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ABSTRACT
We present a retrospective and longitudinal study of Internet
latency and path stability using three large-scale traceroute

datasets collected over several years: Ark and iPlane from
2008 to 2013 and a proprietary CDN’s traceroute dataset
spanning 2012 and 2013. Using these different “lenses”, we
revisit classical properties of Internet paths such as end-to-
end latency, stability, and of routing graph structure. Iterative
data analysis at this scale is challenging given the idiosyn-
crasies of different collection tools, measurement noise, and
the diverse analysis we desire. To this end, we leverage re-
cent big-data techniques to develop a scalable data analy-
sis toolkit, Hummus, that enables rapid and iterative analysis
on large traceroute measurement datasets. Our key findings
are: (1) overall latency seems to be decreasing; (2) some ge-
ographical regions still have poor latency; (3) route stability
(prevalence and persistence) is increasing; and (4) we ob-
serve a mixture of effects in the routing graph structure with
high-degree ASes rapidly increasing in degree and lower-
degree ASes forming denser “communities”.

1 Introduction
Understanding Internet path properties is a fundamental re-
quirement for many applications including server placement
(e.g., [37]) and selection (e.g., [26]), fault detection and di-
agnosis (e.g, [16]), and analyzing key inefficiencies in rout-
ing protocols (e.g., [13]). Measuring Internet paths is al-
most as old as the discipline of Internet measurement it-
self [35]. Starting from the seminal studies by Vern Pax-
son [36], there have been several efforts to analyze latency
(e.g., [19,31,32]), route predictability (e.g., [12,38]), as well
as numerous tools and datasets (e.g., [1, 7, 30]).

Our work follows in the spirit of this rich body of work in
routing measurement. Our main contribution here is to sys-
tematically analyze key characteristics of the Internet paths
using multiple large-scale traceroute datasets collected over
several years. Specifically we use a six-year dataset (2008-
2013) from iPlane [30] that uses over 1000 vantage points,
another six-year (2008-2013) dataset from Ark that uses over
80 vantage points [1], and a proprietary dataset from a large
CDN with traceroutes from over 1800 vantage points over
2012-2013. Together, these datasets provide a panoramic
and longitudinal view of Internet routing behavior to more
than 25000 destination ASes spread across 200 countries.

Even though our work does not provide new active mea-
surement techniques or new datasets, we believe that there is
value in this retrospective analysis on several fronts. First, it
provides a historical and longitudinal perspective of Internet
path properties that are surprisingly lacking in the measure-
ment community today. Second, it can help us revisit and
reappraise classical assumptions about path latency and sta-
bility used in designing Internet-scale systems. Third, such
a cross-dataset analysis can shed light on potential “blind
spots” and potential biases in our understanding even with
large-scale datasets.

Specifically, we analyze the following dimensions of In-
ternet path properties:

• Has the end-to-end latency1 changed over this measure-
ment period? Have specific geographic regions improved
more than others or have some regressed to worse con-
nectivity? (§4)

• Do classical assumptions about route stability in terms
of route persistence and route prevalence [36] still hold?
How have these evolved over this time period? (§5)

• Has the routing graph structure changed significantly
over the last several years? (§6)

• Do different “lenses” provide complementary, consistent,
or contradictory views into the above routing character-
istics? (§4–6)

Performing such a study over diverse and large-scale
datasets raises a number of practical scalability challenges
in terms of preprocessing (e.g., cleaning missing traces and
converting traces to AS-granularity) and extracting mean-
ingful information — the combined raw traceroute data in
our study amounts to roughly 1 terabyte of uncompressed
data. Conventional data analysis techniques (e.g., custom
scripts) are simply not scalable or sustainable for such itera-
tive analysis. Our contribution here is a systematic data anal-
ysis toolkit, Hummus, implemented on top of an in-memory
distributed data processing system called Apache Spark [42].
Hummus enables rapid and iterative analysis of large-scale
traceroute measurement datasets that would otherwise be
infeasible or tedious. For instance, several analysis tasks
performed in this paper that would have otherwise taken
several hours using conventional techniques can be com-

1Since traceroute datasets allow us to only measure round-trip
times (RTT) between any source-destination pair, we use RTT as
the metric for latency and use the terms RTT and latency inter-
changeably in this paper.
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pleted within six minutes using Hummus. We cannot stress
the value of such a capability enough—it simplified our
analysis workflow and enabled iterative analysis, typical of
large-scale measurement studies, to extract interesting infor-
mation. We have made our code public2 for future measure-
ment studies to benefit from the scalability and rapid itera-
tive analysis enabled by Hummus.

Our key findings are:

• Overall, most countries are improving in terms of la-
tency from different vantage points. Countries in Africa,
which currently have the highest latencies, are also the
ones showing the most improvements over the last six
years. Some countries are surprisingly regressing in the
Ark dataset; we identify them as anomalies and point out
the likely causes.

• We observe that both routing prevalence (i.e., how fre-
quently the dominant route is used) and persistence (i.e.,
how stable are routes across consecutive measurements)
are increasing both at AS- and city-granularity. However,
we find the absolute numbers to be significantly lower
than those observed in classical studies. In general, we
observe that prevalence/persistence are inversely corre-
lated with the in-degrees of destination ASes.

• The AS-granularity Internet routing graph is getting
denser and more clustered, which is correlated with the
improvements in latencies, route lengths, and stability.
Following a “rich-getting-richer” phenomenon, the high-
degree ASes are connecting to increasingly larger frac-
tion of ASes, and lower degree ASes are forming more
tightly-knit communities.

• We do find different datasets to be largely in qualitative
agreement and having good coverage. But we observe
several subtle differences (e.g., latency anomalies in Ark)
and some non-trivial coverage gaps (e.g., many countries
in Africa and Asia often do not have a sufficient number
of measurements).

These results have important implications both for mea-
surement research as well as the design of Internet-scale sys-
tems. For instance, we find that our visibility into signifi-
cant geographical regions (e.g., Africa, Asia) is quite lim-
ited, motivating the need for more careful selection of tar-
gets. Similarly, we find that most stable vantage points are
in the US and Europe providing a very US- and Euro-centric
view of Internet connectivity. While this is very valuable, it
does indicate where our future gaps will be. Third, we find
that there is significant potential for latency improvement for
large portions of the Internet. Given the critical role that la-
tency plays in user quality-of-experience (e.g., [2]), content
providers will be well advised to expand their vantage point
presence to these emerging regions [10].

