry so that the easy axes are not
orthogonal. This is achieved by adding two extra protrusions (corners) on opposite sides
in an inversion-symmetric manner. A similar effect can be achieved for the other easy axis
by making one protrusion different from the other (and taking care of the opposite side in
an inversion-symmetric manner). These shapes with effectively non-orthogonal easy axes
find applications in fixed input magnets[40] and biased magnets (which can be used in the
B-gate construct[8]) for NML.

4. Simulation Extraction of Anisotropy Constants

For use in designing NML, it would be useful to characterize nanomagnets with
complex anisotropies in terms of more simple parameters. One such example is the
combination of uniaxial and biaxial anisotropy mentioned in section 4.3. Though the
anisotropy profile is more complicated than purely uniaxial and biaxial, the approximation
can be sufficient to engineer with. There are several ways to make this approximation. For
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example, we can take up to second order the series expansion terms of the anisotropy
profile. Though this may be the most natural way, we take a different approach here.

Given an energy density expression as in equation 3.6, we first assume that the
magnet rests along the weak easy axis (which exists if K, > Ky). We then find the magnitude
of the applied magnetic field along the direction of the strong easy axis needed to switch
the magnet. In the adiabatic model, this occurs when the energy density is purely non-
increasing along the entire path taken from weak easy axis to strong easy axis. A saddle
point (unstable equilibrium) forms along the path for the smallest field magnitude needed.
If the energy density U is parameterized in terms of only the angle 0 of the magnetization,
then we can solve for the conditions necessary for this point by:

8%_&0) =0 (4.5)

02U (0)

R N A 4.6
592 0 (4.6)

The switching magnetic induction Bs required for the magnet becomes:

4 K, — K,)3
Bg = (K u) (4.7)
3Mg 6K

Note that the requirement Ky, > Ky appears naturally if Bs must be real.

Now assuming that the magnet rests along the strong easy axis, we find the
magnitude of the applied magnetic field along the direction of the weak easy axis needed to
switch the magnet. By the same arguments and methods, we find that the switching
magnetic induction B¢ required for the magnet becomes:

3
Be — 4 (Kp + Ky) (48)
3Mg 6K

Unlike the series expansion approximation described above, this approximation
preserves the exact switching field values while being less accurate about the overall shape
of the anisotropy profile. We believe that this is a better approximation for engineering

Figure 4. 6: OOMMF atlas design used to find switching field magnitudes.
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NML as switching fields are fairly fundamental and pervasive design parameters. Now
given the expressions for these switching fields in terms of anisotropy constants, we used
OOMMF to find the switching fields and then invert equations 4.7 and 4.8 numerically to
solve for the anisotropy constants. We used atlases similar to that of figure 4.6 but of
varying lengths (the vertical dimension). This design closely resembles the lithography
mask design given in figure B.1 (concave magnet) but with angled inside edges of the
protrusions. This feature more accurately resembles the true shape of the magnets after
nanofabrication. Each simulated magnet was 12 nm thick, 150 nm wide, and the length
varied from 300 nm to 510 nm. Standard permalloy material parameters and zero
temperature were used. We followed the simulation script of appendix A.2 which used the
following procedure: first initialize the magnetization along the assumed initial state and
allow it to equilibrate to form a configuration, then apply the switching field and allow it to
equilibrate, and finally remove the field and allow it to equilibrate. We varied the
magnitude of the applied field in a series of simulations for each value of magnet length to
find the smallest field magnitude that produces a switched final state.

Figure 4.7 plots the switching field magnitudes for the range of magnet lengths
simulated. For the switch from weak easy to strong easy axis (blue), the values are
accurate to 0.1 mT. For the switch from strong easy to weak easy axis (red), the values are
accurate to 1 mT. The values themselves show that it may take nearly 50 mT to reset (or
clock as section 5.1 refers to it) nanomagnets of this geometry, while up to 4 mT of stray
field coupling may be required for them to switch each other. As the processes of resetting

50
-
40} o : :
p o o —
é o
:.%—3330/ *BS -
2 B
£ 20/ °l
=
(¢p)
10" :
200 350 400 450 500

Nanomagnet length (nm)
Figure 4. 7: Switching field magnitudes for magnets of atlas design from figure 4.6 with
various lengths. Bs switches from weak easy to strong easy axis and B¢ vice versa.
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Figure 4. 8: Effective anisotropy constants for magnets of atlas design from figure 4.6.

and magnet-to-magnet coupling are very central to NML, these numbers are useful for
designing NML systems. We chose to use these same nanomagnet dimensions in our
experimental work.

Figure 4.8 shows the anisotropy constant values calculated from the values in figure
4.7. For magnets shorter than 450 nm in length, the biaxial anisotropy increases very
slowly with length while the uniaxial anisotropy increases much more rapidly with length.
This follows the intuition that longer magnets have more uniaxial shape anisotropy, while
the biaxial configurational anisotropy is determined more by the geometry of the edge
cutouts. For magnets longer than 450 nm, we believe the approximation may start to break
down as the anisotropy constant values approach each other.

5. Magneto-Optic Kerr Effect

We investigated the net anisotropy of ensembles of nanomagnets using the
magneto-optic Kerr effect (MOKE). The magnetization of a material affects its
birefringence. MOKE measures the portion of this linear in magnetization using the
reflection geometry. We will present two treatments that consider different perspectives
but result in the same effect. Consider for a magnetic material the relations for Larmor
precession and magnetic auxiliary fields ({ denotes a 274 rank tensor):

—— = _—~yM x H (4.9)
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B =puo(H+M)=7nH (4.10)

Assuming that both M and H take the form of a static term (parallel to each other as
expected in equilibrium) superposed with a plane wave[41], equations 4.9 and 4.10 can be
explicitly solved to first order in the plane wave term for the permeability tensor.
Alternatively, consider the electric auxiliary field relation and the expansion of the
polarization density to first order in magnetic field:

—

D=¢kFE+P=¢E (4.11)

—

P =¢egxoF + Eo,uoxla—E x H (4.12)
ot

In equation 4.12, the form of the term that is first order in H is determined by time-reversal
symmetry[24]. Substituting this equation into equation 4.11 can explicitly solve for the
permittivity tensor.

In either perspective, if we use time-harmonic forms to replace the time derivatives,
we arrive at a Hermitian constitutive tensor. In general, diagonalizing this tensor gives a
basis of complex eigenvectors corresponding to the principal axes (complex components
signifying elliptically polarized beams) and real eigenvalues corresponding to the
permeability or permittivity experienced by these principal polarizations. For the example
cases of the perspectives described above, we may for simplicity choose the z direction for
the static magnetic field to produce a tensor of the form:

T +i7°3 0
nef=|—-irs 1m0 (4.13)
{1
0 0 T

Here, rj are real numbers. The principal axes are the z axis and a pair of circularly polarized
beams of opposite helicity. Thus, for a normally incident linearly polarized beam, we can
decompose it in terms of the circularly polarized basis. The two basis components
experience different phase velocities for their respective eigenvalues p and &x:

1
VEXA

After reflection, the beam is still linearly polarized, but the phase difference accumulated

Upn | = (4.14)

between the two circularly polarized components result in an effective rotation of the
polarization axis (the Kerr rotation). If conductivity is introduced so that the material has
loss, the amplitude difference accumulated result in an effective polarization ellipticity
change (the Kerr ellipticity).
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We fabricated arrays of concave square nanomagnets by electron beam lithography,
permalloy and aluminum evaporation, and lift-off in Remover PG onto a silicon substrate.
The shapes were nominally 100 nm x 100 nm laterally and varied in permalloy thickness
from 10 nm to 15 nm. The aluminum capping layer thickness was kept constant at 2 nm.
The spacing between magnets (periodicity) was 600 nm, which was far enough so that
stray field interactions were negligible. Various degrees of concavity were fabricated,
roughly corresponding to the parameter n from section 4.2. In this section, the average
distance between the middle of a concave square’s edge and the closest point on its
bounding square is called the concavity depth. Figure 4.9 shows a scanning electron
micrograph (SEM) of some sample structures. Since the sizes of the structures were well
below the diffraction limit, MOKE measurements probed the average properties of the
shapes.

Figure 4.10 shows a diagram of our MOKE apparatus. Many details about this
apparatus are provided in another work[42] and we will only give an overview. A linearly
polarized laser beam was incident on the magnetic sample at an angle (so as to form a
plane of incidence and reflection) and the magnetization was in the plane of the sample.
The longitudinal and transverse components of magnetization produced polarization and
reflectivity changes, respectively. The photo-elastic modulator reduced noise as well as
separated the rotation and ellipticity components. By using a lock-in amplifier at the
modulation frequency, we measured the Kerr ellipticity corresponding to the longitudinal
magnetization component.

Figure 4. 9: SEM of a part of an array of permalloy concave squares on silicon.
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We also introduced a modulation of the applied magnetic field as part of the
modulated field magneto-optic anisometry (MFMA) technique[38] used to specifically
study configurational anisotropy. We applied a large static field along the direction of
transverse MOKE sensitivity, and also applied a small alternating field along the direction
of longitudinal MOKE sensitivity. The static field aligned the magnetization parallel to it
while the alternating field ‘wiggled’ the magnetization around this alignment. The more
locally stable (steeper energy well) this alignment was, the less the magnetization wiggled.
Therefore, the demodulation of the longitudinal MOKE signal with respect to the
alternating field frequency was inversely related to the curvature of the anisotropy
function along the direction of the static field. Stepping the rotation of the sample around a
half circle (the other half is determined by time-reversal symmetry as described in section
3.1) and measuring this curvature at each point resulted in an angular anisotropy profile.
In this section, these profiles are plotted as normalized reciprocals of the measured signal,
so that larger values represent greater anisotropy curvature and thus greater stability. In
simple cases, plot maxima are the easy axes and plot minima are the hard axes.

Figure 4.11 plots the anisotropy profiles for various nanomagnet thicknesses and
concavity depths[18]. Particularly noteworthy are the leaf-to-flower transition as
thickness increased past 12.5 nm for the 5 nm concavity case, and the leaf-to-flower
transition as the concavity increased past 5 nm. These two trends reflect those in figure
4.4. This method of using edge indents to influence configurational anisotropy obviously
applies toward shapes beyond squares. Figure 4.12 shows an example for equilateral
triangles of side length 120 nm[18]. The anisotropy profile inverts when the edge indents
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Figure 4. 10: Cartoon of MOKE experimental setup used to measure nanomagnet arrays.
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are introduced so that magnetizations tend to align into the corners instead of along the
edges.

Along hard axes (where the anisotropy function curvature is negative in the absence
of externally applied fields), the anisotropy field can be quantitatively measured. Applying
a field B along a hard axis satisfies:

0
00
If the field is the anisotropy field Banis, then the following is also satisfied:

82
002

[U(6) — MgB cos(0)] )920 —0 (4.15)

[U(0) — MsBgyns cos(0)] ’9_0 =0 (4.16)

Thickness
SEM 10 nm 12.5 nm

180 1808 %

Concavity depth

180 (o #40[180

180

270 570 270

Figure 4. 11: Anisotropy profile table for various concave square nanomagnet arrays
measured by MFMA. Maxima indicate easy axes and minima indicate hard axes.
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Figure 4. 12: Anisotropy profile table for various concave triangle nanomagnet arrays.

The MFMA magnitude should peak when the applied static field is equal to the anisotropy
field since the MFMA response goes as[38]:

2 0 —1

An applied field larger than the anisotropy field results in a positive anisotropy function
curvature along that direction. The stronger this static field, the more positive the
curvature, which decreases the measured MFMA signal. On the other hand, an applied field
smaller than the anisotropy field results in a magnetization that does not orient in that
direction (since that direction is still effectively hard). In this regime, the weaker this static
field, the lower the measured MFMA signal.

Figure 4.13 plots the MFMA signal magnitude measured along the hard axis versus
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Figure 4. 13: MFMA signal magnitude versus static field for different concavity depths (left)
and extracted anisotropy field versus concavity depth for different thicknesses (right).
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the applied static field strength (left) for various concavity depths in concave square
nanomagnets[18]. The trend of increasing anisotropy field with increasing concavity is
consistent with predictions. The figure also plots the measured anisotropy field strength
versus concavity depth for various concave square nanomagnet thicknesses. We observe
the same trend and in addition note the change in direction (by %) of the hard axis at

concavity depths around 5 nm corresponding to the transition from leaf to flower
configurations.
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Chapter 5. Information Transmission in Nanomagnetic
Logic

1. Behavior of Chains in Nanomagnetic Logic

As mentioned previously, chains of nanomagnets for the most part serve the role of
interconnects in NML architectures based on coupled magnetic islands. Even the smallest
circuits have interconnects, and thus thoroughly studying and developing robust chains are
as critical as doing so for gates. Moreover, chains encapsulate many essential engineering
questions about the architecture, allowing experimenters to probe the physics of coupling
and switching as well as measure key metrics such as speed and reliability. Since chains
are such basic elements in the architecture, it is not surprising that they have been the
subject of a relatively large number of studies[1,5,7,8,10,15,18,43-49].

The fundamental interaction that chains rely upon to transmit information is stray
field coupling (also sometimes called dipolar coupling, though the fields are only dipolar to
arough approximation). The stray field of a typical nanomagnet provides an energetic
preference for other magnets placed along an axis orthogonal to its magnetic moment to
align antiparallel to that moment. For other magnets placed along the axis parallel to this
nanomagnet’s magnetic moment, the stray field provides an energetic preference to align
parallel to that moment. An ordered series of nanomagnets placed along such an axis
forms a chain. Based on the principle of collective energy minimization, the chain favors a
particular pair (to account for the magnetization inversion symmetry of the energy) of
configurations of magnetic moments. Therefore if the state of any one nanomagnet in the
chain is known, then the state of any other nanomagnet is known as long as the chain has
minimized its total energy. To transmit a bit of information from one end of a chain to the
other, one can thus fix one end, thereby breaking the inversion symmetry, and the result at
the other end becomes determined. Figure 5.1 illustrates this concept for two
arrangements: a ferromagnetically aligned chain (left) and an antiferromagnetically aligned
chain (right). The arrows represent the magnetic moment of each nanomagnet.

If the chain ends up in anything other than this global energy minimum, we consider
it to have errors. Many studies[7,43,46,47] suggest that for long enough chains, errors are

Figure 5. 1: Chain energetic ground states for horizontal (left) easy axes and vertical (right)

easy axes.
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not only possible, but also probable. A nanomagnet can enter into local energy minimums
and become trapped there by its own anisotropy fields. The simplest example of this
happens when the fixed end of a typical chain is switched. In typical chains, this event
alone would not cause any further switching because the coupling between neighboring
magnets is usually too weak compared to the magnetostatic energy of each magnet.
Several ways to re-energize chains and seek global energy minimums have been
demonstrated. One way, commonly known[45,47] as a ‘random walk,’ is to allow ambient
thermal energy to switch nanomagnets through a random process until all errors are
expelled from the chain. As an example, in antiferromagnetically aligned chains a typical
error manifests as a ferromagnetically aligned pair of nanomagnets. This frustrated pair of
magnets has higher energy compared to non-frustrated pairs, and therefore it is more
likely for thermal energy to switch one of the magnets in the frustration. This causes the
frustration to effectively spatially translate by one magnet, with direction dependent on
which magnet in the pair switches. This movement continues in a random direction at each
step until this frustration eventually either leaves through one end of the chain or collides
with another frustration, in which case they may annihilate each other. The random
movement of the frustration inspired the term ‘random walk’ for this process. Figure 5.2
illustrates this process in an antiferromagnetically aligned chain for three consecutive
steps (from left to right respectively) of movement.

Due to the mirror symmetry of chains, one must employ external forces to limit the
directionality of ‘random walk’ movement. If one wants to transmit one bit from left to
right, for example, then one must continue to hold the left end of the chain fixed until all
errors are expelled from the chain so that no frustrations can leave the chain through the
input end (and thereby switch the input bit). Another serious drawback is the speed at
which errors move out of chains, which scales with the square of the chain lengths and is
slow for practical chain lengths[45]. Such slow speeds limit the practicality of relying on
thermal equilibrium to correct errors in chains.

Another method of pumping energy into chains to induce switching is to apply
magnetic fields. Due to similarities with synchronous digital circuits where a clock signal
causes latched bits to switch, this process in NML is called ‘clocking.” Applying clock fields
along both hard axis and easy axis directions have been demonstrated. Hard axis clock

Figure 5. 2: Random walk of an error in the middle of the chain (left) toward the right
(center) that eventually leaves the chain (right).
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fields act to align all free nanomagnets along a neutral axis from which both information
states are equally and easily accessible. If applied very slowly with respect to total
switching times, this clocking procedure results in an adiabatic relaxation process
analogous to annealing. The input bit, which must be held fixed as the symmetry-breaking
element, propagates its bias to all other nanomagnets in the chain while the field is slowly
applied. Since switching dynamics are allowed sufficient time to damp out, the chain
eventually relaxes into its lowest energy state, with all nanomagnets in mutually
reinforcing orientations once the field is finally removed. One of the most common
experimental clock schemes, this procedure is easily performed using external magnets.
Figure 5.3 illustrates the relaxation process in a chain during and after application of an
adiabatic hard axis clock field.

Particularly challenging for this scheme as presented is that perfect reliability
cannot be achieved due to thermal fluctuations. Simulations show[7,47] that as chain
lengths increase and clock field durations decrease, error probabilities increase to
intolerable rates. Chains shorter than five nanomagnets and clock field durations longer
than tens of microseconds are required. Both requirements severely limit the practicality
of this scheme. A promising solution to these problems is to use both biaxial and uniaxial
anisotropies in each nanomagnet to introduce a weaker easy axis along the neutral axis,
which would otherwise be the hard axis. Simulations show[5,8,18,44,46] that such a
solution helps guard against spontaneous switching from thermal fluctuations. The
additional energy well traps the magnetic moment such that it remains stable along the
neutral axis, while nearest-neighbor stray field coupling still provides enough bias for each
nanomagnet to switch toward the correct orientation. Signal propagation in these types of
chains are described[8,44,46] to behave like ‘cascades,” though the ‘soliton’ moniker is also
used[50], albeit seldomly. Once all nanomagnets (except the input) are trapped along the
minor easy axis, the clock field can be removed without disturbing the orientations of the
magnetic moments. The input magnet would then bias its neighboring magnet and cause it
to switch, and then that magnet its respective neighbor and so on. This one-by-one
sequential switching behavior creates distinct and orderly signal propagation dynamics
and gives this scheme its ‘cascade’ moniker. That the clock field can be removed before
signal propagation gains an important advantage for this scheme. Since the clock field only
serves the function of aligning nanomagnets toward their neutral axes, greatly reduced

oo Qo GO

Figure 5. 3: Adiabatic switching during application of a hard axis clock field. Strong field
amplitudes align all free magnets toward the neutral axis (left). As the field amplitude
decreases, stray field coupling begins to affect the chain (center). After the field is
removed, the chain is in its ground state (right).
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Figure 5. 4: Non-adiabatic switching after application of a hard axis clock field. Magnets
switch one by one (left to right), each exerting its stray field bias on its neighbor to the
right.

clock field durations far into the non-adiabatic regimes can be used, resulting in both
increased computation performance and increased energy efficiency. Figure 5.4 illustrates
the cascade process after application of a non-adiabatic hard axis clock field.

Easy axis clock fields commonly find applications in NML architectures based on
larger magnetic shapes with coupling sites. These architectures[10,11,48,51,52] (typically
called perpendicular NML) employ magnets with out-of-plane anisotropy, which are
irradiated inside some of their coupling sites to create domain nucleation centers. This
creates a directionality asymmetry where domain nucleation centers are local coercivity
minima and thus switch more easily than neighboring non-irradiated coupling sites, with
which they are mutually coupled. Signals typically propagate by domain wall motion and
thus chains are not needed, though arrangements of logical inverters that are equivalent to
chains have been demonstrated. If one applies an easy axis (out-of-plane) clock field such
that the coercivity of domain nucleation centers is exceeded while the coercivity of non-
irradiated coupling sites is not reached, then the domain nucleation centers switch due to
stray field coupling from neighboring coupling sites and domain wall motion eventually
causes the entire magnet to switch. Clock fields in both directions along the easy axis are
needed (usually applied in an alternating pattern) so that only the sum of the clock field
and stray fields when they are parallel is allowed to exceed the domain nucleation center
coercivity. Therefore, the challenge facing this scheme is in controlling the clock field
amplitude, stray field coupling strength, and domain nucleation center coercivities to
within small enough margins for reliable operation.

