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Abstract

Wireless Sensing Applications for Critical Industrial Environments

by

Fabien Joseph Chraim

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kristofer S.J. Pister, Chair

The widespread deployment of the World Wide Web over the past few decades has

connected people globally. The next logical step in this evolution was to connect people to

their environment. As public interest in the aging infrastructure grew, so did the desire to

make this infrastructure safer and more environmentally friendly. This required the devel-

opment of low-power wireless sensor networks to monitor and control this infrastructure,

the so-called Internet of Things. With the introduction of low-power communication stan-

dards rooted in the Time Slotted Channel Hopping (TSCH) mechanism, the ability to have

sensors communicate robustly (99.999%) over long periods of time (10 years) using battery

power, appears to have been largely achieved.

This thesis is concerned with exploring three significant applications of these new communi-

cation networks. It also introduces two modeling tools useful in designing new applications

for this space. A process automation solution centered around rotary valve position mon-

itoring is presented first. The “peel-and-stick” MEMS device shows an accuracy of ±5◦

for quarter-turn valves, and an accuracy of ±10% of a turn was obtained with the multi-

turn valves. This cost-effective solution is designed to be densely deployed on most of the

plant’s rotary valves. Next, the design and implementation of fence line perimeter security

application is developed and verified. Combining a MEMS accelerometer with a hypoth-
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esis testing algorithm, all 91 known intrusions were detected with no false alarms over a

period of approximately two months. Finally, a wireless gas leak detection and localization

is evaluated from a sensory swarm perspective. This application highlights the detection

challenges when working with noisy sensors. A gas plume detection rate higher than 90%

is demonstrated, with 7 false alarms over a period of three days and an average detection

delay of 108s. In terms of localization, the system estimated the leak locations to within

three meters of the actual leak source.

The design of the new system tools is controlled by the energy trade-off between trans-

mitting and locally processing captured data. This has direct implications on the Quality

of Service (robustness, delay, lifetime, etc.). An adaptable energy consumption model for

TSCH networks is presented and then generalized to an application energy consumption

model. These design-time tools allow developers to understand the feasibility of the new

application and to refine its hardware and software design in order to meet predefined

specifications. The application energy model is presented by taking a motor vibration ap-

plication as an example, while combining the sensing and communication hardware with

energy scavenging.

The work done in this thesis is experimental in nature and care is taken to bring the

proposed ideas as close to real implementations as possible: the hardware is built using

commercial off-the-shelf components, the networks are configured for the application at

hand, and algorithms are devised and validated in each setting.
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Introduction

Our daily lives are increasingly dependent on industries like transportation, food, con-

struction, oil and gas, utilities, communication, and medicine. Therefore, it is essential

to make these industries resilient to accidents and sabotage in order to continue improve-

ments to our quality of life. As the environmental impact of our industries becomes more

apparent, reducing the emissions and toxic wastes from these plants turns into a priority.

Furthermore, it is imperative to keep these industries secure and accident-free, by virtue of

the fact that they exist in close proximity to our large cities. Finally, human workers are

still at the heart of many of these plants. Consequently, plant managers and operators need

to ensure the safety of these workers. Wireless sensing therefore becomes an essential tool

in keeping critical industrial environments safe, efficient, and competitive.

The turn of the 21st century witnessed great advances in the field of wireless sensing.

With this increased interest in wireless technologies however, came a battle over standard-

ization. Hundreds of interested parties from private firms to government institutions, joined

the discussion surrounding the communication protocols that would govern the operation

of these resource-constrained, battery-operated wireless sensors. Simplistic communication

protocols (CSMA1-based) were hastily adopted with the goal of quickly capitalizing on this

“new-found” world of wireless. This resulted in a number of failed deployments that led to

a mistrust of low-power wireless technology in general, especially within industrial fields.

As such, the trillions of sensors envisioned by some, and the billions of dollars expected by

many, are yet to happen in this world of wireless sensors.

1Carrier Sense Multiple Access
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Still, a reasonable amount of notable ideas did find their way into products and stan-

dards. These are based mainly on the concepts on time-synchronization and channel di-

versity (WirelessHART [1], ISA100.11a [2], IEEE802.15.4e [3], SmartMesh IP [4]). The

introduction of these new communication methods, seems to have resolved the problems

of reliability and energy consumption. Indeed, products on the market today achieve a

99.999% reliability with a 10-year battery lifetime. This has led to the beginning of long-

term industrial wireless deployments in the oil and gas industry. However, many chemical

plants and refineries worldwide are nearing their centennial anniversary and are in dire need

of retrofitting and monitoring. Wireless sensing which decreases the installation cost by or-

ders of magnitude, presents an opportunity to dramatically increase the number of installed

sensors. Moreover, removing the wires from harsh environments allows plant operators to

extract valuable information from locations which were previously unattainable. However,

many of the applications being implemented today are rather simplistic: temperature and

pressure sensing, flow measurement, contact switches etc. What does it take to go be-

yond the simple monitoring applications available today? What are the considerations at

the hardware and firmware level that need addressing when developing new sensing meth-

ods? What is the best way to apply the mathematical tools to the data generated by the

sensors? How do different network, sensing and application-level configurations affect the

device lifetime and communication reliability?

This thesis is concerned with exploring the realm of possible applications on the newly-

developed industrial wireless infrastructure. The work presented herein is divided into two

parts. The first addresses three applications that were developed and verified. The second,

describes the tools that were built along the way to simplify the design and evaluation pro-

cess. The applications in Part I revolve around making plants safer and more secure. As

such, a “peel-and-stick” wireless valve position monitoring sensor is studied first, with an

emphasis on sensing and computation challenges on the resource-limited devices. The sec-

ond application is perimeter security solution called SmartFence. In essence, the possibility

of adding a first line of defense around the plant is studied, utilizing a wireless low-power

network. Analysis of this application also presents a widely applicable detection algorithm
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based in sequential probability testing. The third application presented is wireless gas leak

detection and localization. The aim is to demonstrate a reliable and cost-effective solution

for the dangerous leaks that plague many plants worldwide. Focus is given to the swarm

aspect of the solution by looking at how information gathered from many sensors can be

used to solve crucial problems in real time. The detection and localization algorithm is

presented along with the results of a large-scale experiment with many participants.

Energy is known to be a major challenge in the field of wireless industrial sensing.

Part II of this thesis revolves around two models for addressing those challenges. An

energy modeling tool applicable to Time-Synchronized Channel-Hopping (TSCH) networks

is presented first. This model is developed using commercial off-the-shelf hardware and

allows the user to evaluate the effect of network configuration on energy. Building upon

this model, a generalized energy consumption model for wireless sensing applications is

then derived. This second tool takes into account the sensing and computation components

taking place on-board the device. With energy scavenging and storage in mind, this model

is validated by means of the sample application of machine vibration monitoring.

The method of choice here is an experimental one. In wireless distributed sensing, the

most useful research style is often one with a heavy emphasis on experiments and real data.

Very stringent but realistic requirements are imposed on the applications presented here:

lifetimes of 10 years on regular lithium batteries, quick detections, low false alarms, an 8

or 16 bit microcontroller with complex operations to run, etc. By bringing the research

as close to commercial deployments as possible, the hope is to go beyond simple proofs of

concept, since many challenges are embedded in the implementation process.
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Part I:

Applications
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Chapter 1

Valve Position Monitoring: a

MEMS Approach1

From controlling the flow of water, to controlling machines, valves have been with us

for centuries. Monitoring the position of valves is clearly beneficial for plant operators. The

capability of detecting incorrect valve positions can help avoid the types of accidents that

most often lead to personnel injuries and damaged equipment. Attempts to prevent such

accidents commonly involve sending employees to various parts of the plant in order to

verify valve positions. However, the use of wireless communication to accomplish this task

is more time and cost effective. Additionally, access to plant-wide valve position reports

will aid operators in making sense of each process pressure gradients [5–9].

In some market reports, experts claim that up to 85% of valves are left without any

monitoring [7]. Such a low penetration rate for valve position sensing may be attributed to

the fact that sensing technology has been largely stagnant for the past two decades. Most

solutions employ some sort of magnetic or optical encoding while others feature contact

switches [7–9]. This makes most products expensive and bulky. As wireless technologies

1This chapter was published in a similar form as follows:

Chraim, F.; Pister, K., “Wireless Valve Position Monitoring: A MEMS Approach,” 39th

Annual Conference of the IEEE Industrial Electronics Society, 2013
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become more accepted in various industries, the number of vendors offering wireless com-

munication is increasing. However, many of the products on the market today do not take

full advantage of low-power wireless technologies, rendering them power-inefficient. Addi-

tionally, the installation of these solutions is often problematic: in many cases, a complete

halt of the process is required to retrofit an existing valve with new sensors. Individual

sensor calibration in some cases is also a significant barrier to speedy installations. The

industry as a whole seems to be focused on satisfying ISO standards and making their

products explosion-proof, while paying little attention to the sensing technology. The ad-

vantages of MEMS sensors with their easy packaging and their intrinsic safety appear to

have completely missed this market.

In this chapter, we address the problem of valve position monitoring through the use

of MEMS sensors. A cheap “peel and stick” wireless solution is presented that requires

no calibration and consumes very little energy. Our main contribution is in addressing the

issues described above: cost, calibration, energy consumption, size and ease of installation.

Along with proposing the hardware, we present a sensing algorithm described in section 1.3

before concluding this chapter with our results in section 1.4.

1.1 Experimental Setup

This study is focused on rotary valves. In particular, we look at multi-turn valves and

quarter-turn ones (though the same work can be extended to any part-turn model). Seen

in figure 1.1 is our experimental setup with two valve models: a gate valve and a ball valve.

The goal is to develop a way to keep track of the number of turns on a multi-turn valve by

using the gate model, while the ball valve will be used to develop the quarter-turn angle

tracking. Also seen in the figure is GINA (guidance and inertial navigation assistant) [10],

the sensing platform of choice. This board holds the MSP430f2618 from Texas Instruments,

along with a 9-axis Inertial Measurement Unit (see table 1.1). Other than the sensors,

the microcontroller interfaces with the WirelessHART compliant DN2510 radio by Dust
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Networks [1]. This general-purpose wireless sensing platform is utilized throughout the

research presented in this thesis (in chapters 2, 4 and 5).

With the setup in place, we ran several experiments where data from all the sensors

was collected and transmitted to a basestation. The first step in this study was to select

the sampling frequency of the sensors. It is desirable in this case to lower this frequency as

much as possible since each sample requires on-board communication with the sensor, some

sort of analog-to-digital conversion, and processing at the microcontroller. This has a direct

effect on the overall energy consumption of the device, and therefore its lifetime. This topic

is explored in more depth in Chapter 5. Initially, the data was collected at 300 Hz. However,

after looking at the frequency content of this data, we noted that a sampling frequency of

17 Hz was enough to capture all the motion information. All subsequent experiments were

therefore run at that frequency. In each of the experiments, the valves were turned from

one extreme to the other repeatedly, and in different valve orientations (horizontal, vertical

and oblique).

Figure 1.1: The experimental setup showing an instrumented ball valve (left) and an in-

strumented gate valve (right)
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Type Manufacturer Part Number Features

Microcontroller Texas Instruments MSP430F2618 16-bit, 16MHz,
116kB flash, 8kB RAM

3-axis accelerometer STMicroelectronics LIS344ALHTR +/-2 Gs or +/-6 Gs,
(sensitive) 1.8 kHz, 660 mV/G

3-axis accelerometer Kionix KXSD9-1026 +/-8 Gs, 2 kHz
(large range)

3-axis gyroscope Invensense ITG3200 2000 degs/s

3-axis magnetometer Honeywell HMC5843 +/- 6 Oe, 116Hz

Temperature sensor Texas Instruments TMP20AIDRLT +/-2.5 C, -55 C to 130 C

Table 1.1: GINA sensing platform hardware description

1.2 Detection with Noisy Sensors

Tracking the valve angle in its plane of rotation is not as straightforward as one may

think. Indeed, MEMS sensors are generally noisy or prone to drifting. While it is tempting

to task this problem to the processing power of a PC, this would require the device to

transmit all of its sensor data back to a server. Given our hardware design, an activity of

five seconds at the valve (opening a gate valve for example) would generate about 12 data

packets for transmission. This is not only costly in terms energy for the device itself, but it

is also costly for the nodes transporting the data to the gateway2. Therefore, the detection

needs to take place on board the 16-bit microcontroller used here.

The initial plan was to use the magnetometer to compute the orientation of the sensor.

However, collecting preliminary data in the vicinity of the pipes revealed that the magnetic

field around them is highly non-uniform. Additionally, considering the environment where

the devices will ultimately be placed (factories and plants), the presence of metallic machines

and large moving vehicles will make the magnetic environment even more unpredictable.

Figure 1.2 shows the results of an experiment run on the ball valve. In this time series,

the valve angle is computed from the magnetometer data and plotted over time. Although

the first 120 seconds were supposed to show an idle device, the magnetometer picked up

significant variations. During the motion of the ball valve between the two extremes (a

2A more in-depth analysis of the network energy and associated tradeoffs is presented in Chapter 4
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Figure 1.2: Plot of the valve angle over time, as inferred from the magnetometer. The valve

was steady for the first 120 seconds (no motion), then it was turned from one end to the

other repeatedly. Clearly the magnetometer recorded significant motion when there was

none, then showed a repetitive swing of around 40◦ instead of 90◦

range of 90◦), the magnetometer picked up a reduced range (about 40◦) while constantly

drifting.

The magnetometer was ultimately ruled out from the list of possible sensors. Instead,

we will present how the gyroscope and accelerometer were used to figure out the valve angle.

There are two types of drift in MEMS gyroscopes. One of them is due to the temperature of

the sensor, while the other is a result of manufacturing constraints. MEMS accelerometers

suffer from noise issues. Next, we will see how each of these issues was tackled.

1.2.1 Gyroscope Temperature Self-Calibration

Consumer-grade MEMS gyroscopes commercially available today are inherently sen-

sitive to temperature due to the relatively large temperature coefficient of single crystal

silicon. Process limitations then rule out one-time factory calibration [11]. Luckily, this re-

lationship is linear (in our device) over a wide range, meaning that one can easily calibrate

each axis with respect to the on-board temperature reading of the chip. In our study, we

imposed the constraint that each sensor cannot be calibrated independently before instal-

lation. Instead a method needed to be devised to allow the sensor to self-calibrate. When

the sensor is first turned on, the operating of current heats the device. Keeping the sensing
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Figure 1.3: The plot of the gyroscope axis reading v/s temperature shows the linear depen-

dency between the two. This data was recorded for one minute of inactivity.

platform stationary in this initial step allows for the self-calibration of the gyroscope. We

took advantage of the initial heating of the stationary device to establish the compensation

function. Seen in figure 1.3 is the plot of the Z axis reading versus temperature for the first

minute of operation, where the sensor is sampled every 3 ms. From this data, one can easily

derive the slope and intercept of this line, through an Ordinary Least Square approach.
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Given a vector of n temperature readings Ti, padded with a column of ones and a vector

of sensor data ĝxi (say the X axis of the gyroscope when it is stationary),

An,2 =


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
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(1.1)

here is the method used in order to find the slope and intercept of the linear relationship.

AB = Ĝx (1.2)

ATAB = AT Ĝx (1.3)

B = (ATA)−1AT Ĝx (1.4)

The result is then used in the following fashion, where Gx is the temperature compen-

sated gyroscope vector. The same procedure is repeated for all three axes.

Gx = Ĝx−AB (1.5)

1.2.2 Issues with Rigid-Body Dynamics

A calibrated gyroscope yields the angular rate of a rigid body (valve) along three axes, in

the body (moving) reference frame. In order to integrate those rates and find the valve angle

with respect to a fixed reference frame, one must rotate the rates to the Earth reference

frame. One would be tempted to retrieve the Euler angle rates (roll, pitch and yaw) directly

using relations similar to the following.

φ̇ = Gx+Gy · sin(φ)tan(θ) +Gz · cos(φ)tan(θ) (1.6)

θ̇ = Gy · cos(φ) +Gz · sin(φ) (1.7)

ψ̇ = Gy · sin(φ)/cos(θ) +Gz · cos(φ)/cos(θ) (1.8)

This mapping is however not unique and could potentially result in a loss of information

(known as the gimbal lock problem [12]). A possible workaround involves the introduction of
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quaternion algebra, which is an extension of the algebra of complex numbers. Quaternions

are 4-tuples that can be thought of as a sum of a scalar and a vector, and do not suffer

from the same issues as Euler angles. Seen here are the equations deriving the quaternion

rates directly from the gyroscope data.

q̇0 = −q1 ·Gx/2− q2 ·Gy/2− q3 ·Gz/2 (1.9)

q̇1 = q0 ·Gx/2 + q2 ·Gz/2− q3 ·Gy/2 (1.10)

q̇2 = q0 ·Gy/2− q1 ·Gz/2 + q3 ·Gx/2 (1.11)

q̇3 = q0 ·Gz/2 + q1 ·Gy/2− q2 ·Gx/2 (1.12)

These quaternion rates can be integrated directly and one can then obtain the Euler angles

through the following equations.

