
TypeDevil: Dynamic Type Inconsistency Analysis for
JavaScript

Michael Pradel
Parker Schuh
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-171
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-171.html

October 7, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

This research is supported in part by NSF Grants CCF-0747390, CCF-
1018729, CCF-1423645, and CCF-1018730, and gifts from Mozilla and
Samsung.

TypeDevil:
Dynamic Type Inconsistency Analysis for JavaScript

Michael Pradel, Parker Schuh, and Koushik Sen
EECS Department

University of California, Berkeley

Abstract—Dynamic languages, such as JavaScript, give pro-
grammers the freedom to ignore types, and enable them to write
concise code in short time. Despite this freedom, many programs
follow implicit type rules, for example, that a function has a
particular signature or that a property has a particular type.
Violations of such implicit type rules often correlate with prob-
lems in the program. This paper presents TypeDevil, a mostly
dynamic analysis that warns developers about inconsistent types.
The key idea is to assign a set of observed types to each variable,
property, and function, to merge types based in their structure,
and to warn developers about variables, properties, and functions
that have inconsistent types. To deal with the pervasiveness of
polymorphic behavior in real-world JavaScript programs, we
present a set of techniques to remove spurious warnings and
to merge related warnings. Applying TypeDevil to widely used
benchmark suites and real-world web applications reveals 15
problematic type inconsistencies, including correctness problems,
performance problems, and dangerous coding practices.

I. INTRODUCTION

Dynamic languages, such as JavaScript, are becoming in-
creasingly popular for client-side and server-side web applica-
tions, traditional desktop applications, and mobile applications.
One reason for this popularity is that dynamic languages do
not require programmers to annotate their programs with type
information or to follow any strict typing discipline. This free-
dom allows programmers to write concise code in short time.
However, the freedom offered by dynamic languages often
comes at the cost of hidden bugs. Since the language does not
enforce any typing discipline, no compile-time warnings are
reported if a program uses and combines types inconsistently.
Even worse, many dynamic languages silently coerce values
from one type into another type, leading to incorrect behavior
without any obvious sign of misbehavior.

Figure 1 shows three type-related problems that may easily
remain unnoticed. Each example is a previously unreported
problem that we find in a popular JavaScript benchmark.
Figure 1a shows code that concatenates strings into a larger
string. Unfortunately, concatenating the initially undefined
variable dnaOutputStr with a string results in a string that
starts with “undefined”. Figure 1b shows code that pads a
given string with empty characters until it reaches a particular
length. Unfortunately, the function returns a String object
when the given string already has the desired length and
a primitive string value otherwise, which is problematic
because these two types behave differently. Figure 1c shows
the constructor of an object and code that modifies the proper-
ties of this object. Unfortunately, this modification overwrites

properties of type number with undefined, which causes
a crash when running the program with a configuration that
slightly differs from the default configuration. Finding these
problems is difficult because they do not lead to obvious
signs of misbehavior when executing the programs. How can
developers detect such problems despite the permissive nature
of JavaScript?

All three examples in Figure 1 share the property that
a variable, property or function has multiple, inconsistent
types. In Figure 1a, variable dnaOutputStr holds both the
undefined value and string values. In Figure 1b, function
leftPad sometimes returns an object and sometimes returns
a primitive string value. In Figure 1c, variable gb contains
objects that have different structural types.

This paper exploits the observation that inconsistent types
often correlate with problems, and presents TypeDevil, a
mostly dynamic analysis that detects inconsistent types in
JavaScript programs. The analysis associates type information
with each variable, property, and function, and records the
types of values observed at runtime. Based on this runtime
information, the analysis merges types that are structurally
equivalent. Finally, the analysis reports potential problems
caused by variables, properties, and functions that have multi-
ple inconsistent types. To avoid unnecessary warnings caused
by source code that is intentionally polymorphic, the approach
aggressively filters and merges warnings, for example, based
on “programmer beliefs” [14] inferred from the source code
and based on dataflow relations between variables.

Our work is enabled by two observations about JavaScript
code that occurs in practice. First, we observe that, even
though it is not required by the language, most code follows
implicit type rules. We speculate that programmers voluntarily
use consistent types because it facilitates humans to reason
about code. Second, we observe that inconsistent types either
originate from highly polymorphic yet correct code locations,
or from code locations where occasional inconsistencies cor-
relate with problems that developers should be aware of.
TypeDevil leverages these two observations by inferring types
from runtime behavior and by reporting occasionally observed,
inconsistent types as likely problems.

Two kinds of existing analyses reason about types in dy-
namic languages. First, static and dynamic type inference aims
at assigning types to variables and functions to show that the
program is well-typed [4], [15], [18], [20], [21], [37]. Due to
the inherent difficulties of analyzing dynamic languages and

(a) (b) (c)

Program regexp-dna (SunSpider) date-format-xparb (SunSpider) GB Emulator (Octane)
Source code1 var dnaOutputStr;

2 for (i in seqs) {
3 dnaOutputStr += seqs[i].source;
4 }

1 String.leftPad = function(val, size, ch) {
2 var result = new String(val);
3 if (ch == null) ch = " ";
4 while (result.length < size) {
5 result = ch + result;
6 }
7 return result;
8 }

1 function GameBoyCanvas() {
2 this.width = 160;
3 this.height = 144;
4 }
5 function initNewCanvas() {
6 gb.canvas.width = gb.canvas.clientWidth;
7 gb.canvas.height = gb.canvas.clientHeight;
8 }

Inconsistent
types

Variable dnaOutputStr has types
string and undefined

Function leftPad has return types object
and string

Variable gb has inconsistent object types (e.g.,
gb.canvas.width has types number and
undefined)

Problem Incorrect string value “undefinedGTAGG..” Return values behave differently depending
on the length of the given string

Crash when changing the emulator settings

Fig. 1. Real-world problems related to inconsistent types.

due to intentionally polymorphic code, this approach either
requires type annotations, or it leads to various type errors
that include many false positives. TypeDevil has a relatively
low number of false positives because it uses a mostly dy-
namic analysis, because it focuses on individual problematic
code locations instead of inferring sound types for the entire
program, and because it uses a set of novel techniques to
deal with intentionally polymorphic code. Second, optimizing
JIT compilers leverage static and dynamic type inference to
emit code specialized towards particular runtime types [19],
[22], [31]. Instead of improving the performance of existing
programs, TypeDevil warns developers about problematic code
locations.

