
Synthesis of Layout Engines from Relational Constraints

Thibaud Hottelier
Ras Bodik

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-181
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-181.html

November 19, 2014



Copyright © 2014, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.



Synthesis of Layout Engines from Relational Constraints

Thibaud Hottelier
UC Berkeley

tbh@cs.berkeley.edu

Ras Bodik
UC Berkeley

bodik@cs.berkeley.edu

Abstract
We present an algorithm for synthesizing efficient document
layout engines from relational specifications. These spec-
ifications are high level in that a single specification can
produce engines for distinct layout situations. Specifically,
our engines are functional attribute grammars, while the spec-
ifications are relational attribute grammars. By synthesizing
functions from relations (constraints), we obviate the need
for constraint solving at runtime, shifting this cost to com-
pilation time. Intuitively, the synthesized functions execute
only value propagations and bypass the backtracking search
performed by constraint solvers. By working on hierarchical,
grammar-induced specifications, we make synthesis appli-
cable to previously intractable relational specifications. We
decompose them into smaller subproblems which are tack-
led in isolation by off-the-shelf synthesis procedures. The
functions thus generated are subsequently composed into an
attribute grammar which satisfies the relational specification.
Our experiments show that we can generate layout engines
for non-trivial data visualizations, and that our synthesized
engines are between 39- to 200-times faster than general-
purpose constraint solvers.

1. Introduction
Visual layout is the process of arranging visual elements such
as paragraphs or images. A layout is computed by fixing the
sizes and positions of some visual elements and using layout
constraints to compute sizes and positions of remaining
elements. The elements are organized in a document tree;
the layout constraints are usually local and are attached to
document nodes. For example, in Figure 1a, hdiv computes
its width as the sum of its children widths.

Modern layout languages (e.g., CSS) are loosely based on
functional attribute grammars (AG) [?] which define both
syntactically legal documents and their layout semantics.
Functional AGs are attractive because they can be solved
efficiently using a layout engine, an evaluator with a fixed set
of document tree traversals. However, the performance gained
thanks to a fixed computation strategy comes at the cost of
limited expressiveness. For instance, CSS always computes
width before height. As a result, CSS cannot express layouts
such as treemaps (Figure 1) where vdiv derives width as a
function of height.

tile

tiletile

tile tile

tile

vdiv

hdiv

vdiv

hdiv

hdiv

(a) Document (b) Layout of (a) (c) A larger treemap

Figure 1. A treemap visualization. A document tree (a),
together with its layout (b). Figure (c) shows the layout of a
larger and deeper document from the same layout language.

We sidestep the limitations of (directional) functional con-
straints by specifying layout with (non-directional) relational
constraints [?]. Relational constraints do not fix the compu-
tation strategy: the value “flows” between variables depend-
ing on which values happen to be known. As an example,
consider a scroll box containing (i) a textbox (dashed rect-
angle), part of which is visible in a view port (solid rect-
angle); and (ii) and a scroll bar, which indicates the po-
sition of the textbox relative to the view port. The layout
of the scroll box is specified with this relational constraint:

a

b
=

c

d− b
ab

c
d

When the user moves the textbox, she fixes the textbox
position c, necessitating recomputation of the scroll bar
position given that we know the value of c. Conversely, when
she moves the scroll bar, the textbox position is recomputed
from the new value of a. Each such interaction triggers
a different flow of computation, but maintains the same
constraints.

However, efficient solving of constraint-based layouts
remains a challenge. While the layout of a document can
be computed with a general-purpose constraint solver, such
solvers are up to 200-times slower than tree-traversal engines
(see Section 5), which is insufficient for interactive settings,
especially on slower, mobile devices.

We present a synthesis algorithm for translating relational
layout specifications into efficient (i.e., statically schedulable)
functional attribute grammars. For simplicity, we illustrate
synthesis on the flat constraint system of the scroll box.
Our algorithm derives directional functional constraints for

1 2014/11/19

mailto:tbh@cs.berkeley.edu
mailto:bodik@cs.berkeley.edu


updating the document position (c ← a(d − b)/b) and for
updating the scroll bar position (a ← cb/(d − b)). The
key point is that both functional constraints can be derived
from the single relational constraint. Relational constraints
thus offer non-redundant encoding and freedom from a fixed
computation strategy.

Single-Document Synthesis The most efficient layout en-
gine is one created for a specific single document. The layout
specification of a document is the conjunction of local re-
lations from all tree nodes. The Comfusy algorithm [?] can
translate such specifications to functions. This function would
then solve the layout of the document. Scaling synthesis to
large specifications is a challenge, however. So far, synthesis
has been mostly limited to producing program fragments:
Our experiments show that Comfusy scales to relations of up
to 100 variables. However, layout specifications can include
104 program variables per document.

Modular Synthesis To scale synthesis to large specifica-
tions, we rely on the hierarchical structure of the specification,
specifically a conjunction of smaller relations. In the case of
a single document, each node carries a block of constraints.
We decompose the synthesis problem at node boundaries,
into smaller subproblems whose solutions (local functions)
are composed to form a global function that implements the
overall relation. We trade completeness for efficiency: modu-
lar synthesis cannot perform deduction across decomposition
boundaries (only function composition), so we may fail to
produce a global function when one exists. The reason is that
smaller relations may not be functional, preventing us from
producing the necessary local functions.

Grammar-Modular Synthesis So far we have outlined how
modular synthesis can generate functions solving one partic-
ular relation, or equivalently one document. To be practically
useful, we must synthesize a single layout engine generic
enough to solve any document from a language of documents.
We specify such languages using grammars of trees. Fig-
ures 1b and 1c show the layouts of two documents from a
language of treemaps computed by the same synthesized en-
gine. In essence, we generalize modular synthesis to accept
not a fixed relation but a language of relational specifications
represented as a relational attribute grammar (AG) [?]. The
corresponding synthesized program is a functional AG. That
is, the layout engine is a set of functions whose composition
is syntax-directed by the document tree structure. We gener-
alize modular synthesis to grammars of relations by handling
alternative and recursive productions. To guarantee that our
functional AGs are statically schedulable, we reject gram-
mars with cyclic dependencies between attributes, thereby
forbidding fixed-point computations.

Applications of GM Synthesis Even though GM synthesis
was motivated by the challenges posed by layout, the tech-
niques presented in this paper are generic: the algorithm is
applicable to any hierarchical specification expressible as a

relational AG. It could, perhaps, be used in modern hardware
description languages (e.g., Chisel [?]) where designs are
trees of components with constraints on sizes, timings, etc.

We believe that small, domain-specific, layout languages
(DSLL) can be both more expressive and more efficient
than large—general-purpose—layout languages such as CSS.
GM synthesis is part of the Programming by Manipulation
(PBM) framework, a DSLL builder for non-programmers [?].
PBM infers layout specifications from user demonstrations,
producing a relational AG which is then compiled to a tree-
traversal engine using GM synthesis.

This paper makes the following contributions:

1. We present grammar-modular (GM) synthesis, a new tech-
nique enabling program synthesis to scale to previously
intractable problems. We exploit the hierarchical structure
of tree-shaped specifications to create a decomposition.
We perform synthesis on each part individually, and com-
bine the resulting functions into a program satisfying the
overall specification.