2. Analytical Study of Chains of Nanomagnets with Biaxial Anisotropy
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Figure 5. 5: Fields exerted on center magnet by its neighbors, which are aligned with a
horizontal neutral axis (left). Sample energy density (right).
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Pertaining to the fairly promising scheme of using both uniaxial and biaxial
anisotropies in the nanomagnets of chains subject to clock fields in the non-adiabatic
regime, a simple physical model that can be easily analyzed yet still provide reasonable
approximations to the most important mechanisms is useful for exploring the vast design
space that we confront. To this end, we approximate each nanomagnet as a magnetic point
dipole of constant magnitude with total anisotropy equal to a combination of uniaxial and
biaxial anisotropy. The expression for the energy density of the magnet is:

K
U(9) = —K,sin?(0) — Tbcos2(20) (5.1)

0 is the angle of the magnetic moment with respect to the neutral axis, K is the uniaxial
anisotropy constant, and Kj is the biaxial anisotropy constant. The magnetic field produced
by the magnet is the well-known magnetic dipole field:

. 37T - 7)1
B(r) = L2 < T _ m) (5.2)

47 ro r3

Wo is the permeability of free space, m is the magnetic moment, and r is the position vector
with respect to the magnet. We assume adiabatic relaxation of magnets in the absence of
thermal energy, and therefore no dynamics are captured. We assume that the non-
adiabatic clock pulse has the effect of aligning all magnets along the neutral axis, and is
instantaneously removed before calculations are made. Though seemingly quite
rudimentary, this model can still predict the regions of the parameter space that
accommodate properly functioning chains.

We consider an antiferromagnetically aligned chain. After clocking, all magnets are
aligned with the neutral axis (horizontal in figure 5.5) resulting in a ferromagnetically
aligned configuration. If only nearest-neighbor contributions to dipole field coupling are
included, then figure 5.5 represents the state of any one magnet in the chain (excluding the
ends) and its neighbors. The center magnet is the magnet of interest and the green arrows
represent the magnetic field exerted on it by its neighbors. In this geometry, the magnetic

U

= ]

5

.'2'_.
Figure 5. 6: Fields exerted on center magnet by its neighbors, one of which is aligned with a
vertical easy axis (left). Sample energy density (right).

35



field exerted onto the center magnet by each neighbor is along the neutral axis and has
magnitude:

_ poMsV
273

Ms and V are the magnetization and volume of each magnet, respectively, and r is the

B (5.3)

distance between the positions of any two neighbors. As a result of these fields, the
expression for the energy density of the center magnet becomes:

K
U(9) = —K,sin?(0) — Tb0052(29) — 2Mg Bcos(0) (5.4)

In order for this chain to function properly, the center magnet must remain aligned
along the neutral axis as long as both neighbors are as well. To achieve this, an energy well
corresponding to the minor easy axis must exist along this axis, at 6 = 0 due to even
symmetry. As we smoothly vary the K, and Ky parameters, we find a smooth transition
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Figure 5. 7: Parameter space producing functioning antiferromagnetically aligned chains
(green) according to our analytical model.

36



between an energy well and an energy hill, which have curvatures of opposite sign from
each other. The combination of parameters that correspond to the boundary of transition
where the energy well vanishes produces a saddle point at 8 = 0, implying that U(0)
satisfies the conditions:

aU (0)

7 =0 5.5
BT, 55)

82U (0)

— 2 =0 (5.6)
002

The solution corresponding to the existence of the energy well is:

MsB > K,, — Ky (5.7)

This inequality agrees with intuition: increasing Ky and decreasing Ky leads to a deeper
energy well.

Once a neighboring magnet switches, the state of the center magnet and its
neighbors changes to resemble figure 5.6. In this geometry, the magnetic field exerted onto
the center magnet by its left neighbor is B/2 along the easy axis. As a result of the sum of
the fields from each neighbor, the expression for the energy density of the center magnet
becomes:

U(0) = —Kysin*(0) — %0032(20) — MgB (008(9) + %@) (5.8)

Proper chain functionality demands that the center magnet switch to align antiparallel to
its left neighbor. To achieve this, the energy density must be monotonically decreasing as 6
increases toward the easy axis energy well. Otherwise, an energy barrier forms that blocks
the magnet from rotating toward its easy axis. Assuming the neighboring magnets are
fixed (so that the stray fields from the center magnet have no effect), as we smoothly vary
the Ky and Ky parameters, we find a smooth transition between an energy barrier and an
energy slope. The combination of parameters that correspond to the boundary of
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Figure 5. 8: Fields exerted on center magnet by its neighbors, which are aligned with a
vertical neutral axis (left). Sample energy density (right).
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transition where the energy barrier vanishes produces a saddle point at some 0 > 0 in the
first quadrant, implying the conditions from equations 5.5 and 5.6 on U(08). Unlike equation
5.7, where we are able to reduce two equations to one equation and eliminate one variable,
the equations in this case cannot be solved to eliminate 0 and thus the solution
corresponding to an energy slope is a pair of inequalities parameterized by 6:

8K - 1 n 1
MsB ~ 2sin3(0)  cos3(0)

8Ky, S 1 1 3 n 6
MsB = 2sin3(0) cos3(0) sin(0)  cos(0)
0 <0 <00 where 89 = 0.228007m and equation 5.9 reaches its minimum value in the first

quadrant at 6o.
Figure 5.7 plots and shades the region satisfying equations 5.7, 5.9, and 5.10 on a

(5.9)

(5.10)

log-log scale as a function of the dimensionless parameter 5 for the biaxial and uniaxial
S

anisotropy constants, respectively on the x and y axes. We observe several interesting
results from this plot. First, if we hold the anisotropy constants fixed and increase the
coupling strength MsB, the shaded region is wider. This means that stronger coupling
allows a greater proportional range of anisotropy constants to operate. If the anisotropy
constants practically vary due to fabrication variances, then a wider distribution can be
tolerated if coupling is strong. Second, the lower bound terminates at 8o but we can of
course choose even smaller values of Ky, and still find values of Ky that produce functioning
chains. However, the coupling is so strong that no energy barrier forms (instead an energy
slope always forms) and thus no saddle points are detected by the calculation. We call this
region the coupling-dominated region, where the coupling strength MsB is very strong
compared to the anisotropy constant. However, if we hold the coupling strength fixed and
decrease the anisotropy constants, we must make an important distinction. The converse,
where the anisotropy constant is very weak compared to the coupling strength, is not
necessarily desirable. Following the theory of superparamagnetism, we can easily see by
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Figure 5. 9: Fields exerted on center magnet by its neighbors, one of which is aligned with a
horizontal easy axis (left). Sample energy density (right).
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inspecting equation 3.22 that magnets with smaller anisotropy constants are more
susceptible to thermal fluctuations, which our model does not incorporate. Third, in the
non-coupling-dominated region, the ideal operating region with the greatest proportional
parameter tolerance is where K is approximately equal to the coupling strength and Kj is

approximately the coupling strength divided by /2.

We consider a ferromagnetically aligned chain. If clock fields can only be applied
globally, then the clock field acts to align the magnets in such a way that their stray fields
demagnetize each other, and thus raise each magnet to a higher energetic state. Instead, if
local clock fields can be applied, then after clocking all magnets are aligned with the neutral
axis (vertical in figure 5.8) resulting in an antiferromagnetically aligned configuration. For
the latter case, figure 5.8 represents the state of any one magnet in the chain (excluding the
ends) and its neighbors. In this case, the magnetic field exerted onto the center magnet by
each neighbor is B/2. Therefore, we can simply replace B by B/2 in equation 5.7 to arrive
at the condition for existence of an energy well at 6 = 0:

K,
Mg B
10 -
1L
0.1 K,
| \
0.1 1 10 pm¢ B

Figure 5. 10: Parameter space producing functioning ferromagnetically aligned chains
(green) according to our analytical model.
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MsB
2

> K, — K, (5.11)

Once a neighboring magnet switches, the state of the center magnet and its
neighbors changes to resemble figure 5.9. In this geometry, the magnetic field exerted onto
the center magnet by its left neighbor is B/2 along the easy axis. As a result of the sum of
the fields from each neighbor, the expression for the energy density of the center magnet
becomes:

K cos(0)

U(0) = —K,sin*(0) — Tbcos2(29) — MgsB (T + sm(e)) (5.12)

Proper chain functionality demands a vanishing energy barrier and thus a saddle point at
some 0 > 0 in the first quadrant, implying the conditions from equations 5.5 and 5.6 on
U(0). The solution corresponding to an energy slope is a pair of inequalities parameterized
by 6:

8Ky _ 1 N 1
MgsB ~ sin3(0)  2cos3(0)

(5.13)
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Figure 5. 11: 0 K macro-spin parameter sweep for 50 nm x 50 nm x 12 nm magnets with 20
nm gaps between them identifying working antiferromagnetically aligned chains.
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8K, - 1 1 6 L+ 3
MsB = sin3(0) 2cos3(0) sin(0)  cos(0)
0 <0 <00 where 8p~0.151172m and equation 5.14 reaches 0 in the first quadrant at 8o

(that is, this restriction is equivalent to requiring that K, be non-negative).
Figure 5.10 plots and shades the region satisfying equations 5.11, 5.13, and 5.14 on

(5.14)

alog-log scale as a function of the dimensionless parameter Y for the biaxial and uniaxial
S

anisotropy constants, respectively on the x and y axes. Similar arguments about 6o and
wider anisotropy constant distribution tolerance for stronger coupling apply as before. In
this case, in the non-coupling-dominated regime the ideal operating region with the
greatest proportional parameter tolerance is where Ky is approximately equal to the

coupling strength and Ky is approximately v2 times the coupling strength.
3. Simulation Study of Chains of Nanomagnets with Biaxial Anisotropy

We can improve on our crude model of chains by using numerical macro-spin
simulations based on a discretized stochastic Landau-Lifshitz-Gilbert equation. Compared
to our analytical model, additional physics such as three spatial dimensions, time dynamics,
thermal fluctuations, and non-nearest-neighbor coupling are all captured in these
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Figure 5. 12: As figure 5.11 but for 150 nm x 150 nm x 12 nm magnets with 30 nm gaps.
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simulations. Employing the program from appendix B.1, we simulated both
antiferromagnetically and ferromagnetically aligned chains at various sizes, spacings, and
temperatures for a logarithmically spaced parameter space of the anisotropy constants.
We chose standard permalloy material parameters and an apparent damping constant of
0.1. The volume of each magnet was calculated as a rectangular prism, though the
demagnetizing field was calculated for a general ellipsoid. Unlike our analytical model,
effects of the thickness of each magnet were accounted for here. In order to specify our
own anisotropy constants, we created all magnets as circular disks to remove in-plane
shape anisotropy, and then added the corresponding anisotropy fields onto the
demagnetizing fields. We treated the effect of the clock field as effectively starting each
simulation with all magnets (except the input) ideally aligned as intended by the clock field
and applying no further magnetic fields. All simulations included a chain of 12
nanomagnets as well as a fixed input[18] (due to magnetization inversion symmetry, the
results should not depend on which bit is chosen as input) and a fixed block[49] (to assist
the final magnet in the chain such that figure 5.5 is representative of its surroundings). We
allowed each simulation to run for a maximum of 6 ns of simulation time. If a pair (K, Ku)
of anisotropy constant values produced no errors, then it was considered to produce
properly functioning chains.

Figure 5.11 plots the properly functioning anisotropy constant pairs in an
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Figure 5. 13: 300 K macro-spin parameter sweep for 50 nm x 50 nm x 12 nm magnets with
20 nm gaps between them identifying working antiferromagnetically aligned chains.
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antiferromagnetically aligned chain for 50 nm x 50 nm x 12 nm magnets with 20 nm gaps
between them and at 0 K. The total signal propagation time through the chain is
logarithmically indicated on the color scale. The shape and scale of the colored region is
comparable to that of figure 5.7, except the coupling-dominated region appears as well.

A few interesting features resulting from our macro-spin model are worth
mentioning for the sake of comparison with our analytical model. First, at 0 K one would
expect that an energy well along the neutral axis is not necessary. However, the region has
a similarly shaped upper bound on K, suggesting the contrary. In our macro-spin model,
this bound is due to non-nearest-neighbor coupling (specifically, next-nearest-neighbor
coupling, since the stray fields of next-nearest-neighbors act against those of nearest-
neighbors). Though the strength of next-nearest-neighbor coupling is far weaker than that
of nearest-neighbor coupling, during the process of signal propagation a given magnet
interacts with its next-nearest-neighbor before its nearest-neighbor, and hence an energy
well is needed. Second, the lower bound of the region occurs at somewhat higher K,
resulting in an overall narrower region. Our explanation for this is twofold. Since we
terminated all simulations at no more than 6 ns of simulation time, chains that may
eventually switch correctly are discarded as being too slow. For a fixed Ky, decreasing Ku

. s . N . aM
should result in a slower switching process since the effective field Hetf on which -

depends would also decrease. The color scale indicating signal propagation time shows
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Figure 5. 14: As figure 5.13 but for 150 nm x 150 nm x 12 nm magnets with 30 nm gaps.
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that this is a continuous and monotonic dependence. In addition, since next-nearest-
neighbor coupling acts against nearest-neighbor coupling as mentioned above, the effective
coupling strength between neighbors is lower (though only by a small portion) than
assumed in our analytical model.

Figure 5.12 is a similar plot to figure 5.11 where the only parameters changed are
the size of the magnets (to 150 nm x 150 nm x 12 nm) and the spacing between them (to 30
nm). Our analytical model did not depend on these parameters in any way except for the
coupling field B, which we used as a scaling factor for the anisotropy constants. The high
degree of similarities between these two figures shows that scaling the anisotropy
constants by the coupling strength mostly accounts for the differences in dimensions.
Other effective differences resulting from the different dimensions are the demagnetizing
factors (the larger lateral dimensions appear as flatter disks) and the effects of thermal
fluctuations (thermally assisted switching depends on total anisotropy energy KV rather
than energy density). At 0 K, these differences appear to be negligible.

Figures 5.13 and 5.14 are plots using the same dimensions as figures 5.11 and 5.12,
respectively, but simulated at 300 K. If a pair (Kb, Ku) of anisotropy constant values
produced no errors for 20 simulations (each with randomized thermal fluctuations), then it
was considered to produce properly functioning chains. A few interesting features are
worth mentioning for comparison with the simulations at 0 K. First, due to the stochastic
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Figure 5. 15: 0 K macro-spin parameter sweep for 50 nm x 50 nm x 12 nm magnets with
38.2 nm gaps between them identifying working ferromagnetically aligned chains.
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nature of thermal fluctuations, which contribute to error formation, the boundaries of the
colored region are rough. We expect that increasing the number of simulations required
for each pair of anisotropy constant values would diminish this effect. Second, the upper
bound of the region occurs at much lower K, values suggesting that the additional neutral
axis energy well depth gained as a result is needed to tolerate thermal fluctuations. This
agrees with intuition, since we found the upper bound of the analytical result by setting the
energy well depth to 0. Third, the width of the coupling-dominated region is significantly
narrower. This follows our prediction made using the analytical model regarding
superparamagnetic effects. As the anisotropy constants decrease, the anisotropy energy
KV decreases leading to an increased capacity for thermal fluctuations to spontaneously
switch magnets. This same argument also explains the increased edge roughness of the
region in figure 5.13 as compared to that in figure 5.14. Since each magnet’s volume is
smaller by a factor of 9, the lower anisotropy energy leads to higher susceptibility to
thermal fluctuations, which we attributed the edge roughness to above.

Figures 5.15 and 5.16 plot the properly functioning anisotropy constant pairs in a
ferromagnetically aligned chain at 0 K for 50 nm x 50 nm x 12 nm magnets with 38.2 nm
gaps between them and 150 nm x 150 nm x 12 nm magnets with 76.8 nm gaps between
them, respectively. The discrepancy in gap size is to normalize the switching field
magnitude with the plots above, leading to an effective /2 increase in the distance r
between the centers of adjacent magnets. This also helps account in part for common
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Figure 5. 16: As figure 5.15 but for 150 nm x 150 nm x 12 nm magnets with 76.8 nm gaps.
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experimental designs that demand larger r for ferromagnetically aligned chains due to the
use of elongated shapes for shape anisotropy. The shape and scale of the lower bound of
the colored region is comparable to that of figure 5.10, except the coupling-dominated
region appears as well. The interesting feature to note in these plots as compared to the
simulation plots above is that there is no upper bound to the region. Since non-nearest-
neighbor coupling reinforces nearest-neighbor coupling in ferromagnetically aligned
chains, no neutral axis energy well is necessary at 0 K.

Figures 5.17 and 5.18 are plots using the same dimensions as figures 5.15 and 5.16,
respectively, but simulated at 300 K. Most notably, the upper bound of the colored region
is reintroduced since a neutral axis energy well is needed to tolerate thermal fluctuations.
The shape of this region closely resembles a combination of figure 5.10 and a portion of the
coupling-dominated region. The upper bound of the region occurs at lower K, values and
the boundaries are rough due to the same arguments as presented for figures 5.13 and
5.14. We also note from comparing the color scales that signal propagation times are
exceptionally fast at 0 K as a result of next-nearest-neighbor coupling contributing to
switching. At 300 K, signal propagation times are again commensurate with those of the
antiferromagnetically aligned case, since next-nearest-neighbor coupling is no longer
strong enough to cause switching. The greater edge roughness of the region in figure 5.17
as compared to that of figure 5.18 is explained by the same superparamagnetism argument
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Figure 5. 17: 300 K macro-spin parameter sweep for 50 nm x 50 nm x 12 nm magnets with
38.2 nm gaps between them identifying working ferromagnetically aligned chains.
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as above.

Our analytical model generally predicts our simulation results with only minor
differences. The macro-spin simulations add value by examining additional trends created
by the introduction of time dynamics and thermal fluctuations. Given the results shown
here, we chose to restrict more detailed (and computationally expensive) studies of chains
to nanomagnets with anisotropy energy densities that are on the order of the stray field
coupling strengths.

4. Simulation Study of Chains of Nanomagnets with Configurational Anisotropy

We can improve on our macro-spin simulation model by using a full micromagnetic
approach based on a discretized stochastic Landau-Lifshitz-Gilbert equation. Compared to
our macro-spin model, additional physics such as the exchange interaction, non-uniform
magnetization (leading to configurational anisotropy), and non-uniform stray field
coupling are all captured in these simulations. As a result, we no longer need to add
material anisotropy and instead use standard permalloy material parameters, allowing the
shape of each magnet to determine its overall anisotropy. We chose an apparent damping
constant of 0.02 following the intuition that as mesh sizes become finer, the apparent
damping constant should decrease toward the microscopic damping constant. We
performed this section’s simulations using OOMMF with atlases similar to figure 5.19. Each
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Figure 5. 18: As figure 5.17 but for 150 nm x 150 nm x 12 nm magnets with 76.8 nm gaps.
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pixel of the atlas corresponds to a mesh cell of size 10 nm x 10 nm x 12 nm. Each of the 12
magnets in the chain is 150 nm wide and 290 nm long with 30 nm deep indentations along
the short edges. We then increased the length of all magnets in increments of 10 nm per
set of simulations to sweep through a parameter space of anisotropy strengths. Each atlas
also contains an input and a block, both of which are ellipse-shaped.

We performed 3 sets of micromagnetic simulations using the atlas design in figure
5.19. The first set initializes all red, blue, and black pixels with magnetization directed
toward the right (an idealized clock as in our macro-spin simulations), and all green pixels
directed upward. The chain then relaxes at 0 K for 27 ns of simulation time. The second
set is identical to the first set except for a temperature of 300 K. The third set, also
performed at 300 K, initializes all red pixels up, all blue pixels down, and all green and
black pixels toward the right. Each simulation in this set begins with a piecewise linear
clock field oriented toward the right of width 3 ns, rise time 200 ps, fall time 300 ps, and
amplitude 84 mT, following the program in appendix A.3. The simulation then runs until a
simulation time of 30 ns. We repeated each simulation performed at 300 K 10 times to
account for variations from thermal effects. We then recorded the final state of the chain
from each simulation and then counted the number of magnets in a row that resulted in the
logically correct state (called the propagation distance here), starting from the input (left).
Figure 5.20 plots the mean and standard error (standard deviation divided by the square
root of the number of samples) of the propagation distance for all 3 sets of simulations.