2https://github.com/mosharaf/hummus

Ark iPlane LargeCDN

Period 2008-2013 2008-2013 2012/2013
Sampling 1 cycle/month 1 day/month No
traceroute Paris [7] Normal Normal
Traces 2.52 billion 1.85 billion 0.83 billion
Valid Traces 187 million 449 million 104 million
Vantage IPs 80 1051 1895
Vantage Countries 35 40 89
Vantage ASes 72 226 815
Dst Countries 219 226 222
Dst ASes 36238 27243 25876

Table 1: Dataset details.

2 Datasets and Methodology
In this section, we describe the traceroute datasets used in
our study (§2.1) as well as the methodology we follow to
preprocess and clean the datasets, followed by a discussion
of potential biases and limitations of this study (§2.2).

2.1 Datasets
We use three traceroute datasets from Ark [1], iPlane [30],
and a large commercial CDN (LargeCDN). The Ark and iPlane
data spans six years from 2008 to 2013, while the LargeCDN
dataset spans 2012 and 2013. Table 1 provides a quick sum-
mary of each dataset. traceroutes from all three datasets in-
cluded only IPv4 addresses. While all three datasets cover
almost all of the geographical regions and ASes, both Ark
and iPlane have their vantage points located in a significantly
smaller number of locations than LargeCDN. Each dataset is
collected by (periodically) issuing traceroutes from a fixed
set of vantage points to some destinations based on dataset-
specific criteria. For completeness, we briefly summarize
how these individual traceroutes were collected and refer
readers to the above references for more details.

• In iPlane, each vantage point daily probes a selective list
of IP prefixes (120K prefixes out of 450K operational
prefixes [25]) concentrated on the core Internet.

• Ark ensures that in each “probing cycle” traceroutes are
sent to randomly selected destinations in every routable
/24 IP prefix.

• For the proprietary LargeCDN dataset, the destination se-
lection process information is unavailable; however, we
observed significantly higher “coverage” over the IPv4
address space relative to Ark and iPlane.

Due to the massive scale of these datasets and practical
limitations in downloading the entire raw data, we subsam-
ple the traces for Ark and iPlane. Specifically, we downloaded
one cycle per month for Ark and iPlane — for Ark, the cycle
length is two to three days, whereas it is one day for iPlane.
For LargeCDN, we use the entire dataset without sampling.
Since only Ark and iPlane datasets span six years from 2008
to 2013, we rely on them for longitudinal analysis. We pri-
marily use the LargeCDN dataset to compare the observations
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Figure 1: Number of observed ASes (cities) and AS-AS (city-city) links in Ark and iPlane over time.

from traceroutes collected by Ark and iPlane in 2012/2013,
especially because of LargeCDN’s larger spatial coverage.

Coverage: Figure 1 shows that the coverage of Ark has con-
sistently been increasing over the years both in terms of the
number of ASes observed and geographical span. For iPlane,
there was a sudden increase in 2011 in number of ASes ob-
served, but the geographical span is essentially consistent
across the years. That said, we do observe that there are non-
trivial blind spots in the Ark and iPlane datasets in terms of
country-level coverage relative to the LargeCDN dataset, sug-
gesting the need to revisit some of the destination selection
strategy. More importantly, the blind spots occur in precisely
the regions of the world where connectivity tends to be poor
and where there is a huge scope for improvements (§4.1).

2.2 Preprocessing and potential biases
Many traceroutes have some “failure” where one or more
of the intermediate IP hops do not respond (Table 1). Our
focus in this paper is on analyzing end-to-end latency and
stability; hence, we conservatively ignore such traceroutes.3

After this preprocessing step, we had roughly 740 million
traceroutes where all hops responded.

Our goal in this paper is to analyze the routing properties
(latency, stability, structure) for different source-destination
(SrcDst) pairs at different granularities: AS, country, and
city. To perform geographical and AS-level analysis, we map
the observed IPv4 addresses to their corresponding geoloca-
tions (city, country) and ASes. For this mapping, we used
a proprietary conversion table obtained from LargeCDN be-
cause it had significantly higher coverage relative to other
public sources such as Maxmind [4]. We do so after con-
firming that there is indeed a very high match rate (88.51%)
with the MaxMind dataset [4] for the IP addresses common
across the two conversion tables. For our observations to
be statistically meaningful, however, we need to ensure that
each SrcDst pair (at AS-, country-, or city-granularity) has a
sufficiently large number of observations. Unless mentioned

3For end-to-end analysis, we can potentially use a few more
traceroutes where the destination responds but intermediate hops
fail. For consistency across the paper, we do not report results for
the end-to-end analysis from such traceroutes and use only the
“clean” set.

otherwise, we ensure that each SrcDst pair has at least 100
observations.

Potential biases of traceroute-based analysis: There are
three known biases of using traceroute measurements that
have been pointed out in prior work. For completeness, we
highlight these and also describe why our analysis is not im-
pacted by these biases. First, traceroutes may be inaccurate
if there is some inherent load balancing or multi-path rout-
ing in place (e.g., [12]). Since our focus is mostly on the
city-, AS-, and country-level paths and on long-term sta-
bility patterns this does not induce a significant bias. Sec-
ond, the IP-level routes inferred from traceroute can be mis-
leading due to aliasing where the routers use different inter-
face IPs in sending the ICMP responses (e.g., [24]). Most
antialiasing techniques require some form of active prob-
ing. Since our analysis is based on historical traceroute

data, it is not meaningful to resolve the aliases retrospec-
tively and thus we do not perform any IP-/host-level analy-
sis. As such, our stability and structure analysis is at much
coarser granularity and is less impacted by router IP aliasing.
Third, topologies inferred from traceroute-like shortest path
routes can show spurious relationships in topology inference
(e.g., [28]). Again, our goal in this paper is not topology in-
ference per se; we use the routing graph structure mainly to
explain the latency and stability results and this is not a sig-
nificant bias.

3 Hummus: Large-Scale Traceroute-
Data Analysis Toolkit

The raw datasets from the previous section amount to
roughly 1 terabyte in uncompressed form. Analyzing such
large-scale datasets raises a number of practical scalabil-
ity challenges in terms of preprocessing (cleaning missing
traces, mapping IPs to desired granularity, etc.) and multi-
ple round of iterations to extract meaningful information.
Conventional analysis tools such as custom perl or python

scripts require impractically large analysis time due to the
associated compute and I/O bottlenecks.

To overcome these challenges, we developed Hummus —
a tool that exploits state-of-the-art data processing tools
(specifically, Apache Spark framework [42]) to enable rapid
iterative analysis of traceroute datasets. In this section, we
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give a brief description of Hummus, functionalities enabled
by Hummus, and a quick performance benchmark suggesting
that future studies can exploit Hummus to significantly reduce
the data preprocessing and analysis time.

