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ACCURACY OF THE S-STEP LANCZOS METHOD FOR THE
SYMMETRIC EIGENPROBLEM

ERIN CARSON AND JAMES DEMMEL

Abstract. The s-step Lanczos method is an attractive alternative to the classical Lanczos
method as it enables an O(s) reduction in data movement over a fixed number of iterations. This
can significantly improve performance on modern computers. In order for s-step methods to be widely
adopted, it is important to better understand their error properties. Although the s-step Lanczos
method is equivalent to the classical Lanczos method in exact arithmetic, empirical observations
demonstrate that it can behave quite differently in finite precision.

In this paper, we demonstrate that bounds on accuracy for the finite precision Lanczos method
given by Paige [Lin. Alg. Appl., 34:235–258, 1980] can be extended to the s-step Lanczos case
assuming a bound on the condition numbers of the computed s-step bases. Our results confirm
theoretically what is well-known empirically: the conditioning of the Krylov bases plays a large role
in determining finite precision behavior. In particular, if one can guarantee that the basis condition
number is not too large throughout the iterations, the accuracy and convergence of eigenvalues in
the s-step Lanczos method should be similar to those of classical Lanczos. This indicates that, under
certain restrictions, the s-step Lanczos method can be made suitable for use in many practical cases.

Key words. Krylov subspace methods, error analysis, finite precision, roundoff, Lanczos, avoid-
ing communication, orthogonal bases

AMS subject classifications. 65G50, 65F10, 65F15, 65N15, 65N12

1. Introduction. Given an n-by-n symmetric matrix A and a starting vector
v1 with unit 2-norm, m steps of the Lanczos method [23] theoretically produces the
orthonormal matrix Vm = [v1, . . . , vm] and the m-by-m symmetric tridiagonal matrix
Tm such that

AVm = VmTm + βm+1vm+1e
T
m. (1.1)

When m = n, the eigenvalues of Tn are the eigenvalues of A. In practice, the eigenval-
ues of Tm are still good approximations to the eigenvalues of A when m � n, which
makes the Lanczos method attractive as an iterative procedure. Many Krylov sub-
space methods (KSMs), including those for solving linear systems and least squares
problems, are based on the Lanczos method. In turn, these various Lanczos-based
methods are the core components in numerous scientific applications.

Classical implementations of Krylov methods, the Lanczos method included, re-
quire one or more sparse matrix-vector multiplications (SpMVs) and one or more
inner product operations in each iteration. These computational kernels are both
communication-bound on modern computer architectures. To perform an SpMV,
each processor must communicate entries of the source vector it owns to other proces-
sors in the parallel algorithm, and in the sequential algorithm the matrix A must be
read from slow memory (when it is too large to fit in cache, the most interesting case).
Inner products involve a global reduction in the parallel algorithm, and a number of
reads and writes to slow memory in the sequential algorithm (depending on the size
of the vectors and the size of the fast memory).

Thus, many efforts have focused on communication-avoiding Krylov subspace
methods (CA-KSMs), or s-step Krylov methods, which can perform s iterations with
O(s) less communication than classical KSMs; see, e.g., [6, 7, 9, 11, 12, 18, 19, 10, 37,
39]. In practice, this can translate into significant speedups for many problems [26, 42].

Equally important to the performance of each iteration is the convergence rate of
the method, i.e., the total number of iterations required until the desired convergence
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criterion is met. Although theoretically the Lanczos process described by (1.1) pro-
duces an orthogonal basis and a tridiagonal matrix similar to A after n steps, these
properties need not hold in finite precision. The effects of roundoff error on the ideal
Lanczos process were known to Lanczos when he published his algorithm in 1950.
Since then, much research has been devoted to better understanding this behavior,
and to devise more robust and stable algorithms.

Although s-step Krylov methods are mathematically equivalent to their classical
counterparts in exact arithmetic, it perhaps comes as no surprise that their finite
precision behavior may differ significantly, and that the theories developed for classical
methods in finite precision do not hold for the s-step case. It has been empirically
observed that the behavior of s-step Krylov methods deviates further from that of
the classical method as s increases, and that the severity of this deviation is heavily
influenced by the polynomials used for the s-step Krylov bases (see, e.g., [1, 6, 19, 20]).

Arguably the most revolutionary work in the finite precision analysis of classical
Lanczos was a series of papers published by Paige [27, 28, 29, 30]. Paige’s analysis
succinctly describes how rounding errors propagate through the algorithm to impede
orthogonality. These results were developed to give theorems which link the loss of
orthogonality to convergence of the computed eigenvalues [30]. No analogous theory
currently exists for the s-step Lanczos method.

In this paper, we use the complete rounding error analysis of the s-step Lanczos
method presented in [4] to extend the analysis of Paige for classical Lanczos to the s-
step Lanczos method. Our analysis here of s-step Lanczos very closely follows Paige’s
rounding error analysis for orthogonality in classical Lanczos [29], and the proofs for
accuracy and convergence of eigenvalues presented here follow the approach of [30].
The derived bounds in [4] are very similar to those of Paige for classical Lanczos, but
with the addition of an amplification term which depends on the condition number of
the Krylov bases computed every s steps. We show here that, based on restrictions
on the size of this condition number, the same theorems of Paige apply to the s-step
case.

Our results confirm theoretically what is well-known empirically: the condition-
ing of the Krylov bases plays a large role in determining finite precision behavior.
In particular, if one can guarantee that the basis condition number is not too large
throughout the iteration, the accuracy and convergence of eigenvalues in the s-step
Lanczos method should be similar to those produced by classical Lanczos. This indi-
cates that, under certain restrictions, the s-step Lanczos method is suitable for use in
practice.

The remainder of this paper is outlined as follows. In Section 2, we present
related work in s-step Krylov methods and the analysis of finite precision Lanczos. In
Section 3, we review a variant of the Lanczos method and derive the corresponding
s-step Lanczos method. Section 4 summarizes rounding error results for the s-step
Lanczos method from [4]. Sections 5 and 6 use the results of Paige [30] to prove results
on the accuracy of the computed eigenvalues and rate of convergence of the computed
eigenvalues, respectively. Section 7 concludes with a discussion of future work.

2. Related work. We briefly review related work in s-step Krylov methods as
well as work related to the analysis of classical Krylov methods in finite precision.

2.1. s-step Krylov subspace methods. The term ‘s-step Krylov method’,
first used by Chronopoulos and Gear [8], describes variants of Krylov methods where
the iteration loop is split into blocks of s iterations. Since the Krylov subspaces
required to perform s iterations of updates are known, bases for these subspaces can
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be computed upfront, inner products between basis vectors can be computed with one
block inner product, and then s iterations are performed by updating the coordinates
in the generated Krylov bases (see Section 3 for details). Many formulations and
variations have been derived over the past few decades with various motivations,
namely increasing parallelism (e.g., [8, 39, 40]) and avoiding data movement, both
between levels of the memory hierarchy in sequential methods and between processors
in parallel methods. A thorough treatment of related work can be found in [19].

Many empirical studies of s-step Krylov methods found that convergence often
deteriorated using s > 5 due to the inherent instability of the monomial basis. This
motivated research into the use of better-conditioned bases (e.g., Newton or Cheby-
shev polynomials) for the Krylov subspace, which enabled convergence for higher s
values (see, e.g., [1, 18, 20, 33]). Hoemmen has used a novel matrix equilibration and
balancing approach to achieve similar effects [19].

The term ‘communication-avoiding Krylov methods’ refers to s-step Krylov meth-
ods and implementations which aim to improve performance by asymptotically de-
creasing communication costs, possibly both in computing inner products and com-
puting the s-step bases, for both sequential and parallel algorithms; see [11, 19].
Hoemmen et al. [19, 26] derived communication-avoiding variants of Lanczos, Arnoldi,
Conjugate Gradient (CG) and the Generalized Minimum Residual (GMRES) method.
Details of nonsymmetric Lanczos-based CA-KSMs, including communication-avoiding
versions of Biconjugate Gradient (BICG) and Stabilized Biconjugate Gradient (BICG-
STAB) can be found in [6]. Although potential performance improvement is our pri-
mary motivation for studying these methods, we use the general term ‘s-step methods’
here as our error analysis is independent of runtime.

Many efforts have been devoted specifically to the s-step Lanczos method. The
first s-step Lanczos methods known in the literature are due to Kim and Chronopou-
los, who derived a three-term symmetric s-step Lanczos method [21] as well as a
three-term nonsymmetric s-step Lanczos method [22]. Hoemmen derived a three-term
communication-avoiding Lanczos method, CA-Lanczos [19]. Although the three-term
variants require less memory, their numerical accuracy can be worse than implemen-
tations which use two coupled two-term recurrences [17]. A two-term communication-
avoiding nonsymmetric Lanczos method (called CA-BIOC, based on the ‘BIOC’ ver-
sion of nonsymmetric Lanczos of Gutknecht [16]) can be found in [2]. This work
includes the derivation of a new version of the s-step Lanczos method, equivalent in
exact arithmetic to the variant used by Paige [29]. It uses a two-term recurrence like
BIOC, but is restricted to the symmetric case and uses a different starting vector.