This plot shows a couple of noteworthy features. Each set of simulation conditions
produces an optimal region of dimensions with fairly high propagation distance. This
region starts near 340 nm and then tapers off more quickly as conditions more closely
mimic reality. According to section 4.4 longer nanomagnets effectively have higher K,
values, thus introducing thermal fluctuations (magneta curve) reduces the upper bound of
the optimal region by the same argument as presented in section 5.3. Additionally
simulating the pulsed clock field (green curve) consequently introduces thermal
fluctuations to the clocking process. We believe that these results are limited in accuracy
by the choice of fairly large mesh sizes and time steps. However, we chose a balance
between physically meaningful results and reasonable computation times. We also
recognize that the design of the blocks cause artifacts. For example, the 0 K (black curve)
simulation should attain perfect propagation inside the optimal region, but does not due to
too high of a coupling strength between the last magnet and the block. An interesting
measurement artifact related to this is the increased noise of the curve at the upper bound,
most noticeable in the black curve. Since we observed only the final state of each
simulation, any errors involving switching order (in some sense, a causality violation) that

Figure 5. 19: OOMMF atlas design used for micromagnetic simulations.
48



3

5

k%

()]

S

T

&

3

& —0K
—300 K
—300 K + Clock

0300 350 400 450 500 550

Nanomagnet Length (nm)
Figure 5. 20: Mean propagation distance of all 3 sets of micromagnetic chain simulations
for nanomagnets of width 150 nm and thickness 12 nm.

happen to result in a correct final state become effectively hidden from us. By observing
the dynamics, we found that errors nucleating at the output as a result of mutual coupling
with the block (which forms a mirror-asymmetric configuration instead of a single domain)
primarily account for these false positives. A more sophisticated block design as in section
5.5 corrects this flaw. However, the design used in figure 5.19 is more representative of
our experimental designs.

Figure 5.21 overlays the calculated (in section 4.4) parameters of nanomagnets used
in the micromagnetic simulations represented by the magenta curve in figure 5.20 on top
of figure 5.14 using magenta and black points. The conditions from this set of simulations
most closely match those of those from figure 5.14, namely 300 K and an idealized clock.
Points achieving a mean propagation distance over 10 are colored magenta, while those
otherwise are colored black. Ideally, the magenta segment would overlap the region
behind it. The discrepancy in position is a result of differences in behavior caused by both
the additional physics captured by micromagnetic simulation as well as the additional
simulation artifacts introduced. The discrepancy however is not too large, and gives us
confidence that our analytical, macro-spin, and micromagnetic models are all fairly
consistent.

5. Signal Propagation Speed in Nanomagnetic Logic
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Figure 5. 21: As figure 5.14 but with most similar micromagnetic simulation superimposed
(magenta and black). Smaller nanomagnet lengths are toward the right of the segment.

By inspecting the Landau-Lifshitz-Gilbert equation we see that both the effective
field Hefr and damping constant a influence the switching time of a magnet. Intuitively,
since both terms of the equation depend on Hef;, increasing Hefr would lead to faster
dynamics. The most direct way to achieve this is to increase the coupling strength between
neighboring magnets, which also has the benefit of increase tolerance against errors.
Laterally downscaling is a feasible path for this, as the dipole field strength depends scales
as the magnet volume divided by the distance between magnets, which as an overall

. 1 . I .
quantity scales as ~ On the other hand, a affects the relative contributions of precession

and damping. Figure 5.22 plots the easy axis component of magnetization for a macro-spin
initialized along the hard axis, subject to an easy axis magnetic field, for 3 different values
of a. The 3 curves roughly represent underdamped, critically damped, and overdamped
regimes, respectively for increasing a. Critical damping “fully” switches the fastest, though
the a value depends on geometry and has been calculated for other shapes[26,31]. If full
switching is not required, then for in-plane magnets smaller a values were found to switch
faster, while for out-of-plane magnets larger a values were faster[31].

Several simulation-based estimates|5,8,15] of the switching time of a single
nanomagnet put it in the range of 100 - 150 ps. In the case of the macro-spin in figure 5.22,
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Figure 5. 22: Normalized easy axis magnetization versus time for a 50 nm x 100 nm x 12
nm macro-spin subject to an easy axis field of 5 mT for 3 different a values.

apparent damping constants on the order of 0.1 (as used in section 5.3) produce minimum
switching times that also fall into this range. However, switching times slower than 400 ps
are also possible and are not necessarily thermally assisted, as evidenced by the 0 K
simulations. Figure 5.23 shows a time-series of frames from an OOMMF simulation of a
chain of similar design to figure 5.19, but with an improved block design. The size of each
nanomagnet is 400 nm x 150 nm x 12 nm fitted to a mesh size of 5 nm x 5 nm x 4 nm. Due
to the finer mesh cell size, we chose a smaller time step of 10-14 s to prevent exchange
interaction related artifacts. The simulation again begins with a piecewise linear clock field
as in the green curve of figure 5.20, but with width of 2 ns and amplitude 100 mT. We
chose a damping constant of 0.02 and a temperature of 300 K. The frames show the
vertical projection of magnetization as blue for up, red for down, and black for none. An
average switching time of 390 ps per nanomagnet can be extracted from these frames.

Figure 5.24 demonstrates that arbitrarily long chains can still maintain reliable
signal propagation. A faster average switching time of approximately 330 ps per
nanomagnet can be extracted from this figure due to the longer shapes. Based on our
simulations and predictions made in other works, switching times of a few hundred
picoseconds with a lower bound of 100 ps can be expected from NML architectures based
on coupled magnetic islands.
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Figure 5. 23: Time-delay snapshots of an OOMMF simulation of a chain showing an average

switching time of 390 ps. Simulation performed at 300 K with piecewise linear clock field.
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Chapter 6. Static Experimental Methods for Investigating
Nanomagnetic Logic

1. X-ray Magnetic Circular Dichroism

X-ray Magnetic Circular Dichroism (XMCD) is a physical effect that allows for the
optical probing of spins[53]. Experimental techniques employing XMCD are powerful due
to the potential for fine spatial (less than 50 nm) and time (less than 100 ps) resolution
combined with non-destructive measurement. At a simplified level, XMCD is the spin-
dependent difference in absorption of circularly polarized x-rays in a spin-polarized
material. Figure 6.1 gives a more detailed picture of the process for the specific set of
materials following the 2p63d» to 2p>3dn+! transition. An atom may absorb a photon to
excite a core-level electron to the valence band. Due to the electric dipole selection rules
(LaPorte rules), the spin-preserving transitions between unlike orbitals are allowed
through circularly polarized photons, which contribute the conserved angular momentum.
The valence band spin splitting as a result of magnetism causes a differing density of
available states for transitions of opposite spins. Thus, the transition rate and therefore
absorption rate of circularly polarized light becomes spin-dependent. For the 2ps,2 to 3d
and 2p1,2 to 3d transitions specifically, the designated spectroscopic names are the Lz and
L2 edges, respectively. Due to spin-orbit coupling, photoelectrons excited through
absorption become spin-polarized. Since the spin-orbit coupling for 2p3,2 and 2p1,2 are
opposite (L+S and L-S), the spin-polarization is also opposite between the two edges.
Likewise, reversing the photon helicity also reverses the spin-polarization since the
contributed angular momentum is opposite. Therefore, to obtain an XMCD signal that
unambiguously detects opposite spins, one must take two measurements between which
the spin (magnet) is reversed, the photon helicity is reversed, or a complementary
absorption edge is used. The amplitude of the XMCD signal depends on the expectation
value of the valence band magnetic moment, the degree of circular polarization of the x-

rays, andf- m wherefis the photon spin angular momentum and 7 is the magnetic
moment. The last-mentioned dependence is derived from symmetry arguments and in
effect requires that the magnetic moment have a projection along the optical beam axis.
Optical absorption follows the Beer-Lambert law[53] for transmittance T through a
material of thickness | and absorption coefficient X for light intensities I:

! -3
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Figure 6. 1: Cartoon of circularly polarized optical transitions in magnetic materials.

Therefore the XMCD signal, which is the difference in spin-dependent absorption
coefficients, is recovered by dividing the resulting intensities of the two measurements and
then taking the natural logarithm.

We describe the relevant pair of XMCD imaging techniques below. The former is
magnetic transmission x-ray microscopy[54] (MTXM). MTXM is a straightforward
application of the Beer-Lambert law in which x-rays pass through a magnetic film and
attenuate by varying amounts due to the spin-dependent absorption coefficient. An x-ray
sensitive camera captures the resulting intensity to form a direct mapping of the
transmittance. Figure 6.2 shows a possible configuration, specifically that of XM-1 at the
Advanced Light Source (ALS). This tool uses a zoneplate, a diffractive optical element
analogous to a lens, to focus x-rays through a pinhole. Since each wavelength has a
different focal length, moving this zoneplate with respect to the pinhole in effect acts as a
monochromator. The x-rays of the selected wavelength then pass through and attenuate in
the sample, where the addition of XMCD forms a magnetically sensitive image. A second
zoneplate focuses this image onto a charge-coupled device (CCD), which captures the
image.

The latter is Photo-Emission Electron Microscopy[55] (PEEM). PEEM utilizes the

X-rays Sample CCD

Zoneplate Pinhole Zoneplate

Figure 6. 2: Schematic of XM-1 at the ALS.
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Figure 6. 3: Schematic of PEEM-3 at the ALS.

probability of Auger relaxation of excited photoelectrons, in which some of its energy is
transferred to another valence band electron to ionize it into vacuum. From these
electrons, inelastic electron scattering further produces ionized electrons, some of which
eventually escape the sample surface. It follows that the higher the spin-dependent
absorption rate, the more of these electrons are emitted. Electron optics collects these
electrons to form an image and focuses it onto a CCD, which captures the image. The
ionized electrons travel only a few nanometers in the sample and thus this technique is
sensitive only to spins close to the incident surface. Unlike MTXM, PEEM requires a
vacuum for the electron optics, but does not require thin, non-opaque samples. Figure 6.3
shows a possible configuration, specifically that of PEEM-3 at the ALS. This tool uses an
undulator to provide both polarization control and wavelength selectivity.

2. Thermally Assisted Signal Propagation in Chains

Experimentally demonstrating signal propagation in chains is possible as long as the
time scale of measurements is smaller than the time scale of signal propagation through the
chain. In this case, a thermally assisted signal propagation process is potentially slow
enough for static measurement techniques (with image acquisition times on the order of
seconds to minutes). We designed such an experiment[18,46] to verify the possibility of
cascade-like signal propagation behavior in chains of anisotropy-engineered nanomagnets.
We patterned a sample of chains with 10 nanomagnets per chain, each 150 nm wide and
between 300 nm and 450 nm long (all nanomagnets in an individual chain besides the
input and block have the same dimensions). This wide range of lengths assures us that at
least some chains will show signal propagation on the desired timescale. The gap between
nanomagnets was 30 nm and the depth of the indentations was 50 nm. As a control, we
also included ellipse-shaped nanomagnets of similar dimensions. This pattern was
exposed by electron beam lithography onto PMMA spun on a silicon substrate. 1 nm of
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Figure 6. 4: SEM of a chain deposited onto Si, with input on the left and block on the right.

titanium, 13.4 nm of permalloy, and 2 nm of aluminum were then evaporated onto the
pattern followed by lift-off in heated Remover PG. Figure 6.4 shows an SEM of one of the
chains.

We applied a clock field of 2200 Oe along the horizontal axis of figure 6.4 for
approximately 30 s using an external magnet several hours before imaging the sample with
PEEM. We captured images of both anisotropy-engineered and ellipse-shaped nanomagnet
chains at room temperature. Using the same method of counting as section 5.4, we
compiled a plot of average signal propagation distance versus the aspect ratio (length over
width) of the magnets in the chain. This plot, shown in figure 6.5, compares anisotropy-
engineered (denoted ‘concave’ in the plot) magnets and ellipse-shaped magnets.
Anisotropy-engineered magnets appear to perform better, though we recognize that
magnets of the same aspect ratio but of different shapes are not necessarily directly
comparable. Specifically, we note that the range of sizes for anisotropy-engineered
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Figure 6. 5: Average signal propagation distance vs. aspect ratio of slowly-clocked chains.
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Figure 6. 6: PEEM magnetic contrast image with interpretation of a chain of anisotropy-
engineered nanomagnets, of which most are in the neutral state.

magnets cover a portion of the optimal region mentioned in section 5.4. A rigorous (though
likely too exhaustive to be experimentally practical) comparison would directly compare
the optimal regions for each shape. However, we note that the results for these ellipse-
shaped magnets are similar to those studied earlier[7,47] with aspect ratios near 1.5.
Furthermore, other studies have also suggested[7,8,18,43,44,46,47] that signal propagation
distances are fairly limited in chains of nanomagnets employing standard ellipse
geometries. Figure 6.6 shows a magnetic contrast image of a chain displaying direct
evidence of the neutral state. This image shows the same domain pattern (derived from
the flower state) as predicted in the micromagnetic simulations from section 4.3. This
result demonstrates that we achieved the goal of anisotropy-engineering our nanomagnets:
to create a stable energy well for the neutral state. Since we applied our clock field several
hours before this measurement, these neutral states are stable for at least several hours.
To increase the rate of thermally-assisted switching, we heated the sample stage to 120° C.
We then imaged the sample periodically (with acquisition time of less than 60 s) to observe
thermally-assisted signal propagation over the timescale of hours. The mechanism is as
follows: all neutral state magnets with both neighbors also in the neutral state remain
stable along the neutral axis for very long timescales. However, if either neighbor switches,
its stray field acts to lower one energy barrier (of the neutral axis energy well) and raise
the other. According to the equation 3.22, the magnet has a higher probability of hopping
over the smaller energy barrier. The experiment is designed such that at room
temperature, even this state is stable for hours. However, at 120° C, the magnet hops over
the smaller energy barrier at an average rate of several times per hour. Note that we
assume and expect all ellipse-shaped magnets to have switched as the clock field was
removed, and to no longer switch afterward, even at 120° C. Since the ellipse-shaped input
magnets of the anisotropy-engineered chains have mirror symmetry with respect to the
axis of the clock field, they effectively act as a random bit input.

Figure 6.7 shows magnetic contrast (the gray scale is a projection of the magnetic
moment onto the vertical axis) time-lapse images of a chain that operated in this fashion.
This result demonstrates cascade-like (as distinct from magnetic field annealed or
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Figure 6. 7: Time lapse PEEM magnetic contrast images of cascade-like signal propagation
in a chain. The color scale indicates magnetization along the vertical axis.

thermally driven random walk) signal propagation in chains of anisotropy-engineered
nanomagnets as a proof-of-concept. However, several issues limit its usefulness as a
practical demonstration. These include the external magnet used for the clock field, the
increased temperature required, and the speed of signal propagation. These issues are
addressed in follow-up experiments described in later sections, in which room temperature
operation using integrated high-frequency clock fields and signal propagation rates near
the speed limit are demonstrated.

3. Surface Quality Effects on Signal Propagation

As a step toward integration of clock lines with nanomagnets onto the same sample,
we investigated the effects on signal propagation errors from the roughness of the surface
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interfacing the nanomagnets. We intended to probe chain dynamics at high frequencies
using Oersted fields generated by currents in conducting clock lines. This strategy requires
that the nanomagnets be deposited onto the clock lines, and other studies[56,57] have
mentioned the significance of surface roughness effects. We patterned chains of 12
anisotropy-engineered nanomagnets by a procedure similar to that of section 6.2 except for
a permalloy thickness of 12 nm. We deposited these chains onto 6 pm wide, 160 nm thick
copper clock lines, which were fabricated by bi-layer lift-off following the procedure in
appendix D.1. As a control, we deposited the same pattern of chains onto the substrate,
which is 100 nm of silicon dioxide on top of silicon.

Figure 6.8 shows an atomic force micrograph (AFM) of the surface of the copper, the
root-mean-square (RMS) roughness of which was 1.6 nm. The roughness of the substrate
was lower than 0.25 nm, which is below the resolution of the AFM. Figure 6.9 shows an
SEM of a chain deposited over copper, the grains of which are clearly visible. The input
magnet has a shape-induced bias toward a particular bit (the overall easy axis has a
component parallel to the clock field axis).

We applied a clock field by a procedure identical to that of section 6.2 and then
imaged the sample using PEEM to observe the states of chains both on the copper clock
lines and on the silicon dioxide substrate. Figure 6.10 shows a direct comparison between
chains deposited over the two materials. As an approximate measure of the effects of
surface roughness on signal propagation, we compared the number of errors
(ferromagnetically aligned pairs of magnets, identified by larger brightly colored white or
black spots) observed between chains deposited over the two materials. We found that
chains deposited over the rougher material indeed show a significantly larger number of
errors.
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Figure 6. 10: PEEM magnetic contrast imaes of chains (with chain axis oriented vertically)
deposited over the SiO; substrate (top) and the Cu clock lines (bottom).

The capacity for improving the surface roughness of thick evaporated films is fairly
limited. Instead, we chose to planarize the clock lines by depositing a thin (enough so that
the clock field magnitude is still sufficient) layer of additional material on top. Following
the procedure in appendix D.2, we fabricated gold clock lines by bi-layer lift-off and spun
aluminum oxide phosphate (AIPO) on top to planarize the surface. We switched to gold
due to its ability to accommodate the higher thermal budget necessary for curing the spin-
on dielectric (copper oxidizes and peels off well below the curing temperature). Figure D.6
shows an AFM of the surface of the gold with spin-on dielectric, the root-mean-square
roughness of which was 0.3 nm. Figure 6.11 shows an SEM of a chain deposited over the
improved clock line.

We deposited the same pattern of chains onto 160 nm thick gold clock lines with a
45 nm spin-on dielectric planarizing layer (such that the control chains are now on top of
spin-on dielectric over silicon dioxide, though we do not expect any significant differences
in this regard). We applied the clock field and imaged using PEEM using the same
procedures as the copper sample. Figure 6.12 shows the comparison of chains deposited
on spin-on dielectric over silicon dioxide and over gold. Note that this figure is not directly
comparable to figure 6.10, since a separate fabrication run results in slight lithographic
differences. We found that chains deposited over both materials in figure 6.12 contained a
far more similar number of errors. We thus confirmed that planarizing the surfaces upon
which NML is deposited is critical.

Figure 6. 11: SEM of a chain deposited onto an AIPO layer covering Au.
60



A o
AIPO over SiO: (top)

Figure 6. 12: PEEM magnetic contrast images of chains deposited on
and AIPO over Au clock lines (bottom).

4. Signal Propagation from Short Clock Field Pulses

An alternative to surface planarization is deposition of NML directly onto the
substrate and subsequent patterning of the clock lines. If the substrate is thin, a backside
or transmission measurement can probe the magnets. We conducted a transmission
experiment using MTXM to measure the magnetic states of chains after subjecting them to
short clock field pulses. We patterned using electron-beam lithography and lift-off chains
of 1 nm titanium and 12 nm permalloy using the same 12-magnet pattern with biased input
as in section 6.3 onto a silicon wafer with 100 nm of low stress silicon nitride (SizN4) on
both sides, then deposited 6 um wide clock lines over them by lift-off. The clock lines were
comprised of a 1 nm titanium adhesion layer, 150 nm of an alloy of 96% aluminum and 4%
copper, and a 10 nm copper capping layer. Aluminum combines a fairly high conductivity
with a low atomic number, which was ideal for our experiment in order to provide the
largest currents with minimal x-ray absorption. Alloying aluminum with copper increases
its resistance against electromigration[58]. The copper capping layer protects the

Figure 6. 13: Cartoon of MTXM sample geometries.
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aluminum from the alkaline protective coating and its remover solution mentioned below.
The side of the wafer on which the above processing is done is designated the front side.