Hummus comes with two key advantages. First, similar to
tools such as MapReduce [15], it can run on distributed clus-
ters and take advantage of data and CPU parallelism. More-
over, Hummus makes the “distributed” aspect (using multiple
machines and available cores, handling machine failures and
task scheduling, etc.) transparent to the user who essentially
writes a single-machine code, as in conventional tools. Our
own analysis, for instance, uses a cluster of 20 m2.4xlarge
machines on Amazon EC2 with a total of 160 CPU cores
and 1.3 terabytes of main memory. Second, and perhaps
more importantly, Hummus leverages the Spark framework to
provide support for avoiding disk I/O overheads by caching
datasets and intermediate results into main memory. This
leads to significant speed-ups since workloads in our mea-
surement study are extremely I/O bound due to the inherent
exploratory and iterative nature of our analysis tasks.

We emphasize that the actual code we had to write for our
analysis is almost the same as what we would have written
for a local, single-threaded script or program to analyze the
data. We have made Hummus public at https://github.com/
mosharaf/hummus for future measurement studies to quickly
analyze and extract information from large datasets. We de-
scribe the functioning of Hummus using an example below.

Example: The following scala snippet finds the number of
distinct vantage points in a dataset using the Spark4 shell:

var lines = sc.textFile("hdfs://ark-traces/")
var traces = lines.filter(l => !l.contains("-")).cache
var vps = traces.map(t => t.split(" ")(0)).distinct()

In the snippet above, the first statement reads the en-
tire dataset (the ark-traces directory in this case) from a
distributed file system (HDFS [9]) into the variable called
lines. The second statement performs the cleaning of the
dataset as described in previous section — it “filters out”
the traceroutes that exhibit negative latency values. The
“.cache” at the end of the second statement ensures that
Hummus caches traces in main memory. Finally, the third
statement takes the first field of each line (the source IP)
and counts the number of distinct vantage points. To get
the actual set of unique vantage points, we could use a sim-
ple vps.collect() statement following the above snippet. To
count the number of traces instead, we write:

var numTraces = traces.count()

Because traces was cached earlier, this query will avoid
reading from the disk and run many times faster. For ex-
ample, the former query took 98.5 seconds and the latter
237 milliseconds in our cluster. The corresponding queries
4Spark natively runs on scala, but it provides language bindings
for java and python.
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Figure 2: Example analytical tasks in the paper and cor-
responding durations on a Spark cluster vs. local ma-
chine for the Ark dataset. Speedups are in parentheses.
Note that the y-axis is in log scale.

took 94 minutes and 37 minutes on a local machine. We have
found the ability to perform quick, ad-hoc analysis to be the
biggest advantage of Hummus, saving hours of analysis time
and dramatically speeding up our analysis workflow.

Speedup: The speedups we can achieve using Hummus de-
pend on the type of analytical task we want to perform as
well as on the fraction of data that can be cached and reused.
We benchmarked the runtime of four typical analytical tasks
on our 20-machine cluster and compared it with correspond-
ing runtime on a single machine (Figure 2). The benchmark
was performed for the Ark dataset in the following sequence
with aggressive caching between steps.

1. Simple counting: First, we load and cache the entire Ark
dataset into memory to perform simple counting tasks,
similar to the ones used to produce Table 1.

2. AS-/Geo-Aggregation: Using this task, we convert each
traceroute to a sequence of ASes/geolocations, and then
group them by location, for example, to calculate aggre-
gate statistics like the latencies presented in Section 4.
We cache the AS-/Geo-converted form for the next task.

3. Route deduplication: In this case, we used the cached
AS-granularity traces to determine the unique AS-level
routes for each SrcDst pair to perform route stability
analysis (Section 5). Because of caching in the last step,
it runs much faster than other tasks.

4. Graph analysis: Finally, we convert each AS-granularity
routes to AS-AS links and calculate characteristics of the
AS graph, e.g., density and degree distributions discussed
in Section 6.

Since the above tasks occur frequently in traceroute stud-
ies, we believe that Hummus will be a useful tool for future
large-scale measurement studies.

4 Country-Level View of Latency
In this section, we analyze end-to-end Internet latency at the
granularity of countries. We focus on the country granular-

4

https://github.com/mosharaf/hummus
https://github.com/mosharaf/hummus


166166166 647647647

Figure 3: Average latency across the world in 2013 based on combined Ark, iPlane, and LargeCDN datasets.

ity to expose interesting geo-political and geo-economic ef-
fects on latencies across the world. We begin by looking at
current “state of the world” – highlighting countries with
the best and the worst latencies – using the Ark, iPlane and
LargeCDN datasets (§4.1). We then analyze how latency has
evolved over the past six years, and identify the top “gain-
ers” and “losers” (§4.2). For the latter, we use only the Ark
and iPlane datasets as the LargeCDN dataset is available only
for 2012-2013. Next, we analyze the correlation between dif-
ferent datasets highlighting their differences and commonal-
ities (§4.3). We close this section by summarizing our key
observations (§4.4).

4.1 State of the world in 2013
The goal of this subsection is to identify “well-connected”
and “not-so-well connected” countries in the current Internet
and to validate whether the three datasets conform to similar
set of observations.

Methodology: For this analysis, we restrict ourselves to the
traceroutes collected by Ark, iPlane, and LargeCDN in 2013.
We map each traceroute latency result to a particular source-
destination (SrcDst) pair at the country granularity; i.e., with
countries being the source and the destination. To obtain a
unified cross-dataset view, we pick source countries that ap-
pear in all three datasets (there are 10 such countries, de-
noted as S2013

common in Table 2). To avoid selection bias, we con-
sider all destination countries in each dataset that received
≥ 30 traceroutes from each of these ten source countries;
this reduced the number of destination countries to 125, 145
and 163 for Ark, iPlane, and LargeCDN datasets, respectively.
Finally, a unified cross-dataset view is obtained by consider-
ing only those destination countries (with ≥30 traceroutes
from each source) that appear in all three datasets; there
were 111 such countries.

We acknowledge that there are potential sources of bias

here; for instance, source countries like the United States
may adversely affect our observations due to the sheer ge-
ographical expanse. However, our results suggest that the
former effect is minimal on the aggregated result of the ten
sources. Moreover, studying latency at the granularity of the
country does not provide with information about latency of
specific regions within a country. We provide such finer-
grain information while discussing our observations as po-
tential reasons that affect the country-wide latency profile.

In terms of summarization strategies, we performed anal-
ysis using median values as well (as opposed to average val-
ues used in final presentation). We chose to show the av-
eraged results, because (a) our goal is to get a high-order
understanding connectivities across countries, and averages
suffice for this purpose; and (b) the results using median as
the summarization strategy were qualitatively similar with
an obvious disadvantage of less visibility into interesting
outlier cases.