θ = arctan(2
q0 · q1 + q2 · q3

1− 2 · (q12 + q22)
) (1.13)

φ = arcsin(2 · (q0 · q2 − q1 · q3)) (1.14)

ψ = arctan(2
q0 · q3 + q1 · q2

1− 2 · (q22 + q32)
) (1.15)

1.2.3 Gyroscope Motion Drift

MEMS gyroscopes drift, mainly due to manufacturing constraints (this drift is not

related to temperature). This can be seen when integrating the angular rates obtained

from a sensor rotating back and forth between two positions. The resulting angle is not

equal to zero as one would expect. Instead, a DC bias appears and varies over time. In our

experiment in particular, when looking at the ball valve, one can see that moving the valve

away from its original position and back results in an offset from the original angle (refer to

figure 1.4). Since there was no way of removing the drift from the gyroscope itself, we looked

at the accelerometer data. The initial distribution of the gravity vector along the three axes

of the accelerometer was captured and saved (when the sensor was not in motion). Any

time this same distribution was measured and the valve angle was close to zero, the angle

measurement was reset. In an ideal case (with no gyroscope drift), the initial accelerometer

distribution would occur exactly when the valve angle was measured to be zero. However,
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Figure 1.4: Integrating the gyroscope data yields a significant drift. This drift occurs only

during motion, as the valve is moved from one end to the other (0◦ to 90◦)

because of this drift, resetting the angle manually becomes necessary. Additionally, the

sensing platform was mounted in such a way to have a significant proportion of the gravity

vector on each of the axes. This allowed to improve variance of the signal with respect to

the noise, on each accelerometer axis. Of course, we needed to detect when the valve was

stationary to perform this angle correction as, when the valve moves, the accelerometer also

picks up this motion. We will look at the results of this operation in section 1.4.

1.2.4 Filtering Accelerometer Noise

In general, MEMS accelerometers suffer from noise, even when stationary. This can

be seen in figure 1.5 which tracks the motion on each of three accelerometer axes as the

ball valve moves. In this study, since we only require the accelerometer to capture the

stationary gravity vector and not the motion of the valve, only smoothing was necessary.

As such, a 1st degree Robust Locally Weighted Regression filter was used [13], with a

window size of 20 samples. This LOWESS filter is better than a simple moving average

filter, when it comes to filtering outliers (erratic accelerometer noise peaks). This is due

to the fact that each sample has an associated weight at any iteration, and due to the

regression fit attempted by the filter. Though computationally more intensive compared

to the rolling mean approach, the LOWESS filter was necessary in getting rid of those

outliers, and yielded overall improved smoothing with a quicker settling time. Finally, seen
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in figure 1.6 is the time series representation of the same three axes, but at the output of the

filter. We note that the first few seconds of accelerometer inactivity are characterized by a

settling of the internal Infinite Impulse Response (IIR) filter on each axis, which explains

the slight increase or decrease of sensor reading during that time. Clearly, looking at the

difference between figures 1.5 and 1.6, we can see that the signal to noise ratio has decreased

significantly, allowing us to use the accelerometer reading to extrapolate as to whether the

valve has returned to its original position or not, as it moves between the two extremes.

1.3 Algorithm

The detailed pesudocode for the detection algorithm used to compute and report the

valve angle is shown in Algorithm 1.

The function initialize() contains the operations described in section 1.2.1. This function

is responsible for the temperature self-calibration, among other things (such as obtaining

the reference accelerometer reading necessary for the drift correction). The rotate() function

moves the gyroscope data from the rigid body reference frame to the Earth reference frame.

The filter() function takes acceleromter data and returns a filtered version, as described

in the part concerning the LOWESS filter. Finally, the function called wireless.send()

transmits the data over the WirelessHART network.

The sensing routine shown here is designed with energy consumption in mind. When

the valve is not moving (in the IDLE state), only the gyroscope is sampled and a very

basic compare function used to determine whether the device is in motion or not. This

is commonly known as Lebesgue sampling. The set of instructions that occur during the

motion of the valve are simple additions and multiplications, which do not constitute a heavy

microcontroller load. The heaviest function (computationally) is the filter() one since it runs

two iterations of additions and multiplications. We note however that this function is only

called after the valve returns to the idle position and only on 20 to 40 accelerometer samples.

This allows the entire routine to run on a basic microcontroller without presenting a heavy
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Figure 1.5: Unfiltered Accelerometer readings (in units of g’s) on all three axes during the

motion of the ball valve. Motion starts 70 seconds in, and the valve is moved between 0◦

and 90◦ repeatedly
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Figure 1.6: Same time series as in figure 1.5, but at the output of the LOWESS smoothing

filter
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Algorithm 1 Valve position monitoring algorithm

1: initialize()

2: state← IDLE;

3: valveAngle← 0;

4: idleCounter ← 0;

5: while TRUE do

sleep(SAMPLING.TIME)

6: if state == IDLE then

7: gyroData← gyro.sample()

8: if gyro.isMoving(gyroData) then

9: state←MOV ING

10: rotatedGyroData← rotate(gyroData)

11: valveAngle← integrate(valveAngle, rotatedGyroData)

12: end if

13: else if state ==MOV ING then

14: gyroData← gyro.sample()

15: if gyro.isMoving(gyroData) then

16: rotatedGyroData← rotate(gyroData)

17: valveAngle← integrate(valveAngle, rotatedGyroData)

18: else if ++ idleCounter mod SAMPLING.TIME == 0 then

19: if abs(valveAngle) ≤ 10◦ then

20: accelData← accel.sample()

21: filteredAccelData← filter(accelData)

22: end if

23: else

24: if abs(valveAngle) ≤ 10◦&filteredAccelData == originalAccelData± σnoise then

25: valveAngle← 0

26: end if

27: state← IDLE

28: wireless.send(valveAngle)

29: end if

30: end if

31: end while
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load on the batteries (to extend device lifetime). A more thorough analysis of application

energy requirements is presented in chapter 5.

1.4 Results

In this section, we present the results following a number of experiments run as described

in section 1.1. In each of these experiments, the valve is positioned such that its plane of

rotation intersects the horizontal plane at an angle. This means that the valve was not

always horizontal, and that we positioned it at 20◦, 40◦, 60◦ and 90◦. In each of these

orientations, the valve was moved from one extreme to the other repeatedly, sometimes

stopping at points in between and returning to the origin. Motion always started after a

minute of inactivity at least, to allow the device to calibrate. Next we present the collected

results for the part-turn and multi-turn valves separately.

1.4.1 Quarter-Turn Valve

Figure 1.7 shows the valve angle vs. time for a series of experiments. As expected,

the valve angle varies between 0◦ and 90◦ (some of the time series were inverted since

different starting angles were used). In all five time series, and during the first minute of

the experiment, the valve angle remains at 0◦, showing that the temperature compensation

is working correctly. During the remainder of the experiment, we can observe that when the

angle returns to a value close to zero, and as the valve stops moving, if the accelerometer

detects a return to the origin, then the valve angle is adjusted accordingly. This is most

apparent after the second peak of the last time series: about a second after the valve

has returned to its original angle, the accelerometer forces the angle to return to zero,

resulting in a small “bump” following the peak. On the figure the ‘∗’ labels indicates some

instances of using the accelerometer to correct the valve angle. The ‘P’ labels correspond

to a partial opening or closing of the valve. The same code was run on all of the time series,

demonstrating that the results are repeatable and orientation independent.

Table 1.2 shows the results of 90 experiments in which a valve was turned to nine

18



Actual valve
angle (in degrees) 10 20 30 40 50 60 70 80 90

Minimum measured
angle (in degrees) 8.93 18.96 30.36 39.66 48.27 57.48 67.82 78.03 87.24

Maximum measured
angle (in degrees) 11.2 21.64 33.18 42.64 52.59 63.74 72.17 84.21 94.22

Maximum recorded
error (in degrees) 1.2 1.64 3.18 2.64 2.59 3.74 2.18 4.21 4.22

Table 1.2: Ball valve angle measurement results. For each target angle, the measurement

was repeated 10 times. The maximum and minimum measured angles are reported, along

with the error in absolute value.

different angles, ten times each. Every time, the angle obtained from the MEMS sensors

was recorded and compared to the ground truth (accurate to within 0.5◦). The table

reports the minimum (and maximum) angle measured for each target angle, as well as the

maximum deviation (in absolute value) from the real angle. The accuracy of the estimated

angled obtained from this sensing methodology is ±5◦.

1.4.2 Multi-Turn Valve

When presenting the results for the multi-turn valve, we decided to use a congruence

modulo operator on the angle, so as to let it swing between −180◦ and +180◦. This is

a convenience measure because it allows us to easily count the number of turns in each

motion. These results can be seen in figure 1.8. Defining a full cycle as a movement from

one extreme to the other and back, each of the time series depicts two full cycles (8 full

revolutions). As with the quarter-turn valve, the temperature compensation is obviously

working, and the gyroscope only drifts when in motion. Again, the accelerometer is used to

“zero” the angle when the resting position is reached. By design, the valve we installed in

our experimental setup has both extreme positions pointing in the same direction. This is

apparent in time series where both fully open and fully closed positions are zeroed. However,

when one tightly closes the valve (as can be seen in the second cycle of the third and fifth

series), the resulting heading is slightly away from the open position, which justifies the

distancing from the original angle that is observed in some experiments. On the figure, a
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Actual valve
angle (in degrees) 90 450 810 1170 1530 1890 2250 2610

Minimum measured
angle (in degrees) 86.902 434.04 797.34 1154.5 1513 1864.6 2227.7 2583.2

Maximum measured
angle (in degrees) 94.332 464.41 816.21 1191.3 1557.9 1897.3 2274.3 2637.9s

Maximum recorded
error (in degrees) 4.332 15.96 12.66 21.3 27.9 25.4 24.3 27.9

Table 1.3: Gate valve angle measurement results. For each target angle, the measurement

was repeated 10 times. The maximum and minimum measured angles are reported, along

with the error in absolute value.

‘∗’ represents places where the valve returned to its original angle and the accelerometer

data used to set the measured angle to zero. A ‘T’ shows when the valve was tightly closed

and the angle therefore deviated from zero. This effect was investigated because a zeroing

of the angle measurement was expected but not seen. Accurate angle measurements on the

gate valve showed a noticeable deviation between the “loosely” and “tightly” closed states.

As with the ball valve, 80 experiments were performed on eight different target angles,

with ten tries each. Table 1.3 lists the maximum and minimum angles as reported by the

sensor board for each target. The maximum error is also shown in absolute value. The

accuracy of the measurement for the multi-turn valve is of ±10% of a turn (or about ±1%

of the entire range of the valve).

1.4.3 System Architecture

Our results show that with our algorithm and sensing platform, we can reliably deter-

mine the valve angle with no prior knowledge of the valve orientation or plane of motion,

and with no calibration required. In our experiments however, the valve was always initially

in either the “fully-open” or “fully-closed” positions. We cannot assume that this will be

the case for real-world installations. In fact, in many situations, it is undesirable for the

plant operators to change the position of the valve in order to install a new sensor. This

means that the valve can be partially open or closed when the platform is installed. A

problem then arises of keeping track of the valve position using only relative angles. This
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Figure 1.7: Results of five experiments run with the ball valve. In each time series, the

first minute (approximately) of inactivity is reserved for temperature calibration. Then the

valve is moved from one end to the other, with varying motion types. A ‘∗’ represents the

places at which the accelerometer was used to remove the gyroscope drift.
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Figure 1.8: Results of five experiments run with the gate valve. In each time series, the

valve is closed and opened twice (8 full turns each way). The ‘∗’ sign shows alignment with

the origin and a zeroing of the angle, while a ‘T’ marks a tight close.
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can be easily solved however by tracking the evolution of the angle at the server side. As

the valve is moved by plant employees, the sensing platform itself does not need to be aware

of the position of the valve. The server-side application (or Plant Management System) will

be responsible for figuring out this absolute position and raising alarms in case this position

is problematic. Additionally, and as an improvement to our methodology, the algorithm

can be augmented with a feature to dynamically adjust its saved accelerometer values that

are used to “zero” the gyroscope drift. Another alternative would be to enable the server

application to directly contact the valve and inform it of its absolute position.

1.5 Concluding remarks

In this chapter, we have presented a “peel and stick” solution to the valve position

monitoring problem. Our MEMS based sensing device will ultimately be inexpensive to

manufacture, as it uses sensors similar to the ones found in mobile phones and other con-

sumer electronics products. In its present form, the board is already small enough for the

majority of valves but can be made even smaller. Our solution is also calibration-free.

In terms of energy, the bulk of the consumption occurs at the gyroscope. Considering

commercially available MEMS gyroscopes, our algorithm would consume about 2.74mA on

average for a valve with moderate utilization (10 seconds of activity every hour). Adding

100µA to maintain a WirelessHART connectivity, and a battery pack of three D-cell indus-

trial Lithium batteries (19Ah of charge each) the lifetime of the device would be around 2.3

years. Though this lifetime falls short of the 10-year goal and the device becomes bulky with

a large battery pack, it is important to take note of the continuing advancements in com-

mercially available MEMS gyroscopes. Energy consumption in these devices is decreasing

every year, a trend also accompanied by a reduction in device turn-on time. Frequency-

modulated gyroscopes [11] show promising energy and performance results, with orders of

magnitude of improvement.

Finally, we have demonstrated that valve angle accuracy of±5◦ was recorded for quarter-

turn models, while an accuracy of ±10% of a turn (or about ±1% of the entire range) was
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obtained with the multi-turn valves. Obviously, it is easy to retrofit existing part-turn and

multi-turn valves with our device. However, it is equally simple to integrate with new valve

designs. Our accurate angle measurements demonstrate a reliable replacement for today’s

aging valve monitoring solutions.
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Chapter 2

Smart Fence: Decentralized

Sequential Hypothesis Testing for

Perimeter Security1

Since humans first transitioned from nomadic tribes to permanent settlements, we have

had to find solutions to the essential problems associated with property: how to mark

what is ours and how to protect it. In short, perimeter security has been an ever-evolving

priority in human history. At their most basic, fences delineate land and serve as a marker

of private property. Factor in a few technological innovations, and they can serve as a

deterrent to intruders, or even an alarm system. However, even the strongest barriers have

their weaknesses. Fences can be climbed over, dug under, and even cut through.

Many security systems were implemented in an attempt to reinforce the fence structure

[14]. The most common fence line intrusion detection systems are taut wire, fiber optic,

1This chapter was published in a similar form as follows:

Chraim, F.; Pister, K.S.J., “Smart Fence: Decentralized Sequential Hypothesis Testing for

Perimeter Security,” Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, Sensor Systems and Software, Vol 122, p. 65 - 78,

978-3-319-04165-0, 2013
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strain-sensitive cable, electric field systems. However, each of those approaches comes with

its own set of challenges. For example, taut wire setups are expensive, complicated to

install, and require regular tensioning of the fence sections. Fiber optic fence sensors, which

use light variations within the communication medium to detect movements, are susceptible

to weather variations. Electric field systems, check for variation in the capacitance between

two different points to detect intrusions. These installations suffer from Electro-Magnetic

interference. Strain-sensitive cables, are not susceptible to such problems, but are instead

sensitive to poor fence installations, as well as vegetation ingress onto the fences. All of

the described security schemes require laying at least one cable around the facility to be

monitored. This becomes quite expensive as the perimeter grows, and can also lead to issues

with maintenance.

Our approach to the problem of fence intrusions in perimeter security is one of Wireless

Sensor Networks (WSN) combined with cheap Microelectromechanical systems (MEMS)

sensors. Essentially, we set up a low-power wireless network along a fence line, equip each

fence section with inertial sensors and run detection algorithms to detect intrusions. This

idea has previously been explored in [15], [16] and [17]. Yousefi et al [15] implement an

accelerometer-based hardware platform which collects samples at 360 Hz. They focus on

classifying the event type seen at the fence. They first measure the variance in the sig-

nal to determine whether any activity is occurring or not. If enough variance is detected

in the signal, a filter-based Gaussian Mixture Models (GMM) classifier then decides be-

tween a climbing or rattling events. The results they collected show a good performance

in accurately detecting activity at the fence (100% of the time), and classifying between

rattling vs climbing (more than 90%). The authors further generalize the classifier to a

non-homogeneous Hidden Markov Model in [16]. The improvement allows to further clas-

sify kicking, leaning, rattling, climbing and scratching. Both methods they present are

however very computationally intensive, and would not be practical in a real, long-term

deployment. Wittenburg et al [17] present a solution which is wireless and employs an ac-

celerometer running at 41.6 Hz. The main contribution they present is a feature extraction

method followed by a classifier. The authors also describe their training routines. They re-
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port a detection accuracy over 80% for leaning, kicking and climbing events. This method

is again relatively involved, and could be energy inefficient on a limited microcontroller.

The study does not justify the placement of the sensing device on the fence poles (instead

of the fence web).