To thin the substrate to a silicon nitride membrane suitable for transmission
measurements, we etched the silicon from the back side in the shape of square windows
such that the frames of the windows mechanically support the sample. To achieve this, we
first coated the front side with ProTEK B3 alkaline protective coating, and then patterned
the windows onto the back side. This protective coating withstands many room-
temperature acids and heated bases. Next, we etched the windows from the back side
silicon nitride using an acid dip. Either phosphoric acid (H3PO4) or buffered hydrofluoric
acid (HF) works. After removing the photoresist from the back side, the silicon nitride acts
as an etch mask for the silicon substrate. We etched the silicon using heated potassium
hydroxide (KOH) anisotropic wet etch, which selectively stops on silicon nitride. Finally,
we stripped the alkaline protective coating using ProTEK Remover 100. This fabrication
process was developed and performed by the nanofabrication laboratory at the Center for
X-ray Optics. Figure 6.13 shows a diagram of the relevant section of the sample, including
order of material layers and electric current, Oersted field, and x-ray directions.

We mounted samples into a pocket machined out of a Rogers 4350B printed circuit
board (PCB). Silver-plated copper traces on the PCB ran to the edge of the pocket. SPI
flash-dry silver paint served both as electrical contacts between the traces and the clock
lines on the sample as well as mechanical anchors. An edge-mount SMA connector
soldered onto the PCB allowed for direct interfacing with pulse generators. The electrical
resistances of the samples averaged 21 (). We operated the clock lines in a single-shot
fashion by manually triggering an AvTech AVM-4 pulse generator at the largest voltage and
pulse width available. Figure 6.14 shows a single-shot voltage pulse delivered to the clock
lines as measured (and scaled appropriately) from the monitor output of the pulse
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Figure 6. 14: Voltage pulse delivered to clock lines as measured on oscilloscope.
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Figure 6. 15: Saturated-reference MTXM image of chain showing correct final state. Areas
magnetized ‘up’ appear to blend into the background.

generator. Due to the close proximity of the magnets to the clock lines, a near-field
calculation of the Oersted field is valid. The 18.5 V voltage pulses correspond to 880 mA
current pulses. Using the superposition integral[24] (Biot-Savart Law), we calculated the

corresponding clock field to be 84 mT. We mounted the sample at a % tilt from normal

incidence, which provides % the maximum magnetic contrast (when f | ) but distorts

images such that magnets appear % as long.

Several methods of exposing and comparing a pair of images produce magnetic
contrast. First, we may reverse the helicity of the x-rays. Without an undulator, this is
difficult and may be achieved in part by capturing light from only the top or bottom half of
the beam. Since the path of the beam through the optics changes, the illumination pattern
on the sample also changes. When the images are compared, the background signals also
contribute and thus make interpretation more difficult. Second, we may use both
complementary absorption edges. This method suffers the same problem, as the zoneplate
is forced to move to shift the focal point and thus the beam takes a different path through
the optics. Third, we may switch the magnets. This method produces the best image
quality given the helicity constraints.

We use an external electromagnet to saturate all nanomagnets along a particular
direction and take a reference image. We then clock the chains by triggering the pulse
generator and take another image. Per-pixel dividing the images then shows the areas that
are magnetized differently from the saturated state. Figures 6.15 and 6.16 show magnetic
contrast images using this method at the iron L3 edge for an earlier generation of samples
containing chains of only 7 nanomagnets which, due to their thickness of 16 nm, produced
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Figure 6. 16: Saturated-reference MTXM image of chain showing neutral state.
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the best images. Figure 6.15 shows an example of a chain that correctly propagated a
signal, while figure 6.16 shows an example of a chain that remained completely in the
neutral state.

A severe issue with the ferromagnet-core electromagnet that was available to us is
that the small amount of remanence of the electromagnet core produced a magnetic field
large enough to significantly skew the results of signal propagation. An air-core
electromagnet would not have any remanence, though would produce less magnetic field.
The saturated-reference method is still useful for determining whether the clock fields are
sufficient in magnitude and duration to switch chains to the neutral state. If so, some
magnets in the chain would switch out of the neutral state such that they are reversed in
comparison to their previously saturated state. Magnets that remain in the neutral state
also signify sufficient clock fields. We confirmed this in our latest generation of samples,
but opted to use the reversed-helicity method due to the effects of electromagnet
remanence and accept the more-difficult-to-interpret images that it produced. The sample
contained a range of nanomagnet lengths and two chains per value of length. We clocked
each pair of chains 10 times and imaged with both helicities after each clock cycle. Image
acquisition times were approximately 30 s with the time between clocking and imaging on
the same order of magnitude (image acquisition began a few seconds after clocking).
Image processing was performed using the program from appendix B.2 and techniques
were restricted to sub-pixel alignment, brightness and contrast adjustments, and median
noise or Gaussian blur filters. We acquired these statistics for two samples cut from
different locations on the same wafer.

Figure 6.17 shows the average signal propagation distance calculated by the same
method as section 5.4. Sample 2’s curve resembles those of section 5.4, showing the
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Figure 6. 17: Average propagation distance in chains clocked by 3 nanosecond pulses. Each
data point is an average over 2 chains and 10 clock cycles.
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optimal range of nanomagnet lengths corresponding to a segment of the optimal region of
anisotropies. Sample 1’s curve has less resemblance but contains a particular pair of chains
of the same nanomagnet lengths that exhibit perfectly reliable signal propagation. We
attribute the poor performance consistency to lithographic variations from magnet to
magnet as well as sample to sample. However, we do demonstrate a significant
improvement in propagation distance for short clock field pulses using cascade-like
behavior. This overcomes the predictions of other works[47,49] that showed very large
error rates in long chains of ellipse-shaped nanomagnets paired with short clock field
durations, particularly beyond five magnets and several ps. Furthermore, it is clear from
this data and the design shown in section 5.5 that there is still much room for improvement
in both sample processing and geometric design. A signal propagation dynamics
experiment using the samples from this section was intended, but the signal-to-noise and
signal-to-background levels proved to be too low. Instead, we performed this experiment
using PEEM and an alternate sample geometry, described in section 7.2.

5. Magnetic Force Microscopy

Magnetic Force Microscopy (MFM) is a variation on AFM that employs a tip coated
with magnetic material to sense magnetic fields produced by a sample. MFM provides
fairly high (less than 50 nm) resolution but is not straightforward to interpret because the
tip interacts with the sample and can easily disturb the magnetic states of material on the
sample. We used low magnetic moment tips coated with 2 nm of cobalt chromium to
minimize this effect. The MFM tip scans each scan line in an image twice. On the first pass,
the oscillating tip taps the sample while scanning and detects contributions from atomic
and magnetostatic forces. On the second pass, the tip lifts up and no longer contacts the
sample, detecting only magnetostatic contributions. By comparing the information from
the two passes, this method greatly reduces image sensitivity to sample topography. We
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Figure 6. 18: MFM topography (left) and magnetic contrast (right) images of a chain.
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detected magnetostatic forces by measuring the oscillation phase of the tip, though other
methods of detecting magnetic interaction between tip and sample exist.

In order to perform a signal propagation dynamics experiment using PEEM as in
section 7.2, we must use a sample geometry that deposits the magnets onto the surface
where x-rays are incident. Therefore, we chose to use a sample prepared as in figure 6.11
where the surface of the clock lines were planarized using spin-on dielectric. We delivered
a 100 mT clock field pulse of duration 2 ns using the clock lines and measured the resulting
state of the chains by MFM. Figure 6.18 shows both topography (as an AFM would
measure) and magnetic contrast images of a chain that showed successful signal
propagation. We attribute the background roughness of the topography to PMMA residue
from the liftoff process. Itis clear by comparing the images that this residue does not
contribute any significant magnetic signal. In the magnetic contrast image, we see that
MFM detects the locations of the magnetic poles in each magnet, and distinguishes north
and south poles by phase. Each magnet shows a bright and dark spot at opposite ends of
the easy axis, corresponding to the magnetic poles. We also observe several poles in the
ellipse-shaped block magnet, indicating domain structure. This suggests that the
anisotropy strength of the block could use improvement. We never observed the domain
structure of the neutral state, most likely due to magnetic interaction between the MFM tip
and the permalloy. Even the low magnetic moment tip can switch magnets that are in the
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Figure 6. 19: Average propagation distance in chains clocked by 2 nanosecond pulses. Each
data point is an average over 2 chains and 5 clock cycles.
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neutral state. For this reason, MFM is far from ideal for studying NML containing weakly
stable magnetic states. However, it is sufficient as a supporting measurement to help verify
that a sample is capable of exhibiting signal propagation. We clocked this sample 5 times
and measured the magnetic state of the chains using MFM several hours after each clock
cycle.

Figure 6.19 shows the average signal propagation distance calculated by the same
method as section 5.4. It is apparent by comparison with figure 6.17 that the chains on this
sample perform fairly unimpressively. The fabrication method used for these samples may
have contributed additional complications. For example, since the aluminum capping layer
does not cover the permalloy sidewalls, the magnets can oxidize close to the sidewalls.
Additionally, the amount of PMMA residue may suggest other potential processing issues.
Nevertheless, we found a few individual chains (no two chains of the same length) that
showed consistently high signal propagation distance, suggesting that further engineering
work is capable of significantly improving performance.
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Chapter 7. Dynamic Experimental Methods for
Investigating Nanomagnetic Logic

1. Stroboscopic X-ray Magnetic Circular Dichroism

Stroboscopic methods, also known as pump-probe, provide the ability to take time-
resolved measurements as long as the acquisition time is less than the time resolution
needed. They achieve this by controlling the time delay between excitation (pump) of the
sample and measurement (probe), and then consistently repeating the pump-probe cycle
with the same time delay. As a result, the state of the sample at that particular time delay
with respect to the excitation is measured many times. Therefore, any random effects are
effectively averaged over many cycles so that only effects with better than random
probability manifest. If the time delay is then scanned as an independent variable, the
average time response of the sample is measured. Figure 7.1 shows a schematic of the
structure of stroboscopic methods.

The ALS can operate in a mode called ‘two-bunch’ to accommodate stroboscopic
experiments[59]. In this mode, the storage ring contains two groups (bunches) of
travelling electrons, where each bunch is equivalent to 17.5 mA charge current. The x-rays
produced by each bunch are used as the probe, and each bunch has a pulse duration of 60
ps and a delay (repetition period) of 328 ns from the previous bunch. Therefore, a pump
triggered by the bunches with a controllable trigger time delay is needed to perform
stroboscopic measurements. The typical ‘multi-bunch’ storage ring mode has an equivalent
charge current of 500 mA, so ‘two-bunch’ mode only offers 7% of the typical x-ray
intensity. This poses significant signal-to-noise challenges that must be considered when
performing stroboscopic measurements. Both MTXM and PEEM can be operated in a
stroboscopic fashion. However, given the already constrained state of magnetic contrast in
MTXM images of our samples, the only option to obtain useable images would have been to
use significantly thicker magnets (to such a degree that very different behaviors would
result). In addition, simply scaling up image acquisition time was not feasible at the XM-1
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Figure 7. 1: Cartoon of the structure of stroboscopic methods.
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due to drift of the x-ray spot position. Though MTXM would have been the simpler
technique due to the air ambient, we instead chose to use PEEM for stroboscopic
measurements.

The high vacuum ambient of PEEM presents several significant challenges with
respect to electrically pumping a sample. The electron optics at the PEEM-3 are held near
electrical ground while the sample itself is charged beyond -15 kV. Catastrophic damage to
the sample, sample holder electronics, and electronics connected from outside vacuum can
occur from arc discharge. Therefore, samples must be exceptionally clean and sample
holder electronics must be shielded from the electron optics using a conducting cover. In
addition, the high-voltage electrical feedthroughs at PEEM-3 terminate in fairly lengthy
sections of bare wire that contact the sample holder. Consequently, very short electrical
pulses cannot be delivered from pulse generators outside vacuum to the sample due to
distortion. Furthermore, sample holder heating in vacuum must be properly compensated
for using an appropriate heatsink. Otherwise, not only might sample holder electronics be
damaged, but also the resulting increase in outgassing can significantly degrade image
quality. The primary mechanism for this effect is carbon contamination[60], where
carbonaceous molecules adsorb onto the sample and optics surfaces in a process driven by
exposure to high-energy photons. The next section describes the choices we made to
address these challenges in an electrically pumped and optically probed experiment.

2. Time-Resolved PEEM Experimental Setup
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Figure 7. 2: Cartoon of our opto-electronically pumped stroboscopic PEEM setup.
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In order to minimize distortion of electrical pump pulses, we bypassed the PEEM-3
electrical feedthroughs by using an optical link between the vacuum chamber and the
outside ambient that transmits through an optically transparent chamber porthole.
Optoelectronics mounted into the sample holder amplified the optical pump signal into an
electrical pump signal. We chose to use the Finisar HFE6392-761 vertical cavity surface
emitting laser (VCSEL), which is a high-speed (12.5 Gbps) 850 nm wavelength laser in a
compact transmitter optical sub-assembly (TOSA) package. The package is designed for
fiber-coupling, but since we needed to transmit through the chamber porthole, we used a
microscope objective lens to focus the laser for free-space coupling. On the receiving end of
the free-space link we chose to use the Pacific Silicon Sensor AD100-8-T052-S1 avalanche
photodiode (APD), which is a high-speed (2.8 Gbps) 800 nm wavelength peak responsivity
photodiode in a compact transistor outline (TO) metal can package. This package embeds
the sensor beneath a glass window and stands on through-hole leads to allow adjustment
for straightforward free-space coupling. Figure 7.2 shows a simplified schematic of the
experimental setup. The ALS produces an electrical pulse (NIM) for each electron bunch
that passes by a designated position, and thus each x-ray pulse is accompanied by an
electronic signal that can be used for synchronization. We used this signal to trigger a
Stanford Research DG645 delay generator, which can be controlled to vary the time delay
between pump and probe. We used the delayed signal (ECL) from the delay generator to
trigger an AvTech AVM-1-C-P-ECL pulse generator. We drove the VCSEL with the suitably
fast (100 ps rise and fall times) pulses produced by the pulse generator. The infrared light
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Figure 7. 3: Circuit schematic for pulse amplifier built into the sample holder.
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(red) striking the APD produced small currents, which were amplified by sample holder
electronics (gray) and pumped through the sample (blue). Meanwhile, x-rays probing the
sample generated photoelectrons (green) that were collected by the electron optics.

Figure 7.3 shows a circuit schematic of the sample holder electronics. This circuit is
a fairly simple pulse amplifier that does not allow for square-shaped pulses but is
physically compact. The APD (D1) drives a sense resistor, whose voltage is amplified by a
cascaded combination of a gain amplifier (A1) and a power amplifier (A2). Each stage is
separated by a coupling capacitance. All voltage supplies use decoupling capacitors, and
voltage supplies which bias amplifiers use choke inductors. The circuit uses 4 voltage
supplies in total, which is the maximum number of electrical contacts supported by the
PEEM3. Table 7.1 gives the components we used in this circuit. We took many
considerations to avoid using materials in the sample holder that outgas carbonaceous
compounds, which degrade image quality through carbon contamination. Though most
components had ceramic and metal packages, the gain amplifier (A1) came only in plastic
packages and was covered-over with Kurt Lesker Torr Seal epoxy before use in high
vacuum. The printed circuit board (PCB) was produced by Hughes Circuits using Cirlex
(DuPont Kapton) laminate and silver-plated copper layers. The Kapton polyimide
laminates outgas less than typical high-frequency hydrocarbon ceramic laminates (such as
Rogers RO4000) or Teflon ceramic laminates (such as Rogers RT/duroid). The silver
plating helps with adhesion to the lead-free (lead outgasses at elevated temperatures)
solder that we used. We chose to use Harris Stay-Brite tin-silver alloy solder with
accompanying Harris Stay-Clean liquid flux. We used Kapton-coated wires to connect the
sample holder contacts to through-holes on the PCB. Before use in high vacuum, the PCB
required a thorough solvent (methanol and isopropyl alcohol) clean and bake-out in a
vacuum oven.

D1 Pacific Silicon AD100-8-T052-S1 C6,C10,C14 100 nF (28+V)

Al Hittite HMC476MP86 C15 3 pF (28+V)

A2 TriQuint T1G6003028-FS C16,C17 167 pF

R1 430 Q C18 47 pF

R2 10 kQ C19 8.2 nF

R3 10 Q C20,C21,C22 1 pF (28+ V electrolytic)
R4 56 Q L1,L2,L3 56 nH (or ferrite bead)
C1 1 nF (150+ V) V1 7V

C2 47 nF (150+ V) V2 -4.2V

C3,C7,C11 100 pF (28+V) V3 28V

C4,C8,C12 1nF(28+V) V4 -150V

C5,C9,C13 10 nF (28+V) 71 Sample

Table 7. 1: Component parts and values for circuit in figure 7.3.
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Figure 7.4 shows diagrams of the custom sample holder assembly designed to attach
to the standard PEEM3 sample holder baseplate (not shown). The sample (blue)
electrically contacted the PCB (black) on the top surface via SPI flash-dry silver paint. The
APD (green) mounted near the edge of the PCB to avoid being blocked by the aluminum
cover (translucent gray). The hole in the cover provided an aperture for the sample to be
exposed to x-rays and also for photo-emitted electrons to escape. The cover was
electrically grounded to the aluminum sample holder base (dark gray) as well as the
baseplate. A layer of kapton (red) acted as an insulating spacer to prevent the cover from
electrically shorting the sample. All other electronic components (the amplifiers are light
gray in the side view diagram) were soldered to the bottom surface of the PCB. Copper
heatsink blocks (orange) with indium foil interfaces conducted heat from the components
to the sample holder base and then to the copper nose attached to the end of the base. This
nose made direct contact with a liquid nitrogen cryostat filled inside the vacuum chamber
in order to keep the electronics at operable temperatures (the baseplates made poor
heatsinks). Several design choices (not shown) were also made to assist with alignment
issues. The Cirlex PCB was thin and able to flex significantly. We used hard plastic
standoffs to ensure that the PCB remained flat and level with the sample holder base. In
addition, optimal imaging quality required that the sample be level with respect to the
cover and the area imaged be centered within the hole. We adhered a ceramic ring around
the sample to help level the cover, and machined slots into the cover to allow for some
lateral adjustment. Finally, we attached a textured metal washer around the APD head to
scatter laser light. We installed a silicon CCD outside another porthole of the vacuum
chamber in order to align the laser more quickly by observing the light scattered from the
washer.

The sample design was identical to the gold with spin-on dielectric sample
described in section 6.3. The electrical resistance of the sample was measured to be
approximately 7 Q, with voltage amplitudes of up to 7 V (probed using a dummy resistor of
equivalent resistance) pulsed across it. Figure 7.5 shows a diagram of the relevant section
of the sample. Several experimental operation minutiae are worth mentioning. First, to
tweak the alignment of the laser, we measured the current through the drain bias of the
power amplifier (A2). Second, the particular power amplifier that we used was normally

h

Figure 7. 4: Cartoon of assembled sample holder excluding standard PEEM3 baseplate
viewed from the top (left) and the side (right). The baseplate attaches on the bottom.
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Au wire

Figure 7. 5: Cartoon of PEEM sample geometries.

on, so that the gate bias (V2) must be applied before the drain bias (V3) to power it up in
the off state. Third, the pump pulse had some degree of tunability by varying the pulse
width and amplitude of the laser’s pulse generator. This provided us some parameter
space to tune the balance of pulse width, fall time, and overshoot. Fourth, although a
sample temperature probe was not available, we estimated based on the power amplifier’s
drain current that the sample was near room temperature during measurement. Finally,
we sputtered 1 nm of platinum onto the sample prior to measurement to reduce charging,
the effects of which are detrimental to image quality.

3. Signal Propagation Dynamics in Nanomagnetic Logic Chains

Using stroboscopic PEEM at the iron L3 edge, we located the time of the pump pulse
by observing Lorentz force effects on photo-emitted electrons. Since the direction of the

+0.2 +0.6 +1.0 +1.4 kS
Figure 7. 6: Time-delay raw PEEM images showing Lorentz force effects on imaging.
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clock field through which photoelectrons pass was orthogonal to the velocity of the
photoelectrons, there was a net drift of the photoelectrons that effectively shifted the
image[61]. Two other accompanying effects were apparent as well. The image blurred due
to both pump timing jitter and non-uniformity of the photoelectron drift. The image also
darkened since the x-ray illumination was optimized for the nominal position and the
shifted position had less illumination. Figure 7.6 shows a series of raw PEEM images taken
at 10 time-delay steps throughout the main peak of the pump pulse. All image effects
mentioned above can be seen, and in addition the illumination change provides a useful
characterization tool. We calculated the average illumination of each image and plotted the
result versus time delay to obtain the pulse shape, shown in figure 7.7. We understood this
to be an approximate representation of the pulse shape, and extracted a pulse width of 2 ns
from the plot. Itis also worth mentioning that the overshoot was also observed using this
method, as shown in the plot. Peak current amplitudes of up to 1 A were estimated for our
sample, corresponding to peak clock fields of 100 mT calculated using the superposition
integral[24].