For s-step KSMs that solve linear systems, increased roundoff error in finite pre-
cision can decrease the maximum attainable accuracy of the solution, resulting in a
less accurate solution than found by the classical method. A quantitative analysis
of roundoff error in CA-CG and CA-BICG can be found in [5]. Based on the work
of [38] for conventional KSMs, we have also explored residual replacement strategies
for CA-CG and CA-BICG as a method to limit the deviation of true and computed
residuals when high accuracy is required [5].

2.2. Error analysis of the Lanczos method. Lanczos and others recognized
early on that rounding errors could cause the Lanczos method to deviate from its
ideal theoretical behavior. Since then, various efforts have been devoted to analyzing
and improving the finite precision Lanczos method.

Widely considered to be the most significant development was the series of papers
by Paige discussed in Section 1. A detailed rounding error analysis for the s-step
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Lanczos case, based on Paige’s results [29], can be found in [4] and is summarized in
Section 4. Another important development was due to Greenbaum and Strakoš, who
performed a backward-like error analysis which showed that finite precision Lanczos
and CG behave very similarly to the exact algorithms applied to any of a certain class
of larger matrices [14]. Paige has recently shown a similar type of augmented stability
for the Lanczos process [31]. There are many other analyses of the behavior of various
KSMs in finite precision, including some more recent results due to Wülling [43] and
Zemke [44]; for a thorough overview of the literature, see [24, 25].

A number of strategies for maintaining the orthogonality among the Lanczos
vectors were inspired by the analysis of Paige, such as selective reorthogonalization [32]
and partial reorthogonalization [35]. Recently, Gustafsson et al. have extended such
reorthogonalization strategies for classical Lanczos to the s-step case [15].

3. The s-step Lanczos method. The classical Lanczos method is shown in
Algorithm 1. We use the same variant used by Paige in his error analysis for the
classical Lanczos method [29] to allow easy comparison of results. Note that for
simplicity, we assume no breakdown occurs, i.e., βm+1 6= 0 for m < n, and thus
breakdown conditions are not discussed here. We now give a derivation of s-step
Lanczos, obtained from classical Lanczos in Algorithm 1. The same derivation appears
in [4], except in the present version the iterations are 1-indexed rather than 0-indexed
to match the notation of Paige.

Algorithm 1 The classical Lanczos method

Require: n-by-n real symmetric matrix A and length-n vector v1 such that ‖v1‖2 = 1
1: u1 = Av1
2: for m = 1, 2, . . . until convergence do
3: αm = vTmum
4: wm = um − αmvm
5: βm+1 = ‖wm‖2
6: vm+1 = wm/βm+1

7: um+1 = Avm+1 − βm+1vm
8: end for

Suppose we are beginning iteration m = sk + 1 where k ∈ N and 0 < s ∈ N. By
induction on lines 6 and 7 of Algorithm 1, it is true that

vsk+j ∈ Ks(A, vsk+1) +Ks(A, usk+1) and

usk+j ∈ Ks+1(A, vsk+1) +Ks+1(A, usk+1) (3.1)

for j ∈ {1, . . . , s + 1}, where Ki(A, x) = span{x,Ax, . . . , Ai−1x} denotes the Krylov
subspace of dimension i of matrix A with respect to vector x. Since Kj(A, x) ⊆
Ki(A, x) for j ≤ i, we can write

vsk+j , usk+j ∈ Ks+1(A, vsk+1) +Ks+1(A, usk+1)

for j ∈ {1, . . . , s+ 1}. Note that since u1 = Av1, if k = 0 we have

vj , uj ∈ Ks+2(A, v1).

for j ∈ {1, . . . , s+ 1}.
For k > 0, we then define the ‘basis matrix’ Yk = [Vk,Uk], where Vk and Uk

are size n-by-(s + 1) matrices whose columns form bases for Ks+1(A, vsk+1) and
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Ks+1(A, usk+1), respectively. For k = 0, we define Y0 to be a size n-by-(s + 2)
matrix whose columns form a basis for Ks+2(A, v1). Then by (3.1), we can represent
vsk+j and usk+j , for j ∈ {1, . . . , s+ 1}, by their coordinates (denoted with primes) in
Yk, i.e.,

vsk+j = Ykv′k,j , usk+j = Yku′k,j . (3.2)

Note that for k = 0, the coordinate vectors are length-(s + 2) and for k > 0, the
coordinate vectors are length-(2s+ 2). We can write a similar equation for auxiliary
vector wsk+j , i.e., wsk+j = Ykw′k,j for j ∈ {1, . . . , s}. We define also the Gram matrix

Gk = YTk Yk, which is size (s + 2)-by-(s + 2) for k = 0 and (2s + 2)-by-(2s + 2) for
k > 0. Using this matrix, the inner products in lines 3 and 5 can be written

αsk+j = vTsk+jusk+j = v′Tk,jYTk Yku′k,j = v′Tk,jGku
′
k,j and (3.3)

βsk+j+1 = (wTsk+jwsk+j)
1/2 = (w′Tk,jYTk Ykw′k,j)1/2 = (w′Tk,jGkw

′
k,j)

1/2. (3.4)

We assume that the bases are generated via polynomial recurrences represented
by matrix Bk, which is in general upper Hessenberg but often tridiagonal in practice.
The recurrence can thus be written in matrix form as

AYk = YkBk (3.5)

where, for k = 0, Bk is size (s+2)-by-(s+2) and Y0 =
[
Y0[Is+1, 0s+1,1]T , 0n,1

]
, and for

k > 0, Bk is size (2s+ 2)-by-(2s+ 2) and Yk =
[
Vk[Is, 0s,1]T , 0n,1,Uk[Is, 0s,1]T , 0n,1

]
.

Note that then above Bk has zeros in column s+ 2 when k = 0 and zeros in columns
s+ 1 and 2s+ 1 for k > 0. Therefore, using (3.5), for j ∈ {1, . . . , s},

Avsk+j+1 = AYkv′k,j+1 = AYkv
′
k,j+1 = YkBkv′k,j+1. (3.6)

Thus, to compute iterations sk+ 2 through sk+ s+ 1 in s-step Lanczos, we first
generate basis matrix Yk such that (3.6) holds, and we compute the Gram matrix
Gk from Yk. Then updates to the length-n vectors can be performed by updating
instead the length-(2s + 2) coordinates for those vectors in Yk. Inner products and
multiplications with A become smaller operations which can be performed locally,
as in (3.3), (3.4), and (3.6). The complete s-step Lanczos algorithm is presented in
Algorithm 2. Note that in Algorithm 2 we show the length-n vector updates in each
inner iteration (lines 16 and 18) for clarity, although these vectors play no part in
the inner loop iteration updates. In practice, the basis change operation (3.2) can be
performed on a block of coordinate vectors at the end of each outer loop to recover
vsk+i and usk+i, for i ∈ {2, . . . , s+ 1}.

4. Rounding errors in the s-step Lanczos method. The analysis in [4]
used a standard model of floating point arithmetic where it is assumed that the
computations are carried out on a machine with relative precision ε (see, e.g., [13]).
Terms with ε of order > 1, which have negligible effect on the results, are ignored. We
also ignore underflow and overflow. Quantities computed in finite precision arithmetic
are decorated with hats, e.g., if we are to compute the expression α = vTu in finite
precision, we get α̂ = fl(vTu). Throughout this analysis, ei denotes the ith column of
an identity matrix of appropriate size and ‖ · ‖ denotes the 2-norm, unless otherwise
specified.

It is also assumed throughout that the generated bases Ûk and V̂k are numerically
full rank. That is, all singular values of Ûk and V̂k are greater than εn · 2blog2 θ1c
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Algorithm 2 The s-step Lanczos method

Require: n-by-n real symmetric matrix A and length-n vector v1 such that ‖v1‖2 = 1
1: u1 = Av1
2: for k = 0, 1, . . . until convergence do
3: Compute Yk with change of basis matrix Bk
4: Compute Gk = YTk Yk
5: v′k,1 = e1
6: if k = 0 then
7: u′0,1 = Bke1
8: else
9: u′k,1 = es+2

10: end if
11: for j = 1, 2, . . . , s do
12: αsk+j = v′Tk,jGku

′
k,j

13: w′k,j = u′k,j − αsk+jv′k,j
14: βsk+j+1 = (w′Tk,jGkw

′
k,j)

1/2

15: v′k,j+1 = w′k,j/βsk+j+1

16: vsk+j+1 = Ykv′k,j+1

17: u′k,j+1 = Bkv′k,j+1 − βsk+j+1v
′
k,j

18: usk+j+1 = Yku′k,j+1

19: end for
20: end for

where θ1 is the largest singular value of Ûk or V̂k, respectively. The results of [4] are
summarized in the following theorem.