Our goal in this chapter is to detect all types of fence intrusion activities with no false

negatives, while limiting false positives to less than (an arbitrarily chosen) 1/mile/month.

We start by presenting the theoretical problem of sequential hypothesis testing in section

2.1, both for the centralized and decentralized case. We then describe the experimental

setup both in terms of hardware and software and network architecture in section 2.2.

Applying the theory to a practical algorithm is shown in section 2.3. Section 2.4 illustrates

the results we obtained following several deployments.

2.1 Sequential Hypothesis Testing

Sequential analysis is the branch of statistics that deals with decision-making as the

samples are being collected. It differs from classical hypothesis testing in that conclusions

are reached more quickly, often before the end of the experiment. Consequently, it is

ideal for detection, signal processing, clinical trials and other applications. In general,

sequential decision problems involve one or more sensors and a fusion center where the final

decision is made. In the centralized setting, all of the information received by the sensors

is made available at the fusion center. However, in the decentralized case, the sensors

themselves are part of the decision process and relay partial information rather than all of

their observations [18–20]. The following two sub-sections go into some detail concerning

both approaches. In this part, we will be following the study done in [21].

Depicted in figure 2.1, we seeK sensors observing a stochastic process {ξit} with prior P i.

The assumption we make here is that the observed processes are independent. Furthermore,

we consider that there are two possible hypotheses in the system at hand

H0 with probability P = P0 and H1 with P = P1 (2.1)
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Figure 2.1: A system of K sensors and a fusion center

Additionally, Pj =
∏K

i=1 P
i
j for j = 0, 1. The next step would be to define the local

log-likelihood ratio that takes place at each of the sensors.

uit = log
dP i

1

dP i
0

(ξit) with u
i
0 = 0 (2.2)

Independence between the observed processes allows us to write the following log-

likelihood ratio that takes place at the fusion center,

ut = log
dP1

dP0
(ξit) =

K
∑

i=1

uit for 0 ≤ t <∞ (2.3)

The aim is to optimally define the pair (T, dT ) where T is the stopping time and dT

is the decision, which takes values 0 or 1, depending on which hypothesis was picked. We

attempt this both in the centralized and decentralized cases.

2.1.1 Centralized Sequential Hypothesis Testing

It has been shown by Wald and Wolfowitz [18] that the Sequential Probability Ratio

Test (SPRT) is optimal in solving the centralized case of the following problem.
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Given, the type-I and type-II probability levels α, β > 0 such that α + β < 1, we want

to find (T , dT ) such that

Ej [T ] = infEj [T ], j = 0, 1 (2.4)

The SPRT mentioned above is defined in this case as,

T = inf t > 0 : ut /∈ (−A,B) (2.5)

dT =











1 if uT ≥ B

0 if uT ≤ −A
(2.6)

A = log(
1− α

β
), B = log(

1− β

α
) (2.7)

Hence, the procedure for applying this test is to obtain the observations from the sensors,

apply the global log-likelihood ratio, add it to the previous value and verify whether this

sum left the open interval (−A,B) or not. The first time at which we leave this interval will

be time T , and the associated decision dT will follow the rule in (2.6). This test is optimal

under our assumptions. We will see in the next sub-section how to generalize this concept

to the decentralized case.

2.1.2 Decentralized Sequential Hypothesis Testing

This decentralized problem is approached from the discrete time case. Though the

continuous time case is studied in [21], it is not of major practical use. Rather it provides

some intuition on treating its discrete time equivalent. As we have mentioned before, the

difference between the centralized and decentralized cases is that, in the latter, the sensors

make decisions before relaying some information back to the fusion center. Indeed, each

sensor computes a local log-likelihood ratio,

lin = log
dF i

1

dF i
0

(ξin) (2.8)
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Now, we set two thresholds −∆i, ∆̄i,

−∆i = log
P1

P0
(ξin = 0), ∆̄i = log

P1

P0
(ξin = 1) (2.9)

This allows us to define an SPRT that occurs at each sensor as follows,

zin =











1 if ui
τ in
≥ ∆̄i

0 if ui
τ in
≤ −∆i

(2.10)

where τ in is the local stopping time at the sensor and zin is the information sent to the

fusion center at that time. In order for the fusion center to compute its log-likelihood ratio

based on the zin, we could envision that the following two values be precomputed and made

available at that fusion center:

−Λi = log
P1

P0
(zin = 0), Λ̄i = log

P1

P0
(zin = 1) (2.11)

Now, the reason the pair Λi, Λ̄i is defined separately from the pair ∆i, ∆̄i resides in the

fact that discrete time sampling gives rise to an overshoot effect. One can think of this effect

as an uncertainty in the exact time the local log-likelihood ratio crossed the open interval

(−∆i, ∆̄i) for the first time.

In turn, the fusion center will use the information provided by the sensors to update its

global log-likelihood ratio.

un = un−1 +











Λ̄i if zin = 1

−Λi if zin = 0
(2.12)

The main result of Fellouris and Moustakides in [21] is first to define a measure of the

D-SPRT thresholds at the fusion center,

Ã ≤ |logβ|, B̃ ≤ |logα| (2.13)
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then to show the following asymptotic optimality on the global log-likelihood ratio:

|E0[uT̃ ]− E0[uT ]| ≤
O(θ)

Θ(∆)
|logβ|+Θ(∆) (2.14)

|E1[uT̃ ]− E1[uT ]| ≤
O(θ)

Θ(∆)
|logβ|+Θ(∆) (2.15)

where θ is the maximum overshoot (formally defined in [21]), ∆ is equivalent to any of the

two ∆i, ∆̄i assumed to be equal, and T̃ is the stopping time for D-SPRT at the fusion center,

while T is the optimal stopping time for the centralized case. In fact, one can readily see

that because of the loss of information and loss in time resolution between the centralized

and decentralized cases, the optimality is lost. Equations (2.13) and (2.14) represent the

Kullback-Leibler divergence (which can be thought of as the relative entropy between an

optimal distribution and a sub-optimal one) applied to the log-likelihood ratio. The authors

in [21] go on to simulate and observe that the D-SPRT derived in this section is useful in

most practical implementations.

To apply the presented methodology to our particular application (fence line intrusion

detection), only two thresholds need to be set: ∆̄i and Λ̄i. This is done by placing a sensor

on the fence, and running controlled experiments to compute the probabilities of both

hypotheses, given the sensor reading. By assuming that the fence construction is uniform

(not always true) in a particular site, this “calibration” step does not need repetition. These

thresholds can be tuned either at the device side or the fusion center. This process translates

to the trade-off between detection delay and false alarm rate.

2.2 Experimental Setup

We now turn our focus to implementing a solution to the perimeter security problem

at hand. Tackling fence monitoring was not a straightforward task. In fact, fence models

were not readily available, which meant that building any detection infrastructure needed

experimentation. We now present the hardware platform of choice along with the underlying

software architecture.
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Figure 2.2: The hardware platform: GINA/WHIM

Figure 2.3: The IP-65 enclosure (rain and dust resistant) that houses the hardware platform

[courtesy of Hammond Inc] shown next to one sensor as deployed in the middle of a fence

section

2.2.1 Hardware

The hardware platform used here is again GINA (presented in chapter 1). As can be

seen in figure 2.2, a daughter card is mounted on top of the GINA board. This daughter

card is referred to as the WirelessHART Interface Module (WHIM) and carries the DN2510

radio by Dust Networks. This radio is WirelessHART compliant and operates in the 2.4

GHz band. The GINA/WHIM combination consumes a few microwatts in sleep mode and,

when it is running at full capacity, currents around 20mA were recorded at 3V. An IP-65

enclosure (shown in figure 2.3) completes the hardware solution fitting nicely in the diamond

pattern of the chain-link fence.
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2.2.2 System Architecture

As the sensors are placed along the fence line, they join the WirelessHART network

formed by the gateway, and start reporting data there. Looking at figure 2.4, we can see

that a computation element exists both at the sensor side and at the gateway as well. This

means that any detection scheme can implement one of the following three models:

• server-side computations only

• sensor-side computations only

• hybrid model with computation taking place at both ends

Choosing one of these three methods is dictated by the application energy requirements.

For the first model, an intrusion of five seconds which triggers three sensors generating two

bytes of sensor data at 70 Hz, would result in about 5 packets per second for a WirelessHART

network. If one were to use the second model however, the sensors would have to be

programmed to communicate between each other to take full advantage of the distributed

sensing aspect. Finally, the hybrid model would require the wireless devices to summarize

the data before transmitting only a minimum amount of packets to the server. As will be

seen in chapter 5, it is often preferable (in terms of energy) to perform simpler operations

locally on the microcontroller rather than transmitting the raw data. This makes the first

model difficult to justify, especially that it could also suffer from congestion: if three people

attempt to climb the fence line simultaneously at three different locations, a surge of about

15 packets per second could be problematic in certain deployments.

In terms of routing, it is often easier to collect data at the sink in low-power mesh

networks, as opposed to having peer-to-peer communication. Additionally, the sheer pres-

ence of two sensors in close proximity does not guarantee that they will be only one hop

away within the network. As a result, the third (hybrid) model is preferred over the second
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Figure 2.4: System architecture for the Smart Fence. The detection algorithm can run only

on the motes, or only on the server, or using a hybrid approach where some computations

happen in the motes and their output is relayed to the server to make the final decision.

(purely distributed). In our particular topic, the hybrid model also works well with the

detection algorithm.

2.3 Detection Algorithm

In this section we explore the procedure we followed to develop the detection algorithm

for fence monitoring.

2.3.1 Preliminary Testing

Some of the primary questions to answer were the following: Which of the sensor data

generated by GINA is relevant? How fast should we sample our sensors? To come up with a

solution, we strapped three of the platforms we developed on three contiguous fence sections.

All of the sensors (accelerometer, gyroscope, magnetometer...) were then sampled at 300
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Hz and the raw data transmitted to a gateway. We then ran controlled shaking, kicking and

climbing tests. A singular value decomposition of the sampled sensor data containing all

axes enabled us to single out only three axes of interest, as can be seen in figure 2.5. The data

is normalized against the noise and, after the singular value decomposition is performed,

the data is projected along the axes of highest variance. Not surprisingly, it turned out that

most of the information is contained in the z-axis of the accelerometer (pointing out of the

plane of the fence), and the x-axis and y-axis of the gyroscope (in the plane of the fence).

The result is intuitive, and the reader is invited to imagine a chain-link fence vibrating

under the influence of shaking for example. Clearly, the accelerometer will see accelerations

dominantly in the z-direction, while the angular rates observed by the gyroscope will mainly

be along the plane of the fence itself. For the purpose of this application, the data generated

by the acceleromter z-axis was sufficient to detect intrusions. The next step in the analysis

was to determine the sampling frequency. A quick look in the frequency domain revealed

that most events of interest happened below 35 Hz, justifying our sampling frequency of

70 Hz. An additional tradeoff can be observed here. Increasing the sampling frequency

obviously yields better results, in terms of capturing all of the information contained in the

the waveform. However, the added data generated by this oversampling has to be processed

either at the sensor or server side. This means that energy will be spent either on the on-

board microcontroller or during transmission.

The preliminary testing phase also showed that strong gusts of wind were problematic at

the fence line. As a matter of fact, the accelerations recorded during those events were

comparable to those recorded after a person gently shook the fence. For this reason, we

made the decision to apply Lebesgue sampling and set a threshold under which, the entire

platform enters sleep mode.

2.3.2 Applying D-SPRT to Fence Monitoring

The process of applying D-SPRT in our case consists of selecting the probability priors

both at the sensor side and server side. This was done by running controlled tests along the

fence line. Similar to the previous section, intrusion traces were compared with “background
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Figure 2.5: Singular value decomposition of the sensor data including all axes. This plot

shows that only three axes contain the majority of the information. Namely, the z-axis of

the accelerometer into the fence and the x-axis and y-axis of the gyroscope in the plane of

the fence.

noise” traces. With enough repetitions, the probabilities could be estimated. This process

was necessary every time a deployment at a new location took place. Furthermore, even

within the same fence line, not all fence sections were similar in their response to intrusions.

Because of construction limitations, certain sections were sturdier, while others oscillated

more vigorously when shaken. However, it was not necessary to repeat this “calibration”

process for each fence section.

Figure 2.6 shows log-likelihood ratios recorded at the sensors during experiments we

performed on fences. As can be seen in the left-most figure, every time the upper limit of

the interval is crossed, a value ofH1 is transmitted to the server and the ratio gets reset. The

middle graph shows the case where the sensor records activity but deems it regular noise.

A value of H0 gets transmitted and the ratio is reset as well. The right-most figure shows

the case where the sensor starts recording data, but the traces end before the interval is left

and no packets are transmitted to the server. This corresponds to very small disturbances

for example. Figure 2.7 shows the progression of the log-likelihood ratio over time for a
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Figure 2.6: Sensor log-likelihood ratios for various disturbances, in the short run. When

the ratio crosses the upper limit, an H1 is transmitted to the server. This is then added to

the global log-likelihood ratio that can trigger the alarm or ignore the sensor output

climb signal vs a kick signal. It can be readily seen that the climb signal generates several

H1 packets sent to the server side, while the kick signal only generates a couple before the

ratio decays and the sensor stops recording. At the server side, a decision is made based on

the number of H1 and H0 packets received. Similarly to the likelihood ratio computer at

the device side, the server increments/decrements a counter each time an H1/H0 packet is

received. It is important to know that for this to work, information about the location of

the sensors needs to maintained at the server. If two sensors separated by a large distance

are reporting information, they should each get a different probability ratio test since they

would not necessarily be observing the same event.

2.4 Deployments and Test Results

Several deployments were made to put the Smart Fence system to the test. They varied

in longevity, environmental conditions and fence construction. In all of them, different

individuals were asked to climb the fence. Shown in figure 2.8 are the server side log-

likelihood ratios for various climbers under varying conditions. Clearly we can see that the

output of our detection algorithm is not the same in all of the time series. The main reason
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Figure 2.7: Sensor log-likelihood ratios for a climb and kick signal, in the long run. In

reaction to climbing the fence, the sensor reports a series of H1 consecutively as it seeing a

lot of activity. For the kick stimulus however, the sensor may report a couple of H1 packets

for example, before its log-likelihood ratio decreases.

is, as stated before, not all climbing styles are equivalent. While some people tend to be

aggressive, and generate a lot of activity at the fence line, others choose a calmer approach

and climb more methodically.

Table 2.1 lists the parameters and results of four deployments. The first two deployments

were short in length (<1 hour), while the other two lasted for days. The longest deployment

was performed at the Chevron refinery in Richmond, CA. During that test, four sensors

were deployed along the North-East fence line of the Technology Center for a period of

about six weeks. Shown in figure 2.9 is the network manager and Linux box running the

detection algorithm overlooking the sensors from one of the offices in that building. Some

refinery employees were asked to disturb the fence line during the deployment period and

record the time and date of that activity.

In each of the experiments listed in table 2.1, the dimensions and construction of the

fence sections were different. Out of the 91 known incursions, 100% were detected with no

false alarms. The average detection time listed in the table takes into account the sensor

sampling, device-side algorithm, the transport delay in the network, and the time to raise
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Figure 2.8: Log-likelihood ratios for different climbers and conditions. This figure shows

that even with different climbing styles, our detection algorithm reported the intrusion

within a few milliseconds of its start.

the alarm at the fusion center. On average, alarms were raised within two seconds of the

incursion.

In terms of energy, the bulk of the consumption went to the network in this application.

Since the hardware platform was in sleep mode for the majority of the time, the micro-

controller and sensors were consuming about 6µA. The networking component used about

100µA on average, meaning that with a small 160mAh lithium battery, the application

lifetime was around 60 days. However, using a standard industrial lithium C-cell battery of

9Ah, the lifetime could be extended to about 8.5 years.
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Deployment Number 1 2 3 4 Total

Deployment duration <1 hour <1 hour 5 days 44 days 59 days

Number of fence sections/sensors 3 3 6 4 16

Fence dimensions (HxW in m) 2.1 x 3 1.6 x 1.6 1.8 x 2.1 2.1 x 3 n/a

Known incursions 18 21 39 13 91

True positives 18 21 39 13 91

False positives 0 0 0 0 0

First alarm delay (average) 1.1 s 0.92 s 2.3 s 1.8 s 1.7 s

Table 2.1: Test results from four deployments of varying parameters. A detection rate of

100% was achieved with no false alarms for the 91 known incursions. A detection delay of

about 2 seconds on average was achieved.

Figure 2.9: Long-term deployment setup at the Chevron-Richmond refinery. The result of

this test was a detection rate of 100% with no false alarms. The sensors withstood strong

winds and rainy weather.
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2.5 Concluding Remarks

In this chapter, we have demonstrated that the Smart Fence is a viable solution to the

perimeter security problem of chain-link fences. We applied a decentralized sequential hy-

pothesis testing methodology to detect intrusions at the fence line. We also presented a low-

power sensing platform which communicates over a reliable mesh network (WirelessHART).