2. We apply GM synthesis to generation of layout engines for
DSLLs. We demonstrate empirically that our synthesized
engines are sufficiently complete and are up to 200 times
faster than Z3, a general-purpose constraint solver.

3. For constraints expressible as linear equations, we state a
sufficient condition on the decomposition of the specifica-
tion guaranteeing the completeness of GM synthesis.

2. Background and Motivation
In this section, we motivate our choice of non-directional
constraints for layout specifications. We illustrate the flex-
ibility and expressiveness of relational AGs compared to
CSS [?], perhaps the most widely used layout language based
on functional AGs. In the process, we introduce the key lay-
out concepts and describe the inputs and outputs of our GM
synthesizer.

The Sidebar Layout Problem Assume we want to lay out a
document composed of two panels: a sidebar and a main area.
Both contain malleable content (e.g., text), whose aspect ratio
can be altered. The corresponding document tree is made of a
top-level horizontal divider with two children, one per panel.
We want to make the sidebar wide enough to display all of its
content on exactly one screen vertically without over/under-
flow. The contents of the main panel, however, are allowed to
overflow. To compute such a layout, one would first compute
the width of the sidebar, given the screen height, and then
compute the main area height, given the sidebar width.

Layout Specifications To specify the layout semantics of
our document, we assign blocks to document nodes. Blocks
define a set of attributes (e.g., positions and sizes) which
decorate document nodes. Blocks also place either update
functions (functional AG) or non-directional constraints (rela-
tional AG) on these attributes. Some attributes can be marked

2 2014/11/19



Inputs=hbox.α, hbox.w

S ::= hbox(B, M) with
B.w ← hbox.α*hbox.w
M.w ← (1 - hbox.α)*

hbox.w
B ::= div() with
div.h ← f(div.w) F

M ::= <same as B>

(a) Overflowing f-AG (CSS)

S ::= hbox(B, M) with
B.w + M.w == hbox.w

B ::= bar() with
bar.h == f(bar.w)

M ::= main() with
main.h == f(main.w)

(b) Sidebar DSLL r-AG

Inputs=hbox.h, hbox.w

S ::= hbox(B, M) with
M.w ← hbox.w - B.w
B.h ← hbox.h

B ::= bar() with
bar.w ← f−1(bar.h)

M ::= main() with
main.h ← f(main.w)

(c) Synthesized sidebar f-AG

Inputs=bar.w, main.w

S ::= hbox(B, M) with
hbox.w ← B.w + M.w
hbox.h ← B.h

B ::= bar() with
bar.h ← f(bar.w)

M ::= main() with
main.h ← f(main.w)

(d) Synth. resizing sidebar f-AG

Figure 2. Four layout languages for the sidebar problem. Capital letters are non-terminals, hbox, div, bar, and main are
blocks. Language (a) is the essence of CSS. It always computes height as a function of width, thus cannot express our sidebar
design. Language (b) is non-directional which allows it to express our sidebar. From (b) and the input set {hbox.w, hbox.h},
we synthesize a functional AG (c) computing the sidebar layout, From (b), we can also produce an alternative functional AG
recomputing the layout from a different set of inputs, for instance when the user resizes both panels (d).

as input; these are runtime values unknown at compile time,
e.g. the size of an image, or the screen size. Solving the docu-
ment layout amounts to computing the values of all attributes
given input values, in accordance with the blocks’ semantics.

Surprisingly, our simple example is impossible to imple-
ment with CSS. Figure 2a shows the simplified specification
of the two CSS blocks relevant to our example. Since CSS
is based on a functional AG, blocks semantics are expressed
with functions. The sidebar must compute its width from its
height. However, CSS always computes height as functions
of width (F in Figure 2a). The solving efficiency of CSS
hinges on this restriction: it enables a tree-traversal engine
where widths are computed in a traversal preceding all height
computations. As such, even if CSS were extensible (it is
not), one could not add a new sidebar block computing its
width from its height.

By specifying the layout semantics with constraints in-
stead of functions, we decouple the layout properties from
their computation. The flow of computation can now be tai-
lored to the particular type of layouts targeted by our DSLL.
Figure 2b shows a relational AG defining two blocks (bar,
main). A relationship between width and height is given, but
which of these attributes is computed first is left open. Given
a DSLL specified with a relational AG (Figure 2b) and a set
of input attributes, our synthesizer outputs a functional AG
(Figure 2c), capable of computing the layout of all derivable
documents. Non-directional constraints gave us the flexibility
to compute width from height for the sidebar and vice versa
for the main panel.

In interactive layouts, the choice of input attributes de-
pends on user actions. In the scroll box example, when the
user moves the slide bar, its position becomes the input from
which the layout engine recomputes the textbox position.
From the same relational AG, we synthesize multiple layout
engines, one per user interaction. Figure 2d shows another
functional AG, also synthesized from Figure 2b, recomput-
ing the layout when the user sets the width of both panels
by dragging the middle separator. Relational AGs capture
multiple layout scenarios in a single specification.

Paper Overview This paper is organized as follows: In Sec-
tion 3, we introduce GM synthesis for single documents. Sec-
tion 4 generalizes our algorithms to grammars of documents
and discusses the completeness of our approach. Finally, we
present our experimental results on synthesis of layout en-
gines (Section 5) and discuss related work (Section 6).

3. Modular Synthesis
This section describes our modular synthesis in the single-
document setting. The following section generalizes the
algorithm to grammars.

3.1 Preliminaries
We start by defining functional synthesis [?], an instance of
the AE-paradigm [?].

Functional Synthesis Let R(i1 . . . in, o1 . . . om) be a rela-
tional constraint. Let I = [i1 . . . in] and O = [o1 . . . om]
be dedicated input and output variables of R. Assume that
R is functional in I . The functional synthesis problem is to
find m total functions f1, . . . , fm that compute the outputs
from any valuations of inputs on which R holds: R(I,O)⇒
R(I, f1(I), . . . , fm(I)). Because R is functional in I , all
functions f1, . . . , fm are semantically unique but may have
multiple implementations, if one exists. We say that the set of
functions {f1, . . . , fm}, denoted f [I,O], implements R with
respect to inputs I . In the context of layout, variables range
over R and are called attributes.

We write πI,O(R) to denote a call to a procedure that
returns a function that implementsR; the procedure fails if the
function does not exist. GM synthesis relies on a functional
synthesizer (π) to perform synthesis on the subproblems
created by decomposing the specification (Figure 3). π can
be implemented using existing techniques (see Section 5).

The techniques presented in this paper are independent of
the logical theories used to express constraints. Our examples
and implementation rely on polynomial equations and linear
inequalities over reals, augmented with basic trigonometric
functions as well as min/max operators (see Section 5).

3 2014/11/19



Empirically, we found such constraints expressive enough to
specify a wide class of layouts and visualizations.

Layout semantics We define layout semantics of docu-
ments using attribute grammars (AGs), which formally cap-
ture attribute computation on a tree by attaching semantic
rules to productions of the grammar. In functional AGs [?],
these rules are functions. In relational AGs [?], the rules are
arbitrary relations.

