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Abstract

Dynamic and Interactive Synthesis of Code Snippets

by

Joel David Galenson

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodík, Co-chair

Professor Koushik Sen, Co-chair

Many code fragments are difficult to write. For example, using new and unfamiliar APIs
can be a complex task with a steep learning curve. In addition, implementing a complex
data structure requires discovering and understanding all of the corner cases. And more and
more end users with little to no formal training are trying to write code, whether they be
scientists writing simulations or kids writing mobile apps. For all of these reasons and more,
programming is a difficult task, which leads to bugs and delays in software.

There are many tools that help programmers find code fragments involving complex
APIs, but many are somewhat inexpressive and rely on static information. We present a
new technique, which we call CodeHint, that generates and evaluates code at runtime and
hence can synthesize real-world Java code that involves I/O, reflection, native calls, and
other advanced language features. Our approach is dynamic (giving accurate results and
allowing programmers to reason about concrete executions), easy-to-use (supporting a wide
range of correctness specifications), and interactive (allowing users to refine the candidate
code snippets). We evaluate CodeHint and show that its algorithms are efficient and that
in two user studies it improves programmer productivity by more than a factor of two.

As the second contribution, programmers and end users often find it easy to explain
an algorithm on a whiteboard or with pictures in a textbook but struggle to write the code
correctly. We propose a new methodology that allows users to program by demonstrating how
an algorithm proceeds on concrete inputs. To reduce the burden of these demonstrations on
the user, we have developed pruning algorithms to remove ambiguities in the demonstrations
and control flow inference algorithms to infer missing conditionals in demonstrations. These
two techniques take advantage of the knowledge encoded in the user’s partial correctness
condition. We show that this approach is effective in practice by analyzing its performance
on several common algorithms.
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Chapter 1

Introduction

The process of writing computer programs is difficult and developers spend a significant
amount of their time trying to write correct code. As software becomes more prevalent and
programs become larger, this cost will only increase.

Furthermore, many bugs still remain in final products. The Ariane 501 rocket crashed
due to a software overflow bug [57] and the Therac-25 gave several people severe overdoses of
radiation due to a race condition [53]. These and other major incidents have had significant
costs to the world economy [100, 87].

As programs become larger and higher-level languages become more popular, more pro-
grammers are writing code involving unfamiliar APIs. Unfortunately, such code can be
difficult to write due to poor documentation [42]. As an example, the Mars Climate Orbiter
crashed due to an inconsistency between two APIs [83]. Helping programmers write correct
code using complex APIs could thus greatly improve programmer productivity and reduce
bugs.

In addition, the increase in the importance of computer software has led to more people
trying to write software [71]. Helping teach students or even end-users to program has thus
become more important.

In this thesis we develop techniques for helping these two types of programmers based
on program synthesis [61], which aims to write correct code snippets for programmers. Our
CodeHint technique uses the user’s specification to synthesize code involving complex APIs,
while our work on Programming by Demonstration makes it easier for students, end-users,
and some developers to program without actually writing code.

1.1 CodeHint
Many code fragments are difficult to write, often because they involve using a new and unfa-
miliar API. Programmers have many tools at their disposal, from search and autocomplete to
advanced synthesis techniques, but these often have only limited applicability. For example,
autocomplete implementations can be helpful at finding a method to call, but they require
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some knowledge of the static type of the receiver and can only generate tiny code fragments.
Previous approaches based on API exploration [59, 44, 74, 88] can find larger code fragments
but usually rely on simple specifications and some static analysis of the codebase. Recently,
program synthesis [81, 48, 47] has been used to generate large code fragments, but these
techniques often work only for certain domains and cannot handle arbitrary complex APIs.

To make program synthesis techniques easier to use, we believe that programmers need
to be able to give partial specifications (rather than full correctness conditions) that may
depend on concrete program state. These specifications, which can be any predicate in the
host language, encode high-level hints about the code that should be synthesized.

To allow our program synthesis approach to generate complex code, our algorithms gen-
erate and evaluate code snippets at runtime to see if they meet users’ specifications. This
allows us to synthesize complex code without modeling the entire language.