To evaluate TypeDevil, we apply it to popular JavaScript
benchmarks and to real-world web applications. In total, the
analysis reports 33 type inconsistencies, of which at least 15
correspond to problematic code. The detected inconsistencies
lead to incorrect but not necessarily crashing behavior, such
as Figure 1a, expose error-prone programming practices, such
as Figure 1b, and cause crashes and other unintended behavior
in executions that are slightly different from the analyzed
executions, such as Figure 1c. The most prevalent root cause
for inconsistent types is that a variable, property, or function
is unintentionally undefined. However, simply reporting all
occurrences of undefined would not only report many false
positives but also miss four of the 15 problems that TypeDevil
detects.

In summary, this work contributes the following:

• Inconsistent types as likely problems. We present the no-
tion of inconsistent types as a pattern of likely problems
in programs written in dynamic languages. (Section III)

• An analysis to find inconsistent types. We present Type-
Devil, a practical, mostly dynamic analysis that detects
inconsistent types in JavaScript programs. In contrast to
traditional type inference, TypeDevil does not aim at
showing the well-typedness of a program, but it focuses
on individual variables, properties, and functions that
have inconsistent types. (Section IV)

• Empirical evidence. We report the results of an extensive
evaluation with widely used JavaScript programs, and

we show that TypeDevil reveals previously unreported
problems in these programs. (Section V)

II. OVERVIEW AND EXAMPLE

This section illustrates our approach with a simple
JavaScript program. The program in Figure 2a defines a func-
tion addWrapped() that takes two numbers, each wrapped
into an object, and returns the sum of the two numbers. If only
one argument is given, then the function returns the number
wrapped by this argument. Wrapped numbers are objects with
a property v that contains the number. To wrap a number, one
can either call the Wrapper() constructor or use an object
literal, such as {v:23}. The program calls addWrapped()

three times, passing a single argument in line 11, and two
arguments in each of lines 12 and 14. The intended behavior
of the program is that all three calls of addWrapped() return
23. However, the call in line 14 accidentally uses a string "18"

instead of the number 18. Since JavaScript silently coerces
values from one type to another, the program executes without
any warning. Line 3 coerces the number 5 into a string "5"

and then concatenates it with the string "18". As a result, the
call in line 14 returns "185", and not the expected number
23.

TypeDevil detects such problems by dynamically analyz-
ing the program and by reporting variables, properties, and
functions that have inconsistent types. The approach has three
steps, which we illustrate in the following.

Gathering Type Observations: The first step is a dynamic
analysis that gathers type observations for each variable,
property, and function that the analyzed execution refers
to. TypeDevil instruments the program by adding code that
records the type of each reference. Types in JavaScript are
structural types, and TypeDevil represents types as a record of
typed properties. For example, the type of the object created
in line 11 is a record with a single entry v of type number. To
bound the number of types, the analysis considers all objects
allocated at the same code location and all functions defined
at the same code location to have a single type.

2

(a) Source code:

1 function addWrapped(x, y) {
2 if (y) {
3 return x.v + y.v;
4 } else {
5 return x.v;
6 }
7 }
8 function Wrapper(v) {
9 this.v = v;

10 }
11 addWrapped({v:23});
12 addWrapped({v:20},
13 new Wrapper(3));
14 addWrapped({v:"18"},
15 new Wrapper(5));

(b) Type observations (sorted by first
appearance):

Base Prop. Type Lines

object1 v number 11, 5
frame addWrapped y undefined 2
frame addWrapped x object1 5
function addWrapped return number 11, 12
object2 v number 12, 3
frame Wrapper v number 9
object3 v number 12, 3
function Wrapper return object3 12
frame addWrapped y object3 2, 3
frame addWrapped x object2 3
object4 v string 13, 3
object5 v number 13, 3
function Wrapper return object5 13
frame addWrapped y object5 2, 3
frame addWrapped x object4 3
function addWrapped return string 13

(c) Condensed type graph:

function
addWrapped

return

function
Wrapper

return

object1235

object4

v

string

number

undefined
frame
addWrapped

x
y

v

frame
Wrapper

v

(d) Reported type inconsistencies:
• Argument x of addWrapped() has inconsistent object types:
x.v is number (lines 11 and 12) and string (line 14).

• addWrapped() has inconsistent return types number
(lines 11 and 12) and string (line 14).

Fig. 2. Running example.

Executing the program in Figure 2a yields the type ob-
servations summarized in Figure 2b.1 Each row of the table
describes the types observed for a property of a base type. We
use the same representation of type observations for types of
properties, variables, and functions. For example, the first row
describes that the object created at line 11, called “object1”,
has a property v of type number. The second row describes
that the local variable y of addWrapped() is observed to have
type undefined. The fourth row describes that the return type
of function addWrapped() is observed to be number.

Summarizing Observations into a Type Graph: After
gathering type observations at runtime, TypeDevil merges all
observations into a type graph. Nodes in the graph represent
types and labeled edges represent properties. An edge p from
type t1 to type t2 means that t1 has a property p of type
t2. Figure 2c shows the type graph for our example. For
illustration purposes, we represent the outgoing edges of a
node as a record. TypeDevil merges type nodes that are
structurally equivalent. For example, object1, object2, object3,
and object5 all have a single property v of type number, and
therefore are represented as a single type node object1235.

Reporting Problematic Inconsistencies: The final step of
TypeDevil is to report type inconsistencies. Initially, the anal-
ysis considers each property of a type as inconsistent where
the type node has more than one outgoing edge labeled with
this property. In Figure 2c, these property edges are dashed.
For example, the property that represents the return value of
addWrapped() is inconsistent because it points both to the
number node and to the string node. To avoid overwhelming
developers with spurious and duplicate warnings, TypeDevil
aggressively filters and merges inconsistencies. For the ex-
ample, the analysis filters the inconsistency of the argument
y of addWrapped() because the program expects y to be
undefined, as indicated by the check in line 2. As a result,

1The table omits some type observations for brevity.

TypeDevil reports two warnings (Figure 2d), which point the
developer to the incorrect argument passed to addWrapped()

in line 14 and to the resulting incorrect return value.

III. PROBLEM STATEMENT

In the following, we define the most important terms used
throughout the paper and the problem we are addressing.

Definition 1 (Type)
A type is either a primitive type (boolean, number, string,
undefined, or null) or a record type P → 2T that maps named
properties to sets of types. A record type represents one of the
following kinds of types:
• An object type, where properties represent object proper-

ties.
• An array type, where properties represent indices.
• A function type, where the ”this” and ”return” prop-

erties represent the receiver and the return value, respec-
tively.

• A frame type, where properties represent local variables
of a function.

Treating objects, arrays, functions, and function call frames
as a single concept simplifies the description and implemen-
tation of TypeDevil. Each property of a record type maps to a
set of types because a property may point to multiple different
types. The record of a function type does not include the
parameters of the function because parameters are treated as
local variables in the function’s frame type. Our representation
of types ignores the prototype of an object.