Best- and worst-connected countries: Figure 3 shows the
geographical distribution of the average latency of the 111
destination countries as described above. At a high level, we
see that the countries roughly fall into three tiers: (1) the
best-connected countries with an average latency of around
200 ms that are largely in North America and Western Eu-
rope; (2) countries in South America, North Africa, Eastern
Europe, Southeast Asia, and Australia form the middle tier
with average around 300 ms; and (3) the rest of Africa, Mid-
dle East, South Asia, and China in the bottom tier with >400
ms average latency. That said, we do observe some anoma-
lous hotspots on closer inspection (see §4.3).

Consequently, we compute the average ranks of countries
based on their ranks in individual datasets; the resulting top-
10 highest and lowest ranked countries are shown in Table 3.
The top-10 list is also consistent with the three-tier observa-
tion from earlier. We find most of the developed countries to
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Source Countries
§4.1 S2013

common United States, Canada, Brazil, France,
Germany, Great Britain, Hong Kong,
Singapore, Taiwan, Australia

§4.2 Sall
Ark United States, Canada, Brazil, Great Britain,

Ireland, Netherlands, Spain, Japan,
South Korea, Philippines

§4.2 Sall
iPlane United States, Canada, Brazil, France,

Germany, Poland, Russia, Switzerland,
Japan, Taiwan

Table 2: Common source countries for latency analyses.

Low Latency High Latency
(Lowest-to-Higher) (Highest-to-Lower)

United States Uganda
Canada Angola

Great Britain Zimbabwe
Belgium South Africa
Bermuda Mozambique

Switzerland Kenya
France Tanzania

Liechtenstein Nepal
Mexico Uruguay

El Salvador Yemen

Table 3: Combined rank of countries based on their
ranks in Ark, iPlane, and LargeCDN datasets.

have very good connectivity across all vantage points while
some of the countries in Africa still have very poor latency
characteristics. However, we will see in the next subsection,
many of these African countries have in fact been improving
in connectivity quite significantly over the last six years.

Number of IP and AS hops: In all datasets, we observed
positive correlations between end-to-end latency and the
number of IP/AS hops in traceroutes. Specifically, Pear-
son’s r values were between 0.2 and 0.3 for latency-vs-IP
hops and between 0.3 and 0.5 for latency-vs-AS hops.

4.2 Latency evolution
While the previous subsection focused on the current state of
the Internet latency, here we dive deeper to understand how
Internet latencies have evolved over the past six years to the
current state.

Methodology: We analyze Ark and iPlane datasets for the
last six years; we ignore the LargeCDN dataset since it pro-
vides only a nine month snapshot (§2). Moreover, for this
subsection, we do not perform cross-dataset normalization
since there were very few source-destination pairs left af-
ter normalizing across datasets and across years. Instead, for
each individual dataset, we choose ten source countries that
appear every year (Sall

Ark and Sall
iPlane in Table 2), and pick

destinations that appear across all six years and have at least
30 traces to each source country. In the end, we get 93 desti-
nation countries each year for Ark and 139 destination coun-
tries each year for iPlane.
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Figure 4: Box plots showing the median, 25-th, and 75-th
percentiles across countries of the average traceroute la-
tencies to destination countries over time. Whiskers are
at 1.5× the inter-quartile range, and the red crosses rep-
resent outliers.
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Figure 5: Change in average latencies to destination
countries from 2008 to 2013 in Ark and iPlane.

Latency trends over years: Figure 4 shows the latency
trends over years for the Ark and iPlane datasets. For the for-
mer, while the median latency was consistent over the years,
the maximum latency suddenly started increasing after 2010.
We discuss this in more depth in §4.3. For the iPlane dataset,
the average, median, and maximum latencies decreased over
the years.

Next, we focus on the change in average (over the sources)
latency of individual countries. Figure 5 shows the CDFs
of the change in average latencies in Ark and iPlane between
2008 to 2013. Interestingly, we see that the average latency
of almost all countries decreased for the iPlane dataset. How-
ever, for the Ark dataset, almost 30% of the countries expe-
rience some increase in latency! Again, we discuss this in
more depth in §4.3.

Biggest losers and gainers: Figure 5 shows that with the
exception of 30% of the countries in the Ark dataset, the la-
tency has reduced between 2008 and 2013. However, it does
not provide insights into whether this change in latency oc-
curred rather gradually or all of a sudden. To understand this
(both latency improvements and regressions), we plot the la-
tency of five most-improved and most-regressed countries
from 2008 to 2013 for each dataset in Figure 6.

For both Ark and iPlane datasets, the countries whose la-
tency improved the most belong to the third tier, as iden-
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Figure 6: Changes in average end-to-end latencies for the most improved and most regressed five countries.

tified in §4.1. For Ark, some of the African countries from
the third tier could have replaced countries that show up in
Figure 6; however, these countries did not appear in 2008 or
2009, and were filtered out during cross-year normalization.
Nevertheless, Figure 6 shows that the latency improvements
have been gradual. An AS-granularity analysis shows two
key changes in 2013 traceroutes from 2008: first, new ASes
(with ASNs higher than 30000) in each of these countries
became more frequently used. Second, AS3356 and AS3549
(i.e., Level 3) became a part of many routes.

In terms of regression in observed latencies, as Figure 5
would suggest, there is no noticeable regression for the iPlane
dataset. For the Ark dataset, however, interesting trends stand
out. In particular, while there was essentially no regression
until 2010, the most-regressed countries are consistently
becoming worse since 2011. Rather surprisingly, with the
exception of Uruguay, the rest of the countries that make
an appearance belong to the top-tier countries identified in
§4.1. Digging deeper, we found that most traceroutes to-
ward Croatia, Estonia, and Lithuania in the Ark dataset were
routed through AS1257 after 2010. While it is hard to say
definitively, these three countries having this commonality
starting with the same year lends itself to the speculation
that AS1257 may in fact be responsible for higher laten-
cies for these countries starting 2010. Moreover, many of
the traceroute for these countries geographically traversed
through Sweden – another member of the most-regressed
countries in the Ark dataset!

4.3 Differences across datasets
Figure 4, Figure 5 and Figure 6 highlight several interesting
differences between the Ark and the iPlane datasets. In par-
ticular, Figure 4 shows that the Ark dataset has a large num-

ber of outliers essentially skewing the latency trend starting
2010; such outliers are not so dominant in the iPlane dataset.
Figure 5 shows that while almost all countries in the iPlane
dataset observed reduced latencies between 2008 and 2013,
almost 30% of the countries in the Ark dataset observed sig-
nificantly increased latencies. Finally, as discussed above,
Figure 6 gives interesting latency regression trends starting
from 2011. We observed several other interesting anomalies
that we have not discussed, For instance, Croatia appears in
the third tier in §4.1 with a significantly higher latency than
all of its neighboring countries; moreover, the average la-
tency for Croatia increased by almost 7× between 2008 and
2013. We believe that this is precisely due to the AS1257
anomaly discussed in reference to Figure 6.