Definition 1 (Block). A block is a pair (V,R), where V is a
finite set of attributes and R is a relational constraint over
V . Some attributes of V are marked as inputs, i.e. their value
will be provided externally when the layout is computed. We
assume that R is in CNF, i.e., R = cl0 ∧ . . . ∧ cln. This CNF
structure determines how R is decomposed into subproblems.

Definition 2 (Document). A document is a tree of block-
labeled nodes derived from a relational AG.

Definition 3 (Language). A language of documents L is the
set of documents generated by a relational AG G.

Since documents are trees, technically G is a regular tree
grammar [?] instead of a word grammar1. The significant
change is that productions of G have the form

A ::= hbox(B,C)

where hbox is a terminal symbol labeling the tree node. In
our relational AGs, terminals refer to blocks of constraints.

We distinguish a special kind of semantic rules: those
placing constraints between attributes from a parent and its
children. Such rules are called connections. For instance, the
first rule is a connection, while the second one is not.

S ::= a(B) with a.x = B.x
B ::= b() with b.x = f(b.y, b.z)

This distinction will become important when we decompose
documents at node boundaries. Without loss of generality, we
assume that a connection c, denoted by (A,B)c is an equality
constraint between two sets of attributes A and B.

The layout of a document d from a relational AG G is the
solution to rel(d), the constraint system generated by G.

Finally, given a document d, let Id be the set of input
attributes of d. Let Od be all other (non-input) attributes of d.
We are now ready to define document engines.

Definition 4 (d-Engine). Given a document d, a d-engine is
a function f [Id, Od] which implements rel(d).

Synthesis of Layout Engines To synthesize a d-engine
for a particular document, the simplest approach would be
directly computing πId,Od

(rel(d)). This is impractical for all
but the most trivial documents (see Section 5).

Given a document d, we synthesize a d-engine in three
steps (Figure 3): (i) we decompose the specification (rel(d))
into conjuncts; (ii) we perform synthesis locally, on each in-
dividual conjunct, thus obtaining local functions; and (iii) we

1 Regular tree grammars can be thought as generating the set of derivation
trees of a context-free word-grammar [?].

Synthesizer (π)

Blocks/Relations

Recomposer

Tree grammar Document 
& 

Runtime inputs

Layout engineAG

To rendering

Compile time Run time

GM Synthesizer

Local
functions

Figure 3. GM synthesizer. The first step of GM synthesis—
decomposition—is not shown. The AG scheduler is out of
the scope of this paper. Its output is the layout engine itself.

select and compose just enough local functions to construct a
global function computing all attributes of d, thus creating a
d-engine. Before we detail each of the three steps, we high-
light the algorithmic challenges by constructing a d-engine
for a small document.

3.2 Example of d-Engine Synthesis
Let us consider a document comprised of two nodes labeled
with block a def

= (Va, Ra) and block b def
= (Vb, Rb), respec-

tively. The specification of each block is shown below:

Va
def
= {x, y, z, i} Ra

def
= x = i ∧ i+ z = y

Vb
def
= {x, y} Rb

def
= x2 = y

Our document has one input, denoted by attribute i. For the
sake of the example, we abstract away connections. Instead,
our two nodes directly share connected attributes (x and y).
As such, the specification of the document, rel(d), is simply
Ra∧Rb. To create a d-engine, we must synthesize a function
computing attributes Od = {x, y, z} from the input attribute
Id = {i}.

Decomposition (Step 1) To decompose rel(d), we follow
the document structure and create two subproblems, Ra and
Rb, one per node of the document.

Local Synthesis (Step 2) We generate local functions for
each node of the document. To do so, we need to (i) partition
each block relation into subsets of clauses; and (ii) partition
attributes of each block into input/output sets. For the sake of
the example, we use an oracle to coordinate these two local
decisions. Then, we synthesize local functions for each of set
of clauses using our functional synthesis procedure π.

For our example document, block a is made of two clauses:
x = i and i + z = y. The oracle partitions Ra into subsets
s0

def
= {x = i} and s1

def
= {i + z = y}. Then the oracle

partitions Va into an input set Ia
def
= {i, y} and an output

set Oa
def
= {x, z}. Given these two partitions, we attempt

to generate local functions for each set of clauses s0 and
s1 using π. In this case, πIa,Oa

(s0) yields the function
f1

def
= x := i, and πIa,Oa

(s1) produces f2
def
= z := y − i

We apply the same process on block b. Since Rb is made
of a single clause, the oracle trivially partitions Rb into Rb

4 2014/11/19



itself. The oracle splits Vb into Ib
def
= {x} and Ob

def
= {y}, then

by applying πIb,Ob
(Rb), we obtain f3

def
= y := x2.

We now have a set of local functions for each node of the
document

Recomposition (Step 3) The third step consists of con-
structing a global function implementing rel(d) by selecting
a subset of local functions and composing them together. This
is the key step of GM synthesis.

Since the oracle produced exactly the necessary functions,
we now merely need to order them to satisfy their depen-
dencies. That is, for each local function, the attributes read
must be computed before the function is applied. We encode
function dependencies using a hypergraph whose vertices
are attributes and whose edges represent available local func-
tions (Figure 4). The source of each edge indicates the set of
attributes read and its destination the set of attributes com-
puted. A topological sort of the hypergraph reveals the order
in which to compose local functions. Here, by applying f1
first, then f3, and finally f2, we obtain the desired global
function.

i x

yz

f1

f2 f3 Block bBlock a

Figure 4. The hypergraph of the dependencies of f1, f2,
and f3. Note that the local function f2 is represented by a
hyperedge with two sources: i and y.

Implementing the Oracle Let’s take a step back to analyze
the role of the oracle. We relied on it twice during the
local synthesis step: the first time to partition block relations
into subsets of clauses, and the second time to partition the
attributes of each block into input/output sets. Each of these
local oracular decisions must be coordinated to achieve global
properties not apparent at the local (i.e., block) level:

• Function Selection When examining a block in isolation,
we do not know how many local functions are needed to
compute all of its attributes. In our example, the attributes
of block a are computed with two local functions, in two
steps: the value of y is required to compute z, but block b
can compute y only if block a has already computed x. If
we performed local synthesis directly on block a’s relation
(Ra), without decomposing it into subsets of clauses, we
would be restricting ourselves to solving block a with a
single local function, which is not possible in our example.

• Flow of Computation While we know the overall (doc-
ument) inputs, at the block level, we need to determine
which attributes are known (inputs) and which attributes
will be computed (outputs). The flow of computation is
a property of the whole document and is unknown when
synthesizing local functions. In fact, the same node may

be traversed multiple times by the global function, each
time invoking one local function, like the node (labeled)
a in our example. Intuitively, each subset of clauses corre-
sponds to one “pass” of the global function through the
corresponding block.

We used the oracle to simplify our synthesis algorithm
which conceptually relies on global reasoning to synthesize
local functions. We actually synthesize local functions con-
sidering both all partitions of clauses into subsets and all
partitions of attributes into input/output sets. We then “im-
plement” the oracle in the recomposition step, in which we
must now select which local functions to use. We perform the
selection symbolically, by reasoning on a hypergraph summa-
rizing all flows of computation. By selecting local functions,
we are indirectly making the same two decisions the oracle
made: for each block, we select a clause partition and an
input/output partition.