Following short-term and long-term deployments, we recorded a 100% detection rate for the

91 known intrusions, and no false alarms over a period of about 2 months. Though these

results are inline with our initial objectives (no false negatives, and less than 1 false pos-

itive/mile/month), more testing would be beneficial for additional validation. In terms of

energy consumption, and using the most up-to-date hardware, a lifetime of more than 10

years can be achieved using a standard lithium C-cell battery of 9Ah (8.5 years could be

achieved with the presented hardware). By utilizing cheap off-the-shelf microcontrollers,

MEMS sensors which are present in most cell phones, and an open-source implementation

of the mesh network (namely OpenWSN [22]), a hardware cost of about $20 per unit can

be achieved. Finally, it is worth mentioning the solution proposed in [23] which is similar in

terms of hardware to the implementation presented in this chapter. In addition to the ac-

celerometer, the commercial solution also features a passive infrared (PIR) presence sensor

which is used to increase the detection confidence (at an energy cost of course).
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Chapter 3

Wireless Gas Leak Detection and

Localization

The number of gas leaks that occur every year on industrial plants is unknown. Most

of these leaks, even if detected, go unreported when they don’t directly lead to tangible

accidents. Environmental Protection Agency (EPA) reports estimate that, in the United

States alone, these plants emit close to one billion cubic meters of methane (not taking

any other gas into consideration). Most of these losses (around 80%) seem to come from

leaky compressors, valves, seals and connectors [24]. In 2012, approximately 2,200 million

metric tons of CO2 equivalent were accidentally released from petroleum systems and other

chemical processes necessary for the production of plastics, cement, iron and steel [25]. It

is estimated that around 800,000 to 900,000 leaks are investigated each year on refineries,

with between 200 and 300 of them having directly resulted in loss of life, injuries, damaged

equipment, or operational losses [26]. In short, industrial gas leaks present a major challenge

in the quest for safe, environmentally-friendly, and cost-effective plants.

In this chapter, we present a distributed wireless sensor approach to the problem of

gas leaks in large industrial spaces (chemical plants, refineries, oil rigs, etc.). The objective

is to detect and localize “refinery-like” gas leaks within seconds of their occurrence. With

many corporations upgrading their facilities with a low-power wireless infrastructure (Wire-
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lessHART) [27], a leak detection system that simply connects to the wireless umbrella would

be a desired addition to the existing safety framework. Our goal is to study the feasibility

of such an approach, while carefully reviewing some of the implementation challenges in the

hope for opening the door for widespread commercial adoption.

The remainder of this chapter is organized as follows. In section 3.1 we will review

some of the available solutions to the problem at hand, both at the academic level and

commercially. Our approach is then presented in section 3.2, where we look at the system

architecture, the hardware and the detection/localization algorithms. Our experimental

results are shown in section 3.3, in which we validate our approach. Future directions and

recommendations are left for section 3.4 where we conclude.

3.1 Literature Review and State of the Art

The review presented in this section is divided into a survey of commercial methods for

leak detection, and some of the ideas coming out of academia.

3.1.1 Gas Leak Detection Systems

Conventional leak detection methods fall under two categories: fixed instrumentation

and mobile sensing. In the former, a sensor is affixed in the general vicinity of equipment

suspected of leaking (valves, compressors, ...). These instruments are usually connected to a

constant power source and generate alarms based on their sampled data. These alarms can

be visual or audible, or can feed directly into a plant management system. Mobile sensors

are usually hand-held devices that a worker has to point at the suspected leak source and

evaluate the readings on the spot. Reports of the measurements are relayed in real-time

either through a wireless connection, or by direct communication between the worker and

other plant employees. Both these methods have their advantages and disadvantages and

most often, a hybrid system of fixed and mobile sensors is implemented. In particular, a

fixed sensor is able to continuously monitor an area, as opposed to a worker who samples

the same region for a few seconds perhaps before moving on. Fixed sensors have better

43



instruments by virtue of the fact that they are less constrained, but mobile sensors allow

the operator to trace a leak to its origin. It is obvious that mobile sensors put the worker

at risk during the sampling process, while the fixed sensors enable safer operation [28].

In this study, we are only interested in fixed instruments because our proposed solution

is static in nature. We now look at some of the commercially available solutions for com-

parison. Many solutions have been proposed for the problem of leak detection in pipelines.

This topic, though relevant, is not of direct interest here since leak detection near pipelines

can be accomplished by deploying a series of sensors in a linear sequence. The interested

reader is invited to glance at [29]. The solution presented in this chapter would not be very

practical for long pipeline installations due to the high number of sensors it would require.

Perhaps, the most prevalent leak detection methodology is by concentration measure-

ment. Pellistor, electrochemical, semiconductor and infrared sensors are all used to sample

the ambient gas for particular species. By means of preset threshold detection, alarms are

raised alerting workers and plant operators [30]. These widely adopted sensors however

suffer from one or more of the following: low sensitivity, short lifetime, high energy con-

sumption, sensitivity to ambient conditions, high costs, drift... Typically, these sensors are

operated independently, meaning that no information about the source of the leak is given.

Due to the fact that they consume a considerable amount of energy, installing them becomes

an issue as virtually always, the cost of laying cables outstrips the cost of the device itself.

Pipeline diagnosis systems gave rise to ultrasonic sensors which have recently been

adopted in some plants. The principle of operation relies on the fact that gas leaks sometimes

come from punctured pipes which emit acoustic “tone” signals in the ultrasonic band [31].

These sensors, though unaffected by environmental conditions, do not measure the intensity

of the leak, and are still unable to determine its origin. They are designed to work with

gases under pressure, and do not represent a general solution to industrial gas leaks.

In recent years, camera systems have found their way to the gas leak detection and

localization market. These devices tend to be mounted on elevated towers, often rotating

to cover the entirety of the plant. They operate by taking snapshots of the environment,
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then analyzing the sampled images to detect gas leaks [32]. Most of the available solutions

on the market operate in the infrared band, but recently more versatile snapshot hyper-

spectral instruments are being utilized.

3.1.2 Detection and Localization Using Multiple Sensors

Academically, the problem of detecting and localizing leaks has been addressed in many

fields. Under different names, similar methodologies have been applied to detecting the lo-

cation of a speaker using many microphones, localizing objects using multiple radar streams,

etc. We now list of few relevant examples.

Glenn et al. propose using inverse diffusion modeling to localize leaks. By assuming

a fickian diffusion model, they consider a large network of sensors surrounding the source

of the leak. Coupling diffusion with Ensemble Kalman filtering allows them to estimate

the location of the source of the leaks. Their simulated system reports plume origins as

numerous hypotheses each having likelihoods [33].

Huseynov et al. [34] propose a distributed network of MEMS ultrasonic sensors for gas

leak localization. In their study, a comparison of energy-decay (ED) and time-difference of

arrival (TDOA) methods for localization is presented. With a distributed network of four

devices, they attempt to localize a nitrogen leak from a small orifice. They employ maximum

likelihood (ML) and the least squares (LS) techniques to find closed form solutions for the

diffusion differential equations. In their deployment, a 20 ft 20 ft room is instrumented

with 4 MEMS microphones (running at 200 kHz). Nitrogen gas was released at 150 psi at

four different locations. They successfully localize the nitrogen leak with an accuracy lower

than 1 ft.

Weimer et al. consider gas leaks in wide and dense wireless sensor networks. The

problem being addressed is one of large scale leaks, with high concentration of gases (such as

harmful gases in a metropole). In their model therefore, they take diffusion and air currents

into account. An interesting idea is presented concerning the subsampling of sensors which

are in close proximity, in order to reduce the network-wide energy consumption. A wake-
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up process ensures that all the devices are running when needed. Their method combines

binary hypothesis testing with Kalman filtering [35].

The methods presented in these articles (and more on the topic of gas leak detection

and localization) have merit as they present valid and interesting theoretical ideas and sim-

ulations. However, they all leave much to be desired in the space of experimental validation.

In this study, we attempt to solve the problem of gas leak detection and localization in the

most applied manner possible. We employ some mathematical and statistical tools, and

apply them to real gas concentration measurements recorded during a series of intentional

releases performed in a typical industrial setting.

3.2 A Wireless Distributed Sensing Approach

In this chapter, we study the problem of gas leak detection and localization by means

of a wireless, distributed network of sensors. Though such an approach could be viewed

as a standalone system of sensors, it could also benefit from further integration. The gas

sensors utilized here could be tacked on to other industrial process control instruments.

For example, the wireless valve positioning solution presented in [36], could be augmented

with a gas leak sensor, as both of these problems are often linked. Furthermore, a wireless

perimeter security solution [37] could also assist in detecting and localizing plant leaks as

soon as suspicious concentrations leave the enclave of the plant. In the remainder of the

chapter, we consider the leak detection solution as a stand-alone system.

3.2.1 Hardware

As is customary with most wireless sensing applications, the hardware we developed in

this study includes a radio, a microcontroller, a sensor and a power source. Recently, the

push for higher integration in the industry resulted in system-on-chip (SoC) solutions for

the microcontroller and radio. In this project, the Linear Technology LTP5902 SmartMesh

WirelessHART Mote Modules were utilized. They feature a 32 bit ARM Cortex M3 mi-

crocontroller, along with a 2.4 GHz, IEEE 802.15.4, WirelessHART (IEC62591) compli-
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ant radio. Combining the time-synchronized channel hopping protocol with extremely low

transmission and reception power levels (on the order of 5mA at 3V), these modules achieve

a 99.999% network reliability with a sub-50µA average currents.

In this project, the focus is on explosive gases. For this reason, all of the studies and re-

leases were performed around propane, which is a by-product of natural gas processing and

appears in the process of refining petroleum. This gas is representative of the family of

explosive gases, and was made available to us for use in the various experimental stages.

Propane is commonly used in commercial and residential applications, and is in the lique-

fied petroleum (LP) gases family. As such, a propane sensor needed to be integrated with

the LTP5902 SoC. The Dynament Premier Infrared Hydrocarbon (propane) Sensor (MSH-

P/HC/NC/5/V/P) was selected, with a 0-2% volume measurement range (or 0 - 20,000 part

per million (ppm)) and a resolution of 0.01% volume (100 ppm). Our integrated device is

shown in figure 3.1. Though this propane sensor is, at the time of writing, one of the best on

the market, its performance leaves a lot of room for improvement. For starters, it consumes

an average of 80mA of current (at 3V), and possesses a start-up time of 1 minute. This

means that for the purpose of gas leak detection, this sensor cannot be duty-cycled and

needs to remain on continuously. This certainly represents a challenge in battery operated

devices. Additionally, the sensor response seemed highly dependent on the ambient tem-

perature. As gas leak detection applications are mostly outdoors (the indoor counterpart

is usually simpler especially in smaller monitoring areas), any small wind current or gust

altered the measured concentrations by hundreds of ppms. Figure 3.2 shows the response of

the gas sensor to a 100ppm propane calibration gas. The sensor was sampled every second

and the ambient temperature was measured to be 23◦C. Shown in figure 3.3 however, is

the response of two identical sensors deployed outdoors in the vicinity of a leak source. It

is clear that state-of-the-art propane sensors still present many challenges, and we hope to

demonstrate that they are the missing link in the productization of this solution.

Considering the average power levels of the communication module, and with careful appli-

cation design and network configuration, it is often possible to implement wireless sensing

applications where lifetimes extend beyond the shelf life of batteries (around 10 years).

However, in this wireless gas leak application, the sensor remains as the limiting factor and
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Figure 3.1: The hardware platform used in this study: a wireless, battery-powered propane

sensor.

a burden on the energy budget. Finally, it is worth noting that the hardware was powered

by an industrial D-size Lithium metal battery, with 19 Ah of charge (with a duty-cycling of

25%, this battery would hold enough charge for about 40 days). The device was enclosed

in an ABS plastic IP-54 enclosure by Hammond.

3.2.2 System Architecture

The system architecture for the leak detection solution is perhaps best explained with

a picture (see figure 3.4). Taking a refinery for the sake of example, gas leak detection

sensors would be deployed throughout a refinery. Though a grid distribution is often easier

to manage, it is not a required feature. Indeed, these easy to install sensors can be mounted

in seconds to the existing buildings and poles, and as long as their location is recorded, the

concentration data will be easily processed by the algorithms presented later. The path

from data to decision starts with concentration measurements at the node side, which are

filtered and transmitted to the gateway (when needed), using the wireless infrastructure.

The gateway algorithms then collect the concentration data from the many sensor devices
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Figure 3.2: Calibration plot showing the sensor response to a calibration gas of 100ppm of

Propane. The test data was collected indoors at a temperature of 23◦C.

on the grounds and generate alarms whenever a leak is detected. Additionally, periodic

reports concerning the concentration gradients of gases on the refinery can be generated

and sent to concerned parties.

In terms of sensor placement, these devices would be spread throughout the plant.

However, it is beneficial to increase the density in zones susceptible to leaks. For example,

an increase in the number of compressors and valves raises the risk of leaks. As such,

a typical deployment would have a minimum density necessary for detections, and then

certain areas would be characterized with clusters of sensors (increased density) based on

the risk. To minimize the overall application energy consumption (for the entire system of

sensors), neighboring devices might take turn in “guarding” a zone, then alerting the other

devices in case of suspicious increases in measured concentrations.

Similar to having an adaptive spatial sampling of concentration, a temporal one would

also be beneficial. This means that the mote can decide to increase its sampling frequency

when it detects a sudden surge in gas concentration. The reporting rate of data to the
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(a) Sensor 1 response: even with a high noise floor, this

sensor was responsive to the leak.

(b) Sensor 2 response: elevated noise and no apparent

response to the same leak.

(c) Experimental setup diagram showing both sensors

within the plume boundary during the leak.

Figure 3.3: Sensor SNR and Response challenges: in this experiment, two sensors were

positioned 4m apart, and 4m away from the source of the leak. These sensors were observed

with a FLIR Camera and validated to be present in a detectable plume.
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Figure 3.4: Proposed system architecture: gas leak detection sensors are deployed exten-

sively accross a sensitive industrial area (a refinery in this case); data travels through the

mesh network towards a single collection point (gateway) where the detection and localiza-

tion algorithms are applied. The sensors can be duty-cycled spatially and temporally based

on the measured concentrations.

gateway, which is not very frequent regularly (on the order of one average reading every

10 minutes for example) can also be increased when the device records an unusual concen-

tration of gas. Augmenting this method with a statistical routine can also get rid of many

unnecessary alarms and minimize energy consumption.

3.2.3 Detection Algorithm

Considering the system architecture above, where each sensor adaptively reports its gas

concentration measurements to one location (through one or more gateways), we now look

at a method for detecting the occurrences of leaks. Our framework is a probabilistic one,

where each sensory observation is represented probabilistically, then the total likelihood of

a leak is computed at every time step. To get there, we model each sensor observation

independently as p(st(i) | θt) where i ∈ {1, . . . , N}, N is the total number of sensors per
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area under consideration, and θt is an indicator variable which represents the existence

of a leak at time step t. We have derived semiheuristic models for our sensors both in

the presence of a leak (ON) and when just measuring leak-free environments (OFF). The

measurements and experiments leading to these models will be defined in section 3.3. The

histograms corresponding to the derived models are illustrated in Figure 3.5.

Using these models, the likelihood at each time step is computed as follows.

Lt(θ) =

N
∏

i=1

p(st(i) | θ) (3.1)

When θ = 1, we are essentially computing the likelihood of a leak being present (ON state).

Lt(θ = 0) is the likelihood in the OFF state, or when no leaks are present. This is done

at each time step, using all of the available sensory information st(i) for i ∈ {1, . . . , N}.

Intuitively, one would expect Lt(θ = 1) to increase in the presence of a leak (i.e. ON state),

while expecting Lt(θ = 0) to decrease during the same time. Such a behavior is observed

in our experiments and figure 3.6 is one sample case.

In the quest for a completely automatic leak detection system, we would like to record

these changes in the likelihood signal autonomously. We therefore treat the problem as a

signal segmentation one [38]. In essence, we are interested in the segments of the likelihood

timeseries which differ from the normal. Such signal segmentation techniques have been

successfully applied in ECG (electrocardiogram) and EEG (electroencephalogram) appli-

cations [39, 40]. We are using the algorithm presented in [39] to detect changes in our

constructed likelihood signal Lt(θ), in both states. The method is detailed in algorithm

2. The main intuition behind this is the following: disturbance free segments of a signal

should have similar Auto-Correlation Functions (ACFs). However, if there is a clear change

in the signal, there should be a corresponding dissimilarity in the ACFs as well. Computing

the pairwise cosine similarities between each ACF one can visualize the similarity between

the segments. By summing the columns of the resultant similarity matrix, the weights are

computed. In our application, when there are no leaks, these weights are high. During a

leak however, we expect the weights to decrease as they will be dissimilar to the regular
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(a) Sensor model for concentration measurments during a leak (ON Model).

(b) Sensor model for concentration measurments during a leak (OFF Model).

Figure 3.5: Semiheuristic sensor model derived from experimental data. Non-

complementary probabilities accompany each state: ON (leak occurring) or OFF (no leak).