Magnetic contrast images were taken using the method of opposite helicities and
per-pixel image division as detailed in section 6.4. The sample was mounted at a % tilt with
respect to the x-rays to gain some in-plane magnetic sensitivity, though the photo-emitted
electrons are normally incident into the electron microscope. Image acquisition times were
2 to 3 minutes and image processing techniques were restricted to sub-pixel alignment,
brightness and contrast adjustments, and median noise or Gaussian blur filters. When the
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Figure 7. 7: Average raw image intensity versus time delay showing Oersted field pulse.
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image resolution were reduced due to the image blurring during these time delays.
However, images taken during the peak of the pulse were fairly useable because Z—IZ was

small. Thus, we confirmed that clock fields were sufficient by observing the loss of
magnetic contrast at the time delay of the pulse peak (though observing cascade-like signal
propagation behavior is sufficient evidence as well). Figure 7.8 shows both raw and
magnetic contrast images at the pulse peak (which we designated 0 time delay). While the
chains were fairly clearly resolved (vertical line segments in the upper half of the raw
image) with minimal amounts of added blur, they exhibited no magnetic contrast at all.
Meanwhile, the permalloy numerical markers (features spaced horizontally through the
center of the image) used for identifying chains retained their magnetic contrast. As this
XMCD geometry was not sensitive to the vertical direction of magnetic moment, we took
this to mean that the clock field had magnetized the chain along this axis.

We measured the time dynamics of 18 individual chains on one sample and found a
clear display of cascade-like signal propagation in only one chain. Though too many errors
obscured the process in other chains, observing it in one chain is enough to conclude that
engineering for high-speed cascade-like behavior is certainly possible and that reliability
and consistency are the major areas that need improvement. Figure 7.9 shows the signal
propagation dynamics of this chain and includes our own interpretation of the results due
to the low signal-to-noise ratio. Note that the biased input (black feature at the bottom of
each frame) spontaneously switches first. Based on the frames 3 through 7 of the figure we

Figure 7. 8: Raw PEEM exposure (left) and reversed-helicity magnetic contrast image
(right) taken during the peak of the pump pulse. Chains are white line segment features in
the upper half of the raw image while numerical markers run along the center.
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can extract an average switching speed of 100 ps per nanomagnet, which is consistent with
the fastest speeds predicted[5,8,15]. Errors form in the 34 and 7t frames of the out-of-
order switching kind, which is undetectable in the static measurement techniques used in
sections 6.4 and 6.5. Additionally, we note that each magnet appears to take several
hundred ps to reach full magnetic contrast. We attribute this effect to jitter in the amount
of time that any given magnet takes to switch. This randomness appears due to the effects
of thermal fluctuations. In a static measurement, an average signal propagation distance of
at least 11 would be reported here, but instead a cluster of at most 6 magnets exhibits
proper signal propagation. This highlights the ability for time-resolved techniques to
detect error nucleations in chains, although it does not obsolete static techniques, which
can gather statistics per clock cycle.

Key to the interpretation of stroboscopic XMCD is the understanding that the images
represent the cycle-to-cycle average of the time dynamics. If a magnetic element appears
to have no particular magnetic contrast, then the possibilities are that either its magnetic
moment is orthogonal to the axis of sensitivity or that it appears white for half of the cycles
and black for the other half. In this situation, some assumptions are required to assist with
interpretation. We expect that nanomagnets in their neutral state show the 4-domain
pattern as in figure 6.6 rather than appear uniformly gray, but due to the poor resolution
and signal-to-noise ratio we faced in two-bunch mode we do not see this pattern in our
data. Instead, we make use of the expectation that the likelihood of any nanomagnet to
switch out of its easy axis without the clock field is extremely low. Especially within the
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Figure 7. 9: Time-delay series of magnetic contrast PEEM images of a chain exhibiting
cascade-like signal propagation behavior. Our interpretation (bottom) shows neutral state
nanomagnets as red and highlights the cascade zone.
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Figure 7. 10: Time-delay magnetic contrast PEEM images of 3 chains exhibiting thermally-
assisted switching. Most of the repetition period lapses between the two images, which are
taken 4 ns after (left) the pump pulse and 2 ns before (right) the pump pulse.

pump-probe repetition period (clock cycle period) of 328 ns, nanomagnets that are
oriented along their easy axis are very stable. Therefore, if at any time a nanomagnet is
observed to transition from gray to either white or black, we assume that at all times
before that it is in its neutral state. If this observed transition occurs at far longer (1 ns or
more while affected by an already-switched neighbor) delays than expected, as exemplified
in figure 7.10, then we attribute it to thermally-assisted switching.

We experimentally demonstrate for the first time native-speed cascade-like signal
propagation in chains of anisotropy-engineered nanomagnets at room temperature. Based
on our theoretical and experimental progress on field-coupled NML, we make a suggestion
for the direction of further engineering work on this architecture. We suggest that
crystalline (material-dependent) anisotropy be used in place of configurational anisotropy.
More specifically, a material with strong out-of-plane anisotropy due to interfacial effects
combined with a crystalline cubic anisotropy with one easy axis that is out-of-plane would
virtually eliminate defects arising from imperfect lateral patterning. This would also allow
nanomagnets to be dot-shaped, which helps with lateral downscaling. Scaled-down
nanomagnets benefit from increasing coupling strengths as well as the obvious increased
device density. Thus, moving to such a material would quite significantly improve
reliability and consistency in field-coupled NML.
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Chapter 8. Spin-Transfer Torque and Energy-Efficient
Switching

1. Spin-Transfer Torque Magnetic Random Access Memories

A very immediate (already in production) application of nanomagnetism is non-
volatile memory. Though many architectures and devices (such as hard disks) exist, we
will only introduce magneto-resistive random access memory (MRAM). MRAMSs have the
potential to replace many other existing memory architectures[62] once its densities and
costs scale further. Flash memory and electrically erasable programmable read only
memory both have very limited endurance, while MRAM has extraordinarily high
endurance as well as faster performance. Dynamic random access memories are volatile,
while MRAM is non-volatile (up to a time constant that can be engineered) and offers
somewhat faster performance. MRAM may also be used as cache memory in solid-state
disks and in the slower parts of the processor cache hierarchy (replacing static random
access memories in high-level cache). Most notably, the non-volatility of MRAM presents a
major power dissipation advantage over dynamic memories.

The basic storage element in MRAM is a magneto-resistive structure such as a spin
valve or a magnetic tunnel junction (MT]). Figure 8.1 shows the basic structure of the
device. A thin layer of material is sandwiched between two ferromagnets[34]. For the spin
valve, this material is a metal and the structure exhibits giant magneto-resistance. For the
MT]J, this material is an insulator and the structure exhibits tunneling magneto-resistance.
In either case, if the two ferromagnets have parallel magnetic moments the electrical
resistance through the structure is lowest, and if they have antiparallel magnetic moments
the resistance is highest. A simple explanation for this phenomenon is to split conduction
through each magnet into parallel spin-up and spin-down channels. Due to the difference
in density of states at the Fermi level between the two spin channels, one channel exhibits
more scattering and thus less conductivity. Assuming that spin is conserved in the spacer
material, the sandwich structure effectively becomes a series combination of two
resistances for each spin channel. Itis then straightforward to show that arranging the like

Figure 8. 1: Magneto-resistive junction in low resistance state (left) and high resistance
state (right). Magnets (blue), their moments (arrows), and junction material (gray) shown.
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resistances in series provides a lower total resistance. Therefore, in a typical device where
each magnet has two stable states due to uniaxial anisotropy, one bit can be stored in the
resistance state of the structure. Typically, one magnet (the fixed layer) is designed to have
higher coercivity so that only the other magnet (free layer) switches.

Early MRAM cells used Oersted fields to switch the free layers. A more energy
efficient method is to use spin transfer torque[62], which can be directly applied as electric
current through the magneto-resistive junction. Memory devices employing such
developments are called spin transfer torque (STT)-MRAMs. Both write and read
operations can be achieved by applying current through the junction. A larger current
switches the free layer to an orientation determined by the direction of current, and a
smaller current leaves the free layer unperturbed while producing a detectable junction
voltage. Equation 3.10 (the Landau-Lifshitz-Slonczewski equation) describes the free layer
dynamics when subject to a current that passes through a nearby fixed layer. The adiabatic
spin torque term is the ‘torque-like’ term and has the form of Gilbert damping. The non-
adiabatic spin torque term is the ‘field-like’ term and has the form of Larmor precession.
By recombining the terms with like forms so that the effective field in each term has an
additional component, the dynamic behavior can be understood in a simpler and more
familiar manner.

Figure 8.2 illustrates the ‘cross-point’ (the memory cells are at the crossing points of
gridlines) architecture[34] for STT-MRAMSs. Bit lines consisting of a ‘true’ line (BLT) and a
‘complement’ line (BLC) are binary inversions of each other and establish a voltage across
all cells in a column. The polarity of voltage and current reverses if the bit lines switch.
Word lines (WL) enable current to flow through each cell in a row. Switching on a word
line performs a write or read operation on the entire row, where the bits recorded are
determined by the bit line pattern at the time. Only one word line may be active at any
given time to prevent overwriting other rows. Thus, operations in this architecture occur
in row-sized blocks (as opposed to bit-wise addressing).

An additional improvement in energy efficiency results from using out-of-plane

BLT, BLCnh BLTh+1  BLChs++

“Wv—%r"wv—%r'

WLn+1

Figure 8. 2: Circuit diagram of 2x2 MRAM cell array.
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(perpendicular) anisotropy magnets[34]. In most in-plane magnets, the large
demagnetizing fields formed when the magnetization is out-of-plane present a large energy
barrier. Due to the precessional motion of switching, the transient out-of-plane
magnetization is significant and this energy barrier must be overcome. On the other hand,
the lowest energy barrier separating the binary states usually occurs in-plane. Thermal
fluctuations only need to overcome this barrier and thus STT switching sees a higher
barrier than thermal switching. In typical out-of-plane magnets, the anisotropy is uniaxial
(isotropic in-plane) since the shape is circular. The same in-plane energy barrier is
encountered by both STT switching and thermal fluctuations, resulting in better efficiency.
In addition, the circular shape allows for smaller magnets to be fabricated, which further
increases efficiency. Besides using out-of-plane fixed and free layers, perpendicular STT-
MRAM otherwise uses the same cell and array structures as shown in figure 8.2.

2. The Spin Hall Effect in Metals

A newer development with the potential for even more efficient switching than STT
is the spin Hall effect (SHE) in metals[63]. The SHE originates from spin-orbit coupling and
can qualitatively be described as the coupling of charge currents and spin currents in a bulk
material. The spin currents lead to an accumulation of spins at the boundary of the
material[64]. Figure 8.3 shows a cartoon of the geometry with respect to the cross section
of a wire. The direction (sign) of the spin accumulation may be as shown, or opposite
depending on the material. If the handedness is as shown, the material has a positive spin
Hall conductivity, while the handedness that follows the Oersted field corresponds to a
negative spin Hall conductivity. A wide variety of materials have so far been found to
exhibit measurable SHE. The metals include platinum[65], beta tantalum[63], beta
tungsten[66], palladium[67], gold[68], and copper with bismuth[69], iridium[70], or
lead[71] impurities. In addition, measurable SHE has also been found in gallium
arsenide[72], bismuth selenide[73] (BizSes, a topological insulator), and graphene with
metallic adatoms[74].

Several formalisms exist to describe SHE. There are fully quantum mechanical

Figure 8. 3: Wire cross section showing charge current (J) and spin accumulation (s).
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treatments relating it to the Berry phase[75,76]. A more classical treatment using
Boltzmann transport is commonly used[77-79]. Under certain limits, this treatment
reduces to an approximation known as ‘drift-diffusion’, which provides the most intuitive
understanding of the physics. To that end, we present here the ‘drift-diffusion’
approximation[77]. This formalism uses the concept of separate chemical potentials (with
units of Volts) for charge () and spin (fi,) defined in the following way for net charge
density p and net spin density § (whose direction points along the net spin orientation):

p(7,t) = nepe(T, ) (8.1)

S(7,t) = ngils(7, t) (8.2)

Here, n. (with units of charge per volume per Volt) and ns (with units of action per volume
per Volt) are related to the density of states and the explicit space and time dependences
are given. These dependencies will be implicit in further references to these parameters.
In the context of a metal, the drift-diffusion equations comprise a pair of continuity

equations for charge and spin and a pair of coupled equations for charge currentf and spin

current Q, where the first index in Q is the direction of flow and the second index in Q is the
direction of spin orientation. When the tensor equations are given in Einstein notation, we
have:

—% =V-J (83)
_% = V.:Qi; + 873 (8.4)
J = acﬁ,uc — 056 X [lg (8.5)
Qij = ;—e (0cVittsj + 0s€ijkVific) (8.6)

€ijk is the Levi-Civita symbol, oc and o5 are respectively the electrical and spin Hall
conductivities, and T is a characteristic spin relaxation (spin-flip scattering) time.

Some interesting observations can be made about the form of the equations.
Equation 8.6 states that charge chemical potential can generate spin current (SHE).
Equation 8.5 states that spin chemical potential can generate charge current (inverse SHE).
Equation 8.4 provides a sink term that destroys spin polarization if no spin current is
flowing. Importantly, if there is charge current (charge chemical potential gradient) in the
metal and no spin chemical potential gradient, then equation 8.6 shows that spin current is
created if the spin Hall conductivity is non-zero. Additionally, the generated spin flow, spin
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orientation, and charge chemical potential gradient directions are all mutually orthogonal.
This leads to the geometry shown in figure 8.3.

We make some assumptions in order to solve for a steady-state spin density
distribution in a typical SHE metal wire. Setting all time derivatives to zero, we have:

Vi, =0 (8.7)
Ns s
= —V,;Qy; :
. Qij (8.8)

In addition, we neglect the inverse SHE term in equation 8.5 since it is typically the smallest
2 . . .
term (0. > osand | > %Q) and it causes ] to be non-uniform across the cross-section.

Coupling is thus lost from this equation:
J =0V, (8.9)

We solve equations 8.6 through 8.9 by assuming the charge and spin currents take the form
appropriate to the geometry in figure 8.3:

0
J=10 (8.10)
J>
_ 0 Q:ch 0
Q=|Qyu 0 0 (8.11)
0 0 O

Due to symmetry, the net spin density at the center of the wire is zero. In addition, at the
surface no spin current can flow in the direction of the surface normal. Thus the following
Dirichlet boundary conditions are imposed:

fs(x=0,y=0)=0 (8.12)
Quy(r ==%L;) =0 (8.13)
Qye(y ==%xLy) =0 (8.14)
The solutions for the charge and spin chemical potentials up to any integration constants
are:
J,z
fre = (8.15)
UC
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)
cosh(%)
fs= | __ ; p sinh($) (8.16)
USJZ Ug cosh(%)
\ 0 /
D— Tho. (8.17)
2eng

There are some noteworthy properties of equation 8.16. First, the maximum spin density
occurs at the surfaces. Second, the spin density scales linearly with current density. Third,
the spin density flips direction if the spin Hall conductivity changes sign. Our solution is
also consistent in form with published one-dimensional calculations[78,79].

Figure 8.4 shows a three-terminal memory device combining an MT] with SHE that
was proposed[63]. The free layer feels a torque due to the spin accumulation at the
interface, and the equation of motion for the free layer becomes[77]:

oM . . OM
T — _~M x H, Yok &2
ot ! RV ot 818
o - Y - '
—|——M><s—|——M><(M><s)
poTeMs poTa M2

Here, 1. is related to the precession period about the exchange field and tq is a
characteristic spin dephasing time. Note that equation 8.18 also has a ‘field-like’ and a
‘torque-like’ term added onto the Landau-Lifshitz equation. In this device, power efficiency
can be improved by scaling down the thickness of the SHE metal to a limit of 2D since the

. . . . L
surface spin accumulation magnitude varies as tanh (E) to reduce total current. In

addition, lateral dimensions of the device can continue to be scaled to the same effect. The
benefit gained by having three terminals is the spatial separation of write and read

IS Fixed
a1 Free

Figure 8. 4: 3-terminal SHE and MT] combination device.
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Figure 8. 5: Circuit diagram of 2x2 MRAM cell array using 3-terminal devices.

currents[63]. Large write currents no longer pass through the MT], which largely
determines device endurance through dielectric breakdown. Therefore, this particular
device offers both improved efficiency and reliability. However, we point out that only the
in-plane geometry can be used if the torque is applied throughout the free layer relaxation
dynamics (since the magnetization damps toward the desired direction, precise control of
torque pulse width as required by precessional schemes[80] is not needed). Out-of-plane
free and fixed layers would have an unbroken symmetry that prevents reliable
switching[81]. Presumably, a cell array architecture that preserves row-wise write and
read operations would look like figure 8.5. The original signal lines are now used for
writing only, with WW denoting write word lines and WB denoting write bit lines.
Similarly, the signal lines for reading are RW for words and RB for bits. Though an extra
transistor is required per cell for MT] resistance sensing, this transistor need not be as
large as the write isolation transistor since read currents are small.

SHE also has applications in NML as a direct and energy-efficient replacement for
Oersted field clocking structures. Though NML may intrinsically have low energy
dissipation, the same has so far not been true of NML clocking mechanisms. Investigations
of using SHE[81] as well as other mechanisms[62] for this purpose are already underway.
Demonstrating low energy consumption on a larger scale that includes clocking would be a
major development for NML.

3. Two-Bit Free Layers using Configurational Anisotropy

We devise a method to store two bits per cell by using the concave square shapes
studied in section 4.5. Since the shapes have four-fold symmetry, they have four stable
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magnetization states (as is the case for biaxial anisotropy). Readout would still be
accomplished using an MT], but the orientation of the fixed layer must not align with the
anisotropy axes (neither easy nor hard) of the free layer. Otherwise, due to symmetry two
of the states would produce the same magneto-resistance since the projection of the free
layer magnetization onto the fixed layer magnetization would be the same. To a very good

approximation[82], the electrical conductance of the MT] depends linearly on Mfree .

Mfixed- Therefore, we can optimize the conductance digitization of the four states by
equalizing the conductance separations between states. For an angle 8 between the fixed
layer easy axis and either free layer easy axis, we have:

cos(f) — sin(f) = 2sin(f) = — sin(f) + cos(H) (8.19)

The solution to equation 8.19is § = cos™?! (\/%_0) Figure 8.6 shows a diagram of the

relative layer alignments and a cartoon of the corresponding conductance levels. For the
free layer, one easy axis contains the two central levels while the other easy axis contains
the two extremes.

Using configurational anisotropy, we can tune the energy barrier heights, which for

this case is equal to % (the trivial case of setting K. to 0 in equation 3.23 or 3.24).
Presumably, if Eg = 60kgT is required for a uniaxial nanomagnet, then by a combination of
material anisotropy and configurational anisotropy we can also achieve 60kgT for a biaxial

nanomagnet of comparable dimensions. However, more complex treatments[83] of the
thermal behavior of nanomagnets are worth considering, especially when concerning more
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Figure 8. 6: Diagram (left) of the free layer easy axes (red) and fixed layer easy axis (blue)
corresponding to the 4 distinct and equally spaced MT] conductance levels (right).
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complex anisotropies. If the data retention time of a magnetic particle depends on the
energy barrier heights, then a biaxial magnet that is as stable as a uniaxial magnet must
have Ky = 4K,. Since an applied magnetic field equal to the anisotropy field is required to
switch the magnet, nothing else considered it would take four times the field to switch the
biaxial magnet. In practice, since in-plane free layers are typically limited by their out-of-
plane energy barrier this becomes less of an issue. Alternatively, thermal fluctuations may
be treated as a stochastic field as in section 3.3. If the data retention time of a magnetic
particle depends on the anisotropy field strengths, then a biaxial magnet that is as stable as
a uniaxial magnet only needs Ky = Ku. In this case, the field required to switch suffers no
additional penalty. Since a single switching operation writes two bits (as opposed to a
write operation per bit), our design may therefore be up to twice as energy-efficient as a
one-bit MRAM.