3.3 The Algorithm
We formalize the three steps of GM-synthesis (decomposition,
local synthesis, and recomposition) for a document d.

Decomposition (Step 1) There is no best granularity of
decomposition: it is a trade-off between scalability and
completeness of our approach. Finer decompositions lead to
smaller relations and hence to more efficient local synthesis,
but sometimes small relations are not functionalizable; they
need to be conjuncted with other relations to be functional.
We discuss the completeness of GM synthesis in Section 4.1.

Local Synthesis (Step 2) We start by defining local func-
tions formally.

Definition 5 (Local Function). Given a block (V, cl0 ∧ . . . ∧
cln), a local function is a quadruple (f, I, O, S) where

1. I and O are lists of input/output attributes such that
I ⊆ V , O ⊆ V , and I ∩O = ∅,

2. S ⊆ {cl0, . . . , cln} is a subset of clauses,
3. f implements S with respect to inputs I: f = πI,O(S).

Note that executing the local function (f, I, O, S) assigns
the attributes computed by f with values satisfying all clauses
in S. To generate all possible local functions, for each block
(V,R) in d, we enumerate all partitions of clauses ofR as well
as all input/output partitions of V , as detailed in Algorithm 1.

Recomposition (Step 3) We reduce the problem of choos-
ing and composing local functions to finding a particular kind
of spanning tree on a hypergraph. The hypergraph encodes
a summary of all possible flows of computation between
attributes of the document.

Definition 6 (Hypergraph Summary). Given a document d,
an hypergraph summary Hd

def
= (V,E) is such that V is the

set of attributes of d and E is a set of local functions. Each
local function (f, I, O, S) is represented with the hyperedge

5 2014/11/19



Algorithm 1: Synthesize local functions for a block.

Input: A block b def
= (V, cl0 ∧ . . . ∧ cln)

Output: A set of local functions over attributes V

L← ∅
foreach subset S ⊆ {cl0, . . . , cln} do

foreach partition of V into sets I and O do
if (f, I, O, S) = πI,O (S) exists then

Add (f, I, O, S) to L.

return L

(I,O), where I is the set of source attributes and O the set of
destination attributes.

Since connections are equality constraints between sets
of attributes, we represent them with local functions. For a
single document, each connection (A,B) is such that A and
B are singletons. Let A def

= {a} and B def
= {b}. The connection

(A,B) is equivalent to (id, A,B, {a = b}) where id is the
identity function.

We construct the hypergraphHd as follows: For each node
n in d labeled with block b, we instantiate the set of local
functions of b on the attributes of n. Finally, we add two
hyperedges per connection, one for each possible flow of
values, either up or down in the document tree. Algorithm 2
details this process.

Algorithm 2: Construct a hypergraph summary encod-
ing all possible compositions of local functions.

Input: A document d and a set of connections C
Output: A hypergraph summary of d

E ← ∅
foreach node n in d labeled with block b do

Add {(I,O) | (f, I, O, S) ∈ Algo1(b)} to E.

foreach connection (A,B) in C do
Add {(A,B), (B,A)} to E.

return (Id ∪Od, E)

Before we define the d-engine in terms of paths in Hd, let
us note the following two facts about the hypergraph summary
Hd. First, each hyperpath encodes a function reading its
source attributes and computing its destination attributes.

Lemma 1. Each acyclic hyperpath p = f0 . . . fn in Hd

encodes a function fp[Ip, Op] = f0 ◦ . . . ◦ fn. Let Ii, Oi

be the input/output sets of fi, the ith function in p. Then
Op =

⋃
0≤i≤nOi and Ip = (

⋃
0≤i≤n Ii) \Op.

From hyperpath properties [?], it follows that:

1. The dependencies of each local function on the path
are satisfied. For each function fi with i > 0, we have
Ii ⊆

⋃
0≤j≤i−1Oj ∪ Ip.

2. Each attribute is computed at most once: For any pair
of functions fi and fj in p such that i 6= j, we have
Oi ∩Oj = ∅.

Lemma 2. Let p = f0 . . . fn be an acyclic hyperpath in Hd

representing fp. Let (fi, Ii, Oi, Si) be the ith function in p.
Then fp implements

∧
0≤i≤n Si. We say that fp satisfies all

clauses traversed.

Lemma 2 follows directly from the fact that, by construc-
tion, each local function (fi, Ii, Oi, Si) implements Si. Fi-
nally, let us define the subset of paths which can be executed.

Definition 7 (Executable Path). A hyperpath p in Hd is
executable iff it starts from the document inputs which is when
the function fp[Ip, Op] encoded by p is such that Ip ⊆ Id.

We are now ready to state under which conditions a hyper-
path encodes a d-engine. That is, a global function which
implements rel(d) with respect to the document inputs Id.

Definition 8. The hyperpath p is an executable covering
spanning tree iff all of the following three conditions hold: (i)
p is executable; (ii) p is a spanning tree; and (iii) p traverses
all clauses of rel(d). We call the third condition coverage.

Theorem 1. Each executable covering spanning tree p in
Hd encodes a global function which implements rel(d) with
respect to document input Id.

Since p is an executable spanning tree, it follows that both
Ip ⊆ Id and Op = Od. From the coverage condition and
using Lemma 2, we conclude that fp computes all attributes
of d.

Theorem 2. If there exists an executable covering spanning
tree in Hd, then rel(d) is functional in Id.

Since every local function composing the covering span-
ning tree stems from a functional set of clauses (with respect
to local function inputs), one can show that the set of all
traversed clauses is functional with respect to Id. Note that
there may be multiple covering spanning trees. Each such
tree encodes a semantically equivalent global function, but
they may differ syntactically (Figure 5).

The converse is not true; GM synthesis assumes that
the global function is expressible as compositions of local
functions.

Together, Theorems 1 and 2 show that our approach is
correct: the d-engines synthesized always fulfil the specifi-
cation. Note that finding a spanning tree in a hypergraph is
NP-complete [?]. In the next section, we explain how to en-
code the search for a d-engine in SMT after generalizing our
approach to languages of documents.

4. Grammar-Modular Synthesis
We generalize the modular synthesis technique presented so
far to grammar-modular synthesis.

6 2014/11/19



cl1 cl2 cl3 cl4 cl5Clauses

Subsets of
Clauses

Local
Functions

Global
Function

S1 S2

f1 f2

fg=f1 • f2

3 Recomposition

2 Local Synthesis

1 Decomposition
S3 S4

f3 f4

fg=f3 • f4

Figure 5. The three steps of GM synthesis. This diagram
shows that two distinct decompositions can lead to syntacti-
cally different, yet semantically equivalent, d-engines.

To support grammars producing more than one document,
we need to handle recursive productions and non-terminals
with more than one production. We start by formally defining
language engines.

Definition 9 (L-Engine). LetL be the language of documents
induced by the relational AG G. An L-engine is a statically
schedulable functional AG that defines a d-engine for every
document d ∈ L.