Two types are consistent if both types are the same, if both
types are structurally equivalent, or if one type is a structural
subtype of the other type.

Definition 2 (Consistent Types)
Types t1 and t2 are consistent, t1 ∼ t2, if and only if one of the
following holds:

3

• Both t1 and t2 are primitive types and t1 = t2.
• Both t1 and t2 are record types and all of the following

hold:
– kind(t1) = kind(t2), where kind(t) is either object,

array, function, or frame.
– The sets of properties of t1 and t2 are equal or a subset

of each other: dom(t1) ⊆ dom(t2) or dom(t2) ⊆
dom(t1).

– All common properties of t1 and t2 point to types that
are consistent with each other:
∀p ∈ dom(t1) ∩ dom(t2)
∀t′1 ∈ t1.p . ∃t′2 ∈ t2.p . t′1 ∼ t′2 and
∀t′2 ∈ t2.p . ∃t′1 ∈ t1.p . t′1 ∼ t′2

We say that two types are inconsistent if they are not
consistent according to the above definition. The problem
addressed in this paper is how to detect inconsistent types
that are likely programming errors in JavaScript programs.

IV. APPROACH

This section describes the TypeDevil approach in detail.

A. Gathering Type Observations

The first step of TypeDevil is to instrument and execute
the program to gather information about the types of vari-
ables, properties, and functions. The result of this first step
is a set of type observations. Each observation is a triple
(base, prop, type), where base is the name of a type, prop
is the name of a property of the base type, and type is the
name of the type that prop is observed to refer to.

To gather type observations, TypeDevil instruments the
program in two ways. First, we add instrumentation code that
creates type observations and that stores them into a global
set of observations. Second, we add instrumentation code that
attaches a shadow value to each object. This shadow value
stores the name of the type we associate with the object, to
easily access the object’s type name whenever the object is
referred to. The dynamic analysis is implemented on top of
Jalangi; details on the instrumentation and the implementation
of shadow values are available in [36]. The following describes
the instrumentation points where TypeDevil adds code.

Object literals: To keep track of the type of newly created
objects, TypeDevil adds instrumentation code to every object
literal. The instrumentation code creates one type observation
for each property of the object literal, where base is “object”
concatenated with a unique identifier of the object literal’s
source code location, prop is the name of the object property,
and type is the type name of the object that prop refers
to. The instrumented code stores the value of base as the
shadow value of the newly created object. For example, the
object literal in line 11 of Figure 2 leads to a type observa-
tion (”object1”, ”v”, ”number”). When executing this line,
TypeDevil attaches the shadow value ”object1” to the newly
created object.

Get property and put property: To keep track of the types
of object properties, TypeDevil adds instrumentation code to
every source code location that reads or writes an object’s
property. The instrumented code creates a type observation
where base is the type name of the base object, prop is
the name of the property, and type is the type name of the
value that is read or written. These type observations may
replicate information that is already known. We nevertheless
record a type observation at every property access because
properties may be modified by uninstrumented code, such as
native functions. For example, line 3 of Figure 2 reads property
v of the base object x. When this line is reached for the first
time (via the call in line 12), it leads to a type observation
(”object2”, ”v”, ”number”).

Function literals: To identify function types, TypeDevil
adds instrumentation code to every function literal. The in-
strumented code attaches to the new function object a shadow
value, which is ”function” concatenated with a unique
identifier of the function definition site. The value will be
used to identify the function’s type whenever this function
is referred to. For example, when executing the function
declaration statement in line 1 of Figure 2, the instrumented
program attaches the type name ”function addWrapped” to
the newly created function object.

Function calls: To keep track of function types, Type-
Devil adds instrumentation code to every function call. The
instrumented code records the call’s receiver type and return
type by creating type observations where base is the name of
the function type, prop is ”this” and ”return”, respectively,
and type is the type of the receiver object this and the return
value, respectively. If the function has no return value, the pro-
gram records a type observation where type is ”undefined”.
At function call sites, TypeDevil does not record the types of
function parameters; instead, these observations are recorded
when the callee accesses the arguments. If the function call
is a constructor call, TypeDevil also creates type observations
for the newly created object, as described above for object
literals. For example, when executing the call in line 11
of Figure 2, TypeDevil records the following type observa-
tions: (”function addWrapped”, ”this”, ”window”) and
(”function addWrapped”, ”return”, ”number”), where
”window” refers to the global object, which in JavaScript
is assigned to this in the absence of another receiver.

Function enter: To enable the analysis to keep track
of the type of local variables, TypeDevil instruments each
function body by adding code at the function entry. The added
code associates the name of the frame type of the function with
the current stack frame object. The name of the frame type is
”frame” concatenated with a unique identifier of the source
code location of the function definition. The analysis uses the
frame type to keep track of the types of local variables of the
function. For example, TypeDevil adds instrumentation code
to the entry of the function defined in line 1 of Figure 2. When
entering this function, the instrumented program associates the
name ”frame addWrapped” with the current stack frame.

4

Variable reads and writes: To keep track of the type of
local variables, including function parameters, TypeDevil adds
instrumentation code to every variable read and write. The
instrumented program creates a type observation where base
is the frame type of the stack frame that defines the variable,
prop is the name of the local variable, and type is the type of
the value that is read or written. For example, when the call
in line 11 of Figure 2 leads to a read of variable y in line 2,
the instrumented code adds a type observation that records the
variable’s type: (”frame addWrapped”, ”y”, ”undefined”)

In JavaScript, a variable can be a local variable of the
function f that is currently on top of the call stack, a variable
accessible via the closure created when f was defined, or a
global variable. TypeDevil assigns each local variable to the
frame where it is defined, and it assigns global variables to a
special global frame.

B. Summarizing Observations into a Type Graph

Executing a program that is instrumented as described in
the previous section yields a set of type observations. The next
step of TypeDevil is to summarize these observations into a
graph that allows for identifying inconsistent types.

Definition 3 (Type Graph)
The type graph G of an execution of a program is a directed
graph (T ,P). The nodes T represent types observed during the
execution. An edge (t1, t2, p) ∈ P represents that the property
p of t1 has been observed to point to a value of type t2.

To create an initial type graph, TypeDevil iterates through
all type observations. For each observation (base, prop, type),
the analysis checks if there are nodes in T that represent base
and type, and creates such nodes if they do not yet exist. Then,
TypeDevil checks if there exists an edge that is labeled with
prop from base to type, and adds such an edge to the graph
if it does not yet exist.