This model was obtained by observing various sensor behaviors during leaks and in their

absence (similar to the one shown in figure 3.3). The concentration counts were then per-

formed and adjusted heuristically as shown in these histograms. As will be apparent, our

detection method is based on the variations of probabilities in a particular period of time.
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Figure 3.6: Observation likelihood at each time step, for both states: as concentration

measurements are received, the probability of having a leak v/s no leak are computed. In

the event of a gas release, one would expect to see the likelihood of having no leaks drop,

while that of having leaks increase.
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“no-leak” segments. The change in the segments is then detected simply by applying a

threshold set at the P -th percentile value.

Algorithm 2 Phase-1 change detection algorithm

1: Input: likelihood timeseries, window size N, percentile value P

2: Output: indices of the segments corresponding to the irregularities

3: Segment the signal into epochs of length N

4: Compute the Auto-Correlation Functions (ACFs) of each segment, Ai

5: Compute the cosine similarity between each pair of ACFs

cos θij =
AT

i Aj

‖Ai‖ ‖Aj‖
(3.2)

and form the similarity matrix

6: Compute the weights by summing the columns of the similarity matrix

7: Calculate the P -th percentile of the weights

8: Label the segments with weights outside the P -th percentile

The algorithm presented here then returns a number of time indices which correspond

to the various regions of the likelihood series, which were unusual. We will name these time

indices as stage-1 detections. Figure 3.7 shows the same likelihood plots of figure 3.6, but

with overlayed segments representing the stage-1 detections.

One of the important parameters of this algorithm is the percentile parameter. Depend-

ing on the percentile threshold which is set, one can reduce the rate of false positives. These

false positives arise from the fact that the sensor noise floors are elevated (as explained in

part A), and therefore reducing our signal-to-noise ratio. Increasing the percentile threshold

in our algorithm reduces the false alarm rate, but this however comes at the price of an

reduction in true positives. This parameter should be therefore set in such a way that alarm

fatigue and a “tolerable” leak miss rate are balanced.

Another effect of the sensor noise is the fact that some of the stage-1 detections ac-

tually correspond to fluctuations of concentration measurements triggered by temperature

variations around the sensing element. This explanation was obtained from the sensor man-
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Figure 3.7: The algorithm described here takes the likelihood timeseries as input and re-

turns the instants in time where that plot went beyond the norm (by a certain percentile

threshold).
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Figure 3.8: Summing the detections in stage-2 allow for an easier identification of leaks.

Depending on the window size, the amount of detections can cross a detection threshold for

a considerable time. Shown here is the summation plot, overlayed with a smoothed version

for clarity.
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ufacturer. This effect means that we are not able to immediately consider the output of

the first stage and have to perform additional steps before making a decision. To reduce

false positives, we look at the total number of stage-1 detections in a sliding window. If

this cumulative count of stage-1 detections exceeds some pre-determined threshold level for

a preset period of time, we then output a detection, which we name as a stage-2 detection.

The length of the sliding window, the threshold level, and the duration of crossing, can all

be used to control the false positive and true positive rates, similarly to stage-1. The overall

performance of stage-2 detections (and therefore that of the entire algorithm) is analyzed

with respect to user-set parameters (percentile threshold, stage-1 window size, and stage-2

window size). The results are presented in section 3.3.

3.2.4 Localization Algorithm

Following a successful detection of a leak by both stages of the algorithm, a localization

routine is called. We utilized a simple center of mass approach. Upon finding a detection,

we calculate the 2-dimensional mean of the concentration measurements in the in the X-Y

plane.

x̂ =

N∑

i=1

st(i)xi

N∑

i=1

st(i)

(3.3)

ŷ =

N∑

i=1

st(i)yi

N∑

i=1

st(i)

(3.4)

In the above equations, xi and yi represent the coordinates of each sensor, while st(i) is the

sensor concentration reading. The resulting point (x̂, ŷ) is defined as the estimate of the leak

source detection. This would correspond to finding the point of maximum concentration on

a heat map. Figure 3.9 depicts the localization result on a particular heat map.

3.2.5 Possible Improvements to our Method

In our analysis, we assumed that the sensory readings are conditioned only on the state

of the leak (i.e. ON vs OFF). Now, as the deployment grows in size, a far away sensor
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(a) Concentration heat map during a leak. The sidebar denotes concentra-

tions in % volume.

(b) Baseline concentration heat map (no gas is present). The sidebar de-

notes concentrations in % volume.

Figure 3.9: Concentration heat maps of a 5x4 grid of sensors in two states: during a leak

and when no gas is present.
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from the leak source will probably not be able to detect any change. Still, considering a

reduced spatial sampling, the response of the sensor to the plume of gas will depend on its

location with respect to this plume. To take this into account, the sensor models would be

augmented in the following form.

p(st(i) | θ, Location) (3.5)

However, developing sensor models based on plumes is well beyond the scope of this work,

and it would somehow complicate the study. Nevertheless, it is worth mentioning that

a location-dependent model can be worked out similarly to the previous section. The

likelihood methods will then be directly applied, with some tuning.

One other important improvement that can be introduced is time dependence. With

our current approach, we do not exploit the fact that if a leak exists at time t, it is then

likely for this leak to remain at time t+1. Considering this feature means that we could use

a general state space model to describe the leak phenomenon. Our objective would then

be to perform state estimation, for which one may resort to Kalman filtering, Unscented

Kalman Filtering or Particle Filtering, etc.

3.3 Experimental Validation

To validate our architecture, hardware and algorithms, we took part in an experiment

at the Texas A&M Engineering Extension Service facility, in College Station, TX. Over

the period of three days, more than 60 propane leaks of two minutes each were released.

These leaks were monitored by 3 different detection systems (including the one presented

here), and controlled by a team of engineers and a team of firefighters. The site of the

releases is shown in figure 3.10. Twenty wireless propane sensors were used to monitor an

area of about 200m2 surrounding the two release points (at 0.5m and 5.5m). The sensors

were placed in a 4× 5 grid configuration, with a separation of about 4m. All of them were

mounted on an elevation of about 2.25m. These devices measured propane concentrations

at a rate of 1 measurement every 5 seconds. The measurements were collected in a data

packet and transmitted to a nearby gateway. We now present the results of our algorithm
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Figure 3.10: Site of the experiment in College Station, TX. This figure shows the two release

points, and the placement of the 20 sensor grid (5x4) at an elevation of about 2.25m.

applied to the 60 releases of different source heights, source nozzle sizes (2mm, 6.35mm,

19mm, and 63.5mm), and flow rates (ranging between 1.35lb/hr and 1020lb/hr).

3.3.1 Detection Results

The algorithms described in section 3.2 were applied to the collected concetration mea-

surements, with different parameters modified for every pass. First we look at the number

of correct detections and false alarms as the stage-1 window size is varied. The results are

shown in figure 3.11. The general trend observed shows that increasing the window size

of the first stage does not affect the number of detections greatly, except when it grows

to a point where the actual variations associated with the leaks are no longer beyond the

selected percentile threshold. This effect is accelerated when the window size of stage-2 is

reduced. The effect in question is readily visible in figure 3.11 (a) for the stage-2 window

size of 50. Looking at false positives, we notice that the trend peaks at a particular stage-1
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window size before starting to roll off. However, it is to note that this roll-off is sometimes

associated with a reduction in detections as well.

The impact of changing the stage-2 window size on the number of true and false positives

is shown in figure 3.12. Concerning the number of detections, increasing the size of the

stage-2 window shows an increase in these detections, which tends to settle (with a slight

dip) beyond a particular point (around 125 samples). At the same time, the number of

false alarms increases sharply before it peaks and decreases with an increasing window.

This validates the conjecture made before: increasing the stage-2 window size allows us to

have a better detection methodology, as it decreases the number of false alarms, while not

diminishing the true positives by much.

However, and as expected, increasing the stage-2 window size has a direct effect on

delays. This is readily observed in figure 3.13. Though the delay starts by being elevated

with short window sizes, this can be explained by the fact that the number of leaks detected

during with that configuration is very low, and the data is therefore not representative.

However, once the delay reaches a minimum value, it starts to climb back up with increased

stage-2 window size. Indeed, the confidence in the detection increases, but the consequence

is that the algorithm has to wait for more and more samples before making the decision.

As explained before, the percentile parameter is an important one that determines the

performance of our detection method. Looking at figure 3.14, we notice that increasing

this parameter has a similar effect to increasing the stage-2 window size: the number of

detections rises quickly before starting to dip slightly with increase percentile threshold,

while the number of false alarms rises quickly in the beginning, before dropping as the

percentile is increased.

At this point, it is worth noting that the most balanced configuration of this algorithm

returned a detection rate of 55/60, with 7 false alarms, and an average delay of 108 seconds.

Though these results seem promising, they leave a lot of room for improvement. The

62



(a) An increase in the window size generally leads to a decrease in the

number of detections.

(b) False alarms also increase with the window size.

Figure 3.11: Impact of varying the stage-1 window size on the number of detections and

the false alarms.
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(a) The increase in window size beyond a certain point reduces the number

of detections by a small number.

(b) False alarms are reduced the larger the stage-2 window size is.

Figure 3.12: At the second stage, a larger window size tends to have a better performance

overall.
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Figure 3.13: The stage-2 window size increase leads to a decrease in false alarms, but that

comes at the expense of an increase in detection delay.

detection rate is satisfactory, especially when compared to the absence of widespread reliable

detection methods on the market today, but a 100% rate would be desirable of course. A

delay of more than 100s, could represent some challenges for a refinery workers in responding

to an alarm, so reducing it to below 1 minute is also desired. Finally, a false alarm rate

of 7 over a period of three days seems excessive, even if these alarms were short-lived.

Still, a false positive rate of 1 per plant per month (or per year) would be highly desirable,

especially with an elevated detection rate to accompany it. To reach these desirable results,

we would require an improvement in sensor technology of at least one order of magnitude

in SNR. Concerning the lifetime of the sensors, and to enable a 10-year deployment without

the need to change batteries, a reduction of power consumption of two orders of magnitude

is required for reliable detection.

With this in mind, we “massage” our experimental data to reduce its SNR as proposed

and run the algorithm again. The results are shown in figure 3.15. It is clear that certain

configurations of our detection methodology would give us a 100% detection rate (while

others give a slightly reduced rate). Most importantly however, is the false alarm rate,

which stays at zero across all configurations considered here.
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(a) A percentile threshold in the 10-20% seems to lead to a higher number

of detections.

(b) The number of false alarms rises quickly with the percentile, before it

rolls off at a slower rate.

Figure 3.14: The percentile threshold parameter is very important in determining the per-

formance of these routines.
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(a) In some configurations, detecting all of the releases becomes possible.

(b) The rate of false alarms is zero across most configurations.

Figure 3.15: Given ideal sensors (with high SNR), the detection problem would become

much easier. This plot shows the result of the two stage detection algorithm presented here

applied to “ideal” data generated from the experimental one.

67



3.3.2 Localization Results

We now look at the localization results given our noisy sensors covering the test site.

Upon finding a detection, the center of mass routine is called upon the concentration data,

and the point of highest mean in both the X and Y directions is identified as the leak

source estimate. Figure 3.16 shows a scatter of these detection estimates (for the different

parameters described above) along with the true source of the leaks. Most of the detections

seem clustered in the middle of the sensor grid, but with a slight skew towards the actual

source. One potential explanation to this phenomenon is the absence of sensors directly

above the leak release point. This means that the algorithm is converging towards the

closest sensor(s) in the vicinity of this source.

Looking at the distribution of distance between the estimated leak source and the actual

one in figure 3.17, we can see that it follows an inverse Gaussian trend. Most detections

actually occurred less than three meters away from the leak source, and a striking majority

were localized less than 5 meters away. Also shown in figure 3.18, are the localizations of

the 55 “best” detections which were obtained as described above (with the 7 false alarms

and the delay of 108 seconds). The results shown confirm the reliability of the localization

method, with no estimates found in unusual locations (near the edge of the network for

example). In a realistic deployment, the localization figures presented here figures would

be very helpful for workers who are familiar with the equipment present in the vicinity of

the sensors, and who should quickly be able to identify the source of the leak.

3.4 Final Thoughts

Though we can achieve the results presented here today, there is still some work to be

done to get this idea into production. Essentially, as the wireless communication reaches

new boundaries in reliability, and as efficient microcontrollers become cheaper and less

power hungry, the only component left to be improved is the sensor. Certainly, improve-

ments on the detection algorithm could help reduce the false alarm rate and increase the
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Figure 3.16: Scatter plot of all of the detections (during many different configurations).

The offset seen between the real source of the leak and the conglomeration of detections

could be explained by the fact that no sensors were present directly above the source.

Figure 3.17: A histogram of the distances between the detections and the real source is leak

is shown in this figure. More than 50% of all detections are within 3 meters of the source.
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Figure 3.18: In the preferred configuration (resulting in 55 detections out of 60, with 7 false

alarms), the localization results appear even closer to the actual source of the leaks.

detection rate, but the sensing hardware would be a better place to start. An order of mag-

nitude improvement in signal-to-noise needs to be accomplished in explosive gas sensors (to

reduce false alarms). A quicker wake-up time and two orders of magnitude of improvement

in energy consumption are needed to extend the lifetime of the device to 5 years. As a

concluding note, and though this study was done with industrial plants in mind, we feel

that similar approaches can be accomplished in cities of the future, where a gas detection

and localization system can help address the problems of leaks in urban gas pipelines.

70



Part II:

Tools

71



Chapter 4

A Realistic Energy Consumption

Model for TSCH Networks1

Time Slotted Channel Hopping (TSCH) mesh networks are becoming central for wire-

less industrial deployments as they are able to achieve 99.999% reliability [41] with min-

imal power consumption. Standards such as WirelessHART [1], ISA100.11a [2] and

IEEE802.15.4e [3] are rooted in the TSCH medium access technique. In a TSCH net-

work, nodes are synchronized, and time is split into time slots, each typically 10ms long.

Time slots are grouped into a slotframe which continuously repeats over time.

The network’s communication schedule instructs each node what to do in each time

slot: send to a particular neighbor, receive from a particular neighbor, or sleep [42, 43].

Channel diversity is obtained by specifying, for each send and receive slot, a channel offset.

The same channel offset is translated into a different frequency on which to communicate

at each iteration of the slotframe. The resulting channel hopping communication reduces

the impact of external interference and multipath fading, thereby increasing the reliability

of the network [44].

1This chapter was published in a similar form as follows:

Vilajosana, X.; Wang, Q.; Chraim, F.; Watteyne, T.; Chang, T.; Pister, K.S.J., “A Realis-

tic Energy Consumption Model for TSCH Networks,” Sensors Journal, IEEE, vol.14, no.2,

pp.482,489, Feb. 2014 doi: 10.1109/JSEN.2013.2285411
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Figure 4.1: Timeslot template for a transmitter (top) and receiver node (bottom). This fig-

ure shows the timing breakdown for these two types of slot, highlighting where transmission

occurs [3]

All nodes in the TSCH network are synchronized. Because communication occurs at

a well-defined times within a time slot, the sender nodes know exactly when to transmit.

If the sender and receiver nodes were perfectly synchronized, the receiver node would turn

its radio on at exactly the instant when the transmitter starts emitting. The sender’s

and receiver’s radio would be on only for the duration of the packet being transmitted.

After the transmission of a packet, both nodes can switch their radios off to save energy

or sleep a few milliseconds before repeating the same process in order to receive/transmit

an acknowledgment (ACK). This simplistic scenario is the optimal solution in terms of

energy consumption that can be achieved in a communication between two nodes, since it

minimizes the time during which the transceivers are on.

However, as clocks between neighbor nodes in a network drift (30ppm relative drift is

a typical value [45]), a small “guard time” is required at the receiver end to account for
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relative desynchronization [46]. Acknowledgments follow a similar scheme: a guard time is

introduced around the ideal reception moment.

Although the wireless medium is lossy in nature, TSCH networks are deterministic in

their scheduling. The energy consumed by a node can be modeled precisely, by profiling

the actions that are carried out during each slot. The aim of this chapter is to present

an energy consumption model for TSCH networks, and to analyze the impact of control

signaling and the communication schedule on this energy consumption.

Kohvakka et. al. [47] model the energy consumption of the legacy IEEE802.15.4-2006

MAC protocol operating in slotted (beaconed) mode. A similar model is later used to

predict the energy consumption per received bit as a function of traffic load and packet

size [48]. Wang et. al. [49] present a general energy consumption model for WSN devices

based on their hardware architecture. This model reflects the energy consumption in various

functioning states, and during transitions between states of the devices leading to a very

accurate energy modeling. More recently, Casilari et. al. [50] present a model for non-slotted

CSMA/CA based IEEE802.15.4/ZigBee networks.

Khader and Willig [51] present an energy consumption model for WirelessHART TDMA

networks, which addresses objectives different from the ones presented here. The authors

focus on analyzing the WirelessHART protocol and identifying the main aspects that con-

tribute to the energy consumption it induces. They focus is on exploiting different sleep

modes on the CC2420 transceiver in order to reduce this consumption. In contrast, our goal

is to develop an energy consumption model based on a fine-grained energy analysis of each

type of slot in such networks, in the hope of providing a tool for consumption estimation

prior to real network deployments.