Users of our technique can execute their programs on a specific concrete input and choose
a location to synthesize code. Our tool then generates potential code fragments and shows
the users those that meet their specification.

We thus propose a new approach for synthesizing code snippets that is dynamic, easy-
to-use, and interactive. Running in the dynamic context both allows us to find and filter
out candidates that static techniques could not and allows users to reason concretely about
their desired result. We support a wide variety of specifications so that we can even aid pro-
grammers with very little knowledge of their desired code. Our methodology is interactive,
letting users incrementally give more information to refine the candidate code fragments.

Taking advantage of dynamic information allows our algorithms to be more accurate
than static techniques by, for example, dereferencing exactly the expressions that do not
evaluate to null in the current context and downcasting the result of a method call to
its dynamic type to enable subsequent calls. In addition, users can use dynamic values in
their specifications and see the results of executing the candidates, which can be helpful in
choosing the correct result.

One major goal of our work has been to ensure that users can find code snippets using
whatever partial information they have about the desired code simply by writing a predicate
in the host language. These partial dynamic specifications or pdspecs give us the flexibility
to represent a large spectrum of specification strength and context sensitivity. For example,
our pdspecs can take the form of constraints on the desired value (including demonstrating
the concrete value that is desired in a specific context), dynamic type restrictions (which
might hold for all contexts), or even full functional correctness specifications. We also allow
users to write code skeletons to shape the search space by giving a syntactic outline of the
desired code with holes marking unknown fragments.

Given a set of candidate statements synthesized by our tool, users can refine this set by
continuing to run the program or by exercising it on different inputs in order to filter out
more candidates that fail the specification. This refinement process can quickly remove many
undesirable code snippets. Users can also sort and filter the candidates and their results.
These features often allow users to find their desired code even with simple pdspecs.
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Another goal of our work is to enable the synthesis of code in real-world Java programs.
Because it actually evaluates candidates in a concrete program state, our implementation can
synthesize code that uses I/O, reflection, native calls, and more. We propose novel techniques
for using standard features of JVMs such as breakpoints to ensure that our evaluations have
no undesirable side effects, which users can selectively enable or disable to control the tradeoff
between efficiency, soundness, and completeness. By analyzing over ten million lines of code,
we have developed a probabilistic model of real-world Java code that helps guide our search
toward more common methods and fields.

To demonstrate the benefits of our approach, we conducted two user studies involving 28
subjects solving multiple programming problems in different domains such as GUIs, string
parsing, and Eclipse plugins. The statistically significant results show that subjects using
our tool complete more tasks in less time and with fewer bugs than those without it by more
than a factor of two. Users gave our tool positive subjective ratings.

1.2 Programming by Demonstration with Little User
Interaction

The best way to explain an algorithm is often to demonstrate how it works. Many textbooks
give graphical examples of algorithms operating on concrete inputs before formally defining
them. Since these demonstrations are a useful way of teaching and explaining, we believe
that they can be a good way to program. We thus propose allowing users to program by
demonstrating their algorithms on concrete inputs rather than requiring them to program
symbolically.

Previous work on programming by demonstration (PBD) has taken advantage of these
insights by synthesizing a program from user-provided demonstrations [39, 24, 55]. Unfortu-
nately, when generalizing the demonstrations, all PBD systems must deal with ambiguities
(e.g., multiple expressions that evaluate to the demonstrated value). Some require multiple
demonstrations of the same statement [50] while others rank the potential solutions to try
to guess the correct one [35].

For example, consider trying to write code for a self-balancing binary search tree such
as a red-black tree. This code can be difficult to write correctly, but the key insights can
easily be described by demonstrating how the algorithm proceeds on a few examples, e.g.,
by manually manipulating pointers on a specific concrete input. However, the values used in
these demonstrations can often be referred to by multiple names, such as a node that is both
tree and x.parent. From a single demonstration that might not even include any names,
a PBD system can thus not always generalize the code.