TypeDevil leverages the type graph to identify inconsistent
types by searching for nodes that have multiple outgoing tran-
sitions labeled with the same property name. Performing this
search on the initial type graph would lead to many spurious
warnings because in the initial type graph, different nodes may
represent structurally equivalent types. For example, in the
initial type graph for Figure 2 (graph not shown), the node that
represents function Wrapper has two outgoing transitions
labeled with return, each pointing to an object type that has
a single property v of type number. Reporting inconsistent
types based in the initial type graph would lead to a warning
even though all objects passed to Wrapper() are structurally
equivalent.

To avoid the problem of reporting inconsistencies between
structurally equivalent types, we condense the type graph by
merging equivalent types.

Definition 4 (Equivalent types)
Two types t1 and t2 are equivalent, t1 ≡ t2, if and only if one
of the following holds:
• Both t1 and t2 are primitive types and t1 = t2.

Algorithm 1 Condense type graph.
Input: Type graph G = (T ,P)
Output: Condensed type graph G′ = (T ′,P ′)

1: M ← initTypeMap(G) . map T → T ′
2: changed← true
3: while changed do
4: changed← false
5: for all t ∈ T do
6: if t 6≡M(t) then
7: if ∃t′ ∈ T with t 6= t′ and t ≡ t′ then
8: M(t)← t′

9: else
10: M(t)← t
11: changed← true
12: T ′ ← ∅
13: P ′ ← ∅
14: for all t ∈ range(M) do
15: T ′ ← T ′ ∪mergeNodes({t′ ∈ T with M(t′) = t})
16: P ′ ← P ′∪mergeEdges({t′ ∈ T with M(t′) = t},M)
17: return (T ′,P ′)

• Both t1 and t2 are record types and all of the following
hold:

– kind(t1) = kind(t2), where kind(t) is either object,
array, function, or frame.

– t1 and t2 have the same properties and each prop-
erty points to types that are equivalent: dom(t1) =
dom(t2) and ∀p ∈ dom(t1) . t1.p ≡ t2.p.

TypeDevil merges equivalent type nodes of the type graph
to obtain a condensed type graph.

Definition 5 (Condensed Type Graph)
The condensed type graph G of an execution of a program is a
type graph, for which there do not exist any two nodes that are
equivalent.

Algorithm 1 describes our approach for producing a con-
densed type graph from the initial type graph. The basic idea
is to initially assume that all types that have the same kind
and the same set of property names are equivalent, and to
repeatedly split types that turn out to be not equivalent when
following their outgoing edges. The algorithm initializes and
refines a map M that assigns type nodes of the initial type
graph to type nodes of the condensed type graph. At first,
the helper function initTypeMap() initializes the map M by
creating a condensed type node for each set of initial type
nodes that have the same kind and the same set of property
names.

The main part of the algorithm (lines 3 to 11) repeatedly
refines M until each type node is equivalent to the condensed
type node it maps to. For this purpose, the algorithm searches
for a type node t that is currently mapped to a non-equivalent
type node, and assigns it to another type node instead. If there
exists another type node t′ that is equivalent to t according to
Definition 4, then the algorithm maps t to this type node t′.

5

Otherwise, the algorithm creates a new condensed type node
by mapping t to itself.

The final part of the algorithm (lines 12 to 16) creates the
condensed type graph (T ′,P ′) by merging type nodes and
property edges according to the map M . The helper function
mergeNodes() creates a single type node that combines the
type names of all given type nodes. Likewise, the helper
function mergeEdges() maps the outgoing transitions of
the given set of type nodes to the respective nodes in the
condensed type graph.

Figure 2c shows the condensed type graph for our running
example.

C. Reporting Inconsistencies that are Likely Problems

The final step of TypeDevil is to report inconsistent types
that are likely problems. The basic idea is to report a warning
for each type node that has multiple outgoing transitions
labeled with the same property name.

Definition 6 (Inconsistent Type Warning)
Given a condensed type graph G = (T ,P), an inconsistent
type warning is a triple (t, p, Ti), where t ∈ T , p is a property
name, Ti = {ti|(t, ti, p) ∈ P}, and |Ti| ≥ 2.

For example, the first warning of Figure 2d is
(frame addWrapped, x, {object1235, object4}).

A naive implementation of this idea reports various warn-
ings that correspond to harmless code. The reason is that a
variable, property, or function may refer to multiple types on
purpose. TypeDevil heuristically distinguishes such intended
polymorphism from inconsistency problems by combining two
kinds of techniques. First, we use techniques that assign
warnings to equivalence classes so that warnings that have
the same root cause are in the same class (Sections IV-C1
to IV-C3). Second, we use techniques that mark warnings
that are likely false positives for pruning (Sections IV-C4
to IV-C7). TypeDevil computes the final set of warnings by
keeping exactly one warning per equivalence class, if and only
if none of the warnings in this equivalence class is marked for
pruning.

1) Merging by Dataflow Relations: If a
single value is referred from multiple refer-
ences, TypeDevil may report multiple warnings.

1 function f(x) { return g(x); }
2 function g(a) { return a; }
3 f(23); f({p:"abc"});

For example, consider the code
on the right. For this simple ex-
ample, a naive implementation of
TypeDevil gives a total of four warnings that report inconsis-
tent types for the argument of f(), the argument of g(), the
return value of f() and the return value of g(), respectively.

To avoid such duplicate warnings, the analysis gathers a
dynamic call graph and merges warnings that may refer to the
same value based in potential dataflow relations. Specifically,
TypeDevil merges two warnings (t1, p1, Ti1) and (t2, p2, Ti2)
if they have the same set of inconsistent types, Ti1 = Ti2,
and if any of the following holds. First, t1 and t2 are frame
types, and there is a call graph edge from the function of t1
to the function of t2. This case addresses duplicate warnings

(a) Source code:

1 var x, y;
2 x = {a:5};
3 y = {myX:x, b:true};
4 x = {a:"hi there"};
5 y = {myX:x, b:true};

(b) Condensed type graph:

object2

string

number

boolean

frame
global

x

myX

y

b

object4

myX
b

object1

a

object3

a

Fig. 3. Example for merging by type diff.

due to a function that passes a local variable as a parameter to
another function. Second, t1 is a frame type, t2 is a function
type, p2 is ”return”, and t1 and t2 refer to the same function.
This case addresses duplicate warnings due to a function that
returns a local variable. Third, both t1 and t2 are function
types, both p1 and p2 are ”return”, and there exists a call
graph edge between the function of t1 and the function of t2.
This case addresses duplicate warnings due to a function that
calls another function and returns the other function’s return
value. Applying this approach to the above example merges
all warnings into a single warning.