Theorem 4.1. Assume that Algorithm 2 is implemented in floating point arith-
metic with relative precision ε and applied for m = sk+j steps to the n-by-n real sym-
metric matrix A, starting with vector v1 with ‖v1‖2 = 1. Let σ = ‖A‖2, θσ = ‖|A|‖2
and τkσ = ‖|Bk|‖2, where Bk is defined in (3.6), and let

Γ̄k = max
i∈{0,...,k}

‖Ŷ+
i ‖2‖|Ŷi|‖2 ≥ 1 and τ̄k = max

i∈{0,...,k}
τi, (4.1)

where above we use the superscript ‘+’ to denote the Moore-Penrose pseudoinverse,
i.e., Ŷ+

i = (ŶTi Ŷi)−1ŶTi . Then α̂i, β̂i+1, and v̂i+1 will be computed, for i ∈ {1, . . . ,m},
such that

AV̂m = V̂mT̂m + β̂m+1v̂m+1e
T
m + δV̂m, (4.2)

with

V̂m = [v̂1, v̂2, . . . , v̂m],

δV̂m = [δv̂1, δv̂2, . . . , δv̂m], and

T̂m =


α̂1 β̂2

β̂2
. . .

. . .

. . .
. . . β̂m
β̂m α̂m

 ,
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and

‖δv̂i‖2 ≤ ε1σ, (4.3)

β̂i+1|v̂Ti v̂i+1| ≤ 2ε0σ,

|v̂Ti+1v̂i+1 − 1| ≤ ε0/2, and (4.4)∣∣∣β̂2
i+1 + α̂2

i + β̂2
i − ‖Av̂i‖22

∣∣∣ ≤4i(3ε0 + ε1)σ2,

where we have used the notation

ε0 ≡ 2ε(n+11s+15)Γ̄2
k and ε1 ≡ 2ε

(
(n+2s+5)θ + (4s+9)τ̄k + 10s+16

)
Γ̄2
k. (4.5)

Furthermore, if Rm is the strictly upper triangular matrix such that

V̂ Tm V̂m = RTm + diag(V̂ Tm V̂m) +Rm, (4.6)

then

T̂mRm −RmT̂m = β̂m+1V̂
T
m v̂m+1e

T
m + δRm, (4.7)

where δRm is upper triangular with elements ρ such that

|ρ1,1| ≤2ε0σ, and for i ∈ {2, . . . ,m},
|ρi,i| ≤4ε0σ,

|ρi−1,i| ≤2(ε0 + ε1)σ, and

|ρ`,i| ≤2ε1σ, where ` ∈ {1, . . . , i−2}.

(4.8)

Note that the above theorem is obtained by substituting the notation in (4.5)
into the bounds of Theorem 4.1 in [4]. This sacrifices some tightness in the bounds
in favor of simplifying the notation. These bounds are also a factor of 2 larger than
those that appear in [4], to match the notation of Paige. Also note that the value of
Γ̄k in (4.1) is likely a large overestimate. This causes our bounds for the s = 1 case
to be larger tham those of Paige for classical Lanczos. To obtain tighter bounds, in
iteration m = sk + j, one can instead use, e.g.,

Γ̄k ≡ max

{
‖|Ŷ`||B`||v̂′`,i|‖2
‖|B`|‖2‖Ŷ`v̂′`,i‖2

, max
x∈{ŵ′`,i,û

′
`,i,v̂`,i,v̂`,i+1}

‖|Ŷ`||x|‖2
‖Ŷ`x‖2

}
,

where the maximum is over ` ≤ k, and i ≤ j if ` = k, i ≤ s if ` < k (see [4, Section
5]).

Using (4.8), it can be shown that

‖δRm‖2F ≤ 2σ2
(

2
(
5m− 4

)
ε20 + 4(m−1)ε0ε1 +m(m−1)ε21

)
(4.9)

where subscript F denotes the Frobenius norm. If we define

ε2 ≡
√

2 max (6ε0, ε1), (4.10)

then (4.9) gives

‖δRm‖F ≤ mσε2. (4.11)
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4.1. Assumptions. In order to make use of Paige’s analysis [30], we must make
the similar assumptions that

β̂i+1 6= 0 for i ∈ {1, . . . ,m}, m(3ε0 + ε1) ≤ 1, and ε0 <
1

12
. (4.12)

These assumptions are used throughout the analysis. Note that (4.12) means that
in order to guarantee the applicability of Paige’s results for classical Lanczos to the
s-step Lanczos case, we must have

Γ̄2
k <

(
24ε(n+11s+15)

)−1
= O

(
1/(nε)

)
. (4.13)

Since the bounds that will be presented, as well as the bounds in the theorem above,
are not tight, this condition on Γ̄2

k could be overly restrictive in practice. In paragraphs
labeled ‘Comments’ in the subsequent section, we comment on what happens to the
bounds and analysis in the case that Γ̄2

k exceeds this value, i.e., at least one computed
s-step basis is ill-conditioned. As stated previously, we also assume the no underflow
or overflow occurs, and that all computed s-step Krylov bases are numerically full
rank.

5. Accuracy of eigenvalues. Theorem 4.1 is in the same form as Paige’s equiv-
alent theorem for classical Lanczos (see [30]), except our definitions of ε0 and ε1 are
about a factor Γ̄2

k larger (assuming s� n). This additional amplification term, which
can be bounded in terms of the maximum condition number of the computed s-step
Krylov bases, has significant consequences for the algorithm as we will see in the next
two sections. The equivalent forms of our theorem and Paige’s theorem allow us to
immediately apply his results from [30], in which bounds are given in terms of ε2, to
the s-step case; the only thing that changes in the s-step case is the value of ε0 and
ε1, and thus ε2.

In this and the subsequent section, we reproduce the theorems and proofs of
Paige, and discuss their application to the s-step Lanczos method. Note that the
present authors claim no contribution to the analysis techniques used here. In fact,
much of the text in the following sections is taken verbatim from Paige [30], with only
the notation changed to match the algorithms in Section 3.

Our contribution is showing that the theorems of Paige also apply to the s-step
Lanczos method under the assumption that (4.12) (and thus also (4.13)) holds. To
aid the reader, we have also added a few more intermediate steps in the analysis that
were omitted from [30]. Also note that the text which discusses the meaning of the
results for the s-step case is our own.

Let the eigendecomposition of T̂m be

T̂mQ
(m) = Q(m) diag

(
µ
(m)
i

)
, (5.1)

for i ∈ {1, . . . ,m}, where the orthonormal matrix Q(m) has ith column q
(m)
i and (`, i)

element η
(m)
`,i , and the eigenvalues are ordered

µ
(m)
1 > µ

(m)
2 > · · · > µ(m)

m .

Note that it is assumed that the decomposition (5.1) is computed exactly. If µ
(m)
i

is an approximation to an eigenvalue λi of A, then the corresponding approximate

eigenvector is z
(m)
i , the ith column of

Z(m) ≡ V̂mQ(m). (5.2)
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We now review some properties of T̂m. Let ν
(m)
i , for i ∈ {1, . . . ,m − 1}, be the

eigenvalues of the matrix obtained by removing the (t+ 1)st row and column of T̂m,
ordered so that

µ
(m)
1 ≥ ν(m)

1 ≥ µ(m)
2 ≥ · · · ≥ ν(m)

m−1 ≥ µ(m)
m . (5.3)

It was shown in [36] that(
η
(m)
t+1,i

)2
=

m∏
`=1, 6̀=i

δ`(t+ 1, i,m) (5.4)

δ`(t+ 1, i,m) ≡


µ
(m)
i −ν(m)

`

µ
(m)
i −µ(m)

`

` = 1, 2, . . . , i−1

µ
(m)
i −ν(m)

`−1

µ
(m)
i −µ(m)

`

` = i+1, . . . ,m

0 ≤ δ`(t+ 1, i,m) ≤1, ` = 1, . . . , i−1, i+1, . . . ,m. (5.5)

If we apply T̂m to the rth eigenvector of T̂t, where 1 ≤ r ≤ t < m,

T̂m

[
q
(t)
r

0m−t,1

]
=

[
µ
(t)
r q

(t)
r

β̂t+1η
(t)
t,re1

]
(5.6)

and from [41],

δt,r ≡ β̂t+1|η(t)t,r | ≥ min
i
|µ(m)
i − µ(t)

r |. (5.7)

Definition 5.1. [30, Definition 1] We say that an eigenvalue µ
(t)
r of T̂t has

stabilized to within δt,r if, for every m > t, we know there is an eigenvalue of T̂m

within δt,r of µ
(t)
r . We will say µ

(t)
r has stabilized when we know it has stabilized to

within γ(m+ 1)ωσε2 where γ and ω are small positive constants.

From (5.7), we can see that after t steps µ
(t)
r has necessarily stabilized to within

δt,r. Multiplying (5.6) by q
(m)T
i , i ∈ {1, . . . ,m}, gives

(
µ
(m)
i − µ(t)

r

)
q
(m)T
i

[
q
(t)
r

0m−t,1

]
= β̂t+1η

(m)
t+1,iη

(t)
t,r . (5.8)

Another result is obtained by applying eigenvectors of T̂m to each side of (4.7);

i.e., multiplying on the left by q
(m)T
` and multiplying on the right by q

(m)
i for some

i, ` ∈ {1, . . . ,m}:

q
(m)T
`

(
T̂mRm −RmT̂m

)
q
(m)
i = q

(m)T
`

(
β̂m+1V̂

T
m v̂m+1e

T
m + δRm

)
q
(m)
i(

q
(m)T
` T̂Tm

)
Rmq

(m)
i − q(m)T

` Rm
(
T̂mq

(m)
i

)
= β̂m+1

(
q
(m)T
` V̂ Tm

)
v̂m+1

(
eTmq

(m)
i

)
+ q

(m)T
` δRmq

(m)
i .

