
Specification Mining: New Formalisms, Algorithms

and Applications

Wenchao Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-20

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html

March 17, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Specification Mining: New Formalisms,
Algorithms and Applications

by

Wenchao Li

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Professor Andreas Kuehlmann

Professor Francesco Borrelli

Fall 2013

Specification Mining: New Formalisms,
Algorithms and Applications

Copyright 2013
by

Wenchao Li

1

Abstract

Specification Mining: New Formalisms,
Algorithms and Applications

by

Wenchao Li

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Specification is the first and arguably the most important step for formal verification and
correct-by-construction synthesis. These tasks require understanding precisely a design’s in-
tended behavior, and thus are only effective if the specification is created right. For example,
much of the challenge in bug finding lies in finding the specification that mechanized tools
can use to find bugs. It is extremely difficult to manually create a complete suite of good-
quality formal specifications, especially given the enormous scale and complexity of designs
today. Many real-world experiences indicate that poor or the lack of sufficient specifications
can easily lead to misses of critical bugs, and in turn design re-spins and time-to-market
slips.

This dissertation presents research that mitigates this manual and error-prone process
through automation. The overarching theme is specification mining – the process of inferring
likely specifications by observing a design’s behaviors. We explore formalisms and algorithms
to mine specifications from different sources, and demonstrate that the mined specifications
are useful if not essential for a variety of applications such as verification, diagnosis and
synthesis. The first part of the dissertation presents two approaches to mine specifications
dynamically from simulation or execution traces. The first approach offers a simple but effec-
tive template-based remedy to the aforementioned problem. The second approach presents
a novel formalism of specification mining based on the notion of sparse coding, which can
learn latent structures in an unsupervised setting, and thus are not restricted by predefined
templates. Additionally, we show that the mined specifications from both approaches can
be used to localize bugs effectively.

In the second part of the dissertation, we study the problem of synthesis from tempo-
ral logic specifications. This synthesis approach offers an attractive proposition – one can
automatically construct a functionally correct system from its behavioral description. The
downside, however, is that it completely relies on the user to not only specify the intended
behaviors of the system but also the assumptions on the environment. The latter is espe-
cially tricky in practice as environment assumptions are often implicit knowledge and seldom

2

documented. We propose a framework that learns assumptions from the counterstrategies
of an unrealizable specification to systematically guide it towards realizability. We further
show that, the proposed counterstrategy-guided assumption mining approach enables the
automatic synthesis of a new class of semi-autonomous controllers, called human-in-the-loop
(HuIL) controllers. A crucial component of such a controller is an advisory that determines
when to switch control from the autonomous controller to the human operator. We formalize
the criteria that characterize a HuIL controller, by taking into account of human factors such
as response time, and describe how to construct the advisory using assumption mining.

Human inputs are still critical in specification. In the last part of this dissertation, we
describe two efforts on broadening the scope of specification mining with creative use of
human inputs. The first is the design of a crowdsourced specification mining game called
CrowdMine. The main idea of CrowdMine is to transform a design’s traces into images and
leverage the human ability to recognize patterns in images to assist the process of mining
specifications. The second effort examines the feasibility of converting natural language
specifications to formal specifications, with a focus on how specification mining encapsulated
in a natural language processing (NLP) layer may assist non-expert users of formal methods
at the requirement stage of a design.

i

To my family.

ii

Contents

Contents ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Thesis Contributions . 4

1.2.1 New Formalisms . 4
1.2.2 New Algorithms . 5
1.2.3 New Applications . 6
1.2.4 Broadening the Scope of Specification Mining 7

1.3 Related Work . 8
1.3.1 System . 8
1.3.2 Type of Specification . 9
1.3.3 Method . 11
1.3.4 Application . 12

1.4 Thesis Organization . 13

2 Preliminaries 15
2.1 Notation . 15
2.2 Automata . 16

2.2.1 Büchi Automaton . 16
2.2.2 Finite-State Transducers . 16

2.3 Linear Temporal Logic . 17
2.3.1 Syntax and Semantics . 17
2.3.2 Satisfiability and Realizability . 18

2.4 Specification Mining with Templates . 19

iii

I Requirement Generation and Error Localization 21

3 Background 22
3.1 Formalism and Notations . 22

3.1.1 Transition System . 22
3.1.2 Traces and Subtraces . 22

3.2 Running Example . 23

4 Specification Mining for Digital Circuits 25
4.1 Overview . 25
4.2 Preliminaries . 26

4.2.1 Notations . 27
4.2.2 Specification Templates . 27

4.3 Mining Algorithm . 28
4.3.1 Mining from Delta Traces . 28
4.3.2 Merging Simple Specifications . 32
4.3.3 Specification Ranking . 33

4.4 Error Localization . 34
4.5 Experiments . 37

4.5.1 Benchmarks . 37
4.5.2 Results . 38

4.6 Summary and Discussion . 41

5 A Sparse Coding Framework for Specification Mining 43
5.1 Introduction . 43
5.2 Background . 45

5.2.1 Traces and Matrices . 45
5.2.2 Bipartite Graphs . 46

5.3 Specification Formalism – Basis Subtraces 48
5.4 Algorithm: Sparsity-Constrained Biclique Cover 50

5.4.1 Formulation as a Sparse Coding Problem 50
5.4.2 Solving the Sparse Coding Problem 51
5.4.3 Example Illustration . 53

5.5 Application to Error Localization . 54
5.5.1 Problem Definition . 55
5.5.2 Localization by Construction . 55
5.5.3 Example Illustration . 57

5.6 Results and Experiments . 58
5.6.1 Theoretical Guarantees . 58
5.6.2 Case Study . 60

5.7 Additional Related Work . 61
5.7.1 Boolean Matrix Factorization . 61

iv

5.7.2 Bug Localization . 61
5.8 Summary . 62

6 Crowdsourced Specification Mining 63
6.1 Introduction . 63
6.2 CrowdMine – Game Design . 65

6.2.1 CrowdMine1: An Open-Loop Design 65
6.2.2 CrowdMine2: A Closed-Loop Design 67

6.3 Discussion . 69

II Assumption Mining for LTL Synthesis 72

7 Background 73
7.1 Synthesis from GR(1) Specifications . 75

7.1.1 Generalized Reactivity (1) Specifications 75
7.1.2 Games and Strategies . 75
7.1.3 Counterstrategy Graph . 77

7.2 Related Work . 78

8 Mining Environment Assumptions 80
8.1 Solution Overview . 82
8.2 Version-Space Learning with Templates . 85
8.3 Experimental Results . 87

8.3.1 AMBA AHB Bus Protocol . 87
8.3.2 Generalized Buffer . 88
8.3.3 Robotic Vehicle Controller . 89

8.4 Summary . 90

9 Human-in-the-Loop Controller Synthesis 91
9.1 Introduction . 91
9.2 Motivating Example . 94
9.3 Human-in-the-Loop Controller . 95

9.3.1 Agents as Automata . 95
9.3.2 Criteria for Human-in-the-loop Controllers 96

9.4 Controller Synthesis . 97
9.4.1 Weighted Counterstrategy Graph . 98
9.4.2 Counterstrategy-Guided Synthesis of HuIL Controllers 100
9.4.3 Switching from Human Operator to Auto-Controller 102

9.5 Experimental Results . 103
9.5.1 Car-Following . 103
9.5.2 Gridworld Hallway . 105

v

9.6 Additional Related Work . 107
9.7 Summary . 108

10 Mining Assumptions from Natural Language Specifications 109
10.1 Related Work in NLP . 110
10.2 Natural Language to LTL Formula . 111

10.2.1 Preprocessor . 111
10.2.2 Stanford Type Dependency Parser (STDP) 112
10.2.3 Semantic Processor . 113
10.2.4 Formula Generation . 115

10.3 Case Study . 117
10.4 Summary . 121

11 Conclusion and Future Work 122
11.1 Closing Remarks . 122
11.2 Future Work . 123

11.2.1 Combining Sparse Coding and Automata-Based Specification Mining 123
11.2.2 Compositional Analysis . 123

Assumption Mining for Verification 124
Contract-Based Synthesis . 124

11.2.3 Improving Sparse Coding . 125
11.2.4 Other Application Domains . 125

Bibliography 126

vi

List of Figures

1.1 Thesis overview . 4
1.2 Dimensions of specification mining. 8

2.1 Monitor for G (a→ X b). 19

3.1 A two-port arbiter design. 23
3.2 Sample trace of the arbiter design. 23

4.1 High-level architecture of the proposed specification mining tool SAM. 26
4.2 Equivalent delta trace of the trace shown in Figure 3.2. 29
4.3 Monitor for the formula in Equation 3.1 over delta traces (propositions not shown

on certain transitions are understood to be complementary such that the automa-
ton is deterministic). 30

4.4 Illustration of the procedure createTable. 31
4.5 Iterative row and column updates of Tab over τ δi = {eδj , eδj+1}. 32
4.6 Specification mining-based bug localization. 35
4.7 CMP router comprising four high-level components. 38
4.8 Example mined specification from the CMP router. 39
4.9 State machine in the “vcstate” module. 39

5.1 Bipartite graph GD. 46
5.2 Biclique edge cover Cov. 47
5.3 A subtrace as superimposition of two basis subtraces. 50
5.4 A normal trace of a 2-port round-robin arbiter 53
5.5 Three basis subtraces computed via sparse coding. 54
5.6 Subtrace correctness characterization using basis subtraces. 54
5.7 Bit flip on g1 at cycle 97. 57
5.8 Error subtrace as identified. 58
5.9 Two error explanations. 58

6.1 Overview of CrowdMine1. 66
6.2 Top ranked patterns obtained in CrowdMine1. 67
6.3 Overview of CrowdMine2 . 68

vii

6.4 Finding contradicting subtraces in a counterexample. 69

8.1 Counterstrategy-guided synthesis enabled by assumption mining (the highlighted
portions are our contributions). 82

8.2 Counterstrategy graph Gc for unrealizable specification ψ. 84
8.3 Diagrammatic representation of a version space from the most general hypothesis

to the most specific hypothesis. 86

9.1 Human-in-the-Loop Controller: Component Overview and Synthesis from Speci-
fication . 94

9.2 Controller Synthesis – Car A Following Car B 94
9.3 Condensed graph Ĝc for Gc (Figure 8.2) after contracting all SCCs. 99
9.4 Gridworld hallway example. 105
9.5 Illustration of φ: arrows indicate all possible movements of car B from the current

position to the next position. 107

10.1 Non-expert user uses formal methods to analyze problems in a design document,
facilitated by a NLP layer. 110

10.2 Workflow: NL → LTL → formal analysis. 112
10.3 Dependencies generated using STDP. 113
10.4 Predicate graph after the application of type rules. 115
10.5 Transition of Regulator Mode based on Requirement 13 and 15. 121

viii

List of Tables

2.1 Mathematical Notations . 15
2.2 Abbreviations . 16
2.3 Semantics of LTL . 18

4.1 Performance results on generation of likely specifications. 38
4.2 Bug localization results on the CMP router. 41

10.1 Formula Translation Rules . 116
10.2 Isolette requirements in English . 118

ix

Acknowledgments

This dissertation would not have been possible without the help of many people over the
years. First and foremost, I would like to thank my advisor, Sanjit A. Seshia, for his
guidance and support. His contagious enthusiasm, intense motivation and determination,
and seemingly limitless patience, have set an example that I can only hope to imitate. I am
truly grateful to have had the opportunity to work and learn under his mentorship.

I would also like to thank Prof. Andreas Kuehlmann and Prof. Francesco Borrelli for
reviewing my dissertation and giving me invaluable feedback. I would also like thank Prof.
Rastislav Bod́ık for chairing my qualifying exam committee. They have given me much
critical and constructive feedback that helped shape this thesis.

I am also thankful to my internship mentors at Microsoft Research, Redmond and SRI
International, Menlo Park: Dr. Alessandro Forin, Dr. Natarajan Shankar and Dr. Shalini
Ghosh. Some of the ideas on specification mining were first developed while I was working
as an intern with Dr. Alessandro Forin during the summer of 2008, in Microsoft Research,
Redmond. He is always very resourceful and has given me much help and advice. I am
thankful to Dr. Natarajan Shankar, Dr. Shalini Ghosh and other amazing researchers
at SRI International for the intriguing conversations, insightful feedback, and overall the
fun and productive times at Menlo Park. Dr. Shalini Ghosh really spearheaded the work
on converting natural language requirements to their formal representations. Her inputs
were critical to the development of the work on connecting natural language processing to
specification mining. I would also like to thank Dr. Natarajan Shankar for his continual
encouragement and guidance. His expertise deeply impresses me, and if anyone asks about
my role models, Shankar would definitely be one of them. I am also grateful to my other
collaborators: Lili Dworkin, Dorsa Sadigh, Daniel Elenius, Prof. Somesh Jha and Prof. S.
Shankar Sastry. Some of the work done in this dissertation could not have been possible
without their assistance and guidance. I would also like to thank Prof. Orna Kupferman
who visits Berkeley regularly in the summers, during which we have had many fruitful
discussions. Her depth of knowledge and rigor in approach exemplify the meaning of a
world-class researcher. She is, without a doubt, a constant source of my inspiration.

During my tenure as a graduate student at Berkeley, I also had the opportunity to work
alongside some of the most talented and creative people colleagues and friends. The list in-
clude, but not limited to: Daniel Holcomb, Bryan Brady, Susmit Jha, Jia Zou, Chenjie Gu,
Hao Zhang, Qi Zhu, Yang Yang, Haibo Zeng, Wei Zheng, Qiliang Xu, Yenhao Chen, Liang-
peng Guo, Chung-Wei Lin, Alberto Puggelli, Pierluigi Nuzzo, Mehdi Maasoumy, Xuening
Sun, Tobias Welp, Baruch Sterin, Sayak Ray, Aadithya Karthik, Prateek Bhanshali, Luigi
Di Guglielmo, Alexandre Donze, Rüdiger Ehlers, Indranil Saha, Rohit Sinha, Dorsa Sadigh,
Jonathan Kotker, Zach Wasson, Wei Yang Tan, Garvit Juniwal, Nishant Totla, Ankush
Desai and Daniel Fremont.

Last but not least, I would like to thank my family, for their unadulterated and uncon-
ditional love and support. My parents are always supportive of my choices, and many times
at their own sacrifices. Without them, I would not have been able to achieve my goals. My

x

wife, Nuo, has worked alongside with me also as a Ph.D. student in Electrical Engineering
and Computer Sciences at UC Berkeley. She is the most loving and caring person I know.
Her wonderful smile brightens my every day at Berkeley.

1

Chapter 1

Introduction

We live in a world of ubiquitous computing. From home appliances, to smart phones, to cars,
we constantly engage and interact with computing devices. It has been projected that there
will be over 1,000 embedded devices per person by 2015 [Joh08]. However, a problem that
arises from ubiquitous computing is the potential proliferation of bugs, where even tiny bugs
can result in large-scale failures, e.g., a single bit error brought down all Amazon S3 servers
in July 20, 2008 [Tea08]. The stakes are even higher for safety-critical systems, such as
pacemakers, auto-pilot systems and automotive control systems, where a failure may result
not only in financial losses but also loss of human lives.

The proliferation of computing devices, shrinking of semiconductor fabrication process
nodes, as well as increase in design complexity are making the already challenging problem
of providing assurance for these devices an even more daunting task. In fact, the dominant
problem faced by engineers today lies not in creating new designs, but in creating them
correctly. Verification and correct-by-construction synthesis1 are two main approaches for
providing such assurances. In [Ses12], the author has identified the lack of good-quality spec-
ifications as one of the major problems that still plagues these two fields. We elaborate on
this below.

Verification:
Design and verification engineers now have an arsenal of tools that they can apply to verify
computing systems. However, despite decades of efforts, especially in automation, the cost of
verification is steadily rising. It has been estimated that verification and validation makes up
about 60-70 percent of the total development cost of a processor or a system-on-a-chip (SoC)
design [BAM03]. According to International Business Strategies, the cost of verification and
validation will soon completely dwarf the rest of the overall design cost as technology scales

1The term “synthesis” here refers to the synthesis of formal artifacts from high-level specifications, such
as those given in temporal logic, as opposed to “logic synthesis” (turning a register transfer level (RTL)
description into its gate-level implementation), or “high-level synthesis” (e.g., create a RTL description from
a C or SystemC description), which are more commonly used in the electronic design automation (EDA)
community.

CHAPTER 1. INTRODUCTION 2

beyond 45 nm [San].
The first and a fundamental step of every verification process is specification. Specification

at large is the process of determining the requirements of the target design and formalizing
them mathematically. It is important to note that the effectiveness of many mechanized
procedures, such as assertion-based verification [Sto02] and model checking [CGP00], relies
heavily on an engineer being able to create correct and complete specifications of a design.

Consider the classic example of an elevator controller design. The first and foremost
step is to determine and define the intended behaviors of the elevator. These behaviors
are supposed to capture precisely how the elevator should operate. For instance, the door
should remain closed until the elevator reaches the target floor. Temporal logic, such as
Linear Temporal Logic (LTL) [Pnu77] which has been assimilated into industry standards
(IEEE 1850 Standard for Property Specification Language) [EF06], can be used to formalize
this requirement, as shown below.

ψ = G
(
elevator moves→ (door closed U reaches target floor)

)
(1.1)

We review the syntax and semantics of LTL in Section 2.3. In general, this kind of
property, which describes temporal behaviors of a system, is commonly known as temporal
property. These properties, as opposed to single-state assertions, which describe constraints
at a single state of a circuit or program, are intended to capture the evolution and relation-
ship among behaviors of multiple states in time. Therefore, they are typically more tricky
to write and formalize correctly. According to a report from IBM Haifa, roughly 30% of the
formulas were created incorrectly during the first formal verification runs of a new hardware
design [BBDER97]. In this dissertation, we propose mining likely formal specifications from
traces of a design as a way to mitigate this problem. The mined specifications allow an engi-
neer to better understand the design, verify its correctness, and manage possible evolutional
changes. We explore novel formalisms of specification and present a suite of algorithms for
mining meaningful specifications from traces.

The practical effectiveness of verification, especially formal verification, lies much in its
ability to find bugs. Hence, much of the challenge in finding bugs in fact lies in finding the
specification that mechanized tools can use to find bugs. Mined specifications, which are
only behaviors exhibited in traces (of a possibly buggy design), cannot be used directly as
targets for further (formal) verification until they are validated by a human engineer. In this
dissertation, we present a novel bug localization technique that leverages mined specifica-
tions but is not limited by this restriction.

Synthesis:
The majority of a design process is in fact expensive iterations of verification and debug.
Wouldn’t it be nice if we can start with the requirements and then have a way to automat-
ically generate a design that satisfies these requirements? Temporal logic synthesis [PR89],
the proposition of automatically synthesizing an implementation from its temporal logic spec-
ification, offers an attractive solution to this problem. However, it faces the same problem
as in verification – its complete reliance on having good-quality specifications.

CHAPTER 1. INTRODUCTION 3

In this dissertation, we demonstrate that specification mining can also be valuable in
addressing the specification challenge in temporal logic synthesis. Specifically, we focus on
the problem of missing environment assumptions, which is a common cause of a specifica-
tion being unrealizable (see Section 2.3.2 for a precise definition of unrealizability) due to the
difficulty of capturing the environmental model (e.g., as a result of implicit knowledge, third-
party IP and simply poor documentation), and propose a novel algorithm based on analyzing
how the environment should not behave in order for the system to satisfy its specification.
Our work is motivated, in part, by the recent advance in temporal logic synthesis, which does
not only result in more efficient algorithms [PPS06b], but also demonstrates its applicability
to a spectrum of domains, ranging from digital circuits [BGJ+07a, BGJ+07b], to aircraft elec-
tric power system [XTM12], to mission planning for autonomous robots [KGFP07, Won10],
to industrial automation [CGR+12].

1.1 Thesis Statement

In this dissertation, we explore the following thesis:

Temporal specifications can be mined systematically from example behaviors of a design and
its environment, and can be used to automate tedious tasks in verification and synthesis such
as bug localization and finding missing assumptions.

This thesis takes the position that the manual and error-prone process of writing formal
specifications can be mitigated by specification mining – an automatic procedure that infers
likely specifications by analyzing a design’s behaviors. We show that specification mining
is not only useful for requirement generation (i.e. finding candidate formal specifications
that a designer may miss), but also applicable to a variety of other applications. Figure 1.1
illustrates the composition of this thesis.

The central theme of the thesis is specification mining. We present a collection of novel
formalisms and techniques that are tailored for a variety of different applications. This
thesis is the first to propose the use of mined specifications for bug localization in reactive
systems, such as digital circuits. We study two topics at large – verification and synthesis.
In verification, we show that relevant and meaningful specifications can be mined dynam-
ically by observing traces of a digital design, and are useful also for bug localization. In
synthesis, we study the topic of synthesis from temporal logic specifications and focus on
the problem of finding missing environment assumptions. We show that, by analyzing the
counterstrategy of an unrealizable specification, one can systematically generate candidate
environment assumptions that guides the specification towards realizability. In addition, this
counterstrategy-guided synthesis approach enables the automatic construction of a new class
of semi-autonomous controller, called human-in-the-loop (HuIL) controllers. Lastly, this the-
sis makes an effort to broaden the scope of specification mining, by proposing creative uses
of human computer interaction (HCI). Specifically, we present a crowdsourced specification

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Thesis overview

mining game called CrowdMine that can be played even by young children but effectively
infers likely properties behind the scene. Our second effort in this direction is motivated
by the fact that much documentation is still written in natural language (NL) today. We
examine the feasibility of automatically deriving formal specifications from NL sentences,
and demonstrate that this process can be tightly integrated with our assumption mining
framework to assist non-expert users of formal methods to debug design requirements.

1.2 Thesis Contributions

The contributions of this thesis are four-fold.

1.2.1 New Formalisms

There has been extensive work on specification formalisms. These formalisms can be gen-
erally put into two categories: (1) automata-based [Muk96, Rus12] or (2) logic based (e.g.,
CTL [CES86], LTL [Pnu77], PSL [EF06]), and often with a tight connection between mem-
bers of the two categories (e.g., two formalisms describe the same formal language).

CHAPTER 1. INTRODUCTION 5

In this thesis, we explore a different direction, inspired by the notion of a sparse code [OF97].
In comparison, in the automata-theoretic view of specification, an automaton (or an equiva-
lent logic formula) characterizes a set of traces with the condition that it accepts each trace
in this set (or each trace satisfies the logic formula). In our sparse-coding formalism, we offer
a “linear algebra” view of specification. Instead of using an automaton, we propose to use
a basis to characterize a set of traces. Similar to the notion of a vector space, we consider
a finite-length subtrace (see the definition of a subtrace in Section 3.1.2) as a k dimensional
Boolean vector, where k is the number of Boolean signals present in the trace. Hence, any
finite trace can be viewed as a collection of such subtraces of the same dimension, and we
can characterize a design in terms of the set of subtraces it can produce. With this obser-
vation, we propose the use of “basis subtraces” as a specification formalism. These basis
subtraces, just like basis vectors in linear algebra, span a k-dimensional subspace (⊆ Bk)
including all possible k-dimensional behaviors that can be exhibited from the design under
analysis. Particularly, we use a linear combination analog in the Boolean domain, where
multiplication is interpreted as the Boolean conjunction and addition is interpreted as the
Boolean disjunction. In Chapter 5, we elaborate on this formalism in detail, and show the
specification mining problem is equivalent to computing a basis that spans the observed
traces.

1.2.2 New Algorithms

In a dynamic specification mining framework, where specifications are mined from observa-
tions of the design under analysis, the problem of specification mining is closely related to
the problem of runtime verification. In runtime verification, traces of a design are tested
against one or more patterns usually in the form of monitors. In specification mining, traces
are examined to deriving a set of patterns that the traces satisfy2, which presumably also
capture some aspects of the underlying design.

By prescribing to a set of templates, which determine the form these patterns take, one
can construct instantiations of these templates so that they can be checked against the
traces. Many existing algorithms follow this strategy (see [LKLH11] for a compilation of
techniques). In Chapter 4, we also use this strategy but adapt it in a way that it is efficient
for digital circuits. Specifically, two main challenges for porting this strategy to circuits are
addressed by the new algorithm – (1) many concurrent signals in a circuit; (2) traces can
easily be millions or even billions cycles long.

Using predefined templates can be restrictive. In Chapter 5, we leverage the new sparse
coding-based specification formalism, which does not use hard-coded templates and only
parameterize a specification by the length of a subtrace, and describe a graph-theoretic
algorithm for computing a basis from traces. The key novelty of this algorithm is a connection
from computing a basis from Boolean traces to finding a biclique edge cover for a bipartite
graph. We describe this algorithm in detail in Chapter 5.

2The term “satisfy” is used a in loose sense here.

CHAPTER 1. INTRODUCTION 6

In Part II of the thesis, we present the first counterstrategy-guided assumption min-
ing algorithm that systematically guides an unrealizable specification towards realizability.
Similar to counterexample-guided abstraction refinement in verification, our algorithm itera-
tively refines the environment model by adding an assumption that eliminates certain moves
by the environment that contribute to the specification being unrealizable. This technique
also extends the existing methods for finding specifications, which often focus on desired
behaviors exhibited in traces of a design in traces – (1) it derives assumptions from coun-
teracting behaviors that prevents the target design from fulfilling certain objectives; (2) it
examines a new form of evidence – counterstrategies (represented as a graph) as opposed to
traces. In Chapter 9 of the thesis, we further show that, by adapting this algorithm suitably,
we can synthesize a new class of semi-autonomous controllers that incorporates constraints
representing the interaction with a human operator.

1.2.3 New Applications

Specification mining has been used to address a number of challenges in verification, such as
assisting in program understanding [CJK07], bug finding [ECH+01, WN05], bug classifica-
tion [LCH+09] and meeting coverage goals [LSTV12]. In this thesis, we expand this envelope
further and demonstrate novel applications of specification mining both in verification and
synthesis. We list these applications below.
Bug Localization in Reactive Systems, such as Digital Circuits:
A mined specification, if validated that it matches design intent, can be used as a target for
verification. However, not all mined specifications are real specifications, since their validity
is only supported by the given evidence (e.g., traces). Thus, we cannot use them directly
in verification or to do find bugs until they are validated by a third party (e.g, a human
designer).

In this thesis, we make the observation that, by finding likely temporal properties that
certain signals hold in different locations and at different time points of traces of a circuit,
we can effectively localize bugs both in space and in time given correct and erroneous traces
of the circuit3. An additional advantage of this approach is that we need not even care about
the problem that the correct traces may also be produced by the same buggy design. In
Chapter 4, we demonstrate that this approach enables effective bug localization for a variety
of bugs in hardware, including transient bugs.
Temporal Logic Synthesis:
Temporal logic synthesis is a correct-by-construction proposition that an implementation can
be generated automatically from its temporal logic specifications. It relies not only on the
system guarantees to be specified correctly but also on the environment assumptions, which
are the trickier parts of the specifications, to be captured correctly and completely. A missing

3 We assume correctness can be determined by some end-to-end mechanism, such as whether an appli-
cation running on a processor crashes.

CHAPTER 1. INTRODUCTION 7

assumption often leads to the specification being unrealizable – no implementation can exist
to satisfy the specification. As a result, the usefulness of this approach is undermined.

In Chapter 8, we re-purpose specification mining to address this problem of missing as-
sumptions. Using the counterstrategy-guided assumption mining approach mentioned above,
we show that meaningful candidate assumptions can be produced in a systematic way to
guide the specification towards realizability.
Synthesis of Human-in-the-Loop Controllers:
Our contribution in this part of the thesis is two-fold. First, we formalize a new class of semi-
autonomous controllers, called human-in-the-loop (HuIL) controllers, as a composition of an
autonomous controller, a human operator, and an advisory controller that acts as a switching
mechanism between these two components. Instances of these controllers, although usually
recognized and subsequently designed as separate entities, are pervasive: a pilot constantly
needs to interact with the auto-pilot system; a driver still needs to be behind the wheel
when cruise control is turned on. The correctness of these systems depends not only on the
correctness of the autonomous controller and that of the actions of the human operator, but
also on the proper interaction between them.

Motivated, in part, by the recent work on synthesizing robotic controllers from temporal
logic specifications [KGFP07, Won10], we apply this approach to the automatic synthesis of
HuIL controllers. In Chapter 9, we demonstrate the effectiveness of this approach with an
application on examples motivated by driver-assistance systems.

1.2.4 Broadening the Scope of Specification Mining

Most existing literature today considers specification mining as a mechanized procedure. In
this thesis, we expand this view by first identifying parts of the process that can benefit from
human inputs and then building mechanisms that can use these inputs in creative ways. Two
novel approaches are listed below.
Crowdsourcing and Gamification:
As indicated in Section 1.3, many existing specification mining techniques rely on the use
of templates. The process of construction of these templates usually requires expert insight
and can still easily miss some aspects of the design. In Chapter 6, we explore the use of
human computation to assist the process of specification mining. We present a game called
CrowdMine, which “democratize” specification mining by transforming specific instances of
it to a game. In particular, the gamification leverages human’s ability to recognize patterns
in images by turning traces into images. We have designed and deployed prototypes of the
game. We discuss our findings in detail in Chapter 6.
Analyzing Specifications in Natural Language:
Formalizing specifications requires thorough understanding the underlying logic, which is no
easy feat even for experienced engineers. In Chapter 10, we propose to bridge the gap between
the common practice of writing specifications in natural language and the formalization of
these specifications which is necessary for verification, with judicious use of natural language
processing techniques. By encapsulating the proposed assumption mining technique inside

CHAPTER 1. INTRODUCTION 8

a natural language processing (NLP) layer, this requirement analysis is made applicable in a
much larger context. Experimental results on analyzing a portion of the “Requirement En-
gineering Management Handbook” released by the Federal Aviation Administration [LM09]
demonstrate the utility of the proposed technique.

1.3 Related Work

Specification mining is an active area of research and much work has been done related to
this topic. The term was coined by Ammons et al. in [ABL02] but the study of automat-
ically generating specifications goes back as early as 1974 [Weg74, Cap75]. In this section,
we survey related approaches in this area. Specifically, we aim to distill the commonality
and differences among the rich body of work on specification mining by categorizing them
along four dimensions – system, type of specification, method and application, as shown in
Figure 1.2.

Figure 1.2: Dimensions of specification mining.

These dimensions are not necessarily orthogonal to one another. For example, the type
of specification we are looking for can significantly influences the method for finding these
specifications. We elaborate on each of the four dimensions below and highlight the novelties
of our approaches compared to related work.

1.3.1 System

System concerns with the question of what the specification is about. Related work can be
largely put into two domains – circuits and programs.

CHAPTER 1. INTRODUCTION 9

Circuit:
Various circuit-specific mining techniques have been proposed for hardware-specific prop-

erties. The IODINE tool [HNCC05] mines simple likely invariants such as one-hot encodings
or fixed-delay pairs. Fey and Drechsler [FD04] present an approach to mine repeated pat-
terns where patterns are valuations of signals at various time steps (e.g., st = 1 ∧ st+1 = 0).
While their approach is general, the timing requirement can be too strict for complex inter-
actions and it deals with only a small set of signals over a predefined interval each round.
The Dianosis [RKF+08] tool mines properties based on checkers defined in the Open Ver-
ilog Library (OVL) [Org07]. Isaksen and Bertacco [IB06] propose to generate transaction
diagrams from a trace for analyzing protocols. Vasudevan et al. [VSP+10] propose to mine
simple implications over the signals in a small window, supported by statistical measures. In
comparison, our approach mines a class of general temporal properties, possibly spanning a
large number of cycles (e.g., thousands) for digital circuits in a scalable manner and, to our
knowledge, is the first to effectively use these mined properties for bug localization.
Program:

There is a rich body of work on mining specifications in programs. We highlight some
of the work below and refer interested readers to [LKLH11] for a more thorough survey and
categorization of specification mining along this dimension.

Started about a decade ago, there has also been a surge in software engineering to adopt
machine learning and data mining techniques to reverse engineer or mine formal specifica-
tions [LKLH11]. Daikon [EPG+07] is one of the earliest tools that mine single-state invariants
or pre-/post-conditions in programs. Alur et al. [AvMN05] consider the problem of synthe-
sizing interface specifications for Java classes. Ammons et al. [ABL02] propose to mine state
machines that encode legal partial orders of API calls with data-flow constraints on their
arguments. Lorenzoli et al. [LMP08] propose to extract component interaction models in the
form of extended finite state machines by using a technique called GK-tail. In this disser-
tation, we focus instead on mining specifications in circuits, which is a domain less studied,
and propose a portfolio of techniques tailored to this domain.

1.3.2 Type of Specification

Formal specification is a way of describing the behavior of a design precisely, typically sup-
ported by a formal language. While many formalisms of specifications are general (e.g, LTL),
the choice of the types of specifications to mine is heavily influenced by the domain insight
and the target application. We highlight some of these approaches below.
Automata:

This class of techniques aims to learn a single complex specification, usually as a finite
automaton, over a specific alphabet. The finite automaton is either treated as the specifica-
tion, or is used as the substrate for extracting simpler properties afterwards. For instance,
Ammons et al. [ABL02] first produce a probabilistic automaton that accepts the trace and
then extract from it likely properties. Similarly, the work by Isaksen and Bertacco [IB06] on
generating transaction diagrams described previously also falls into this category. However,

CHAPTER 1. INTRODUCTION 10

this kind of approaches can often be computationally expensive. In fact, learning a single
finite state machine from traces is NP-hard [Gol78]. Additionally, the specification can be
as large as the implementation, and thus can be difficult for a human to understand. In
this dissertation, we focus on mining multiple simple properties, by making structural as-
sumptions on the form of these properties appropriate for the target domains. We describe
related work of this approach below.
Temporal Properties:

To achieve better scalability, an alternative is to learn multiple small specifications,
each describing a specific aspect of the design. Temporal properties, which are the type
of specification we focus in this thesis, are examples are these small specifications Engler
et al. [ECH+01] first introduce the idea of mining simple alternating patterns. Several
subsequent efforts [GS08b, WN05, YEB+06, GS08a] built upon this work. For example,
Perracotta [YEB+06] and Javert [GS08a] locate instances of the alternating pattern (a b)∗

and a resource usage pattern (ab∗ c)∗. In addition, Javert composes these patterns into larger
ones by using a set of inference rules. Part of the work in this thesis, which we will describe
in detail in Chapter 4, is inspired by ideas in Perracotta and Javert. Additionally, we focus
on patterns that are meaningful for digital circuits and also provide a merging procedure
to compose patterns in time. We also note that there is extensive related work in the data
mining community dating back to the work by Agrawal and Srikant on mining sequential
patterns [AS95]. The tool PR-Miner, developed by Li and Zhou [LZ05], builds on a data
mining technique called frequent itemset mining to extract implicit programming rules from
executions of software code. The closest to our approach presented in Chapter 4 is perhaps
the work by Lo et al. [LKL08] on mining past-time temporal rules from execution traces.
The main difference is we employ an automaton-monitoring approach with optimizations on
hardware traces and they use statistical measures such as support and confidence. We again
point interested readers to [LKLH11] for a more detailed survey in this area.
Single-State Invariants:

Value-based invariants are constraints over some variables in a program or a circuit. For
example, Daikon [EPG+07] mines invariants such as “y = 2x + 3” where “x” and “y” are
variables of a program. Another example is the IODINE tool described above, which simple
invariants such as one-hot encodings. In this dissertation, we focus on mining temporal
properties, which are often the more tricky properties to write and formalize. However, we
note that some of the ideas that leverage single-state invariants are applicable to our problem.
An example of this is the work done by Liblit et al. [LAZJ03], which uses predicates for bug
isolation in programs but does not infer the predicates. Our work on bug localization in
hardware is inspired by this idea. We additionally make the observation and demonstrate
with experimental results that temporal properties are particularly useful addressing this
problem in hardware.
Sequence Diagrams:

Sequence charts, such as message sequence charts (MSCs) [AEY00] and their extensions
such as Harel’s live sequence charts (LSCs) [DH01], are especially useful for describing be-
havioral scenarios involving interworking of processes and objects. Uchitel et al. [UKM01]

CHAPTER 1. INTRODUCTION 11

propose to an algorithm that builds a labeled transition system behavior model based on
MSCs. Prior work by Lo et al. [LMK07, LM08] uses dynamic analysis on traces to in-
fer LSCs for software programs. We further note that, the work of Merlin by Livshits et
al. [LNRB09], aims at inferring explicit information flow specifications from program code
by using probabilistic inference techniques.