2) Merging by Type Diff: A reference with inconsistent
types may cause other references to have inconsistent types
because the latter indirectly refers to the first. For example,
consider the program in Figure 3a and its condensed type
graph in Figure 3b. Variable x holds values of inconsistent
types because x.a may refer to both number and string.
Since y refers to the objects assigned to x via the property
myX, variable y also contains values of inconsistent types. A
naive implementation of TypeDevil reports two warnings, one
for x and one for y.

To merge such warnings, we compute a concise represen-
tation of the differences between inconsistent types:

Definition 7 (Type Diff)
Given a condensed type graph G, the type diff D of a warning
(t, p, Ti) is the maximum set of pairs (Q, Td) where
• Q is a sequence of property names where target(t1, Q)

and target(t2, Q) are different primitive types or have
different kinds for some t1, t2 ∈ Ti (target(t, Q) is the
node reached when following Q from t).

• Td is the set of type nodes reached when following the path
Q from t1 and t2

For Figure 3, the type diff of the inconsistency warning for
x is {([”a”], {”number”, ”string”})}, meaning that x.a has
types number and string. The type diff of the inconsistency
warning for y is {([”myX”, ”a”], {”number”, ”string”})},
meaning that y.myX.a has types number and string.

TypeDevil leverages the type diff to merge related warnings.
Intuitively, we merge two warnings if the type diff of one
warning is included in the type diff of the other warning. More
formally, TypeDevil merges two warnings with type diffs D1

and D2 if there exists a bijective mapping between the pairs
from D1 and D2 so that for each mapped pair (Q1, Td1) and

6

1 function BigInteger(a, b, c) {
2 this.array = new Array();
3 if (a != null) // belief: a may be undefined or null
4 if (’number’ == typeof a) // belief: a may be number
5 this.fromNumber(a, b, c);
6 else if (b == null && // belief: b may be undefined or null
7 ’string’ != typeof a) // belief: a may be string
8 this.fromString(a, 256);
9 else

10 this.fromString(a, b);
11 }

Fig. 4. Example for belief analysis (code from Octane’s crypto benchmark).

TABLE I
CODE IDIOMS CONSIDERED BY THE STATIC BELIEF ANALYSIS.

Code idiom (x is a local variable) Inferred belief(s)

Expression typeof x === ’Y’ or
typeof x !== ’Y’ inside a condi-
tional

x may have type Y

Expression x === undefined or x
!== undefined inside a conditional

x may be undefined

Expression x === null or x !==
null inside a conditional

x may be null

Expression x == undefined, x !=
undefined, x == null, or x !=
null inside a conditional

x may be undefined or null

Expression x or !x inside a conditional x may be undefined or null
Assignment x = undefined x may be undefined
Assignment x = null x may be null
Assignment z = x || y x may be undefined or null
Expression x || {} or x || [] x may be undefined or null

(Q2, Td2), the following it true: Q1 and Q2 have a common,
non-empty suffix, and Td1 = Td2. This property is true for the
two warnings of the above example, and TypeDevil merges
them.

3) Merging by Array Type: TypeDevil reports multiple
warnings if a single base type has multiple properties that
have inconsistent types. This behavior can lead to many similar
warnings for arrays that have multiple entries with inconsistent
types. To avoid overwhelming developers with such warnings,
TypeDevil merges two warnings (t1, p1, Ti1) and (t2, p2, Ti2)
if t1 and t2 are the same array type.

4) Pruning via Belief Analysis: JavaScript code with in-
tended polymorphism often uses runtime type checks to dis-
tinguish the types that a variable may have. For example,
consider the code snippet in Figure 4. The first two arguments
of BigInteger() are polymorphic and the function checks
them for particular types. When a naive implementation of
TypeDevil analyzes an execution where different types of
arguments are given to BigInteger(), the analysis reports
that the arguments of BigInteger() have inconsistent types,
even though the program is correct.

To avoid reporting such false positives, we statically analyze
the program to extract the programmer’s “beliefs” [14] about
types that a variable may have. The static analysis identifies
common idioms used to check the runtime type of a variable
and creates type beliefs for them (Table I). Each type belief
consists of a variable name and a type that this variable is

expected to have. TypeDevil leverages the inferred type beliefs
to prune warnings where inconsistent types are expected by the
programmer. To this end, TypeDevil associates each inferred
type belief with the frame of the function where the variable
in the belief is defined. To mark warnings for pruning, the
analysis iterates through all warnings (t, p, Ti). If the base type
t of a warning is a frame type, then TypeDevil removes all
types ti from Ti for which there exists a type belief saying
that variable p may have type ti. After this filtering of types,
the analysis only keeps warnings with multiple remaining
inconsistent types Ti.

For Figure 4, TypeDevil infers the beliefs given in the
comments and removes the expected types from any warnings
for variables a and b. As a result, TypeDevil does not report
a warning if BigInteger() is used correctly, but it would
still report a warning if types that are not expected by the
programmer are passed into the function.

5) Pruning by Degree of Inconsistency: To avoid false
positives for highly polymorphic code, such as a generic
function that operates on arbitrary data types, TypeDevil
prunes a warning (t, p, Ti) if the number |Ti| of observed
inconsistent types exceeds a threshold maxTypes. We use
maxTypes = 2, and Section V-C evaluates the influence of
this threshold.

6) Pruning by Size of Type Diff: As an additional tech-
nique to prune false positives caused by highly polymorphic
code, TypeDevil prunes a warning if the size |D| of the
type diff is larger than a threshold maxTypeDiffs. We
use maxTypeDiffs = 2 and evaluate the threshold in
Section V-C. The intuition behind this pruning technique is
that variables and properties that contain very different types
are likely to be polymorphic on purpose.

7) Pruning of Structural Subtypes: Subtype polymorphism
is a kind of polymorphism that appears intentionally in many
JavaScript programs. For example, libraries often mimic class-
like inheritance via prototypes, and as a result, a reference
may refer to either a supertype or a subtype. To avoid false
positives for this kind of polymorphism, TypeDevil prunes a
warning (t, p, Ti) if the types in Ti are in a structural subtyping
relationship. This pruning step is in line with the definition of
consistent types (Definition 2).

8) Pruning of null-related Warnings: Some programmers
use null to indicate that a value is not available. Since
null occurs in JavaScript only if the programmer explicitly
uses it, TypeDevil does not consider types as inconsistent if
these types are inconsistent because something can be null

or have some other type. To remove null-related warnings,
the analysis prunes a warning unless the warning’s type diff
contains a pair (Q, Td) where null /∈ Td.