Figure 8.7 shows the design of a two-bit cell as an extension of the design in figure
8.4. SHE drives switching, but the current can be applied along any easy axis of the free
layer by using a cross structure. The applied current pulses would have long enough
duration to last through the free layer relaxation, and thus precise control of the pulse
width is not needed. In order to sufficiently control the direction of current in the cross
area, only one wire (bit line) out of the two in the cross should be conducting at any time,
while both contacts in the other wire should be high-impedance. In addition, a write
isolation transistor (word line) is needed for each wire in order to set the otherwise
conducting wire to high-impedance (which disables write operations, since three SHE
contacts out of the four in the cross become high-impedance). A smaller read isolation

Figure 8. 7: 2-bit MRAM cell using SHE and an MT]. Shown here are the SHE metal (brown),
free layer (gray), spacer layer (green), fixed layer (blue), and top MT]J contact (orange).
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Figure 8. 8: Circuit diagram of 2x2 MRAM cell array using 5-terminal 2-bit devices.

transistor as implemented in the three-terminal device in section 8.2 would also be needed
at the fifth (top) contact to prevent large currents from passing through the MT].
Compared to the three-terminal device, our five-terminal device in total requires one fewer
MT] and one fewer read isolation transistor per two bits, the same number of write
isolation transistors, and one additional large transistor per bit line (where each cell in the
usual ‘cross-point’ is considered to have two bit lines). Figure 8.8 gives our proposed cell
array architecture. In addition to the signal lines of the three-terminal device, we have an
additional bit select line (WBS) per set of four bit lines that chooses which pair of bit lines
are high-impedance. In the usual ‘cross-point’, each independent bit line signal controls
two bit lines (a true and a complement). In our case, four bit lines are controlled by a single
independent bit line signal.

Due to gains of up to a factor of two for bit-wise write energy efficiency and bit-wise
read isolation transistor count, we believe that this five-terminal MRAM device warrants
experimental investigation.
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Chapter 9. Dynamic Experimental Methods for
Investigating the Spin Hall Effect

1. Optical Second Harmonic Generation

Complementary to MOKE, optical second harmonic generation (SHG) is a non-linear
optical probe that can also measure magnetism and exhibits a different set of properties.
Most notably, SHG is inherently sensitive to surfaces and interfaces[84], leading to the
ability to probe buried interfaces[85] as well as antiferromagnetic ordering[86]. In this
section we introduce the theory of SHG and how it can measure magnetization at surfaces
and interfaces. This particular phenomenon is known as magnetization-induced second
harmonic generation (MSHG).

We can relate the radiated second harmonic to the fundamental by starting with the
following Maxwell’s equations and constitutive relations:

VA _9B (9.1)
ot
. . - 8D
VxH=J+2 (92)
8 in
B = po(H + M) (9.3)
D=¢kE+ P (9.4)

Putting the above equations together produces the well-known wave equation for the
electric field, where the source term that is typically written simply in terms of the total
current is rewritten as the sum of free current and two bound currents:

. = o 0E PP oJ = OM

VXVXE+epu—s =— + +V X — 9.5
oM0 8t2 Ko 6t2 ot ot (9.5)

We take the approximation that the dominant source comes from the polarization:

- o o *E 52 P

We take the time-harmonic form of the polarization up to second order in the power series
expansion with respect to the incident monochromatic electric field:
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FP(t) = ﬁ(w) %P(l)(wo) + ﬁ(2)(2w0) ~

0 [X(l)(wO)E(wo) + X<2)(2wo) : E(wo)E(wo)} (9.7)

The susceptibility factors are thus proportional to the expansion coefficients. The second-
order susceptibility term is multiplied by a tensor scalar product onto the dyadic product
of two vectors. This amounts to a third-rank tensor multiplying a second-rank tensor
(dyad) to produce a first-rank tensor (vector). In Einstein notation, this term is written:

P = egx\) B, By 9.8)

The symmetry property that leads to SHG’s interface sensitivity is inversion
symmetry. Applying spatial inversion to all vectors, we have:

P = eO[X(l)E + @ EE]
_pP= EO[_X(l)E + @ E’E’]

If both equations are to be satisfied, x(2) necessarily vanishes. Therefore, in the bulk of a

(9.9)

centrosymmetric medium, no SHG occurs (at least up to the approximation presented). At
surfaces and interfaces, full inversion symmetry is broken and thus SHG is allowed.
Another symmetry is in the ordering of incident electric field vectors. Since the incident
light is monochromatic, we can switch the polarizations of the two field vectors without
affecting the total field. Therefore, the rank-3 tensor x(2) only has 18 independent elements
since it is restricted by:

= o

As a result of the above restriction, we can also write the rank-3 tensor in a more compact

(EE\

rank-2 (matrix) form known as Voigt notation:

Py = | Xyzz Xyyy Xyzz Xyyz Xyzz Xyzy 2E E, (9.11)
\2E.E, |

Additional restrictions in the number of independent elements of x(2) can be
deduced by symmetry properties relating to specific materials. We can apply symmetry
transformations to rank-3 tensors using the following operation[87]:
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Txijk = E Tiir Uy jr Thor Xt 7 k! (9.12)
,I:/j/k/

We consider an amorphous material, as it is the most relevant to our work. The bulk is of
symmetry group Ky and the surface is of symmetry group Cey. We choose to let the x-y
plane lie on the surface, and thus the z axis includes the surface normal. The surface is
invariant under rotation by any angle about the surface normal and also under reflection
through any plane that includes the surface normal. The rotation symmetry operation
about the surface normal is:

B cosf sinf 0
T(#) = | —sinf cosf 0 (9.13)
0 0 1

The constraints set by the mirror symmetries are a subset of those set by the rotation
symmetry. We require the following rotational invariance:

T()x'(0) = x*(0) 014
Here, x(3)(0) means the case of no magnetization. The resulting constraints are:

0 0 0 0  Xw: O
2 0)=| 0 0 0 Xw: O O (9.15)
Xzw  Xzw Xzzz 0 0 0

The index w represents both xx and yy and signifies that these two components are equal.
There are thus only 3 independent elements.

We now add the magnetization of the material into consideration. We write the
susceptibility to first order (we will find the first order term to be non-zero and so will not
consider higher order terms) in the power series expansion with respect to magnetization:

X (M) = x2(0) + [V gx 2 (M) M (9.16)
For clarity and compactness, we present several other ways to express the last term:

= N 17 2,dM -
VX2 (M)|M = ngkg )M, = x@M) (0] (9.17)

While polarization and electric field are polar vectors, magnetization is an axial vector,
which gains an additional sign flip under improper rotations such as reflections. Therefore,
applying spatial inversion to all vectors again, we find that SHG is also forbidden in the bulk
of a magnetic centrosymmetric medium:
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P = eV F + (x20 + @AM 17y : B

At the surface, the magnetization reduces the symmetry so that only mirror operations
remain:

(9.18)

B 1.0 0
Tx——z)=[0 1 0 (9.19)

0O 0 1

B 1 0 0
Ty~ —y)=[{0 -1 0 (9.20)

0O 0 1

The corresponding actions on the components of magnetization are:

r— —x = {M,— —M,, M, — —M,}

XM (M) = T(a v —a) x> (M) B
—X®M (M) = T(a = =) > (M) -

—x*M (M) = T(z = —) x> (M.)]
yr—= -y = {M:L' — _anMz = _Mz}

—xPM(M,) =T(y = —y) x> (M,)] o
xBA0(My) =Ty o > (My ) .

_X(Q’M) (M) =T(y — _?J)[X(2’M)<MZ)]
These restrictions produce a x(2M)(M) of the following form:
XA (M) =

XezaMy  XayyMy XozzMy  Xay.M-: 0 Xaay Mz (9.23)
0 0 0 Xzsz:c szzMy Xza:yMz

The full susceptibility tensor (the sum of equations 9.23 and 9.15) is therefore:
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XD (M) =

X:mcxMy meyMy Xa:zzMy wazMz Xwz X:mcny (9.24)

If we consider additional expansion terms for the second-harmonic polarization, we
find that a quadrupole-like term[87] can exist in the bulk of a centrosymmetric medium:

ﬁ(Q)(2w) =
eo[x®P) (2w) : E(w)E(w) + x?9(2w) : E(w)VE(w)]

In metals, screening effects usually allow the dipole-like term to be significantly larger[88].

(9.25)

However, this is not a general rule and significant bulk SHG contributions can exist even in
metals.

The susceptibility tensor elements may be calculated[89] from microscopic theory,
but doing so requires a great deal of knowledge about the wavefunctions in the material.
However, useful information can still be obtained without knowing the tensor elements. If
we choose an experiment geometry that is selective to particular polarizations of incident
and radiated light, equation 9.24 shows that we can selectively be sensitive to particular
components of magnetization. In addition, equation 9.16 shows that the tensor has
components that are even or odd in magnetization. Since the optical intensity I is
proportional to the square of the electric field, we have:

I:I: X |Eeven =+ Eodd‘2 (9.26)

The * denote the cases for opposite magnetizations. Considering that in general x(2) is
complex and that there is some phase difference 6 between the even and odd components,
this expression expands to:

I:I: X |Eeven|2 + ’E_:oalal|2 + 2‘E_:evenHE_;odd’ COS(Q) (9.27)

As long as the odd component is much smaller than the even component (a common case),
we can arrange the opposing pair [: to get a quantity that is linear in magnetization:

} ; I, -1
Eo Eeven A= ——7"~=
| Eodd| < | | e
= (2,dM) (9.28)
E,
2E,—dd|| cos(f) ~ 2>‘<0‘(l+)|M cos(6)
even Xeven

On the other hand, if it is possible to completely demagnetize and measure the intensity for
zero magnetization lo, which removes the odd component, then we may also use:
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I — I !Eodd| x|
A= ——=2—F—cos(f) = ZO—Mcos 0 (9.29)
0y B T XSen )

Various experimental methods have been used to probe the spin Hall effect in
metals. These include anomalous Hall effect[81], spin torque ferromagnetic resonance[65],
tunneling spectroscopy[90], and MOKE[91]. Out of these, only MOKE allows a bare metal
film to be probed for spin accumulation. Based on the results of related experiments[92],
we add SHG into this category of bare metal SHE probes. Advantages over pure MOKE
include much larger magnetic sensitivity[84] and geometries sensitive only to in-plane
magnetization[93] (which can be measured simultaneously alongside MOKE).

2. Time-Resolved SHG Experimental Setup

Figure 9.1 shows our experimental setup for performing time-resolved optical SHG.
The desired sample geometry is a % angle of incidence and p-polarized (x-z) incident and

radiated light. By inspecting equation 9.24, we see that this geometry is sensitive to the
transverse (y) direction of magnetization. We used a Coherent Mantis oscillator and
Coherent RegA amplifier with external stretcher and compressor. We configured this

Pulse Generator Filter

Sample ] H /
U / Mirror

Lens Polarizer

Filter m——— Lens
Laser Sync
Polarizer
Delay
Generator Filter s—— Photon Counter
Photo—tube‘.
Amplifier

Figure 9. 1: Time-resolved optical SHG experimental schematic.
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combination to produce an 800 nm wavelength laser beam with 100 fs pulse width and 250
KHz repetition rate. The setup in the figure is a stroboscopic experiment with electrical
pump and optical probe pulses. The laser incident into the setup in the figure has an
energy of approximately 17.7 n] per pulse.

The laser beam first reflects off of a mirror that allows for fine adjustment of the
angle of incidence. The first polarizer along the path is a Glan-laser polarizer, which is set
to p-polarization. The firstlens (5 cm singlet) focuses the beam onto the sample and the
first filter (Schott RG715) removes any spurious second harmonic component from the
beam (so that it does not reflect off of the sample and mix with the generated second
harmonic). The spot size on the sample is just over 35 pm (full-width half-maximum). The
second filter (Schott BG39) removes the fundamental component from the beam (so that
only the second harmonic passes). The second lens (5 cm singlet) collimates the beam and
focuses it into the photomultiplier tube (PMT). The second polarizer is a Glan-Thompson
polarizer, which is set to p-polarization. Finally, the third filter (Semrock BrightLine 720
nm) simply increases the selectivity of the second harmonic versus the fundamental, and
blocks some of the ambient light entering the PMT. We used a Hamamatsu R464 PMT
biased at-1200 V. The PMT and the components along the optical path are placed under a
light-absorbing enclosure to minimize ambient light contributions to noise. The signals
from the PMT are provided gain through a Hamamatsu C6438 amplifier and then counted
by a Stanford SR400 photon counter. For more accurate alignment needs, the focusing
singlet is replaced with a 5x objective lens and a CCD camera is placed after the collimating
singlet. This allows for imaging during alignment as well as a spot size of just under 20 pm.

Figure 9.2 shows the relevant section of the sample layout in our experiment. The
SHE metal (yellow) forms a simple channel between two contacts (usually a layer of gold
deposited on top). The laser spot probes this channel, which is designed to be as laterally
small as possible (allowing for the spot size of the laser) to maximize the current density.
Based upon the SHE geometry described in section 8.2, current passing in the direction of
the arrow would generate spins on the top (probed) surface that are aligned along the up

contact M contact

y — |50 um

L. J

Figure 9. 2: Sample layout for detecting SHG due to spin accumulation from SHE. The SHE
metal (yellow) is deposited onto an insulating substrate (typically silicon dioxide).
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and down directions. The SHE metal must be thicker than its absorption depth for 800 nm
wavelength light to prevent the oppositely-aligned spins on the bottom surface from
contributing significantly (which counteracts the magnetic contrast from the top surface).
We wire bonded each sample to a chip carrier, which inserts into the chip socket of a
custom PCB that links the socket to an end-mount SMA connector by a coplanar waveguide.

An electrical signal synchronized to each laser pulse triggers a Stanford DG645
delay generator. This delay generator can frequency divide the trigger signal by an integer
factor. In our case, our integer factor is 2, which allows us to modulate the measurement
into two bins labeled ‘A’ and ‘B’ that represent I. and I, respectively. The Y2-frequency
signal is used to trigger both the pump pulse generator and the photon counter (for gating).
Since the probe pulses are fixed and arrive once every 4 s, the pump pulse waveform is
triggered every 8 ps and has the shape shown in figure 9.3 programmed into the Agilent
33220A pulse generator. The time delay between the leading edges of the ‘A’ and ‘B’ bins is
calibrated to the best of our ability so that the time delay At between a probe pulse and the
nearest leading edge is the same for both bins. The two-channel photon counter is also
triggered every 8 us and is programmed to gate its counting so that each channel counts
every other probe pulse. Again, the time delay between the gates is calibrated to the best of
our ability. In this fashion, probe photons from I. and . are collected by bins ‘A’ and ‘B’,
respectively. The dynamical time delay At probed can be changed by adjusting the pump
delay from the delay generator.

A fairly well-behaved material to investigate using these methods is platinum. Since
platinum does not oxidize at room ambient, no capping layer is required. This makes the
SHG measurement much simpler to interpret, as the dominant contribution should come
from the exposed surface of the platinum. We sputter-deposited 10 nm of platinum onto
thermally-oxidized silicon chips. We then etched the pattern of figure 9.2 by ion milling
using I-line photoresist as an etch mask. This etch mask was then removed by soaking in
warm (65 °C) Baker PRS-3000 for one day. We then used a bi-layer lift-off as described in
appendix D.1 to evaporate 80 nm thick gold contacts. The finished chips were finally
adhered onto chip carriers using SPI flash-dry silver paint. After wire bonding, each
sample exhibited an electrical resistance of around 35 (). Our pulse generator has a
maximum output of 5 V, which (after accounting for impedance mismatch) provides 23.6

+J
Pump A

0 0.2us 4 4.2 8
Figure 9. 3: Pump and probe pulse timing patterns and photon count binning.
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MA/cm? through the channel. We also fabricated a similar sample with 20 nm of platinum
instead. The electrical resistance of this sample was 17 (), which allows for 14.5 MA/cm?
through the channel. We report measurements on these samples in the next section.

3. Detection of Spin Accumulation on Bare Platinum due to SHE

Figure 9.4 shows the pulse generator output (pump ‘A’ in the pattern of figure 9.3)
as measured from the monitor output of the generator. Delayed by 4 ps from this output is
an output designed to be the negative (pump ‘B’) of figure 9.4. We measured a time delay
sweep using the At parameter as shown in figure 9.3 by sweeping the delay generator. The
integration time at each time delay was 2000 s, which produced approximately 15000
photon counts per bin. Using these two bins, we constructed the asymmetry parameter A
as given in equation 9.28. Figure 9.5 plots the SHG asymmetry from 10 nm of platinum
versus the time delay for the geometry shown in figure 9.2 (where My is being probed) as

well as the g rotation of the sample from that geometry (where My is being probed). We

immediately notice that the asymmetry more or less is proportional to the applied current.
Since the asymmetry detects contributions that are odd in applied current, we attribute
this result to the spin accumulation generated by the SHE. In other words, effects that are
even in applied current such as Joule heating would not manifest here. Additionally, the
spin accumulation oriented in the direction parallel to the current density is much less than

Applied Voltage for Current-Driven Pt

0 100 200 300 400
dt (ns)

Figure 9. 4: Voltage pulse (positive half) applied using the arbitrary waveform generator as
measured on its monitor output. The amplitude differs from the output by a constant while
the shape does not account for additional distortion encountered downstream.
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the spin accumulation oriented in the direction perpendicular to the current density. This
agrees with the predictions made in section 8.2. We attribute the residual asymmetry of
the rotated-sample measurement to a combination of three factors: non-collinear current
density (an explanation used by previous work[91]), imperfect polarizer rotations leading
to sensitivity to other magnetization components, and imperfect sample mounting leading
to projections of other magnetization components along the axis of sensitivity.

The time axes in figures 9.4 and 9.5 are offset semi-arbitrarily such that the plots
coincide. However, using a photodiode and a pair of identical cables, we confirmed to
within a few nanoseconds that the measured asymmetry does coincide in time with the
applied current. The plot also shows that at the time scales of tens of nanoseconds (the rise
and fall times of the pump signal are approximately 30 ns and the jitter between pump and
probe as limited by the gate generators on the photon counter is around 2 ns with bin ‘B’
having more jitter than bin ‘A’), the spin accumulation equilibrates nearly instantaneously
and no additional dynamics are observed. To our knowledge, this is the first SHE time
dynamics measurement on bare metal with a resolution of tens of nanoseconds.

Figure 9.6 plots the peak asymmetry (taken at the time delay corresponding to the
center of the pump pulse) versus the peak amplitude of the pump pulse (the current
density scales linearly with voltage). The blue points are measured data and the red line is
a linear fit that passes through the origin. The result shows that asymmetry also scales
linearly with current density, which confirms the relationship given in equation 8.16.

Time—-Resolved Transverse MSHG for Current-Driven Pt

-4 0 100 200 300 400
dt (ns)

Figure 9. 5: Magnetic asymmetry versus time delay for platinum pumped by the current
pulses shown in figure 9.4. Measured in orientations sensitive to the in-plane spin
components parallel and perpendicular to the direction of the applied current.
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Voltage Scaling for Current-Driven Pt

Figure 9. 6: Magnetic asymmetry versus applied voltage for platinum pumped by the
current pulses shown in figure 9.4. Measured at dt = 100 ns as determined by figure 9.5.

Figure 9.7 plots the peak asymmetry from 20 nm of platinum versus the rotation
angle of the sample about the sample plane normal, where the angle of the above
measurements is taken to be 0. The blue points are measured data and the red curve is a
sinusoidal fit that allows for both amplitude and phase degrees of freedom. The result
shows that the asymmetry follows the expected cosine dependence on angle for the
projection of the spin accumulation along the direction of magnetic sensitivity. This
measurement was performed using the 5x objective and imaging alignment described in
section 9.2.