1.3.3 Method

This section does not attempt to be comprehensive but covers a representative sample of
work that is relevant to this thesis.
Dynamic:

The underlying assumption of this approach is that the design under analysis is mostly
correct. Thus, one can mine likely specifications by observing simulation or execution traces
of the design. A majority of the specification mining techniques mentioned above can be
categorized as dynamic. DAIKON [EPG+07], for instance, essentially reports properties
that are true over sample runs of a program. A common philosophy shared amongst these
techniques is that frequently occurring patterns are likely specifications. Thus, the idea is
to generalize observations from a set of traces to all possible traces of a design. Hence, the
representativeness of the observed traces (e.g., coverage of test vectors) inherently affect the
performance of these techniques. We show in Chapter 5 that the theoretical guarantee offered
by our sparse-coding approach for bug localization is also closely related to this criterion.

In hardware, Goldmine, a system developed by Vasudevan et al.[VSP+10], uses decision-
tree based learning and considers input in the form of sequence of signals over a small
bounded window. Our work on specification mining for digital circuits, using temporal
property templates and sparse coding, also fall under this category.
Static:

Specifications can also be generated by reasoning about the program statically. For
example, Engler et al. [ECH+01] use static analyses on source code of a program to directly
infer a set of rules that the program should obey. Alur et al. [AvMN05] propose the use of
predicate abstraction together with automata learning to automatically synthesize interface
specifications for Java classes. Ramanathan et al. [RGJ07] mine precedence rules from
program source code of the form: “Whenever an event occurs, previously, another series
of events has happened.” One drawback of static approaches is that it has to deal with
infeasible paths. In programs, another issue of such an approach is that it needs to handle
pointers and references. We note that, additionally, static analysis is particularly challenging
for hardware designs, because it is difficult to infer causal dependencies between events across
multiple cycles from the structure of a Register Transfer Level (RTL) description.

Static and dynamic analyses complement each other. We refer the readers to [Ern03] for a
detailed comparison of the two techniques. Static and dynamic information can also be com-
bined to generate better quality specifications. GoldMine, for example, uses cone-of-influence
information from a RTL description of the design to improve variable selection [HSV13].

CHAPTER 1. INTRODUCTION 12

1.3.4 Application

Design Understanding:
Specification mining, sometimes also known as specification discovery, often aims at dis-

covering behavioral patterns that are either unknown to the user or missed during a design
and verification cycle. The lack of (formal) specifications (and poor documentation), a
prominent problem in both hardware and software engineering, can be very costly due to
the difficulty ensued on maintaining these systems [Erl00]. Hence, specification mining is of-
ten used as a tool to aid program understanding. Our work on assumption mining addresses
a similar challenge, albeit for a different application.

From another perspective, it is also useful to reverse engineer the formal description of de-
signs and protocols in a number of security-related contexts. For example, Prospex [CWKK09]
is a tool that combines message clustering with state machine inference to reverse engineer
network protocols. Other related work include the use of specification mining for under-
standing malwares [CJK07], and model inference for vulnerability discovery [CBP+11].
Verification:

A mined specification, if validated that it matches design intent, can then be used as a
target for further verification. It can either be converted to a monitor and used in assertion-
based verification or used directly in model checking. Much of the results of specification
mining can be naturally applied in this setting. In this dissertation, we choose to focus
on small temporal properties, motivated also by the presence of many tools that support
the verification of these properties. Additionally, a novelty of this dissertation is the use of
natural language processing techniques to further expand the scope of specification mining
to verify natural language requirements (see Chapter 10).
Synthesis:

Our work on assumption mining, to our knowledge, is the first application of specification
mining to the problem of temporal logic synthesis. Chatterjee et al. [CHJ08] consider also the
problem of unrealizable LTL specification. Their approach aims at constructing an environ-
ment model that is as weak as possible, by analyzing the game graph constructed during the
synthesis process. However, the environment model generated is a single Büchi automaton,
which can have a large state space and thus can be difficult for a human user to inspect. Our
work, on the other hand, provides a simpler but practical approach by using a template-based
mining approach. The novelty of our approach lies in the use of counterstrategies, such that
we can produce candidate assumptions iteratively for easy human validation. Subsequent
work by Alur et al. [AMT13] uses a similar approach but consider direct counterstrategy
graph exploration.
Classification:

An interesting application of specification mining is to consider the mined specifications
as features in a classification framework. Lo et al. [LCH+09], for instance, propose the idea
of mining discriminative patterns to help classify software failures. Iterative patterns are
first mined from different failure traces in a supervised setting to produce a selected set of
patterns that maximizes the Fisher’s linear discriminant. New failure traces can then be

CHAPTER 1. INTRODUCTION 13

classified accordingly using this set of patterns. Our work on bug localization is similar
to theirs in spirit. Instead of using mined patterns in a classification setting, we use the
time and location information of distinguishing patterns between correct and error traces to
localize bugs in hardware.

1.4 Thesis Organization

We first introduce preliminary material in Chapter 2. The rest of the dissertation is then
divided into two parts. In Part I of the thesis, we explore the use of specification mining for
generating requirements for verification as well as localizing tricky bugs in digital designs.
Chapter 3 gives additional background materials on mining temporal properties from traces
along with a simple illustrative example. In Chapter 4, we present the techniques for effi-
ciently mining temporal properties from hardware traces and using the mined properties for
bug localization, supported by experimental results on several benchmarks. This is based on
joint work with Alessandro Forin and Sanjit A. Seshia [LFS10]. In Chapter 5, we present the
sparse-coding based formalism of specification, and describe formulations and algorithms for
extracting a sparse basis from traces as well as using it to perform bug localization. We also
present experimental results to demonstrate the effectiveness of this approach. This is based
on joint work with Sanjit A. Seshia [LS12]; in particular, the idea of viewing a trace as a
sequence of images is due to my co-author Seshia. In Chapter 6, we present designs of the
crowdsourced specification game, CrowdMine, and discuss directions in creatively leveraging
human computation in verification. This is based on joint work with Somesh Jha and Sanjit
A. Seshia [LSJ12].

In Part II of the thesis, we study the topic of synthesis from temporal logic specifications
and focus on the problem of finding missing environment assumptions. Chapter 7 reviews
background on LTL synthesis with a focus on GR(1) specifications and contrasts our work
with existing techniques for debugging LTL specifications in the context of synthesis. In
Chapter 8, we present the counterstrategy-guided assumption mining approach and validate
its usefulness on case studies drawn from existing literature. This is based on joint work with
Lili Dworkin and Sanjit A. Seshia [LDS11]. In Chapter 9, we present the formalization and
characterization of a human-in-the-loop controller and describe an adaption of the assump-
tion mining technique for automatically synthesizing such controllers. This is based on joint
work with Dorsa Sadigh, S. Shankar Sastry and Sanjit A. Seshia [LSSS14]. In Chapter 10,
we present our efforts on using natural language processing techniques to expand the ap-
plicability of assumption mining to natural language requirements. We further support the
proposed approach with a case study on a portion of a publicly available document released
by the Federal Aviation Administration. This is based on joint work with Shalini Ghosh,
Daniel Elenius, Natarajan Shankar, Patrick Lincoln and Wilfried Steiner [GEL+13]. In par-
ticular, this work was done as part of the ARSENAL project, lead by Ghosh, with Elenius as
the main software architect, and the idea of using type rules to formalize a natural language
sentence is due to Ghosh. Finally, we summarize the contributions of this dissertation and

CHAPTER 1. INTRODUCTION 14

identify future directions in Chapter 11.
This research was supported in part by the Gigascale Systems Research Center and the

Multiscale Systems Center, two of six research centers funded under the Focus Center Re-
search Program (FCRP), a Semiconductor Research Corporation entity, the TerraSwarm
Research Center, one of six centers supported by the STARnet phase of the Focus Cen-
ter Research Program (FCRP), a Semiconductor Research Corporation program sponsored
by MARCO and DARPA, a Hellman Family Faculty Fund Award, an Alfred P. Sloan Re-
search Fellowship, NSF grant CNS-0644436, NSF grant CCF-1116993, and NSF grant CCF-
1139138.

15

Chapter 2

Preliminaries

In this chapter, we describe the necessary theoretical background for most of the work in
this dissertation. We begin by introducing the notations and abbreviations in Section 2.1.
In Section 2.2, we review materials on Büchi automaton and finite state transducers. After-
wards, we describe the syntax and semantics of Linear Temporal Logic (LTL) in Section 2.3.
Finally, in Section 2.4, we introduce the problem of mining specifications from templates.

2.1 Notation

We use the following notations and abbreviations throughout the dissertation.

Table 2.1: Mathematical Notations

Symbols Meaning
B the Boolean field represented by the set {true, false}
BN a Boolean vector of size N
BM×N a Boolean matrix of size M by N
X a set of Boolean input variables
Y a set of Boolean output variables
X the set of all possible assignments to X, i.e. 2X (input alphabet)
Y the set of all possible assignments to Y , i.e. 2Y (output alphabet)
b̄ a literal which is the negation of the Boolean variable b
M e a Mealy transducer
M o a Moore transducer
C a sequential circuit
M t a discrete transition system
L language as a set of traces

CHAPTER 2. PRELIMINARIES 16

Table 2.2: Abbreviations

Symbols Meaning
DFA Deterministic Finite Automaton
FST Finite State Transducer
BMF Boolean Matrix Factorization
LTL Linear Temporal Logic
GR(1) Generalized Reactivity (1)
HuIL Human-In-the-Loop
SAM Scalable Assertion Miner
IP Intellectual Property
HCI Human Computer Interaction
RTL Register Transfer Level
AI Artificial Intelligence
EDA Electronic Design Automation
VCD Value Change Dump

2.2 Automata

2.2.1 Büchi Automaton

Definition 2.1. A deterministic Büchi word automaton (DBW) is a tuple A = (Qb,Σ, ρb, qb0, F
b),

where

• Qb is a finite set of states,

• Σ is a finite alphabet,

• ρb : Qb × Σ→ Qb is a deterministic and complete transition function,

• qb0 ∈ Qb is the initial state, and

• F b ⊆ Qb is a set of accepting states.

An infinite word π ∈ Σω is an infinite sequence of symbols from Σ. Denote πi as the ith
symbol in π. Given a word π, a run of A is an infinite sequence of states τ = q0, q1, . . . ∈ Qbω

such that qi+1 = T (qi, πi) for all i ≥ 0. We use inf(τ) to be the set of states that appear
infinitely often in τ . τ is accepting if and only iff inf(τ) ∩ F b 6= ∅.

A nondeterministic Büchi automaton (NBW) is similar, except that ρb is a relation in-
stead of a function, i.e. ρb ⊆ Qb × Σ×Qb.

2.2.2 Finite-State Transducers

Definition 2.2. A finite-state Mealy transducer (machine) with input alphabet X and output
alphabet Y is a tuple M e = (Qm, qm0 ,X ,Y , δm, θm), where

CHAPTER 2. PRELIMINARIES 17

• Qm is a finite set of states,

• qm0 ∈ Qm is the initial state,

• δm : Qm ×X → Qm is a transition function, and

• θm : Qm ×X → Y is an output function.

Given an input trace ~x = x0, x1, . . ., a run of M e is the sequence ~q = q0, q1, . . . of states
such that ~q0 = q0, and qk+1 = δm(qk, xk) for all k ≥ 0. The run ~q on ~x produces the output
trace M e(~x) = θm(q0, x0), θm(q1, x1), The language of M e is then denoted by the set
L(M e) = {(x, y)ω |M e(~x) = ~y}.

A Moore transducer M o is similar, except that θm : Qm → Y is the output function. Sim-
ilarly, the run ~q on an input trace ~x produces the output trace M o(~x) = θm(q0), θm(q1),
The language of M o is thus L(M o) = {(x, y)ω |M o(~x) = ~y}. With a slight abuse of nota-
tions, we use M to denote a transducer when it is clear from the context whether it refers
to a Moore transducer or a Mealy transducer.

A sequential circuit C with Boolean input variables X, Boolean output vairables Y and
a set of state-holding elements (flip-flops) FF can also be modeled as a Mealy transducer
M with input alphabet 2X and output alphabet 2Y . The state space of the transducer is
defined by the possible valuations of FF , i.e. Qm ⊆ 2FF , and the initial state is determined
by the initial assignment ff0 to FF 1. For convenience, we use sequential circuits and Mealy
transducers interchangably in this thesis.

2.3 Linear Temporal Logic

Linear Temporal Logic was first introduce by Pnueli in [Pnu77]. Since its introduction, it
has been widely used to specify properties and reason about the behaviors of sequential
circuits [MP92]. In this section, we review background on the syntax and semantics of LTL.
In addition, we describe a few decision problems related to LTL.

2.3.1 Syntax and Semantics

An LTL formula is built from atomic propositions AP , Boolean connectives (i.e. negations,
conjunctions and disjunctions), and temporal operators X (next) and U (until). Given an
atomic proposition p ∈ AP , a formula in linear temporal logic (LTL) can be constructed as
follows.

ψ ::= p | ¬ψ |ψ ∨ ψ |X ψ |ψ U ψ

1This definition can be generalized to include multiple initial states.

CHAPTER 2. PRELIMINARIES 18

Other temporal operators F (eventually) and G (globally) can be derived using the temporal
operators X and U, and Boolean connectives: F ψ = true U ψ and G ψ = ¬F ¬ψ.

LTL formulas are usually interpreted over infinite words (paths) over Σ = 2AP . Let
π = π0, π1, π2, . . . ∈ Σω be an infinite path over Σ and πi = πi, πi+1, πi+2, . . . be the suffix of
π starting at πi. The semantics of an LTL formula is then defined inductively, as shown in
Table 2.3.

Table 2.3: Semantics of LTL

π |= true

π 6|= false

π |= ψ iff ψ ∈ π0 for ψ ∈ AP
π 6|= ψ iff ψ 6∈ π0 for ψ ∈ AP
π |= ψ ∨ φ iff π |= ψ or π |= φ
π |= ψ ∧ φ iff π |= ψ and π |= φ
π |= X ψ iff π1 |= ψ
π |= ψ U φ iff ∃ i ≥ 0 such that πi |= φ and ∀ 0 ≤ j < i, πj |= ψ.

The language of an LTL formula ψ is then the set of infinite words that satisfy ψ, given
by L(ψ) = {w ∈ Σω |w |= ψ}.

We introduce two more abbreviations, similar to those used in PSL [EF06], that corre-
spond to rising or falling edge of a signal (in a digital circuit). Given an atomic proposition
p, we define

• rise(p) = ¬p ∧X p, and

• fall(p) = p ∧X ¬p.

Thus, rise(p) and fall(p) denote the cases when a propositional variable p changes its value
from false to true, and from true to false, respectively.

One classic example is the LTL formula G (p → F q), which means every occurrence of
p in a trace must be followed by some q in the future.

Properties are usually classified as being safety or liveness properties. Informally, safety
properties are those that specify that “nothing bad happens in the trace” and their violation
can be demonstrated on a finite-length trace. Liveness properties on the other hand specify
that “something good happens in the future” and their violation can only be shown with an
infinite-length (lasso-shaped) trace.

2.3.2 Satisfiability and Realizability

An LTL formula ψ is satisfiable if there exists an infinite word that satisfies ψ, i.e. ∃π ∈ Σω

such that π |= ψ. A transducer M satisfies an LTL formula ψ if L(M) ⊆ L(ψ) over
AP = X ∪ Y . We write this as M |= ψ. Realizability is then the decision problem of

CHAPTER 2. PRELIMINARIES 19

determining whether there exists a transducer M with input alphabet X = 2X and output
alphabet Y = 2Y such that M |= ψ.

An LTL formula ψ can also be “interpreted” over finite words (traces), such as in a
dynamic verification setting. The idea is to construct a (deterministic) monitor Md (also
more generally known as a synchronous observer [HLR93, Rus12]) from ψ such that Md

outputs a signal err if and only if a finite prefix of trace π violates ψ. For example, Figure 2.1
shows a monitor for the LTL formula G (a→ X b). The monitor outputs err if and only if
it is in the “err” state.

Figure 2.1: Monitor for G (a→ X b).

Multiple ways for the construction of such a monitor exist. We point interested readers
to [KYV01, BGHS04, AKT+06] for more detailed discussions of this topic.

2.4 Specification Mining with Templates

A specification template is a syntactically constrained formula or automaton. We start with
a semi-formal definition of template-based specification mining, with terms to be concretized
later.

Definition 2.3. Given a specification template ξp over a pattern alphabet Σp and some
evidence ev over a disjoint alphabet Σ, the specification mining problem is to find all total
and one-to-one mappings κ : Σp → Σ such that the evidence satisfies ξp with symbols in Σp

replaced by symbols in Σ under the mapping κ.

For example, a specification template can be an LTL formula ξp = G (a → X b) for
an alphabet Σp = {a, b}. Consider the following evidence which is a finite length trace π
over the alphabet Σ = {req, reset, grant}: reset, req, reset, req, grant. An LTL formula that
is satisfied by π conforming to the template is ξ = G (reset → X req), which is associated
with the mapping κ where κ(a) = reset and κ(b) = req. We call such a formula over the
projected alphabet Σ under some mapping κ an instantiation ξ of the specification template
ξp. For simplicity, we use Ξ to denote the set of all possible instantiations over Σ given a set

CHAPTER 2. PRELIMINARIES 20

of templates Ξp over Σp. Note that, the specific instance of the template-based specification
mining problem where the specification ψ is given in LTL, the evidence is given as a trace π
and the satisfaction criterion is determined by the output of the monitor for ψ, is equivalent
to having monitors for all possible instantiations of the specification template and then
finding a subset of those which do not produce any err when evaluated on π.

The definition is intentionally given liberally, so that the notions of specification template,
evidence and satisfaction can be tailored to specific problems and applications. In this
example, our specification template is an LTL formula, the evidence is a finite trace, and
satisfaction amounts to an interpretation of the LTL formula over a finite trace. Similar
definitions have been given in prior work, but often restricted to a particular model or
domain. For instance, Gabel and Su [GS08b] use a finite-state automaton (FSA) as ξp and a
finite trace as evidence and satisfaction as the trace accepted by the FSA. In this thesis, we
show that this template-based specification mining approach can be generalized to different
sources and representations, such as ξp given as an LTL formula, and evidence given as
a discrete transition system. Moreover, in Chapter 5, we present a technique for mining
specifications without the need to assume some pre-determined templates, thereby further
automating the process of specification mining.

21

Part I

Requirement Generation and Error
Localization

22

Chapter 3

Background

In this chapter, we present additional background materials on mining temporal properties
from traces. These materials will be useful in explaining our monitor-based technique in
Chapter 4 and the sparse-coding technique in Chapter 5.

3.1 Formalism and Notations

3.1.1 Transition System

It is convenient to view a sequential circuit as a transition system M t = (V t, Qt
0, ρ

t) where
V t = X ∪ Y ∪ FF is a finite set of Boolean variables. We denote the state space of M t as
Qt ⊆ 2V

t
. Qt

0 ⊆ Qt is a set of initial states of the system, and ρt ⊆ Qt ×Qt is the transition
relation. A state of the system q ∈ Qt is a Boolean vector comprising valuations to each
variable in V t. For clarity, we restrict ourselves in this thesis to synchronous systems in
which transitions occur at the tick of a clock, such as digital circuits, although the ideas can
be applied in other settings as well.

3.1.2 Traces and Subtraces

Let the state of the system at the ith cycle (step) be denoted by qi. A complete trace τ̃ of the
system of length l is a sequence of states q0, q1, q2, . . . , ql−1 where q0 ∈ Qt

0, and (qi, qi+1) ∈ ρt
for 0 ≤ i < l − 1. We denote the ith state of τ̃ as τ̃i. Note, however, that the full system
state and/or inputs might not be observed or recorded during execution. We therefore define
a trace τ as a sequence of valuations to an observable subset V t,o of the variables V t; i.e.,
τ = qo0, q

o
1, q

o
2, . . . , q

o
l−1 where each qoi is the corresponding qi restricted to V t,o. Similarly, We

denote the ith state of τ as τi. For simplicity, in the rest of this dissertation, we use V t in
place of V t,o to refer to the set of observable variables when it is clear from the context.

A subtrace τwi = τi, τi+1, . . . , τi+w−1 of length w (w > 1) in τ is defined as the segment of
τ starting at cycle i and ending at cycle i+w−1, such that i ≥ 0 and i+w ≤ l. For example,
a subtrace of length 2 contains the evolution of the observed variables when the underlying

CHAPTER 3. BACKGROUND 23

system makes one transition. We use LwV t(M t) to denote the set of all distinct w-length
subtraces observable from M t over the variable set V t. We say a τw can be exhibited by
M t if τw ∈ LwV t(M t). It is easy to see that LwV t(M t) is finite for any finite-state transition
system.

3.2 Running Example

In this section, we describe a running example which we will use to illustrate the concepts
and techniques in Chapter 4 and Chapter 5.

Figure 3.1 shows a simple two-port arbiter design. The two-port arbiter is a digital circuit
that takes requests from its two input channels, represented by Boolean signals r0 and r1,
and produces grants respectively corresponding to these requests, represented by Boolean
signals g0 and g1. If ri = true, it indicates that there is a request on input channel i.
Similarly, if gi = true, it indicates that a grant is produced at output channel i.

Figure 3.1: A two-port arbiter design.

In this design, when there is only a single request at a cycle, a corresponding grant is
produced for that request at the same cycle. To handle competing requests, the arbiter uses
a Boolean variable s to indicate which channel currently has priority. When s = 0, r0 has
priority over r1. Otherwise, r1 has priority over r0. When r0 = true ∧ r1 = true, gi = true

for the channel i that currently has a higher priority (and gj = false for the channel j
that has a lower priority). Additionally, the arbiter implements a round-robin scheme of
arbitration. This means that if it produces a grant for channel i at the current cycle, then it
will give priority to the other channel in the next cycle. Figure 3.2 shows a trace of length
5 over the input and output signals r0, r1, g0, g1.

Figure 3.2: Sample trace of the arbiter design.

CHAPTER 3. BACKGROUND 24

Observe that at cycle 2, a grant is produced at output channel 0. Thus, when there are
competing requests at cycle 3, a grant is produced at output channel 1 due to this channel
having a higher priority.

We further note that the arbiter design, if operating correctly, should satisfy the following
LTL properties.

• Liveness: G (ri → F gi)
1

• Round-robin: G
(
(gi ∧X rj)→ (X gj)

)
for i 6= j.

• No simultaneous grant: G ¬(gi ∧ gj) for i 6= j.

It is important to note that the behaviors of a trace is also influenced by the environment
that interacts the arbiter, i.e. how r0 and r1 are produced. In this case, we assume an
environment that keeps track of whether a request has been granted, and keeps issuing it
until it is granted. For example, in Figure 3.2, when a request is initiated on channel 0 at
cycle 3 but not granted at that cycle, r0 holds the value true until the next cycle at which
this request is then granted. We can also use the following LTL formula to describe this
behavior.

G
(
rise(r0) ∧ ¬rise(g0)→ X (r0 U rise(g0))

)
(3.1)

Given traces of a design (and with the arbiter as an illustrative example), we describe two
approaches in Chapter 4 and Chapter 5, for mining temporal properties that reflect the
behaviors of the arbiter described above, dynamically from these traces. In addition, we
show that the mined properties can be used to effectively localize bugs (especially in time)
in case when the design fails to operate correctly.

1 In fact, F can be replaced by X in this formula.

25

Chapter 4

Specification Mining for Digital
Circuits

To understand is to perceive patterns.

– Isaiah Berlin

Formal specifications can precisely capture a system’s desired behavior. In fact, much of the
challenge in developing a system lies in specifying it – understanding the properties that char-
acterize precisely the behaviors of the system. Once these properties have been established,
assertion-driven verification such as model checking [CGP00] and runtime-monitoring [Sto02]
can then be used to ensure the system is developed correctly according to specification. How-
ever, the difficulty of manually creating a complete set of formal properties (assertions) and
of maintaining those properties through design changes and evolution has significantly hin-
dered the wide-spread adoption of formal specifications. There is therefore an urgent need
for scalable techniques for automatically generating formal specifications.

In this chapter, we present our specification mining approach to address this problem,
with a particular focus on digital circuits. In Section 4.1, we give an overview of the pro-
posed technique. Then, in Section 4.2, we describe background materials and introduce the
specification templates we use in this work. After that, we present our algorithm in detail in
Section 4.3. One key contribution of this chapter is a novel way of using mined specification
to localize errors in time and in space for digital circuit designs. We elaborate on this in
Section 4.4. Finally, we present experimental results in Section 4.5 and discuss our findings
in Section 4.6.

4.1 Overview

In this chapter, we present a novel approach to scalably mine temporal properties in the
form of recurring patterns from simulation or execution traces of a digital design. These
specifications can then be examined by the engineer to see whether they match the designer’s

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 26

intent or can be checked with further verification. Figure 4.1 illustrates the high-level tool
flow.

Figure 4.1: High-level architecture of the proposed specification mining tool SAM.

Our tool takes a set of traces and optionally a user-defined event definition as input,
and generates a set of behavioral patterns which conform to the trace as output. We use a
specification template library that is specially designed for the digital circuit domain. We
describe these templates in Section 4.2.2 and the associated mining algorithm in detail in
Section 4.3. Lastly, a post-processing ranking module is used to produce a heuristically-
ranked list of properties.

Specification mining not only helps to automate coverage-driven simulation or formal
verification, it can also provide useful information for diagnosis. In Section 4.5, we present
a technique that is able to leverage the mined properties to effectively localize bugs in both
RTL (e.g., programming mistakes such as erroneous state machine transitions) as well as
faults that may arise from physical defects (e.g., stuck-at or transient faults).

To summarize, we make the following key contributions:

• A new dynamic specification mining technique especially designed for general digi-
tal circuits. Our tool SAM (Scalable Assertion Miner) efficiently mines non-trivial
specifications and is highly scalable: for a design with over 20,000 signals, over 1000
properties were mined in under a minute;

• A novel trace-diagnosis technique based on specification mining that achieves good
localization accuracy for large circuits.

4.2 Preliminaries

We first define formal notations and then describe the specification templates that the tool
uses.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 27

4.2.1 Notations

Definition 4.1. An event e is a tuple (v, v̇), where v is a bit-vector variable (an array
of Boolean variables) and v̇ is a value assignment to each Boolean variable in the array.
Additionally, we use te to denote a cycle at which e occurs.

Similar to rise(p) and fall(p) for a Boolean variable p, we define a change of a bit-vector
variable as a delta event.

Definition 4.2. A delta event δ(v) can be characterized by the following LTL formula,

δ(v) =
(
(v = v̇1) ∧ (X (v = v̇2)) ∧ (v̇1 6= v̇2)

)
which indicates some change of value of v. We use v̇+

δ to denote the value that v changes to
(v̇2) after a delta event δ(v) occurs. Similar to Definition 4.1, we use tδ(v) to denote a cycle
at which δ(v) is satisfied.

4.2.2 Specification Templates

We consider specification templates with a small alphabet. Gabel and Su [GS08b] show that
the problem of mining properties represented as finite automata from (finite-length) traces
is NP-hard through reduction from the Hamiltonian Path problem. Hence, it makes sense
to mine patterns with a small alphabet to avoid the potential worst-case exponential blow-
up. Their approach builds on that of Perracotta [YEB+06] which requires O(nk) space and
O(nk−1l) time for an input alphabet size of n, a pattern alphabet size of k, and a trace of
length l. Gabel and Su further propose the use of Binary Decision Diagrams (BDDs) [Bry86]
to improve the tractability of the problem. However, while they show some speed-up using
the symbolic technique, the alphabet size is still limited to 3 in practice. In addition, the
performance of BDD-based techniques depends heavily on having a good variable ordering,
and finding the optimum variable ordering is again NP-hard [BW96].

We extend the simple alternating patterns (a b)∗ described in [YEB+06] and [GS08b] to
include properties in LTL. As noted in Section 2.3.2, an LTL property can be “interpreted”
over finite traces by using a monitor. Hence, the acceptance of a FSA, in the case of an
alternating pattern, can be replaced by whether the corresponding monitor outputs err for
an LTL template instantiation.

Additionally, in order to handle the large number of signals and long (easily millions
to billions cycles long) simulation/execution traces in modern digital designs, we focus on
properties that can be efficiently monitored. Below, we list the three basic types of templates
we consider in this work. In the next section, we elaborate on how these temporal properties
can be monitored (mined) efficiently from hardware traces.

• Alternating: the regular expression template (δ(a) δ(b))∗ specifies that a change of
value of signal a must always alternate with a change of value of signal b.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 28

• Until: the LTL template G
(
δ(a)∧¬δ(b)→ X (ȧ+

δ U δ(b))
)

for specifying the property
that whenever a signal a changes value, it should retain that value until another signal
b changes value. The property described in Equation 3.1, for example, describes one
such behavior (in Equation 3.1) that the arbiter example satisfies.

• Eventually: the LTL template G
(
δ(a) → X (F δ(b))

)
describes that a change

of value of a must be eventually followed by a change of value of b. Notice that this
behavior almost always holds for any pair of signals. In Section 4.3, we describe further
refinement of this property, based on the “responsiveness” of δ(b). For example, the
Next pattern G (δ(a)→ X δ(b)) restricts that the change must always happen in the
next cycle.

4.3 Mining Algorithm

Our algorithm is based on constructing a monitor1 (see Section 2.4) for each instantiation of
the specification templates defined in the previous section. To cope with the large number
of signals and long traces, we employ the following two trace reduction techniques.

• In case module information is available, e.g., from the RTL description of a hardware
design, we partition a trace into disjoint traces, one for each module.

• Convert a trace to a delta trace, which contains only delta events. We show that for
our set of predefined templates, it is sufficient to consider only delta traces.

We elaborate on these techniques and describe the basic mining algorithm in Section 4.3.1.
The predefined specification templates only describe relationships between two signals, thus
cannot directly capture more complex interactions among multiple signals. In Section 4.3.2,
we present two merging techniques for synthesizing more complex specifications from these
simple properties. Finally, also due to the simplicity of the templates, a large number of
properties are likely to hold on the given traces. In Section 4.3.3, we discuss some metrics
that we employ to rank the mined properties.

4.3.1 Mining from Delta Traces

We assume we are given a partition of the observable variables V t into disjoint bit-vector
variables. This is motivated by the fact that, in a RTL description, a signal a may be declared
as “a[0:3]” indicating that it is a bit-vector of length 4. It is therefore more meaningful to
consider the bits of a as a whole than to consider them as separate Boolean signals. Formally,
let V t =

⊎
1≤i≤k V

t
i , where each V t

i is a bit-vector variable of length greater than 0. Hence,

each state in a trace consists of a set of events E, where each event ei = (V t
i , V̇

t
i).

1 In the case of the Alternating template, which is essentially a regular expression, the monitor is a
DFA.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 29

Our first trace reduction technique is based on the observation that not all valuations of a
variable V t

i is always present in a trace (similar to the notion of reachable states). Hence, by
considering an alphabet comprising only events seen in a given trace, we can reduce the size
of the alphabet. In a Perracotta [YEB+06]-style algorithm, this in turn reduces the memory
requirement (O(nk) space where n is the alphabet size and the pattern alphabet size k = 2
in our case). However, the running time (O(nk−1l)) of such an algorithm linearly depends
on l. In the digital circuit domain, l can easily be millions or even billions cycles long.
Thus, we use the second trace reduction technique, which turns a trace into a delta trace as
mentioned earlier. While the idea of compressing a trace into a delta trace is not new (e.g.,
the value change dump (VCD) format commonly used in logic simulation), the key novelty
of our approach is that we can design specification templates, as shown in Section 4.2.2,
that are specific to hardware-relevant behaviors and at the same time can be interpreted
and efficiently monitored solely over delta traces.

Take the two-port arbiter described in Section 3.2 as an example. We can turn the trace
in Figure 3.2 into the equivalent delta trace shown in Figure 4.2.

Figure 4.2: Equivalent delta trace of the trace shown in Figure 3.2.

A delta trace τ δ is a trace where each state contains a set of delta events Eδ that occur
(are true) in that state. Observe that this simple transformation already reduces the number
of events we need to consider for the arbiter example in two dimensions. First, the effective
length of the delta trace is now 4 (as opposed to 5), since there are no delta events in the last
cycle (such states are subsequently removed from the delta trace). Second, the maximum
number of events per cycle is now 3 (as opposed to 4), which effectively reduces the “n” in
the O(nl) time algorithm, for reasons that will become obvious later. For a bit-vector signal
v, a delta event δ(v) specifies a change from v̇1 at the current cycle to v̇2 at the next cycle.
We further simplify this (at the cost of forgetting v̇1 but gains a reduction in the number of
delta events) by considering only v̇+

δ , i.e. all delta events with the same v̇+
δ are considered

to be the same event.
Consider the LTL formula described in Equation 3.1. We can determine whether this

formula is violated given the trace in Figure 3.2 by monitoring it over the delta trace in
Figure 4.2. Figure 4.3 shows the corresponding monitor, which operates on delta traces.
Specifically, it takes as input a word (possibly infinite) over 2AP where the set of delta events
forms the set of atomic propositions AP . The absence of a delta event δ(v) at a cycle is
interpreted as ¬δ(v).

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 30

Figure 4.3: Monitor for the formula in Equation 3.1 over delta traces (propositions not
shown on certain transitions are understood to be complementary such that the automaton
is deterministic).

As an illustration, a run of this monitor on the example delta trace produces the sequence
of states “0”, “0”, “1”, “0” (recall that the last state of the delta trace is removed). Since
this run does not produce the output err, we claim that the corresponding LTL formula is a
likely specification of the arbiter (which turns out to be a real one in this case). In addition,
observe that the run of the monitor revisits state “0” once after transiting to state “1”, which
corresponds exactly to the pattern

(
rise(r0)∧¬rise(g0)→ X (r0 U rise(g0)) occurring once

when the antecedent of the implication is true2. We use this information to record the
number of occurrences of the pattern associated with a particular template instantiation.
Additionally, we call a (delta) event that cause a transition from state “0” to state “1”
or state “1” to state “0” a constituent event of the pattern. In this example, the delta
events rise(r0) at cycle 3 and rise(g0) at cycle 4 are constituent events of the Until pattern
described by the LTL formula in Equation 3.1. The cycles at which a constituent event
occurs (cycle 3 and 4 in the above example) are recorded as timestamps for the respective
event if the corresponding specification is not violated by the trace.

The overall algorithm is outlined below, using a single specification template ξp given a
trace τ . This algorithm is repeated in a similar fashion for each of the predefined templates
for all partitioned (by module) traces.

Our algorithm is adapted from that of Perracotta [YEB+06]. The main idea is to first
allocate a 2D table Tab with dimensions |Eδ| × |Eδ| such that each entry (i, j) in the table
records the current state of the corresponding monitor for the instantiation of ξp with a
mapping κ that maps a ∈ Σp to eδi ∈ Eδ = Σ and b ∈ Σp to eδj ∈ Σ. Figure 4.4 illustrates
this idea.