In functional AGs, the mode of an attribute is either
inherited or synthesized [?]. To construct an L-engine from
G, we compute: (i) the mode of all attributes together with a
corresponding subset of local functions; and (ii) a total order
over attributes. The total order prevents cyclic dependencies,
which guarantees that the resulting functional AG is statically
schedulable.

Synthesizing L-Engines We synthesize an L-engine in
three steps: First, we create a witness document dw which
exhibits all productions of G. The hypergraph summary
(Algorithm 2) of dw is a witness of all documents in L.
Finally, from the hypergraph summary, we construct an SMT
formula whose models encode both attribute modes and a
subset of local functions. Together, they form an L-engine.

Let dw be the witness document. Since G is based on a
regular tree-grammar, dw can be easily produced by system-
atically unrolling G until every production is taken. By doing
so, we ensure that rel(dw) contains all constraints of G.

For non-terminals with multiple productions, we must en-
sure that, for all productions, values flow in the same direction
(either up or down) through each connection. Conveniently,
we can exploit properties of hyperpaths to this end. For ex-
ample, consider the following language where block a may
have either block b1 or b2 as child.

S ::= a(B) with a.x = B.x
B ::= b1() | b2()

a

b1 b2

a

(a) The two derivable documents

a
x

b1

x
b2

x

(b) Their hypergraph summary

Figure 6. A language of two documents, each stemming
from a two-production grammar (a), Algorithm 2 encodes
the connection ({a.x}, {b1.x, b2.x}) with two hyperedges,
thereby enforcing the same flow of computation for both
documents (b).

Attribute a.x is connected to either b1.x or b2.x. We encode
the two productions of the non-terminal B with a single con-
nection c: ({a.x}, {b1.x, b2.x})c. When creating the hyper-
graph summary, Algorithm 2 encodes c with two hyper-edges
(one with two destinations and one with two sources) forcing
values to flow either up or down through both derivations
(Figure 6). We encode connections to multi-production non-
terminals directly with hyperedges with multiple sources and
destinations.

To handle recursive productions, we (1) introduce cycles
into the witness document; and (2) relax the definition of
covering spanning trees (Definition 8) in order to distinguish
between cycles due to recursion in the grammar and depen-
dence cycles among attributes that would exist in a single
document.

SMT Encoding We encode the existence of an L-engine as
an SMT query using boolean and integer arithmetic.

Let Hdw
= (V,E) be the hypergraph summary of dw.

Recall that V is the set of all attributes of dw. Let F ⊆ E
be the set of local functions which are not connections. Each
local function (f, I, O, S) ∈ F is encoded with one boolean
flag ef , which is true if f is used in the L-engine; we say
that f is selected. To model inputs, we augment F with one
function (−,∅, Idw

,∅) attached to the flag einputs.
We encode each attribute x ∈ V with two variables: (i) one

boolean mx representing the mode of x, either inherited (↓)
or synthesized (↑); and (ii) one integer lx used to impose a
total order on all attributes.

We partition the connections of G two subsets: (i) R, the
set of recursive connections, those which stem from recursive
nonterminals; and (ii)N , the set of non-recursive connections.
Every connection (A,B)c ∈ N ∪ R is encoded with one
boolean mc representing the mode of the connection: either
inherited (↓) or synthesized (↑).

For each block (V,R) of G, we encode each clause cl of
R with one boolean named ecl.

Finally, we define bm(x), a function converting the gram-
mar mode of attribute x (inherited or synthesized) to a “block”
mode (in or out) representing whether x is an input or an
output of its block. The block mode is analogous to modes

7 2014/11/19



of logic programs: attributes marked in are computed out-
side the block and propagated to it by connections; attributes
marked out are computed within the block by a local func-
tion.

bm(x) :=


in if ∃(A,B)c ∈ N. (x ∈ A ∧mx =↑) ∨

(x ∈ B ∧mx =↓),
out otherwise.

We break our encoding in five parts: (i) connections; (ii) lo-
cal functions; (iii) the spanning property; (iv) schedulability;
and (v) soundness. We explain each of them individually.

Connections The first part encodes the relationship be-
tween the mode of a connection and the mode of the attributes
connected.

φConn((A,B)c) :=
(
mc =↓ ⇒

∧
x∈B mx =↓

)
∧(

mc =↑ ⇒
∧

x∈A mx =↑
)

Functions The second part is divided into two conjuncts:
The first conjunct captures the relationship between local
functions and attribute modes. Notice that we do not constrain
the input of local functions to have an in mode. Doing so
would prevent chaining of local functions within the same
block, preventing the L-engine from invoking multiple local
functions during the same traversal. The second conjunct
records all clauses of rel(dw) traversed by the subset of local
functions selected.

φFun(f, I, O, S) := ef ⇒
∧
x∈O

bm(x) = out ∧
∧
cl∈S

ecl

Spanning The third part guarantees that each attribute x is
computed by a local function, a non-recursive connection, or
inductively by recursion. Note that requiring every attribute
to be computed at least once is not sufficient to ensure the
soundness of the L-engine. Consider the following grammar
with two blocks a def

= ({x}, x = 2) and b def
= ({x}, x = 1):

S ::= a(B) with a.x = B.x
B ::= b()

Note the connection between the attributes a.x and b.x. The
only document derivable from this grammar has no solution.
However, if we allowed attributes to be computed twice, then
we would find an L-engine which first assigns 1 to b.x and
then assigns 2 to b.x. This example illustrates how the same
attribute may be assigned two distinct values, each satisfying
one half of the specification. To reject such grammars, we
require every attribute to be computed exactly once. We
define the logical connective � to be true iff exactly one
of its clauses is true.

φSpan(x) :=
⊙


{ef | (f, I, O, S) ∈ F ∧ x ∈ O} ∪
{mc =↓ | (A,B)c ∈ N ∧ x ∈ B} ∪
{mc =↑ | (A,B)c ∈ N ∧ x ∈ A} ∪
{mc =↑ | (A,B)c ∈ R ∧ x ∈ B}



Schedulability The fourth part guarantees the absence of
cyclic dependencies by enforcing a total order on attributes.
We must distinguish cycles in dw representing recursive
computation of attributes—which unwind on a document,
thus are safe—from those denoting true cyclic dependencies.
Consider the following grammar which computes the height
of a tree with blocks a def

= ({x}, true) and b def
= ({x}, true):

S ::= a(S) with a.x == S.x + 1
| b() with b.x == 1

This language admits a sound L-engine. Its witness document
contains a cycle: from a.x to itself. This cycle unwinds on all
documents because it contains one recursive connection. That
is, there are no cyclic dependencies if every cyclic path in the
subgraph of selected local functions includes one recursive
connection.

φSched :=
∧

(A,B)c∈N

(
mc =↓⇒

∧
x∈B lx > maxy∈A(ly)

)
∧

∧
(A,B)c∈N

(
mc =↑⇒

∧
x∈A lx > maxy∈B(ly)

)
∧

∧
(f,I,O,S)∈F

(
I ⊃ ∅ ∧ ef ⇒

∧
x∈O lx > maxy∈I(ly)

)
Soundness To guarantee that the L-engine implements
rel(dw), the local functions selected must: (i) traverse all
the clauses of (all the blocks of) rel(dw); and (ii) contain the
function modeling inputs.