To formally understand the differences between the
datasets, we calculated Pearson’s correlation coefficients
across datasets to find the correlation between latencies ob-
served across the three datasets. Table 4 shows that laten-
cies observed by iPlane and LargeCDN show strong positive
correlation; however, both are weakly correlated with the
latencies observed in the Ark dataset. While anomalies like
AS1257 may have adverse affect on absolute numbers, it
is unclear whether such anomalies lead to different trends.
To that end, we computed the correlation between different
datasets in terms of relative ranks of countries based on the
average latency. We find, rather interestingly, that the rela-
tive order of countries across datasets tend to be more similar
(Table 4).

To summarize, our analysis suggests that the absolute
numbers from any individual dataset should be used with
caution; however, the temporal trends (such as those in Fig-
ure 6) and relative orderings of specific data points (such as
those in Table 3) may indicate a higher level of certainty. Our
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Latency Rank

iPlane-LargeCDN 0.70 0.72
Ark-iPlane 0.18 0.57
Ark-LargeCDN 0.27 0.66

Table 4: Pearson’s correlation coefficients across datasets
in terms of latencies and ranks of destination countries.

analysis also highlights the importance of a cross-dataset
study as a means of providing a second-hand confirmation
to the observations made using a single dataset.

4.4 Summary of key observations
In this section, we analyzed the end-to-end latency at the
country granularity with a particular focus on understanding
the current state of the world, the evolution of latency across
years and the differences and commonalities across multiple
datasets. Our key observations are:

• State of the World: The countries with the lowest av-
erage latency tend to be in North America and Europe
while the countries with the worst average latency tend
to be in underdeveloped regions of Asia and Africa.

• Countries with improved latency: While underdevel-
oped regions of Asia and Africa have the worst average
latencies, these are also the ones with the most improve-
ments over the past six years.

• Countries with deteriorating latency: Some datasets
suggest that the countries with the most deteriorating la-
tency belong to Eastern Europe. However, this appears
to be an artifact of an anomaly caused by a single AS,
specifically over the last three years. Most countries ob-
serve stagnant or improved latencies.

• Overall latency trends: Overall latency has improved,
albeit slowly, over the last few years, with absolute num-
bers depending on the dataset.

• Cross-dataset studies: Absolute numbers from any
dataset in isolation may not provide a complete picture,
suggesting a need for cross-dataset analysis. However,
temporal trends and relative ordering of specific data
points observed in one dataset may hold across datasets.

5 Routing Stability
In this section, we analyze routing stability [36, 38] with
a particular focus on how stability varies across years and
across datasets. Similar to Paxson’s study [36], we focus on
route stability at the granularity of ASes and cities w.r.t. two
key notions of prevalence and persistence [36]. We then ana-
lyze path prevalence in §5.1 and path persistence in §5.2. We
then discuss the differences observed between the Ark and the
iPlane datasets in §5.3 and close the section by summarizing
the key observations in §5.4.

Metrics of stability: Paxson’s seminal study of Internet
routing behavior [36] proposed two metrics to capture route
stability: prevalence and persistence. Intuitively, prevalence

refers to the probability of observing a given route, whereas
persistence is the duration we expect to keep observing the
same route. More formally:

• Prevalence is defined as the probability of observing the
dominant route (i.e., the most frequently observed route)
for any given source-destination pair. It is computed as
the ratio of the number of times the dominant route is
observed and the total number of observations.

Prevalence =
Dominant Route’s Popularity

Number of Observations

• Persistence is used to measure the frequency at which a
particular SrcDst pair switches between different routes.

Persistence =
(
1− Number of Route Changes

Number of Observations − 1

)
Note that these metrics are distinct and cannot be inferred

from one another. For instance, consider a SrcDst pair with
three candidate routes: R1, R2, and R3. Consider the fol-
lowing two sequences of observed routes across two set of
measurements:

R1, R2, R3, R2, R3, R1, R3, R1, R2

and

R1, R1, R1, R2, R2, R2, R3, R3, R3

Note that each of R1, R2 and R3 is a dominant path in the
two sequences (i.e., they appear the same number of times)
and indeed, the prevalence for each of the routes is 0.33 in
both measurements. However, the routes in the first measure-
ment have 0 persistence while routes in the second observa-
tion have 0.75 persistence precisely because routes are stable
across consecutive observations in the second measurement.

Methodology: To perform longitudinal analysis, we re-
strict ourselves only those source-destination pairs that ap-
pear across each of the six years (in each individual dataset).
Furthermore, we only consider source-destination pairs with
at least 100 traceroutes each year. We do not perform cross-
dataset normalization to avoid vantage point bias.

We analyze the route prevalence and persistence at two
different granularities: AS-granularity (a sequence of AS
hops) and city-granularity (a sequence of cities); this is sim-
ilar to [36] with the difference that we do not study these
metrics at the host granularity. As discussed in §2, study-
ing routes at the granularity of the host requires retroactively
“unaliasing” routers that has its own limitations. In the end,
we had 5653 and 17174 AS-granularity SrcDst pairs and
9395 and 26192 city-granularity pairs for Ark and iPlane, re-
spectively.

There are several plausible limitations in our analysis on
route stability. First, imprecise AS and city resolution may
lead to skew in results. However, as discussed in Section 2,
we have cross-validated the mapping tables used for AS and
city resolution against the Maxmind tables with a high match
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Figure 7: Route prevalence between AS-AS pairs is grad-
ually increasing.

rate. Second, subsampled datasets (§2) only allow us to cap-
ture long-term persistence properties at a month-level gran-
ularity.

5.1 Prevalence analysis
We start with analyzing route prevalence at the AS-
granularity and then move on to the city-granularity.

5.1.1 AS-granularity

Figure 7 shows the distribution of prevalence of the domi-
nant routes over the years for Ark and iPlane datasets at the AS
granularity. We observe that prevalence is increasing over
the years in both datasets – median prevalence increased
from 0.66 to 0.75 in Ark and from 0.55 to 0.68 in iPlane be-
tween 2008 to 2013.