Our work is a combination of PBD, synthesis, and graphical programming techniques.
Its core contribution is a methodology that improves on the ease of programming by demon-
stration with new techniques to resolve the ambiguities and missing branches in the demon-
strations. We do this with a combination of algorithmic approaches and interactively asking
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the user for further demonstrations, where we try to require as little work from the user as
possible.

Our approach works by initially asking the user to demonstrate the algorithm on a sample
concrete input. Our tool then automatically generates new inputs and uses them to resolve
ambiguities in this demonstrated trace as well as to find failing inputs. These failing inputs
are often due to conditional branches that were not seen in the initial trace. Our tool then
walks the user through the program on one of these new failing inputs to learn more about
the code. It continues this process until it has synthesized as much of the code as it can.

To automatically resolve ambiguities without overly burdening the user, our approach
can take advantage of user-provided tests and partial specifications. After each new demon-
stration, our tool will re-run existing tests and generate new ones so that it can ignore
potential code that fails a test or the correctness condition. This process can greatly reduce
the burden on the user.

Returning to the red-black tree example, we can automatically resolve some ambiguities
by discovering that certain candidate expressions will crash or lead to invalid outputs on
inputs we have not seen before. When we are unable to completely resolve an ambiguity, we
can generate a new input that will disambiguate it, such as one where tree and x.parent are
different, and ask the user to demonstrate a trace on this input. We can also automatically
infer that users have likely not demonstrated all of the branches their algorithms contain by
finding edge cases that cause them to crash, at which point we will generate an input we
suspect has such a branch and ask the users to demonstrate their algorithms on it.

Our work closely integrates edge case discovery into the development process, as the
missing conditional branches we discover often correspond to edge cases that can be difficult
for users to recognize. In addition, our users need only demonstrate their algorithms on
individual concrete inputs instead of having to consider abstract states or the interplay
between different paths through the program.

While our approach should work with any imperative language, it fits naturally with
graphical programming languages [71, 93, 69], which allow programmers to manipulate their
programs graphically rather than textually. Algorithms that manipulate data structures
such as lists and trees are an especially good fit, and novice programmers often find such
graphical components appealing [71, 80]. However, our methodology is general and can in
theory be used to encode any program.

To evaluate how effectively our algorithms can learn code while asking the user as few
questions as possible, we present several case studies on common programming algorithms
such as inserting an element in a red-black tree [34] and the Deutsch-Schorr-Waite stackless
graph marking algorithm [75]. These studies show that our algorithms greatly reduce the
number of queries we ask users, and in fact that we require only slightly more than the
minimum amount of work, which suggests that our techniques improve the usability of PBD
systems.
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Figure 1.1: A high-level overview of our approach.

1.3 Contributions and Outline
We begin in Chapter 2 by giving a high-level overview of our techniques by walking through
how they work on specific examples. As shown in Figure 1.1, Chapters 3, 4, and 5 then
present the main technical content of our synthesis approaches and algorithms, including
the following main contributions:

• A new approach (Section 3.1) for synthesizing code that is dynamic (allowing it to give
accurate results and allowing programmers to reason about concrete executions), easy-
to-use (supporting a wide range of correctness specifications), and interactive (allowing
users to refine the candidate code snippets).

• An efficient algorithm (Section 3.2) that exploits the dynamic context to generate
candidate statements that can include advanced features of the host language such as
I/O, reflection, and native calls.

• An open-source implementation (Section 4.1) as a plugin for the Eclipse IDE called
CodeHint that synthesizes Java code, including Android programs.

• An exploration (Section 4.2) of different probabilistic models for Java code and an
analysis of their effectiveness at predicting methods that are called.

• Empirical evaluations and user studies (Section 4.3) that show that CodeHint is efficient
and significantly improves programmer productivity.



CHAPTER 1. INTRODUCTION 6

• An open-source prototype implementation (Section 4.4) for JavaScript called CodeHint.js
that synthesizes simple code snippets.

• A new programming by demonstration methodology (Section 5.1) that leverages our
approach to allow users demonstrate their algorithms on concrete inputs and interac-
tively asking for further demonstrations to determine the desired code.

• New algorithms (Section 5.2) for automatically resolving ambiguities in users’ demon-
strations, thereby reducing the number of questions we ask users.