Using (5.1) and (5.2), the above becomes

(q
(m)T
` µ

(m)
` )Rmq

(m)
i − q(m)T

` Rm(q
(m)
i µ

(m)
i )

= β̂m+1z
(m)T
` v̂m+1η

(m)
m,i + q

(m)T
` δRmq

(m)
i ,
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and rearranging, we obtain(
µ
(m)
` − µ(m)

i

)
q
(m)T
` Rmq

(m)
i = β̂m+1z

(m)T
` v̂m+1η

(m)
m,i + ε

(m)
`,i , (5.9)

where

ε
(m)
`,i ≡ q

(m)T
` δRmq

(m)
i ,

and

|ε(m)
`,i | ≤ mσε2, (5.10)

which follows from (4.11). If we take i = `, the left hand side of (5.9) is zero, and we
get

z
(m)T
i v̂m+1 = −

ε
(m)
i,i

β̂m+1η
(m)
m,i

. (5.11)

We have

|z(m)T
i v̂m+1| ≤ ‖z(m)

i ‖ · ‖v̂m+1‖ ≤ (1 + ε0/4) ‖z(m)
i ‖,

and from (5.7) and (5.10),

|z(m)T
i v̂m+1| ≤

mσε2

ming |µ(m)
g − µ(m)

i |
.

Therefore, z
(m)
i is almost orthogonal to v̂m+1 (i.e., |z(m)T

i v̂m+1| ≈ 0) if we have not

yet obtained a small eigenvalue interval about µ
(m)
i , the eigenvector approximation

z
(m)
i does not have a small norm, and Γ̄k, and thus ε0 and ε2, are small.

Definition 5.2. [30, Definition 2] We will say that an eigenpair (µ, z) represents
an eigenpair of A to within δ if we know that

‖Az − µz‖
‖z‖

≤ δ.

Thus if (µ, z) represents an eigenpair of A to within δ, then (µ, z) is an exact
eigenpair of A perturbed by a matrix whose 2-norm is no greater than δ, and if µ is
the Rayleigh quotient of A with z, then the perturbation will be taken symmetric.

Multiplying (4.2) on the right by q
(m)
i , we get

AV̂mq
(m)
i = V̂mT̂mq

(m)
i + β̂m+1v̂m+1e

T
mq

(m)
i + δV̂mq

(m)
i .

Using (5.1) and (5.2), this can be written

Az
(m)
i = V̂mq

(m)
i µ

(m)
i + β̂m+1v̂m+1η

(m)
m,i + δV̂mq

(m)
i

= z
(m)
i µ

(m)
i + β̂m+1v̂m+1η

(m)
m,i + δV̂mq

(m)
i ,

and thus we obtain

Az
(m)
i − µ(m)

i z
(m)
i = β̂m+1η

(m)
m,i v̂m+1 + δV̂mq

(m)
i . (5.12)
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Now, using the above and (4.4), (4.3), and (5.7), if λ` are the eigenvalues of A, then

min
`
|λ` − µ(m)

i | ≤ ‖Az
(m)
i − µ(m)

i z
(m)
i ‖

‖z(m)
i ‖

≤
‖β̂m+1η

(m)
m,i v̂m+1 + δV̂mq

(m)
i ‖

‖z(m)
i ‖

≤ δm,i(1 + ε0) +m1/2σε1

‖z(m)
i ‖

, (5.13)

and if

‖z(m)
i ‖ ≈ 1, (5.14)

then (µ
(m)
i , z

(m)
i ) represents an eigenpair of A to within about δm,i. Unfortunately,

one can not expect (5.14) to hold in finite precision.
From (5.2) and (4.6), we see that

‖z(m)
i ‖2 = z

(m)T
i z

(m)
i = q

(m)T
i V̂ Tm V̂mq

(m)
i

= q
(m)T
i

(
RTm + diag(V̂ Tm V̂m) +Rm

)
q
(m)
i

= 2q
(m)T
i Rmq

(m)
i + q

(m)T
i diag(V̂ Tm V̂m)q

(m)
i ,

and subtracting 1 from both sides,

‖z(m)
i ‖2 − 1 = 2q

(m)T
i Rmq

(m)
i + q

(m)T
i diag(V̂ Tm V̂m − Im)q

(m)
i . (5.15)

By (4.4), the last term on the right has magnitude bounded by ε0/2.
Using (5.2), we can write

V̂ Tt = Q(t)Z(t)T ,

and multiplying on the right by v̂t+1, we get

V̂ Tt v̂t+1 = Q(t)bt where bt = Z(t)T v̂t+1. (5.16)

Using (5.11), we can write

eTr bt = eTr Z
(t)T v̂t+1 = z(t)Tr v̂t+1 = − ε

(t)
r,r

β̂t+1η
(t)
t,r

.

Now, by definition, we have

Rm =

m−1∑
t=1

[V̂t, 0n,m−t]
T v̂t+1e

T
t+1,

and substituting in (5.16), we obtain

Rm =

m−1∑
t=1

[
Q(t) 0t,m−t

0m−t,t 0m−t,m−t

] [
bt

0m−t,1

]
eTt+1.
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Multiplying on the left and right by q
(m)T
i and q

(m)
i , respectively, we obtain

q
(m)T
i Rmq

(m)
i = q

(m)T
i

(m−1∑
t=1

[
Q(t) 0t,m−t

0m−t,t 0m−t,m−t

] [
bt

0m−t,1

]
eTt+1q

(m)
i

)
= q

(m)T
i

m−1∑
t=1

η
(m)
t+1,i

[
Q(t) 0t,m−t

0m−t,t 0m−t,m−t

] [
bt

0m−t,1

]

= q
(m)T
i

m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

[
q
(t)
r

0m−t,1

]
eTr

[
bt

0m−t,1

]

=

m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

[eTr , 01,m−t]

[
bt

0m−t,1

]
q
(m)T
i

[
q
(t)
r

0m−t,1

]

= −
m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

ε
(t)
r,r

β̂t+1η
(t)
t,r

q
(m)T
i

[
q
(t)
r

0m−t,1

]
. (5.17)

By (5.8) we have

q
(m)T
i

[
q
(t)
r

0m−t,1

]
/(β̂t+1η

(t)
t,r) =

η
(m)
t+1,i

µ
(m)
i − µ(t)

r

,

and substituting this into the right hand side of (5.17), we get

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

(
η
(m)
t+1,i

)2 t∑
r=1

ε
(t)
r,r

µ
(m)
i − µ(t)

r

. (5.18)

We substitute the expression in (5.4) on the right hand side of (5.18) to obtain

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

 m∏
`=1
6̀=i

δ`(t+ 1, i,m) ·
t∑

r=1

ε
(t)
r,r

µ
(m)
i − µ(t)

r

 .

Note that t of the ν
(m)
` in (5.3) and (5.4) are the eigenvalues µ

(t)
r . For r ∈ {1, . . . , t},

we let c(r) denote the index such that the numerator of δc(r)(t+ 1, i,m) cancels with

1/(µ
(m)
i − µ(t)

r ) in (5.18), i.e., ν
(m)
c(r) = µ

(t)
r for c(r) ∈ {1, . . . , i − 1} and ν

(m)
c(r)−1 = µ

(t)
r

for c(r) ∈ {i+ 1, . . . ,m}. Then the previous equation can be written

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

t∑
r=1

 ε
(t)
r,r

µ
(m)
i − µ(m)

c(r)

·
m∏
`=1
` 6=i

` 6=c(r)

δ`(t+ 1, i,m)

 . (5.19)

From (5.15), under the assumptions in (4.12), ‖z(m)
i ‖ will be significantly different

from unity only if the right hand sides of these last three numbered equations are large.

In this case (5.17) shows there must be a small δt,r = β̂t+1|η(t)t,r |, and some µ
(t)
r has

therefore stabilized. Equation (5.18) shows that some µ
(t)
r must be close to µ

(m)
i , and
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combining this with (5.17) we will show that at least one such µ
(t)
r has stabilized.

Finally from (5.19), we see that there is at least one µ
(m)
c(r) close to µ

(m)
i , so that µ

(m)
i

cannot be a well-separated eigenvalue of T̂m. Conversely, if µ
(m)
i is a well-separated

eigenvalue of T̂m, then (5.14) holds, and if µ
(m)
i has stabilized, then it and z

(m)
i are a

satisfactory approximation to an eigenpair of A.

Note that if the assumptions in (4.12) do not hold, ‖z(m)
i ‖ can be significantly

differ from unity if |q(m)T
i Rmq

(m)
i | is large and/or if ε0/2 is large (e.g., due to a large Γ̄2

k;

see (4.5)). If ‖z(m)
i ‖ is significantly different from unity and ε0/2 is large, we can not

necessarily draw meaningful conclusions about the eigenvalues of T̂m via (5.17), (5.18),

and (5.19) based on the size of ‖z(m)
i ‖.