Interestingly, we find the prevalence values in our analy-
sis to be significantly higher than Paxson’s study [36]— he
observed “[..] In general, Internet paths are strongly domi-
nated by a single route [..]”. For example, Paxson found the
median prevalence at AS granularity to be 1, which is sig-
nificantly higher than our observations. We believe that the
difference may be due to the source-destination pairs cho-
sen in Paxson’s study and in our study — the focus in Pax-
son’s work was largely on university sites whereas we have
a greater view of the “commodity” Internet (using Ark and
iPlane datasets).

We found the route prevalence as the AS granularity to be
negatively correlated with average number of AS hops and
with average latency (Pearson’s r values between −0.1 and
−0.3) for both datasets. We speculate that this is because
longer AS paths are more likely to be impacted by routing
instabilities or routing convergence issues; i.e., even if just
one intermediate AS hop decides to change its policy, then
the path will likely change and the prevalence of that path
will decrease.

Most and least prevalent: Next, we focus on the destina-
tion ASes that used high (≥ 0.95) and low (≤ 0.25) preva-
lence routes. For this analysis, we picked the top-50 most

(a) High

Ark 2907, 786, 1213, 680, 553
iPlane 17908, 21565, 786, 7066, 12271

(b) Low
Ark 7922, 31377, 6621, 9829, 8167
iPlane 21433, 20940, 16586, 17974, 6983

Table 5: Top-5 destination ASes associated with the high-
est/lowest prevalence values.
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Figure 8: Route prevalence between city-city pairs is
gradually increasing. The absolute numbers are smaller
than that at the AS-granularity.

frequently occurring destination ASes5 in each set (high
and low prevalence) for each year and took the intersection
across six years. Table 5 presents the top-5 destination ASes
consistently associated with high and low prevalence routes
in both datasets.

We found that, in both datasets, ASes associated with
high prevalence routes have low in-degree and vice versa.
In particular, most high-prevalence ASes in Table 5 have
in-degrees around 5, whereas the ASes associated with low
prevalence routes have in-degrees around 30. As the in-
degree increases, nodes may have larger number of options
for load balancing, leading to lower path prevalence. Finally,
we note that high- or low-prevalence ASes are not restricted
to any particular geolocation.

5.1.2 City-granularity

Figure 8 shows that the median prevalence at the city-level
granularity is less than 0.20. This is in sharp contrast to
Paxson’s observations that suggested very high prevalence
(≥ 0.97) at the city granularity. (Again, we believe that Pax-
son’s study found very high prevalence at city-level because
it mostly used academic sites with a small number of tightly
interconnected cities in the academic backbone. In contrast,
our dataset covers much more of the “commodity” Internet,

5Because the number of source ASes were much smaller than that
of destination ASes, many source ASes appear in both high and low
prevalence sets; hence, we focus only on destination ASes.
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(a) High

Ark 2907, 1213, 12271, 3320, 4713
iPlane 21565, 7080, 5786, 11351, 7066

(b) Low
Ark 7922, 22394, 6621, 8167, 9829
iPlane 16586, 9829, 21433, 6983, 8151

Table 6: Top-5 destination ASes associated with the high-
est/lowest persistence.

and thus exhibits more flux.) Similar to Figure 7, we see that
prevalence at city-granularity is also increasing over time.

Following the same methodology as before, we calculated
destination cities that used the most (≥ 0.75) and least (≤
0.05) prevalent routes. While high prevalence routes end in
many cities across the world, we found many low prevalence
routes to be destined toward the west coast of United States
and the north-east coast of China.

5.2 Persistence analysis
We now analyze the route persistence using our Ark and
iPlane datasets. We start our analysis at the AS granularity,
followed by analysis at the city granularity.

5.2.1 AS-granularity

Figure 9 shows the distribution of persistence over the years
for Ark and iPlane datasets at the AS granularity. We found
route persistence to be highly correlated with route preva-
lence in the previous subsection (Pearson’s r values between
0.75 and 0.8). Consequently, most of the observations about
prevalence qualitatively hold true for route persistence as
well. For example, persistence is increasing over the years
in both datasets – median persistence improved from 0.76 to
0.88 in Ark and from 0.58 to 0.78 in iPlane between 2008 to
2013. Similar to prevalence, the average number of AS hops
and average end-to-end latency are also negatively correlated
with persistence.

As earlier, we identified the destination ASes that were
consistently involved in high (≥ 0.95) and low (≤ 0.25)
persistence routes (Table 6). While high-persistence desti-
nations had nothing in common across datasets, AS5089,
AS6983, AS8151, AS8167, AS9829, and AS20940 ap-
peared in low-persistence pairs in both datasets (some not
among the top-5). Reenforcing the strong correlation be-
tween prevalence and persistence, we observe significant
similarities between Table 5 and Table 6 (especially for low
prevalence and low persistence).

5.2.2 City-granularity

Similar to the case of route persistence at the AS-granularity,
route persistence at the city granularity (Figure 10) is
strongly correlated with route prevalence at the city gran-
ularity (Pearson’s r values over 0.8). We also calculated
destination cities with the most (≥ 0.75) and the least (≤
0.05) persistent routes (not shown for brevity). However, un-
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Figure 9: Route persistence between AS-AS pairs shows
a upward trend in both datasets.
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Figure 10: Route persistence at the city granularity is im-
proving over time.
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Figure 11: Pearson’s correlation coefficients (r) between
Ark and iPlane datasets for prevalence and persistence
over the years at the AS- and city-granularity.

like prevalence, there is no concentration of low-persistence
cities in the coasts of United States or China.

5.3 Differences across datasets
Our analysis so far was restricted to analyzing trends within
each dataset individually. Note from Figure 7 that the ab-
solute values of route prevalence differ significantly across
datasets. We found the fraction of source-destination pairs
with low prevalence routes to be similar in both datasets (less
than 0.20), the routes in the Ark dataset have better preva-
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lence with respect to the median- and the high-prevalence
routes when compared to the iPlane dataset.

To understand the difference between the two datasets
more formally, we compute the Pearson’s correlation coeffi-
cients for the common SrcDst pairs in each year (Figure 11).
We observe that both route prevalence and persistence across
datasets at the AS-granularity are strongly correlated. Fur-
thermore, the agreement between Ark and iPlane is slowly
increasing. At the city-granularity, Ark and iPlane appear to
have a weaker correlation but their agreement is increasing
at a faster rate.

5.4 Summary of key observations
In this section, we analyzed the route stability in Ark and
iPlane datasets at the AS and the city granularity, with a focus
on how stability has changed over the years and how it varies
across datasets. Our key observations are:

• Overall trend: We find that the route prevalence and per-
sistence at both the AS- and the city-granularity is in-
creasing over the past six years, with improvements as
high as 20% over the six year period.