Then, the delta trace τ δ is processed sequentially starting from τ δ0 . For each state τ δi ,
the corresponding entries in Tab are updated, i.e. monitors make state transitions according

2State “0” thus behaves like an accepting state.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 31

Algorithm 1 Mine all likely specifications given a template and a single trace.

Input: A finite trace τ .
Input: The set of events E in τ .
Input: A specification template ξp.
Output: A set of likely properties Ξ as instantiations of ξp.

1: (τ δ, Eδ) = deltaTrace(τ, E)
2: Tab = createTable(Eδ, ξp)
3: for each state τ δi ∈ τ δ do
4: updateTable(Tab, τ δi)
5: end for
6: Ξ = outputPatterns(Tab)

Figure 4.4: Illustration of the procedure createTable.

to τ δi . Specifically, given a delta event eδ ∈ τ δi , every entry with a mapping ρ which maps
a to eδ is first updated. This corresponds to a row in Tab. Then, every entry with a
mapping κ which maps b to eδ is updated. This corresponds to a column in Tab. When
performing the alternating row and column updates, we need to avoid updating the same
entry multiple times at the same cycle. Figure 4.5 illustrates one such scenario, when the
procedure updateTable operates on τ δi = {eδj , eδj+1}. Notice that when updating Tab for
eδj+1, the entry (j, j + 1) remains unchanged because the corresponding monitor has already
made a transition when eδj was processed.

Finally, each entry in Tab not ending at an “err” state corresponds to a candidate spec-

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 32

Figure 4.5: Iterative row and column updates of Tab over τ δi = {eδj , eδj+1}.

ification3. The procedure outputPatterns produces the set of candidate specifications Ξ.
Complexity: Given an input trace τ of length l over a set of events E, the procedure
deltaTrace converts the trace to a delta trace τ δ of length lδ < l with delta events Eδ.
In our experience, typically, lδ � l and |Eδ| � 2|V

t|. This thus greatly enhances the
scalability of the proposed technique. Hence, Algorithm 1 requires O(|Eδ|2) space and runs
in O(|Eδ|lδmaxi|τ δi |) time.

4.3.2 Merging Simple Specifications

The predefined templates can only express relationships between two (delta) events. In
this section, we describe two merging procedures for deriving more complex properties, e.g.,
properties over multiple events, from the simple mined properties.

Property merging: We first merge properties by matching the time of occurrences of the
constituent events. If two instantiations of the same template contain events that always
occur at the same cycles, then there is potential for merging the two properties into a single
one. For example, if both (eδ1 e

δ
3)∗ and (eδ2 e

δ
3)∗ are mined properties from running Algorithm 1

with the Alternating template on a trace τ , and the constituent events eδ1 and eδ2 always
occur at the same cycles, then we can merge the two properties into (eδ1 ∧ eδ2 eδ3)∗.

For each mined property, a list of timestamps (tδ(v)) is maintained for each of its con-
stituent events δ(v) during the property mining phase. These lists are processed afterwards
in a property merging phase by first partitioning the set of properties into mergeable subsets,
and then merging the properties within each partition by taking the conjunction of events
that always appear together. For example, if the constituent events δ(a) and δ(b) always
occur at the same time in the mined properties G

(
δ(a) → X (F δ(c))

)
and G

(
δ(b) →

X (F δ(c))
)
, then we can merge them as a single property G

(
δ(a) ∧ δ(b) → X (F δ(c))

)
.

The algorithm is outlined in Algorithm 2.
The algorithm essentially first partitions the mined properties into sets of properties such

that the occurrences of events all match in time for each set, and then merge these properties
into a single one. This merging procedure is particularly useful when no event definition is

3Our tool allows a user to further require that each of these entries end at a state that signifies complete
occurrence of a pattern.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 33

Algorithm 2 Merge Properties

1: Ξ : a list of mined properties.
2: Ltξ : a list of timestamps for each ξ ∈ Ξ, with length |Ltξ|.
3: indξ : index of the current timestamp in Ltξ, starting from 1.
4: mint: minξinΞL

t
ξ[indξ].

5: function Partition(Ξ)
6: if (|Ξ| = 1) ∨ (indξ = |Ltξ|, ∀ ξ ∈ Ξ) then
7: return {Ξ}
8: else if ∃ ξ, indξ = |Ltξ| then
9: return append({ξ | indξ = |Ltξ|}, Partition({ξ | indξ 6= |Ltξ|})

10: else
11: Ξ′ = {ξ |Ltξ[indξ] = mint})
12: ∀ ξ′ ∈ Ξ′, indξ′ := indξ′ + 1
13: return append(Partition(Ξ′), Partition({ξ |Ltξ[indξ] 6= mint}))
14: end if
15: end function
16: function Merge(Ξ)
17: {Ξ1, . . . ,Ξk} = Partition(Ξ)
18: Merge events to form a single property in each Ξi by taking the conjunction of the

constituent events occurring at the same time.
19: end function

provided a priori. A hardware module in a typical microprocessor core can have hundreds
of signals running in parallel and many of them are highly correlated. In Section 4.5, we
demonstrate that this simple recursive procedure significantly reduces the number of mined
specifications and in practice generates better quality specifications for the user.

Property chaining: After we merge the mined properties, we further chain them by repeat-
edly applying a set of inference rules to the results to obtain even more complex properties.
Two simple inference rules are given below.

Rule for Alternating (adapted from [GS08a]):

(δ(a) δ(b))∗ (δ(b) δ(c))∗ (δ(a) δ(c))∗

(δ(a) δ(b) δ(c))∗

Rule for Eventually:

G (δ(a)→ (X F δ(b))) G (δ(b)→ (X F δ(c)))

G (δ(a)→ X F (δ(b)→ X F δ(c)))

4.3.3 Specification Ranking

The process of merging and chaining also allows us to further sieve through the set of
specifications for the most interesting ones. For example, if one is interested in complex

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 34

interactions, we can output only properties with an alphabet size greater than a user-specified
threshold. We also allow the user to put a restriction on the “responsiveness” of an event in
an Eventually-type specification, e.g., a request must be granted within a certain number
of cycles. We parameterize this by a positive integer r, such that the Eventually template
with responsiveness r is given by the following LTL formula.

G
(
δ(a)→ X≤r δ(b))

)
This formula requires that a δ(a) must be followed by a δ(b) within r cycles. The set of
r-responsive specifications can be obtained from the set of Eventually-type specifications
produced by Algorithm 1 by using a post-processing step. For a Eventually-type specifi-
cation, we check if tδ(b) − tδ(a) ≤ r for all consecutive pairs of constituent events δ(a) and
δ(b). The advantage of using this post-processing step, as opposed to treating a r-responsive
specification as a new template, is that we do not need to create a new monitor and re-
run Algorithm 1 for a different value of r, thereby improving the efficiency of the overall
approach.

In our tool, we can also rank patterns (properties) according to either frequency of oc-
currences or time of first occurrence of a pattern. The time of first occurrence of a pattern
is marked by the timestamp of the first constituent event δ(a) in the pattern.

4.4 Error Localization

Our specification mining-based bug localization framework is inspired by prior work in diag-
nosis, such as cooperative bug isolation by Liblit [Lib04], which proposes the use of predicates
at different program locations to help isolating bugs. The mined properties considered in
our approach can also be viewed as predicates over specific signals in a circuit. Thus, they
provide location information with respect to these signals. Moreover, the occurrences of a
property also convey information about when certain behaviors appear. Combining these
two ideas, we propose to use our specification mining algorithm as a subroutine to determine
properties that distinguish between a correct trace (or a set of correct traces) and an error
trace. The location and time information associated with a distinguishing pattern (which
we will describe later), can then be used to help localize the bug both in space and in time.

Figure 4.6 illustrates the proposed bug localization tool flow, where the specification-
mining algorithm is performed on both the correct and the error trace to find distinguishing
patterns.

Distinguishing patterns (properties) are essentially those that exist in one trace but
not in the other. After finding these patterns, we rank them according to time of first
occurrence to output the most likely bug location. As also noted in [Lib04], the qualities of
predicates fundamentally influence the performance of a pattern-based diagnosis tool. Thus,
the research question we explore in this chapter is whether we can use many simple mined
properties to localize complex bugs in hardware designs.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 35

Figure 4.6: Specification mining-based bug localization.

Consider the problem of diagnosing an error given a set of correct traces and a single error
trace. Our goal is to localize the root cause of the error to the part of the circuit where the
bug occurred (in space). For transient faults (e.g., as a result of electrical defects), another
important goal is to localize them in time, i.e. to find the approximate time of occurrence of
a transient fault. One potential application is post-silicon debugging [MSN10] where bugs
are difficult to diagnose due to limited observability, limited reproducibility, and possible
dependence on physical parameters.

A number of diagnosis approaches have been proposed in the classic AI literature. As
observed by Console et al. [CT91], these approaches either require models that describe the
correct behaviors of the system or they need models for the abnormal (faulty) behaviors.
Our approach is similar to the consistency-based methods [dKMR92]. In the traditional
consistency-based reasoning approach, if a system can be described using a set of constraints,
then diagnosis can be accomplished by identifying the set (often minimal) of constraints
that must be excluded in order for the remaining constraints to be consistent with the
observations. While this approach does not require knowledge of how a component fails (a
fault model), it requires a reasonably complete specification of the correct system. In the
EDA literature, while there has been substantial work on fault diagnosis and debugging in a
post-silicon environment [PM08, PBWM10, dPGH+08, ZWM11, ZWSM11, WB11, AKB12],
to our knowledge our work is the first to make use of automatically mined specifications.
Related work in bug localization will be discussed in more detail in Section 5.7.

Our approach is similar to the consistency-based method but we do not need to start with
a set of specifications. Instead, we mine specifications from traces and use them to localize
the errors. Our approach does not directly make use of the RTL description for diagnosis
(other than the module hierarchy), which makes it scalable and appealing for post-silicon

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 36

debug. In addition, we do not need to time-align the correct traces with the incorrect trace.
The trace-based bug localization problem can be defined as follows.

Definition 4.3. Given a correct trace τ jointly produced by a set of modules M , and an
incorrect trace τ ′ over the same alphabet Σ produced by M ′ such that some m ∈ M ′ is
erroneous, the bug localization problem is to localize the bug to m, and if the bug occurred
at cycle t, then localize its occurrence to [t− k, t+ k] for some small k.

Remark 4.1. We assume that the error is detectable at the system level. This means that
there exists a mechanism to label a trace (erroneous or otherwise) with respect to some
correctness criteria. Typically, such a mechanism relies on checking or monitoring some
end-to-end behaviors, such as whether a program running on the processor under analysis
crashes. Additionally, while this problem definition seems to suggest that we need to assume
the presence of a single bug, we remark that it simply targets one bug at a time. Thus, an
approach that solves this problem can be used iteratively in case multiple bugs need to be
localized.

Consistency is defined with respect to the specifications mined from the correct trace.
Specifically, consistency is violated if

• A pattern is observed in the error trace but it fails at some point in the correct trace;
or

• A pattern is observed in the correct trace but it fails at some point in the error trace.

• A pattern is observed in both traces but it has a different responsiveness (e.g., for an
Eventually-type pattern) in the error trace than in the correct trace4.

A pattern that violates consistency is termed a distinguishing pattern. An error can
propagate to other modules and in turn cause more erroneous behaviors later. In light of
this, we rank the mined distinguishing patterns by the first time of violation – the point where
a pattern is expected to hold but does not. For example, the first occurrence of δ(a) that is
not followed by an occurrence of δ(b) in the Eventually pattern G

(
δ(a) → X (F δ(b))

)
.

The module which the top ranked pattern belongs to is returned as the space-localization of
the bug. The time of the pattern’s first violation is returned as the time-localization of, for
example, transient fault. Since the pattern itself describes a specific erroneous behavior, our
approach not only localizes the bug, but can also produces useful insights about the error
(e.g., a local failure that may start a chain of reactions that eventually lead to the end-to-end
error).

4We did not use this criterion in our experiments.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 37

4.5 Experiments

We have implemented the proposed approach in a tool called SAM (Scalable Assertion
Miner). The tool is available online at http://verifun.eecs.berkeley.edu/sam/. In this
section, we present case studies illustrating that our approach has the following desirable
characteristics:

• Scalable: We can mine specifications from traces that are millions of cycles long, with
thousands of signals, all within two minutes.

• Effective for bug localization: In fault injection experiments, our mined specifications
accurately localized the fault to within module boundaries, and in the case of transient
faults, localized them to a small time window within when they occurred.

• Relevant: The mined specifications, after the merging procedure, are sufficiently high-
level so as to be useful to designers.

We used ModelSim and iVerilog to simulate the designs and to record the traces in the
VCD format. The experiments are run on a netbook with an Intel Atom 1.60 GHz processor
and 1.0 GB of RAM.

4.5.1 Benchmarks

We used the following four benchmarks in our experiments: a MIPS-based microprocessor
design [PLF06], a chip-multiprocessor (CMP) router [Peh01], a I2C interface core and a CAN
interface design.

eMIPS processor: The eMIPs processor is a MIPS-based processor developed at Mi-
crosoft Research, Redmond [PLF06]. eMIPS is a dynamically extensible processor architec-
ture based on the MIPS R4000 instruction set. The version that was used in the experiments
had 278 modules and contained more than 20000 signals.

CMP router: The CMP router was designed by Peh [Peh01]. We used a simplified
two-port version with 14 modules in the experiments. The overview of the CMP router
design is illustrated in Figure 4.7, as a composition of four high-level components..

The input controller comprises a set of FIFOs buffering incoming flits and interacting
with the arbiter. When the arbiter grants access to a particular output port, a signal is
sent to the input controller to release the flits from the buffers, and at the same time, an
allocation signal is sent to the encoder which in turn configures the crossbar to route the
flits to the appropriate output port.

Lastly, the I2C and CAN are the Inter-Integrated Circuit (I2C) interface and Control
Area Network (CAN) interface designs publicly available on Opencores [ope].

http://verifun.eecs.berkeley.edu/sam/

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 38

Figure 4.7: CMP router comprising four high-level components.

4.5.2 Results

In our experiments, we only recorded values of latches with width less than 5 in any simula-
tion trace. This is a simple heuristic to prune away the data paths, whose behaviors are less
interesting from a specification perspective, and due to the fact that we did not start with
any manual event definition.

Scalability: The first experiment is meant to evaluate both the efficiency of our spec-
ification mining algorithm and the usefulness of the specification merging procedure. We
simulated each of the benchmarks on the default test-bench supplied with it to generate one
very long trace for that benchmark. Then we applied our mining tool to the resulting trace.
(Applying our tool to multiple traces will yield similar results.)

Table 4.1 summarizes the performance of our tool on each benchmark circuit.

|τ | |τ δ| nmax
m |S| |Sm| Rt (sec)

eMIPS 5.0× 106 5408 108 2079 1028 51
Router 2.3× 105 12420 28 120 74 13

I2C 1.6× 106 20904 33 389 308 9
CAN 2.6× 107 36100 175 3272 1356 71

Table 4.1: Performance results on generation of likely specifications.

|τ | is the size of the original trace. |τ δ| and nmax
m are the average length of delta traces

and the maximum number of delta events per module respectively. |S| is the total number
of specifications mined before any merging is performed. |Smerge| is the total number of
specifications resulting from applying the parallel merging and chaining procedures. Rt is
the overall runtime of the tool for each benchmark in seconds.

Observe that the compression of a trace to a delta trace significantly reduces its length
– by about 1000X. Moreover, we enforce that the number of delta events per module to be

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 39

less than 200 (modularization was then done automatically along module boundaries given
in the RTL descriptions). As a result, the number of delta events to be processed by our
algorithm was at most 175. The number of simple specifications we generated is in the few
thousands. After the application of property merging, this number was reduced by 2X. The
runtime was very small – less than 2 minutes for all benchmarks.

Relevance: Figure 4.8 shows part of the specifications mined in the “vcstate” module for
the CMP router. This module contains a state machine that controls the handshake with the
arbiter and the decision to move the flits in the buffer to the corresponding output channels.
Figure 4.9 shows the actual behavior of the state machine.

Figure 4.8: Example mined specification from the CMP router.

Figure 4.9: State machine in the “vcstate” module.

The mined specifications are illustrated in a directed graph. A node is labeled by a
conjunction of delta events. The number after the colon corresponds to the value (v̇+

δ) of the

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 40

signal in front of the colon. Together they constitute an event (in this case a delta-event δ(v)
by considering only v̇+

δ). “State status” corresponds to the state in the input controller state
machine. An edge from a node a to a node b corresponds to a specification template with
Σ = {a, b} with a mapped to the conjunct labeled at a and b mapped to the conjunct labeled
at b. The label of an edge indicates the type of the specification – A for Alternating, U
for Until, and F for Eventually.

In the mined properties, we can see that, for example, “State swreq” always stays at
2b10 (requesting output channel 1) until “State status” moves to 2b10. In fact, it stays
high until “State queuelen” (which registers the number of flits in the buffer) goes to 0. If
“State queuelen” goes to 0, then “State status” eventually goes back to its initial state 2b11.
In this particular configuration of the router, it has a buffer size of 4 on both input channels.
A data packet consists of three flits – a head, a body and a tail flit. The test-bench was set
up in such a way that it imitates an upstream router that maintains credits on whether an
outgoing packet from that router has been successfully routed by the router under analysis.
Packets were randomly issued by the test-bench, and the frequency of packet injection was
measured at about 23%.

The mined specifications match well with the behaviors of the router – a data packet
(3 flits) comes in and fills up the buffer; the head flit triggers a request and before another
packet comes to the same input channel, it manages to secure an output channel and the
entire packet gets dequeued through that channel. Although the quality of the specification
depends heavily on the quality of the simulation trace, the mined specifications are still
useful since it can indicate the parts of behaviors that the current test-bench has covered,
allowing future simulation efforts to be directed to the uncovered behaviors quickly, e.g., test
with different router configurations and traffic patterns.

Bug localization: In the second set of experiments, we syntactically injected faults into the
designs and then used our mining-based diagnosis approach to localize the fault. We focus
on the eMIPS processor design and the CMP router, due to the flexibility of using different
and meaningful (with the environment set up suitably) test-benches during simulation.

eMIPS Processor. The faults we injected included single-bit errors, multiple-bit errors,
stuck-at faults, and erroneous state transitions. In the first case, we inverted the “dne r”
signal in the BlockRAM Controller from 1b0 to 1b1. In the second, we changed the “we r”
signal in the BlockRAM Interface module from 4b0 to 4b6. In the last case, we changed
the “rdstate” signal conditionally in the “Register File Read” module from 2b00 to 2b10
when it is in state 2b01. This represents an erroneous transition in a state machine. We
produced from each case an error trace of one million cycles, which is also approximately
one million cycles before the error failed some system-level end-to-end specification. In all
three fault injection experiments, our diagnosis technique ranked the faulty module as a top
candidate among the 278 modules. However, on average 6 other modules are also ranked as
top candidates. This is due to the fact that some signals in these modules are combinational
output of the error, and these signals in turn violated some local properties mined in their
modules. While it is possible to overcome this by tracking only the registers, the trade-off
is that since we track less signals, we will lose some behavioral coverage.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 41

Table 4.2: Bug localization results on the CMP router.

Type of Fault Nf CovA Localt Localm
stuck-at 5 100% – 100%

erroneous transition 3 100% – 100%
erroneous assignment 7 100% – 57%

transient 16 100% 81% 56%

CMP Router. With the same configuration of the router used in the specification gen-
eration experiments, we used a test-bench with random packet generation at the input but
with a fixed traffic pattern. The same test-bench was used to generate both the correct trace
and the faulty trace. This time, our mined specifications only covered signals that are regis-
ters. We injected different types of faults into the router, including stuck-at faults on wires
and registers, erroneous transition in state machines, erroneous assignment (syntactical) for
wires and registers, and single transient errors in registers. Table 4.2 shows the localization
results. Nf is the number of fault injection experiments that were performed for each type
of fault. CovA is the percentage of times that an assertion mined from the correct trace is
falsified by the error trace – existence of a distinguishing pattern and this is also a form of
assertion coverage. Localt (for transient errors) is the percentage of times that error was
localized by some distinguishing pattern within before or after 15 cycles of the transient fault
– this measures localization in time. Finally, Localm is the percentage of times that our tool
returned the correct module where the error occurred – this measures localization in space.

As we observe, the technique was able to achieve perfect assertion coverage and local-
ize transient faults in space 100% of the time for simple faults (stuck-at and erroneous
transition), and more than 50% of the time for trickier faults (erroneous assignment and
transient). For transient faults, the top-ranked distinguishing pattern was able to localize
them in more than 80% of the time. For example, the assertion G ((state queuelen = 2)→
X F (state swreq = 0))5 is the distinguishing pattern that successfully localized a tran-
sient error in the “state status[0]” signal and returned the correct module localization, even
though the distinguishing pattern itself does not contain the error signal.

4.6 Summary and Discussion

In this chapter, we have proposed a scalable specification-mining tool that is suitable for gen-
eral digital circuits. In addition, we have shown that our mined specifications are effective for
bug localization. Experimental evaluation shows that (a) the mining algorithm is practical,
requiring only minutes of computation even for a very large-scale example; (b) for human
benefit, the mined specifications can be automatically compacted by a significant factor; (c)

5The assignments represent v̇+δ of delta events.

CHAPTER 4. SPECIFICATION MINING FOR DIGITAL CIRCUITS 42

the diagnostic use is effective in pinpointing the bug location to the correct module when
programming mistakes and hardware faults are applied to the benchmarks.

An inherent limitation of dynamic specification mining is that the quality of the spec-
ification mined is only as good as the set of traces. In the case of digital circuits, we can
leverage techniques in coverage-directed testing to simulate many behaviors as fast as pos-
sible. An alternative to using coverage tools is to improve the mined specifications online,
as the circuit runs in a testing or production mode on real workloads. For example, in a
testing mode one can prototype the circuit on a piece of reconfigurable logic and iteratively
generate online assertion checkers for specifications mined from each trace.

We use templates in this work, and thus can only mine properties that conform with
the predefined templates (even though they match well with common behavioral patterns in
hardware). In the next chapter, we present a novel specification mining technique that does
not have this restriction.

43

Chapter 5

A Sparse Coding Framework for
Specification Mining

All fixed set patterns are incapable of adaptability or pliability. The truth is
outside of all fixed patterns.

– Bruce Lee

In this chapter, we present a new specification mining formalism inspired by the notion of
sparse coding in the machine learning literature.

5.1 Introduction

Different kinds of formal specifications provide different trade-offs in terms of ease of gener-
ation from traces, generality, and usefulness for error localization. Finite automata provide
a very general formalism, and are typically inferred from finite-length traces. However, such
automata tend to overfit the traces they are mined from, and do not generalize well to un-
seen traces – i.e., they are very sensitive to the choice of traces T they are mined from and
can easily exclude valid executions outside of the set T . Linear temporal logic (LTL) for-
mulas [MP92] are an alternative. One typically starts with templates for common temporal
logic formulas and learns LTL formulas that are consistent with a set of traces. If the tem-
plates are chosen carefully, such formulas can generalize well to unseen traces. However, the
biggest challenge is in coming up with a suitable set of templates that capture all relevant
behaviors.

In this chapter, we introduce a third kind of formal specification, which we term as
basis subtraces. To understand the idea of a subtrace, consider the view of a trace as a
two-dimensional matrix, where one dimension is the space of system variables and the other
dimension is time. A subtrace is a finite window, or a snapshot, of a trace. Thus, just as a
movie is a sequence of overlapping images, a trace is a sequence of overlapping subtraces.
Restricting ourselves to Boolean variables, each subtrace can be viewed as a binary matrix.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING44

Given a set of finite-length traces, and an integer w, the traces can be divided into subtraces
of time-length w. The set of all such subtraces constitutes a set of binary matrices. The
basis subtraces are simply a set of subtraces that form a basis of the set of subtraces, in that
every subtrace can be expressed as a superimposition of the basis subtraces.

The form of superimposition depends on the type of system being analyzed. In this
chapter, we consider digital systems such as sequential circuits. In this context, one can
define superimposition as a “linear” combination over the semi-ring with Boolean OR as the
additive operator and Boolean AND as the multiplicative operator. The coefficients in the
resulting linear combination are either 0 or 1. The problem of computing a basis of a set
of subtraces is equivalent to a Boolean matrix factorization problem, in which a Boolean
matrix must be decomposed into the product of two other Boolean matrices.

Given a set of subtraces, several bases are possible. Following Occam’s Razor principle, we
seek to compute a “simple” basis that generalizes well to unseen traces. More concretely, we
seek to find a basis that is “minimal” in the sense that each subtrace is a linear combination
of only a small number of basis subtraces. This yields the sparse basis problem. In this
chapter, we formally define this problem in the context of Boolean matrix factorization and
propose a graph-theoretic algorithm for solving it. Such a problem is often referred to as a
sparse coding problem in the machine learning literature, since it involves encoding a data
set with a “code” in a sparse manner using only a few non-zero coefficients.

Similar to Chapter 4, we apply the generated basis subtraces to the problem of bug
localization. In digital circuits, an especially vexing problem today is that of post-silicon
debugging, where, given an error trace with potentially only a subset of signals observable and
no way to reproduce the trace, one must localize the problem in space (to a small collection
of error modules) and time (to a small window within the trace). Similar problems arise in
debugging distributed systems. In addition, bug localization is very relevant to “pre-silicon”
verification as well. Our approach attempts to construct windows of an error trace using a
basis computed from subtraces of length w sliced from a set of good traces. The hypothesis
is that the earliest window that cannot be constructed is likely to indicate the time when
the bug occurred, and the portions that cannot be constructed are likely to indicate the
signals (variables) that correspond to the location of the problem. The technique can thus
be applied for simultaneous error localization and explanation.

To summarize, the main contributions of this chapter are:

• We introduce the idea of basis subtraces as a formal way of capturing behavior of a
design as exhibited by a set of traces;

• We formally define the sparsity-constrained Boolean matrix factorization problem and
propose a graph-theoretic algorithm for solving it;

• We demonstrate with experimental results that we can mine useful specifications using
our sparse coding method, and

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING45

• We show that the computed bases can be effective for simultaneous error localization
and error explanation, even for transient errors, such as bit flips, that arise not just
due to logical errors but also from electrical effects.

The rest of the chapter is organized as follows. We first describe additional notations and
formalisms in Section 5.2. Then, we formally introduce our novel specification formalism,
called basis subtraces, in Section 5.3. Afterwards, we describe an optimization formulation
and a graph-theoretic algorithm for mining basis subtraces in Section 5.4. In Section 5.5,
we describe an approach that leverages the mined basis to localize errors in traces. In
Section 5.6, we present a case study on the CMP router design described in Section 4.5. We
survey related work in Section 5.7 and finally summarize the chapter in Section 5.8.

5.2 Background

In this section, we make the connection from traces to their graph representations. Sec-
tion 5.2.1 introduces notations representing traces of a reactive system as matrices, and
Section 5.2.2 connects the matrix representation with a graph representation.

5.2.1 Traces and Matrices

Equation 5.1 shows a trace τ of length 4 where each state comprises a valuation to two
Boolean variables. We depict the trace in matrix form, where the rows correspond to variables
and the columns to cycles. [

1 0 1 1
1 0 1 1

]
(5.1)

The subtrace τ 2
0 of τ thus can be similarly represented by the following matrix.[

1 0
1 0

]
Let T w be the set of all subtraces of length w in a trace τ of length l, i.e. T w = {τwi | 0 ≤
i ≤ l − w}. For any τw ∈ T w over the set of observable variables V t, we can view it as a
Boolean matrix of dimensions |V t| ×w. We can also conveniently represent it using a vector
vw ∈ B|V t|×w by stacking the columns in τw (i.e., using a column-major representation). For
example, v2

0 as shown below (the apostrophe represents matrix transpose) represents the
subtrace τ 2

0 .
v2

0 =
[
1 1 0 0

]′
We use ‖vwi ‖1 to denote the number of 1s in vwi (the L1-norm for the Boolean vector vwi).
For convenience, we use vwi and τwi interchangeably in the rest of this chapter. Also, for
brevity, we use vi for vwi when the length of each subtrace w is obvious from the context.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING46

Now we can represent T w as a Boolean matrix with |V t| × w rows and l − w + 1 columns.
For example, we can represent all the subtraces of length 2 for the trace in Equation 5.1 as
the matrix D shown in Equation 5.2.

1 0 1
1 0 1
0 1 1
0 1 1

 (5.2)

5.2.2 Bipartite Graphs

A Boolean matrix can be viewed as an adjacency matrix for a bipartite graph (bigraph, for
short). A bipartite graph G = 〈U, V,E〉 is a graph with two disjoint non-empty sets of
vertices U and V and such that every edge in E ⊆ U × V connects one vertex in U and
one in V . For a Boolean matrix D ∈ Bk1×k2 , denote Di,j as the entry in the ith row and jth

column of D. Then, D can be represented by a bigraph GD with U = {u1, u2, . . . , uk1} and
V = {v1, v2, . . . , vk2}, such that there is an edge connecting ui ∈ U and vj ∈ V if and only if
Di,j = 1. For example, the matrix D in Equation 5.2 can be represented by the bigraph GD

shown in Figure 5.1.

Figure 5.1: Bipartite graph GD.

A biclique is a complete bipartite graph; i.e., a bipartite graph G′ = 〈U ′, V ′, E ′〉 where
E ′ = U ′ × V ′. Given a bigraph G, a maximal edge biclique of G is a biclique B1 = 〈U1 ⊆
U, V1 ⊆ V,E1 = U1×V1〉 if it is not contained in another biclique of G, that is, there does not
exist another biclique B2 = 〈U2 ⊆ U, V2 ⊆ V,E2 = U2 × V2〉 and either U1 ⊂ U2 or V1 ⊂ V2.
In the rest of this chapter, we use the pair of vertices (U1, V1) to denote the maximal edge

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING47

biclique B1. For a set of bicliques Cov and a bigraph G, denote ECov as the set of edges
in G covered by Cov, i.e. ∀ e ∈ ECov,∃G′ = 〈U ′ ⊆ U, V ′ ⊆ V,E ′〉 ∈ Cov, s.t. e ∈ E ′. Cov
is a biclique edge cover of G if and only if all the edges E in G are covered by the set, i.e.
ECov = E. Abusing notation a little, we use Ev to denote the set of edges connected to
vertex v. The smallest number of bicliques needed to cover all the edges in G is called the
bipartite dimension of G. For example, a biclique edge cover Cov for the bigraph GD in
Figure 5.1 is shown in Figure 5.2.

Figure 5.2: Biclique edge cover Cov.

The view of Boolean matrices as bigraphs is relevant for decomposing a set of traces into
a set of basis subtraces. The following problem is important in this context.

Definition 5.1. Consider a Boolean matrix D ∈ Bm×n, the Boolean matrix factorization
problem is to find k and Boolean matrices B ∈ Bm×k and S ∈ Bk×n such that

D = B ◦ S (5.3)

That is, D is decomposed into a Boolean combination (denoted by the operator ◦) of
two other Boolean matrices, in which scalar multiplication is the Boolean AND operator ∧,
and scalar addition is the Boolean OR operator ∨. In other words, we perform matrix/vector
operations over the Boolean semi-ring with ∧ as the multiplicative operator and ∨ as the
additive operator. For example, the matrix D in Equation 5.2 can be factorized in the
following way.

1 0 1
1 0 1
0 1 1
0 1 1

 =

1 0
1 0
0 1
0 1

 ◦ [1 0 1
0 1 1

]

We use D·,i to denote the ith column vector of a matrix D, and Di,· to denote the ith row
vector of D. Thus, the columns of matrix D are D·,1, D·,2, . . . , D·,n. We will refer to D as

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING48

the data matrix since it represents traces which are the input data. We call the matrix B
the basis matrix because each B·,i can be viewed as some basis vector in Bm. We call the
matrix S the coefficient matrix. Each S·,i is a Boolean vector in which a 1 in the jth entry
indicates that the jth basis vector is used in the decomposition and 0 otherwise.

We can also rewrite the factorization in the following way as a Boolean sum of the
matrices formed by taking the tensor (outer) product of the ith column in B and the ith row
in S.

1 0 1
1 0 1
0 1 1
0 1 1

 =

1 0 1
1 0 1
0 0 0
0 0 0

+

0 0 0
0 0 0
0 1 1
0 1 1

Notice that the two matrices on the right hand side correspond to the bicliques in Figure 5.2.

Remark 5.1. Clearly, a solution always exists for the problem in Definition 5.1. This is
because one can always pick k = n such that B = I (B = D) and S = D (S = I) (where I
is the identity matrix). However, this is not particularly revealing in terms of the behaviors
which each D·,i is composed of. One alternative is to minimize k. The smallest k for which
such a decomposition exists is called the ambiguous rank [Fro95] of the Boolean matrix D.
It is also equal to the bipartite dimension of the bigraph GD corresponding to matrix D. The
problem of finding a Boolean factorization of D with the smallest k is equivalent to finding a
biclique edge cover of GD with the minimum number of bicliques. Both problems have been
shown to be NP-hard [Sie00]. On the other hand, one can choose to find an overcomplete
basis (k > n) such that each D·,i can be expressed as a Boolean sum of only a few basis
vectors. We discuss this formulation in detail in the following section.

5.3 Specification Formalism – Basis Subtraces

In this section, we present a novel specification formalism, based on the idea of sparse coding,
that characterize the behaviors of a circuit (i.e. traces) in terms of “basis subtraces”. This
formalism departs from traditional specification formalisms, which often prescribe to certain
logic descriptions, e.g., CTL or LTL. CTL, for example, is commonly interpreted over Kripke
structures [Kri63]. In contrast, our formalism is trace-based – the behavior of a system
is characterized solely based on its observed behaviors. Hence, it is especially useful for
reasoning about black-box systems.

The notion of sparsity is borrowed from the wealth of literature in machine learning such
as sparse coding [OF97, LBRN07] and sparse principal component analysis (PCA) [ZHT04].
The main idea of sparse coding is to use an overcomplete code (basis) but enforce certain
sparsity constraint. Because the basis vectors are non-orthogonal and not linearly indepen-
dent of each other, sparsifying the code will bias towards recruiting only those basis vectors
necessary for representing an input. As a result, it often helps to generate a good interpre-
tation of the data in terms of the underlying concepts or patterns. In the setting of mining

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING49

specifications from a trace, we argue that each subtrace of a trace can be viewed as a super-
imposition of patterns, and a potential specification is a pattern that is commonly shared
by multiple subtraces. We call these patterns basis subtraces.

Without loss of generality, consider V t to be the set of observable variables. Let m =
|V t| × w for some positive integer w representing the length of a subtrace. We first define
the notion of constructing a subtrace from a set of basis subtraces.

Definition 5.2. A set of k subtraces, represented by a Boolean matrix B ∈ Bm×k, where
each column B·,i corresponds to some subtrace of length w over V t, constructs a subtrace
vw ∈ Bm if there exists a coefficient vector s ∈ Bk such that vw = B ◦ s.

In particular, if ‖s‖1 ≤ C, then we say the set of subtraces represented as B constructs
the subtrace vw with sparsity C. Now we are ready to define the meaning of a basis, with
respect to a set of subtraces.

Definition 5.3. A set of k subtraces B ∈ Bm×k forms a basis of a set of subtraces T w if for
every subtrace vw ∈ T w (vw ∈ Bm), B constructs vw.

Similarly, if B constructs every subtrace vw ∈ T w with sparsity C, then B forms a sparse
basis of T w with sparsity C. In addition, we say B specifies M t if B forms a (sparse) basis
of LwV t(M t) (recall the definition of LwV t(M t) in Section 3.1.2) given some w and V t (and for
some C).

Observe that a B that specifies M t may also construct a subtrace vw 6∈ LwV t(M t). This
is, however, aligned with the notion of a specification. In general, we requires only the
specification to be superset of the behaviors of the system that it specifies. For example, in
the case of model checking a finite-state transducer M with an LTL property ψ, we check if
L(M) ⊆ L(ψ) but not the other direction.