We will now quantify these claims. We first seek to obtain an upper bound on

|q(m)T
i Rmq

(m)
i |. We note from (5.10) and (4.11) that

t∑
r=1

(
ε(t)r,r
)2 ≤ t∑

r=1

t∑
c=1

(
ε(t)r,c
)2

= ‖δRt‖2F ≤ t2σ2ε22, (5.20)

and using the Cauchy-Schwarz inequality,( t∑
r=1

|ε(t)r,r|
)2
≤

t∑
r=1

(
ε(t)r,r
)2 t∑

r=1

1 ≤ t3σ2ε22. (5.21)

Now, using (5.19) and the bound in (5.5), we can write

|q(m)T
i Rmq

(m)
i | ≤

m−1∑
t=1

t∑
r=1

|ε(t)r,r|
|µ(m)
i − µ(m)

c(r)|

≤ 1

min` 6=i |µ(m)
i − µ(m)

` |

m−1∑
t=1

t∑
r=1

|ε(t)r,r|,

and then using (5.21),

|q(m)T
i Rmq

(m)
i | ≤ σε2

min` 6=i |µ(m)
i − µ(m)

` |

m−1∑
t=1

t3/2

≤ σε2

min` 6=i |µ(m)
i − µ(m)

` |

∫ m

t=0

t3/2dt

=
σε2

min` 6=i |µ(m)
i − µ(m)

` |
·
(

2

5
m5/2

)
=

m5/2σε2

(5/2) min 6̀=i |µ(m)
i − µ(m)

` |
. (5.22)

This bound is weak, but it shows that if

min
` 6=i
|µ(m)
i − µ(m)

` | ≥ m5/2σε2, (5.23)

then from (5.22), |q(m)T
i Rmq

(m)
i | ≤ 2/5, and substituting this into (5.15), we have∣∣‖z(m)

i ‖2 − 1
∣∣ ≤ 2

∣∣q(m)T
i Rmq

(m)
i

∣∣+
ε0
2
≤ 4

5
+
ε0
2
.
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Thus, √
1−

(
4

5
+
ε0
2

)
≤ ‖z(m)

i ‖ ≤

√
1 +

(
4

5
+
ε0
2

)
, (5.24)

and with the condition that ε0 = 2ε(n+11s+15)Γ̄2
k < 1/12 (see (4.12)), we can then

guarantee that

0.39 < ‖z(m)
i ‖ < 1.4, ∗ (5.25)

which has implications for (5.13).
Comments. Note that we could slightly loosen the bound (4.12) on ε0 and still

carry through much of the preceding analysis, although in (5.24) we have assumed
that ε0/2 < 1 − 4/5 = 1/5. If we instead have ε0/2 ≥ 1/5, we get the trivial bound

0 ≤ ‖z(m)
i ‖2. This bound is not useful because in the worst case, z

(m)
i is the 0-vector,

which indicates either breakdown of the method or rank-deficiency of some Ŷk.
Note that from (5.2) and (4.4),∣∣∣∣∣

m∑
i=1

‖z(m)
i ‖22 −m

∣∣∣∣∣ =
∣∣∣ ‖Z(m)‖2F −m

∣∣∣
=
∣∣∣ ‖V̂mQ(m)‖2F −m

∣∣∣
=
∣∣∣ ‖V̂m‖2F −m ∣∣∣

=

∣∣∣∣∣
m∑
i=1

‖v̂i‖22 −m

∣∣∣∣∣
≤
∣∣∣m(1 +

ε0
2

)
−m

∣∣∣ =
mε0

2
.

It was also proven in [27] that if µ
(m)
i , . . . , µ

(m)
i+c are c+ 1 eigenvalues of T̂m which are

close to each other but separate from the rest, then

i+c∑
`=i

‖z(m)
` ‖2 ≈ c+ 1. (5.26)

This means that it is possible to have several close eigenvalues of T̂m corresponding
to one simple eigenvalue of A. If this is the case, then the columns of

Zc ≡ [z
(m)
i , . . . , z

(m)
i+c ]

will all correspond to one eigenvector z of A having zT z = 1. We now prove another
result.

Lemma 5.1. (see [30, Lemma 3.1]) Let T̂m and V̂m be the result of m = sk + j
steps of the s-step Lanczos method with (4.5) and (4.10), and let Rm be the strictly

∗Note that these bounds differ from those given by Paige in [30], which are 0.42 < ‖z(m)
i ‖ < 1.4;

the present authors suspect that the bounds in [30] were obtained using ε0 < 1/100 rather than the
specified ε0 < 1/12, the former being the value used by Paige in his earlier work [27]. This slight
change in bound carries through the remainder of this paper, resulting in different constants than
those in [30]; the fundamental results and conclusions remain unchanged.



ACCURACY OF S-STEP LANCZOS 15

upper triangular matrix defined in (4.6). Then for each eigenpair (µ
(m)
i , q

(m)
i ) of T̂m,

there exists a pair of integers (r, t) with 0 ≤ r ≤ t < m such that

δt,r ≡ β̂t+1|η(t)t,r | ≤ ψi,m and |µ(m)
i − µ(t)

r | ≤ ψi,m,

where

ψi,m ≡
m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ .
Proof. For r ≤ t < m we define, using (5.8),

γr,t ≡ (β̂t+1η
(t)
t,r)
−1q

(m)T
i

[
q
(t)
r

0m−t,1

]
=

η
(m)
t+1,i

µ
(m)
i − µ(t)

r

. (5.27)

Using this notation and (5.17), we can write

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

γr,tε
(t)
r,r,

≡ −eTCq̄,

where above, e is the vector with every element unity, C is an (m − 1)-by-(m − 1)

upper triangular matrix with (r, t) element γr,tε
(t)
r,r, and q̄ contains the last m − 1

elements of q
(m)
i . Letting E be the (m− 1)-square matrix with (r, t) element ε

(t)
r,r and

combining this with (5.20) gives

|q(m)T
i Rmq

(m)
i | ≤ ‖eTC‖2 · ‖q̄‖2 ≤ ‖CT e‖2 ≤ ‖C‖2‖e‖2 ≤ m1/2‖C‖F

≤ m1/2 · max
r≤t<m

|γr,t| · ‖E‖F .

(5.28)

Using (5.20), we can write

‖E‖2F =

m−1∑
t=1

t∑
r=1

(
ε(t)r,r
)2 ≤ σ2ε22

m−1∑
t=1

t2 ≤ σ2ε22m
3

3
,

and thus we can take the square root above and substitute into (5.28) to get

|q(m)T
i Rmq

(m)
i | ≤ m2σε2|γr,t|√

3
,

where we take the r and t giving the maximum value of |γr,t|. For this r and t,
substituting in the expression for γr,t from (5.27) into the bound above, rearranging,

and using η
(m)
t+1,i ≤ 1 then gives the desired results

δt,r = β̂t+1|η(t)t,r | ≤
m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ and (5.29)

|µ(m)
i − µ(t)

r | ≤
m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ . (5.30)
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Comments. For classical Lanczos, these bounds show that if ‖z(m)
i ‖2 is signifi-

cantly different from unity, then for some t < m there is an eigenvalue of T̂t which

has stabilized and is close to µ
(m)
i [30]. For the s-step Lanczos case, the same holds

with the assumptions in (4.12). These assumptions are necessary because otherwise,

for s-step Lanczos, ‖z(m)
i ‖ can significantly differ from unity if |q(m)T

i Rmq
(m)
i | is large

and/or if ε0/2 is large (due to a large Γ̄2
k, see (4.5)). If ‖z(m)

i ‖ is much different
from unity and ε0/2 is large, we can not necessarily say that there is an eigenvalue
of T̂t which has stabilized to within a meaningful bound regardless of the size of

|q(m)T
i Rmq

(m)
i |.

Theorem 5.2. (see [30, Theorem 3.1]) If, with the conditions of Lemma 5.1, an

eigenvalue µ
(m)
i of T̂m produced by s-step Lanczos is stabilized so that

δm,i ≡ β̂m+1|η(m)
m,i | ≤

√
3m2σε2, (5.31)

and ε0 < 1/12, then for some eigenvalue λc of A,

|λc − µ(m)
i | ≤ (m+ 1)3σε2. (5.32)

Proof. Suppose (5.31) holds.
(i) If

|q(m)T
i Rmq

(m)
i | ≤ 3

8
− ε0

2
, (5.33)

then by (5.15) and (4.4) we have

‖z(m)
i ‖ ≥

√
1−

(
2
∣∣q(m)T
i Rmq

(m)
i

∣∣+
ε0
2

)
≥

√
1− 2

(
3

8
− ε0

2

)
− ε0

2

≥
√

1

4
+
ε0
2

≥ 1

2
. (5.34)

Substituting (4.10) and (4.5) into (5.13), we obtain

min
`
|λ` − µ(m)

i | ≤ δm,i(1 + ε0) +
√
mσε1

‖z(m)
i ‖

≤ 2 ·
(√

3m2σε2 ·
13

12
+

√
mσε2√

2

)
≤ σε2

(
13
√

3

6
·m2 +

√
2m

)
.