• New techniques (Section 5.3) for inferring and completing missing conditionals in traces
with little user interaction, which allows us to infer edge cases.

• An open-source prototype of our approach (Section 5.4) for a Java-like language and
show that it can successfully synthesize code for a number of algorithms found in
algorithms textbooks and that it greatly reduces the number of queries we ask the user
(Section 5.5).

We then present related work in Chapter 6 and discuss future work and conclude in Chapter 7.
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Chapter 2

Overview

We now give a high-level overview of our two core techniques. We begin in Section 2.1
by walking through two examples of how programmers can use CodeHint to help them
write code involving new and unfamiliar APIs. We then walk though how users can use
our Programming by Demonstration methodology to program a complex data structure in
Section 2.2.

2.1 CodeHint
We now present two example problems and show how CodeHint can solve them. The first
shows the user’s perspective and the second demonstrates CodeHint’s algorithms. Both
examples involve the GUI code using the Java Swing toolkit shown in Figure 2.1. Readers
are also encouraged to watch a demo video of CodeHint at http://www.cs.berkeley.edu/
~joel/codehint/.

2.1.1 User Perspective Example
A common task when writing GUI code is to detect clicks on a graphical tree of elements
using code similar to that in Figure 2.1. A programmer might be unsure how to find the
clicked element so she can use it. Unfortunately, as she does not know the API, she is not
even sure what type this object has; it could be a node object, the data it represents, or
the displayed string. As she does not even know the type of the expression she desires, it is
difficult to find.

Using CodeHint, she can easily set a breakpoint where she wants to insert the code and
then run the program, see a tree like the one shown in Figure 2.2, click on a node, and
give a pdspec that expresses which node she clicked. CodeHint will then synthesize some
candidate code snippets and show them to her. She can inspect these and choose the one
she likes, or she can click on a different element in the tree and give a different pdspec to
refine the set of candidates.

http://www.cs.berkeley.edu/~joel/codehint/
http://www.cs.berkeley.edu/~joel/codehint/
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1 final JComponent tree = makeTree();
2 tree.addMouseListener(new MouseAdapter() {
3 public void mousePressed(MouseEvent e) {
4 int x = e.getX(), y = e.getY();
5 Object o = null;
6 // Get the menu bar or the clicked element.
7 }
8 });

Figure 2.1: Code that listens for clicks on a graphical tree of elements.

Figure 2.2: An example tree that might be created by the code in Figure 2.1.

To use CodeHint to find the code she desires, she can set a breakpoint after line 5 and
then execute her code and click on an element to reach the breakpoint. Knowing that in
Java most objects have a toString method that gives a string representation of their value,
she realizes that if she clicks on an element labeled “Alice” (e.g., the one in Figure 2.2), the
toString of her desired result should contain that string. This insight can lead her to enter
the specification o′.toString().contains("Alice"). This specification, which we call a
pdspec, encodes the fact that the value of the variable o should be updated by the desired
statement so that its toString contains “Alice” (the o′ denotes the value of the variable o
after the code to be synthesized is evaluated). CodeHint will then generate eight expressions
to assign to o:
((JTree)tree).getPathForLocation(x, y),
((JTree)tree).getSelectionPath(),
((JTree)tree).getLastSelectedPathComponent(), ...

To reduce the number of candidates, the user can continue the execution (or restart it)
and click on a different element. Assume she does so and clicks on an element labeled “Bob”.
When the execution suspends at the breakpoint, CodeHint will show her all eight of the
previous expressions with their results in the new context. She can then give a new pdspec
to filter out some expressions. Giving o′.toString().contains("Bob") will remove one
expression. Alternatively, by looking at the results of the eight expressions she might see
that many return an object of type TreePath that seems to do what she wants, so she can
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use the pdspec o′ instanceof TreePath to keep only those.
Assume that now the user clicks below all the elements (i.e., on nothing). She can then

see all of the remaining candidate expressions with their new values and keep only those
that evaluate to null with the pdspec o′ == null. CodeHint will then eliminate all but one
candidate and find the correct code:
o = ((JTree)tree).getPathForLocation(x, y);

This example shows how our approach can be useful even when a programmer has very
little knowledge about her desired result, perhaps not even its type, by allowing her to refer
to values in the concrete program state. The programmer narrows down the set of candidate
statements by incrementally providing pdspecs for different test scenarios. A key advantage
of our methodology is that programmers can mix and match value demonstrations, type
specifications, and arbitrary pdspecs as desired. In addition, the interactivity of CodeHint
allowed the user to find the correct result from the initial candidates. This example was
inspired by how one subject in our first user study solved this problem.