• Absolute numbers: In a sharp contrast to observations
made in prior work [36], we find the route prevalence
and persistence to be significantly lower at the AS level
(0.75 in our analysis versus 1 in [36]) and even lower at
the city level (0.20 in our analysis versus 0.97 in [36]).
We attribute this difference to the fact that prior work an-
alyzed routes between university sites while our analysis
is done on the “commodity” Internet.

• Prevalence and persistence vs. latency and multi-
homing: We find route prevalence and persistence to be
weakly inversely correlated with end-to-end latency and
number of AS- or city-hops. Furthermore, we find the
in-degrees of destination ASes to be inversely correlated
with prevalence and persistence.

• Cross-dataset study: Similar to Section 4, we find the
trends in one dataset to hold well across datasets. How-
ever, absolute numbers from any dataset in isolation do
not seem to provide a complete picture (although they
strongly correlate), suggesting the need for validation us-
ing a cross-dataset analysis.

6 Routing Graph Structure Analysis
In this section, we analyze the structure of the routing graph
to analyze potential root causes for the observations made in
Section 4 and in Section 5. To do so, we map the traceroute

dataset from Ark and iPlane into a graph (for each individual
year) and analyze the evolution of these graphs in terms of
key structural properties. We do acknowledge that Internet
routing is a complex multi-faceted phenomenon; latency and
path stability depend on several other hidden variables (e.g.,
protocol convergence, business relationships, node/link fail-
ures) and routing/graph structure is only one aspect. Never-
theless, we believe this structural analysis is useful as a tool
to shed light on aggregate trends in latency and stability.

Methodology: Our goal is to identify the potential causes
for changes observed in end-to-end latency and path stability
over the years. Since a single-year snapshot (such as the one
from LargeCDN) does not serve our purposes, we focus on
the Ark and iPlane datasets. We map the yearly datasets from
Ark and iPlane to an AS-granularity and a city-granularity
graph — ASes and cities in the traces represent the nodes
in these graphs and the pairwise bigrams (i.e., direct links)
in the traces represent corresponding links. Moreover, we do
not sample nodes and links since the intermediate nodes and
links contribute to the end-to-end latency and path stability.
For a given dataset, we make sure that the set of nodes (ASes
or cities) remain the same in each year, while the set of links
between them can change.

For brevity, we present the results obtained only for Ark
throughout the rest of this section. We choose this because
Ark has bigger AS- and city-granularity graphs than iPlane
(Figure 1). Furthermore, in some plots, we present results
only for 2009, 2011, and 2013 for ease of exposition.

Metrics: We consider two primary metrics for our analysis.
First, the density or the average degree of the graph defined
as the ratio of the number of links to the number of nodes
in the graph. We complement this metric with a longitudi-
nal analysis of degree distributions over the years and with
a study of how degrees of “popular” nodes in the graph is
changing over the years.

Second, we use clustering coefficient of nodes, a funda-
mental measure that quantifies how tightly-knit the commu-
nity is around a particular node. Specifically, the clustering
coefficient of a node u in the graph is the number of trian-
gles u belongs to normalized by the maximum possible num-
ber of such triangles [40]. That is, for an undirected graph
G = (V,E) and a node u, the clustering coefficient c(u) is
measured as:

c(u) =
2Tu

N(u)(N(u)− 1)

where Tu denotes the number of triangles u belongs in and
N(u) is the number of neighbors of u. The average cluster-
ing coefficient of G is defined as the sum of the individual
clustering coefficients of each node divided by the number
of nodes.

As discussed earlier, these metrics may neither be suffi-
cient nor be perfectly accurate to provide a complete picture
for the observations made in the previous sections. Neverthe-
less, we use them to gain interesting insights into the evolu-
tion of the underlying topologies.

6.1 Density and degree distribution
Figure 13 shows the density of the AS-granularity and city-
granularity graphs for the Ark dataset. Note that the city-
granularity graph is denser than that at the AS-granularity,
because ASes cover large geographical regions and connect
many cities using intra-AS links. The table shows that the
density of each of the graphs has gradually increased over
the years (for ASes/cities that appear across all years). Each
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Figure 12: Degree distributions of the top-100 ASes and
cities in the Ark dataset. High-degree entities are connect-
ing to more over time.
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Figure 13: AS- and city-granularity graphs in the Ark
dataset are getting denser over time.

node in the graph connecting to more nodes suggests that,
ignoring routing policies, the average number of hops be-
tween node pairs reduce over the years, leading to potential
reductions in latency.

To dig deeper, we computed the change in degrees of the
“popular” (high-degree) nodes over years. Figure 12 zooms
into the 100 highest-degree ASes and cities. We observe that
while the average degree for the entire graph has changed by
at most 2.5, the degree of popular nodes have increased by
a much larger number over the years; for instance, the av-
erage degree in the AS-granularity graph increased by less
than 1 but the degree of the most popular AS increased by
almost 1500. A closer look at the high-degree ASes reveal,
as expected, that these are all Tier 1 ASes: in both datasets
the highest-degree AS in each year was AS3356; AS7018
and AS174 were the second- and third-highest from 2008 to
2010, and they reversed the order from 2011 to 2013. We
speculate that by way of directly connecting to (AS/city cor-
responding to) the core directly, nodes in the graph observe
reduced end-to-end latency and increased path stability. Fi-
nally, we found New York, Chicago, London, and Frankfurt
consistently among the best-connected cities in the world.

6.2 Clustering coefficient
The increase in degree of popular and Tier-1 ASes provides
one possible root cause for reduction in end-to-end latency
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Figure 14: Average clustering coefficients for Ark at the
AS- and city-granularity are increasing.
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Figure 15: CDFs of clustering coefficients for AS- and
city-granularity graphs for Ark.

and increase in path prevalence. In this subsection, we ana-
lyze changes, over the years, in another structural property
of the graph — clustering coefficient. As discussed earlier,
a higher clustering coefficient suggests more closely knit
neighborhoods. For instance, at two extremes are the trees
(with each node having clustering coefficient of 0) and com-
plete graphs (with each node having clustering coefficient of
1), with the latter suggesting paths of fewer hops between
node pairs.

Figure 14 shows that, over the past six years, the average
clustering coefficient has increased by more than 23% for the
AS-granularity and by almost 17% for the city-granularity
graph for the Ark dataset. Increase in average clustering coef-
ficient suggests that the graph has become more tightly knit;
as a result, the average number of hops between node pairs
has reduced. As discussed earlier (§4.1), this positively cor-
relates with reduction in latency observed in Section 4.