V. EVALUATION

To evaluate the effectiveness of TypeDevil, we apply the
approach to popular benchmarks and real-world web applica-
tions. In summary, the evaluation shows the following:
• TypeDevil effectively finds inconsistent types, many of

which correspond to problems that programmers should

7

be aware of. In total, the analysis reports 33 warnings,
of which at least 15 correspond to problematic code.
(Section V-B)

• TypeDevil is complementary to JavaScript’s strict mode,
which warns about potential programming errors. None
of the problems detected by our analysis are found with
strict mode. (Section V-B)

• Our algorithm for condensing type graphs (Algorithm 1)
effectively merges type nodes. On average, the algorithm
reduces the number of type nodes to 66% of the initial
number of type nodes, with a reduction of down to less
than 1% for particular programs. (Table II)

• The techniques for merging and pruning warnings signif-
icantly reduce the number of warnings that TypeDevil
reports, resulting in a number that is manageable in
practice. The combination of all techniques presented
in Section IV-C reduces 578 warnings to 33 warnings.
(Section V-C)

A. Experimental Setup

Our implementation is open-source and available for down-
load.2 Both the dynamic analysis and the static belief analysis
are implemented as source-to-source transformations. The
dynamic analysis builds upon Jalangi [36]. To analyze web
applications, we modify Spidermonkey (snapshot 151486), the
JavaScript engine of Firefox, so that it intercepts all JavaScript
code of web pages and passes it to our source-to-source
transformations, before interpreting or compiling it.

Table II lists the programs we use to evaluate our approach,
along with the number of non-comment, non-blank lines of
JavaScript code (excluding third-party libraries). To measure
lines of code we pre-process code with js-beautify,3 which
undoes the effects of compressing JavaScript code. We use
all programs from the Sunspider benchmark suite and all
but four programs from the Octane benchmark suite. We
exclude Octane’s earley-boyer, typescript, and zlib bench-
marks because they consist of generated code. In contrast to
human-written code, our observation that most JavaScript code
follows implicit type rules does not hold for generated code,
and as a result, TypeDevil reports an unusually high number of
inconsistent types for these benchmarks. We exclude Octane’s
code-load because large parts of it are obfuscated, making it
difficult for us to understand the type inconsistencies reported
by TypeDevil. In addition to benchmark programs, we apply
TypeDevil to seven real-world web applications. To exercise
these applications, we load their initial page and perform a
short sequence of typical user interactions. For all analyzed
programs, we exclude code loaded from third-party libraries,
such as JQuery and MooTools.

B. Type Inconsistencies Detected by the Analysis

In total, TypeDevil reports 33 inconsistent type warnings for
the analyzed programs, out of which at least 15 correspond to
problematic code. The last two columns of Table II lists the

2https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley
3https://github.com/beautify-web/js-beautify

TABLE II
SUMMARY OF RESULTS.

Program LOC Type graph nodes Inconsistent types

Initially Merged All True pos.

Sunspider:

3d-cube 289 104 43 1 1
3d-morph 24 3 3 0 0
3d-raytrace 346 103 72 3 0
access-binary-trees 40 9 9 0 0
access-fannkuch 52 3 3 0 0
access-nbody 143 29 25 0 0
access-nsieve 29 6 6 0 0
bitops-3bit-bits-in-byte 17 5 5 0 0
bitops-bits-in-byte 18 5 5 0 0
bitops-bitwise-and 5 1 1 0 0
bitops-nsieve-bits 24 7 7 0 0
controlflow-recursive 18 7 7 0 0
crypto-aes 291 68 43 0 0
crypto-md5 213 32 32 1 1
crypto-sha1 148 26 26 1 1
date-format-tofte 211 53 47 4 0
date-format-xparb 379 38 37 1 1
math-cordic 57 13 12 0 0
math-partial-sums 25 3 3 0 0
math-spectral-norm 41 14 12 0 0
regexp-dna 1,697 14 6 1 1
string-base64 68 6 6 0 0
string-fasta 75 13 12 0 0
string-tagcloud 179 2,526 24 0 0
string-unpack-code 6 49 39 0 0
string-validate-input 75 13 13 0 0

Octane:

box2d 10,880 1,438 1,333 0 0
crypto 1,873 295 282 1 0
deltablue 795 261 242 1 0
gbemu 9,771 1,443 1,416 6 5
mandreel 271,824 1,376 1,375 0 0
navier-strokes 676 150 142 1 0
pdfjs 55,182 171 164 0 0
raytrace 993 266 225 2 2
regexp 2,070 356 118 1 1
richards 616 168 160 0 0
splay 557 128 126 0 0

Web applications:

annex 857 173 117 1 0
calculator 3,929 361 300 4 0
joomla 358 75 70 0 0
moodle 3,142 2,084 1,059 0 0
tenframe 1,276 187 166 0 0
todolist 5,938 964 914 4 2
zurmo 193 25 23 0 0

Total 375,400 13,071 8,730 33 15

number of reported warnings for each program and how many
of them we classify as problematic. the

1) Problematic Type Inconsistencies: The detected prob-
lems include the examples given in Table 1. The following
describes additional representative problems detected by the
analysis.

Out of bounds array access in Octane regexp: Octane’s
regexp benchmark has an out of bounds error that results in
checking whether the "undefined" string matches a regular

8

expression. We reported this problem to the developers.4 The
root cause is that two arrays that are supposed to have the same
length have a slightly different length. The problem does not
crash the benchmark but leads to nonsensical computation.
It is easy to fix by changing the length of one of the two
arrays. TypeDevil detects this problem because an argument
of a function contains string values most of the time but
occasionally contains undefined.

Padding with undefined in Sunspider crypto-md5 and
crypto-sha1: The two crypto benchmarks of Sunspider im-
plement cryptographic algorithms that operate on blocks of a
fixed length. To bring arbitrary input data to this length, the
benchmarks add padding bytes. The ISO standard that specifies
the padding mechanism [1] requires to add zero and one bits in
particular ways. In addition to zeros and ones, the benchmark
implementation creates blocks that also contain undefined

values. As a result, several bitwise operations are performed on
undefined, which happens to result in correct behavior due to
type coercions. This type inconsistency is problematic for two
reasons. First, the implementation deviates from the standard.
Second, the implementation results in arrays that contain
undefined values (“arrays with holes”), which is known
to cause suboptimal performance because the JIT compiler
cannot apply particular optimizations [17], [19]. TypeDevil
detects these problems because functions that implement parts
of the cryptographic algorithms have arguments that contain
both number and undefined values.