4.1 Energy Model

As a device joins a TSCH network, it obtains information about the duration of each

time slot, and the number of slots in a slotframe. In each slot, the node can either transmit,

receive, or keep its radio off. A scheduling entity is responsible for building the schedule
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which will satisfy the bandwidth and latency needs of the different flows in the network.

Throughout the lifetime of the network, this entity modifies this schedule to adapt to

changes in the topology and changes of the traffic requirements. The schedule allows for

a fine-grained trade-off between latency, bandwidth, redundancy and power consumption.

Several scheduling approaches have been proposed, both centralized [52] and distributed [53,

54], and are currently being standardized [55]. The energy consumption of a mote is the

sum of the energy consumed in each slot. To build the energy consumption model, we

start by investigating the energy consumed in each type of slot, both through analysis and

experimentation.

4.1.1 TSCH Slot Template

This chapter focuses on IEEE802.15.4e networks, but the same principle can be applied

directly to other TSCH standards such as WirelessHART [1].

In IEEE802.15.4e, there are 6 different types of time slots:

• TxDataRxAck: A timeslot during which the node sends some data frame, and receives

an acknowledgment (ACK) indicating successful reception.

• TxData: Similar to the previous, but no ACK is expected. This is typically used

when the data packet is broadcast.

• RxDataTxAck: A timeslot during which the node receives some data frame, and sends

back an ACK to indicate successful reception.

• RxData: Similar to the previous, but no ACK is exchanged.

• Idle: Time slot during which a node listens for data, but receives none.

• Sleep: Time slot during which the node’s radio stays off.

Fig. 4.1 presents a detailed breakdown of the activity of a node in a TxDataRxAck slot at

the transmitter, and a RxDataTxAck slot at the receiver [3]. The transmitter node starts by

waiting for macTsTxOffset, during which it prepares the data to send, and configures the
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radio according to the frequency inferred from the schedule. The radio then turns on and

transmits the packet exactly macTsTxOffset from the beginning of the slot. After the last

byte of the packet has left the radio, the transmitter gives the receiver some time to prepare

the acknowledgment packet by waiting for macTsRxAckDelay. If no acknowledgment is

received after the Acknowledgment Guard Time (AGT) period, the device turns off the

radio and considers the transmission failed.

On the receiver’s side, the device waits for macTsRxOffset, then turns its radio on,

listening for a packet. If after the Packet Guard Time (PGT), no packet is received, the

device turns its radio off for the remainder of the slot. If a valid packet is received, the

node waits macTsTxAckDelay after the reception of the last byte, before turning its radio

on and sending the acknowledgment.

4.1.2 Slot Energy Consumption Modeling

In a typical node, the two components which consume the most are the micro-controller

and the radio. These components can either be two separate chips interconnected by some

digital bus on a board, or grouped in a single System-on-Chip. To accurately model the

energy consumption in this node, one must look at a detailed breakdown of the various

states each module enters, for each type of slot. As the micro-controller and radio change

state, their consumption varies. Table 4.1 shows their state during the different phases of

a TxDataRxAck slot. The charge (in Coulombs) drawn from a battery during the execution

of this slot is the sum of the charge in each of these steps.

QTxDataRxAck =

∫ TsSlotDuration

0
ITxDataRxAck(t)dt (4.1)

The same analysis holds when computing the energy consumption of the other 5 slot

types, and extract QRxDataTxAck, QTxData, QRxData, QIdle, and QSleep.

This chapter focuses on two hardware platforms made with commercial off-the-shelf
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Period in Template State of motes µP state Radio state

StartOfTimeslot NewSlot Active Sleep

TsTxOffset TxDataOffset Active Sleep
PostTxDataOffset Sleep Sleep
TxDataPrepare Active ToReady
PostTxDataPrepare Sleep Ready

TxPacket TxDtataStart Active ToTx
TxData Active Tx
PostTxData Sleep Tx

TsRxAckDelay TxRxAckOffset Active Sleep
PostTxRxAckOffset Sleep Sleep

AGT RxAckPrepare Active ToListen
RxAckReady Sleep Listen

RxAck RxAckStart Active Rx
RxAck Sleep Rx
PostRxAck Active Sleep

BeforeEnd Sleep Sleep Sleep

EndOfTimeslot EndSlot Active Sleep

Table 4.1: Mapping from periods in template to states of mote modules.

(COTS) components, which run the OpenWSN reference TSCH implementation [22]. These

platforms are representative of spectrum of nodes available. OpenMoteSTM is the “high-

end” node, which features a STMicroelectronic STM32F103RB 32-bit microcontroller at the

Atmel AT86RF231 IEEE802.15.4-compliant radio. GINA [10] is the “low-end” node, with a

Texas Instruments MSP430F2618 16-bit microcontroller, and the same Atmel AT86RF231

radio. Table 4.2 and Table 4.3 list the the current draw of those components in the Open-

WSN implementation.

4.1.3 Experimental Verification

To verify the validity of the energy model, the energy consumption for three different

types of slots is measured on the GINA and OpenMote-STM32 platforms, and compared to

the value computed using the model. In the experiments on both GINA and OpemMote-

STM32, the same slot timings are used as shown in Table 4.4. Fig. 4.2a shows the current

drawn by a GINA mote during an idle slot. At TTsTxoffset−TRxGT /2−TRxDataPrepare, the
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GenericMode AT86RF231 Mode Current Measured

Sleep TRX OFF 0.4mA 0.49mA

ToReady TRX OFF 5.6mA N/A
⇒ PLL ON

Ready PLL ON 5.6mA 5.4mA

Tx BUSY TX 11.6mA (0dBm) 13.7mA (0dBm)

ToListen TRX OFF 12.3mA N/A
⇒ PLL ON
⇒ RX ON

Listen RX ON 12.3mA 11.6mA

Rx RX ON 12.3mA 11.6mA

Table 4.2: Current drawn by the Atmel AT86RF231 radio chip for different states (theo-

retical and measured).

Generic Mode MSP430 DS MSP430 Exp STM32 DS STM32 Exp

Active 7.4mA@16MHz 7.54mA@16Mhz 27mA@72MHz 32mA@72MHz
3.7mA@8MHz N/A 7.4mA@16MHz N/A

4.6mA@8MHz N/A

Sleep 1.1µA N/A 14µA N/A

Table 4.3: Current drawn by the MSP430 and STM32 microcontrollers for different states

(theoretical as defined by the DataSheet (DS) and measured experimentally (Exp)).

Timing Constant Value

TsSlotDuration 15000µs

TsTxOffset 4000µs

TsRxOffset 305µs

PGT 2600µs

AGT 1000µs

TsTxAckDelay 4000µs

TsRxAckDelay TsTxAckDelay − AGT/2 µs

Table 4.4: Slot timing, as implemented in OpenWSN.
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Figure 4.2: Measured current draw on a GINA mote.
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Measured Simulated

State GINA OM-STM32 GINA OM-STM32

Idle 47.9 101.1 54.1 85.2

Sleep 4.9 37.8 8.2 9.2

TxDataRxAck 92.6 161.9 103.3 151.2

TxData 69.6 119.2 76.7 123.1

RxDataTxAck 96.3 217.0 105.2 175.9

RxData 72.1 154.8 78.0 125.0

Table 4.5: Measured and Simulated charge drawn for each types of slot, in µC.

mote’s microcontroller turns on to prepare the radio and turns it on at TTsTxoffset−TRxGT /2

for reception. After TRxGT the radio is switched off as no packet is received.

Fig. 4.2b shows the current drawn by a GINA mote during a transmission slot. The

micro-controller is turned on at TTsTxoffset − TTxDataPrepare, allowing enough time to pre-

pare the data. At that time, the radio is turned on and the packet is loaded into the radio.

The first current spike in the figure at 0.047ms is measured when the radio is being turned

on. The bytes of the packet are then loaded into the radio’s transmit buffer. At TTsTxoffset,

the packet is sent. Once the radio is done transmitting, the radio is switched off for the

TTsRxAckDelay period. A little before the ACK is expected, the radio is turned on again to

listen. After the reception of the ACK, the radio is switched off.

Similarly, Fig. 4.2b presents the current drawn by a GINA mote during a reception

slot. The mote sleeps until TTsTxoffset − TRxGT − TRxDataPrepare. The micro-controller

then switches on to configure the radio to the right frequency. At TTsTxoffset − TRxGT /2,

the radio starts listening. After listening and receiving for a total of 4.6ms, the packet

is completely received and the micro-controller and radio are turned off during the

TTsTxAckDelay − TTxAckPrepare period. The ACK is then loaded into the radio and trans-

mitted at TTsTxAckDelay, after which the micro-controller and radio are switched off.

The energy consumption for the three remaining types of slots is presented in Figs. 4.3a

and 4.4a.

These experimental results are compared to the results calculated by implementing

the energy model in Matlab. The values corresponding to GINA and OpenMote-STM32
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Figure 4.3: Current draw during idle listening and off slots, on an OpenMote-STM32.
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(b) Computed using the model presented in this chapter.

Figure 4.4: Current draw during transmission and reception slots, on an OpenMote-STM32.
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have been selected from Table 4.2 and Table 4.3, and introduced in the calculation. The

calculated results are shown in Figs. 4.3b and 4.4b. The comparison between measured

and calculated values shows a good match between the model and the experimental values.

In addition, Table 4.5 shows the charge (in µC) drawn by the device, both by experiment

and through model-based calculation. The difference between the measurement and the

calculation comes from multiple sources, e.g. the measurement error (equipment imprecision

when measuring currents of the order of µA), little differences on timing within the slot and

the difference between typical current consumption values reported by the manufacturer as

compared to the ones actually consumed during execution (see Table 4.2 and Table 4.3).

4.1.4 Slot-Frame Energy Consumption Modeling

We can use the energy model of the different slots to determine how much energy is used

during each slotframe, and compute the expected battery lifetime of the network. Equations

(4.2) through (4.7) define how much energy is consumed in a slotframe for the different types

of slots. Subscripts a refers to available slots while subscript u refers to used slots. Consider

PDR as Packet Delivery Ratio defined as the number of packets being acknowledged divided

by the number of packets being sent by a node. In the following equations, N stands for

number of and the subscripts define the type of slot being considered (e.g NaRxTx stands

for the number of available slots where the node will be listening for a packet and will send

and acknowledgment (ACK).)

QFIdle =
((NaRxTx −NuRxTx) +NaRx −NuRx))×Qidle

PDR
(4.2)

Eq. 4.2 defines the contribution of idle slots to the total charge drawn in a slotframe.
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The number of slots that are in the idle state are those that have been configured on the

schedule as RxDataTxAck or RxData, but during which no data is received.

QFSleep = (Nsleep + (NaTxRx −NuTxRx)

+ (NaTx −NuTx))×Qsleep

(4.3)

Eq. 4.3 defines the contribution of Sleep slots. As in (4.2), the TxDataRxAck slots

(NaTxRx) that are not used NuTxRx are in Sleep state. In this case, during a TxDataRxAck

slot, the transmitter has no data to send and the radio is therefore never turned on.

QFTxRx =
NuTxRx × ( NBSent

MaxPktSz
×QTx + (QTxRx −QTx))

PDR
(4.4)

Eq. (4.4) defines the contribution of the NuTxRx TxDataRxAck slots which are used.

In that case two considerations are taken, the first one involves the number of bytes being

sent, NBSent which is considered with respect to the maximum packet size as our energy

consumption measurements have been done with MaxPktSz2 packets. In addition the

Probability Delivery Ratio (PDR) expected by the network is considered. Analogously, Eq.

(4.5) describes the energy consumed in slots that are of type TxData.

QFTx = NuTx × (
NBSent

MaxPktSz
×QTx)PDR (4.5)

Eq. (4.6) computes the contribution of RxDataTxAck slots. The number of used slots

is defined as NuRxTx, in addition the number of bytes being sent is also considered.

QFRxTx = NuRxTx × (
NBSent

MaxPktSz
×QRx + (QRxTx −QRx)) (4.6)

2127 bytes in IEEE802.15.4e.
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Eq. (4.7) computes the contribution of RxData slots.

QFRx = NuRx ×
NBSent

MaxPktSz
×QRx (4.7)

Eq. (4.8) defines the total charge drawn during a slotframe, and is the sum of the

contributions by the different types of slots.

Qslotframe = QFIdle +QFSleep

+QFTxRx +QFTx +QFRxTx +QFRx

(4.8)

Finally, (4.9) defines the battery lifetime of a node, in days, assuming it runs from a

3.6V power supply.

lf =
Bcapacity × 3.6

Qslotframe

×
Lengthslot × Lengthslotframe

3600× 24
(4.9)

4.1.5 Relay and Leaf Node evaluation

In order to support our realistic energy consumption model a small network composed

of five GINA motes running the OpenWSN [22] protocol stack has been built. A topology

is forced so that one of the motes is a relay to the base station and the rest of the motes

are configured to be leaf nodes as depicted by Fig. 4.5. Leaf motes are configured to send a

packet every 4 seconds leading to at most four packets in a slotframe at the relay mote. The

setup has been built in our laboratory, all motes have been installed in a well known position

and with a clear line of sight between them. Static schedules have been pre-configured at

each node according to Fig 4.5, no overprovisioning have been configured although the

data rate in leaf nodes has been configured to be 1 packet every 4 seconds, considerably

lower than the supported data rate. Note that Tx slots that are not used are considered

to be Sleep slots having the minimal energy consumption. No other IEEE802.15.4 devices

were operating in the laboratory. Channel hopping has been used to mitigate the effect
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Figure 4.5: Experimental setting diagram. The schedule of Mote B is configured so it can

relay information of the leaf nodes. Leaf nodes are configured to be able to send a packet

once every 4 slotframes. Empty slots are Sleep slots. Slotframe is composed of 100 slots of

15ms each.

of multipath and external interference [44] and we have considered the expected channel

errors to be negligible.

The experiment measures the charge drawn by both relay and leaf motes, as well as

the radio duty cycle during a complete slotframe. The results are presented in Table 4.6.

Simulation and experimental results match with an average current consumption of 581.9

µA for the relay mote in the experimental setup and 569.8 µA for the simulated setup.

The leaf mote consumes less energy (455.0 µA and 415.4 µA respectively) due to less active

slots in its schedule. The radio duty-cycle is computed in both cases (experimental and

simulated) showing a clear match between our model and the experimental setup.
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Measured Simulated

Node Type Relay Leaf Relay Leaf

Slotframe Charge Drawn (µC) 872.8 682.5 854.7 623.1

Energy Consumed (µA) 581.9 455.0 569.8 415.4

Radio Duty-Cycle in % 1.14 0.47 1.12 0.47

Table 4.6: Charge by slotframe. Slotframes are composed of 100 slots of 15ms.

4.2 TSCH optimizations

The energy consumption model proposed in this chapter can be used to guide TSCH

network configuration. In this section, we present two example cases. The GINA platform

is assumed in this evaluation.

4.2.1 Synchronization Policy

IEEE802.15.4e defines two schemes to maintain one-hop synchronization. One is adver-

tisement (ADV )-based, and another one is keep-alive (KA)-based. By applying the energy

consumption model defined in Section 4.1, we can compare these approaches to understand

the impact of each method in terms of energy consumption.

Considering a guard time of 2600µs and a clock drift of±30ppm, (i.e. the clock difference

between two nodes will be 60ppm in worst case), in order to maintain synchronization,

one of the two above actions need to occur at least every 43s. Leaving some margin,

we consider 40s as the interval between two synchronization events. In the KA-based

synchronization, a keep-alive frame and an ACK frame are both used, each containing 12

bytes. For ADV -based synchronization, only an Enhanced Beacon frame (EB) is needed.

Usually, an EB contains time and channel information for synchronization, and initial link

and slotframe information for new nodes to join the network. The length of the EB is

therefore configurable (26 to 127 bytes), depending on the number of links and options

encoded as Information Elements (IE) in the advertisement.

Fig. 4.6 shows the energy consumed on both the transmitter and receiver nodes by

using either KA-based or ADV -based synchronization. Keep-alive packets have a fixed
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Figure 4.6: Energy consumption by Keep-alive and Advertisement for GINA.

length, while the length of EB packets can vary according to the number of links being

announced. We assume that the interval between two EBs (which is defined as a trade-off

between energy consumption and network joining requirements) is longer than the maximum

interval between two synchronization actions (i.e 40 seconds in our example). In order to

minimize the energy consumed during synchronization, it is required that EBs have a length

shorter than 57 bytes (this is particular to the GINA platform as other devices will show

other energy consumption numbers). Therefore, in the case where EBs cannot be shorter,

keep-alive based synchronization is preferable.

Besides the impact on energy consumption discussed above, other factors have to be

taken into consideration while scheduling EB and KA messages. For example, EB-based

synchronization may have a big advantage for a node which has many children; and KA-

based synchronization can lead to power advantages, when using more advanced synchro-

nization mechanisms such as adaptive frame-based synchronization as described by Stanis-

lowski et. al. [56].
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4.2.2 The Cost of Overprovisioning

Overprovisioning happens when the scheduling entity allocates more links to account

for the losses due to the wireless transmission, in order to meet the QoS requirements.