The basis subtraces that B represents can be viewed as temporal patterns of V t over a
finite time window w. Hence, the notion of B constructing a subtrace vw can be thought of
as having some of the patterns in B superimpose together to form vw. Figure 5.3 illustrates
this idea.

In this picture, the occurrence of an event is represented by the appearance of a shaded
bubble, and correspondingly a 1 in the matrix. Similarly, the absence of an event corresponds
to a 0 in the matrix. We are given two basis subtraces of length 2 consisting of three events.
For instance, basis1 may describe a behavioral pattern where the presence of events A and
B triggers event C in the next cycle. The superimposition of basis1 and basis2 forms the
subtrace v. A trace thus can be viewed as a sequence of subtraces where each subtrace
contains a specific subset of patterns in the basis. Sparsity C then constrains the maximum
number of (concurrent) patterns that a subtrace can contain.

A basis can also be thought of as a behavioral encoding of the underlying transition system.
This encoding allows one to separate potentially erroneous subtraces from correct subtraces,
by checking if a subtrace can be encoded by the basis. As we will show in Section 5.5, this
allows one to effectively localize bugs (in time) by solely analyzing the traces of a design.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING50

Figure 5.3: A subtrace as superimposition of two basis subtraces.

In the next section, we describe formulations and algorithms for learning B based on
observed traces of a system M t. In particular, motivated by the idea of sparse coding, we
are interested in whether enforcing some sparsity C will help identifying a basis B that
contains meaningful behaviors of M t.

5.4 Algorithm: Sparsity-Constrained Biclique Cover

In this section, we formulate the problem of mining a basis B with sparsity C from observed
traces of a transition system M t, and describe an algorithm for solving it.

5.4.1 Formulation as a Sparse Coding Problem

We first extend the Boolean matrix factorization problem described in Section 5.2.2 as fol-
lows.

Definition 5.4. Given D ∈ Bm×n and a positive integer C, the sparsity-constrained Boolean
matrix factorization problem is to find k, B ∈ Bm×k, and S ∈ Bk×n such that

D = B ◦ S
and ‖S·,i‖1 ≤ C, ∀i

(5.4)

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING51

It is easy to see that this formulation extends Definition 5.1 by enforcing the additional
constraint that the number of 1s in each column of S cannot exceed C. That is, B needs to
form a sparse basis of D with sparsity C.

However, similar to the Boolean matrix factorization problem, this formulation admits a
trivial solution – B = D and S = I, and k = n. This solution is not particularly revealing
in terms of potential patterns embedded in the traces, since each subtrace is constructed by
itself. The following improved formulation addresses this weakness by using an optimization
objective that encourages sharing of basis subtraces, i.e. each subtrace is constructed by
multiple basis subtraces.

Definition 5.5. Given D ∈ Bm×n and a positive integer C, the sparsity-constrained sharing-
maximized Boolean matrix factorization problem is to find k, B ∈ Bm×k, and S ∈ Bk×n to

maximize
∑
i

∑
j

Si,j/k

subject to D = B ◦ S
‖S·,i‖1 ≤ C, ∀i

(5.5)

A basis subtrace B·,i is shared in the construction of more than one subtraces if
∑

j Si,j ≥
1. Hence, by normalizing this quantity with the number of basis subtraces k, maximizing
the objective function

∑
i

∑
j Si,j/k is equivalent to maximizing the total number of sharing

across all basis subtraces. In addition, since the quantity
∑

j Si,j represents the frequency
at which basis subtrace B·,i is used in the construction of the subtraces, it can be used as a
metric to rank the basis subtraces. In Section 5.4.2, we describe in detail an algorithm that
heuristically solve this problem.

Remark 5.2. The choice of the sparsity constraint C can influence the value of B and S,
as a decomposition of D. When C is not available as an input, a meta-level optimization
can be performed to find the best C (e.g., by sampling or searching over a specific range of
values) such that the value of the objective function in Equation 5.5 is maximized.

5.4.2 Solving the Sparse Coding Problem

In this section, we describe an algorithm that solves the sparsity-constrained sharing-maximized
Boolean matrix factorization problem, as formalized in Equations 5.5. Our solution is guar-
anteed to satisfy the sparsity constraint and heuristically maximizes the objective function.
The key idea of the algorithm is to exploit the connection between matrix factorization and
biclique edge covering for bigraphs, as described in Section 5.2. Specifically, it is based on
growing a biclique edge cover Cov for the bigraph GD = 〈U, V,E〉 corresponding to the data
matrix D. At each step, a maximal edge biclique that covers some number of previously
uncovered edges is added to Cov until Cov covers all the edges. Each biclique 〈U ′, V ′, E ′〉
added this way represents some basis subtrace B·,j where Bi,j = 1 if ui ∈ U ′. Additionally,
Sj,k = 1 if vk ∈ V ′, i.e. subtrace D·,k uses B·,j in its construction. Thus, the cardinality of

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING52

V ′ indicates the total number of times that this basis subtrace is used in the construction
of observed subtraces. By choosing maximal bicliques to form the cover, we are essentially
maximizing the sharing of basis. On the other hand, the sparsity constraint is a constraint
on the maximum number of maximal bicliques that can be used to cover the edges that
connect each vertex in V .

Observe that this algorithm relies on a way to generate maximal edge bicliques of a
bigraph. Computing these bicliques is not easy: for instance, the closely-related problem
of finding a maximum (not maximal) edge biclique in a bigraph is NP-complete [Pee03].
Additionally, the number of maximal bicliques in a bigraph can be exponential in the number
of vertices [GKL08].

However, there exist enumeration algorithms that are polynomial in the combined input
and output size, such as the Consensus algorithm in [AAC+04].

Algorithm 3 solves the sparsity-constrained Boolean matrix factorization problem by
building upon some key concepts in the Consensus algorithm and adapting them for our
problem context. These concepts are described below.

• Consensus: For two bicliques B1 = (U1, V1) and B2 = (U2, V2), the consensus of B1

and B2 is B3 = (U3, V3) where U3 = U1 ∩ U2 and V3 = V1 ∪ V2.

• Extend to a maximal biclique: For a consensus biclique B1 = (U1, V1), we can
extend it to a maximal biclique B2 = (U2, V2) where U2 = U1 and V2 = {v | ∀u ∈
U1, (u, v) ∈ E} (V2 is the set of vertices in V that are connected to every vertex in U1).

• v-rooted star biclique: A v-rooted star biclique Bstar
v is the biclique formed by the

node v ∈ V and all the nodes connected to v (and the edges), i.e. ({u | (u, v) ∈ E}, {v})

The main idea of Algorithm 3 is the following. We try to cover the edges in the bigraph
with as many maximal bicliques as possible, until we are about to violate the sparsity
constraint at some vertex v ∈ V . In that case, we cover the remaining edges of v with the
v-rooted star biclique. If there is still some v ∈ V with uncovered edges at the end of the
iteration, then we just cover it with the v-rooted star biclique as well. The final cover will
be the union of the set of maximal bicliques added in the consensus steps Cov1 \ Cov0 with
the set of star bicliques Cov2.

5.4.3 Example Illustration

Consider the two-port arbiter example presented in Section 3.2. The router is simulated
under an environment which randomly generates requests at the two input channels and
holds a request until it has been granted. Figure 5.4 shows part of a trace of 100 cycles long
over the request and grant signals of the arbiter. We used a sliding window of length 3 to
collect a set of subtraces. In addition, a sparsity of 4, which is one third of the total number
of entries in a subtrace, was used.

We ask the following two research questions.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING53

Algorithm 3 Sparsity-constrained cover

1: Input: a set Cov0 containing all Bstar
v and a sparsity constraint C.

2: Initialize: Cov1 := Cov0, Cov2 := ∅, αv := C, ∀ v ∈ V , and Vcov := ∅.
3: repeat
4: Pick a new pair of bicliques B1 = (U1, V1) from Cov1 and B2 = (U2, V2) from Cov0,

form the consensus B3.
5: Extend B3 to a maximal biclique B4 = (U4, V4).
6: if (B4 /∈ Cov1) ∧ (V4 ∩ Vcov = ∅) then
7: Add B4 to Cov1.
8: for v ∈ V4 \ Vcov do
9: αv := αv − 1

10: if αv = 1 then Add Bstar
v to Cov2 and add v to Vcov end if

11: end for
12: end if
13: until E(Cov1\Cov0)∪Cov2 = E or cannot find a new pair of bicliques B1 and B2

14: for v ∈ V \ Vcov do
15: Add Bstar

v to Cov2.
16: end for
17: Output: (Cov1 \ Cov0) ∪ Cov2 as the sparsity-constrained cover.

Figure 5.4: A normal trace of a 2-port round-robin arbiter

• Are the computed “basis subtraces” meaningful? That is, do they correspond to some
relevant specifications of the underlying system?

• Do the “basis subtraces” capture sufficient underlying structure of a trace? That is,
can they be used to construct traces that are generated from unseen input sequences?

Figure 5.5 shows the three top ranked (based on how frequent a basis is used in the
construction of subtraces) basis subtraces, computed by using Algorithm 3.

Observe that basis subtraces (a) and (b) correspond to the behavior of the arbiter granting
a request at the same cycle when there is no competing request. Basis subtrace (c) shows
that when there are two competing requests at the same cycle, the arbiter first grants one

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING54

Figure 5.5: Three basis subtraces computed via sparse coding.

of the requests and the ungranted request will stay asserted the next cycle and then gets
granted. Moreover, each basis subtrace exhibits a pattern in isolation; viz. the sparse-coding
approach produces a meaningful behavioral basis.

In order to evaluate the coverage of the computed basis, i.e. whether the basis can
construct unseen subtraces, we further simulated the arbiter with random inputs another
100 times each for 100 cycles. For each of these traces, we also used a sliding window of
length 3 to partition them into subtraces. Using the basis computed from the previous
trace, we tried to construct these subtraces and succeeded in every attempt. This means
that many (if not all) of the sub-behaviors (of length 3) of the arbiter were fully covered by
the computed bases, even though unseen subtraces were present in the new traces.

5.5 Application to Error Localization

The notion of basis subtraces as specifications naturally gives rise to a notion of correctness.
Specifically, a subtrace is deemed correct if it can be constructed using the basis (with
some sparsity). On the other hand, a subtrace can be viewed as erroneous if it cannot be
constructed by the basis. Moreover, given known correct traces, a basis can be mined from
these traces. This basis characterizes a space containing all the known correct subtraces
and potentially more. The idea of using the mined basis to localize errors in a trace is
thus to check if any segment of this trace (subtrace) cannot be constructed using the basis.
Figure 5.6 illustrates this idea.

5.5.1 Problem Definition

Without loss of generality, consider the problem of localizing an error given a single correct
trace and a single error trace, similar to the setup described in Chapter 4. Our goal is localize
the error in time – identify a small interval of the timeline at which the error occurred.
Particularly, we assume a setting where the input sequence that generated the error trace
is either unknown (or only partially known) or it is extremely slow to re-simulate the input
sequence (if known) on the correct design (also sometimes referred to as a “golden model”).
This means that a simple anomaly detection technique which checks the first divergence of

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING55

Figure 5.6: Subtrace correctness characterization using basis subtraces.

the error trace and the correct trace obtained by simulating the golden model on the same
input sequence does not work. One has to use the correct trace to help localize the bug
in the error trace. This setting is especially applicable to post-silicon debugging where the
bugs are often difficult to diagnose due to limited observability, limited reproducibility and
susceptibility to environmental variations.

More formally, the error localization problem we address in this section can be defined
as follows.

Definition 5.6. Given an error trace of length l and an integer w, partition the trace into
non-overlapping subtraces each of length w (without loss of generality, assume l is an integer
multiple of w; otherwise, the last subtrace can be treated specially).

Then, the error localization problem is to identify the subtrace containing the first point
of deviation of the error trace from the correct trace.

One might note that the problem we define is not the only form of error localization that is
desirable. For instance, one might also want to narrow down the fault to the signals/variables
that were incorrectly updated. Also, there might be more than one source of an error, in
which case one might want to identify all of the sources.

While these goals are important, we contend that our algorithm to address the problem
defined above can also be used to achieve these additional objectives. For example, the
error explanation technique we present below can be used to identify which variables were
incorrectly updated and how. Similarly, one can apply our construction-based localization
algorithm iteratively to identify multiple subtraces that cannot be constructed from the basis
subtraces, and could potentially be used to identify multiple causes of an error.

5.5.2 Localization by Construction

As described above, the key hypothesis underlying our approach is that the earliest section
(subtrace) of the error trace that cannot be constructed contains the likely cause of the error.

Our error localization algorithm operates in the following steps:

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING56

1. Given a correct trace τ , first obtain the set T w of all unique subtraces of length w in
τ . Using the approach described in Section 5.2, convert the set T w to a data matrix
D.

2. Solve the sparsity-constrained sharing-maximized Boolean matrix factorization problem
for D given a sparsity constraint C. Obtain B as the basis matrix.

3. Given an error trace τ ′, partition it into an ordered set of q subtraces of length w.
Denote this set by T w ′. The elements in T w ′ are ordered by their positions in τ ′.
Convert T w ′ to a data matrix D′.

4. Starting from D′·,0, try to construct D′·,i using the basis B computed above with the
same sparsity constraint C. Return i as the location of the bug if the construction
fails. In case all constructions succeed, return ⊥ indicating inability to localize the
error.

Algorithm 4 describes the above approach in more detail using pseudo-code. It uses the
following subroutines:

• dataMatrix is the procedure that converts a set of subtraces to the corresponding
data matrix described in Section 5.2.

• sparseBasis solves the sparsity-constrained sharing-maximized Boolean matrix factor-
ization problem using the graph-theoretic algorithm presented in Section 5.4 for D with
a given sparsity C, and returns the computed basis B.

• constructTrace solves the following minimization problem.

minimize
S·,i

‖D′·,i ⊕ (B ◦ S·,i)‖1

subject to ‖S·,i‖1 ≤ C
(5.6)

where ⊕ is the bit-wise Boolean XOR operator, and is interpreted to apply entry-wise
on matrices.

Notice that for fixed C, this problem is fixed-parameter tractable because we can use a

brute-force algorithm that enumerates all the
∑

1≤i≤C

(
k

i

)
possible S·,i. It can also be

solved using a pseudo-Boolean optimization formulation, where the Boolean variables
in the optimization problem are the entries in S·,i.

Error Explanation. Denote S∗·,i as the optimal solution to the minimization problem in
Equation 5.6. If the minimum value is non-zero, then E = D′·,i ⊕ (B ◦ S∗·,i) is the minimum
difference between the error subtrace D′·,i and the constructed subtrace B◦S∗·,i. Notice that E
is also a subtrace, and can be interpreted as a finite sequence of assignments to the observed
variables. We illustrate these ideas below.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING57

Algorithm 4 Error localization in time

Input: Set of subtraces T w from a correct trace τ , T w ′ from an error trace τ ′

Input: Integer C > 0
D = dataMatrix(T w); D′ = dataMatrix(T w ′); B = sparseBasis(D,C)
for i := 0→ q − 1 do
E = constructTrace(D′·,i, B, C)
if E 6= 0 then return τ ′wi end if

end for
return ⊥

5.5.3 Example Illustration

Consider again the setup of the two-port arbiter in Section 5.4.3. For each of the extra 100
traces, we randomly injected a single bit error (flipping its value) at a random cycle to one of
the four signals in the trace. Our task was to test if we could localize the error to a subtrace
of length 3 that contained it.

The following example illustrates one of the experiments. Figure 5.7 shows a snapshot
of the trace.

Figure 5.7: Bit flip on g1 at cycle 97.

Using the approach described in Algorithm 4, the subtrace containing the error was
correctly identified. Among the 100 traces, we successfully identified the window at which
the error was injected for 84 of them. Figure 5.8 shows one the error subtrace identified for
the trace used in Figure 5.7.

Following Equation 5.6, Figure 5.9a shows the (differential) subtrace D′i ⊕ (B ◦ Si) that
minimizes |D′i ⊕ (B ◦ Si)|1. This subtrace is returned as an error explanation.

We argue that this subtrace reveals the injected error (without needing to assume a
particular fault model) since the erroneous behavior is singled out – a grant was not produced
at g1 at cycle 97 even when the corresponding request was made at r1.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING58

Figure 5.8: Error subtrace as identified.

(a) Error explanation subtrace. (b) Alternative error explanation subtrace.

Figure 5.9: Two error explanations.

Remark 5.3. Note that multiple error explanations (solutions to the minimization problem
in Equation 5.6) can exist. Figure 5.9b shows an alternative error explanation subtrace for
this example where g1 was asserted but r1 was not asserted at cycle 97. This is due to the
symmetry of the XOR operator. We plan to investigate this further in future work.

5.6 Results and Experiments

5.6.1 Theoretical Guarantees

We now give conditions under which our error localization approach is sound. By sound, we
mean that when our algorithm reports a subtrace as the cause of an error, it is really an
erroneous subtrace that deviates from correct behavior.

Since our approach mines specifications from traces, its effectiveness fundamentally de-
pends on the quality of those traces. Specifically, our soundness guarantee relies on the set
of complete traces T̃ (which induces traces T over observable variables V t,o) satisfying the

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING59

following coverage metrics defined over the transition system M t = (V t, Qt
0, ρ

t) of the golden
model (the model itself may not be given):

• Initial state coverage: For every initial state q0 ∈ Qt
0, there exists some trace τ̃ ∈ T̃ in

which q0 is the initial state, i.e. q0 = τ̃0.

• Transition coverage: For every transition (q, q′) ∈ ρt, there exists some trace τ̃ ∈ T̃ in
which the transition (q, q′) occurs, i.e. there exists a i such that τ̃i = q and τ̃i+1 = q′.

While full transition coverage can be difficult to achieve for large designs, there is sig-
nificant work in the simulation-driven hardware verification community on achieving a high
degree of transition coverage [TK01]. If achieving transition coverage is challenging for a
design, one could consider slicing the traces based on smaller module boundaries and com-
puting tests that ensure full transition coverage within modules, at the potential cost of
missing cross-module patterns.

Our soundness theorem relates test coverage with effectiveness of error localization.

Proposition 5.1. Given a transition system M t and a set of finite-length and complete
traces T̃ of M t satisfying initial state and transition coverage, let T be the projection of T̃
over the observable variables V t,o and let T 2 be the set of all distinct subtraces of length 2 in
T , we have T 2 = L2

V t,o(M
t).

It is easy to see that Proposition 5.1 is true by the definitions of initial state coverage,
transition coverage and L2

V t,o(M
t).

Theorem 5.1. Given a transition system M t for the golden model and a set of finite-length
traces T over observable variables V t,o induced by complete traces T̃ of M t satisfying initial
state and transition coverage, if Algorithm 4 is invoked on T and an arbitrary error trace τ ′

with p = 2, then Algorithm 4 is sound; viz., if it reports a subtrace of τ ′ as an error location,
that subtrace cannot be exhibited by M t.

Proof. The proof proceeds by contradiction. Suppose Algorithm 4 reports a subtrace τ 2 of
τ ′ as the location of the error. If τ 2 were to be exhibited by M t, then τ 2 ∈ L2

V t,o(M
t).

The procedure sparseBasis produces a sparse basis B for T 2 with sparsity C. By
Proposition 5.1, T 2 = L2

V t,o(M
t). Hence, B forms a sparse basis of L2

V t,o(M
t) with sparsity

C. By Definition 5.3, this means that B can construct τ 2. However, by the definition of the
procedure constructTrace, we know that B cannot construct τ 2. Therefore, by proof of
contradiction, τ 2 cannot be exhibited by M t.

We also note that, in theory, it is possible for Algorithm 4 to miss reporting a subtrace
that is an error location, due to the fact that B may construct subtraces not in L2

V t,o(M
t).

However, experiments, as presented in the next section, indicate that it is usually accurate
in pinpointing the location of an error.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING60

5.6.2 Case Study

In this section, we present a case study on the CMP router described in Section 4.5.1 that
demonstrates the usefulness of the sparse-coding approach when applied to error localization.
Particularly, we assume a black-box setting where one needs to localize the error(s) solely
based on observed traces of the design under analysis. The main goal of this case study
is to explore how the technique scales to a larger design, and how effective it is for error
localization.

The router was simulated with two flit-generating modules that each issued random data
packets (each consists of a head, some body and a tail flit) to the respective input ports of
the router. We observed 14 Boolean control signals in the router and a trace was generated
for these 14 signals with a simulation length of 1000 cycles. We used a subtrace width
of 2 cycles and obtained 93 distinct subtraces each with 14 signals over 2 cycles. A basis
was computed from these 93 distinct subtraces subject to a sparsity constraint of 52 (see
explanation for the choice of this number at the end of this section). It took 0.243 seconds
on a laptop machine with an Intel i7 2.70 GHz processor and 8.0 GB of RAM to obtain this
basis which contained 189 basis subtraces.

The router was simulated 100 times with different inputs. We used the first simulation
trace to obtain the basis as described in the previous paragraph and the rest 99 traces for
error localization. For each of these 99 traces, a single bit flip was injected to a random signal
at a random cycle. The goal of this experiment is to localize this bit error to a subtrace of
2 cycles (among the 999 subtraces for each trace) in which the error was introduced.

Following the localization approach described in Section 5.5.2 of the paper, 55 out of 99
of the errors were correctly localized. The remaining 44 errors were not localized (all the
subtraces including error subtrace were constructed using the computed basis). The overall
accuracy of the error localization procedure in this experiment was 55.6%.

Why is this error localization approach useful? Imagine you are given a good trace (or
a collection of good traces) and then an error trace (that cannot be reproduced), and you
are asked to localize the error without knowing very much about the underlying system
that generates these traces (this situation arises when dealing with legacy systems, for ex-
ample). Here are two plausible alternative options to our sparse coding approach and the
corresponding results:

(a) Hash all the distinct subtraces of 2 cycles in length in the good trace. For each of the
subtraces of the same dimension in the bad trace, check if it is contained in the hash,
and report an error if it is not contained. For the same traces used above, an error was
reported for each of the 99 traces even before any bit flip was injected.

(b) Use a basis that spans the entire space of subtraces of 2 cycles, e.g., 14× 2 subtraces
where each contains only a single 1 in its entries and is orthogonal to the others.
However, it is obvious that we cannot localize any error using this basis since it spans
all possible subtraces.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING61

Our method can be viewed as something in between (a) and (b). It finds a subspace that
not only contains all the good subtraces but also generalizes well to unseen good subtraces
from the basis. The generalization is a sparse composition of some key patterns in the
good subtraces. An error is reported if a subtrace lies outside this subspace, as illustrated in
Figure 5.6. The number 52 for the sparsity constraint was chosen as the value that maximizes
the objective function of the optimization problem in Equation 5.5, amongst multiple runs
of Algorithm 3 with different Cs.

5.7 Additional Related Work

In this section, we review additional work related to Boolean matrix factorization and bug
localization.

5.7.1 Boolean Matrix Factorization

Matrix factorization or factor analysis methods are prevalent in the data mining community,
with a common goal to discover the latent structures in the input data. While most of
these methods are focusing on real-valued matrices, there have been several works recently
that target Boolean matrices, for applications such as role mining [VAG07]. Miettinen et
al. [MMG+06] introduced the discrete basis problem (DBP). DBP is similar to our definition
of the Boolean matrix factorization problem in which k is fixed and the objective is to
minimize the reconstruction error. They showed that DBP is NP-hard and gave a simple
greedy algorithm for solving it. In terms of sparse decomposition, Miettinen [Mie10] showed
the existence of sparse factor matrices for a sparse data matrix. Our paper describes a
different notion of sparsity – we seek to express each data vector as a combination of only a
few basis vectors, which can be dense themselves.

5.7.2 Bug Localization

The problem of bug localization and explanation has been much studied in literature in
several communities: software testing, model checking, and electronic design automation.
In model checking, Groce et al. [GCKS06] present an approach based on distance metrics
which, given a counterexample (error trace), finds a correct trace as “close” as possible to
the error trace according to the distance metrics. Ball et al. [BNR03] present an approach
to localizing errors in sequential programs. They use a model checker as a subroutine, with
the core idea to identify transitions of an error trace that are not in any correct trace of
the program, and use this for error localization. Both of these approaches operate on error
traces generated by model checking, and thus have full observability of the inputs and state
variables. In contrast, in our context, the trace includes only-partially observed state and is
not reproducible.

CHAPTER 5. A SPARSE CODING FRAMEWORK FOR SPECIFICATION MINING62

In the software testing community, researchers have attempted to use predicates and
mined specifications to localize errors [LAZJ03, DLE03]; however, these rely on human in-
sight in choosing a good set of predicates/templates. In contrast, our approach automatically
derives specifications in the form of basis subtraces, which can be seen as temporal prop-
erties over a finite window. Program spectra [HRS+00], which include computing profiles
of program behavior such as summaries of the branches or paths traversed, have also been
proposed as ways to separate good traces from error traces; however, these techniques are of
limited use for digital circuits since they rely on the path structure of sequential programs
and give no guarantees on soundness.

In the area of post-silicon debugging (see [MSN10] for a recent survey), the problem of bug
localization has received wide attention. The IFRA approach [PBWM10], which is largely
specialized for processor cores, is based on adding on-chip recorders to a design to collect
“instruction footprints” which are analyzed offline with some input from human experts.
Zhu et al. [ZWM11] propose a SAT-based technique for post-silicon fault localization, where
backbones are used to propagate information across sliding windows of an error trace. This
additional information helps make the approach more scalable and addresses the problem
of limited observability. Backspace [dPGH+08] addresses the problem of reproducibility
by attempting to reconstruct one or more “likely” error traces by performing backward
reachability guided by recorded signatures of system state; such a system is complementary
to the techniques proposed herein for bug localization.

5.8 Summary

In this chapter, we have presented a novel specification formalism based on the notion of
basis subtraces, to capture system behavior from simulation or execution traces. We showed
how to compute a sparse basis from a set of traces using a graph-theoretic algorithm. We
further demonstrated that the generated basis subtraces can be effectively used for error
localization and explanation.

63

Chapter 6

Crowdsourced Specification Mining

The human brain is an incredible pattern-matching machine.

– Jeff Bezos

In this chapter, we propose the use of crowdsourcing and gamification to help solve the
specification mining problem. Many existing behavioral or specification mining techniques
rely on the use of templates [EPG+07, GS08a, LFS10]. Hence, it is the user’s responsibility
to come up with a good set of templates. This process requires expert insight and is often
incomplete. We introduce a web-based game called CrowdMine, that leverages human’s
natural ability to recognize patterns in images which encode simulation traces of a design, to
assist the process of mining specifications. We show that the patterns collectively identified
by non-expert humans, who were oblivious to the underlying task, match well with the
desired behaviors of the design under analysis.

In Section 6.1, we give background on human computation and identify problems in
verification that can benefit from human insights. In Section 6.2, we describe in detail the
design of two versions of CrowdMine and present experimental results. Lastly, in Section 6.3,
we discuss lessons learned and related issues such as privacy and incentive mechanisms.

6.1 Introduction

The field of electronic design automation (EDA), in general, and formal verification, in
particular, has relentlessly pushed for automation. For several problems, this is indeed the
right strategy. But for many problems, human insight and involvement remain invaluable.
Consider, for example, the process of verifying a design. First of all, one needs to write a
specification, typically in the form of properties (assertions) or a reference model. Second,
one must create an environment model, typically in the form of constraints on the inputs or
a state machine description. Next, one runs the verifier, such as a model checker, which is
usually thought of as a “push-button” technique. While this is largely true, human insight
is not entirely absent; e.g., one might need to supply hints to the verifier in the form of

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 64

suitable abstraction techniques or (templates for) inductive invariants. If the verifier returns
with a counterexample trace, one must debug the design by localizing the cause of error
in time (relevant part of the trace) and space (relevant part of the design). Finally, the
process of repairing the design to eliminate the bug is also one that needs human input. To
summarize, even after decades of work on automating the verification process, we continue
to need human insight in a variety of tasks, including writing specifications, creating models,
guiding the verification engine, and localizing and debugging errors.

This work takes the position that while we cannot completely remove human insight from
the verification process, we can change the way humans provide insight to the verifier. Today,
such input typically comes from expert verification engineers, trained in the tools of their
field. But such experts are few and expensive. And even experts have a hard time answering
questions such as: When are we done verifying? Have we written enough properties? Where
is the bug? And so on. We contend that the experts and automated tools can be assisted
in the verification process by a large crowd of non-expert humans performing simple and
repetitive tasks. Each task involves a pattern recognition or other cognitive operations that
humans are typically good at. The main technical challenges are to identify steps in the
verification process where human insight is critical, find ways to transform these steps into
tasks that non-expert humans can perform, and combine the results to resolve those steps in
the verification process. As preliminary evidence to show that these challenges can be met,
we present a game called CrowdMine for finding specifications from traces based on pattern
recognition by humans.

The idea of tapping into a crowd of humans to assist in a computational task is not
new. Crowdsourcing is the act of taking a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an undefined, generally large group of people
in the form of an open call [How]. Human computation is a paradigm for utilizing human
processing power to solve problems that computers cannot yet solve [vA05]. (See Quinn and
Bederson [QB11] for a more detailed description of these and related terms.) Our proposal
is to use a combination of crowdsourcing and human computation to improve the state-of-
the-art in verification. The availability of tools like Amazon’s Mechanical Turk [tur] and
TurKit [LCGM10] make such a combination easier to deploy today.

In recent years, others have also advocated the use of crowdsourcing and human computa-
tion in design and verification, both for hardware and software. DeOrio and Bertacco [DB09]
propose having humans assist in solving NP-complete problems arising in EDA, such as
Boolean satisfiability (SAT) solving. Schiller and Ernst [SE10] propose the use of crowd-
sourcing and human computation for solving problems in software engineering, including
software verification. The important difference between our proposal and these works is that
we target steps in the verification process that already require human input, and which we
think are unlikely to be automated entirely (similar to hard AI problems in the class of pass-
ing the Turing test, but unlike many NP-hard problems). We seek to leverage crowdsourcing
and human computation to scale up the productivity in these steps manyfold.

To summarize, we make the following contributions:

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 65

• Advocate the use of crowdsourcing and human computation for sub-tasks in verification
that require human insight;

• Demonstrate the idea through CrowdMine, a novel game devised for finding patterns
from system traces that can suggest likely specifications, and

• Sketch out the landscape of similar applications.

6.2 CrowdMine – Game Design

The main idea of CrowdMine is to tap into the human ability to recognize patterns in images
to assist the process of mining specifications. For example, a trace can be visualized as a 2D
image, where the rows are signals and the columns are cycles. CrowdMine first transforms
segments of a trace into images and then queries a non-expert crowd to identify common
patterns in those images. We have designed a game, described below, that incorporates these
ideas.

6.2.1 CrowdMine1: An Open-Loop Design

The first prototype of CrowdMine is an open-loop design. Figure 6.1 shows an overview of
CrowdMine1.

First, we decompose traces of a design into a collection of subtraces, each of length w, as
described in Section 3.1. In this example, the design is the arbiter example we described in
Section 3.2. In Figure 6.1, w = 4 and thus each image represents the values of the two input
signals r0, r1 and two output signals g0, g1 in 4 consecutive cycles. The signals r0, r1, g0, g1 are
ordered from bottom to top, with r0 at the bottom. There are many ways to color-code the
signals. In this example, we choose the following scheme, to enhance the contrast between
inputs and outputs as well as the contrast between taking the values 1 and 0.

• If gi = 0, the corresponding square is colored red.

• If gi = 1, the corresponding square is colored yellow.

• If ri = 0, the corresponding square is colored blue.

• If ri = 1, the corresponding square is colored teal.

Now we are ready to explain a session of the game.
Game objective: The game instructs the players to find a common pattern amongst the three
displayed images. A pattern is simply a collection of squares. Two patterns are considered
equal if one pattern can be obtained from the other by a horizontal translation (but not
by or combined with a vertical translation, since the patterns would then map to different

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 66

Figure 6.1: Overview of CrowdMine1.

signals). To obtain more interesting results, we further enforce that a pattern must consist
of at least two squares in one image.
GUI Design: The web interface is done is HTML5 and Javascript. A player can select a
square by clicking the corresponding area. The selected square will be highlighted, as shown
in Figure 6.1, by a white box. The player can de-select the same square by clicking it again.
When the player is done selecting the patterns in the three images, she can click the “Done”
button. However, if the patterns are not the same, a message will appear instructing the
player to modify the current selection.
Back-end: If the pattern selected is a common pattern amongst the three images, it is sent
to the back-end. The back-end contains a MySQL database that stores the patterns and
how many times each of them is found by the players. The back-end also has a simple script
that converts a pattern into its corresponding LTL formula. We describe this translation in
more detail in Section 6.2.2.
Experimental evaluation:

The game can be played online at http://verifun.eecs.berkeley.edu/crowdmine/.
We collected data from anonymous players on the web over a period of approximately one
week. Instructions of how the game should be played are available on the URL. The partic-
ipants were not informed about the underlying objective and the mapping from subtraces

http://verifun.eecs.berkeley.edu/crowdmine/

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 67

to images. A total of 165 common patterns were identified, out of 283 successful attempts.
The top three ranked patterns, in terms of the number of times that they were found, are
shown in Figure 6.2.

Figure 6.2: Top ranked patterns obtained in CrowdMine1.

For each pattern, its interpretation (given as LTL formulas) and the number of times it
was identified, are given below.

• Left: G ((¬r0 ∧ ¬r1)→ (¬g0 ∧ ¬g1)). This pattern was found 31 times.

• Middle: G ((r0 ∧ ¬r1)→ (g0 ∧ ¬g1)). This pattern was found 16 times.

• Right: G ((¬r0 ∧ r1)→ (¬g0 ∧ g1)). This pattern was found 7 times.

For this example, observe that all three formulas, which correspond to the most frequently
identified patterns, match desired behaviors of the arbiter. However, we also note that a
majority of the other identified patterns do not correspond to any meaningful behavior –
not a property satisfied by the arbiter. This means a lot of human computation cycles were
wasted on finding irrelevant patterns. In the next section, we describe an improved version
of CrowdMine which uses a closed-loop design to ensure that any stored formula is satisfied
by the underlying circuit.

6.2.2 CrowdMine2: A Closed-Loop Design

CrowdMine2 is the second prototype of CrowdMine, which can be played at http://verifun.
eecs.berkeley.edu/crowdmine2/. Figure 6.3 shows an overview of CrowdMine2.

The main difference of CrowdMine2 from CrowdMine1 is the addition of a model checker
in the loop. Instead of three images, the player is first asked to find a common pattern
between only two images (as shown in the left window in Figure 6.3). After a selected pattern
is converted to its corresponding formula, a model checker is used (the game currently uses
Cadence SMV [smv]) to determine if the underlying design satisfies the formula. If the
formula is satisfied, it is then stored in a MySQL database. Otherwise, the model checker
produces a counterexample, which is then displayed as a third image in the window on the
right. Now the player has to find a common pattern amongst the three images. The play
continues until an identified pattern is verified by the model checker. At any point in the

http://verifun.eecs.berkeley.edu/crowdmine2/
http://verifun.eecs.berkeley.edu/crowdmine2/

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 68

Figure 6.3: Overview of CrowdMine2

game, the player can also click the “Reset” button to play with a fresh set of images. We
detail two key processes in CrowdMine2 below.
Translation from patterns to LTL formulas: A square either represents an input literal or an
output literal. We use li to represent the literal corresponding to a square i in the selected
pattern. If i ∈ X̄, where X̄ is the set of squares corresponding to input values, then li is
an input literal. Similarly, we use Ȳ to denote the set of squares in the selected pattern
that corresponds to output values. Since every pattern has at least one left-most square, we
additionally use superscript t in lti to denote the position of the literal starting at 0 from the
left-most literal. An LTL formula is then generated from a selected pattern consisting of a
set of squares as follows.