Incorrect string literals in Todolist: The Todolist web
application manages tasks and assigns each task to a part of
the day. The possible parts are “morning”, “afternoon”, and
“evening”. At one code location, the programmer accidentally
refers to “night” instead of “evening”. Even though the code
is clearly wrong, this inconsistency does not lead to obviously
incorrect behavior because the code attempts to operate on
non-existing DOM elements and therefore has no effect on the
DOM. TypeDevil detects this problem because a function that
is supposed to return the localized string value for “evening”
returns undefined when being called with the incorrect value
“night”.

2) Additional Type Inconsistencies: Of the 33 warnings
reported by TypeDevil, we classify 15 as certainly relevant
for developers. The remaining warnings belong to two cat-
egories. First, several warnings point to code that is correct
but that violates commonsense coding style guidelines. For
example, these warnings include a method argument called
“string” that sometimes contains a number, a variable that
is initialized to a number even though it always contains
values of type array in the remainder of the program, and
polymorphic arrays, which are known to prevent particular
optimizations. We do not classify these warnings as relevant
because some developers may deem them as unimportant, but
we nevertheless believe these warnings to be of value for other
developers. Second, several warnings are false positives, which
slip through the set of techniques for filtering warnings. For

4https://code.google.com/p/octane-benchmark/issues/detail?id=21

example, these warnings include polymorphic arguments of
overloaded and generic functions.

3) Root Causes of Inconsistencies: The most prevalent root
cause for inconsistencies is that the type of a variable, property,
or function can be both undefined and some other type. For
16 of the 33 reported inconsistencies, the set of inconsistent
types contains undefined. Despite this prevalence, simply re-
porting occurrences of undefined would significantly reduce
the effectiveness of TypeDevil. In particular, such a simple
analysis would miss four of the 15 warnings that correspond
to problems because the set of inconsistent types of these
warnings does not contain undefined. For example, these
warnings include Figure 2b (an object type versus string)
and Figure 2c (two inconsistent object types).

4) Comparison with Strict Mode: Strict mode [2] is a re-
stricted variant of JavaScript that turns potential programming
errors into exceptions. We compare TypeDevil to strict mode
by running all programs from Table II in this mode. For
17 of the 44 programs, strict mode leads to an exception
that is not raised in non-strict mode. Most of the exceptions
are due to writing to an undeclared global variable, which
is legal in JavaScript, but which may be unintended. None
of the exceptions raised by strict mode points to a problem
detected by TypeDevil. We conclude that our approach is
complementary to strict mode.

C. Merging and Pruning of Warnings

The techniques for merging and pruning warnings effec-
tively reduce the number of reported warnings from 578 to 33.
To better understand the impact of each technique, Figure 5
shows the number of warnings that TypeDevil reports when
particular techniques are enabled or disabled. For example,
the figure shows that merging warnings by dataflow relations
(Section IV-C1) reduces the number of warnings from 579
to 530, and that disabling this technique while enabling all
others yields 42 warnings. The last box (“All techniques”)
shows the default configuration of TypeDevil, which we use
throughout the paper. The results show that each technique
contributes to reducing the number of reported warnings and
that combining all techniques reduces the number the most.
The last five columns analyze the impact of the two thresholds
maxTypes and maxTypeDiffs. The last column is the
default configuration of TypeDevil, which we use throughout
the rest of the paper.

VI. RELATED WORK

Several approaches to infer and check types for programs
written in (subsets) of JavaScript have been proposed [18],
[20], [21], [37]. Heidegger and Thiemann’s approach [20]
infers flow-insensitive types similar to our definition of types.
Guha et al.’s work [18] addresses the ubiquity of runtime
type checks, which we address with a static belief analysis.
DRuby [16] statically infers types for a subset of Ruby,
and a dynamic analysis translates Ruby programs into this
subset [15]. Rubydust [4] dynamically infers sound types when
seeing all paths through a method, and it reports errors at

9

 0

 100

 200

 300

 400

 500

 600

N
um

be
r o

f w
ar

ni
ng

s

M
er

ge
 b

y
da

ta
flo

w
 re

la
tio

ns

M
er

ge
 b

y
ty

pe
 d

iff

M
er

ge
 b

y
ar

ra
y

ty
pe

P
ru

ne
 v

ia
 b

el
ie

f a
na

ly
si

s

P
ru

ne
 b

y
de

gr
ee

 o
f i

nc
on

si
st

en
cy

P
ru

ne
 b

y
si

ze
 o

f t
yp

e
di

ff

P
ru

ne
 s

tru
ct

ur
al

 s
ub

ty
pe

s

P
ru

ne
 n

ul
l-r

el
at

ed

Only this
 technique

529

400

548

442

390

474
452

280

All except
 this technique

42 38 45

91
68

40 45

95

m
ax

Ty
pe

s=
6,

 m
ax

Ty
pe

D
iff

s=
2

m
ax

Ty
pe

s=
4,

 m
ax

Ty
pe

D
iff

s=
2

m
ax

Ty
pe

s=
2,

 m
ax

Ty
pe

D
iff

s=
6

m
ax

Ty
pe

s=
2,

 m
ax

Ty
pe

D
iff

s=
4

m
ax

Ty
pe

s=
2,

 m
ax

Ty
pe

D
iff

s=
2

All techniques

52 47 37 35 33

N
on

e

578

Fig. 5. Number of reported type inconsistencies depending on the techniques
used to prune and merge warnings.

method boundaries. In contrast, TypeDevil also finds incon-
sistent types of local variables. All these approaches aim to
show the well-typedness of a program, which leads to a high
number of false positives due to the highly dynamic nature
of real-world JavaScript code. For example, [15] perform
226 refactorings and add 177 type annotations to reduce
false positives, which eventually leads to the discovery of 8
errors; [21] find that up to 39% of the checked code violates
type properties (for the deltablue benchmark, which has one
warning from TypeDevil).

Dynamic typing is also a performance challenge, and opti-
mizing JIT compilers benefit from inferred types to emit type-
specialized code [19], [22], [31]. Ahn et al. [3] improve the
JavaScript engine’s object representation to enable optimiza-
tions even though objects with different prototypes appear
at a single code location. Our work avoids this problem by
defining types independent of the prototype object. RPython
is a statically typed subset of Python, which can be obtained
from a subset of Python by partially executing the Python
program [5].

TypeScript [9], [26] extends JavaScript with type annota-
tions, which can prevent undesired type inconsistencies but
also impose annotation effort onto developers. Doherty et
al. [12] propose a static kind analysis for Matlab, which infers
whether an identifier refers to a variable, a function, or the
prefix of a package name. By searching for inconsistent types,
TypeDevil also detects inconsistent kinds. Aycock [8] infers

types for a subset of Python where each variable has a single
type, which matches our observation that most code uses types
consistently. A static analysis by Pradel et al. [29] detects
type-related errors in Java programs by identifying method
parameters that may hold values with unexpected types. Their
work shares the idea to infer types from an existing program
and to warn about inconsistencies.