Overprovisioning consists in scheduling extra slots for possible re-transmissions. The lower

the packet delivery ratio of a link between two neighbors, the more overprovisioned slots

are needed. This is present in the equations in Section 4.1.4. It is necessary to say that

the queue length of node and the latency in a track are very strong functions of PDR

and overprovisioning, as PDR is dependent on the environment, queue length and level of

overprovision become the two main factors to vary in order to dimension the network. Over-

provisioning impacts the energy consumption of the network while queue length impacts

the memory requirements.

With regards to overprovisioning and from the transmitter’s side, having TxDataRxAck

or TxData slots in the schedule and not using them is equivalent to considering these slots

to be sleep slots. When the packet delivery ratio of a link is better than expected, less re-

transmissions happen, and some overprovisioned slots are unused. From the transmitter’s

point of view then, unused overprovisioned slots do not incur any extra energy consumption,

since the radio stays off.

Fig. 4.7 presents the results of a simulation considering a slotframe with different avail-

able TxRx slots and different levels of usage of these slots. When a slot is used, the energy

consumed by the slot frame is the same, regardless of the number of available TxRx slots,

this is due to the fact that non-used TxRx slots are equivalent to sleep slots. Note also

that the presented results are centered on the schedule configuration, i.e used slots cannot

be more than available slots although logically the data-rate requirement in a node can

be higher than the provided and in that case the consumption will be aligned with the

maximum available data rate.

Overprovisioning impacts the energy consumption of the receiver side. That is, having

RxDataTxAck or RxData slots on the schedule and not using them has an impact on the

energy consumption of the network. The reason for that is that nodes in RxDataTxAck
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Figure 4.7: Impact of overprovisioning on the transmitter side in a slotframe.
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Figure 4.8: Impact of overprovisioning on the receiver side in a slotframe.
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or RxData slot always listen whether a packet is received or not. In case of not getting a

packet, the RxDataTxAck or RxData slot is equivalent to an idle listen slot because nodes

only listen during the guard time period.

Fig. 4.8 presents the result of the simulation considering a slotframe with 10 configured

RxTx slots and with different levels of usage. As it can be seen, for example for 1 used

RxDataTxAck slot, the energy consumption increases depending on the number of available

RxDataTxAck slots. The amount of that increment is in fact the difference of the energy

consumption between an sleep slot and an idle listen slot.
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Chapter 5

When Scavengers Meet Industrial

Wireless1

The consolidation of industrial wireless communication into standards is leading to an

increase in deployments throughout various industries today. Despite the technology being

considered mature however, plant operators are reluctant to introduce mesh networks into

their process, despite their very low energy profiles. One of the major obstacles of course

is the power source of various wireless sensors and actuators. In many situations, batteries

are too limited and difficult to replace. On top of that, certain devices cannot be powered

by wires due to mechanical constraints, or because the cost of installing wires cannot be

justified [57]. This is one area where scavenging technologies can be taken advantage of,

especially where the industrial setting becomes an interesting harvesting source (momentum,

temperature gradients, etc. [58]).

Vibrational energy scavenging [59] is well studied when combined with motors and

rotational objects [60,61], which are omnipresent in heavy industries. Peltier effect devices

[62] have also proven to obtain interesting amounts of energy when temperature gradients

1This chapter was published in a similar form as follows:

Martinez, B.; Vilajosana X.; Chraim F.; Vilajosana I.; Pister K.S.J., “When Scavengers meet

Industrial Wireless,” Industrial Electronics, IEEE Transactions on, vol.PP, no.99, October

2014 doi: 10.1109/TIE.2014.2362891
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are non-negligible, e.g in cold and hot pipes also common in many industries. Recently, RF

scavenging is emerging as a very promising source of energy. Sometimes a combination of

harvesting sources is even possible [63]. However, augmenting wireless sensing and actuation

devices with energy scavenging requires a clear understanding of the power dynamics of each

application since harvested energy constitutes a new source of variability to the device.

In this chapter, we present a methodology for precisely quantifying the power con-

sumption on a per application basis, which allows the designers to appropriately size their

scavenging and storage devices. The presented work goes one step further than previous

research by closing the loop and modeling the energy inputs and outputs in a per subsys-

tem basis. The model enables the adjustment of the application parameters and balancing

the cost of communication, processing and data acquisition subsystems according to the

amount of harvested energy. Here, we use the model presented in chapter 4 and augment

it to cover all the sources of energy consumption in a device.

The chapter is organized as follows. Section 5.1 reviews the state of the art and related

work. In Section 5.2 we present our model, broken down for data acquisition, processing and

communication. Then, in Section 5.3, we apply our model to the case of motor vibration

sensing, as means of an example. In Section 5.4 we discuss the implications of our model

for energy scavenging, before concluding in Section 5.5.

5.1 Related Work

Recent approaches to model the use of scavenging techniques in industrial wireless ap-

plication can be found in the literature. Wang et al. [64] present a model for the power

consumption of a sensor network by analyzing the consumption of individual components

that are involved in the communication. The provided analysis is suitable to dimension the

energy spent during the communication process but neither scavenging techniques nor the

cost of the application itself are considered. Torah et al. [60] assumes a dependence between

the harvesting pattern and the applications needs. In their approach, they build an appli-

cation that wakes the microcontroller up and transmits a packet only when enough energy
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has been harvested. The approach draws a best effort system that cannot provide any sort

of determinism, which is often required for industrial applications, method clearly does not

allow for the use of TSCH-type layers. On top, this work does not provide a clear mod-

eling of the application energetic requirements nor a detailed network energy consumption

analysis. Recently, Liu et al. [65] presented a completely autonomous system using energy

scavenging proving the suitability of self-powered networked applications. This first demon-

strator, however, is still far from industrial applications and yet, its energy consumption

profile is not well defined. Waterbury et al. [61] presented a self-powered industrial applica-

tion based on vibrational harvesting. Their work is focused on characterizing the amount of

energy that can be obtained from an electric motor, complementing our work, but they do

not outline how this energy is distributed among the application subsystems and therefore

how this energy spending can be optimized. Gungor et al. [66] already pointed out the

need for energy-harvesting techniques in industrial wireless sensor network and presented

an initial study on how different energy-harvesting techniques influence the device design

in general terms. Nasiri et al. [67] presented a deep study on how photovoltaic cells (PV) in

indoor scenarios can be dimensioned to power low-power electronic devices. Nevertheless,

a fixed application setup is used, and the problem of adapting the application parameters

to the available energy is not addressed. Tan et al. [68] presented an analogous approach

focusing the scavenging techniques on capturing the energy from thermal variations and

photovoltaic cells. Recently, Magno et al. [69] present a wireless structural health moni-

toring system which incorporates a multi-source energy scavenging subsystem, the article

analyzes the energy input obtained by the harvesters but does not take into account in

their model the specific low power wireless communications protocols and bandwidth re-

quirements to achieve deterministic industrial communications. Other energy sources such

as RF scavenging have also been studied recently by Musseta and Gandelli et al. [70, 71]

but the studies in question lack system-wide modeling, and do not point out the impact of

various application components to dimension the RF scavengers. Piezoelectric vibrational

scavenging modeling has been addressed by D’hulst et al. [72]. Their work focuses on the

analysis and modeling of the vibrational scavengers that can be used to harvest energy from
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vibrating sources such as motors, but the paper lacks a system-wide view and a much-needed

discussion of whether the obtained energy is enough to power a device.

In general, a systematic study of how energy is distributed in the whole system have

not been addressed in the literature. The present chapter improves current state of the

art by defining a general methodology introducing a new perspective that can be applied

to different industrial applications. A model is presented as a tool that aims to facilitate

the application dimensioning and scavenger selection at pre-deployment phase. The model

takes into account the three components that play a fundamental role in a realistic industrial

application: standard networking technologies, sensing and processing. This approach has

not been tackled by the current literature, and results demonstrate that the contribution

to the energy consumption of the different components is of the same order of magnitude

and consequently, all of them must be taken into account in order to explore the feasible

options and fine-tune the application parameters.

5.2 A Model for Early Power Estimation

Figure 5.1: Self-Powered Wireless Sensor Device Diagram.

A self-powered wireless sensor device is characterized by a sustainable provision of en-

ergy. In a general model, as depicted in Fig. 5.1, the energy scavenged from the medium
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ESCV must be greater than the energy required by the device EDEV along its operational

lifetime. Formally:

ESCV =

∫

∞

0
PSCV (t)dt ≥

∫

∞

0
PDEV (t)dt = EDEV (5.1)

Despite this being a necessary condition during the operation of a device, the instan-

taneous power supplied from the harvester PSCV (t) (conditioned by the environment), is

in general independent of the energy consumption rate PDEV (t). The latter is governed

by the specific application. Then, a properly sized energy buffer is required to balance the

generation and demand asymmetries as shown by Jiang et. al. [73]. With that assumption

in mind, dimensioning the energy generation and the energy consumption can be addressed

independently. Thus, Eq. (5.1) can be reduced to a simpler form P̄SCV ≥ P̄DEV in terms of

average behavior on the characteristic cycle of operation of the application. The problem

of sustainability of a wireless sensor network is then described by a clear understanding of

the energy generating pattern, the characterization of the operational energy demand and

a dimensioning of the energy transfer buffer.

As shown in Eq. (5.2), the power required to operate a wireless sensor device can be

broken down into three main blocks: energy required for data sensing (acquisition), for

application (data processing), and communication (networking). Our model therefore is

based on an atomic breakdown of each building block, where the instantaneous power

consumption is integrated over the duration of the corresponding task, and averaged out its

characteristic temporal scale (period of repetition). The next subsections go into a detailed

analysis of each energy building block.

PDEV = PNET + PACQ + PPRC (5.2)

5.2.1 A Model for TSCH Networks Energy

TSCH networks show an ultra low power consumption profile due to the low power

nature of IEEE802.15.4 compliant radios and due to the fact that nodes are synchronized
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and actions occur at specific moments in time, enabling nodes to optimize the usage of

their resources. Since the actions that occur at each time slot are well known, the energy

consumption can be modeled on a slot per slot basis. With precise modeling the task of

precisely calculating the energy consumption of a network according to its traffic require-

ments becomes straightforward. We now apply the model derived in chapter 4 as a tool to

estimate the energy consumption of the addressed scenarios. Note that our aim in this case

is to introduce the use of the previously defined model into the presented methodology.

Figure 5.2: Example of two TSCH slotframe configurations with a different number of slots

N and M, and assuming M > N. The first slot is used for network discovery by means of

Enhaced Beacons. Then K Data slots for transmission and reception are common in both

configurations. Configuration A has N-K Sleep slots (unused), while Configuration B has

M-K Sleep slots, meaning that a node running in this configuration will be idle for longer

periods. This Slotframe repeats over time.

In a TSCH network the slotframe length NSLOT determines how often actions repeat,

which usually depends on application requirements. The amount of scheduled cells (i.e

Transmit or Receive) depends on the traffic requirements of the application and, as the

transceivers often consume higher amounts of energy, the communication cost dominates
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as the traffic on the network increases. Latency, robustness and energy consumption are

compromised.

Energy consumption can be reduced by increasing the length of the slotframe, i.e by

inserting more Sleep slots or by disabling some Active slots so they become Sleep slots. A

node only is active in certain of the timeslots in the slotframe, which are used to send or

receive information. In the rest of non-active slots the node remains switched off. If the

number of active slots remains constant and the slotframe size increases, the ratio of sleep

slots increase. This means that the average energy spent by the node is smaller as it is less

active. The same effect is obtained changing active per sleep slots. However, the reduction

of activity comes at the cost of less bandwidth and increased latency. Reliability is also

compromised, as less redundant links to neighbors are expected.

5.2.2 Modeling Data Acquisition Energy

It would be impossible to come up with a model that captures all of the sensing tech-

niques. However it is reasonable to say that most applications fall under the following

two categories: regular sensing (with a fixed interval) and event-driven sensing. In regular

sensing, a sensor is woken up at regular intervals to collect one or more samples, and then

sent back to sleep. Of course, when energy is freely available, the sensor can be left on

permanently, but that is not the case of most battery-operated devices, where duty-cycling

the sensor becomes necessary. In event-driven sensing, a random event triggers a series of

samples from the sensor. This event can be internal to the sensor (e.g. crossing a pre-set

threshold) or external (e.g. a request of sensor data coming from the plant operator).

To quantify the energy consumption of the sensing component in the wireless device, we

must first look at the energy required to capture one sample. Then, the model is generalized

to account for more than one regular sensing intervals (with different periods and sampling
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requirements) and various event types. Eq. (5.3) models the energy consumption of the

acquisition component.

EACQ = ESMP · [
K
∑

k=1

N
(k)
S,REG +

L
∑

l=1

P
(l)
S,EV T ·N

(l)
S,EV T ] (5.3)

In Eq. (5.3) K is the number of sensor sampling in a regular basis, whilst L represents

the number of sensors triggered by events. The following variables are used:

• ESMP is the energy of one sample as presented in Fig. 5.5.

• NS,REG is the number of samples taken during one regular sensing interval

• PEV T is the probability of an event occurring in one sensing interval

• NS,EV T is the number of samples taken following the occurrence of an event

5.2.3 Modeling Local Data Processing Energy

The sensing and networking components are common to all applications running on the

same platform and thus, the same profiling can be reused for further modeling. In contrast,

application developers need to be able to estimate the energy consumption of specific hard-

ware at design time, without having to provide the actual hardware implementation. This

enables the exploration of different alternatives while minimizing the risk.

To estimate the energy drained from the battery by an application task, we use a

method proposed and validated originally in [74]. Starting from a high level description

of the algorithm (e.g. Matlab/Octave), the number of operations to process the original

sensed signal is recorded, accounting basically for the number of arithmetic operations:

additions, multiplications, divisions and comparisons, the main actors in signal processing

loops. Thus, depending on selected hardware architecture, we map these counters into

the corresponding number of microcontroller clock cycles, and subsequently the latter is

mapped into the corresponding energy expenditure.
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This method offers accurate results as long as the CPU tasks rely mainly on arithmetic

instructions (as digital signal processing algorithms do). However, it is no longer applicable

when the microcontroller is involved in non-arithmetic based tasks, like dealing with a

protocol stack. In that case, an alternative method is presented through the use of ISS

simulators.

5.3 Application Oriented Model Validation

Rotary machines of all sizes are the propelling force behind many industries (refining,

chemical, energy production...). In the constant quest for better efficiency and lower energy

consumption, vibration monitoring of rotating machines becomes necessary. In short, plant

operators aim at increasing the load on the machines and their running time, while reducing

their down-time and energy consumption. This is accomplished by installing vibration sen-

sors (accelerometers for example) and performing an harmonic analysis of those vibrations

to monitor the health of the machinery [75]. For cost and logistical purposes, it is often

desired that the sensing equipment be self-powered and wireless, thereby forcing the system

designer to carefully plan the energy consumption [66]. In this section, we illustrate the

model presented in 5.2 by taking the vibration monitoring application as our case study.

As described in section 5.2 and for each subsystem, the atomic energy contributors

are identified. As a general rule, the current consumption is obtained from the device’s

datasheet. This consumption is then multiplied by the duration of each task (estimated

according to some selected set of Network/Application parameters), to get the total charge

drained at each stage.2 The estimation of each contributor is compared with the real

measurement to show the correctness of the proposed methodology.

The experimental setup we used in our application is shown on Fig. 5.3. The GINA

2In our case, all components are sourced to the same voltage level. The model is presented with currents

instead of power, and charge instead of energy (i.e, normalized by the voltage). As the reference values in

the datasheets of the components, batteries and scavengers are given in intensity units we avoid continuous

conversions, and also facilitate the experimental measurement as only current proves are required.
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Figure 5.3: Experimental setup diagram.

platform [10] was used for sensing, processing and networking. It holds the Texas Instru-

ments MSP430f2618 16-bit microcontroller, the Atmel AT86RF231 IEEE802.15.4 radio,

and the STMicroelectronics LIS344ALHTR 3-axis analog accelerometer. For energy stor-

age, a lithium polymer battery was used with a battery charger controller. The selected

vibrational scavenger is the Perpetuum PMG FSH60x2, attached to the case of the motor

in a position that maximizes both the vibrations transferred to the sensor as well as those

being scavenged. All experiments are measured with the NI9203 16 Bits analog current

acquisition module, with a resolution of 0.6µA per LSB.

5.3.1 Network Energy Profiling

To profile the energy consumed by TSCH networks we apply the model defined in [76]

to determine the charge used in each slotframe with different network setups. This config-

uration has also been validated in an experimental setting with the GINA mote running
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the OpenWSN protocol stack [22]. In short, the average current required to maintain the

network can be approximated by Eq. (5.4).