Since m ≥ 1, m3 ≥ m2 and m ≥
√
m, it follows that

(m+ 1)3 = m3 + 3m2 + 3m+ 1 > 4m2 + 3
√
m ≥ 13

√
3

6
m2 +

√
2m.
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From this it follows that (5.32) holds.

In the other case that (5.33) is false, take ` = 1 and write

t1 = m, r1 = i. (5.35)

(ii) In this case we know from (5.29) and (5.30) that there exist positive integers r`+1

and t`+1 with

r`+1 ≤ t`+1 < t` (5.36)

such that

max
(
δt`+1,r`+1

, |µt`r` − µ
t`+1
r`+1
|
)
≤ t2`σε2√

3
(
3
8 −

ε0
2

) ≤ t2`σε2√
3
(
1
3

) ≤ √3t2`σε2. (5.37)

If the equivalent of (5.33), and thus (5.34), holds for (r`+1, t`+1), i.e.,

|q(t`+1)T
r`+1

Rt`+1
q(t`+1)
r`+1

| ≤ 3/8− ε0/2,

then using (5.13), for some eigenvalue λc of A,

|λc − µ(t`+1)
r`+1

| ≤ 2
(√

3t2`σε2(1 + ε0) +
√
t`+1σε1

)
≤ 2

(√
3t2`σε2(1 + ε0) +

√
t`+1σε2√

2

)
=
(

2
√

3t2`(1 + ε0) +
√

2t`+1

)
σε2

≤
(

2
√

3t2`

(
1 +

1

12

)
+
√

2t`+1

)
σε2

=

(
13
√

3t2`
6

+
√

2t`+1

)
σε2,

which gives

|λc − µ(m)
i | ≤ |λc − µ(t`+1)

r`+1
|+
∑̀
p=1

|µ(tp)
rp − µ

(tp+1)
rp+1

|

≤

(
13
√

3t2`
6

+
√

2t`+1 +
√

3
∑̀
p=1

t2p

)
σε2

≤

(
13
√

3m2

6
+
√

2m+

√
3m(m+ 1)(2m+ 1)

6

)
σε2

≤ (m+ 1)3σε2,

as required by (5.32), where the penultimate inequality follows from (5.35) and (5.36).
If the equivalent of (5.33) does not hold, then replace ` by `+ 1 and return to (ii).

We see that T̂1 = α̂1, q
(1)
1 = 1, so that z

(1)
1 = v1 satisfies (5.34), proving that we

must encounter an (r`+1, t`+1) pair satisfying (5.34), which completes the proof.
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Comments. It is clear from the derivation that the bound (5.32) is not tight,
and thus should in no way be considered an indication of the maximum attainable
accuracy. In practice we can still observe convergence of Ritz values to eigenvalues
of A with larger Γ̄2

k than allowed by ε0 < 1/12. The form of the bound in (5.33)
makes the assumption that ε0 < 3/4, and the bound ε0 < 1/12 is used in (5.34). As a
result of the form (5.33), (5.37) requires that 3/8−ε0/2 ≥ 1/3, which gives ε0 ≤ 1/12.
The present authors believe that the restriction on the size of ε0 could be loosened
by a constant factor by changing the form of the right hand side of (5.33) such that
meaningful bounds are still obtained. This remains future work.

The following shows we have an eigenvalue with a superior error bound to (5.32)
and that we also have a good eigenvector approximation.

Corollary 5.3. (see [30, Corollary 3.1]) If (5.31) holds, then for the final (r, t)

pair in Theorem 5.2, (µ
(t)
r , V̂tq

(t)
r ) is an exact eigenpair for a matrix within 6t2σε2 of

A.
Proof. From Theorem 5.2, if there is an i, 1 ≤ i ≤ m such that (5.31) holds, then

there exist r and t, 1 ≤ r ≤ t ≤ m such that

δt,r ≤
√

3t2σε2 and ‖z(t)r ‖ ≥
1

2
,

and both µ
(t)
r and µ

(m)
i are close to the same eigenvalue of A. It follows from (5.12)

that

(A+ δA(t)
r )z(t)r = µ(t)

r z(t)r , with (5.38)

δA(t)
r ≡ −(β̂t+1η

(t)
t,r v̂t+1 + δVtq

(t)
r )

z
(t)T
r

‖z(t)r ‖2
, and

‖δA(t)
r ‖ ≤

(
|δt,r| · ‖v̂t+1‖+ ‖δV̂t‖ · ‖q(t)r ‖

) 1

‖z(t)r ‖

≤ 2
(√

3t2σε2(1 + ε0) +
√
tσε1

)
(5.39)

≤

(
13
√

3t2σε2
6

+
2
√
tσε2√
2

)

≤

(
13
√

3

6
t2 +

√
2t

)
σε2

≤

(
13
√

3

6
+
√

2

)
t2σε2,

which gives

‖δA(t)
r ‖ ≤ 6t2σε2,

† (5.40)

where we have used (4.3), (4.4), and (4.10).

†Note that in [30], Paige obtains 5 as the leading coefficient in (5.40) rather than 6. The present
authors are unable to determine how Paige obtained this result; one possiblity is that the ε0 term
in (5.39) was dropped, as it results in an ε2 term on the right hand side.
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So, z
(t)
r , which lies in the range of V̂r, is an exact eigenvector of a matrix close to

A, and µ
(t)
r is the corresponding exact eigenvalue.

As in the classical Lanczos case, the above is also the result we obtain for an
eigenvalue of T̂m produced by s-step Lanczos that is stabilized and well-separated
(see definitions in (5.31) and (5.23), respectively).

Paige showed that one can also consider the accuracy of the µ
(m)
i as Rayleigh

quotients [30]. With no rounding errors, µ
(m)
i is the Rayleigh quotient of A with

z
(m)
i and this gives the best bound from (5.12) and (5.13) with ε = 0, i.e., in exact

arithmetic. Here (5.11) and (5.12) can be combined to give

z
(m)T
i Az

(m)
i − µ(m)

i z
(m)T
i z

(m)
i = −ε(m)

i,i + z
(m)T
i δV̂mq

(m)
i ,

so if ‖z(m)
i ‖ ≈ 1, then µ

(m)
i is close to the Rayleigh quotient

%
(m)
i = z

(m)T
i Az

(m)
i /z

(m)T
i z

(m)
i .

If (5.23) holds, then ‖z(m)
i ‖ > 0.39, and thus dividing both sides of the above equation

by z
(m)T
i z

(m)
i , we can write the bound

|%(m)
i − µ(m)

i | ≤
|ε(m)
i,i |

‖z(m)
i ‖2

+
‖δV̂m‖ · ‖q(m)

i ‖
‖z(m)
i ‖

.

Applying (5.10), (4.3), and (4.10) to the right hand side above, we can write the
bound

|%(m)
i − µ(m)

i | ≤
(

1

0.392
+

1√
2 · 0.39

)
mσε2 ≤ 9mσε2.

If ‖z(m)
i ‖ is small, then it is unlikely that µ

(m)
i will be very close to %

(m)
i , since a

small z
(m)
i will probably be inaccurate due to rounding errors. The equation (5.26)

suggests that at least one of a group of close eigenvalues will have corresponding

‖z(m)
i ‖ & 1. In fact, using (5.18), (5.21), and an argument similar to that used in

Theorem 5.2, it can be shown that every µ
(m)
i lies within m5/2σε2 of a Rayleigh

quotient of A, and so with (4.5) and (4.10), all the µ
(m)
i lie in the interval

λmin −m5/2σε2 ≤ µ(m)
i ≤ λmax +m5/2σε2.

This differs from the bound on the distance of µ
(m)
i from an eigenvalue of A in (5.32),

which requires that µ
(m)
i has stabilized.

We emphasize that whatever the size of δm,i, the eigenvalue µ
(m)
i of T̂m with

eigenvector q
(m)
i has necessarily stabilized to within δm,i ≡ β̂m+1|eTmq

(m)
i |. If µ

(m)
i is

a separated eigenvalue of T̂m so that (5.23) holds, then it follows from (5.25), (5.12),
and (5.13) that

‖Az(m)
i − µ(m)

i z
(m)
i ‖

‖z(m)
i ‖

≤ δm,i(1 + ε0) +
√
mσε1

‖z(m)
i ‖

≤
(

13

0.39 · 12

)(
δm,i +

√
mσε1

)
≤ 3(δm,i +

√
mσε1),
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which means that the eigenpair (µ
(m)
i , V̂mq

(m)
i ) represents an eigenpair of A to within

3
(
δm,i +

√
mσε1

)
. (5.41)

On the other hand, if µ
(m)
i is one of a close group of eigenvalues of T̂m, so that (5.23)

does not hold, then we have found a good approximation to an eigenvalue of A.
In this case either (5.33) holds, in which case (5.34), (5.12), and (5.13) show that

(µ
(m)
i , V̂mq

(m)
i ) represents an eigenpair of A to within (5.41), or there exists 1 ≤ r ≤

t < m such that

max
(
δt,r, |µ(m)

i − µ(t)
r |
)
≤
√

3m2σε2,

from Lemma 5.1. Then, it follows from Theorem 5.2 that µ
(m)
i is within

(
(m+ 1)3 +

√
3m2

)
σε2 of an eigenvalue of A. The δm,i and µ

(m)
i can be computed from T̂m quite

quickly, and these results show how we can obtain intervals from them which are
known to contain eigenvalues of A, whether δm,i is large or small.