G
(
((
∧
i∈X̄

l0i) ∧ (X
∧
i∈X̄

l1i) ∧ (XX
∧
i∈X̄

l2i) ∧ (XXX
∧
i∈X̄

l3i))→

((
∧
i∈Ȳ

l0i) ∧ (X
∧
i∈Ȳ

l1i) ∧ (XX
∧
i∈Ȳ

l2i) ∧ (XXX
∧
i∈Ȳ

l3i))
)

In this case, a selected pattern is interpreted as a conjunction of input literals over a bounded

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 69

window implying a conjunction of output literals over the same window.
Displaying a counterexample: The counterexample produced by the model checker can some-
times be much longer than the length w of a subtrace (w = 4 in both CrowdMine1 and
CrowdMine2), or even has infinite length. In order to be consistent with the sampled sub-
traces, we search in the counterexample for a segment as large as a subtrace that contradicts
the selected pattern. In general, a counterexample τc can be conveniently viewed as a lasso-
shaped trace consisting of a prefix of length k1 and a loop suffix of length k2. In the case of
finite traces, the length of the loop suffix is zero, i.e. k2 = 0.

We first construct a finite trace τf of length k1 + k2 +w− 1 such that this finite trace is
guaranteed to contain all subtraces up to length w that are possible in the counterexample
τc. Figure 6.4 illustrates this construction.

Figure 6.4: Finding contradicting subtraces in a counterexample.

We then search for a subtrace in τf with width as large as w such that it contradicts
with the pattern. Using the same color-coding scheme for converting a sampled subtrace to
an image, we convert the counterexample segment to the third image and display it in the
window on the right.

6.3 Discussion

In this section, we summarize our experiences and findings with both versions of CrowdMine,
and discuss related issues on crowdsourcing verification in general.
Lessons learned: Gamification can be generally thought of as a process of engaging non-
expert users in solving problems through playing games. CrowdMine is a specific instance
of this where the problem of specification mining is turned into a simple pattern-finding
puzzle. Naturally, CrowdMine also inherits some of the difficulties in gamification. Notably,
not every task admits a natural game transformation. For example, in CrowdMine, the
information that the rows correspond to signals and columns correspond to cycles (and

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 70

additionally cycle count increases from left to right) are not made available to the players.
When mapping a pattern to an LTL formula, the pattern is interpreted as having its input
part implies the output part. This only makes sense if there is always an input signal in the
pattern that either precedes or occurs at the same cycle as an output signal in the pattern.
This constraint is however not enforced in CrowdMine. On the other hand, a signal is color-
coded only based on its value but independent of the cycle number. Hence, the property
that the same temporal pattern still holds if it is shifted in time is preserved.

In a practical setting, a design can have hundreds and thousands of signals and a trace of
the design can easily be millions cycles long. Similar to the sparse coding approach presented
in Chapter 5, CrowdMine focuses on mining temporal patterns over a short time window.
These patterns, in turn, can be viewed as events and the approach presented in Chapter 4
can then to be used to mine temporal properties spanning a much larger timespan over these
events. We plan to investigate this particular synergy in future work. To further cope with
the large number of signals, a trace can be partitioned based on modules (in the same way
that was described in Chapter 4). If the number of input and output signals is still large, a
subset of them (e.g., 4) can be randomly sampled so that the simplicity and accessibility of
the CrowdMine game is maintained.

Human inputs are often noisy. Without a way to filter out or correct the noisy input, the
yield of the game output can be low – a majority of the patterns identified in CrowdMine1
were not useful patterns. To address this problem, CrowdMine2 employs a closed-loop
design such that a model checker is used to ensure that any pattern stored at the end is a
specification of (satisfied by) the underlying design.

Lastly, since subtraces are selected randomly, frequent patterns are also likely to appear
more frequently than other patterns. Hence, it may take a long time for the players to
discover a less frequently occurring pattern. To mitigate this problem, we have added an
extra window containing three “invalid patterns”. These are patterns which a player must
not choose during the game. We use the three most frequently identified patterns over a
period of time as these “invalid patterns”. This feature thus forces the players to look for
other patterns. We have incorporated it into the current version of CrowdMine1.
Future landscape: CrowdMine is only our first step in leveraging human computation
to assist verification tasks. We specifically focus on the problem of mining specifications
(from traces of digital circuits), which is the subject of this thesis. However, crowdsourcing
and gamification can be applicable to other problems in verification, such as the problem
of finding loop invariants that help speed up program verification. For example, DARPA’s
Crowd Sourced Formal Verification program [csf] is an initiative that aims to make formal
verification more cost effective by enabling non-experts to assist in the formal verification
process. Below, we discuss some of the emergent issues related to crowdsourced verification
and sketch out the landscape for future work.

• Privacy. Our design is particularly attractive for companies that value confidentiality
because the internals of the circuit are not revealed. For IP protection, the mapping
of subtraces to images should be kept confidential. This mapping include the corre-

CHAPTER 6. CROWDSOURCED SPECIFICATION MINING 71

spondence of signals in the circuit, the color code, and any additional transformation
on the subtraces. Randomization and sampling can be used in selecting subtraces and
the mapping to images. Finally, secret sharing methods such as the threshold schemes
developed by Shamir [Sha79] are particularly relevant in this context.

• Incentives. Three mechanisms are possible. (1) Necessity: Authentication systems such
as reCAPTCHA [vA05] embed queries into a human challenge with partially known
answers. Our game design can be augmented for this purpose. For example, two
plays are presented to the user in series in which the answer is known for one of the
plays. (2) Enjoyment: Our game design can be viewed as a puzzle game and the
player derives enjoyment by solving it. In addition, the scoring-based system invites
human competition and can attract a larger crowd. (3) Profit: Platforms such as
Amazon’s Mechanical Turk [tur] provide a for-profit medium for crowdsourcing any
human intelligence task. We plan to deploy our game on the Mechanical Turk to
evaluate the proposed approach in the future.

• Human-Computer Collaboration. It is possible to combine algorithmic techniques with
inputs from humans to achieve something better than what can be accomplished by
either solely humans or a completely automated approach. In our setting, the human-
identified patterns can be further refined (e.g., ranked) to produce the most relevant
ones based on feedback from the back-end verification and debugging processes. They
can also be used in automated tasks such as the problem error localization discussed
in Chapter 4 and 5.

• Looking beyond specification mining. We believe several games similar to CrowdMine
can be created and applied to a range of applications in verification, debugging, and re-
lated areas. For example, one can improve coverage of a design by properties (or tests)
by highlighting parts of a trace corresponding to variables not covered by (enough)
properties, and users can be provided incentives to find patterns involving those parts.
Properties generated by a system like CrowdMine can be hypothesized as auxiliary
inductive invariants to speed up verification. Finally, human-observed patterns in spu-
rious counterexamples could potentially enable better abstraction-refinement in model
checking. Finally, the process of debugging has similarities to investigating a crime
scene (!) – the “crime” is the manifestation of the error (the failure), and one seeks
to find a cause-and-effect chain that explains how the failure happened; this analogy
suggests a natural game that could be formulated for non-expert humans to assist in
debugging.

72

Part II

Assumption Mining for LTL Synthesis

73

Chapter 7

Background

Part II of this thesis focuses on the problem of synthesis from LTL specifications as well as
its applications. In this chapter, we first give a brief history of the synthesis problem, and
motivate the need for assumption mining to address the problem of specification incomplete-
ness. Then, we present the relevant formalisms and notations in Section 7.1. In Section 7.2,
we survey related work on debugging specifications in the context of synthesis from temporal
logic.

Synthesis, and specifically synthesis from logic specifications, refers to the proposition
that one can automatically synthesize an implementation from its specification. First for-
malized by Church [Chu57] in 1957 and now commonly known as Church’s Problem, the
synthesis problem for sequential circuits can be stated as follows.

Given input signals X and output signals Y , and a formula ψ over X ∪ Y , construct, if
possible, a sequential circuit C with inputs X and output Y such that L(C) ⊆ L(ψ).

Church [Chu62] considered using different fragments of restricted recursive arithmetic
(S1S) to specify ψ. Church’s problem was solved in the following years independently by
Büchi and Landweber [BL69] in 1969 for specifications in monadic second-order logic (MSO)1

over (N, <) and by Rabin in 1972 [Rab72] using tree automata.
However, specifying the behavior of a sequential circuit, and reactive systems in general,

in MSO can be cumbersome. Temporal logic2 was proposed by Pnueli in 1977 [Pnu77] as an
alternative for specification language. Since its introduction, temporal logic has been widely
adopted in the formal verification community. Particularly, linear temporal logic (LTL)
later forms the basis of Accellera’s Property Specification Language (PSL) [EF06]. The
introduction of temporal logic also spurred further development in the synthesis problem.
Notably, Pnueli and Rosner [PR89] provided a solution based on infinite trees and proved that
synthesis from LTL specifications is 2EXPTIME-complete [Ros92]. While this theoretical
solution has existed for a period of time, its computational intractability has essentially made

1S1S is the logic of MSO over ω-words.
2The semantics of LTL is subsumed by that of MSO.

CHAPTER 7. BACKGROUND 74

this approach practically irrelevant. To overcome the complexity issue of LTL synthesis,
attempts have been made to identify subsets of the language that allows a more efficient
synthesis algorithm [WHT03, ALT04].

More recently, Piterman et al. [PPS06a] proposed an efficient symbolic algorithm for
synthesizing sequential circuits from a subclass of LTL known as Generalized Reactivity
(1) [GR(1)] specifications. In particular, the algorithm runs in O(N3) time where N is
the size of the state space of the design. Subsequent research shows that GR(1) specifica-
tions are expressible enough to cover many properties used in practice over a wide spectrum
of applications, ranging from digital circuits [BGJ+07b, BGJ+07a], to robot mission plan-
ners [KGFP07, WTM09], to reactive protocols in an aircraft electric power distribution sys-
tem [XTM12], to controllers in an industrial automation setting [CGR+12]. Hence, GR(1)
specifications present a good trade-off between algorithmic efficiency and expressiveness.

A lesser studied but arguably more important problem is the problem of specification.
While LTL synthesis offers the attractive proposition that one can automatically construct
a functionally correct system from its behavioral description, it is important to note that
the correctness of the system now solely relies on the correctness of its specification. The
challenge of ensuring the correctness of specification is two-fold. First, specification must
be formalized properly in such as way that it reflects the original design intent. Sec-
ond, every aspect of the intended behavior of the design must be specified. As noted in
[BGJ+07b, BGJ+07a], non-trivial efforts were involved in formalizing the informal (and not
quite bug-free) specification to GR(1), and it was even more difficult to write a complete spec-
ification. According to the authors, “Many aspects of the arbiter are not defined in ARM’s
standard.” The problem of buggy or incomplete specification in synthesis also resonates
with the experience of using formal specification in verification. According to a report from
IBM Haifa [BBDER97], during the first formal verification runs of a new hardware design,
typically 20% of the formulas were found to be trivially valid.

Hence, there is an urgent need for developing techniques and tools to detect and fix bugs
in specifications. One common phenomenon of buggy specification is that the specification
is unrealizable3 (no implementation exists that can satisfy the specification). In general,
unrealizability can come from over-constrained system assertions or insufficient environment
assumptions. Our thesis focuses on the latter problem because environment assumptions are
especially tricky to get right in practice as these are often implicit knowledge and seldom
documented. In Section 7.2, we present a more detailed survey on related work that addresses
buggy specifications.

This part of the thesis also expands the envelope on the potential of temporal logic
synthesis. In Chapter 9, we present a novel application of GR(1) synthesis, in conjunction
with our assumption mining technique, that enables the automatic synthesis of a new class of
semi-autonomous controllers. These controllers, called human-in-the-loop (HuIL) controllers,
are crucial components in the emerging revolution of car automation.

Finally, not every designer or verification engineer is a logician. In Chapter 10, we present

3Definition of unrealizability can be found in Section 2.3.2.

CHAPTER 7. BACKGROUND 75

our effort on liberalizing the use of formal specification via natural language processing. In
particular, we demonstrate that assumption mining can be useful in debugging requirements
written in English, supported by a case study on a portion of a publicly available document
released by the Federal Aviation Administration.

7.1 Synthesis from GR(1) Specifications

In this section, we formally present the problem of synthesis from GR(1) specifications. We
begin by introducing the syntax of GR(1). Then, we review materials on the game-based
algorithms for synthesizing and analyzing GR(1) specification.

7.1.1 Generalized Reactivity (1) Specifications

A Generalized Reactivity (1) [GR(1)] formula is a subclass of LTL with restricted syn-
tax [PPS06b]. A GR(1) formula has the form ψ = ψenv → ψsys, where ψenv is the environ-
ment assumption and ψsys is the system guarantee. The syntax of GR(1) formulas is given as
follows. We require ψl for l ∈ {env, sys} to be a conjunction of sub-formulas in the following
forms:

• ψli: a Boolean formula that characterizes the initial states.

• ψlt: an LTL formula that characterizes the transition, in the form G f , where f is a
Boolean combination of variables in I ∪ O and expression X u where u ∈ I if l = env
and u ∈ I ∪O if l = sys.

• ψlf : an LTL formula that characterizes fairness, in the form G F f , where f is a
Boolean formula over variables in I ∪O.

Note that given a DBW A, one can produce ψi, ψt and ψf that are essentially symbolic
encoding of the initial state qb0, the transition function ρb and the acceptance condition on
F b, of A. Hence, any formula ψ = ψenv → ψsys where ψenv and ψsys are specified by DBWs
is also considered a GR(1) specification here.

7.1.2 Games and Strategies

Following [PPS06b], we define the following game structure, and then make connections to
GR(1) specifications. A game structure G is given by the tuple (X, Y,Qg, θ, ρenv, ρsys,Win),
where

• X is a set of input variables, which are controlled by the environment.

• Y (disjoint from X) is a set of output variables, which are controlled by the system.
Without loss of generality, we assume all input and output variables are Boolean.

CHAPTER 7. BACKGROUND 76

• Qg ⊆ 2X∪Y is the state space of the game defined over the input and output variables.
A state in Qg is thus an interpretation of X ∪Y , assigning each variable to either true
or false.

• θ is a Boolean formula over X∪Y that specifies the initial states of the game structure.
We use Qg

0 ⊆ Qg to denote the set of initial states.

• ρenv ⊆ Qg × 2X or ρenv(X, Y,X ′) is the environment transition relation relating a
present state in Qg to the possible next inputs the environment can pick in 2X . We
use the primed copies X ′ of X to denote the next input variables.

• ρsys ⊆ Qg × 2X × 2Y or ρsys(X, Y,X ′, Y ′) is the system transition relation relating a
present state in Qg and a next input in 2X picked by the environment to the possible
next outputs the system can pick in 2Y . Similarly, we use the primed copies Y ′ of Y
to denote the next output variables.

• Finally, Win is the winning condition of the game.

Given a set of GR(1) specifications over X ∪ Y , i.e. ψenvi , ψsysi , ψenvt , ψsyst , ψenvf , ψsysf , we
can define a game structure G in the following way.

• We set θ = ψenvi ∧ ψsysi .

• We set ρenv = ψenvt by replacing all occurrences of X u by u′.

• We set ρsys = ψsyst by replacing all occurrences of X u by u′.

• Finally, Win is given by Win = ψenv → ψsys.

In the context of synthesis of reactive systems, the game is played between the environ-
ment env and the system sys. At each step of the game, env first chooses a value for the
next input variables X ′ and then sys chooses a value for the next output variables Y ′. A
play π of G is a maximal sequence of states π = q0, q1, . . . of states such that q0 |= θ and
(qi, qi+1) ∈ ρenv ∧ ρsys for all i ≥ 0. A play π is winning for the system iff it is infinite and
π |= Win. Otherwise, π is winning for the environment.

A finite memory strategy for sys in G is a tuple Ssys = (Γsys, γsys0 , ηsys), where,

• Γsys is a finite set representing the memory,

• γsys0 ∈ Γsys is the initial memory content, and

• ηsys ⊆ Qg × Γsys × X × Y × Γsys or ηsys(X, Y, γsys, X ′, Y ′, γsys′) is a relation mapping
a state in G, some memory content γsys ∈ Γsys and a next input value chosen by the
environment to the possible next outputs the system can pick and an updated memory
content.

Similarly, a (finite memory) strategy for env is a tuple Senv = (Γenv, γenv0 , ηenv), where

CHAPTER 7. BACKGROUND 77

• Γenv is a finite set representing the memory,

• γenv0 ∈ Γenv is the initial memory content, and

• ηenv ⊆ Qg×Γenv×X ×Γenv or ηenv(X, Y, γenv, X ′, γenv ′) is a relation mapping a state in
G and some memory content γenv ∈ Γenv to the possible next inputs the environment
can pick and an updated memory content.

A play π = q0, q1, . . . = (x0, y0), (x1, y1), . . . is said to conform to a strategy Ssys (or
respectively, Senv) iff there exists a sequence γsys0 , γsys1 , . . . (γenv0 , γenv1 , . . .) such that, for all
i ≥ 0, (qi, γ

sys
i , xi+1, yi+1, γ

sys
i+1) ∈ ηsys ((qi, γ

env
i , xi+1, γ

env
i+1) ∈ ηenv). A strategy Ssys (or

respectively, Senv) is winning for sys (env) from a state q if all plays starting in q and con-
forming to Ssys (Senv) are won by sys (env). We use W sys (or respectively, W env) to denote
the winning region, or the set of states from which such a winning strategy exists, for sys
(env). Following [KHB09], we call a winning strategy for the environment a counterstrategy.
Similar to [PPS06b], Könighofer et al. [KHB09] show that counterstrategies can be extracted
from the intermediate results of the fixpoint computation for the winning regions, consisting
of a disjunction of four sub-strategies.

Hence, given a GR(1) specification ψ = ψenv → ψsys, it is realizable iff all the initial
states are winning for the system in the corresponding game structure. In this dissertation,
we focus on scenarios when the specification is unrealizable (but satisfiable), and explore
ways to generate environment assumptions as potential fixes by mining them from the coun-
terstrategy.

A winning strategy can be turned to a correct implementation by finding a (deterministic)
circuit with |X ′| inputs, |X|+ |Y | flip-flops and |Y | outputs. At each clock cycle, the values
of the next outputs Y ′ are determined by the current (stored) values of X∪Y and the values
of the next inputs X ′. Hence, any combinational logic with inputs X∪Y ∪X ′ and outputs Y ′

that is consistent with the winning strategy, which is a relation overX∪Y ∪X ′∪Y ′. essentially
yields the desired circuit. There are multiple ways to find functions compatible with a
Boolean relation. We refer the readers to [WB91, BGJ+07b, BGJ+07a, BCK09, JLH09] for
more details. A more recent research also shows that a circuit can be directly constructed
from iterates of the fixpoint computation that computes the winning region [SHB12]. In this
thesis, we use Mψ to denote the sequential circuit that is synthesized from specification ψ.

7.1.3 Counterstrategy Graph

It is often convenient to view the counterstrategy as transition system or a directed graph.
A counterstrategy graph Gc is a discrete transition system Gc = (Qc, Qc

0 ⊆ Qc, ρc ⊆ Qc×Qc),
where

• Qc ⊆ Qg × Γenv is the state space,

• Qc
0 = Qg

0 × γenv0 is the set of initial states, and

CHAPTER 7. BACKGROUND 78

• ρc = ηenv ∧ ρsys is the transition relation.

In a nutshell, Gc describes evolutions of the game state where env adheres to ηenv and
sys adheres to ρsys. Clearly, each state in Gc is associated with an assignment over the input
variables X and output variables Y (a Boolean cube). With a slight abuse of notation, we
use the function θc : Qc → 2X∪Y to denote the Boolean cube xy for x ∈ 2X and y ∈ 2Y

associated with a state qc ∈ Qc. A run πc of Gc is a maximal sequence of states πc = qc0, q
c
1, . . .

of states such that qc0 ∈ Qc
0 and (qci , q

c
i+1) ∈ ρc for all i ≥ 0.

We can also view Gc as a directed graph, where each state in Qc is given its own node,
and there is an edge from node qci to node qcj if given the current state at qci , there exists a
next input picked from the counterstrategy for which the system can produce a legal next
output so that the game proceeds to a new state at qcj .

7.2 Related Work

In this section, we focus our discussion on debugging LTL specifications in the context of
synthesis. Unrealizability can come from over-constrained system assertions or insufficient
environment assumptions. Our work assumes that unrealizability is due to insufficient envi-
ronment assumptions, and tackles this by generating additional assumptions.

Cimatti et al. [CRST08] formally define the notion of (minimal) explanation for unre-
alizability using an unrealizability core, which is the set of specifications responsible for
unrealizability. In particular, they suggest using the removal of guarantees as a way to ex-
plain and fix unrealizability. Our approach can be viewed as orthogonal to theirs. We aim
to add environment assumptions to make the specification realizable. We argue that this is
also a natural way to fix unrealizability. In fact, formal and even informal descriptions of
the environment are often not available or far less accessible than those of the system. The
challenge here is finding the right assumptions to add.

Counterstrategies have been used to explain failures in synthesizing a system that re-
spects the specification, such as in the context of Live Sequence Charts [BSL04]. Könighofer
et al. [KHB09] provide an explanation for unrealizability of GR(1) specifications by com-
puting a finite-state counterstrategy for the environment. The counterstrategy is further
simplified by removing specifications and variables that are not responsible for unrealizabil-
ity. A heuristic is also provided for computing from the counterstrategy a countertrace —
a fixed infinite input sequence that, regardless of what the system outputs, will still ensure
that the system specification will be violated. Our work builds upon this work – we mine
specifications from these counterstrategies. Similar to their work, we also focus our attention
on GR(1) specifications for which efficient (relative to LTL) algorithms exist for dealing with
the synthesis problem.

In a separate paper, Könighofer et al. [KHB10] present a model-based diagnosis tech-
nique that identifies components (specification or variables) in the system guarantees which
are over-constrained. For GR(1) specifications, the authors also show how to compute the

CHAPTER 7. BACKGROUND 79

realizable and unrealizable core quickly using approximations. In our work, we focus on
analyzing the weakness in the environment assumptions instead of the constraints in the
system guarantees. Moreover, we produce additional assumptions, which is a step beyond
localizing errors.

The problem of correcting the assumption of an unrealizable LTL specification has also
been studied in depth in [CHJ08]. The authors construct an additional assumption that
constrains only the environment as weakly as possible, and makes the resulting specifica-
tion realizable. The approach proceeds by first computing a safety assumption that removes
a minimal set of environment edges from the game graph, and then computing a liveness
assumption that puts fairness on the remaining environment edges. Finding a minimal set
of fair edges is shown to be NP-hard. To address this potential intractability, the authors
use probabilistic games to compute a locally minimal fairness assumption. The approach
was implemented as a tool called GIST [CHJR10]. An advantage of their work is that they
can synthesize general environment assumptions (as an intersection of safety and liveness
assumptions [AS87]) for any LTL synthesis problem. Our work provides a simpler yet prac-
tical approach by restricting the form of missing assumptions and uses specification mining
to identify a set of assumptions to restrict the environment in a reasonable way to make the
specification realizable.

Previous work by Hagihara et al. [HKSY09] has also attempted to extract environment
constraints of simple forms to make specifications strong satisfiable, where strong satisfia-
bility means that for all input sequences which are given in advance, there exists an output
sequence such that the specification is satisfied. Their method is based on deriving these
constraints from Büchi automata representing the specifications. Our method is different
because we tackle realizability directly instead of strong satisfiability. In addition, we use a
counterstrategy-guided approach instead of the constructive derivation used in this previous
work.

Vasumathi and Kress-Gazit [RKG11] study unsynthesizable specifications in the setting
of automatically constructing robotic controllers from LTL specifications. They perform a
series of simple checks to identify parts of the LTL specifications that might be flawed, and
relate them back to the structured English input. Livingston et al. [LMB12, LPJM13] have
also studied the synthesis problem and used a notion of locality that allows “patching” a
nominal solution. They update the local parts of the strategy as new data accumulates.
This approach allows incremental synthesis and prevents global re-synthesis if the nominal
plan fails. The patching algorithm considers changes (addition and deletion of edges) in the
game graph, and identifies the affected nodes for each system goal and modifies the game
graph locally. In our approach, we do not start with a synthesized game graph, and we mine
assumptions from counterstrategies. Also, the uncertainties we consider are not limited to
the topological changes in the system’s environment.

80

Chapter 8

Mining Environment Assumptions

There are known knowns; there are things we know that we know.
There are known unknowns; that is to say, there are things that we now know
we don’t know.
But there are also unknown unknowns – there are things we do not know we
don’t know.

– Donald Rumsfeld

In this chapter, we present a specification mining technique, called counterstrategy-guided
assumption mining, which utilizes the counterstrategy produced for an unrealizable GR(1)
specification to suggest candidate assumptions to make the specification realizable. In par-
ticular, we use a template-based specification mining approach to find LTL properties that
are satisfied by the counterstrategy. Our choice of templates is designed to match the kinds
of specifications allowed in GR(1), thus enabling an iterative synthesis framework that ex-
ploits the efficiency of GR(1) synthesis. Further, we argue that these templates, albeit simple
and have limited expressiveness, are more useful in practice than a monolithic but complex
automaton that tries to capture the missing environment assumption.

The key idea of our approach is that by asserting the negation of the mined properties
as additional assumption of the original specification, we effectively rule out the moves
described by these properties in the environment. Hence, we iterate this process, which
increasingly constrains the environment, until either we cannot find a specification in our
library of templates that is satisfied by the counter-strategy or the resulting specification
becomes realizable. In this chapter, we present this approach and make a connection to
version-space learning, and describe the algorithms and optimizations involved in detail.

Our work can be viewed as a debugging approach to unrealizability. Unrealizability
typically arises either from an under-constrained environment or from an over-constrained
system. We focus on debugging environmental assumptions rather than system guarantees;
note however, that these two are complementary. Könighofer et al. [KHB10] propose to iden-
tify guarantees that can be weakened or signals that can be less restricted in order to obtain

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 81

a realizable specification. Our focus is on generating additional environment assumptions,
since this is the more tricky problem in practice — it is often easier to miss an environment
behavior than to miss a system specification because the former is not inherently part of the
design and thus seldom formally defined. Particularly, we want additional assumptions that
are tailored to the type of synthesis (GR(1) in this case here) and the existing specification.
As also noted in [KHB10], the Boolean formula false is also a valid assumption to resolve
unrealizability but a trivial and uninteresting one.

We propose a template-based specification mining approach to address this problem. By
imposing a particular structure on the form of specifications (using templates), we reduce
the possibility of generating uninteresting assumptions. Also, by biasing the search towards
simple templates (that mention few variables), we bias our approach towards assumptions
that generalize well.

One may argue in favor of an alternate approach where the additional environment as-
sumption is constructed directly during the synthesis process so that the resulting speci-
fication is realizable. Chatterjee et al. [CHJ08] show that in fact one can construct such
an assumption by analyzing the game graph that is used to answer the realizability ques-
tion. In fact, the assumption synthesized (as a Büchi automaton) is minimal in terms of the
number of safety and fair edges manipulated in the game graph during synthesis. However,
such a monolithic environment assumption (see, e.g., Figure 3 in [CHJ08]) can be difficult
for a human user to understand even for correcting a simple specification. Moreover, the
Büchi automaton synthesized does not directly translate to an LTL description, which is
the original motivation for using LTL specifications due to their affinity to design descrip-
tions. In addition, the behavior of the weakest assumption does not necessarily coincide with
the designer’s intent. We offer an alternative approach that is simpler from the theoretical
viewpoint but very useful in practice.

Specifically, the work discussed in this chapter contributes to the state-of-the-art in the
following ways.

• When LTL specifications are satisfiable but unrealizable, we present a novel counterstrategy-
guided synthesis approach that can produce additional environmental assumptions to
make the specification realizable.

• We formalize this specification mining approach as a version-space learning problem,
and present optimization techniques for speeding up the learning process.

• We demonstrate the effectiveness of our approach with examples in digital circuits and
robotic controllers.

The rest of the chapter is organized as follows. First, we describe our assumption mining
algorithm in Section 8.1. We then further formalize our counterstrategy-guided synthesis
approach as a version-space learning problem in Section 8.2. Afterwards, we present exper-
imental results in Section 8.3 and we finally conclude in Section 8.4.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 82

8.1 Solution Overview

Figure 8.1 shows the main flow of our method. Our specification mining algorithm takes in
as input a library of specification templates, and a counter-strategy state machine generated
from unrealizability analysis, and produces as output a candidate assumption that can be
added to the existing specification to make it realizable.

Figure 8.1: Counterstrategy-guided synthesis enabled by assumption mining (the highlighted
portions are our contributions).

The counterstrategy Gc is computed using the approach described in [KHB09] for an
unrealizable GR(1) specification. The counterstrategy summarizes the next moves of the
environment in response to the current output of the system, which will force a violation of
the specification. We then use a template-based mining approach to find a specification that
is satisfied by Gc. By asserting the negation of such a specification as an assumption φ to the
original specification, we effectively rule out such moves by the environment. Afterwards,
the synthesis procedure is executed on the new specification ψnew. We iterate this process
until either we cannot find a specification in our library of templates that is satisfied by the
counterstrategy or the resulting specification becomes realizable. We give an overview of the
mining algorithm below.

There are four main procedures used by our approach.

• GenerateCandidates(Ξp, Σ) generates a set of template instantiations Ξ in a par-
ticular order as candidates of the additional environment assumptions.

• Realizable(ψ) checks if the specification ψ is realizable.

• CounterStrategy(ψ) returns a counterstrategy graph Gc for the environment to force
a violation of the specification if ψ is not realizable.

• Mine(Gc, Ξ, ψenv), returns a formula φ as an additional candidate assumption.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 83

Algorithm 5 Mine Assumptions for ψ = ψenv → ψsys

Input: Σ = X ∪ Y : the alphabet
Input: ψ = ψenv → ψsys: initial specification
Input: Ξp: a set of specification templates
Output: φ: additional assumption required for realizability

1: Ξ := GenerateCandidates(Ξp, Σ)
2: while ¬Realizable(ψ) do
3: Gc := CounterStrategy(ψ)
4: φ := Mine(Gc, Ξ, ψenv)
5: if φ = false then
6: return Insufficient Template
7: Quit
8: end if
9: ψenv := ψenv ∧ φ

10: ψ := ψenv → ψsys

11: end while

We illustrate the algorithm with an example below.

Example 1. Consider X = {x}, Y = {y} and the following GR(1) sub-formulas which
together form ψ = ψenv → ψsys.

1. ψenvf = G (F¬x)

2. ψsyst = G (¬x→ ¬y)

3. ψsysf = G (Fy)

Specification ψ is not realizable. Figure 8.2 shows the computed counterstrategy graph Gc.
The literal x̄ (ȳ) denotes the negation of the propositional variable x (y). The memory

content is denoted by γi with γ0 being the initial memory content. The three shaded states
on the left are the initial states. The literals on the edges indicate that the environment
first chooses x̄ and then the system chooses ȳ. (the system is forced to pick ȳ due to ψsyst).
Observe that, according the counterstrategy, the system will be forced to pick ȳ perpetually.
Hence, the other system guarantee ψsysf cannot be satisfied.

The key observation we make here is that Gc |= ¬φ, where ¬φ = F (G ¬x). Thus, if
we assert φ as an additional assumption φ = G (F x) to ψ, then we effectively rule out this
counterstrategy. In fact, the new specification ψnew = (φ ∧ ψenv)→ ψsys is realizable.

In this work, we consider the following GR(1) specification templates Ξp1 over the pattern
alphabet Σ = {a, b}.

1We omit assumptions about the initial states of the environment since they are less interesting.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 84

Figure 8.2: Counterstrategy graph Gc for unrealizable specification ψ.

• φa1 = G (F a)

• φa2 = G (F (a ∨ b))

• φa3 = G a

• φa4 = G (a ∨ b)

• φa5 = G (a→ X b)

Both φa1 and φa2 are instances of ψenvf (fairness assumptions on the environment). φa3,
φa4 and φa5 correspond to ψenvt (invariants and transitions). Definition 2.3 thus can be
adapted to the setting of mining assumptions for temporal logic synthesis. Specifically, the
specification templates are the GR(1) templates Ξp, an evidence is a counterstrategy (graph)
Gc, and satisfaction can be determined by whether Gc |= ¬φ, φ ∈ Ξ.

Hence, the procedure GenerateCandidates(Ξp, Σ) produces a set of specifications
based on the templates Ξp and conform to the syntax of ψenv (so that the specifications
are assumptions on the environment). Given a counterstrategy graph Gc, the set of candi-
date assumptions Ξ, and the current environment assumption ψenv, the procedure Mine(Gc,
Ξ, ψenv) selects an assumption φ ∈ Ξ such that Gc |= ¬φ and φ ∧ ψenv 6= false2 if possi-
ble. The latter guarantees that we do not add any assumption that is inconsistent with the
current assumptions. In Section 8.2, we present a selection strategy based on version-space
learning.

Remark 8.1. Gc is a transition system that can potentially have deadlocks. This means
when model checking Gc against the specification ¬φ may result in the specification being

2This amounts to checking the satisfiability of φ ∧ ψenv.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 85

vacuously true. In the Mine procedure, we first check if there exist any deadlock state. For
every deadlock state, we check only that state against instantiations from templates φa3 and
φa4.

In general, our approach can be viewed as a recommendation system for the user, which
can incorporate the user’s design intent in an interactive way. The user can engineer the
templates based on his knowledge of the environment (possibly another system) or inspect
and rule out any candidate assumption as the mining algorithm proceeds. To come up
with multiple recommendations, one can simply restart the algorithm with a reduced set of
template instantiations (in which the first additional assumption found in constructing the
previous φ is discarded) and try to find another set that achieves realizability.

8.2 Version-Space Learning with Templates

We first formalize the assumption mining problem in the version space learning framework.
Originally due to Tom Mitchell [Mit79], given hypothesis space H and examples E, the

version space is a subset of H that is consistent with the examples.

Definition 8.1. A hypothesis h1 ∈ H is a more general hypothesis than h2 ∈ H if h2 implies
h1. In this case, we also say h2 is a more specific hypothesis than h1.

Definition 8.2. The general boundary of a version space, G, is the set of maximally general
members of the version space. Similarly, the specific boundary of a version space, S, is the
set of maximally specific members of the version space.

Hence, H can be represented by the boundaries G and S. In our setting, given the set
of all possible instantiations Ξ of the assumption templates, a hypothesis h is a formula
φh =

∧
Ξ′ ξ, ξ ∈ Ξ′ for some nonempty subset Ξ′ ⊆ Ξ. Additionally, let true ∈ H be

the most general hypothesis and false ∈ H be the most specific hypothesis. An example
is a counterstrategy graph Gc. Such an example is a negative example since it represents
behaviors that the target environment should not have. In this case, we only have negative
examples3. Consistency is then defined as Gc |= ¬φh.

Language inclusion (or the reverse of a logical implication) thus induces a partial order
on the set of hypotheses. According to Definition 8.1, h1 is more general than h2 (conversely,
h2 is more specific than h1) if L(φh1) ⊇ L(φh2). Figure 8.3 illustrates this concept, where
hypotheses are ordered (direction of the arrows) from most general to most specific.

In this case, we seek the most general and consistent hypothesis. The rationale behind
this choice is that we want the additional assumption to constrain the environment as little
as possible so that it is just sufficient to ensure the realizability of the resulting specification.
Hence, starting from true, which is the most general hypothesis, we select a candidate

3User may choose to present desired behaviors that the target design should satisfy in the form of traces.
Such a trace τ can then be used as a positive example and thus we seek τ |= φh.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 86

Figure 8.3: Diagrammatic representation of a version space from the most general hypothesis
to the most specific hypothesis.

assumption φh from the set of hypotheses in the next partial order. Observe that, however,
there is still a large number of possible candidates to choose from, and not all of them are
consistent with the example. To reduce the amount of redundant checks, we use the following
modification to the algorithm.