φSound :=
∧

cl∈rel(dw) ecl ∧ einputs

L-Engine Finally, by taking the conjunction of all five
parts, we obtain a formula whose models encode both the
subset of selected local functions (ef ) as well as modes for
all attributes (mx) and all connections (mc).

φ :=
∧

(A,B)c∈N∪R

φConn((A,B)c) ∧
∧

(f,I,O,S)∈F

φFun(f, I, O, S) ∧

φSched ∧ φSound ∧
∧

x∈V φSpan(x)

Theorem 3 (Correctness). All models of φ are L-engines.

The translation of models of φ to functional AGs is
straightforward: The ef booleans indicate which local func-
tions to use.

4.1 Completeness
GM synthesis is incomplete, thus might fail to find an engine,
even when one exists. In Section 5, we show that GM
synthesis is sufficiently complete in practice.

Recall that GM synthesis relies on the following hypoth-
esis: the global function is expressible as compositions of
local functions. The granularity of the decomposition affects
whether our hypothesis holds. Coarser initial decompositions
(i.e., blocks) yield more local functions at the expense of
creating larger local synthesis problems, thus decreasing effi-
ciency. We call the loss of completeness due to decomposition

8 2014/11/19



the cost of modularity, to distinguish it from the loss of com-
pleteness incurred due to any incompleteness of π.

We state a condition for hierarchical linear systems of
equations sufficient to guarantee zero cost of modularity.
For clarity, we consider a single document; the condition
is generalizable by induction on the language grammar. Let
the system rel(d) be represented by the matrix of coefficients
Md. The decomposition of rel(d) into blocks corresponds to
a partition of the rows of Md.

Theorem 4 (Completeness Condition). For linear equations,
GM synthesis has no cost of modularity if Md can be tri-
angularized using row combinations (i.e., adding a linear
combination of rows to another) only between rows belonging
to the same block, and row interchanges for any pair of rows.

5. Evaluation
We evaluate GM synthesis along three axes:

• Scalability vs. Completeness GM synthesis trades com-
pleteness for scalability: is it both scalable and sufficiently
complete to synthesize L-engines for realistic DSLLs?

• Performance How does the solving speed of the synthe-
sizedL-engines compare with the speed of state-of-the-art,
general-purpose constraint solvers?

• Parameterizable DSLLs Can our layout specifications
produce L-engines for a diverse range of user interac-
tions (e.g., screen resizing; data updates), each updating
different input variables?

Experimental Setup GM synthesis is parametrized by the
local synthesis procedure π. In our experiments, we imple-
mented π with a combination of well-known techniques: For
linear relations, we used a CEGIS loop [??] iteratively trying
templates of the form if (l1 > 0) l2 else l3 where l1, l2, and
l3 are linear combinations of attributes. Synthesis and verifi-
cation queries are encoded in SMT linear real arithmetic [?];
attribute values are not bounded. Polynomial equations are
solved in isolation, using a set of algebraic rewrite rules. Other
tools could be used to implement π, for example Comfusy [?]
and Sketch [?].

We used the Superconductor AG scheduler [?] to compile
L-engines to (sequential) tree traversals. The resulting traver-
sals are implemented in JavaScript and operate directly on the
browser DOM. As a result, our custom L-engines can easily
be deployed in any web browser. Figures 1b and 1c have been
laid out by one of our L-engines. All our benchmarks were
run on a 2.5GHz Intel Sandy Bridge processor with 8GB of
RAM using Firefox 30.0.

Case Studies To show that GM synthesis is widely applica-
ble, we evaluate it on three DSLLs constructed with PBM [?],
one for each of the three major layout domains: (i) docu-
ment (webpage) layout; (ii) GUI; and (iii) data visualization.
Each language is full-fledged in that it computes all attributes
required by rendering.

1. Our first case study is a guillotine language where a set of
horizontal and vertical dividers partition the space. Such a
language can encode a subset of CSS [?]. The guillotine
language totals 30 linear constraints, and satisfies the
completeness condition (Theorem 4).

2. Our second case study is a language of flexible grids [?].
Such languages are frequently used to layout widgets in
graphical user interfaces [?]. The sizes of each cell of the
grid are allocated based on a weighted sum. The weight
of each cell is a runtime input, which produces non-linear
constraints. The grid language consists of 47 constraints.

3. Finally, a language of treemaps [?], a visualization of
hierarchical datasets popular in finance. The screen is tiled
recursively, based on the area occupied by each subtree
of the document (Figure 1). Each leaf has a runtime input
corresponding to its relative area. Constraints involving
area computations are non-linear. The treemap language
has 40 constraints.

To illustrate our DSLL specification language, we show
below a partial definition of the treemap block that tiles the
space horizontally. Lines 2 and 3 set up the relative coordi-
nates left, right, denoting the relative horizontal displacement
from the parent node, based on the absolute coordinate x.
The third constraint is key: it binds the visual area of each
document node to the value of the tile. These constraints are
local in that they refer to parent and children in the document.

1 block hdiv(...) {
2 x == parent.x + left
3 left + width == right
4 scale * value == height * width
5 child1.left >= child0.width...
6 }

Scalability and Completeness Our GM synthesizer is suf-
ficiently complete to successfully generate an L-engine for
each of the three case studies. Synthesis took less than four
minutes in each case, an acceptable compilation time, with
the local synthesis and the recomposition steps taking approx-
imately equal time. Table 1 illustrates the complexity of the
L-engines obtained after scheduling. Listed are the number
of tree traversals, the number of local functions used, as well
as the size of the JavaScript code. For comparison, Mozilla’s
new Servo browser employs four passes to lay out CSS [?].
The number of local functions is per grammar (L-engine),
rather than for a document. Finally, the number of lines of
code reported includes only the layout engine itself (i.e., the
computation of document attributes); the rendering code has
been excluded.

GM synthesis provides no guarantee that the L-engines
are optimal, neither in the number of traversals nor in the
number of operations. We manually checked each L-engine:
all are optimal in the number of traversals.

We also compare GM synthesis with non-modular func-
tional synthesis methods, specifically with Comfusy and
Sketch. These techniques are limited to synthesis of d-engines

9 2014/11/19



Language Traversals Local Functions SLOC Time

Total Selected

Guillotine t 289 74 317 126
Grid t ; b ; t 385 89 483 175
Treemap t ; b ; t ; b ; t 394 91 599 194

Table 1. The complexity of our L-engines. The second col-
umn shows the number and type of tree passes: t and b denote
top-down and bottom-up passes, respectively. The third col-
umn reports the number of local functions synthesized and
the subset used. The last two columns show the number of
lines of code and the total synthesis time in second.

(i.e., they do not generalize to languages of documents), hence
we asked them to synthesize a solver for a single document
of 127 nodes. Both systems failed to synthesize a d-engine
in less than one hour. These results suggest that GM synthe-
sis may strikes a good balance between completeness and
scalability in the domain of layout engines.