ĪNET
∼=

Q̄MSG ·NACT

TSLOT ·NSLOTS

+ ĪC (5.4)

In Eq. (5.4), ĪC accounts for the activity of the µC to manage the network (system),

and can be regarded as constant. TSLOT is a fixed network parameter. Q̄MSG, representing

the average charge required per active packet, depends on the radio technology and the

network state. A lower packet delivery ratio (PDR) implies a higher average current per

packet arrived with success. This means that, once the number of active packets NACT

in the slotframe is provisioned, the number of slots NSLOTS in the frame becomes the

control parameter for the network energy, giving a characteristic functional dependency on

INET ∝ 1/NSLOTS which can be seen in Fig. 5.4.

In this experiment slotframes from 10 to 50 slots have been used, all of them being

configured to deal with the deterministic traffic of 3 packets per slotframe. The PDR

measured in our setup was close to 100%. Fig. 5.4 shows the experimental data compared

to the model adopted, and the predicted current consumption in environments with lower

PDR.

5.3.2 Data Acquisition Profiling

In general, to estimate the energy required in collecting one sample, we have to look at a

breakdown of the microprocessor/sensor activity during that sample. We have represented

in Fig. 5.5 the following tasks:

• Sensor startup time (TSETT ).

• Microprocessor and sensor energy required to initiate sampling (could correspond to

toggling a pin, or sending a command on a communication bus like I2C, SPI, etc).

• Analog-to-Digital conversion (TADC). This happens on the sensor if it is a digital one,

on the microprocessor if the sensor is analog.
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Figure 5.4: Network model for different values of PDR compared to experimental data.

NACT is fixed to 3 active slots, and TSLOT = 0.015s.

• Transfer of data from the ADC output to the processor memory (TCPU ). This task

could be an internal memory operation or an external serial/parallel communication.

In our application example, we are dealing with an analog sensor that is turned on from

the microprocessor, and which provides a reading through the processor’s ADC. The sensor

startup time is too long to turn it on and off between consecutive samples (TSETT ≈ 5ms),

therefore, the sensor is required to remain in its On state while collecting the NS samples.

Consequently, sensor and processor must be considered independently.

The charge drained by the sensor in the data acquisition stage is computed using the

total time the sensor must remain active while capturing NS samples with a sampling

period TS . Then, the total charge is given by QSNR = ISNR ·NS · TS . On the other hand,

as the ramp-up time of the CPU is fast enough, it can operate on a sample by sample

basis. For each sample, the energy contribution can be obtained by looking at the number

of cycles required by the internal ADC as well as the cycles required to move the data to
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Figure 5.5: Energy consumption breakdown for one sample

memory. The time required to sample five ADC channels, convert them and commit them

to memory is represented in Table 5.1, along with the total time TC . Since each conversion

is independent, the total charge required is proportional to the active time at each capture:

QADC = ICPU · TC ·NS .

When combining both contributions, a simple linear dependence on the number of

samples is obtained IACQ ∝ NS . Finally, the average current of the acquisition block is

computed by dividing the total charge by the time lapsed between consecutive records, as

shown in Eq. (5.5). In this block two control parameters appear, the number of samples

per record NS and the time between consecutive records TRCD.

ĪACQ
∼=
NS · (TS · ISNR + TC · ICPU )

TRCD

(5.5)

5.3.3 Data Processing Profiling

In this section, we study the contribution to the energy cost of the data processing.

The vibration monitoring application is mainly concerned with the frequency content of

the acceleration signals. As such, a Fast Fourier Transform (FFT) is required to find

the relevant dominant frequency and harmonics in the signal. Two different approaches
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Figure 5.6: Application charge drained by different components

were addressed to obtain a proper estimation of the computation time of the FFT. First,

a MATLAB implementation of the algorithm was used to estimate the number of cycles

required, following the method used in [74]. In the second approach, the code was moved

to a device specific implementation and was simulated with an Instruction Set Simulator

(ISS)3.

Table 5.2 compare both approaches, showing that the time estimated through the num-

3e.g. IAR workbench Simulator

Task Cycles(MHz) T̂ [us] T [µs] δT [%]

Sample and Hold (ADC) 5× 13 (5) 13.0

A-D conversion (ADC) 5× 16 (5) 16.0

Samples Storage (CPU) 164(16) 10.2

System wake-up 1.1

Total Conversion TC 40.3 39.4 2.2

Table 5.1: Time required by the acquisition of one single sample, broken down in different

tasks. Estimated conversion time T̂C is compared with measured time TC . ADC and CPU

parameters are obtained from MSP430 datasheet.
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ber of MATLAB operations did not differ significantly from that derived from the instruc-

tions simulated in the ISS, and the later is in perfect agreement with the time measured

with the algorithm running on the MSP430 processor. This demonstrates that it is possible

to estimate the number of cycles required by the data processing algorithms at design stage,

even without the final source code implementation. This processing time is used to obtain

a fairly accurate energy consumption estimation, which is critical when designing the final

solution over the platform.

NFFT TPRC [ms] T̂MAT [ms] δTMAT [%] T̂ISS [ms] δTISS [%]

64 14.6 14.3 2.1 14.7 0.4

128 33.5 33.2 0.8 33.5 0.0

256 75.3 75.8 0.6 75.4 0.1

512 167.8 170.2 1.4 168.0 0.1

1024 369.8 377.8 2.1 370.3 0.1

Table 5.2: Time and charge consumed in FFT processing. Simulated results T̂MAT and

T̂ISS are compared with real measurements TPRC

For modelling purposes, it is important to identify a functional dependency on a con-

trolled parameter. The Radix-2 implementation of the FFT has a well known Nlog(N)

complexity. The associated energy cost in Eq. (5.6) is proportional to this relation, being

Q̄OP a magnitude representing the average cost per operation. Fig. 5.7 shows the fitting of

Eq. (5.6) to the experimental data.

ĪPRC
∼=
Q̄OP ·N · log(N)

TRCD

(5.6)

5.3.4 Joint Model Validation

Once individual energy consumption contributors have been profiled, a joint model can

be built as a tool to understand the main contributors on energy consumption for a specific

application setting.

As asserted before, the main parameter involved in network consumption is NSLOTS ,
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Figure 5.7: Charge drained to compute a N-point FFT. Numerical value for β can be found

in Tab. 5.3.

which is related to the number of Active and Sleep slots. Assuming a fix number of Active

slots, by incrementing NSLOTS we are introducing Sleep slots to the schedule and therefore

reducing the average consumption.

In terms of sensing and processing, two remarks should be made. First, a record is

defined as the process of waking up, taking NS samples and computing an FFT to analyze

them. We assume that the number of points computed by the FFT and the number of

samples taken by the ADC are the same NS
.
= N . This means that the number of points in

a record is a parameter that affects simultaneously the energy expenditure of both sensing

and processing procedures. Second, once the number of points to be sampled and analyzed is

fixed, the duty-cycled behavior of the application makes the average power depend directly

on the time between records TRCD. As the time between records is increased, less power is

consumed. Therefore, the time interval between consecutive records gives us the time scale

for power averaging.
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Figure 5.8: Comparison of Model predictions and experimental results for different param-

eter configurations.

Eq. (5.7) combines the three contributions (5.4), (5.5) and (5.6) differentiating between

technological and applications parameters. Constants α, β, γ and δ only depend on the

particular choice of sensor, MCU and radio technologies respectively. From the individual

contribution, α represents the charge per sample Q̄S , β is interpreted as a cost per operation

Q̄OP , while γ is an estimator of the average charge per message Q̄MSG. These constants

can be easily modified to evaluate alternative technologies. In turn, NSLOTS , N and TRCD

are application parameters that can be tuned in order to meet the specifications, once

established the specific technology.

ĪDEV =
αN

TRCD

+
βNlog(N)

TRCD

+
γNACT

TSLOTNSLOTS

+ δ (5.7)

Contribution Parameter Model Fitting Units

Acquisition α 3.50 3.49 [µC]

Processing β 0.269 0.263 [µC]

Network (Radio) γ 68.9 63.9 [µC]

Network (System) δ 0.433 0.475 [mA]

Table 5.3: Technological parameters obtained by modeling compared to experi-

mental data fitting.

Table 5.3 compares the value of α, β, γ and δ obtained by modelling with the exper-
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imental data fitting for a GINA mote running the OpenWSN protocol stack. With this

technology fixed, Fig. 5.8 shows the experimental results compared with the predicted by

Eq. (5.7) for different application configurations. The dots in the figures represent the mea-

sured current values, while the bars around them represent an allowable deviation of 5%

due to variations in the PDR or other environmental conditions. The vertical bars show

the estimated values by the model, plotted for different numbers of slots in a slotframe

NSLOTS , different recording intervals TRCD, and a different number of samples collected

and processed N . These results demonstrate the correctness of the model.

5.4 The Model in Action

By using this model, the applications engineer can make better informed technology-

related decisions (both hardware and software) at the design stage. This methodical ap-

proach to wireless sensing allows for a reduction in the prototyping stage, and a quicker

route to successful deployments. This section discusses how the presented model can be

used for i) understanding the energy balance of an application, ii) assessing on the energy

harvester selection and iii) coping with scavenging dynamics by adapting the application

behavior.

5.4.1 Application Energy Balance

Experimental measurements on a system only provide the energy consumed by the entire

system without giving any knowledge about the distribution of the consumption among the

different subsystems. This makes it difficult to identify the main contributors to the energy

consumption and the parameters on which depends the application, thereby limiting the

scope of energy optimizations. The presented model, however, enables us to determine the

amount of energy consumed by each of the subsystems in the application and understand

the energy balance between components.

Fig. 5.9 presents a simulation obtained by applying Eq. (5.7) to different network and

recording period configurations, considering 1024 samples per record. Bars present the con-
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tribution to the energy consumption of the network, sampling and processing components,

according to the number of slots per slotframe and the recording interval.
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Figure 5.9: Contribution of recording interval and network configuration using 1024 points

for the FFT (processing time fixed).

An asymptotic behavior can be seen in both axes of Fig. 5.9. Holding the interval time

fixed, the overall energy consumption is reduced when increasing the number of slots in a

slotframe. However, the asymptotic decrease limits the amount of energy that can be saved.

At a certain point, increasing the number of slots in the network does not significantly reduce

the energy consumed. Analogously, as the recording interval increases, the energy savings

decrease. This graphical representation can be used as a tool to determine which of the

parameters yields the highest energy savings once optimized.
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5.4.2 Scavenging

Scavenger selection is guided by the condition defined in Eq. (5.1), and a desirable

situation comes when the P̄SCV ≥ P̄DEV condition arises. Dimensioning of the scavenger

depends to the configuration and application requirements of the wireless sensor devices.

On the one hand, a fixed network and application configuration can easily be used to draw

the upper bound of P̄DEV and therefore select the right size for the scavenger. On the other

hand, given a particular scavenger, the network and application parameters can be tuned

to meet the available average current condition.

To draw an example of the second approach, a GINA mote was connected as shown in

Fig. 5.3. The vibration of an industrial pump has been measured for 24 hours, in order

to characterize the variability in the amplitude of vibrations and so the energy produced.

Fig. 5.10 shows the spectrogram obtained for a chunk of 1 hour. In this particular appli-

cation, the maxim peak of the spectrum have been found at 60Hz. At this frequency, the

measured amplitude of acceleration is almost constant in time: a±σa = 0.0985±0.0016 [g].

In our example, we selected the PMG FSH60x1 model, with a resonator adjusted at 60Hz.

This device provide a current of ĪSCV ≈ 1.6mA for a 0.98 [g] (Fig. 5.11). Based on

this response, Fig. 5.12 shows the suitable subset of parameters to make the application

self-sustainable, defined by the region above the white curve. The dashed lines show the

expected current inside 3σ limits.

5.4.3 Dynamic Scavenging

In many applications, the incoming energy to the system is only available intermittently.

In other cases, the scavenger cannot provide the expected energy because some environmen-

tal variables have changed. In both cases, the application should be able to dynamically

adapt to the new conditions so as to remain energetically sustainable. This is accomplished

by selecting a suitable parameter and mapping the consumption to the expected energy in-

put. In our application, the number of slots is fixed once the network has been established

(the length of the slotframe cannot be changed without involving a cascade of changes in
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Figure 5.10: Spectrogram of the vibration magnitude during one hour of monitoring.

other nodes). Active slots can be deactivated and converted to Sleep slots, therefore re-

ducing the throughput of the node. However this comes with a considerable energetic cost

to the network as it might trigger certain rescheduling in other nodes. Then, a more suit-

able control parameter is the time lapse between records TRCD. Alternatively, the number

of points to compute the FFT can also be reduced, thus compromising the quality of the

harmonic analysis.

To dynamically adjust energy consumption to variations of the energy scavenged, the

application needs to keep track of the amplitude of the fundamental vibrational harmonic4,

analyze it and estimate the expected input current for the next cycle accordingly. With this

information, the time for the next record can be scheduled. Fig. 5.13 shows the operational

regions for different network schedules. To select the interleaving time, the vibrational

amplitude is analyzed and the expected normalized current is computed. This value is used

4The fundamental harmonic is defined by the specific frequency that provides the main contribution to

the harvested energy. That should be the nominal frequency of the selected harvester.
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Figure 5.11: Vibration amplitude mapped to the current supplied by the harvester for this

amplitude.

to determine the timeout for the next wake-up by finding the TRCD in the border of the

region.

5.5 Final Thoughts on the Model

This chapter addresses the convergence of energy scavengers with industrial wireless

sensing and actuating applications. A methodology based on a parameterizable model has

been presented in order to understand energy spending and facilitate scavenger selection.

The methodology aims to reduce technology adoption/integration risks as energy consump-

tion can be estimated precisely without the need of prototyping or building actual devices.

We show that by decomposing the sources of energy consumption, optimization can be done

in a more accurate manner, and system designer efforts can be put in the right direction

consequently minimizing costs and risk. A precise estimation also enables a clear dimen-

sioning of the components of the devices, especially with respect to the energy buffer and
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Figure 5.12: The gray scale of the side bar represent the device average current. Given the

estimated production of the specific harvester (1.5mA in this example), the white line limits

the self-powered region, that is, an acceptable combination of parameters that guarantee

an autonomous operation.

harvester. It has been shown that TSCH networks facilitate the energy profiling due to

their determinism and slotted structure.

Throughout this chapter, we make use of an industrial application to illustrate how an

analytical model emerges as a tool to facilitate the application configuration and scavenger

selection at pre-deployment stages. Given a TSCH-based wireless application and knowing

its bandwidth, sampling and processing requirements, an accurate estimation of energy

demands is used to determine what scavenger is required to make it self-sustainable. In

addition, the parametrized model can be used to enable different modes of operation in case

of varying requirements. The presented model has been validated experimentally using a

wireless sensor network platform running the OpenWSN protocol stack.
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The presented methodology can be easily applied to a wide range of applications and

sources of energy, and can be summarized in five simple steps: i) Find a source of energy

in your environment. ii) Measure the magnitude of the available energy and its duty-

cycle iii) Run a simulation within the feasible limits of application parameters iv) Select

a suitable harvester sized accordingly to the energy available and the first estimation of

the application consumption v) Fine-tune the application parameters accordingly with the

selected harvester.
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Conclusion

This thesis has demonstrated the possibility of achieving wireless applications that go

beyond simplistic sensor sampling and reporting. Light was also shed on the scope of

challenges facing the developer. As seen in the valve monitoring study, there are often sens-

ing challenges on resource-constrained devices. The MEMS-based “peel-and-stick” solution

demonstrates that, in spite of these challenges, a satisfactory performance can be achieved

(valve angle accuracy of ±5◦ was recorded for quarter-turn models, while an accuracy of

±10% of a turn was obtained with the multi-turn valves). Taking an idea from concept to

prototype to solution comes with its own hurdles. This was most apparent in the perimeter

security chapter. Over a period of about two months, the cost-effective and scalable wireless

solution demonstrated a 100% detection rate for all 91 attempted intrusions, and no false

alarms. A lifetime of about 8.5 years is also achieved using a standard lithium C-cell bat-

tery. Finally, choosing the right algorithm and tuning it to the application at hand requires

time and dedication. In the gas leak detection project, many iterations and refinements

in the detection routines were necessary to find a suitable configuration. One of the most

successful configurations achieved a gas plume detection rate of 91% with seven false alarms

over three days. In terms of localization, the system estimated the leak locations to within

three meters of the actual leak source.

By now it is understood that configuring a TSCH network is not as straightforward

as setting up a Wi-Fi router. Every parameter can have dramatic effects on the perfor-

mance of the network. Energy and reliability are the two main trade-offs to keep in mind.

The network energy modeling tool of Chapter 4 can be very practical in evaluating various
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configurations. The last chapter also quantifies the overall energy consumption of the appli-

cation (i.e. sensing, computation and communication). This tool shows a clear methodology

for sizing energy scavengers and storage devices.

As a final note, our critical industrial environments are now acquiring the right wireless

infrastructure. However, they are still awaiting all the innovative applications which will

utilize this infrastructure to make their operation safer, more efficient and more environmen-

tally friendly. With a good understanding of the underlying technologies and challenges, all

of these undiscovered applications are waiting to happen.
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