This work is still ongoing as of the time of writing. The technique shows strong
potential and many more measurements can be performed. For example, other material
systems such as tungsten and tantalum can be measured to check for asymmetry generated
by SHE. Control material systems such as copper and aluminum can be checked to ensure
that no asymmetry is observed. Even faster pump pulses and finer time resolution can be
achieved with faster pulse generators and impedance-matched sample designs.
Additionally, an optical pump pulse can be added to induce ultrafast demagnetization[94]
during the electrical pump in order to study the remagnetization dynamics. Different
interfaces achieved using various capping layers can be measured to attempt to distinguish
interfacial spin effects[95]. Finally, all of the above measurements can be compared to
MOKE (which can be performed simultaneously) in order to distinguish bulk effects from
interface effects.
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Angle Dependence for Current-Driven Pt

0 45 90 135 180
Angle (deg)

Figure 9. 7: Magnetic asymmetry versus rotation angle about sample plane normal for
platinum pumped by the current pulses shown in figure 9.4. Measured at dt =100 ns as

determined by figure 9.5.
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Chapter 10. Conclusion

In this dissertation, we have researched the behavior of nearly-single-domain
nanomagnets and developed some possible applications in both spin logic and spin
memory devices. We have also analyzed, simulated, and experimentally imaged the
behavior of nanomagnetic logic chains in the context of transmitting information through
interconnects. Finally, we have adapted an experimental technique to directly probe the
spin Hall effect, motivated as an energy-efficient mechanism for energetically exciting spin
logic and spin memory devices.

As of the time of writing, there exists a large amount of ongoing work on the spin
Hall effect. We expect our work on it to lead to more thorough experimentation with
various materials and contribute to advancing the understanding of the physics of the spin
Hall effect. Further research into energy-efficient spin-transfer mechanisms (likely
extending beyond spin Hall effect) is paramount for spintronics, because it most directly
pushes spin devices toward being able to leverage their fundamental energy-dissipation
advantages over charge-based devices. Meanwhile, we do not believe that field-coupled
nanomagnetic logic in its current incarnations is worth pursuing any further due to the far
better interconnect reliability and speed predicted for torque-coupled devices. Aside from
efficient spin-charge coupling mechanisms, reducing leakage in spin logic systems will
likely also be the focus of a good deal of future work.

Looking forward, we believe that due to innate non-volatility, spin-based systems
integrating logic and memory would play a major role in data-centric computing[96].
Commercially viable spin systems of the future may combine many ideas from concepts
that currently seem to lack promise. Spintronics research has so far been tremendously
rich in both the physics involved and the variety of devices studied, leaving a very large
amount of space for innovation. The inherent properties of spin are incredibly attractive
and will continue to inspire research and development in this field.
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Appendix A. OOMMF Programs

1. Exploring Configurational Phase Diagrams

Due to configurational anisotropy, nearly-single-domain magnets typically have a
set of stable magnetic configurations. One can determine which one in the set has the
overall lowest energy by changing the size and shape of the magnet. For example, squares
can take on flower, leaf, and linear combinations of flower and leaf configurations
depending on the thickness. Since flower and leaf configurations have different average
magnetization angles, one can initialize the square’s magnetization along an angle between
the two and allow it to adiabatically relax into its stable configuration. By finding this
configuration for a range of lateral sizes and thicknesses, one can build a configurational
phase diagram. The following OOMMF program serves this purpose by initializing and
calculating the time evolution of the magnet until its time rate of change becomes very
slow, and then stores the end result.

# Grid sizes

set xcell 1e-9
setycell 1e-9
set zcell 1e-9

# Image sizes

Parameter xpix 27
Parameter ypix 27
Parameter zpix 24

set width [expr {$ypix*$ycell}]
set length [expr {$xpix*$xcell}]
set thick [expr {$zpix*$zcell}]

set PI [expr {4*atan(1.)}]

set Sim 1 ;# Random seed

set As 13e-12 ;# Exchange constant

set Ms 800e3 ;# Saturation magnetization
setalpha 0.02 ;# Damping constant
setgamma 2.21e5 ;# Gyromagnetic ratio

set Temp 0 ;# Temperature

set timestep 1e-13 ;# Simulation time step

set dmdtstop 1 ;# Simulation dm/dt end
set infile square.ppm;# Input image

set outfile configurational ;# Output filename
set theta 22.5 ;# Initial angle

Specify Oxs_ImageAtlas:atlas1 [subst {
xrange {0 $width}
yrange {0 $length}
zrange {0 $thick}
image $infile
viewplane xy
colormap {
white nonmagnetic
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black magneticl

}
1

Specify Oxs_RectangularMesh:mesh [subst {
cellsize {$xcell $ycell $zcell}
atlas :atlas1

1

Specify Oxs_UniformExchange [subst {
A $As
}

Specify Oxs_Demag {}

Specify UHH_ThetaEvolve [subst {
do_precess 1
gamma_LL $gamma
alpha $alpha
fixed_timestep $timestep
temperature $Temp
uniform_seed $Sim

1

Specify Oxs_TimeDriver [subst {
basename $outfile
evolver UHH_ThetaEvolve
stopping_dm_dt $dmdtstop
mesh :mesh
Ms {

Oxs_AtlasScalarField {

atlas :atlas1

values {
nonmagnetic 0
magneticl $Ms
}
}
}
moO {
Oxs_AtlasVectorField {
atlas :atlas1
default_value {000}
values {
nonmagnetic{000 }
magneticl { [expr {cos($PI*$theta/180.)}] [expr {sin($PI*$theta/180.)}] 0 }
}
}
}
}

Destination archive mmArchive
Schedule Oxs_TimeDriver::Magnetization archive Stage 1
Schedule DataTable archive Stage 1

2. Characterizing Switching Magnetic Fields

106



One way of reducing the degrees of freedom of an arbitrary magnet’s anisotropy
down to a second-order (uniaxial and biaxial) approximation is by matching the applied
magnetic fields required to switch the magnet between the energy minima. The following
OOMMF program serves this purpose by first allowing the magnetization of a magnet to
relax along an initial energy local minimum until its time rate of change becomes very slow,
then applying a specified magnetic field and calculating its time evolution until its time rate
of change becomes very slow, and finally removing all applied magnetic fields and allowing
it to relax. By sweeping the applied magnetic field’s strength, one can find the critical
switching magnetic fields needed to rotate the magnetization. The result at the end of each
of the three steps described above can be stored.

# Grid sizes

set xcell 5e-9
setycell 5e-9
set zcell 4e-9

# Image sizes
set xpix 30
set ypix 98
set zpix 3

set width [expr {$ypix*$ycell}]
set length [expr {$xpix*$xcell}]
set thick [expr {$zpix*$zcell}]

set Sim 1 ;# Random seed

set As 13e-12 ;# Exchange constant

set Ms 800e3 ;# Saturation magnetization
setalpha 0.02 ;# Damping constant
setgamma 2.21e5 ;# Gyromagnetic ratio

set Temp 0 ;# Temperature

set timestep 1e-13 ;# Simulation time step

set dmdtstop 5 ;# Simulation dm/dt end

Parameter fieldx 40 ;# Applied field (x, mT)
Parameter fieldy 0 ;# Applied field (y, mT)
set infile biaxl00.bmp ;# Input image
set outfile biax ;# Output filename

Specify Oxs_ImageAtlas:atlas [subst {
xrange {0 $length}
yrange {0 $width}
zrange {0 $thick}
image $infile
viewplane xy
colormap {

white nonmagnetic
black up

red left

blue right

green down

}
}
Specify Oxs_RectangularMesh:mesh [subst {
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cellsize {$xcell $ycell $zcell}
atlas :atlas

1

Specify Oxs_UniformExchange [subst {
A $As
}

Specify Oxs_Demag {
}

Specify Oxs_UZeeman [subst {
multiplier 795.77472
Hrange {

{000 $fieldx $fieldy 0 1}
{ $fieldx $fieldy 00001} }

}

Specify UHH_ThetaEvolve [subst {
do_precess 1
gamma_LL $gamma
alpha $alpha
fixed_timestep $timestep
temperature $Temp
uniform_seed $Sim

1

Specify Oxs_TimeDriver [subst {
basename $outfile
evolver UHH_ThetaEvolve
stopping_dm_dt $dmdtstop
mesh :mesh
Ms {

Oxs_AtlasScalarField {
atlas :atlas

values {
nonmagnetic 0
right $Ms
up $Ms
down $Ms
left $Ms
}

mO { Oxs_AtlasVectorField {
atlas :atlas

values {
nonmagnetic{000 }
right {100}
up{010}
down{0-10}
left{-100}
}
}
}
}

#Destination archive mmArchive
#Schedule Oxs_TimeDriver::Magnetization archive Stage 1
#Schedule DataTable archive Stage 1
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3. Applying Piecewise Linear Magnetic Fields

In simulation of clock pulses one would like to apply a time-dependent magnetic
field that has a simple form while being a good approximation of realistic pulses. The most
typical clock pulses can be characterized by a rise time, a peak amplitude duration, and a
fall time. The following OOMMF program makes a piecewise linear approximation of this
pulse shape and applies it uniformly in all space at the start of the simulation. The result
after a specified amount of simulation time can be stored. Adjustments are required for
different directions of applied magnetic field.

# Grid sizes
set xcell 1e-8
setycell 1e-8
set zcell 12e-9

# Image sizes

set xpix 279
Parameter ypix 46
set zpix 1

set width [expr {$ypix*$ycell}]
set length [expr {$xpix*$xcell}]
set thick [expr {$zpix*$zcell}]

Parameter Sim 1 ;# Random seed

set As 13e-12 ;# Exchange constant

set Ms 800e3 ;# Saturation magnetization
setalpha 0.02 ;# Damping constant
setgamma 2.21e5 ;# Gyromagnetic ratio

set Temp 300 ;# Temperature

set timestep 1e-13 ;# Simulation time step
set timestop 30e-9 ;# Simulation end time
set infile shallower[expr {$ypix-5}].bmp ;# Input image

set outfile xm1fastclock/chain_${ypix}_${Sim} ;# Output filename
set PAmp 84 ;# Pulse amplitude (mT)

set PRise 2e-10 ;# Pulse rise time

set PFall 3e-10 ;# Pulse fall time

set PHold 2e-9 ;# Pulse peak width

Specify Oxs_ImageAtlas:atlas [subst {
xrange {0 $length}
yrange {0 $width}
zrange {0 $thick}
image $infile
viewplane xy
colormap {

white nonmagnetic
black right

red up

blue down

green left
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Specify Oxs_RectangularMesh:mesh [subst {
cellsize {$xcell $ycell $zcell}
atlas :atlas

1

Specify Oxs_UniformExchange [subst {
A $As
}

Specify Oxs_Demag {
}

Specify Oxs_ScriptUZeeman [subst {
script_args total_time
script {PulseField $PAmp $PRise $PHold $PFall}
multiplier 795.77472

1

proc PulseField { PAmp PRise PHold PFall total_time} {

if {$total_time < $PRise} {
set Hx [expr $PAmp * ( $total_time / $PRise )]
set dHx [expr $PAmp / $PRise]
return [list $Hx 0 0 $dHx 0 0]

} elseif {$total_time <= [expr $PRise + $PHold]} {
return [list SPAmp 0 0 0 0 0]

} elseif {$total_time < [expr $PRise + $PHold + $PFall]} {
set Hx [expr $PAmp * ( $PFall + $PHold + $PRise - $total_time ) / $PFall]
set dHx [expr -$PAmp / $PFall]
return [list $Hx 0 0 $dHx 0 0]

}else {return [list00000 0] }

Specify UHH_ThetaEvolve [subst {
do_precess 1
gamma_LL $gamma
alpha $alpha
fixed_timestep $timestep
temperature $Temp
uniform_seed $Sim

1

Specify Oxs_TimeDriver [subst {
basename $outfile
evolver UHH_ThetaEvolve
mesh :mesh
stopping_time $timestop
Ms {
Oxs_AtlasScalarField {
atlas :atlas

values {
nonmagnetic 0
right $Ms
up $Ms
down $Ms
left $Ms
}

mO { Oxs_AtlasVectorField {
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atlas :atlas

values {
nonmagnetic{000 }
right {100}
up{010}
down{0-10}
left{-100}

}

}
1
#Destination archive mmArchive

#Schedule Oxs_TimeDriver::Magnetization archive Stage 1
#Schedule DataTable archive Stage 1

111



Appendix B. MATLAB Programs

1. Exploring Chains with Second-Order Anisotropy

The dynamics of nanomagnets with any combination of uniaxial and biaxial
anisotropy can be modeled using macro-spin simulations based on existing code. The
following MATLAB program creates chains of macro-spins with anisotropy parameters,
dimensions, and temperature, and checks for correct signal propagation. If the chain
behaves correctly over a certain number of simulations, this program stores the
corresponding anisotropy values and simulation time. An arbitrary range of anisotropy
values can be checked. This program employs an algorithm that assumes a continuous
region of anisotropy values works correctly. The algorithm checks each biaxial value, and
for each biaxial value, it starts at the lowest working uniaxial value for the last biaxial value
and checks both lower and higher uniaxial values until it finds a certain number of uniaxial
values in a row that do not work. This number, called the buffer, can easily be changed up
to an equivalent of simply brute force checking all combinations of anisotropy values. The
code below is configured to check horizontal chains, however the initialization and
correctness conditions for vertical chains can easily be implemented. Arbitrary layouts of
macro-spins, such as majority logic gates, can also be simulated by likewise implementing
the appropriate correctness conditions. The inputs to the function are the array of biaxial
values, the array of uniaxial values, the lateral size of the nanomagnets (assumed to be
square), the gap size between nanomagnets, and the temperature, respectively. The
nanomagnet thickness is currently fixed but can easily be changed in line 4. Code inherited
from previous work[42] including the singlespin library and the couplingmatrix and
biaxtiltevolve functions is required for this code to function.

function mySimAnisotropy(kb,ku,sz,spc,temp)
nMagnets=12+2; % Number of magnets in chain plus input and block
period=sz+spc; % Center-to-center spacing of magnets (nm)
dimension=[sz sz 12]; % Dimensions of magnets (nm)
timestep=1e-12; % Simulation time step (s)
input=1; % input magnetization
filename=['"ZGU' num2str(temp) 'K12x' num2str(sz) '+' num2str(spc) "mat'];
Hmax=0.1/cnst.mu_0; % Maximum applied field (A/m)
Hstbl=0.05/cnst.mu_0; % Stabilization field on block (A/m)
stage=[0 00 0 6000]; % Number of steps per stage
stopstep=sum(stage); % Total simulation steps
HT=zeros(stopstep,3); % Set applied field vs. time
HT(:,1)=Hmax*[zeros(stage(1),1);
(linspace(0,1,stage(2)).*ones(1,stage(2)));
ones(stage(3),1);
(linspace(1,0,stage(4)).*ones(1,stage(4)))’;
zeros(stage(5),1)];

nSims=2+round(temp*18/300); % Number of simulations
lengthku=length(ku); % Number of uniaxial anisotropy values
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lengthkb=length(kb); % Number of biaxial anisotropy values
volume=prod(dimension)*1e-27; % Volume of magnets (m”3)
Eb=kb*volume/(4*cnst.q); % Biaxial energy (eV)
Eu=ku*volume/cnst.q; % Uniaxial energy (eV)

limitstep=stopstep/2; % Cutoff simulation step for stuck magnets
maxbuffer=lengthku;

limitbuffer=2; % Maximum number of nonworking ku values to check
clockstage=sum(stage(1:2));

lastindex=1;

for ikb=1:lengthkb
scanright=false;
scanup=false;
buffer=0;
thisindex=lengthku;
iku=lastindex;
while ~scanright
thisku=ku(iku);
thiskb=kb(ikb);
correct=ones(nSims,nMagnets);
chainmt=zeros(nSims,nMagnets,3);
scan=false;
times=zeros(nSims,1);
iSim=1; % Start simulation
while ~scan
tic;
clear chain
chain(nMagnets)=singlespin;
for i=1:nMagnets
chain(i).dim=dimension;
if clockstage>0
if mod(i,2)==0
chain(i).initialize([0 1 0]);
else
chain(i).initialize([0 -1 0]);
end
else
chain(i).initialize([1 0 0]);
end
chain(i).Eu=[0 -Eu(iku) 0];
chain(i).Eb=[-Eb(ikb) 0];
chain(i).position=[(i-1)*period 0 0];
chain(i).temp = temp;
end
chain(1).initialize([0 -1 0]);
chain(nMagnets).initialize([1 0 0]);
coupling=couplingmatrix(chain);
options=optimset('Display’, 'off','Algorithm’,{'levenberg-marquardt',0},'TolX",1e-5, Jacobian','off");
for time=2:stopstep
Happ=HT(time,:);
if time>sum(stage(1:2))
chain(1).evolve([0 input 0],[0 0 0]);
else
chain(1).evolve([0 -1 0],[0 0 0]);
end
chain(nMagnets).evolve([1 0 0],[0 0 0]);
MT=zeros(nMagnets,3);
for i=1:nMagnets
MT(i,:)=chain(i).MT(time-1,:);
end
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for i = 2:nMagnets-1
Hnn=[0 0 0];
for j=1:nMagnets
Hnn=Hnn+[sum(coupling(1,,i,j).*MT(j,:)) sum(coupling(2,:ij).*MT(j,:)) sum(coupling(3,:1j).*MT(j,:))];
end
if i==nMagnets
Hnn=Hnn+[Hstbl 0 0];
end
chain(i).biaxtiltevolve(timestep,temp,Happ+Hnn,options)
end
nFlipped=0;
for i=2:nMagnets-1
if abs(chain(i).MT(time,2))>(1/sqrt(2))
nFlipped=nFlipped+1;
end
end
if time>limitstep && nFlipped==0
break; % All magnets stuck
end
if nFlipped>=nMagnets-2
break; % All magnets flipped
end
end
for i=1:nMagnets
chainmt(iSim,i,:) = chain(i).MT(time,:);
if (i < nMagnets-1 && chain(i).MT(time,2)*chain(i+1).MT(time,2)>-0.5)
correct(iSim,i)=0; % Count errors
end
end
times(iSim)=time*timestep;
disp(['kb: ' num2str(thiskb) " ku: ' num2str(thisku) ' Sim: ' num2str(iSim) ' Time: ' num2str(times(iSim))])
err=find(correct(iSim,:)==0);
if isempty(err)
disp('No errors");
else
disp(['Error(s): ' num2str(err)]);
scan=true;
end
iSim=iSim+1;
if iSim>nSims
break; % End simulation
end
toc
end
kbs=thiskb;
kus=thisku;
ts=times;
if ~scan
if (exist(fullfile(cd,filename),'file") ~= 0)
load(fullfile(cd,filename))
kbs = [kbs thiskb];
kus = [kus thisku];
ts = [ts times];
end
save(filename,'kbs','kus’,'ts")
buffer=0;
thisindex=min(iku,thisindex);
maxbuffer=limitbuffer;
else
buffer=buffer+1;
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end
if ~scanup
iku=iku-1; % Decrement ku value
if iku<1 || buffer>maxbuffer
iku=lastindex+1;
buffer=0;
scanup=true;
end
else
iku=iku+1; % Increment ku value
end
if iku>lengthku || buffer>maxbuffer
scanright=true; % Check next kb value - all kb values are checked
end
if ~scanright
if ~scanup
disp(['Scanning down with ' num2str(maxbuffer-buffer) ' tolerance...']);
else
disp(['Scanning up with ' num2str(maxbuffer-buffer) ' tolerance..."]);
end
else
disp('Advancing independent variable...");
end
end
lastindex=thisindex;
end

2. Reading and Processing SPE Images

Images produced by the Princeton Instruments charge-coupled device in the XM-1
transmission x-ray microscope are stored in the SPE file format. The following interactive
MATLAB program reads a series of SPE files and converts them to images. The images are
sorted such that every consecutive pair of images can be compared to each other through
per-pixel division. The program will attempt automatic alignment of the two images using
a rectangular region that the user selects. Subsequently, the user can manually use the
arrow keys to finely adjust the alignment and use the square bracket and angle bracket
keys to adjust brightness and contrast. The median noise and Gaussian blur filtering
included can be tuned using the program’s parameters. Finally, pressing the space key
stores the displayed image. The input to the function is the bin number, which is chosen
appropriately for the pixel size of the image. A function named metric that takes as input 2
matrices of identical dimensions is required for this code to function.