Figure 15 shows the CDF for node clustering coefficients.
We make two observations. First, the median clustering co-
efficient has increased by more than 50% between 2009 and
2013 for both AS-level and city-level graphs. This is a signif-
icant increase, suggesting a quick departure from a tree-like
topology to a much flatter topology. Indeed, this provides a
possible second reason for reduction in average number of
hops and in turn, reduction in end-to-end latency between
node pairs.

The second observation from Figure 15 follows from the
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very definition of clustering coefficient. In particular, con-
sider a node with degree 5 and suppose it belongs to 5 tri-
angles; then, the node has clustering coefficient of 0.5. Now
suppose the degree of the node increases by 2× to 10 and
the number of triangles the node belongs to increases by
4× to 20; then, the new clustering coefficient of the node
is 20/45 < 0.5. That is, nodes whose degree increases over
the years must be contained in many more triangles for an
increase in their clustering coefficients. Comparing it with
the observations made in the previous subsection, it is highly
unlikely that the clustering coefficient of popular nodes is in-
creasing over the years (since their degree is increasing sig-
nificantly). Indeed, we confirmed this intuition — the clus-
tering coefficient of all the popular nodes decreased between
2009 and 2013.

The above indicates that the clustering coefficient of
nodes that have small degree is increasing much more
rapidly over the years. As a result, these nodes are con-
forming to a significantly more clustered topology (form-
ing denser communities), which assumably leads to paths of
much fewer hops to other non-core nodes in the network.

7 Related Work

Measurement and analysis tools: Understanding Inter-
net path properties requires developing tools for collect-
ing, de-noising, and extracting interesting observations from
data. A number of tools have been developed in the past
(e.g., [1, 7, 23, 30, 32]). While these tools differ in terms of
underlying mechanism to collect data, source and destina-
tion selection, coverage etc., they have one commonality —
they generate enormous amounts of data. Even after sam-
pling a part of data, extracting meaningful information re-
mains a time consuming process. Our work complements
the above measurement tools. Using a state-of-the-art data
analytics platform, we developed an analysis suite (§2) that
will help future studies to quickly extract information from
these large datasets.

Studies of Internet path properties: Paxson [36] per-
formed the first-of-its-kind study of Internet path properties
using 40000 measurements between 37 Internet sites. The
study provided insights into routing pathologies, routing sta-
bility, and routing asymmetry. This motivated many follow-
up studies on analyzing network latencies [19, 21, 32], path
stability [11, 12, 38], path availability [16, 18, 39, 43] and on
understanding the structure of the network [6,20,25,27]. Our
work follows in the spirit of this rich body of measurement
work, enabled by the availability of much larger-scale mea-
surements from multiple datasets over a longer timeframe.

Topology studies: There is a rich body of work in under-
standing Internet topology, peering relationships, and their
evolution over the years. This includes work on showing
power-law relationships [17], explaining the rise of such
power-law relationships [29], their use in topology genera-
tors [33], and techniques for inferring hidden AS-links [34].

More recent studies have shown emerging trends such as
“flattening” [20, 27] and the rise of Internet exchange points
(IXPs) [5, 8] that have made the AS-level graph denser. Our
analysis of routing graph structure is naturally related to such
topology measurements. While our observations are largely
in line with this prior work, we use this structural analysis
more specifically to explain the latency and stability trends
we see.

Applications: traceroute measurements have been used in
the past to predict Internet path performance [19, 31, 32],
to track and predict Internet path changes [13], to debug
failures [16], to identify Internet black holes [22], to iden-
tify long term changes in underlying network routing topol-
ogy [20, 27], and to select CDN servers among the available
pool of servers [26]. We add a new dimension to be consid-
ered in future studies using existing datasets — identifying
and de-touring the blind spots and biases in one dataset by
performing a cross-dataset analysis. Indeed, studies similar
to above can also benefit by our observations about the grad-
ual changes in the Internet path properties across years.

8 Lessons and Implications
We conclude with some key lessons learned and implications
for future research both inside and outside the measurement
community.

• Blind spots: Our country-level analysis revealed that even
the largest measurement datasets can have key weak-
nesses. For example, Ark relies on random sampling of
prefixes (/24 or routable prefixes) to select destination IP
addresses, creating a large number of blind spots pre-
cisely in Africa where Internet traffic and adoption is
likely to grow exponentially in the future. Even though
African countries were among the most improved (§4),
we could not get enough information on many of them,
because random sampling of prefixes often missed 1.55%
of IP addresses located in Africa.6 While iPlane uses a
fixed set of prefixes, it still has a large number of blind
spots. An ideal solution, for the lack of a “complete” cov-
erage, would be to use a careful combination of both ran-
dom and selective destination selection strategies.

Furthermore, even with these larger scale measure-
ment datasets, we still get a very Euro- and US-centric
view of the broader Internet landscape as most of the van-
tage points (at least the most stable ones) are located in
Europe and US. Consequently, we may not have good
visibility into localized and regional phenomena; e.g., lo-
cal IXPs or country-level Internet structures. This is es-
pecially relevant as content providers increasingly seek
to localize the bulk of their data transfers [26].

• Need for cross-dataset validation: The anecdote from
Section 4.3 regarding Ark once again reiterates a well-
known but nevertheless important cautionary tale for In-
ternet measurement research—the need for cross-dataset

6Calculated from our IP-to-AS/Geolocation conversion table.

13



validation of findings. If we had relied solely on Ark, we
may have incorrectly concluded that several Eastern Eu-
ropean nations are seeing degraded connectivity. But in
reality, that is an artifact of the specific view that the Ark
“lens” gives us as we do not find similar trends using
iPlane and LargeCDN.

• Path toward potential improvements: While Internet con-
nectivity is improving, we do observe that there is still
significant room for improvement in many geographical
regions (e.g., Africa). Some of these regions can also ben-
efit from understanding the roadmaps of how/why some
of the biggest gainers have improved their latency: for
example, AS58587 (Fiber@Home Limited, Bangladesh)
became a prominent last hop in AS routes to Bangladesh
as Bangladesh’s average latency improved. The rise of
new last-hop ASes was common for several other most-
improved countries (§4.2). Combining this with the in-
creasing stability of AS-granularity paths (§5), we spec-
ulate that last-mile upgrade is quite possibly the best way
to improve Internet connectivity.

• Impact on applications: The generally increasing trends
in long-term path stability (§5) as well as graph density
and clustering (§6) bode favorably for applications that
rely on path/latency prediction [14, 30]. This also has fa-
vorable implications for content providers and CDNs as
they naturally benefit from lower latency and increased
routing stability [26, 37, 41]. That being said, we also
note that given the trends toward “localizing” bulk trans-
fers [10], content providers and the measurement sys-
tems that they rely on (e.g., [3]), will also need to deploy
deeper lenses to avoid the aforementioned blind spots.
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