• For a counterstrategy Senv = (Γenv, γenv0 , ηenv), compute det(ηenv) : Qg × Γenv →
X × Γenv as the deterministic version of ηenv by randomly selecting a next input and
a memory update if more than one choice is available. Compute the counterstrategy
graph Gc using det(ηenv) instead of ηenv.

• In each iteration of the while loop in Algorithm 5, consider a hypothesis space where
each hypothesis is a single template instantiation. This is motivated by the observation
that, after ηenv is simplified to det(ηenv), it is more likely to satisfy a simple formula
without the search resorting to a more complicated disjunction (obtained by negating
the conjunction of multiple instantiations). Now among the smaller set of hypotheses
during each iteration, we randomly pick one from the set as the candidate assumption
φh. If Gc |= ¬φh, then φh is added to (conjuncted with) ψenv and will not be picked
again.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 87

8.3 Experimental Results

In this section, we present case studies from the domains of digital circuit design and robotic
controller synthesis. We use RATSY [BCG+10] to generate the counterstrategy graph Gc in
case of unrealizability. We use the model checking capabilities in SAL [BGL+00] check if the
current set of assumptions is satisfiable, and to model check if Gc |= ¬φ. Our experiment
proceeds as follows. Starting with a known realizable specification ψ,

1. Remove an arbitrary assumption φr from ψ;

2. Proceed with Algorithm 5 to generate a replacement assumption φ;

3. Evaluate the relationship between φ and φr;

4. Restart from Step 1 by removing a different assumption.

8.3.1 AMBA AHB Bus Protocol

ARM’s Advanced Microcontroller Bus Architecture (AMBA) Advanced High Performance
Bus (AHB) is an on-chip communication protocol. The specification allows for up to 16
masters and 16 slaves. The masters initiate communication (reading or writing) with the
slaves, and the slaves respond to a master’s request. There is an address bus and a data bus,
each of which can only be accessed by one master at a time. An arbiter controls access to the
address bus. A bus access can either be a single transfer, or a burst, which is a transaction
consisting of multiple transfers. A bus access can also either be locked (incapable of being
interrupted) or unlocked. Our specifications for this protocol are taken from the example
files provided with RATSY [BCG+10]. For details of this protocol, we refer the readers to
[BGJ+07a]. There are four environment signals. The first three are driven by the masters
and the last one is driven by the slaves.

• HBUSREQ[i] - master i requests access to the bus

• HLOCK[i] - master i requests locked access to the bus (used in combination with
HUBUSREQ[i])

• HBURST[1:0] - one of following: single transfer (SINGLE), 4-transfer burst (BURST4),
or unspecified size burst (INCR) Signals driven by the slaves:

• HREADY - high if the slave has finished working with the current data; needs to be high
before bus ownership can change or transfers can begin

Our experiment was on the configuration of the protocol with 1 master and 2 slaves. We
ignored the assumptions that characterize the initial states. In fact, the removal of any of
them does not lead to unrealizability. We illustrate our approach with the following example
below. First, we remove the following environment fairness.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 88

φr = G (F HREADY = 1)

We applied our algorithm on the remaining specification and we found φr in exactly one
iteration. In fact, we can choose a different candidate assumption when multiple ones are
possible, as indicated in Section 8.2. The following is another possible valid replacement.

G (HREADY = 0→ X HBUSREQ[0] = 0) ∧G (F HREADY = 1)

Next, we removed the following environment transition.

φr = G (HLOCK[0] = 1→ HBUSREQ[0] = 1)

Our algorithm produced G (F HLOCK[0] = 0) as a replacement. The original assump-
tion says whenever master 0 sets HLOCK[0] to high, it should be sending a request at the
same time by setting HBUSREQ[0] to high. Our replacement says master 0 should de-assert
HLOCK[0] infinitely often. This assumption may not be completely desirable because it does
not pinpoint the condition on which the signal should be de-asserted. However, it clearly
indicates the need to prevent a master from having a locked access to the bus permanently,
and the fact that adding this requirement will make the specification realizable.

In general, we may get a number of possible replacements. It is debatable which of these
replacements best represents the designer’s intent. We are simply offering a recommendation
system in which the user can choose from a pool of possible assumptions. The quality of this
pool can be improved if the user can provide more information to the synthesis process in
the form of desired traces of the target design. Our experiments show that even without this
additional user input, our method is able to generate good quality assumptions that achieve
realizability.

8.3.2 Generalized Buffer

IBM’s generalized buffer (GenBuf) transmits data from n senders to two receivers. The
senders provide data in any order, but the receivers must receive the data in turns. The
handshake protocol between sender, buffer, and receiver is as follows. The senders request
permission from the buffer to send their data. The buffer must acknowledge each sender’s
request. The buffer then sends a request to a receiver for permission to transmit the data.
The receiver must also acknowledge the buffer’s request. We used the specifications pro-
vided with the tool ANZU [JGWB07]. For details of this example, we refer the readers to
[BGJ+07b]. It has the following environment signals.

• StoB REQi - sender i requests a send from the buffer

• RtoB ACKj - receiver j acknowledges the buffer’s request

• FULL - the FIFO is ready to send data

• EMPTY - FIFO is ready to receive data

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 89

We performed a similar experiment as the one in Section 8.3.1. In the first experiment,
we removed the following fairness assumption.

φr = G (F (BtoR REQ0 = 1↔ RtoB ACK0 = 1))

Our algorithm produced the following replacement.

G (F RtoB ACK0 = 1)

In this example, we were not able to recover the missing assumption. Our replacement
represents an environment where the receiver acknowledges infinitely often. The original
assumption states that only true request (when BtoR REQ0 is high) is acknowledged infinitely
often. The replacement assumption is stronger than the original, but still provides a hint to
the desired behavior of the environment.

8.3.3 Robotic Vehicle Controller

Our example of a robotic vehicle controller is motivated by the work done by Wongpiromsarn
et al. [Won10]. Their work aims to synthesize a discrete planner for an autonomous vehicles
to navigate in an urban environment while following traffic rules and avoiding obstacles. We
use the following simplified variant in our experiment. Given a rectangular grid of length
X (length of the road) and width Y (number of lanes), define the coordinates of where the
vehicle is located as lx,y. We use ox,y to denote if there is an obstacle at position (x, y) at
every time step (ox,y = 1 if there is one). This is used to simulate moving obstacles such as
other cars in the urban environment. The requirements are the following.

• A: All squares are clear of obstacles infinitely often: G F ox,y = 0.

• G1: The car is at initial position lix,y and there is no obstacle at the initial position.

• G2: The vehicle can move to an adjacent square or stay in the current square at each
time step.

• G3: The vehicle cannot move into a square occupied by an obstacle.

• G4: The vehicle eventually reaches its final destination.

We expressed these requirements in GR(1) formulas. One way to make the specifica-
tion unrealizable is to have the destination square permanently blocked (by removing the
corresponding fairness assumption). We followed Algorithm 5 and were able to recover the
assumption in one iteration.

CHAPTER 8. MINING ENVIRONMENT ASSUMPTIONS 90

8.4 Summary

In this chapter, we propose a systematic technique for mining candidate assumptions to guide
an unrealizable specification towards realizability. Our technique mines assumptions from
counteracting behaviors, which are summarized by the counterstrategy of an unrealizable
specification. Further, we formalize the problem as an instance of version-space learning to
elucidate the proposed counterstrategy-guided synthesis framework. We also propose opti-
mizations to speed up the assumption mining process. Experimental results are encouraging
– missing assumptions are found in a majority of the cases and reasonable replacements are
found for the rest.

91

Chapter 9

Human-in-the-Loop Controller
Synthesis

When a machine begins to run without human aid, it is time to scrap it – whether
it be a factory or a government.

– Alexander Chase

In this chapter, we show that the proposed counterstrategy-guided assumption mining ap-
proach described in Chapter 8 enables the automatic synthesis of a new class of semi-
autonomous controllers, called human-in-the-loop (HuIL) controllers. A crucial component
of such a controller is an advisory that determines when to switch control from the au-
tonomous controller to the human operator. We formalize the criteria that characterize a
HuIL controller, by taking into account of human factors such as response time, and describe
how to construct the advisory using assumption mining.

9.1 Introduction

Many safety-critical systems are interactive, i.e., they interact with a human being, and the
human operator’s role is central to the correct working of the system. Examples of such
systems include fly-by-wire aircraft control systems (interacting with a pilot), automobiles
with driver assistance systems (interacting with a driver), and medical devices (interacting
with a doctor, nurse, or patient). We refer to such interactive control systems as human-in-
the-loop control systems. The costs of incorrect operation in the application domains served
by these systems can be very severe. Human factors are often the reason for failures or “near
failures”, as noted by several studies (e.g., [Fed95, KCD00]).

One alternative to human-in-the-loop systems is to synthesize a fully autonomous con-
troller from a high-level mathematical specification. The specification typically captures both
assumptions about the environment and correctness guarantees that the controller must pro-
vide, and can be specified in a formal language such as Linear Temporal Logic. While this

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 92

correct-by-construction approach looks very attractive, the existence of a fully autonomous
controller that can satisfy the specification is not always guaranteed. For example, in the
absence of adequate assumptions constraining its behavior, the environment can be modeled
as being overly adversarial, causing the synthesis algorithm to conclude that no controller
exists. Additionally, the high-level specification might abstract away from inherent physical
limitations of the system, such as insufficient range of sensors, which must be taken into
account in any real implementation. Thus, while full manual control puts too high a burden
on the human operator, some element of human control is desirable. However, at present,
there is no systematic methodology to synthesize a combination of human and autonomous
control from high-level specifications. In this chapter, we address this limitation of the state
of the art. Specifically, we consider the following question:

Can we devise a controller that is mostly automatic and requires only occasional human
interaction for correct operation?

A particularly interesting domain is that of automobiles with “self-driving” features,
otherwise also termed as “driver assistance systems”. Such systems, already capable of
automating tasks such as lane keeping, navigating in stop-and-go traffic, and parallel parking,
are being integrated into high-end automobiles. However, these emerging technologies also
give rise to concerns over the safety of an ultimately driverless car. Recognizing the safety
issues and the potential benefits of vehicle automation, the National Highway Traffic Safety
Administration (NHTSA) recently published a statement that provides descriptions and
guidelines for the continual development of these technologies [Nat13]. Particularly, the
statement defines five levels of automation ranging from vehicles without any control systems
automated (Level 0) to vehicles with full automation (Level 4). In this chapter, we focus on
Level 3 which describes a mode of automation that requires only limited driver control:

“Level 3 - Limited Self-Driving Automation: Vehicles at this level of automation
enable the driver to cede full control of all safety-critical functions under certain
traffic or environmental conditions and in those conditions to rely heavily on the
vehicle to monitor for changes in those conditions requiring transition back to
driver control. The driver is expected to be available for occasional control, but
with sufficiently comfortable transition time. The vehicle is designed to ensure
safe operation during the automated driving mode.” [Nat13]

Essentially, this mode of automation stipulates that the human driver can act as a fail-
safe mechanism and requires the driver to take over control should something go wrong.
The challenge, however, lies in identifying the complete set of conditions under which the
human driver has to be notified ahead of time. Based on the NHTSA statement, we identify
four important criteria required for a human-in-the-loop controller to achieve this level of
automation.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 93

• Monitoring. The controller should be able to determine if human intervention is needed
based on monitoring past and current information about the system and its environ-
ment.

• Minimally Intervening. The controller should only invoke the human operator when it
is necessary, and does so in a minimally intervening manner.

• Prescient. The controller can determine if a specification may be violated ahead of time,
and issues an advisory to the human operator in such a way that she has sufficient
time to respond.

• Conditionally Correct. The controller should operate correctly until the point when
human intervention is deemed necessary.

We further elaborate and formally define these concepts later in Section 9.3. In general, a
human-in-the-loop controller, as shown in Figure 9.1 is a controller consists of three compo-
nents: an automatic controller, a human operator, and an advisory control mechanism that
orchestrates the switching between the auto-controller and the human operator.1 In this set-
ting, the auto-controller and the human operator can be viewed as two separate controllers,
each capable of producing outputs based on inputs from the environment, while the key
responsibility of the advisory controller is to determine precisely when the human operator
should assume control, while giving her enough time to respond.

Similar to the previous chapter, we study the construction of such controller in the context
of temporal logic synthesis.

In summary, the main contributions of this chapter are:

• A formalization of human-in-the-loop control systems and the problem of synthesizing
such controllers from high-level specifications, including four key criteria these con-
trollers must satisfy.

• An algorithm for synthesizing human-in-the-loop controllers that satisfy the afore-
mentioned criteria.

• An application of the proposed technique to examples motivated by driver-assistance
systems for automobiles.

The rest of the chapter is organized as follows. Section 9.2 describes an motivating
example discussing a car following example. Section 9.3 provides a formalism and charac-
terization of the human-in-the-loop controller synthesis problem. Section 9.4 describes our
algorithm for the problem. We then present case studies of safety critical driving scenarios
in Section 9.5. Finally, we discuss related work in Section 9.6 and conclude in Section 9.7.

1In this chapter, we do not consider explicit dynamics of the plant. Therefore it can be considered as
part of the environment also.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 94

Figure 9.1: Human-in-the-Loop Controller: Component Overview and Synthesis from Spec-
ification

9.2 Motivating Example

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9
Blocked

by

Car B

(a) A’s Sensing Range.

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9

(b) Failed to Follow.

Figure 9.2: Controller Synthesis – Car A Following Car B

Consider the example in Figure 9.2. In this example, car A is the autonomous vehicle,
car B and C are two other cars on the road. We assume that the road has been divided into
discretized regions that encode all the legal transitions for the vehicles on the map, similar
to the discretization setup used in receding horizon temporal logic planning [WTM12]. The
objective of car A is to follow car B. Note that car B and C are part of the environment
and cannot be controlled. The notion of following can be stated as follows. We assume that

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 95

car A is equipped with sensors that allows it to see two squares ahead of itself if its view is
not obstructed, as indicated by the enclosed region by blue dashed lines in Figure 9.2a. In
this case, car B is blocking the view of car A, and thus car A can only see regions 3, 4, 5
and 6. Car A is said to be able to follow car B if it can always move to a position where
it can see car B. Furthermore, we assume that car A and C can move at most 2 squares
forward, but car B can move at most 1 square ahead, since otherwise car B can out-run or
out-maneuver car A.

Given this objective, and additional safety rules such as cars not crashing into one an-
other, our goal is to automatically synthesize a controller for car A such that

• car A follows car B whenever possible;

• and in situations where the objective may not be achievable, switches control to the
human driver while allowing sufficient time for the driver to respond and take control.

In general, it is not always possible to come up with a fully automatic controller that
satisfies all requirements. Figure 9.2b illustrates such a scenario where car C blocks the view
as well as the movement path of car A after two time steps. The brown arrows indicate
the movements of the three cars in the first time step, and the purple arrows indicate the
movements of car B and C in the second time step. Positions of a car X at time t is indicated
by Xt. In this failure scenario, the autonomous vehicle needs to notify the human driver
since it has lost track of car B.

Hence, a human-in-the-loop synthesis approach is tasked with producing an autonomous
controller along with advisories for the human driver in situations where her attention is
required. Our challenge, however, is to identify the conditions that we need to monitor and
notify the driver when they may fail. In the next section, we discuss how human constraints
such as response time can be simultaneously considered in the solution, and mechanisms for
switching control between the auto-controller and the human driver.

9.3 Human-in-the-Loop Controller

9.3.1 Agents as Automata

We model a discrete controller as a finite-state transducer (FST), as described in Section 2.2.
To characterize correctness of M , we assume that we can label if a state is unsafe or not,
with a function F : Qm → {true, false}, i.e. a state q is unsafe if F(q) = true. With a
slight abuse of terminologies, we say a run (or a finite prefix of it) of a controller M is safe
if it does not contain any unsafe state.

We model two of the three agents in a human-in-the-loop controller, the automatic con-
troller AC and the advisory controller VC, as finite-state transducers (FSTs). The human
operator can be viewed as another FST HC that uses the same input and output interface

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 96

as the auto-controller. The overall controller HIL is then a composition of the models of
HC, AC and VC.

We use the binary variable auto to denote the internal advisory signal that VC sends
to both AC and HC. Hence, XHC = XAC = X ∪ {auto}, and YVC = {auto}. When
auto = false, it means the advisory controller is requiring the human operator to take over
control, and the auto-controller can have control otherwise.

We assume that the human operator (e.g., driver behind the wheel) can take control at
any time by transitioning from a “non-active” state to an “active” state, e.g., by hitting a
button on the dashboard or simply pressing down the gas pedal or the brake. When HC is
in the “active” state, the human operator essentially acts as the automaton that produces
outputs to the plant (e.g., a car) based on environment inputs. We use a binary variable
active to denote if HC is in the “active” state. When active = true, the output of HC
overwrites2 the output of AC. Similarly, when active = false, the output of HIL is the
output of AC. Note that even though the human operator is modeled as a FST here, since
we do not have direct control of the human operator, it can in fact be any arbitrary relation
mapping X to Y .

9.3.2 Criteria for Human-in-the-loop Controllers

One key distinguishing factor of a human-in-the-loop controller from traditional controller is
the involvement of a human operator. Hence, human factors such as response time cannot be
disregarded. In addition, we would like to minimize the need to engage the human operator.
Based on the NHTSA statement, we derive four criteria for any effective human-in-the-loop
controller, as described below.

• Monitoring. An advisory auto is issued to the human operator under specific con-
ditions. These conditions in turn need to be determined unambiguously at runtime,
potentially based on history information but not predictions. In a reactive setting,
this means we can use trace information only up to the point when the environment
provides a next input from the current state.

• Minimally intervening. Our mode of interaction requires only selective human inter-
vention. An intervention occurs when HC transitions from the “non-active” state to
the “active” state (we discuss mechanisms for suggesting a transition from “active” to
“non-active” in Section 9.3.1, after prompted by the advisory signal auto being false).
However, frequent transfer of control would mean constant attention is required from
the human operator, thus nullifying the benefits of having the auto-controller. In or-
der to reduce the overhead of human participation, we want to minimize a joint cost
function fC that combines two elements: (i) the probability that when auto is set to
false, the environment will eventually force AC into a failure scenario, and (ii) the

2 The “overwrite” action happens when a sensor senses the human operator is in control, e.g., putting
her hands on the wheel.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 97

cost of having the human operator taking control. We formalize this objective function
in Section 9.4.

• Prescient. It may be too late to seek the human operator’s attention when failure is
imminent. We also need to allow extra time for the human to respond and study the
situation. Hence, an advisory should be issued ahead of any failure scenario. In the
discrete setting, we are given a positive integer T representing human response time,
and require that auto is set to false at least T number of transitions ahead of a state
(in AC) that is unsafe.

• Conditionally-Correct. The auto-controller is responsible for correct operation as long
as auto is set to true. Formally, if auto = true when AC is at a state q, then
F(q) = false. Additionally, when auto is set to false, the auto-controller should
still maintain correct operation in the next T − 1 time steps, during or after which we
assume the human operator take over control. Formally, if auto changes from true to
false when AC is at a state q, let RT (q) be the set of states reachable from q within
T − 1 transitions, then F(q′) = false, ∀q′ ∈ RT (q).

While other criteria may be desirable, we believe at least the above four are necessary.
Now we are ready to state the HuIL controller Synthesis Problem:

Given a model of the system and its specification expressed in a formal language, syn-
thesize a HuIL controller HIL that is, by construction, monitoring, minimally intervening,
prescient, and conditionally correct.

Similar to Chapter 8, we study the synthesis of a HuIL controller in a setting where the
controller is synthesized from its temporal logic specifications. In Section 9.4, we propose an
algorithm based on the assumption mining technique presented in Chapter 8 for solving the
HuIL controller synthesis problem.

9.4 Controller Synthesis

Given an unrealizable specification, a counterstrategy Senv exists for env which describes
moves by env such that it can force a violation of the system guarantees. The key insight
of our approach for synthesizing a HuIL controller is that we can synthesize an advisory
controller that monitors these moves and prompts the human operator with sufficient time
ahead of any danger. These moves are essentially assumptions on the environment under
which the system guarantees can be ensured. When these assumptions are not violated (the
environment may behave in a benign way in reality), the auto-controller fulfills the objective
of the controller. On the other hand, if any of the assumptions is violated, as flagged by the
advisory controller, then the control is safely switched to the human operator in a way that
she can have sufficient time to respond (both to the notification and to the situation). The

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 98

challenge, however, is to decide when an advisory should be sent to the human operator, in
a way that it is also minimally intervening to the human operator.

9.4.1 Weighted Counterstrategy Graph

Recall that a counterstrategy can be viewed as a discrete transition system or a directed
graph Gc. We consider two types of imminent failures (violation of some system guarantee
specification) described by Gc.

• Safety violation. For a node (state) qc1 ∈ Qc, if there does not exist a node qc2 such
that (qc1, q

c
2) ∈ ρc, then we say qc1 is failure-imminent. In this scenario, after env picks

a next input according to the counterstrategy, sys cannot find a next output such that
all of the (safety) guarantees are satisfied (some ψsysi or ψsyst is violated).

• Fairness violation. If a node qc is part of a strongly connected component (SCC) scc
in Qc, then we say qc is failure-doomed. For example, the node (x̄, ȳ, γ1) in Figure 8.2
is a failure-doomed node. Starting from qc, env can always pick inputs in such a way
that the play is forced to get stuck in scc. Clearly, all other states in scc are also
failure-doomed.

Now we make the connection of the labeling function F for a controller M to the coun-
terstrategy graph Gc which describes behaviors that M should not exhibit. Consider an
auto-controller M and a run ~q = q0, q1, . . . , qk of M up to state qk which induces the word
(x0, y0), (x1, y1), . . . , (xk, yk). F(qk) = true if and only if there exist some qc ∈ Qc such that
θc(qc) = xkyk and qc is either failure-imminent or failure-doomed.

Proposition 9.1. Any run of Gc must either end at a failure-imminent state or end with a
lasso which consists entirely of failure-doomed states.

To see this, recall that a counterstrategy graph for a specification ψ describes how ψsys is
violated. Hence, a run of Gc either violates the safety part of ψsys (ψsysi or ψsyst) or violates
the fairness part of ψsys (ψsysf).

In practice, it is not always the case that the environment will behave in the most
adversarial way. For example, a car in front may yield if it is blocking our path. Hence, even
though the specification is not realizable, it is still important to assess, at any given state,
whether it will actually lead to a violation. For simplicity, we assume that the environment
will adhere to the counterstrategy once it enters a failure-doomed state.

We can convert Gc to its directed acyclic graph (DAG) embedding Ĝc = (Q̂c, Q̂c
0, ρ̂

c) by
contracting each SCC in Gc to a single node. Figure 9.3 shows the condensed graph Ĝc of
Gc shown in Figure 8.2 of Section 8.1.

We use the surjective function f̂ : Qc → Q̂c to describe the mapping of nodes from Gc

to its DAG embedding Ĝc. We say a node q̂ ∈ Q̂c is failure-prone if a node qc ∈ Qc is either
failure-imminent or failure-doomed and f̂(qc) = q̂.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 99

Figure 9.3: Condensed graph Ĝc for Gc (Figure 8.2) after contracting all SCCs.

Recall from Section 9.3 that the notion of minimally-intervening requires the minimiza-
tion of a cost function C, which involves the probability that auto is set to false, Thus far,
we have not associated any probabilities with transitions taken by the environment or the
system. While our approach can be adapted to work with any assignment of probabilities,
for ease of presentation, we make a particular choice in this thesis. Specifically, we assume
that at each step, the environment picks a next-input uniformly at random from the set of
possible legal actions (next-inputs) – those that do not violate any (safety) assumption. In
Example 1 and correspondingly Figure 8.2, this means that it is equally likely for env to
choose x̄ or x from any of the states. We use c(q) to denote the total number of legal actions
that the environment can take from a state q.

In addition, we need to take into account of the cost of having the human operator
perform the maneuver instead of the auto-controller. In general, this cost increases with
longer human engagement. Based on these two notions, we define $, which assigns a weight
to an edge e ∈ Q̂c × Q̂c in Ĝc, recursively as follows. For an edge between q̂i and q̂j,

$(q̂i, q̂j) =

{
1 if q̂j is failure-prone
pen(q̂i)×len(q̂i)

c(q̂i)
Otherwise

where pen : Q̂c → Q+ is a user-defined penalty parameter, and len : Q̂c → Z+ is the length
(number of edges) of the shortest path from a node q̂i to any failure-prone node in Ĝc.
Intuitively, a state far away from any failure-prone state is less likely to cause a failure since
the environment would need to make multiple consecutive moves all in an adversarial way.
However, if we transfer control at this state, the human operator will have to spend more
time in control, which is not desirable for a HuIL controller. In the next section, we describe
how to use this edge-weighted DAG representation of a counterstrategy graph to derive a
HuIL controller that satisfies the criteria established in Section 9.3.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 100

9.4.2 Counterstrategy-Guided Synthesis of HuIL Controllers

Following the counterstrategy-guided strategy presented in Chapter 8, if we can find an
assumption to eliminate the counterstrategy represented by Gc such that the resulting spec-
ification is realizable, then we can obtain an auto-controller that is correct-by-construction.
However, not all assumptions are monitorable. For example, we cannot determine whether
the formula G (F x) holds for some input x by monitoring the traces of a FST. In the rest of
this section, we describe the type of assumptions we mine, such that we can synthesize the
auto-controller, the advisory controller, as well as their interaction with the human operator.
In addition, we show that the counterstrategy-guided approach can be adapted to handle
response time constraint as well.

Consider an outgoing edge from a non-failure-prone node q̂ in Ĝc, this edge encodes a
particular condition where the environment makes a next-move given some last move made
by the environment and the system. If some of these next-moves by the environment are
disallowed, such that none of the failure-prone nodes are reachable from any initial state (or
source node), then we have effectively eliminated the counterstrategy. This means that if we
assert the negation of the corresponding conditions as additional ψenvt (environment transi-
tion assumptions), then we can obtain a realizable specification, as described in Chapter 8.

Formally, we mine assumptions of the form φ =
∧
i(G (ai → ¬X bi)), where ai is a

Boolean formula describing a set of assignments over variables in X ∪Y , and bi is a Boolean
formula describing a set of assignments over variables in X (see also, Section 8.1).

Under the assumption φ, if (φ ∧ ψenv) → ψsys is realizable, then we can automatically
synthesize an auto-controller that satisfies ψ. In addition, the key observation here is that
mining φ is equivalent to finding a set of edges in Ĝc such that, if these edges are removed
from Ĝc, then none of the failure-prone nodes is reachable from any initial state (assuming
the initial states are not failure-prone; this condition can be checked separately). We denote
such set of edges as Eφ, where each edge e ∈ Eφ corresponds to a conjunct in φ. For
example, if we remove the three outgoing edges from the source nodes in Figure 9.3, then
the failure-prone node is not reachable. Removing these three edges correspond to adding
the following environment assumption, which can be monitored at runtime.

(G ((x ∧ y)→ ¬X x̄)) ∧ (G ((x̄ ∧ ȳ)→ ¬X x̄)) ∧ (G ((x ∧ ȳ)→ ¬X x̄))

Human factors play an important role in the design of a HuIL controller. The criteria
established for a HuIL controller in Section 9.3 also require it to be prescient and minimally
intervening. Hence, we want to mine assumptions that reflect these criteria as well. The
notion of prescient essentially requires that none of the failure-prone nodes is reachable from
a non-failure-prone node with less than T steps (edges). The weight function $ introduced
earlier can be used to characterize the cost of a failing assumption resulting in the advisory
controller prompting the human operator to take over control (by setting auto to false).
Formally, we seek Eφ such that the total cost of switching control

∑
e∈Eφ $(e) is minimized.

We can formulate this problem as a s-t min-cut problem for directed acyclic graphs.
Given Ĝc, we first compute the subset of nodes Q̂c

T ⊆ Q̂c that are backward reachable within

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 101

T − 1 steps from the set of failure-prone nodes (when T = 1, Q̂c
T is the set of failure-prone

node). We assume that Q̂c
0 ∩ Q̂c

T = ∅. Next, we remove the set of nodes Q̂c
T from Ĝc and

obtain a new graph Ĝc
T . Since Ĝc

T is again a DAG, we have a set of source nodes and
a set of terminal nodes. Thus, we can formulate a s-t min-cut problem by adding a new
source node that has an outgoing edge (with a sufficiently large weight) to each of the source
nodes and a new terminal node that has an incoming edge (with a sufficiently large weight)
from each of the terminal nodes. This s-t min-cut problem can be easily solved by standard
techniques [CLR05]. The overall approach is summarized in Algorithm 6.

Algorithm 6 Counterstrategy-Guided HuIL Controller Synthesis

Input: GR(1) specification ψ = ψenv → ψsys.
Input: T : parameter for minimum human response time.
Output: AC and VC. HIL is then a composition of AC, VC and the human operator as

described in Section 9.3.
if ψ is realizable then

Synthesize transducer M |= ψ (using standard GR(1) synthesis);
HIL := M (fully autonomous).

else
GenerateGc from ψ (assume a singleGc; otherwise the algorithm is performed iteratively
as in Algorithm 5);
Generate the DAG embedded Ĝc from Gc.
Reduce Ĝc to Ĝc

T ;
Assign weights to Ĝc using ϕ; by removing Q̂c

T – nodes that are within T − 1 steps of
any failure-prone node;
Formulate a s-t min-cut problem with Ĝc

T ;
Solve the s-t min-cut problem to obtain Eφ;
Add assumptions φ to ψ to obtain the new specification ψnew := (φ ∧ ψenv)→ ψsys;
Synthesize AC so that M |= ψnew;
Synthesize VC as a (stateless) monitor that outputs auto = false iff the assumption φ
is violated.

end if

Theorem 9.1. Given a GR(1) specification ψ and a response time parameter T , Algorithm 6
is guaranteed to either produce a fully autonomous controller satisfying ψ, or a HuIL con-
troller, modeled as a composition of an auto-controller AC, a human operator and an advisory
controller VC, that is monitoring, prescient with parameter T , minimally intervening with
respect to the cost function fC =

∑
e∈Eφ $(e), and conditionally correct.3

Proof. (Sketch) When ψ is realizable, a fully autonomous controller is synthesized and un-
conditionally satisfies ψ.

3We assume that all failure-prone nodes are at least T steps away from any initial node. This condition
can be checked easily and if it is not satisfied, human should take control immediately.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 102

Now consider that case when ψ is not realizable.
The HuIL controller is monitoring as φ only comprises a set of environment transitions

up to the next environment input.
It is prescient by construction. The auto flag advising the human operator to take over

control is set to false precisely when φ is violated. When φ is violated, it corresponds to
the environment making a next-move from the current state q (in AC) according to some
edge e = (q̂i, q̂j) ∈ Eφ. Consider any qc ∈ Qc such that f̂(qc) = q̂i, θ

c(qc) = q. Since q̂i 6∈ Q̂c
T

by the construction of Ĝc
T , q̂i is at least T transitions away from any failure-prone state in

Ĝc. This means qc must also be at least T transitions away from any failure-imminent state
or failure-doomed state in Qc. Hence, by the definition of F with respect to a failure-doomed
or failure-doomed state in Section 9.4.1 and recall that a state is unsafe if F(q) = true, q is
(and auto is set) at least T transitions ahead of any state that is unsafe.

Similarly, for any state q′ ∈ RT (q), F(q′) = false, i.e. q′ is safe. Hence, the HuIL
controller is also conditionally correct.

Finally, since auto is set to false precisely when φ is violated, and φ in turn is constructed
based on the set of edges Eφ, which minimizes the cost function fC =

∑
e∈Eφ $(e), the HuIL

controller is minimally-intervening with respect to the cost function fC .

9.4.3 Switching from Human Operator to Auto-Controller

Once control has been transferred to the human operator, when should the human yield
control to the autonomous controller again? We outline here an approach one can take to
address this question, while noting that alternative approaches may exist.

The basic idea in our approach is for the HuIL controller to continue to monitor the
environment after the human operator has taken control, checking if a state is reached from
which the auto-controller can ensure that it satisfies the specification under assumption φ,
and then take back control.

Recall that the original specification ψ is of the form ψenv → ψsys where ψenv is the
original set of assumptions on the environment, including on initial states. Algorithm 6
augments ψenv with an additional assumption φ, to obtain the combined environment as-
sumption φ∧ψenv. Under this combined assumption, the GR(1) synthesis algorithm is able to
extract a winning strategy for the system, which forms the auto-controller. While extracting
the winning strategy, we record the set of all states from which the “system” (autonomous
controller) can win the game no matter what the environment does for the next T steps
(where T is the human response time, as before). This set can be recorded in terms of its
characteristic Boolean function, denoted W .

Thus, the HuIL controller continues to monitor the environment and check whether W
becomes true. If so, the auto-controller notifies the human operator that it is ready to take
back control. As long as W remains true, the human operator then may return control to
the autonomous system, and the auto-controller executes as before.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 103

9.5 Experimental Results

In this section, we present several scenarios in the context of autonomous driving and demon-
strate the usefulness of our approach in synthesizing human-in-the-loop controllers that sat-
isfy the criteria established in Section 9.3. Our algorithm is implemented as an extension to
the temporal logic synthesis and diagnosis tool RATSY [BCG+10].

9.5.1 Car-Following

Recall the car-following example shown in Section 9.2. We describe the formalization of the
requirements as LTL specifications below.
Input Variables:

1. Position of car B: pB ∈ {1 . . . 10}.

2. Position of car C: pC ∈ {1 . . . 10}.

Output Variables:

1. Position of car A: pA ∈ {1 . . . 10}.

2. Visibility of car A: vA ⊆ {1 . . . 10}.

3. follow = true iff car A can see the region where car B is in.

Environment Assumptions:

1. Initially, car B is in region 6 and car C is in region 1.

pB = 6 ∧ pC = 1

2. Car B can only move at most one square up at each time step. For example, starting
at 6, car B can move to 7 or 8, or stay at 6.

G
(
(pA = 6→ X (pA = 6 ∨ pA = 7 ∨ pA = 8)

)
3. Car C can move at most two squares up at each time step. For example, starting at

1, car C can move to 3, 4 or 5, or stay at 1.

G
(
(pC = 1→ X (pC = 3 ∨ pC = 4 ∨ pC = 5 ∨ pC = 1)

)
4. Car C does not purposely collide into car A. For example, if car A is at 4, then car C

should not move to 4 in the next cycle.

G
(
(pA = 4→ X (pC 6= 4)

)

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 104

System Guarantees:

1. Initially, car A is in region 4.
pA = 4

2. Car A must not collide with car B or C.

G (pA 6= pB ∧ pA 6= pC)

3. Car A can move at most two squares up at each time step. For example, starting at
4, car A can move to 5, 6 or 8, or stay at 4.

G
(
(pA = 4→ X (pA = 5 ∨ pA = 6 ∨ pA = 8 ∨ pA = 4)

)
4. Constraints on the visibility regions of car A. When the view of car A is not obstructed

by another vehicle directly in front, car A can see squares ahead include the current
position on both lanes. This specification simulates the potential limitation on the
sensing capabilities on the vehicle. For example, starting at 4, car A is supposed to be
able to see 3, 4, 5, 6, 7 and 8, but due to car B being at 6 (thus partially blocking the
view of A), car A can only see regions 3, 4, 5 and 6.

G
(
(pA = 4 ∧ (pB = 6 ∨ pC = 6))→ (vA = {3, 4, 5, 6})

)
5. Constraints on follow. Basically, car A is said to be able to “follow” car B if it can

always move into a position where it can see where car B is at.