Performance We compare the performance of our L-
engines with Z3 [?], a state-of-the-art constraint solver. Our
engines are implemented in JavaScript, a relatively slow
language. Z3 solves the constraint system defined by the
document (rel(d)) at runtime. We tested several solver algo-
rithms implemented in Z3.

We measured the time to compute the layout of documents
from 255 to 16383 nodes, for each of our DSLLs. Such
document sizes are typical [?]. For reference, the front
page of nytimes.com contains over 3000 nodes and data
visualizations tend to be larger. Our benchmark documents
are balanced trees generated randomly. For Z3, we chose
the fastest SMT theory which could express the layout
specification. Interestingly, the non-linear real arithmetic
solver was faster than 16bit bitvectors for both the grid
and treemap languages. For guillotine, we used linear real
arithmetic. Table 2 summarizes our results.

Doc Size Guillotine Grid Treemap

GM Z3 GM Z3 GM Z3

255 3 705 5 707 8 680
1023 10 2310 19 1494 49 1935
4095 41 12800 81 8403 120 8935

16383 162 >3 min 213 — 261 —

Table 2. Time to compute the layout in millisecond. Missing
entries (—) indicate “unknown” answers (no model). Notice
that our L-engines scale linearly with the document size.

Our L-engines scale linearly with size of the document,
whereas Z3 fails on the largest document (either timing out or
reporting “unknown”) for all three case studies. This speedup
is explained by GM synthesis moving the backtracking
search performed at runtime by Z3 to compile time, leaving
only function applications to runtime. On the medium sized

document (1023 nodes), L-engines are between 39 and 231
times faster than Z3. Our results show that across the three
case studies, our L-engines are fast enough (<0.5 second) for
interactive settings.

Parameterizable DSLLs We illustrate the expressiveness
of non-directional constraints by synthesizing multiple L-
engines from the same DSLL, each parameterized by a dif-
ferent set of runtime inputs. Each engine recomputes the
layout in response to some event triggered by a user interac-
tion. Each event sets the values of some runtime inputs, from
which all remaining attributes are computed.

We illustrate the expressive power of non-directional con-
straints on the language of treemaps. Assume that the treemap
represents the market capitalization of some companies. The
leaves of the document are companies while inner nodes en-
code the tiling of the screen (Figure 1a). We consider three
events: (i) the values of all companies are updated; (ii) the
user resizes the treemap; and (iii) the user moves the treemap.

For the first event, the set of runtime inputs is the value
attribute of each company (i.e., leaf nodes). Given new
values, the layout engine must update the sizes of each node,
including the overall size of the treemap (root node). In
contrast, the second event updates the overall size of the
treemap. As such the runtime inputs are the height/width
of the root node. The values of leaves remain unchanged,
and the layout engine must recompute the scaling parameter
converting values (dollars) into areas (squared pixels). From
our treemap DSLL, our synthesizer generates three L-engines,
one per set of runtime inputs (Table 3). Note that the engines
are dramatically different from each other in that they require
a different number of tree passes.

Event Inputs Traversals SLOC

New market cap. t.value ∀ tiles t 5 599
Resize root root.w, root.h 3 463
Reposition root root.x, root.y 1 165

Table 3. Three L-engines, one per event, recomputing the
treemap layout from different sets of inputs. For space
reasons, we only show input attributes with new values and
omit those which are input but remain constant. We report
the number of tree-traversals and the size of code.

To conclude, we have shown empirically that (i) GM
synthesis is both scalable and complete enough to generate L-
engines for a variety of DSLLs; (ii) our L-engines outperform
general-purpose constraint solvers; and (iii) relational AGs
are a concise formalism for expressing interactive layouts
with multiple flows of computation.

6. Related Work
GM synthesis builds upon previous work in program synthe-
sis. Our work is closely related to constraint planning, mode
inference in attribute grammars, and logic programming.

10 2014/11/19



Program Synthesis Functional synthesis, a subset of pro-
gram synthesis [??], is an instance of the AE-paradigm, also
known as the Skolem paradigm for synthesis [?]. GM syn-
thesis builds upon functional synthesis procedures, such as
Comfusy [?] or Sketch [?], by enabling modular decompo-
sitions of specifications to gain scalability. ? also propose
a modular synthesis technique but use a different form of
modularity.

Constraint Planning (CP) The task of finding a d-engine
can be cast as a multi-way (i.e. non-directional) constraint
planning problem for which solvers like SkyBlue [?] and
QuickPlan [?] have been proposed. In CP, each “planning
constraint” corresponds to a set of clauses in our framework.
Similar to our d-engine setting, given a set of planning con-
straints, each associated with local functions (methods), a
planner finds a sufficient subset of functions that computes
all attributes. In contrast with our approach, a programmer is
responsible for providing enough local functions as well as
partitioning relations, to satisfy special requirements of the
algorithm. QuickPlan works in quadratic-time by imposing a
clever restriction on planning constraints: each local function
must mention all variables of its planning constraint, either as
input or as output. The programmer satisfies this restriction by
intelligently factoring clauses into planning constraints when
writing local functions. In our setting, the same information
is left to the oracle (i.e., we search over the space of all factor-
izations). As illustrated in Section 3.2, our oracle partitions
the relation of each block into subsets of clauses, each cor-
responding to one planning constraint. Without this step, we
would be restricted to computing all attributes of each block
with a single local function, which would prevent creating
layout engines for documents requiring multiple tree passes.
In essence, we cannot use QuickPlan to compute d-engines,
because we do not know upfront how many passes are needed.
In practice, we synthesize local functions for all subsets of
clauses. As a result, we obtain many more local functions
than in the traditional constraint planning setting. Naively en-
capsulating local functions into planning constraints meeting
QuickPlan’s simplifying assumption would create an expo-
nential explosion. With one planning constraint per subset of
clauses, QuickPlan’s complexity would become (2n)2 where
n is the number of clauses. In general, constraint planning
for non-directional constraints is NP-complete [?].

We distinguish ourselves by supporting not only finite
relations but also tree-grammars of relations, enabling the
same L-engine to lay out multiple documents (datasets),
while still guaranteeing a static schedule.

Attribute Grammar Our modular synthesis algorithm has
close connections with relational AGs and logic program-
ming. ? give theoretic constructions demonstrating how re-
lational grammars, functional grammars and directed clause
programs are related to one another. Mode analysis [?] tech-
niques for logic programs, which compute whether clause
arguments of logical programs are input or output, could

be—in principle—transposed to AGs to compute whether
attributes are inherited or synthesized. The principal goal of
mode inference is to learn static properties enabling compiler
optimizations. To this end, such techniques rely on abstract
domains to soundly perform over-approximations of modes.
Our work differs in two ways. First, to obtain executable
L-engines, we must compute exact modes for all attributes.
As such, we cannot apply techniques trading precision for
scalability or termination. Secondly, our approach is modular.
For each block, we synthesize a set of local functions, which
can be viewed as sets of possible modes for a block. Local
functions are computed independently for each block and can
be reused across DSLLs. Mode analysis techniques based on
abstract interpretation operate on the whole program.