This example also shows how our approach can easily synthesize real code involving
complicated libraries. While the final synthesized code appears simple, executing it involves
making over 70 method calls that allocate new objects and use complex objects, generics,
and binary-only libraries. Tools that rely on modeling the target language, e.g., to translate
it to SAT, would thus have difficulty synthesizing this code.

Using skeletons. Perhaps now the user wants to get the data representing the object
she clicked out of the TreePath object she just assigned to o. Let us assume that she
changes o’s type in the code and discovers from the type’s documentation that it contains
a getPathComponent method that she thinks will help her. However, she is unsure what
argument to pass to this method.

The user can encode this knowledge into a skeleton that CodeHint will use to guide
its search. Specifically, she can enter the skeleton o.getPathComponent(??) where the ??
represents the missing portion of the code (she could also use ** instead of ?? if she were
unsure how many arguments were needed). Given this skeleton, CodeHint will search for
expressions that can be used as arguments to getPathComponent, which expects an integer.
This skeleton complements the user’s pdspec: the skeleton determines the search space while
the pdspec determines which results to show to the user.

As before, the user can set a breakpoint where she wants to insert code, run the program
on a test, and click on an element to hit the breakpoint. If she clicks on “Eve”, she can
enter the pdspec _rv′.toString().equals("Eve") to show that she now wants some object
that represents “Eve” (the _rv′ represents the return value of the expression) along with the
skeleton discussed above to guide the search.

CodeHint will now search for integers that, when passed to getPathComponent, meet the
user’s specification, which include the following:
o.getPathComponent(e.getClickCount())
o.getPathComponent(o.getPathCount() - 1)
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By refining the set of candidates by giving different pdspecs in different states, the user
can remove incorrect expressions such as the first one above.

This example shows how users can encode their partial knowledge of the correct code to
allow CodeHint to focus its search on relevant code snippets.

2.1.2 Algorithm Example
We now walk through a similar example of using CodeHint where we focus on its algorithms
rather than the user’s interactions with it.

Imagine that a user writes the partial code shown in Figure 2.1 and then wants to write
code at line 6 to find the menu bar for the window that contains the graphical tree and store
it in the variable o. A simple Internet search will reveal that the menu is represented by
a JMenuBar object but will likely provide little information on how such an object can be
acquired.

To use CodeHint to find this object, the user can set a breakpoint after line 5 (e.g., near
the comment on line 6) and run the program to that breakpoint, which is the current context.
Since she knows that she wants to assign a value of type JMenuBar to the variable o, she can
provide the pdspec o′ instanceof JMenuBar to CodeHint to encode the fact that o should
change so that it contains an object of type JMenuBar.

Given this query, CodeHint will begin a search for expressions that it can assign to o to
try to satisfy the pdspec. This iterative search will start with local variables and generate
larger expressions with operations such as addition and method calls. CodeHint will evaluate
these expressions in the current context, undoing side effects as they occur, to enable it to
get precise results that satisfy the user’s pdspec. A probabilistic model will guide the search
toward more likely expressions and CodeHint will group equivalent expressions together to
avoid duplicate work.

Once this search is complete, CodeHint will show the user approximately five results. She
can then add a new testcase to the code and run that new input, which will allow CodeHint
to remove two of the previous results that crash in the new context.

We now give more details on how this process works by walking through CodeHint’s
algorithm and the user’s interactions with it.