6. Convergence of eigenvalues. Theorem 5.2 showed that, assuming (4.12)
holds, if an eigenvalue of T̂m has stabilized to within

√
3m2σε2, then it is within

(m + 1)3σε2 of an eigenvalue of A, regardless of how many other eigenvalues of T̂m
are close, and Corollary 5.3 showed we had an eigenpair of a matrix within 6m2σε2
of A. It is now shown that, assuming (4.12), eigenvalues do stabilize to this accuracy
using the s-step Lanczos method, and we can give an indication of how quickly this
occurs.

It was shown in [27] that at least one eigenvalue of T̂m must have stabilized
by when m = n. This is based on (5.11), which indicates that significant loss of
orthogonality implies stabilization of at least one eigenvalue. Using (5.16) and (5.11),
and the fact that ‖V̂ Tt v̂t+1‖22 =

∑t
i=1 |v̂Ti v̂t+1|2, we can write

‖Rm‖2F =

m−1∑
t=1

t∑
i=1

|v̂Ti v̂t+1|2

=

m−1∑
t=1

‖V̂ Tt v̂t+1‖22

=

m−1∑
t=1

‖Q(t)Z(t)T v̂t+1‖22

=

m−1∑
t=1

‖Z(t)T v̂t+1‖22

=

m−1∑
t=1

t∑
i=1

|z(t)Ti v̂t+1|2

≤
m−1∑
t=1

t∑
i=1

(
|ε(t)i,i |

|β̂t+1η
(t)
t,i |

)2

.

Then, if at step m

δ`,i ≡ β̂`+1|η(`)`,i | ≥
√

3m2σε2, 1 ≤ i ≤ ` < m, (6.1)
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we have, with the bound (5.10),

‖Rm‖2F ≤
m−1∑
t=1

t · t2σ2ε22
3m4σ2ε22

=
1

3m4

m−1∑
t=1

t3 =
1

3m4

(
(m− 1)m

2

)2

≤ 1

12
.

Let σ1 ≥ · · · ≥ σm be the singular values of V̂m. Lemma 2.2 of Rump [34] states
that given a matrix X ∈ Rn×m, if ‖I − XTX‖2 ≤ α < 1, then

√
1− α ≤ σi(X) ≤√

1 + α. By the above, we have

‖I − V̂ Tm V̂m‖2 ≤ 2‖Rm‖2 + ‖diag(I − V̂ Tm V̂m)‖2
≤ 2‖Rm‖F + ε0/2

≤ 2/
√

12 + 1/24

< 1.

Then with α = 2/
√

12 + 1/24, we apply the result of Rump to obtain the bounds

0.61 <

√
1− 2√

12
− 1

24
≤ σi(V̂m) ≤

√
1 +

2√
12

+
1

24
< 1.3, ‡ (6.2)

for i ∈ {1, . . . ,m}.
Note that if (6.1) does not hold, then we already have an eigenpair of a ma-

trix close to A. If we now consider the q
(m)
i that minimizes δm,i for T̂m, we see

from (5.16), (5.10), and (5.11) that

‖β̂m+1η
(m)
m,i V̂

T
m v̂m+1‖ ≤ ‖β̂m+1η

(m)
m,iQ

(m)Z(m)v̂m+1‖

≤ |β̂m+1η
(m)
m,i | · ‖Q

(m)‖ · ‖Z(m)v̂m+1‖

≤ |β̂m+1η
(m)
m,i | ·

√
m · mσε2

|β̂m+1η
(m)
m,i |

≤ m3/2σε2. (6.3)

Theorem 6.1. (see [30, Theorem 4.1]) For the s-step Lanczos method, if n(3ε0+
ε1) ≤ 1 and ε0 < 1/12, then at least one eigenvalue of T̂n must be within (n+ 1)3σε2
of an eigenvalue of the n×n matrix A, and there exist r ≤ t ≤ n such that (µ

(t)
r , z

(t)
r )

is an exact eigenpair of a matrix within 6t2σε2 of A.
Proof. If (6.1) does not hold for m = n, then an eigenvalue has stabilized to

that accuracy before m = n. Otherwise, (6.1) holds for m = n, so from (6.2), V̂n is
nonsingular, and then (6.3) shows that for the smallest δn,i of T̂n,

δn,i ≤
n3/2σε2

0.6
≤
√

3n2σε2

‡Again, note that these bounds differ from those given by Paige in [30], which are 0.41 < σi(V̂m) <
1.6; the present authors suspect that the bounds in [30] were obtained by squaring both sides of the
bound and using ε0 < 1/100 rather than the specified ε0 < 1/12, the former being the value used
by Paige in his earlier work [27]. This slight change in bound carries through the remainder of this
paper, resulting in different constants than those in [30]; the fundamental results and conclusions
remain unchanged.
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since ‖V̂ Tm v̂m+1‖ ≥ σm‖v̂m+1‖ > 0.6 from (6.2) and (4.4). So at least one eigenvalue
must have stabilized to within

√
3m2σε2 by m = n, and from Theorem 5.2 this

eigenvalue must be within (n + 1)3σε2 of an eigenvalue of A. In fact, Corollary 5.3

shows that there is an exact eigenpair (µ
(t)
r , z

(t)
r ), r ≤ t ≤ n, of a matrix within 6t2σε2

of A.
This shows that the s-step Lanczos algorithm gives at least one eigenvalue of

A to high accuracy by m = n, assuming restrictions on the sizes of ε0 and ε1. We
now extend Paige’s results on how quickly we can expect to find eigenvalues and
eigenvectors of A using the s-step Lanczos method in practice. We first consider
the Krylov sequence on which the Lanczos algorithm and several other methods are
based. For symmetric A, one way of using m steps of the Krylov sequence is to form
an n×m matrix V whose columns span the range of

[v1, Av1, . . . , A
m−1v1] (6.4)

and use the eigenvalues of

V TAV q = µV TV q (6.5)

as approximations to some of the eigenvalues of A.
In the presence of rounding errors, m steps of the s-step Lanczos algorithm with

full reorthogonalization form an m ×m matrix T̂ and an n ×m matrix V̂ such that
the columns of V̂ span the exact Krylov subspace of A+ δA starting with v1.

Theorem 6.2. (see [30, Theorem 4.2]) For m iterations of the s-step Lanc-
zos method, with (4.5), (4.10), and m such that (6.1) holds, the m Lanczos vectors
(columns of V̂m) span a Krylov subspace of a matrix within (3m)1/2σε2 of A.

Proof. From (4.2),

AV̂m = V̂mT̂m + β̂m+1v̂m+1e
T
m + δV̂m

= V̂m+1T̂m+1,m + δV̂m

where T̂m+1,m is the matrix of the first m columns of T̂m+1. Then with (6.2), (4.3),
and (4.10),

(A+ δAm)V̂m = V̂m+1T̂m+1,m, with

δAm ≡ −δV̂m(V̂ Tm V̂m)−1V̂ Tm , and

‖δAm‖F = trace(δAmδA
T
m)1/2

=

(
m∑
i=1

|(δAmδATm)i,i|

)1/2

=

(
m∑
i=1

|(δV̂m(V̂ Tm V̂m)−1δV̂ Tm )i,i|

)1/2

≤ (m · σε1 ·
1

0.62
· σε1)1/2

≤
√
mσ2ε21
0.62

=

√
mσε1
0.6

≤
√
mσε2√
2 · 0.6

≤ (3m)1/2σε2.
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Comments. From this we see that for i ≤ m+1, v̂1, . . . , v̂i computed by the s-step
Lanczos method span the same space as the first i Krylov vectors for A+δAm starting
with v̂1. This is analogous to the important result of Paige for classical Lanczos: until
an eigenvalue of T̂m−1 has stabilized, i.e., while (6.1) holds, the vectors v̂1, . . . , v̂m+1

computed correspond to an exact Krylov sequence for the matrix A + δAm. As a
result of this and (5.38), assuming that the s-step bases generated in each outer
loop are conditioned such that (4.12) holds, the s-step Lanczos algorithm can be
thought of as a numerically stable way of computing a Krylov sequence, at least
until the corresponding Krylov subspace contains an exact eigenvector of a matrix
within 6m2σε2 of A. Note that a similar result using the technique of writing the
finite precision Lanczos recurrence as a recurrence for perturbed A has been used in
analysis of the s-step biconjugate gradient method [3].

However, a Krylov subspace can be very sensitive to small perturbations in A. In
the case where T̂m and V̂m are used to solve the eigenproblem of A, if we follow (6.4)
and (6.5), we want the eigenvalues and eigenvectors of T̂m to be close to those of

V̂ TmAV̂mq = µV̂ Tm V̂mq, qT q = 1, (6.6)

as would be the case with classical Lanczos with full reorthogonalization (see [27]).
If (6.1) holds, then the range of V̂m is close to what we expect from the s-step Lanczos
method with full reorthogonalization, and thus the eigenvalues of (6.6) would be close
(how close depends on the value of ε2) to those obtained using full reorthogonalization.
(Note that performing full reorthogonalization in the s-step Lanczos method would
reintroduce undesirable communication.)