G
(
(track = true)↔ (pB ∈ vA)

)
We further require that G (follow = true).

6. Car A cannot change lane if another car parallel to it is changing lane as well. For
example, if car A is at 4 and car C is at 3, and car C is moving to 6, then car A cannot
move to 5.

G
(
(pA = 4 ∧ pC = 3 ∧ (X pC = 6))→ (X pA 6= 5)

)
Observe that car C can in fact force a violation of the system guarantees in one step

under two situations – when pC = 5, pB = 8 and pA = 4, or pC = 5, pB = 8 and pA = 6.
Both are situations where car C is blocking the view of car A, causing it to lose track of car
B. The second failure scenario is illustrated in Figure 9.2b.

Applying our algorithm to this (unrealizable) specification with T = 1, we obtain the
following φ.

φ = G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 8) ∧ (pC = 5))

) ∧

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 105

G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 3))

) ∧
G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 5))

)
In fact, φ corresponds to three possible evolutions of the environment from the initial

state. In general, φ can be a conjunction of conditions at different time steps as env and sys
progress. The advantage of our approach is that it can produce φ such that we can synthesize
an auto-controller that is guaranteed to satisfy the specification if φ is not violated, together
with an advisory controller that prompts the driver (at least) T (T = 1 in this case) time
steps ahead of a potential failure when φ is violated.

9.5.2 Gridworld Hallway

1 2 3 4 5

8 9 10 11 12 13

6 7

14

I G
G

E

Figure 9.4: Gridworld hallway example.

This example is a modified version of the grid world hallway example used in [LMB12].
The controllable vehicle (car A) starts from position I as shown in Figure 9.4. We use pA
the position of car A. We would like to guarantee that car A eventually visits the two goal
states G.

F (pA = 2) ∧ F (pA = 14)

We restrict car A to only move in one direction to the right side of the grid, so as it approaches
to the right, it won’t be able to back up. For example if car A is at position 4, it cannot
backup to position 3:

G ((pA = 4)→ X (pA = 4 ∨ pA = 5 ∨ pA = 11))

The uncontrollable vehicle (carB) can only move in the shaded area (regions {4, 5, 6, 11, 12, 13})
and must leave position E infinitely often. We use pB to denote position of car B.

G (F (pB 6= 4))

There is also a fixed obstacle at position 10.
We list the details of the LTL specifications below.

Input Variables:

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 106

1. Position of car B: pB ∈ {4, 5, 6, 11, 12, 13}.

2. Position of the obstacle O: pO ∈ {1 . . . 14}.

Output Variables:

1. Position of car A: pA ∈ {1 . . . 14}.

Environment Assumptions:

1. The obstacle O is at a fixed position.

G (pO = 10)

2. Car B can only move at most one square in each direction in the shaded area. For
example, starting at 12, car B can move to 11, 13 or 5, or stay at 12.

G
(
(pA = 12→ X (pA = 12 ∨ pA = 11 ∨ pA = 13 ∨ pA = 5)

)
3. Car B must leave position E infinitely often.

G (F (pB 6= 4))

System Guarantees:

1. Initially, car A is in region 1.
pA = 1

2. Car A must eventually visit the goal states.

F (pA = 2) ∧ F (pA = 14)

3. Car A must not collide with car B.

G (pA 6= pB)

4. Car A must not collide with the obstacle O.

G (pA 6= pO)

5. Car A can move at most one squares to the right side of the grid at each time step, or
move one square up or down. For example, given that car A is at 5, it can move to 6,
12, or stay at 5.

G
(
(pA = 5→ X (pA = 5 ∨ pA = 6 ∨ pA = 12)

)
The controllable vehicle cannot synthesize a controller for this example as it has to pass

the shaded region to visit its goal at position 14, and the uncontrollable vehicle can mirror
the controllable vehicle’s movement. For instance, if car A moves into the shaded area at
position 4, car B already located at 5 can block its path by staying at 5. If car A moves
to 11, then car B can move to 12. The different scenarios in φ are depicted in Figure 9.5.
Notice that car B can stay in 6 to block car A’s path later as car A moves closer to the goal.

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 107

Figure 9.5: Illustration of φ: arrows indicate all possible movements of car B from the
current position to the next position.

9.6 Additional Related Work

In recent years, there has been an increasing interest in human-in-the-loop systems in the
control systems community. The current human-in-the-loop control paradigm studies and
learns human models and takes action whenever it concludes that the human user is not
capable of controlling the system. Anderson et al. [APPI10] study obstacle avoidance and
lane keeping for semi-autonomous cars, which is a common example of human-in-the-loop
control. The control input of the semi-autonomous vehicle is a weighted sum of control
input of driver and control input of the autonomous system with weights representing threat
functions that only depend on side-slip angles of the vehicle. The autonomous control in
this work is a model predictive control which is an iterative, finite-horizon optimization of
the plant model. Our approach, unlike this one, seeks to provide correctness guarantees in
the form of temporal logic properties.

Verma et al. [VDV11, VDV12] consider safety and collision avoidance in multi-vehicle
systems, where a human driven vehicle is not communicating with a fully autonomous system.
In this scenario, the autonomous vehicle finds the least restrictive safe control action by
modeling the human driven car as a hidden mode hybrid system (HMHS) and estimating
the state of the human driver. The control of the autonomous vehicle is less conservative
and least restrictive since this model does not assume an adversarial human driven car. This
approach finds a safe control for a fully autonomous vehicle in a multi-vehicle situation with
non-communicating human driven cars, which is a different situation from the HuIL control
in this work.

Vasudevan et al. [VSG+12] focus on learning and predicting a human model based on
prior observations (past states of the driver, past vehicle trajectories and past generated
optimal vehicle trajectories) and current state of the environment. The learned human
model is then used in a “vehicle intervention function”. Based on the measured level of
threat, the controller intervenes and overwrites the driver’s input. However, we believe that
this paradigm, where the autonomous controller is capable of overriding the human inputs
is unsafe in scenarios where the environment is not fully modeled. For that reason, we
propose a different paradigm where we allow the human to take control of the vehicle if the

CHAPTER 9. HUMAN-IN-THE-LOOP CONTROLLER SYNTHESIS 108

autonomous system predicts failure, and for the autonomous vehicle to request back control
when it is certain of safe operation.

9.7 Summary

In this chapter, we propose a formalism of human-in-the-loop controllers. These controllers
are motivated by the need to safely and soundly integrate human operators in the ongoing
drive towards automation, especially in the automotive industry. We study a setting where
such controllers are automatically synthesize from their temporal logic specifications. We
show that, by extending the assumption mining algorithm described in Chapter 8, we can
obtain these controllers in a correct-by-construction manner.

109

Chapter 10

Mining Assumptions from Natural
Language Specifications

Natural language will always remain the basic interpretation of, and reservoir
for, the development of the artificial formalized languages of science.

– Doris Bradbury

The lingua franca of formal methods is logic, which provides an unambiguous semantics
to the (formal) language describing a design, and the means to reason with it. However,
most people who experience or interact with computers today are “end-users”. “End-users”
are not expert logicians, and their way of describing their usage to others is through natural
language. In many cases, even domain experts, such as circuit designers, resort to natural
language as the main vehicle for communicating their mental model of a design to consumers
of such model, as evidenced by the large proportion of design documents still written in
natural language today. Hence, formal methods encapsulated in NLP layers can bring greater
accessibility to the engineering discipline, especially at the requirement stage, by liberating
“end-users” from the burden of learning formal logic. Figure 10.1 illustrates our vision,
where a non-expert user of formal analysis can still use it to reason about problems of
natural language requirement.

In this chapter, we propose that assumption mining, in the context of requirement engi-
neering, can be useful to “end-users” when encapsulated inside a NLP layer. We first review
related work in Section 10.1. We then describe our natural language to LTL conversion
workflow in Section 10.2. In Section 10.3, we present a detailed case study on applying our
approach to a set of requirements taken from a publicly available document released by the
Federal Aviation Administration. Finally, we conclude in Section 10.4.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 110

Figure 10.1: Non-expert user uses formal methods to analyze problems in a design document,
facilitated by a NLP layer.

10.1 Related Work in NLP

There is a rich body of work related to requirement engineering. In this section, we focus on
efforts that aim that connecting (semi-)natural language input to formal methods.

Kress-Gazit et al. [KGFP08], Smith et al. [SACO02] and Shimizu et al. [Shi02] propose
grammars for representing requirements in controlled natural language. However, these
grammars are very application-specific and rather restrictive. In addition, they can pose
steep learning curves for new users. In this work, we try to tackle a much wider spectrum
of requirements written in natural language directly.

Zowghi et al. [ZGM01], Gervasi et al. [GZ05], Scott et al. [SCK04], and Xiao et al. [XPTX12]
propose to process constrained natural language text using NLP tools, such as CFG and
Cico, and perform various kinds of checks, such as consistency and access control, on the
requirements. Our work is similar in spirit. We combine a general NLP front-end with
domain-specific ontology to generate meaningful temporal logic formulas. We also extend
beyond consistency (satisfiability and realizability) checks by finding recommended fixes in
the form of additional environment assumptions.

Behavior-driven development is a framework where natural language specifications are
used during the software testing phase. Drechsler et al. [DDG+12], Soeken et al. [SWD12],
and Harris [Har12] show different ways of translating high-level natural language require-
ments to tests in this framework, which can then be used by tools like Cucumber [cuc] or
RSpec [rsp]. Our work focus on the problem of specification, which can also occur early
in a design cycle, and uses NLP to mediate the interaction between formal analysis (e.g.,
assumption mining) and non-expert users of these methods.

More recently, Keszocze et al. [KSKD13] proposed an Eclipse-based IDE, called Lips, that
leveraged state-of-the-art NLP algorithms to extract structural models as Unified Modeling

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 111

Language diagrams and specifications as Object Constraint Language expressions. While
our NL to formal specification translation is similar in spirit, our target specification (i.e.
LTL) is different. In addition, we use this translation to further demonstrate the usefulness
of assumption mining when applied to natural language requirements.

10.2 Natural Language to LTL Formula

In this section, we give an overview of our technique for translating an English requirement
to its corresponding LTL formula. The techniques presented here are based on the work in
[GEL+13]. The details of the NLP techniques are outside the scope of this thesis, which
is really about mining specifications (specifically, environment assumptions in this chapter).
For ease of understanding, we describe the key steps below.

Our choice of LTL is motivated, in part, by the increasing adoption of Accellera’s Property
Specification Language (PSL) for specifying assertions about hardware designs. A thorough
introduction to PSL can be found in [EF06]. In particular, PSL is based on LTL but also
extends it to cover the full expressiveness of ω-regular languages. We also observe that
design documents, especially those for hardware designs, are mostly written in stylized or
semi-natural languages, which often look akin to LTL formulas.

Mapping from a natural language sentence to a temporal logic formula is not trivial. We
highlight the two main challenges below.

• Syntactical difference: Natural language requirements, especially those used in the En-
gineering discipline, are arguably more structured, say than a sentence that would
appear on the Wall Street Journal. However, these are still sentences governed by a
much richer and more complicated syntax than that of LTL. Hence, the reconcilia-
tion of the huge difference in syntax cannot be addressed simply by a domain-specific
front-end.

• Association of semantics: In addition to handling sentences with much less structure,
we need to map them to LTL formulas in a way that the semantics are correctly
preserved. Further, this translation should be done with minimal assistance from the
user. Hence, this entails recognizing named-entities (variables and their values), and
recognizing Boolean as well as temporal relations.

Figure 10.2 illustrates our step-by-step solution to the challenges mentioned above.

10.2.1 Preprocessor

Given the following requirement in English,

If the Regulator Mode equals INIT, the Heat Control shall be set to Off. (10.1)

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 112

Figure 10.2: Workflow: NL → LTL → formal analysis.

a preprocessor is first used to identify n-grams that correspond to entities specific to
the domain. In this example, “Regulator Mode”, “INIT”, “Heat Control” and “Off” are
instances of these, called terms. The sentence is then rewritten with each of these n-grams
converted to a single word. For example, “Regulator Mode” will be replaced by “Regula-
tor Mode”. Below is the modified sentence.

If the Regulator Mode equals INIT, the Heat Control shall be set to Off. (10.2)

This simple step helps the Stanford Typed Dependency Parser (STDP) [dMMM06], which
we will use next, to reliably produce a correct parsing of grammatical relations between words
in the requirement sentence.

10.2.2 Stanford Type Dependency Parser (STDP)

The syntactic parser in STDP parses the requirements text to obtain unique entities called
mentions, while the dependency parser generates grammatical relations between the men-
tions. The output of STDP is a set of dependencies in the form of type dependency (TD)
triplets each representing grammatical relations between two mentions. In this thesis, we

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 113

use grammatical relations and type dependencies (or simply, dependencies) interchangeably.
Specifically, the TD triplets have the form:

〈name of the relation〉(〈governor〉, 〈dependent〉)

For example, “prep to(set-11, Off-13)” is one such triplet indicating that “set” is related
to “Off” via the prepositional connective “to”. The number suffices in the triplet indicate
the positions of the mentions in the sentence. Figure 10.3 shows the dependencies generated
for Requirement 10.2 in the form of a directed graph, with “set-11” being the root of the
graph.

Figure 10.3: Dependencies generated using STDP.

10.2.3 Semantic Processor

Our semantic processor uses the output from STDP and systematically applies a set of type
rules to the mentions and dependencies to associate specific meanings to them. Each type
rule specifies a mapping from a set of dependencies (grammatical relations between mentions)
to a set of predicates with built-in “semantics”.

For example, the following type rule simply maps a grammatical relations over the men-
tion ?g to a unary predicate specifying that the mention is a unique term. For simplicity,
we omit the curly brackets “{” and “}” and separate the predicates in the same set by “,”
on both sides of “→”.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 114

det(?g,the) → unique(?g)1

Note that the here refers to an actual mention of the word “the” in the sentence. Applying
this rule to the dependencies generated for Requirement 10.2 produces two unary predicates
unique(Heat Control-8) and unique(Regulator Mode-3).

A slightly more complicated example is the following type rule that maps two grammatical
relations advcl(?g,?d) and mark(?d,if) for any two mentions ?g and ?d to the binary predicate
impliedBy(?g,?d).

advcl(?g,?d), mark(?d,if) → impliedBy(?g,?d)2

Note that here the predicate impliedBy(?g,?d) means ?d logically implies ?g. Applying
the above rule to Requirement 10.2 we obtain impliedBy(set-11,equals-4).

The type rules we use for Requirement 10.2 and the result of applying them to the
dependencies generated by STDP are listed below.

• det(?g,the) → unique(?g):
unique(Regulator Mode-3)

• det(?g,the) → unique(?g):
unique(Heat Control-8)

• nsubj(?g,?d)3 → ARG1(?g,?d)4, unique(?d):
ARG1(equals-4, Regulator Mode-3), unique(Regulator Mode-3)

• dobj(?g,?d)5 → ARG2(?g,?d)6, unique(?d):
ARG2(equals-4, INIT-5), unique(INIT-5)

• prep to(?g, ?d) → ARG2(?g,?d), unique(?d):
ARG2(set-11, Off-13), unique(Off-13)

• nsubjpass(?g, ?d)7 → ARG1(?g,?d), unique(?d):
ARG1(set-11, Heat Control-8), unique(Heat Control-8)

• advcl(?g,?d), mark(?d,if) → impliedBy(?g,?d):
impliedBy(set-11, equals-4)

1det stands for determiner, and unique is a unary predicate describing that its argument is a unique
term.

2advcl stands for adverbial clause modifier and mark stands for marker.
3nsubj stands for nominal subject.
4ARG1 is a predicate stating that the first argument of ?g is ?d.
5dobj stands for direct object.
6ARG2 is a predicate stating that the second argument of ?g is ?d.
7nsubjpass stands for passive nominal subject.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 115

Remark 10.1. In essence, the type rules are used to extract domain-specific terms (e.g.,
“Regulator Mode”) and domain-independent phrases that are indicative of simple mathemat-
ical expressions (e.g., “equals”) as well as logical and temporal relations (e.g., “If”). They
also help to filter out natural language artifacts (e.g., “shall”) that are not important to
expressing the natural language requirement in LTL.

Figure 10.4 shows the resulting predicate graph after applying the type rules to type
dependency graph shown in Figure 10.3. Similar to the type dependency graph, the edges
represent binary predicates. The unary predicate unique is indicated by boxes with blue
borders. Additionally, mentions containing indicative words such as “equals” and “set”
(shown in red in Figure 10.4) are associated with predefined predicates equal and set.

Figure 10.4: Predicate graph after the application of type rules.

Remark 10.2. The set of type rules we use in this work in by no means complete. However,
this decomposition of syntax parsing and semantic association offers the flexibility of mapping
a natural language sentence to potentially different target logics. It also allows a user to use a
general-purpose parser without restricting herself to a grammar that is domain or application-
specific.

10.2.4 Formula Generation

Syntactic translation. We use a set of expression translation rules to translate the gener-
ated predicates and mentions to an LTL formula. The expression rules trs are categorized
into four types of rules – trt for temporal operators, trl for logical operators, trm for simple
arithmetic (e.g., equality) expressions and tru for terms. We use e(X) to denote the ex-
pression associated with mention X, which we will repeatedly rewrite during the translation
process. If mention X is associated with a unique term, i.e. unique(X), its expression is

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 116

Table 10.1: Formula Translation Rules

Predicate Expression Translation

unique(X) tru(e(X)) : e(X)
set(X) ∧ ARG1(X, Y) ∧ ARG2(X, Z) trm(e(X)) : tru(e(Y)) = tru(e(Z))

equal(X) ∧ ARG1(X, Y) ∧ ARG2(X, Z) trm(e(X)) : tru(e(Y)) = tru(e(Z))
less(X) ∧ ARG1(X, Y) ∧ ARG2(X, Z) trm(e(X)) : tru(e(Y)) < tru(e(Z))

greater(X) ∧ ARG1(X, Y) ∧ ARG2(X, Z) trm(e(X)) : tru(e(Y)) > tru(e(Z))
impliedBy(X, Y) trl(e(X)) : trm(e(Y))→ trm(e(X))

and(X, Y) trl(e(X)) : trm(e(X)) ∧ trl(e(Y))8

or(X, Y) trl(e(X)) : trm(e(X)) ∨ trl(e(Y))9

not(X) trl(e(X)) : ¬trm(e(X))

simply the English word in the mention, e.g., e(Heat Control-8) = Heat Control. Given a
graph representing the predicates over the mentions, we recursively apply the translation
rules starting from the root (e.g., set-11 in Figure 10.4). When multiple rules are applicable
to the same mention, they are applied in the order of trl followed by trt, trm and then tru.
The translation rules used for Requirement 10.2 are given in Table 10.1.

The resulting LTL formula, translated from Requirement 10.2, is shown below.

G
(
(Regulator Mode = INIT)→ (Heat Control = Off)

)
10 (10.3)

Variables and values. An LTL formula is defined over atomic propositions. Hence, we
need to further distinguish variables and values among terms. This procedure involves two
phases. First, the left argument of an arithmetic expression is considered as a variable and
the right argument is considered as a possible value of that variable, unless it has already
been categorized as another variable. Second, the domain of a variable (of enumerated type)
is computed by aggregating all the possible values of that variable across all the sentences.
In this thesis, we assume each variable either has an enumerated type containing a finite
number of elements or has an integer type.
Additional type information. Observe that we do not have predicates and translation
rules corresponding to the temporal operator X. Currently, we rely on additional user input
to generate this information. We elaborate this below.

The semantics of LTL are usually interpreted over Kripke structures [Kri63], which are
labeled transition systems commonly used in model checking [CGP00]. However, transitions
may not be described explicitly in a natural language requirement. Consider the following
sentence.

If the Regulator Status equals True, the Regulator Mode shall be set to NORMAL.
(10.4)

8If trl(e(Y)) cannot be applied, trm(e(Y)) is attempted next.
9 Similar to the translation rule above, if trl(e(Y)) cannot be applied, trm(e(Y)) is attempted next.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 117

Suppose that “Regulator Mode” is a state variable in the transition system and “Regu-
lator Status” is an input, then this sentence is in fact describing a guarded transition and
should be more appropriately translated to

G
(
(Regulator Status = true)→ X (Regulator Mode = NORMAL)

)
(10.5)

Hence, we require the user to provide additional type information for each of the variables
to resolve this ambiguity. A variable can either be an input, a state and output, or a pure
output. We intentionally enforce internal variables (state or non-state) to be made output so
that we can check realizability of the resulting LTL formula.

10.3 Case Study

In this section, we describe a focused study on requirements from an Isolette design to further
showcase the usefulness of assumption mining when applied to NL sentences.

An Isolette is an incubator for infants that provides controlled temperature, humidity and
oxygen. Our example is an Isolette Thermostat that regulates the air temperature inside an
Isolette such that it is maintained within a desired range. The Thermostat is composed of two
interacting modules – the “Regulate Temperature” module and the “Monitor Temperature”
module. We focus on the “Regulate Temperature” module, which receives input from the
“Operator Interface” and the “Monitor Temperature” module, and produces output to the
“Heat Source”. The requirements are taken from Appendix A of the “Requirement Engineer-
ing Management Handbook” released by the Federal Aviation Administration, which was
intended to serve as an example of the “best practices” advocated in this handbook [LM09].
The English sentences describing the requirements, as well as their sources in the document,
are tabularized in Table 10.2.

As described in Section 10.2, we require the user to provide additional type information
for each variable. For this FAA-Isolette example, we assume the following type information
is given.

• Input:

– Upper Desired Temperature Status

– Lower Desired Temperature Status

– Regulator Init Timeout

– Current Temperature

11 Due to the ambiguity of “is” and STDP having difficulty parsing it, we preprocessed the sentences by
replacing “is” by “equals”.

12Requirement 10 and 11 were written based on the definition in Table A-10 and before any formal analysis
was conducted.

13Requirement 11-15 are written based on Figure A-4 in the document and and before any formal analysis
was conducted.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 118

Table 10.2: Isolette requirements in English

Requirement in English11 Source

1 If the Regulator Mode equals INIT, the Output Regulator
Status shall be set to Init.

REQ-MRI-1

2 If the Regulator Mode equals NORMAL, the Output Regula-
tor Status shall be set to On.

REQ-MRI-2

3 If the Regulator Mode equals FAILED, the Output Regulator
Status shall be set to Failed.

REQ-MRI-3

4 If the Status attribute of the Lower Desired Temperature or
the Upper Desired Temperature equals Invalid, the Regulator
Interface Failure shall be set to True.

REQ-MRI-6

5 If the Status attribute of the Lower Desired Temperature and
the Upper Desired Temperature equals Valid, the Regulator
Interface Failure shall be set to False.

REQ-MRI-7

6 If the Regulator Mode equals INIT, the Heat Control shall be
set to Off.

REQ-MHS-1

7 If the Regulator Mode equals NORMAL, and the Current
Temperature is less than the Lower Desired Temperature, the
Heat Control shall be set to Control On.

REQ-MHS-2

8 If the Regulator Mode equals NORMAL, and the Current
Temperature is greater than the Upper Desired Temperature,
the Heat Control shall be set to Control Off.

REQ-MHS-3

9 If the Regulator Mode equals FAILED, the Heat Control shall
be set to Control Off.

REQ-MHS-5

10 If the Regulator Interface Failure is set to False, and the Reg-
ulator Internal Failure is set to False, and the Status attribute
of the Current Temperature is set to Valid, the Regulator Sta-
tus shall be set to True.

Table A-1012

11 If the Regulator Interface Failure is set to True or the Reg-
ulator Internal Failure is set to True or the Status attribute
of the Current Temperature is not set to Valid, the Regulator
Status shall be set to False.

Table A-10

12 The Regulator Mode shall be initialized to INIT. Req MRM 113

13 If the Regulator Mode equals INIT and the Regulator Status
equals True, the Regulator Mode shall be set to NORMAL.

Req MRM 2

14 If the Regulator Mode is set to NORMAL and the Regulator
Status is set to False, the Regulator Mode shall be set to
FAILED.

Req MRM 3

15 If the Regulator Mode is set to INIT and the Regulator Init
Timeout is set to True, the Regulator Mode shall be set to
FAILED.

Req MRM 4

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 119

– Lower Desired Temperature

– Upper Desired Temperature

– Regulator Internal Failure

– Current Temperature Status

– Regulator Interface Failure

– Regulator Status

• State and output: Regulator Mode

• Pure output: Output Regulator Status, Heat Control

Using this information, we are now ready to generate LTL [GR(1)] formulas. The gener-
ated LTL formulas corresponding to the English sentences are listed below.

1. G
(
(Regulator Mode = INIT)→ (Output Regulator Status = Init)

)
2. G

(
(Regulator Mode = NORMAL)→ (Output Regulator Status = On)

)
3. G

(
(Regulator Mode = FAILED)→ (Output Regulator Status = Failed)

)
4. G

(
(Upper Desired Temperature Status = Invalid ∨ Lower Desired Temperature

Status = Invalid)→ (Regulator Interface Failure = true)
)

5. G
(
(Upper Desired Temperature Status = Valid ∧ Lower Desired Temperature Status

= Valid)→ (Regulator Interface Failure = false)
)

6. G
(
(Regulator Mode = INIT)→ (Heat Control = Control Off)

)
7. G

(
(Regulator Mode = NORMAL ∧ Current Temperature < Lower Desired Temperature =

true)→ (Heat Control = Control On)
)

8. G
(
(Regulator Mode = NORMAL ∧ Current Temperature > Upper Desired Temperature =

true)→ (Heat Control = Control Off)
)

9. G
(
(Regulator Mode = FAILED)→ (Heat Control = Control Off)

)
10. G

(
(Regulator Interface Failure = false ∧ Regulator Internal Failure = false ∧

Current Temperature Status = Valid)→ (Regulator Status = true)
)

11. G
(
(Regulator Interface Failure = true ∨ Regulator Internal Failure = true ∨

¬(Current Temperature Status = Valid))→ (Regulator Status = false)
)

12. Regulator Mode = INIT

13. G
(
(Regulator Mode = INIT ∧ Regulator Status = true) → X (Regulator Mode =

NORMAL)
)

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 120

14. G
(
(Regulator Mode = NORMAL ∧ Regulator Status = false)→ X (Regulator Mode

= FAILED)
)

15. G
(
(Regulator Mode = INIT ∧ Regulator Init Timeout = true)→ X (Regulator Mode

= FAILED)
)

As described in Section 10.2, the domain of each variable is gathered and computed
across all sentences. For example, the variable Regulator Mode has taken one of the three
values INIT, NORMAL or FAILED. Thus, Regulator Mode is given an enumerated type
with elements INIT, NORMAL and FAILED. This is useful when we need to use a Boolean
encoding of the domains in the formal analysis stage14.
Assumption mining: In general, both satisfiability and realizability can be used to reason
about the consistency of a set of LTL formulas. In this case, we verified that the conjunction
of the generated formulas are indeed satisfiable. The next step is to check if the requirement
is realizable, i.e. there exists an implementation (e.g., Mealy transducer) that satisfies the
generated formulas.

Observe that each of the generated formulas complies with the GR(1) syntax. Hence,
given the input and output type information of the variables, we can group them into
ψenvi , ψenvt , ψenvf , ψsysi , ψsyst , ψsysf and check if the formula ψ = ψenv → ψsys is realizable.
Specifically, Formula 4, 5, 10, 11 are environment assumptions (ψenv) and the rest are system
guarantees (ψsys).

Using our counterstrategy-guided approach described in Chapter 8, we can also find
additional assumptions as recommended fixes to the specification in case it is not realizable.
In the FAA-Isolette example, ψ is not realizable and the following assumption φ is produced
by our algorithm, such that φ ∧ ψenv → ψsys is realizable.

φ := G ¬(Regulator Status = true ∧ Regulator Init Timeout = true) (10.6)

To better understand why this assumption is necessary for realizability, observe that
there is in fact unresolved nondeterminism between Requirement 13 and Requirement 15, as
illustrated in Figure 10.5.

Specifically, when both Regulator Status = true and Regulator Init Timeout = true,
it is not clear what the intended transition of Regulator Mode should be. The mined as-
sumption, on the other hand, puts a constraint on the environment by prohibiting this input
condition. While this assumption is not necessarily true in the Isolette design environment,
it clearly pinpoints the source of the problem. The user can either decide if the assumption is
valid or use it as a hint to modify the existing requirements. We also envision that presenting
an English translation of φ to the user can help ease the difficulty of understanding LTL
formulas. An example is shown below, with words corresponding to temporal and Boolean

14For this example, Boolean encoding was performed manually on the generated LTL formulas so that
they could be used directly by a synthesis tool like RATSY. We note that further automation of this process
requires predicate abstraction for equality and inequality constraints over integers.

CHAPTER 10. MINING ASSUMPTIONS FROM NATURAL LANGUAGE
SPECIFICATIONS 121

Figure 10.5: Transition of Regulator Mode based on Requirement 13 and 15.

operators highlighted in Italic.

Assumption: It is always not the case that Regulator Status equals true and Regulator Init
Timeout equals true at the same time.

Nondeterminism is not the only culprit of unrealizability. In general, the counterstrategy
explains why a specification is not realizable. However, the counterstrategy graph can be
too large to comprehend by a user visually. In addition, it is difficult to expect a non-expert
user of formal methods to first formalize the specification and then reason with it using
the counterstrategy. Thus, we propose to embed assumption mining inside a NLP layer to
broaden the applicability of this analysis.

10.4 Summary

We have presented a workflow for automatically converting natural language requirements
to their corresponding LTL formulas. This workflow allows us to lift formal requirement
analysis, particular assumption mining, to the natural language level. Our case study on
the FAA-Isolette example shows that our technique is useful for not only identifying bugs
but also recommending fixes at the requirement stage of a design. In the future, we aim to
extensively evaluate and improve the robustness of the NLP part of the workflow.

122

Chapter 11

Conclusion and Future Work

This chapter summarizes the main contributions of this thesis and suggests avenues for future
work.

11.1 Closing Remarks

Specification is a critical step in ensuring the correctness of a design. However, the process of
writing a good formal specification remains largely a manual and error-prone process. This
thesis proposes to mitigate this problem by mining likely specifications of a design given
evidence on how the design should or should not behave. In prior work, these evidences are
often treated as the end products of automation. In this thesis, the frontier of automation is
pushed further by employing the proposed specification mining techniques which summarize
the evidences intelligently and give recommendations to the users. The proposed techniques
are supported by novel formalisms of specification (and specification mining), such as the
generalization of the template-based approach presented in Section 2.4 and the sparse-coding
approach presented in Chapter 5. For each of these formalisms, we present algorithms and
optimizations that are tailored to the formalism and the application domain. For instance,
the counterstrategy-guided assumption mining approach described in Chapter 8 makes novel
use of the information produced when a synthesis process fails, and enables a systematic
framework that closes the loop between under-specification by a user and synthesis from
specification by a mechanized tool. Another example is the synthesis of human-in-the-loop
controllers, presented in Chapter 9, which adapts the counterstrategy-guided algorithm to
handle domain-specific constraints (e.g., human response time). In addition to studying
formalisms and algorithms, this thesis also makes an endeavor on broadening the scope of
specification mining. In Chapter 6, we propose a crowdsourced specification mining game
called CrowdMine, which gamifies the process of mining behavioral patterns in subtraces in
a way that non-experts can collectively contribute to solving the problem. In Chapter 10
of the thesis, we lift the proposed technique of mining environment assumptions to the
direct treatment of requirements written in natural language, by suitably incorporating NLP

CHAPTER 11. CONCLUSION AND FUTURE WORK 123

techniques. Experimental results demonstrate the practical utility of the proposed techniques
to a wide variety of applications, ranging from bug localization in hardware to the synthesis
of controllers in semi-autonomous cars.

We envisage a new paradigm where specification mining becomes an integral part of a
verification or synthesis flow. In this new paradigm, specification mining is used to bridge
multiple gaps between the labor-intensive tasks such as specification, environment modeling
and error localization and the largely automated procedures such as model checking and
realizability checking. Moreover, this thesis postulate that, by leveraging human inputs in an
intelligent way, the process of specification mining not only can be mediated by quick expert
inspection but also can be driven by non-expert inputs, with the support of technologies
such as natural language processing or crowdsourced games.

11.2 Future Work

In this section, we discuss potential avenues for future work.

11.2.1 Combining Sparse Coding and Automata-Based
Specification Mining

The sparse-coding approach, described in Chapter 5, can be viewed as a technique that
extracts bounded temporal properties. The drawback, however, is that it becomes inefficient
as the window size becomes large. The automata-based approach, described in, Chapter 4,
on the other hand, can mine simple temporal properties across a large span of cycles very
quickly. Its drawback though lies in the fact that memory requirement of the algorithm
grows geometrically with the size of the template alphabet. While the post-processing step
described in Section 4.3 aims to mitigate this problem by merging patterns that contain
events always occurring at the same time, it cannot handle complex events that span a small
time window, e.g., an event comprising two smaller events always occurring in sequence.

The complementary strengths and weaknesses of the two approaches motivate a combined
technique by executing the two approaches in stages. First, the sparse-coding approach is
used to compute a set of bases, for some small numbers of p (window size). These basis
subtraces then form the constituent events for which the automata-based approach will
operate on. The result is then a set of likely temporal properties over these composite
events (basis subtraces). We hypothesize that this combination can be useful in finding
more complex patterns and interactions and we plan to investigate it further in future work.

11.2.2 Compositional Analysis

Compositional analysis is the only way to scale both verification and synthesis to the ever-
increasing complexity of designs today. One central component in compositional analysis
is interface, which specifies the inputs and outputs of each component and how any two

CHAPTER 11. CONCLUSION AND FUTURE WORK 124

components may interact with each other. Contracts, which are pairs of properties repre-
senting the assumptions on the environment and guarantees that a component should fulfill
under these assumptions, are often used in verification, such as the assume-guarantee rule
in hardware verification [Mcm99], and more recently synthesis of analog circuits [NSVSP12].
We envision our specification mining technique to be applicable to both of these domains,
in a setting where the contracts are specified as temporal properties.

Assumption Mining for Verification

Modular verification, which is the proposition that one can verify individual components of
a design in isolation, and then as a whole, also reason about the end-to-end properties of
the design, is one of the holy-grails of verification. The key challenge, even when interfaces
of the components are given, lies in finding the contracts, and particularly, the environmen-
tal assumptions. The result of an missing assumption on the environment often leads to
spurious counterexamples, and in turn waste of efforts in trying to identify and fix false
bugs. In fact, it is one of the main factors that hinders the adoption of formal verification in
large-scale industrial settings. Recent efforts, such as automating assumption generation via
learning [CGP03, GMF] and finding correlation between real counterexamples and mined
assumptions [MBD12], have been made to mitigate this problem. Our suite of specification
mining techniques further strengthens this portfolio. In particular, our counterstrategy-
guided approach shares much in spirit with the work by Mitra et al. [MBD12] which mines
simple patterns from counterexamples. We plan to explore this direction further in future
work.

Contract-Based Synthesis

Our counterstrategy-guided assumption mining approach produces assumptions necessary
for synthesis. Hence, we hypothesize that it can also be leveraged in an iterative fashion for
synthesizing compositional designs. Consider two interacting components M1 and M2, each
specified with contracts (A1, G1) and (A2, G2) respectively, and the contracts are given as
GR(1) specifications. We want to synthesize M1 and M2 automatically from their contracts.
Assume that Ai comes directly from Gj for i 6= j, and for the sake of argument, we start with
both A1 and A2 as true. This means we only know what each component is supposed to
guarantee, but not what assumptions on their inputs are sufficient to ensure those guarantees.
In the context of synthesis from temporal logic, the specifications A1 → G1 and A2 → G2

are often not realizable because lack of constraint on the component’s environment (missing
assumptions).