Recent program analyses for JavaScript include information
flow analyses [7], [10], dynamic determinacy analysis [35],
symbolic execution approaches [34], and library-aware static
analysis [23]. Several studies of real-world JavaScript code
aim at better understanding the use of dynamic language
features [33], in particular the notorious eval() [32], and
the kinds of bugs found in JavaScript programs [27]. Based
on their study of bugs, Ocariza et al. [28] propose a technique
for finding fixes for particular kinds of bugs. To test JavaScript-
based web applications, several approaches for generating
GUI-level tests have been proposed [6], [11], [13], [24], [25],
[30], [38]. These test generation approaches can be combined
with TypeDevil to automatically explore and analyze complex
applications.

Belief analysis has been proposed by Engler et al. [14] to
find bugs that manifest as contradicting beliefs. Our work is the
first to leverage belief analysis to remove likely false positives
and to apply belief analysis in the context of a dynamically
typed language.

VII. CONCLUSION

This paper presents TypeDevil, a mostly dynamic analysis
to detect inconsistent types in JavaScript programs. The key
idea is to gather type observations at runtime, to merge them
into a graph, and to warn about variables, properties, and
functions that have multiple inconsistent types. To deal with
JavaScript code with intended polymorphism, the analysis
aggressively prunes and merges warnings. TypeDevil takes a
pragmatic compromise between proving the absence of type-
related errors and finding problems with reasonable precision.
We apply the approach to widely used benchmark programs
and real-world web applications, leading to the discovery of
15 inconsistent types that correspond to problematic code.

The broader impact of this work is twofold. First, TypeDevil
shows the power of dynamic analysis for finding problems
in programs written in languages that are hard to analyze
statically. We expect our results to encourage further research
on dynamic analyses for JavaScript and other dynamic lan-
guages. Second, our work lays the foundation for a practical
tool that helps JavaScript developers to detect type-related
errors with minimal effort. We expect such a tool, if it is
used during development, to find more problems than those
we find in the well-tested programs used for the evaluation,
and to significantly reduce the burden imposed on developers
by the lack of static type checking.

10

ACKNOWLEDGMENT

This research is supported in part by NSF Grants CCF-
0747390, CCF-1018729, CCF-1423645, and CCF-1018730,
and gifts from Mozilla and Samsung.

REFERENCES

[1] Information technology – Security techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms using a block cipher, ISO/IEC
9797-1:1999.

[2] ECMAScript language specification, 5.1 edition, June 2011.
[3] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas. Improving

JavaScript performance by deconstructing the type system. In PLDI,
2014.

[4] J. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference
of static types for Ruby. pages 459–472, 2011.

[5] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step
towards reconciling dynamically and statically typed OO languages. In
DLS, pages 53–64, 2007.

[6] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework
for automated testing of JavaScript web applications. In ICSE, pages
571–580, 2011.

[7] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In PLAS, pages 113–124, 2009.

[8] J. Aycock. Aggressive type inference. In International Python Confer-
ence, 2000.

[9] G. M. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript.
In ECOOP, pages 257–281, 2014.

[10] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information
flow for JavaScript. In PLDI, pages 50–62, 2009.

[11] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. WebMate: A tool for
testing web 2.0 application. In JSTools, 2012.

[12] J. Doherty, L. J. Hendren, and S. Radpour. Kind analysis for MATLAB.
In OOPSLA, pages 99–118, 2011.

[13] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou. Ajax Crawl:
Making Ajax applications searchable. In ICDE, pages 78–89, 2009.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code.
In SOSP, pages 57–72, 2001.

[15] M. Furr, J. D. An, and J. S. Foster. Profile-guided static typing for
dynamic scripting languages. In OOPSLA, pages 283–300, 2009.

[16] M. Furr, J. D. An, J. S. Foster, and M. W. Hicks. Static type inference
for ruby. In SAC, pages 1859–1866, 2009.

[17] L. Gong, M. Pradel, and K. Sen. JITProf: Pinpointing JIT-unfriendly
JavaScript code. Technical Report UCB/EECS-2014-144, EECS Depart-
ment, University of California, Berkeley, Aug 2014.

[18] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and
state using flow analysis. In ESOP, pages 256–275, 2011.

[19] B. Hackett and S. Guo. Fast and precise hybrid type inference for
JavaScript. pages 239–250, 2012.

[20] P. Heidegger and P. Thiemann. Recency types for analyzing scripting
languages. In ECOOP, pages 200–224, 2010.

[21] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript.
In SAS, pages 238–255, 2009.

[22] F. Logozzo and H. Venter. RATA: Rapid atomic type analysis by abstract
interpretation - application to JavaScript optimization. In CC, pages 66–
83, 2010.

[23] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In
ESEC/FSE, pages 499–509, 2013.

[24] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajax web
applications. In ICST, pages 121–130, 2008.

[25] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax by inferring
user interface state changes. In ICWE, pages 122–134, 2008.

[26] Microsoft. TypeScript Language Specification, Version 1.0. 2014.
[27] F. S. Ocariza Jr., K. Bajaj, K. Pattabiraman, and A. Mesbah. An

empirical study of client-side JavaScript bugs. pages 55–64, 2013.
[28] F. S. Ocariza Jr., K. Pattabiraman, and A. Mesbah. Vejovis: Suggesting

fixes for JavaScript faults. In ICSE, pages 837–847, 2014.
[29] M. Pradel, S. Heiniger, and T. R. Gross. Static detection of brittle

parameter typing. In ISSTA, pages 265–275, 2012.

[30] M. Pradel, P. Schuh, G. Necula, and K. Sen. EventBreak: Analyzing
the responsiveness of user interfaces through performance-guided test
generation. 2014.

[31] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In POPL, pages 481–494, 2012.

[32] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do
- a large-scale study of the use of eval in JavaScript applications. In
ECOOP, pages 52–78, 2011.

[33] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, pages 1–12, 2010.

[34] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A
symbolic execution framework for JavaScript. In S&P, pages 513–528,
2010.

[35] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determinacy
analysis. In PLDI, pages 165–174, 2013.

[36] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript. In
ESEC/FSE, pages 488–498, 2013.

[37] P. Thiemann. Towards a type system for analyzing JavaScript programs.
In ESOP, pages 408–422, 2005.

[38] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
Guided test generation for web applications. In ICSE, pages 162–171,
2013.

11