Theorem 6.3. (see [30, Theorem 4.3]) If V̂m comes from the s-step Lanczos
method with (4.5) and (4.10), and (6.1) holds, then for any µ and q which satisfy (6.6),
(µ, V̂mq) is an exact eigenpair for a matrix within

(
2δ + 2m1/2σε2

)
of A, where

η ≡ eTmq, δ ≡ β̂m+1|η|.

Proof. Define

r ≡ AV̂mq − µV̂mq. (6.7)

Then

r = V̂m(T̂m − µI)q + β̂m+1ηv̂m+1 + δV̂mq

where we have used (4.2). Since from (6.6), V̂ Tm r = 0,

(T̂m − µI)q = −(V̂ Tm V̂m)−1V̂ Tm (β̂m+1ηv̂m+1 + δV̂mq), (6.8)

r = Pm(β̂m+1ηv̂m+1 + δV̂mq), (6.9)

where Pm = I − V̂m(V̂ Tm V̂m)−1V̂ Tm is the projector orthogonal to the range of V̂m.
Using (6.1) and (6.3), we can bound

‖V̂ Tm v̂m+1‖ ≤
m3/2σε2√

3m2σε2
≤ (3m)−1/2. (6.10)
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We can write

‖Pmv̂m+1‖2 = v̂Tm+1Pmv̂m+1

= v̂Tm+1v̂m+1 − v̂Tm+1V̂m(V̂ Tm V̂m)−1V̂ Tm v̂m+1,

and then using (4.4), (6.2), and (6.10),

1− ε0
2
− 1

m
≤ 1− ε0

2
−
(

1√
3m
· 1

0.62
· 1√

3m

)
≤ ‖Pmv̂m+1‖2 ≤ 1 +

ε0
2
. (6.11)

Using (6.9), (6.11), (4.3), and (4.10), we can write the bound

‖r‖ ≤ ‖Pmv̂m+1‖|β̂m+1η|+ ‖Pm‖‖δV̂mq‖
≤ (1 + ε0) δ +

√
mσε1)

≤ (1 + ε0) δ +

√
mσε2√

2
.

Finally, from (6.2) we have

0.61 < ‖V̂mq‖ < 1.3.

Then from (6.7),

(A− δA)V̂mq = µV̂mq, where δA ≡ rqT V̂ Tm

‖V̂mq‖2
,

with

‖δA‖F =
‖r‖
‖V̂mq‖

≤ 1

0.6

(
(1 + ε0) δ +

m1/2σε2√
2

)
≤ 13

12 · 0.6
δ +

1√
2 · 0.6

m1/2σε2

≤ 2δ + 2m1/2σε2. (6.12)

Ordering the eigenvalues of T̂m such that

δm,1 ≥ δm,2 ≥ · · · ≥ δm,m,

and assuming (6.1) holds for ` = m, then for any eigenpair of (6.6), (6.8) gives,
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using (6.2), (6.3), (4.3), and (4.10),

‖T̂mq − µq‖ ≤ ‖(V̂ Tm V̂m)−1‖
(
‖β̂m+1ηV̂

T
m v̂m+1‖+ ‖V̂m‖‖δV̂mq‖

)
= ‖(V̂ Tm V̂m)−1‖

(∥∥∥∥∥β̂m+1η ·
β̂m+1η

(m)
m,i

β̂m+1η
(m)
m,i

· V̂ Tm v̂m+1

∥∥∥∥∥+ ‖V̂m‖‖δV̂mq‖

)

= ‖(V̂ Tm V̂m)−1‖

(∥∥∥∥∥ β̂m+1η

β̂m+1η
(m)
m,i

· β̂m+1η
(m)
m,i V̂

T
m v̂m+1

∥∥∥∥∥+ ‖V̂m‖‖δV̂mq‖

)

= ‖(V̂ Tm V̂m)−1‖
(

δ

δm,i
· ‖β̂m+1η

(m)
m,i V̂

T
m v̂m+1‖+ ‖V̂m‖‖δV̂mq‖

)
≤ ‖(V̂ Tm V̂m)−1‖

(
δ

δm,m
· ‖β̂m+1η

(m)
m,i V̂

T
m v̂m+1‖+ ‖V̂m‖‖δV̂mq‖

)
≤ 1

0.62
· m

3/2σε2δ

δm,m
+

1

0.6
·
√
mσε2√

2

≤ 3m3/2σε2δ

δm,m
+ 2m1/2σε2

≤
(

2 +
3mδ

δm,m

)
m1/2σε2. (6.13)

From this we can write(
2 +

3mδ

δm,m

)
m1/2σε2 ≥ ‖T̂mq − µq‖2

=
∥∥∥Q(m) · diag(µ

(m)
i ) ·Q(m)T q − µq

∥∥∥
2

=
∥∥∥(diag(µ

(m)
i )− µI

)
Q(m)T q

∥∥∥
2

≥ min
i
|µ(m)
i − µ| · ‖Q(m)T q‖

= min
i
|µ(m)
i − µ|.

Then, from (6.1), δm,m ≥
√

3m2σε2, and thus

|µ(m)
x − µ| ≡ min

i
|µ(m)
i − µ|

≤
(

2 +
3mδ

δm,m

)
m1/2σε2

≤ 2m1/2σε2 +
3m3/2σε2δ√

3m2σε2

≤ 2m1/2σε2 +

√
3δ√
m
. (6.14)

Then, for any t > m,

T̂t

[
q

0t−m,1

]
=

[
T̂mq

β̂m+1ηe1

]
,
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and together with (6.13),

min
i
|µ(t)
i − µ| ≤ 2m1/2σε2 + δ

(
1 +m3

(
3σε2
δm,m

)2)1/2

≤ 2m1/2σε2 + δ

(
1 +

(
3m3σ2ε22
m4σ2ε22

)2)1/2

≤ 2m1/2σε2 + δ

(
1 +

3

m

)1/2

, (6.15)

where we have again used δm,m ≥
√

3m2σε2. Equations (6.14) and (6.15) can then
be combined to give

min
i
|µ(t)
i − µ

(m)
x | ≤ 2m1/2σε2 +

√
3δ√
m

+ 2m1/2σε2 + δ

(
1 +

3

m

)1/2

≤ 4m1/2σε2 + δ

( √
3√
m

+
√

1 + 3/m

)
≤ 4m1/2σε2 + 4δ.

This means that, assuming ε2 is small enough, an eigenvalue of T̂m close to µ has
stabilized to about 4δ, where from (6.12), µ is within 2δ of an eigenvalue of A.

It can also be shown that for each µ
(m)
i of T̂m,

min
µ in (6.6)

|µ− µ(m)
i | ≤

(
2 +

3mδm,i
δm,m

)
m1/2σε2

≤ 2m1/2σε2 +

√
3δm,i√
m

.

This means that when (µ
(m)
i , V̂mq

(m)
i ) represents an eigenpair of A to within about

δm,i, there is a µ of (6.6) within about δm,i of µ
(m)
i , assuming m ≥ 3.

Thus, assuming no breakdown, and assuming the restrictions on the size of Γ̄k
(see (4.12)), these results say the same thing for the s-step Lanczos case as in the
classical Lanczos case: until an eigenvalue has stabilized, the s-step Lanczos algorithm
behaves very much like the error-free process, or the algorithm with reorthogonaliza-
tion.

7. Future work. In this paper, we have shown that the results of Paige for
classical Lanczos [30] also apply to the s-step Lanczos method as long as the computed
s-step bases remain well-conditioned. As in the classical Lanczos case, the upper
bounds in this paper and in [4] are likely large overestimates. We stress, as did Paige,
that the value of these bounds is in the insight they give rather than their tightness.
In practice, the present authors have observed that accurate eigenvalue estimates of
A can be found with much looser restrictions than indicated by (4.12), and in some
cases even in spite of a numerically rank-deficient basis.

Our analysis and extension of Paige’s results confirms the empirical observation
that the conditioning of the Krylov bases plays a large role in determining finite
precision behavior, and also indicates that the s-step method can be made suitable
for practical use in many cases, offering both speed and accuracy. The next step is
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to extend the subsequent analyses of Paige, in which a type of augmented backward
stability for the classical Lanczos method is proved [31].

Another area of interest is the development of practical techniques for improving
s-step Lanczos based on our results. This could include strategies for reorthogonal-
izing the Lanczos vectors, (re)orthogonalizing the generated Krylov basis vectors, or
controlling the basis conditioning such that (4.12) holds. The bounds could also be
used for guiding the use of extended or mixed precision in s-step Krylov methods; that
is, rather than control the conditioning of the computed s-step base, the requirements
in (4.12) could be met by decreasing the unit roundoff ε using techniques either in
hardware or software.
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[14] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-

jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.
[15] M. Gustafsson, J. Demmel, and S. Holmgren, Numerical evaluation of the communication-

avoiding Lanczos algorithm, Tech. Report ISSN 1404-3203/2012-001, Department of Infor-
mation Technology, Uppsala University, Feb. 2012.



28 ERIN CARSON AND JAMES DEMMEL

[16] M. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 6 (1997), pp. 271–398.
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