function SPEcompare(bin)

pixels = bin*512; % Typical is bin = 2 for 1024 x 1024 pixels

blur = [3 3]; % Median noise filter range (pixels)

stretch = [0.005 0.995]; % Contrast range (percent pixels)

strint = 0.005; % Contrast range step size (percent pixels)

buffer = 16; % Automatic alignment scan range (pixels)

shift = 0.5; % Manual alignment step size (pixels)

gaussian = fspecial('gaussian’,5,1); % Gaussian blur

[Xq,Yq] = meshgrid((1:pixels),(1:pixels));

[trgname,trgpath] = uigetfile('../XM12013/092012/*.spe’,'Select images','MultiSelect’,'on");
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if iscell(trgname)
filesc = size(trgname,2);
elseif isnumeric(trgname)
if trgname ==
filesc = 0;
end
elseif ischar(trgname)
filesc = 1;
trgname = {trgname};
end
files = filesc/2; % Create image arrays
refimgs = zeros(pixels,pixels,files);
trgimgs = zeros(pixels,pixels,files);
for f = 1:files
fid1 = fopen([trgpath trgname{1,2*f-1}]);
fread(fid1,2050,'uint16");
arrayl = fread(fid1,pixels*pixels,'uint32");
fclose(fid1);
fid2 = fopen([trgpath trgname{1,2*f}]);
fread(fid2,2050,'uint16");
array2 = fread(fid2,pixels*pixels,'uint32');
fclose(fid2);
matrix1 = reshape(array1,pixels,pixels); % Raw images
matrix2 = reshape(array2,pixels,pixels);
refimgs(:,.,f) = medfilt2(mat2gray(flipud(matrix1)),blur,'symmetric');
trgimgs(:,;,f) = medfilt2(mat2gray(flipud (matrix2)),blur,'symmetric’);
colormap('gray");
imagesc(refimgs(:,:,f));
axis image;
rect = round(getrect); % Create alignment boundary
xmin = rect(1);
ymin = rect(2);
xmax = rect(1)+rect(3);
ymax = rect(2)+rect(4);
refimg = edge(refimgs(ymin:ymax,xmin:xmax,f),'canny');
trgimg = edge(trgimgs(ymin-buffer:ymax+buffer,xmin-buffer:xmax+buffer,f),'canny');
[wy,wx] = size(refimg); % Calculate automatic alignment
n = 2*buffer+1;
m = buffer+1;
matrix = zeros(n);
fori=1:n
forj=1mn
matrix(j,i) = metric(refimg,trgimg(j:j+wy-1,i:i+wx-1));
end
end
[mins,ind] = min(matrix(:));
[ty,tx] = ind2sub(size(matrix),ind);
ty = m-ty;
tx = m-tx;
z = 0; % Manual alignment and brightness/contrast
while z ==
sy = round(ty);
fy =ty - sy;
sx = round(tx);
fx = tx - sX;
image = circshift(trgimgs(:,:,f),[sy sx]);
image = interp2(image,Xq-fx,Yq-fy);
image = mat2gray(imfilter(refimgs(:,:,f)./image,gaussian));
image = imadjust(image,stretchlim(image(ymin:ymax,xmin:xmax),stretch));
imagesc(image);
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axis image;
waitforbuttonpress;
try
switch uint8(get(gcf,'CurrentCharacter'))
case 28 % Left arrow
tx = tx-shift
case 29 % Right arrow
tx = tx+shift
case 30 % Up? arrow
ty = ty-shift
case 31 % Down? arrow
ty = ty+shift
case 91 % Left square bracket
if stretch(1)-strint >= 0
stretch = [stretch(1)-strint stretch(2)-strint]
end
case 93 % Right square bracket
if stretch(2)+strint <=1
stretch = [stretch(1)+strint stretch(2)+strint]
end
case 44 % Comma
newstretch = max((stretch(1)+1-stretch(2))/2 - strint,0);
oldshift = (stretch(1)+stretch(2)-1)/2;
toll = newstretch+oldshift;
tol2 = 1-newstretch+oldshift;
if (toll >= 0)&&(tol2 <= 1)&&(tol1l<tol2)
stretch = [tol1 tol2]
end
case 46 % Period
newstretch = min((stretch(1)+1-stretch(2))/2 + strint,0.5);
oldshift = (stretch(1)+stretch(2)-1)/2;
toll = newstretch+oldshift;
tol2 = 1-newstretch+oldshift;

if (tol1<tol2)
stretch = [tol1 tol2]
end
case 32 % Space: saves the image
z=1;
imwrite(image,['xm1shot/' strrep(trgname{1,2*f},".spe’,".png')]);
otherwise
z=0;
end
catch err
end
end
end
close;
end

Below is a sample metric function that calculates the sum of the per-pixel difference
squared as an error metric for grayscale images. The smallest sum indicates the least error,
but the rudimentary procedure used in the code above does not work well for images with
background intensity gradients.

function z = metric(x,y)
z = sum(sum((x-y).*2));
end
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3. Generating OOMMF Image Atlases

OOMMF uses images to determine what the material properties of each mesh point
are. If large numbers of different images with systematic variations are needed for a series
of OOMMF simulations, a tool that converts text into images may be useful. Below is an
extensible MATLAB program that interprets an XML file as a layout, generates the
corresponding image, and adjusts any parameters needed in the corresponding OOMMF
script. The minimum mesh size in this program is 1 nm. More types of shapes can be
added to images by writing additional statements inside the case block. Different OOMMF
script parameters can be adjusted by editing the mif block near the end. Support for more
than two colors can be added, but requires more significant code changes. The input to the
function is a string that gives the path to the XML file.

function nmldraw(file)
% Get XML DOM tree
tree = xmlread(file);
% Parse image dimensions (nm) and meshsize (nm)
dimensions = tree.getElementsByTagName('dimensions").item(0);
magnets = tree.getElementsByTagName('magnet');
mesh = str2num(dimensions.getElementsByTagName('mesh').item(0).getTextContent);
xdim = str2num(dimensions.getElementsByTagName('x").item(0).getTextContent);
ydim = str2num(dimensions.getElementsByTagName('y').item(0).getTextContent);
name = char(dimensions.getElementsByTagName('name").item(0).getTextContent);
% Initialize image matrix and colormap
image = ones(ydim,xdim); % 1 is white, 2 is black
map =[111;000]; % white;black for a;b where a<b
for i = 0:magnets.getLength-1
% For each magnet check what type of shape it is
magnet = magnets.item(i);
shape = magnet.getElementsByTagName('shape").item(0);
switch char(shape.getTextContent)
% Simple square magnet, origin x0,y0 at top left corner with side
% length s.
case 'square’
x0 = str2num(magnet.getElementsByTagName('x0").item(0).getTextContent);
y0 = str2num(magnet.getElementsByTagName('y0').item(0).getTextContent);
s = str2num(magnet.getElementsByTagName('s').item(0).getTextContent);
image(y0+1:y0+s,x0+1:x0+s) = 2;
% Simple rectangular magnet, origin x0,y0 at top left corner with
% extent dx in x direction and dy in y direction.
case 'rectangle’
x0 = str2num(magnet.getElementsByTagName('x0").item(0).getTextContent);
y0 = str2num(magnet.getElementsByTagName('y0').item(0).getTextContent);
dx = str2num(magnet.getElementsByTagName('dx').item(0).getTextContent);
dy = str2num(magnet.getElementsByTagName('dy").item(0).getTextContent);
image(y0+1:y0+dy,x0+1:x0+dx) = 2;
% Rectangular magnet with concave edges along the top and bottom
% approximated by rectangular cutouts so that the magnet resembles
% an 'H', origin x0,y0 at top left corner with extent dx in x
% direction and dy in y direction, cutout width cx and depth cy
% where dx-cx must be an even number.
case 'concaverect'
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x0 = str2num(magnet.getElementsByTagName('x0").item(0).getTextContent);
y0 = str2num(magnet.getElementsByTagName('y0').item(0).getTextContent);
dx = str2num(magnet.getElementsByTagName('dx').item(0).getTextContent);
dy = str2num(magnet.getElementsByTagName('dy").item(0).getTextContent);
image(y0+1:y0+dy,x0+1:x0+dx) = 2;
cx = str2num(magnet.getElementsByTagName('cx").item(0).getTextContent);
cy = str2num(magnet.getElementsByTagName('cy').item(0).getTextContent);
image(y0+1:y0+cy,x0+1+(dx-cx)/2:x0+(dx+cx)/2) = 1;
image(y0+1+dy-cy:y0+dy,x0+1+(dx-cx)/2:x0+(dx+cx)/2) = 1;
% Rectangular magnet with concave edges along the top and bottom
% approximated by rectangular cutouts and biasing wings along the
% left and right approximated by rectangular growths, origin x0,y0
% at the upper left corner of the 'H' so that the growths lie
% outside the bounding box x:x+dx, rectangular dimensions dx,dy,
% cutout width and depth cx,cy where dx-cx must be even, growth
% width and height bx,by and y-separation bd between the centers of
% the wings where dy-by+bd must be even.
case 'biasconcaverect’
x0 = str2num(magnet.getElementsByTagName('x0").item(0).getTextContent);
y0 = str2num(magnet.getElementsByTagName('y0').item(0).getTextContent);
dx = str2num(magnet.getElementsByTagName('dx').item(0).getTextContent);
dy = str2num(magnet.getElementsByTagName('dy").item(0).getTextContent);
image(y0+1:y0+dy,x0+1:x0+dx) = 2;
cx = str2num(magnet.getElementsByTagName('cx").item(0).getTextContent);
cy = str2num(magnet.getElementsByTagName('cy').item(0).getTextContent);
image(y0+1:y0+cy,x0+1+(dx-cx)/2:x0+(dx+cx)/2) = 1;
image(y0+1+dy-cy:y0+dy,x0+1+(dx-cx)/2:x0+(dx+cx)/2) = 1;
bx = str2num(magnet.getElementsByTagName('bx').item(0).getTextContent);
by = str2num(magnet.getElementsByTagName('by").item(0).getTextContent);
bd = str2num(magnet.getElementsByTagName('bd").item(0).getTextContent);
image(y0+1+(dy+bd-by)/2:y0+(dy+bd+by)/2,x0+1-bx:x0) = 2;
image(y0+1+(dy-bd-by)/2:y0+(dy-bd+by)/2,x0+1+dx:x0+dx+bx) = 2;
end
end
% Initialize smaller image with 1 pixel per mesh point
xrdim = xdim/mesh;
yrdim = ydim/mesh;
reduced = ones(yrdim,xrdim);
% To figure out the color at a pixel, just average a square of the size of
% the mesh grid and round. Works for black and white colormap only.
for i = 0:xrdim-1
forj = 0:yrdim-1
reduced(j+1,i+1) = round(mean2(image(j*mesh+1:(j+1)*mesh,i*mesh+1:(i+1)*mesh)));
end
end
% Save the image with corresponding filename
imwrite(reduced,map,strcat(name,.ppm"));
% Generate corresponding OOMMF script file
miffile = fileread ('nmldraw.mif2");
miffile = strrep(miffile,'$MESH$', num2str(mesh));
miffile = strrep(miffile,'$XDIM$',num2str(xdim));
miffile = strrep(miffile,'$YDIM$',num2str(ydim));
miffile = strrep(miffile, $SNAME$',name);
newmif = fopen(strcat(name,'.mif2"),'w");
fwrite(newmif,miffile,*char');
fclose(newmif);
end

Below is a sample XML file.
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<NML>

<dimensions>
<x>76</x>
<y>20</y>
<mesh>1</mesh>
<name>bgate</name>
</dimensions>

<magnet>
<shape>square</shape>
<x0>0</x0>
<y0>5</y0>

<s>10</s>

</magnet>

<magnet>
<shape>rectangle</shape>
<x0>20</x0>

<y0>0</y0>
<dx>10</dx>
<dy>20</dy>

</magnet>

<magnet>
<shape>concaverect</shape>
<x0>40</x0>

<y0>0</y0>

<dx>12</dx>

<dy>20</dy>

<cx>8</cx>

<cy>2</cy>

</magnet>

<magnet>
<shape>biasconcaverect</shape>
<x0>62</x0>
<y0>0</y0>
<dx>12</dx>
<dy>20</dy>
<cx>8</cx>
<cy>2</cy>
<bx>2</bx>
<by>2</by>
<bd>2</bd>
</magnet>

</NML>

Below is a relevant section of the template OOMMF script nmldraw.mif?2.

# Grid sizes

set xcell $MESH$e-9
set ycell SMESH$e-9
set zcell 1e-9

# Image sizes
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Parameter xpix $XDIM$
Parameter ypix $§YDIM$
Parameter zpix 24

Below is the corresponding section in the resulting OOMMF script.

# Grid sizes

set xcell 1e-9
setycell 1e-9
set zcell 1e-9

# Image sizes

Parameter xpix 76
Parameter ypix 20
Parameter zpix 24

The following is the resulting image atlas.

o LK.

Figure B. 1: Image generated by MATLAB script where a square, rectangle, concave magnet,
and biased concave magnet are placed by text.
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Appendix C. Python Programs

1. Efficient Multi-Threading in OOMMF

OOMMF currently lacks any form of efficient support for multi-core processors. In
order to gain performance, one must simultaneously run multiple simulations and task the
operating system with allocating processing resources. The following Python script loops
through two parameters using as many concurrent simulations as there are cores in the
processor. Adjustments need to be made if a different number of parameters is needed.
Adjustments are also needed to set the correct path to OOMMF, change the parameter
space, and relay new parameters to OOMMF. However, this script provides a working
framework for running concurrent simulations.

import os, sys, subprocess, time

root = os.getcwd()+'/oommf12a4pre-20100719bis’
allocated = 0

os.chdir(root)
threads =[]
idles =]
maxthick = 51
maxdepth =11
cores =8

for depth in range(1,maxdepth):
for thick in range(1,maxthick):
command = "tclsh oommf.tcl boxsi -parameters "D '+str(depth)+' H "+str(thick*2)+" -- square.mif2’
if allocated < cores:
threads.append(subprocess.Popen(command,shell=True))
allocated += 1
else:
while len(idles) == 0:
time.sleep(1)
for iin range(0,allocated):
if threads[i].poll() != None and idles.count(i) == 0:
idles.append(i)
threads[idles.pop()] = subprocess.Popen(command,shell=True)

while len(idles) < allocated:
time.sleep(1)
for iin range(0,allocated):
if threads[i].poll() != None and idles.count(i) == 0:
idles.append(i)

122



Appendix D. Fabrication Recipes

1. Bi-Layer Lift-Offs with Lift-Off Resist

In typical lift-off processing one masks features using a bright mask exposure and
evaporates on top if it such that the unwanted areas adhere to the photoresist and are
removed when the photoresist dissolves in solvent. A common problem arises from the
fact that the evaporated material will adhere to some degree onto the sidewalls of the
photoresist. A much thicker than intended layer of material will build up at the edges of the
masked features. Once solvent solution is introduced, this material will stay on the
substrate because it is still anchored at its base by the substrate. The thick edges will cause
issues when small features, smooth surfaces, or further processing is needed. Figure D.1
illustrates this issue with cross-sectional profile of a rectangular feature, measured by AFM.

Worse still, the thick edges may bend or break for soft or brittle materials when
subject to mechanical forces such as the case during sonication. Typically a thin adhesion
layer that adheres well to both the substrate and the target material is first evaporated as
an interface material. This usually will allow the sample to tolerate sonication without
causing the target material to rinse off in the solution. However, this does not help much in
preventing the thick edges from separating. Figure D.2 is an SEM image that illustrates a

Figure D. 1: AFM height profile of a rectangle with significant lift-off edge residue.
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Figure D. 2: SEM of a rectangle with lift-off edge residue and peeling.

particularly bad case of thick edges bending and breaking after a copper lift-off.

The solution to this problem is to use bi-layer resists. An additional resist layer that
undercuts the mask is inserted between the substrate and the photoresist. Evaporated
material will still adhere to the sidewalls of the photoresist, but will no longer be anchored
down to the substrate. Instead, this material hangs over the features and will wash away
once the resists are dissolved. One combination of resists typically used is I-line and G-line
photoresists. Their differing exposure rates will cause one to develop larger areas, making
it appropriate as the undercutting layer.

The combination that the author used is MicroChem Lift-Off Resist (LOR) and
Fujifilm positive photoresist. LOR is a spin-on film that does not expose, but etches in
photoresist developer. It comes in multiple dilutions, which spin on at different
thicknesses (the author used LOR-5A which is appropriate for evaporations of 100 nm -
200 nm). Before spinning, one should bake the sample to drive off any water. Unlike most
photoresists, LOR does not need any hexamethyldisilazane (HMDS) for adhesion, and
hardens rather than dissolves in acetone. The spin parameters determine the thickness of
the LOR, which should be significantly (by a factor of 2 or more) thicker than the total
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Figure D. 3: SEM of a rectangle after bi-layer lift-off.

thickness of evaporated material. 3000 rpm for 45 seconds is typical. After spinning, one
should bake the sample to determine the etch rate of the LOR in photoresist developer.
Higher temperatures and longer bakes result in slower etch rates. 150 °C - 180 °C for 10
minutes is typical. Afterward, one would spin on, soft bake, expose, and develop
photoresist as normal. The LOR will etch faster than the photoresist in the developer
solution, causing an undercut to form. Finally, after evaporation, lift-off should be
performed in MicroChem Remover PG, which is a solvent that dissolves both LOR and
photoresist. Figure D.3 is an SEM image that illustrates the drastic improvement in lift-off
quality after evaporating copper onto a bi-layer process.

For larger chips as well as wafers, the author recommends that lift-off be done with
the sample upside down in solvent solution. A levitation mechanism such as a wafer
cassette should be used so that there is sufficient space under the sample. This way,
material that has lifted off does not stick back onto the sample. Figure D.4 is a cross-
sectional profile of a rectangular feature similar to the profile shown above, also measured
by AFM, illustrating the clean lift-off gained by using bi-layer processes.
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Figure D. 4: AFM height profile of a rectangle after bi-layer lift-off.

2. Surface Planarization with Spin-On Dielectrics

[t is typically very difficult to get extremely smooth top surfaces on thick (100 nm or
higher) evaporated metal features. Ideally, evaporations inherit the surface roughness of
the substrate, but most metals tend to form grains, and as a result increase the roughness
of the top surface as the deposition becomes thicker. An obvious step to take in ensuring
the smoothest possible top surface is to ensure that the substrate is as smooth as possible
before evaporation, using plasma de-scum or the like. Figure D.5 is an AFM image of the
surface of a 160 nm thick gold evaporation after lift-off using a bi-layer process. The root-
mean-square surface roughness is 1.9 nm.

If one requires an even smoother surface and can accept a layer of dielectric
deposited on top of the metal surface, then spin-on dielectrics such as Honeywell’s spin-on

glass or Inpria’s spin-on metal oxides can serve the role of planarization much better than

Figure D. 5: AFM image of a thick gold evaporation with grains.
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Figure D. 6: AFM image of a 3-layer AIPO planarized thick gold evaporation.

chemical mechanical polishing (CMP). The author used aluminum oxide phosphate (AIPO)
from Inpria for this purpose. The thickness that it spins on is determined by the spin
parameters, but a typical thickness is 45 nm from 3000 rpm for 1 minute. The adhesion of
AlPO depends on how hydrophilic the substrate surface is. An oxygen plasma clean before
spinning usually helps in this regard. One should also be careful to keep all solvent fumes
away from the substrate while spinning. After spinning, AIPO must be cured by a 5 minute
bake at 350 °C. Multiple layers can be deposited by repeating cycles of clean, spin, and
cure. If smaller (less than tens of microns) features need to be planarized, the AIPO
thickness spun on over these features will be lower than that of bare substrate. Figure D.6
is an AFM image of the surface of the same 160 nm thick gold feature (6 pum critical size)
after depositing and curing 3 layers of AIPO. The root-mean-square surface roughness has
significantly improved to 0.3 nm.

Various wet etch recipes will work for etching AIPO. For a relatively slow, well-
controlled etch, the author used 4 M phosphoric acid. Etch rates were not well
characterized, though a 7.5 minute soak at room temperature removed at least 135 nm of
AlPO.
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