Constraint Logic Programming (CLP) In CLP [???], con-
straint systems are flat and unstructured while we exploit the
tree structure to produce L-engines in a modular fashion. Fur-
thermore, given a relational specification of a document and
a valuation of its inputs, CLP tools search for one layout (i.e.,
solution) among the potentially many, whereas we ensure
that the specification is functional with respect to document
inputs. That is, the layout is uniquely determined by inputs
(i.e., deterministic).

7. Conclusion
We presented grammar-modular synthesis, a new algorithm
exploiting the structure of hierarchical specifications to scale
synthesis to large relations at the cost of completeness. We
synthesized tailored layout engines for custom languages of
documents. Our three case studies show not only that GM
synthesis scales to large specifications which could not be
tackled by state-of-the-art tools, but also that the L-engines
generated outperform general-purpose constraint solvers by
one order of magnitude. For our domain, layout, we believe
that GM synthesis strikes the right balance between scalabil-
ity of synthesis, completeness of synthesis, and performance
of the resulting L-engines.

We are interested in applying GM synthesis to domains
beyond document layout. For instance, the techniques pre-
sented in this paper could potentially generate parametrized
hardware designs from trees of components with constraints
such as size or delay.

11 2014/11/19



References
Alur, R., Bodík, R., Juniwal, G., Martin, M. M. K., Raghothaman,

M., Seshia, S. A., Singh, R., Solar-Lezama, A., Torlak, E., and
Udupa, A. (2013). Syntax-guided synthesis. In FMCAD, pages
1–17. IEEE.

Apt, K. (2003). Principles of Constraint Programming. Cambridge
University Press, New York, NY, USA.

Apt, K. R. and Wallace, M. (2007). Constraint Logic Programming
Using Eclipse. Cambridge University Press, New York, NY, USA.

Atkinson, E. (2014). Personal communication.

Ausiello, G. (1988). Directed hypergraphs: Data structures and
applications. In Dauchet, M. and Nivat, M., editors, CAAP ’88,
volume 299 of Lecture Notes in Computer Science, pages 295–
303. Springer Berlin Heidelberg.

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis,
R., Wawrzynek, J., and Asanović, K. (2012). Chisel: Constructing
hardware in a scala embedded language. In Proceedings of the
49th Annual Design Automation Conference, DAC ’12, pages
1216–1225, New York, NY, USA. ACM.

Barrett, C., Stump, A., and Tinelli, C. (2010). The Satisfiability
Modulo Theories Library. www.smt-lib.org.

Bos, B., Çelik, T., Hickson, I., and Lie, H. W. (2011). Css 2.1 spec.
www.w3.org/TR/CSS2/.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F.,
Lugiez, D., Tison, S., and Tommasi, M. (2007). Tree automata
techniques and applications. Available on: www.grappa.
univ-lille3.fr/tata.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg. Springer-Verlag.

Debray, S. K. and Warren, D. S. (1988). Automatic mode inference
for logic programs. Journal of Logic Programming, 5(3):207–
229.

Deransart, P. and Maluszynski, J. (1985). Relating logic programs
and attribute grammars. Journal of Logic Programming, 2(2):119–
155.

Feiner, S. K. (1988). A grid-based approach to automating display
layout. In Proceedings on Graphics Interface ’88, pages 192–197,
Toronto, Canada. Canadian Information Processing Society.

Hottelier, T., Bodik, R., and Ryokai, K. (2014). Programming by
manipulation for layout. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology, UIST’
14, pages 231–241, New York, NY, USA. ACM.

Hurst, N., Li, W., and Marriott, K. (2009). Review of automatic
document formatting. In Proceedings of the 9th ACM Symposium
on Document Engineering, DocEng ’09, pages 99–108, New
York, NY, USA. ACM.

Johnson, B. and Shneiderman, B. (1991). Tree-maps: A space-
filling approach to the visualization of hierarchical information
structures. In Proceedings of the 2Nd Conference on Visualization

’91, VIS ’91, pages 284–291, Los Alamitos, CA, USA. IEEE
Computer Society Press.

Knuth, D. E. (1968). Semantics of context-free languages. Mathe-
matical systems theory, 2(2):127–145.

Kuncak, V., Mayer, M., Piskac, R., and Suter, P. (2010). Complete
functional synthesis. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion, PLDI ’10, pages 316–329, New York, NY, USA. ACM.

Maloney, J. H. (1992). Using Constraints for User Interface
Construction. PhD thesis, University of Washington, Seattle,
WA, USA.

Manna, Z. and Waldinger, R. (1980). A deductive approach
to program synthesis. ACM Transactions on Programming
Languages and Systems (TOPLAS), 2(1):90–121.

Manna, Z. and Waldinger, R. J. (1971). Toward automatic program
synthesis. Communications of the ACM, 14(3):151–165.

Meyerovich, L. A., Torok, M. E., Atkinson, E., and Bodik, R.
(2013). Parallel schedule synthesis for attribute grammars. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 187–
196, New York, NY, USA. ACM.

Pnueli, A. and Rosner, R. (1989). On the synthesis of a reactive
module. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’89,
pages 179–190, New York, NY, USA. ACM.

Sannella, M. (1994). Skyblue: A multi-way local propagation
constraint solver for user interface construction. In Proceedings
of the 7th Annual ACM Symposium on User Interface Software
and Technology, UIST ’94, pages 137–146, New York, NY, USA.
ACM.

Singh, R., Singh, R., Xu, Z., Krosnick, R., and Solar-Lezama, A.
(2014). Modular synthesis of sketches using models. In Verifica-
tion, Model Checking, and Abstract Interpretation, volume 8318
of Lecture Notes in Computer Science, pages 395–414. Springer
Berlin Heidelberg.

Sinha, N. and Karim, R. (2013). Compiling mockups to flexible uis.
In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 312–322, New
York, NY, USA. ACM.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and Saraswat,
V. (2006). Combinatorial sketching for finite programs. In Pro-
ceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 404–415, New York, NY, USA. ACM.

Souders, S. (2013). How fast are we going now?
www.stevesouders.com/blog/2013/05/09/
how-fast-are-we-going-now/.

Vander Zanden, B. (1996). An incremental algorithm for satisfying
hierarchies of multiway dataflow constraints. ACM Transactions
on Programming Languages and Systems (TOPLAS), 18(1):30–
72.

Warme, D. M. (1998). Spanning Trees in Hypergraphs with
Applications to Steiner Trees. PhD thesis, University of Virginia,
Charlottesville, VA, USA.

Yap, R. H. C. (2004). Constraint processing. Theory and Practice
of Logic Programming, 4(5-6):755–757.

12 2014/11/19

www.smt-lib.org
www.w3.org/TR/CSS2/
www.grappa.univ-lille3.fr/tata
www.grappa.univ-lille3.fr/tata
www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/
www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/

	1 Introduction
	2 Background and Motivation
	3 Modular Synthesis
	3.1 Preliminaries
	3.2 Example of d-Engine Synthesis
	3.3 The Algorithm

	4 Grammar-Modular Synthesis
	4.1 Completeness

	5 Evaluation
	6 Related Work
	7 Conclusion