In Chapter 8, we describe a technique for computing an assumption φ such that (φ∧A1)→
G1) is realizable. In the compositional setting, φ is also added to the guarantee G2 of M2.
If A2 → (G2 ∧φ) is realizable, then we are done. If not, we can iterate, but this time finding
an assumption for M2. In each iteration, we are essentially finding a refinement of one of the
contracts. The iteration goes on until both contract are realizable, and at that point, we can

CHAPTER 11. CONCLUSION AND FUTURE WORK 125

synthesize M1 and M2. This style of compositional synthesis, based on assume-guarantee
contracts, is a subject of future work.

11.2.3 Improving Sparse Coding

We plan to improve our sparse-coding inspired approach for specification mining on multiple
fronts. First, the current interpretation of a subtrace as superimposition of multiple basis
subtraces may not be fitting for all systems. One alternative is to consider the full algebra
over the Boolean ring (instead of the semi-ring in our case). Second, solving the Boolean
matrix factorization problem and its sparse variants can be computationally expensive. In
this context, it would be interesting to use slightly different definitions of a basis (for exam-
ple, using the field of rationals rather than the semi-ring we consider) so that the problem
of computing a sparse basis is polynomial-time solvable. Lastly, the ideas introduced in
this dissertation can be extended beyond digital circuits to software, distributed systems,
analog/mixed-signal circuits, and other domains, providing many interesting directions for
future work.

11.2.4 Other Application Domains

Recently, Jin et al. [JDDS13] proposed to mine specifications in the form of Parametric Signal
Temporal Logic (STL) to capture requirements of closed-loop control systems. This work is
also an instance of template-based specification mining, where a specification template is now
is STL formula with concrete signal or time values replaced by parameters. The advantage
of this logic formalism is that it can capture real-valued and time-varying behaviors. We
envision that the techniques proposed in this dissertation are also applicable to their setting.
For example, the mined STL specifications may be used to diagnose bugs of a control system
in a similar way as described in Section 4.4. In the future, we plan to investigate other
application domains, such as distributed systems, cyber-physical systems, analog circuits
and software programs, where the lack of good specifications and the difficulty of localizing
bugs are also prevalent.

126

Bibliography

[AAC+04] Gabriela Alexe, Sorin Alexe, Yves Crama, Stephan Foldes, Peter L. Hammer,
and Bruno Simeone. Consensus algorithms for the generation of all maximal
bicliques. Discrete Applied Mathematics, 145:11–21, December 2004.

[ABL02] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL’02), pages 4–16. ACM, 2002.

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message
sequence charts. In Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE’00), pages 304–313. ACM, 2000.

[AKB12] Rawan Abdel-Khalek and Valeria Bertacco. Functional post-silicon diagnosis
and debug for networks-on-chip. In Proceedings of the 30th International Con-
ference on Computer-Aided Design (ICCAD’12), pages 557–563, 2012.

[AKT+06] Roy Armoni, Dmitry Korchemny, Andreas Tiemeyer, Moshe Y. Vardi, and Yael
Zbar. Deterministic dynamic monitors for linear-time assertions. In Proceed-
ings of International ICSC Symposium on Multi-Agents and Mobile Agents in
Virtual Organizations and E-Commerce (MAMA’2006), pages 1–20. Springer,
2006.

[ALT04] Rajeev Alur and Salvatore La Torre. Deterministic generators and games for
ltl fragments. ACM Transaction on Computational Logic, 5(1):1–25, January
2004.

[AMT13] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refine-
ment of gr(1) temporal logic specifications. In Proceedings of the 13th Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’13), pages 26–33,
2013.

[APPI10] Sterling J Anderson, Steven C Peters, Tom E Pilutti, and Karl Iagnemma. An
optimal-control-based framework for trajectory planning, threat assessment,
and semi-autonomous control of passenger vehicles in hazard avoidance sce-
narios. International Journal of Vehicle Autonomous Systems, 8(2):190–216,
2010.

BIBLIOGRAPHY 127

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2:117–126, 1987.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Pro-
ceedings of the 11th International Conference on Data Engineering (ICDE’95),
pages 3–14, 1995.

[AvMN05] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthe-
sis of interface specifications for java classes. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’05), pages 98–109. ACM, 2005.

[BAM03] Pradip Bose, David H. Albonesi, and Diana Marculescu. Guest editors’ intro-
duction: Powerand complexity aware design. IEEE Micro, 23(5):8–11, Septem-
ber 2003.

[BBDER97] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient de-
tection of vacuity in actl formulas. In Proceedings of the 9th International
Conference on Computer Aided Verification (CAV’97), volume 1254 of Lecture
Notes in Computer Science, pages 279–290. Springer, 1997.

[BCG+10] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert
Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. Ratsy – a
new requirements analysis tool with synthesis. In Proceedings of 32nd Computer
Aided Verification Conference (CAV’10), pages 425–429. Springer, 2010.

[BCK09] David Baneres, Jordi Cortadella, and Mike Kishinevsky. A recursive paradigm
to solve boolean relations. IEEE Transactions on Computers, 58(4):512–527,
2009.

[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and Koushik Sen. Program moni-
toring with ltl in eagle. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), 2004.

[BGJ+07a] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. Automatic hardware synthesis from specifi-
cations: A case study. In Proceedings of the Conference on Design, Automation
Test in Europe (DATE’07), pages 1–6, April 2007.

[BGJ+07b] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. Specify, compile, run: Hardware from psl.
Electronic Notes in Theoretical Computer Science, 190:3–16, November 2007.

BIBLIOGRAPHY 128

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz, Sam Owre,
Harald Rueß, John Rushby, Vlad Rusu, Hassen Säıdi, N. Shankar, Eli Singer-
man, and Ashish Tiwari. An overview of SAL. In Proceedings of the 5th NASA
Langley Formal Methods Workshop, pages 187–196, June 2000.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions
by finite-state strategies. Transactions of the American Mathematical Society,
138:295–311, 1969.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’03), pages 97–105, 2003.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transaction on Computers, 35(8):677–691, 1986.

[BSL04] Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Synthesis of open
reactive systems from scenario-based specifications. Fundamenta Informaticae,
62:139–169, February 2004.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is
np-complete. IEEE Transaction on Computers, 45(9):993–1002, 1996.

[Cap75] Michel Caplain. Finding invariant assertions for proving programs. In Pro-
ceedings of the International Conference on Reliable Software, pages 165–171.
ACM, 1975.

[CBP+11] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Ed-
ward XueJun Wu, and Dawn Song. Mace: Model-inference-assisted concolic
exploration for protocol and vulnerability discovery. In Proceedings of the 20th
USENIX Security Symposium, August 2011.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8:244–263, 1986.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2000.

[CGP03] JamiesonM. Cobleigh, Dimitra Giannakopoulou, and CorinaS. Păsăreanu.
Learning assumptions for compositional verification. In Proceedings of the 9th
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’03), volume 2619 of Lecture Notes in Computer Science, pages
331–346. Springer, 2003.

BIBLIOGRAPHY 129

[CGR+12] Chih-Hong Cheng, Michael Geisinger, Harald Ruess, Christian Buckl, and Alois
Knoll. Mgsyn: Automatic synthesis for industrial automation. In Proceedings
of the 24th Conference on Computer Aided Verification (CAV’12), volume 7358
of Lecture Notes in Computer Science, pages 658–664. Springer, 2012.

[CHJ08] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. En-
vironment assumptions for synthesis. In Proceedings of the 19th International
Conference on Concurrency Theory (CONCUR’08), pages 147–161. Springer,
2008.

[CHJR10] Krishnendu Chatterjee, Thomas Henzinger, Barbara Jobstmann, and Arjun
Radhakrishna. A solver for probabilistic games. In Proceedings of the Seven-
teenth Conference on Computer Aided Verification (CAV’10), volume 6174 of
Lecture Notes in Computer Science, pages 665–669. Springer, 2010.

[Chu57] Alonso Church. Applications of recursive arithmetic to the problem of circuit
synthesis. In Summaries of Talks Presented at the Summer Institute of Symbolic
Logic, pages 3–50. Communications Research Division, Institute for Defense
Analysis, 1957.

[Chu62] Alonso Church. Logic, arithmetic and automata. In Proceedings of the Inter-
national Congress of Mathematicians, August 1962.

[CJK07] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifica-
tions of malicious behavior. In Proceedings of the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (FSE’07), pages 5–14. ACM, 2007.

[CLR05] Marie-Christine Costa, Lucas Léocart, and Frédéric Roupin. Minimal multicut
and maximal integer multiflow: A survey. European Journal of Operational
Research, 162(1):55–69, 2005.

[CRST08] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei Tchaltsev.
Diagnostic information for realizability. In Proceedings of the 9th international
conference on Verification, model checking, and abstract interpretation (VM-
CAI’08), pages 52–67. Springer, 2008.

[csf] Crowd sourced formal verification (csfv). http://www.darpa.mil/Our_Work/

I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx.

[CT91] Luca Console and Pietro Torasso. A spectrum of logical definitions of model-
based diagnosis. Computational Intelligence, 7(3):133–141, Auguest 1991.

[cuc] Cucumber. http://cukes.info.

http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://cukes.info

BIBLIOGRAPHY 130

[CWKK09] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. Prospex: Protocol specification extraction. In Proceedings of the 30th
IEEE Symposium on Security and Privacy (SP’09), pages 110–125. IEEE, 2009.

[DB09] Andrew DeOrio and Valeria Bertacco. Human computing for EDA. In Pro-
ceedings of the 46th Design Automation Conference (DAC’09), pages 621–622,
2009.

[DDG+12] Rolf Drechsler, Melanie Diepenbeck, Daniel Große, Ulrich Kühne, Hoang M. Le,
Julia Seiter, Mathias Soeken, and Robert Wille. Completeness-driven develop-
ment. In Graph Transformations, volume 7562 of Lecture Notes in Computer
Science, pages 38–50. Springer, 2012.

[DH01] Werner Damm and David Harel. Lscs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

[dKMR92] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing
diagnoses and systems. Artificial Intelligence, 56(2-3):197–222, 1992.

[DLE03] Nii Dodoo, Lee Lin, and Michael D. Ernst. Selecting, refining, and evaluat-
ing predicates for program analysis. Technical Report MIT-LCS-TR-914, MIT
Laboratory for Computer Science, 2003.

[dMMM06] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In Proceed-
ings of the 5th International Conference on Language Resources and Evaluation
(LREC’06), pages 449–454, 2006.

[dPGH+08] Flavio M. de Paula, Marcel Gort, Alan J. Hu, Steven J. E. Wilton, and Jin
Yang. Backspace: Formal analysis for post-silicon debug. In Proceedings of the
8th International Conference on Formal Methods in Computer-Aided Design
(FMCAD’08), pages 1–10, 2008.

[ECH+01] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems
code. In Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP’01), pages 57–72. ACM, 2001.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Springer,
2006.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. Science of Computer Programming, 69(1-3):35–45,
2007.

BIBLIOGRAPHY 131

[Erl00] Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, 2000.

[Ern03] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In Pro-
ceedings of the 2003 International Workshop on Dynamic Analysis (WODA’03),
pages 24–27, May 2003.

[FD04] Gèorschwin Fey and Rolf Drechsler. Improving simulation-based verification by
means of formal methods. In Proceedings of the 2004 Conference on Asia South
Pacific Design Automation (ASP-DAC’04), pages 640–643, 2004.

[Fed95] Federal Aviation Administration (FAA). The interfaces between flight crews
and modern flight systems, 1995.

[Fro95] Véronique Froidure. Rangs des relations binaires, semigroupes de relations non
ambigues. PhD thesis, June 1995.

[GCKS06] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error expla-
nation with distance metrics. Software Tools for Technology Transfer, 8(3):229–
247, 2006.

[GEL+13] Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln, Natarajan
Shankar, and Wilfried Steiner. Automatically extracting requirements spec-
ifications from natural language. Technical Report Number SRI-CSL-13-01,
Computer Science Laboratory, SRI International, Menlo Park, CA, December
2013.

[GKL08] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff. On independent sets and
bicliques in graphs. In Graph-Theoretic Concepts in Computer Science, volume
5344 of Lecture Notes in Computer Science, pages 171–182. 2008.

[GMF] Anubhav Gupta, Kenneth L. Mcmillan, and Zhaohui Fu. Automated assump-
tion generation for compositional verification. Formal Methods in System De-
sign, 32(3):285–301.

[Gol78] E. Mark Gold. Complexity of automatic identification from given data. Infor-
mation and Control, 37:302–320, 1978.

[GS08a] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general tempo-
ral properties from dynamic traces. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE’08),
pages 339–349. ACM, 2008.

[GS08b] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifications.
In Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), pages 51–60, 2008.

BIBLIOGRAPHY 132

[GZ05] Vincenzo Gervasi and Didar Zowghi. Reasoning about inconsistencies in natural
language requirements. ACM Transaction on Software Engineering Methodol-
ogy, 14:277–330, July 2005.

[Har12] Ian G. Harris. Extracting design information from natural language specifica-
tions. In Proceedings of the 49th Annual Design Automation Conference, pages
1256–1257, 2012.

[HKSY09] Shigeki Hagihara, Yusuke Kitamura, Masaya Shimakawa, and Naoki Yonezaki.
Extracting environmental constraints to make reactive system specifications
realizable. In Proceedings of the 16th Asia-Pacific Software Engineering Con-
ference (APSEC’09), pages 61–68, December 2009.

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous ob-
servers and the verification of reactive systems. In Proccedings of the 3rd
International Conference on Algebraic Methodology and Software Technology
(AMAST’93). Springer, 1993.

[HNCC05] Sudheendra Hangal, Sridhar Narayanan, Naveen Chandra, and Sandeep
Chakravorty. Iodine: a tool to automatically infer dynamic invariants for
hardware designs. In Proceedings of the 42nd Design Automation Conference
(DAC’05), pages 775–778, 2005.

[How] Jeff Howe. Crowdsourcing: A definition. http://crowdsourcing.typepad.

com.

[HRS+00] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. An
empirical investigation of the relationship between spectra differences and re-
gression faults. Software Testing, Verification and Reliability, 10(3):171–194,
2000.

[HSV13] Samuel Hertz, David Sheridan, and Shoba Vasudevan. Mining hardware as-
sertions with guidance from static analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 32(6):952–965, 2013.

[IB06] Beth Isaksen and Valeria Bertacco. Verification through the principle of least as-
tonishment. In Proceedings of the 24th International Conference on Computer-
Aided Design (ICCAD’06), pages 860–867, 2006.

[JDDS13] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy Deshmukh, and Sanjit A. Se-
shia. Mining requirements from closed-loop control models. In Proceedings
of the International Conference on Hybrid Systems: Computation and Control
(HSCC’13), April 2013.

http://crowdsourcing.typepad.com
http://crowdsourcing.typepad.com

BIBLIOGRAPHY 133

[JGWB07] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem.
Anzu: a tool for property synthesis. In Proceedings of the 19th international
conference on Computer aided verification (CAV’07), pages 258–262. Springer,
2007.

[JLH09] Jie-Hong R. Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Interpolating functions
from large boolean relations. In Proceedings of the 27th International Confer-
ence on Computer-Aided Design (ICCAD’09), pages 779–784, 2009.

[Joh08] R. Colin Johnson. The future according to freescale: 1,000 embedded devices
per person. http://www.eetimes.com/document.asp?doc_id=1168780, June
2008.

[KCD00] Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson. To err is human:
Building a safer health system. Technical report, A report of the Committee
on Quality of Health Care in America, Institute of Medicine, Washington, DC,
2000. National Academy Press.

[KGFP07] Hadas Kress-Gazit, Georgios E. Fainekos, and Geroge J. Pappas. Where’s
waldo? sensor-based temporal logic motion planning. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation (ICRA’07),
pages 3116–3121, 2007.

[KGFP08] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating
structured english to robot controllers. Advanced Robotics, pages 1343–1359,
2008.

[KHB09] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications us-
ing simple counterstrategies. In Proceedings of the 9th International Conference
on Formal Methods in Computer-Aided Design (FMCAD’09), pages 152–159,
November 2009.

[KHB10] Robert Könighofer, Georg Hofferek, and Roderick Paul Bloem. Debugging
unrealizable specifications with model-based diagnosis. In Proceedings of the 6th
International Conference on Hardware and Software: Verification and Testing
(HVC’10), pages 29–45. Springer, 2010.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16(1963):83–94, 1963.

[KSKD13] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler. Lips: An ide for model
driven engineering based on natural language processing. In Proceedings of the
1st International Workshop on Natural Language Analysis in Software Engi-
neering (NaturaLiSE’13), pages 31–38, 2013.

http://www.eetimes.com/document.asp?doc_id=1168780

BIBLIOGRAPHY 134

[KYV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, October 2001.

[LAZJ03] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation
via remote program sampling. volume 38, pages 141–154. ACM, May 2003.

[LBRN07] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse
coding algorithms. In Proceedings of the 21st Annual Conference on Neural
Information Processing Systems (NIPS’07), pages 801–808, 2007.

[LCGM10] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Turkit:
Human computation algorithms on mechanical turk. In Proceedings of the 23nd
ACM Symposium on User Interface Software and Technology (UIST’10), pages
57–66, 2010.

[LCH+09] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun.
Classification of software behaviors for failure detection: A discriminative pat-
tern mining approach. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’09), pages 557–
566. ACM, 2009.

[LDS11] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthe-
sis. In Proceedings of the 9th ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE’11), pages 43–50, July 2011.

[LFS10] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable specification min-
ing for verification and diagnosis. In Proceedings of the 47th Design Automation
Conference (DAC’10), pages 755–760, 2010.

[Lib04] Benjamin R. Liblit. Cooperative Bug Isolation. PhD thesis, University of Cali-
fornia, Berkeley, 2004.

[LKL08] David Lo, Siau-Cheng Khoo, and Chao Liu. Mining past-time temporal rules
from execution traces. In Proceedings of the 2008 International Workshop on
Dynamic Analysis (WODA’08), pages 50–56. ACM, 2008.

[LKLH11] David Lo, Siau-Cheng Khoo, Chao Liu, and Jiawei Han. Specification mining:
A concise introduction. 2011.

[LM08] David Lo and Shahar Maoz. Mining scenario-based triggers and effects. In
Proceedings of the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE’08), pages 109–118. IEEE, 2008.

[LM09] David L. Lempia and Steven P. Miller. Requirements engineering management
handbook. Final Report DOT/FAA/AR-08/32, Federal Aviation Administra-
tion, June 2009.

BIBLIOGRAPHY 135

[LMB12] Scott C Livingston, Richard M Murray, and Joel W Burdick. Backtracking
temporal logic synthesis for uncertain environments. In Proceedings of the 2012
IEEE International Conference on Robotics and Automation (ICRA’12), pages
5163–5170. IEEE, 2012.

[LMK07] David Lo, Shahar Maoz, and Siau-Cheng Khoo. Mining modal scenario-based
specifications from execution traces of reactive systems. In Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE’07), pages 465–468. ACM, 2007.

[LMP08] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation
of software behavioral models. In Proceedings of the ACM/IEEE 30th Interna-
tional Conference on Software Engineering (ICSE’08), pages 501–510, 2008.

[LNRB09] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Baner-
jee. Merlin: Specification inference for explicit information flow problems. SIG-
PLAN Notices, 44(6):75–86, June 2009.

[LPJM13] Scott C. Livingston, Pavithra Prabhakar, Alex B. Jose, and Richard M. Murray.
Patching task-level robot controllers based on a local µ-calculus formula. pages
4588–4595, 2013.

[LS12] Wenchao Li and Sanjit A. Seshia. Sparse coding for specification mining and er-
ror localization. In Proceedings of the 3rd International Conference on Runtime
Verification (RV’12), pages 64–81, September 2012.

[LSJ12] Wenchao Li, Sanjit A. Seshia, and Somesh Jha. Crowdmine: Towards crowd-
sourced human-assisted verification. In Proceedings of the 49th Design Automa-
tion Conference (DAC’12), pages 1250–1251, June 2012.

[LSSS14] Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Synthesis
for human-in-the-loop control systems. In Proceedings of the 20th Conference on
Tools and Algorithms for the Construction and Analysis of System (TACAS’14),
April 2014.

[LSTV12] Lingyi Liu, David Sheridan, William Tuohy, and Shobha Vasudevan. A tech-
nique for test coverage closure using goldmine. IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems, 31(5):790–803, 2012.

[LZ05] Zhenmin Li and Yuanyuan Zhou. Pr-miner: Automatically extracting implicit
programming rules and detecting violations in large software code. In Proceed-
ings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, pages 306–315. ACM, 2005.

BIBLIOGRAPHY 136

[MBD12] Srobona Mitra, Ansuman Banerjee, and Pallab Dasgupta. Formal methods for
ranking counterexamples through assumption mining. In Proceedings of the
Conference on Design, Automation Test in Europe (DATE’12), pages 911–916,
2012.

[Mcm99] Kenneth L. Mcmillan. Circular compositional reasoning about liveness. In Ad-
vances in Hardware Design and Verification: IFIP WG10.5 International Con-
ference on Correct Hardware Design and Verification Methods (CHARME’99),
pages 342–345. Springer, 1999.

[Mie10] Pauli Miettinen. Sparse boolean matrix factorizations. In Proceedings of the
2010 IEEE International Conference on Data Mining (ICDM’10), pages 935–
940. IEEE, 2010.

[Mit79] Tom M. Mitchell. Version Spaces: An Approach to Concept Learning. PhD
thesis, Stanford, CA, USA, 1979.

[MMG+06] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki
Mannila. The discrete basis problem. In Proceedings of the 10th European
conference on Principle and Practice of Knowledge Discovery in Databases
(PKDD’06), pages 335–346. Springer, 2006.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer, 1992.

[MSN10] Subhasish Mitra, Sanjit A. Seshia, and Nicola Nicolici. Post-silicon validation:
Opportunities, challenges and recent advances. In Proceedings of the 47th De-
sign Automation Conference (DAC’10), pages 12–17, June 2010.

[Muk96] Madhavan Mukund. Finite-state automata on infinite inputs, 1996.

[Nat13] National Highway Traffic Safety Administration. Preliminary statement of pol-
icy concerning automated vehicles, May 2013.

[NSVSP12] Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Xuening Sun, and Alberto
Puggelli. Methodology for the design of analog integrated interfaces using con-
tracts. Sensors Journal, IEEE, 12(12):3329–3345, 2012.

[OF97] Bruno A. Olshausen and David J. Fieldt. Sparse coding with an overcomplete
basis set: a strategy employed by v1. Vision Research, 37:3311–3325, 1997.

[ope] Opencores benchmarks. http://opencores.org.

[Org07] Accellera Organization. Accellera standard ovl v2. www.accellera.org, 2007.

http://opencores.org
www.accellera.org

BIBLIOGRAPHY 137

[PBWM10] Sung-Boem Park, Anne Bracy, Hong Wang, and Subhasish Mitra. Blog: Post-
silicon bug localization in processors using bug localization graphs. In Pro-
ceedings of the 47th Design Automation Conference (DAC’10), pages 368–373,
2010.

[Pee03] René Peeters. The maximum edge biclique problem is NP-complete. Discrete
Applied Mathematics, 131(3):651–654, 2003.

[Peh01] Li-Shiuan Peh. Flow control and micro-architectural mechanisms for extending
the performance of interconnection networks. PhD thesis, 2001.

[PLF06] Richard Neil Pittman, Nathaniel Lee Lynch, and Alessandro Forin. emips, a
dynamical extensible processor. Technical Report MSR-TR-2006-143, Microsoft
Research, 2006.

[PM08] Sung-Boem Park and Subhasish Mitra. Ifra: Instruction footprint recording
and analysis for post-silicon bug localization in processors. In Proceedings of
the 45th Design Automation Conference (DAC’08), pages 373–378, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, 1977.

[PPS06a] Nir Piterma, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
Proceedings of the 7th Verification, Model Checking, and Abstract Interpretation
(VMCAI’06), pages 364–380. Springer, 2006.

[PPS06b] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
Proceedings of the 7th Verification, Model Checking, and Abstract Interpretation
(VMCAI’06), pages 364–380. Springer, 2006.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’89), pages 179–190. ACM, 1989.

[QB11] Alexander J. Quinn and Benjamin B. Bederson. Human computation: A survey
and taxonomy of a growing field. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’11), pages 1403–1412. ACM, 2011.

[Rab72] Michael O. Rabin. Automata on infinite objects and church’s problem. In Pro-
ceedings of the Regional Conference Series in Mathematics. American Mathe-
matical Society, 1972.

[RGJ07] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-
sensitive inference of function precedence protocols. In Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), pages 240–250.
IEEE, 2007.

BIBLIOGRAPHY 138

[RKF+08] Frank Rogin, Thomas Klotz, Görschwin Fey, Rolf Drechsler, and Steffen Rülke.
Automatic generation of complex properties for hardware designs. In Proceed-
ings of the Conference on Design, Automation and Test in Europe (DATE’08),
pages 545–548. ACM, 2008.

[RKG11] Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesizable specifi-
cations for high-level robot behavior using ltlmop. In Proceedings of 33th Com-
puter Aided Verification Conference (CAV’11), volume 6806 of Lecture Notes
in Computer Science, pages 663–668. Springer, 2011.

[Ros92] Roni Rosner. Modular synthesis of reactive systems. Ph.D. dissertation, Weiz-
mann Institute of Science, 1992.

[rsp] Rspec. http://en.wikipedia.org/wiki/RSpec.

[Rus12] John Rushby. The versatile synchronous observer. In Formal Methods: Foun-
dations and Applications, volume 7498 of Lecture Notes in Computer Science.
Springer, 2012.

[SACO02] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil.
PROPEL: An approach supporting property elucidation. In Proceedings of the
24th International Conference on Software Engineering (ICSE’02), pages 11–
21, 2002.

[San] Michael Sanie. Solving modern verification challenges for todays industry lead-
ers. http://chipdesignmag.com/display.php?articleId=4503.

[SCK04] William Scott, Stephen Cook, and Joseph Kasser. Development and applica-
tion of context-free grammar for requirements. In Proceedings of the System
Engineering Test and Evaluation Conference (SETE’04), 2004.

[SE10] Todd W. Schiller and Michael D. Ernst. Rethinking the economics of soft-
ware engineering. In Proceedings of the Workshop on the Future of Software
Engineering Research, pages 325–330, 2010.

[Ses12] Sanjit A. Seshia. Sciduction: Combining induction, deduction, and structure
for verification and synthesis. In Proceedings of the 49th Design Automation
Conference (DAC’12), pages 356–365, June 2012.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613,
November 1979.

[SHB12] Matthias Schlaipfer, Georg Hofferek, and Roderick Paul Bloem. Generalized
reactivity(1) synthesis without a monolithic strategy. In Hardware and Soft-
ware: Verification and Testing. 7th International Haifa Verification Conference

http://en.wikipedia.org/wiki/RSpec
http://chipdesignmag.com/display.php?articleId=4503

BIBLIOGRAPHY 139

(HVC’11), volume 7261 of Lecture Notes in Computer Science, pages 20–34.
Springer, 2012.

[Shi02] Kanna Shimizu. Writing, Verifying, and Exploiting Formal Specifications for
Hardware Designs. PhD thesis, Department of Electrical Engineering, Stanford
University, August 2002.

[Sie00] Daluss J. Siewert. Biclique covers and partitions of bipartite graphs and digraphs
and related matrix ranks of 0,1 matrices. PhD thesis, 2000.

[smv] Cadence smv. http://www.kenmcmil.com/smv.html.

[Sto02] Richard Stolzman. Understanding assertion-based verification. http://www.

eetimes.com/document.asp?doc_id=1275847, Auguest 2002.

[SWD12] Mathias Soeken, Robert Wille, and Rolf Drechsler. Assisted behavior driven
development using natural language processing. In Proceedings of the 50th Inter-
national Conference on Objects, Models, Components, Patterns (TOOLS’12),
volume 7304 of Lecture Notes in Computer Science, pages 269–287. 2012.

[Tea08] The Amazon S3 Team. Amazon s3 availability event: July 20, 2008. http:

//status.aws.amazon.com/s3-20080720.html, July 2008.

[TK01] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation
of hardware designs. IEEE Design and Test of Computers, 18(4):36–45, 2001.

[tur] Amazon’s mechanical turk. www.mturk.com/mturk/welcome.

[UKM01] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Detecting implied scenarios
in message sequence chart specifications. In Proceedings of the 8th European
Software Engineering Conference Held Jointly with the 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 74–
82. ACM, 2001.

[vA05] Luis von Ahn. Human Computation. PhD thesis, Carnegie Mellon University,
December 2005.

[VAG07] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining problem:
Finding a minimal descriptive set of roles. In Proceedings of the 12th ACM
Symposium on Access Control Models and Technologies (SACMAT’07), pages
175–184, 2007.

[VDV11] Rajeev Verma and Domitilla Del Vecchio. Semiautonomous multivehicle safety.
IEEE Robotics Automation Magazine, 18(3):44–54, 2011.

[VDV12] Rajeev Verma and Domitilla Del Vecchio. Safety control of hidden mode hybrid
systems. IEEE Transactions on Automatic Control, 57(1):62–77, January 2012.

http://www.kenmcmil.com/smv.html
http://www.eetimes.com/document.asp?doc_id=1275847
http://www.eetimes.com/document.asp?doc_id=1275847
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
www.mturk.com/mturk/welcome

BIBLIOGRAPHY 140

[VSG+12] Ram Vasudevan, Victor Shia, Yiqi Gao, Ricardo Cervera-Navarro, Ruzena Ba-
jcsy, and Francesco Borrelli. Safe semi-autonomous control with enhanced driver
modeling. In Proceedings of the 2012 American Control Conference (ACC’12),
pages 2896–2903, June 2012.

[VSP+10] Shoba Vasudevan, David Sheridan, Sanjay Patel, David Tcheng, Bill Tuohy, and
Daniel Johnson. Goldmine: Automatic assertion generation using data mining
and static analysis. In Proceedings of the Conference on Design, Automation
Test in Europe (DATE’10), pages 626–629, 2010.

[WB91] Yosinori Watanabe and Robert K. Brayton. Heuristic minimization of multiple-
valued relations. In Proceedings of the 9th International Conference on
Computer-Aided Design (CAV’91), pages 126–129, 1991.

[WB11] Ilya Wagner and Valeria Bertacco. Post-Silicon and Runtime Verification for
Modern Processors. Springer, 2011.

[Weg74] Ben Wegbreit. The synthesis of loop predicates. Communications of the ACM,
17(2):102–113, 1974.

[WHT03] Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis
of finite-state controllers for request-response specifications. In Implementa-
tion and Application of Automata, volume 2759 of Lecture Notes in Computer
Science, pages 11–22. Springer, 2003.

[WN05] Westley Weimer and George C. Necula. Mining temporal specifications for error
detection. In Proceedings of the 11th Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), pages 461–476. Springer,
2005.

[Won10] Tichakorn Wongpiromsarn. Formal methods for design and verification of em-
bedded control systems: application to an autonomous vehicle. PhD thesis, 2010.

[WTM09] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding
horizon temporal logic planning for dynamical systems. In Proceedings of the
48th IEEE Conference on Decision and Control (CDC’09), pages 5997–6004,
2009.

[WTM12] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding
horizon temporal logic planning. IEEE Transactions on Automatic Control,
57(11):2817–2830, 2012.

[XPTX12] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Auto-
mated extraction of security policies from natural-language software documents.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (FSE’12), pages 12:1–12:11. ACM, 2012.

BIBLIOGRAPHY 141

[XTM12] Huan Xu, U. Topcu, and R.M. Murray. A case study on reactive protocols
for aircraft electric power distribution. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, pages 1124–1129, 2012.

[YEB+06] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. Perracotta: mining temporal api rules from imperfect traces. In Proceed-
ings of the 28th International Conference on Software Engineering (ICSE’06),
pages 282–291, 2006.

[ZGM01] Didar Zowghi, Vincenzo Gervasi, and Andrew McRae. Using default reasoning
to discover inconsistencies in natural language requirements. In Proceedings
of the 8th Asia-Pacific Software Engineering Conference (APSEC’01), pages
133–140, 2001.

[ZHT04] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component
analysis. Journal of Computational and Graphical Statistics, 15:2006, 2004.

[ZWM11] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Post-silicon
fault localization using maximum satisfiability and backbones. In Proceedings
of the 11th International Conference on Formal Methods in Computer-Aided
Design (FMCAD’11), 2011.

[ZWSM11] Charlie Shucheng Zhu, Georg Weissenbacher, Divjyot Sethi, and Sharad Ma-
lik. Sat-based techniques for determining backbones for post-silicon fault lo-
calisation. In Proceedings of the 2011 IEEE International High Level Design
Validation and Test Workshop (HLDVT’11), pages 84–91, 2011.

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Thesis Contributions
	New Formalisms
	New Algorithms
	New Applications
	Broadening the Scope of Specification Mining

	Related Work
	System
	Type of Specification
	Method
	Application

	Thesis Organization

	Preliminaries
	Notation
	Automata
	BüchiAutomaton
	Finite-State Transducers

	Linear Temporal Logic
	Syntax and Semantics
	Satisfiability and Realizability

	Specification Mining with Templates

	Requirement Generation and Error Localization
	Background
	Formalism and Notations
	Transition System
	Traces and Subtraces

	Running Example

	Specification Mining for Digital Circuits
	Overview
	Preliminaries
	Notations
	Specification Templates

	Mining Algorithm
	Mining from Delta Traces
	Merging Simple Specifications
	Specification Ranking

	Error Localization
	Experiments
	Benchmarks
	Results

	Summary and Discussion

	A Sparse Coding Framework for Specification Mining
	Introduction
	Background
	Traces and Matrices
	Bipartite Graphs

	Specification Formalism – Basis Subtraces
	Algorithm: Sparsity-Constrained Biclique Cover
	Formulation as a Sparse Coding Problem
	Solving the Sparse Coding Problem
	Example Illustration

	Application to Error Localization
	Problem Definition
	Localization by Construction
	Example Illustration

	Results and Experiments
	Theoretical Guarantees
	Case Study

	Additional Related Work
	Boolean Matrix Factorization
	Bug Localization

	Summary

	Crowdsourced Specification Mining
	Introduction
	CrowdMine – Game Design
	CrowdMine1: An Open-Loop Design
	CrowdMine2: A Closed-Loop Design

	Discussion

	Assumption Mining for LTL Synthesis
	Background
	Synthesis from GR(1) Specifications
	Generalized Reactivity (1) Specifications
	Games and Strategies
	Counterstrategy Graph

	Related Work

	Mining Environment Assumptions
	Solution Overview
	Version-Space Learning with Templates
	Experimental Results
	AMBA AHB Bus Protocol
	Generalized Buffer
	Robotic Vehicle Controller

	Summary

	Human-in-the-Loop Controller Synthesis
	Introduction
	Motivating Example
	Human-in-the-Loop Controller
	Agents as Automata
	Criteria for Human-in-the-loop Controllers

	Controller Synthesis
	Weighted Counterstrategy Graph
	Counterstrategy-Guided Synthesis of HuIL Controllers
	Switching from Human Operator to Auto-Controller

	Experimental Results
	Car-Following
	Gridworld Hallway

	Additional Related Work
	Summary

	Mining Assumptions from Natural Language Specifications
	Related Work in NLP
	Natural Language to LTL Formula
	Preprocessor
	Stanford Type Dependency Parser (STDP)
	Semantic Processor
	Formula Generation

	Case Study
	Summary

	Conclusion and Future Work
	Closing Remarks
	Future Work
	Combining Sparse Coding and Automata-Based Specification Mining
	Compositional Analysis
	Assumption Mining for Verification
	Contract-Based Synthesis

	Improving Sparse Coding
	Other Application Domains

	Bibliography