First iteration. CodeHint will first query the debugger for all the variables in scope,
evaluating them so it knows their dynamic types. These, along with the special values null
and this, will become CodeHint’s initial set of candidate expressions:
tree, e, x, y, o, this, null

Second iteration. In its next step, CodeHint will combine these simple expressions into
more complicated ones according to the Java grammar. To do this, it will first query the
debugger for the dynamic type of each candidate.
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For each object, it will query the debugger for all accessible methods available on that
type (and its supertypes) and then call each of those methods with all type-safe combinations
of the previous set of candidates as arguments (downcasting when necessary).

As an example, CodeHint will find that tree is a value of type JTree (which is a subtype
of JComponent, the static type of the variable). It will then ask the debugger for the methods
of JTree, one of which is getPathForLocation. This method expects two integer arguments,
so CodeHint will find all of the integer-valued expressions in its previous set of candidates,
which in this case are x and y. CodeHint will then call this method with all possible
combinations of these arguments, producing the following four calls:
((JTree)tree).getPathForLocation(x, x)
((JTree)tree).getPathForLocation(x, y)
((JTree)tree).getPathForLocation(y, x)
((JTree)tree).getPathForLocation(y, y)
CodeHint will repeat this process for other methods and for static methods of classes im-
ported in the current file.

For each pair of primitives, such as integers, CodeHint will combine them with binary
operations. Thus given x and y, it will generate the following expressions:
x + y, x - y, y - x, x * y, x / y, y / x,
x == y, x != y, x < y, x <= y, x > y, x >= y
It will similarly generate object comparisons, array accesses and length, field accesses, integer
and boolean negation (e.g., -x), addition and subtraction with 1 (e.g., x + 1 and x - 1),
comparisons with 0 (e.g., x > 0 and x < 0), and boolean conjunctions and disjunctions.

CodeHint will evaluate each expression as it is generated so that it knows its result.
However, expressions with side effects must be handled correctly so they do not affect future
evaluations. For example, tree.add(makeTree()) will modify the tree, potentially causing
future evaluations to return different results in this new context.

To avoid this problem, CodeHint uses novel techniques based on breakpoints and the
Java security manager to undo in-memory side effects after they occur and block harmful
native calls. Harmless native calls, such as reading from a file, proceed normally. In practice,
we have found that allowing users to choose to relax these restrictions often gives correct
results in less time. In this case, evaluating tree.add(makeTree()) will modify a field of
tree. This will trigger a breakpoint installed by CodeHint, which will log the change and
undo it after the evaluation finishes.

Once this process is complete, CodeHint will have a new set of approximately 240 can-
didate expressions:
tree, e, x, y, o, this, null, x + y, x < y, tree.getTopLevelAncestor(),
Window.getWindows(), ((JTree)tree).getPathForRow(x), ...
The set of candidates can grow quite large, so CodeHint applies some optimizations that
make it significantly smaller:
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• To avoid repeating the same computations, CodeHint groups expressions into equiv-
alence classes based on their results and only retains one representative of each class
in its set of candidates. For example, tree.getTopLevelAncestor() is equivalent to
SwingUtilities.getRoot(tree) in the current context, so only one (the former in
this case) will be included in the set of candidates. As we will see shortly, CodeHint
will use the equivalent expressions that are not in the list of candidates to help generate
the results it shows to the user by substituting equivalent subexpressions.

• To avoid spending time searching expressions that are rarely used in practice, CodeHint
uses a probabilistic model to avoid unlikely method calls and field accesses. This model
contains information from over ten million real-world lines of code. As one example,
the JTree class contains a method called getNextMatch that was not called once in
all of the analyzed code, so CodeHint will not call it in this iteration.

CodeHint would have approximately 370 candidates without either of these optimizations
and approximately 560 without both. Since these candidates are used to generate more
expressions in the next iteration, these optimizations significantly improve performance, as
we describe below.

None of these candidates meet the user’s specification, as none have type JMenuBar, so
CodeHint will automatically continue this process of creating larger expressions from its
current candidates.

Third iteration. The third iteration proceeds exactly as the second: it combines the
current candidates to produce larger expressions.

In this iteration, CodeHint will use its probabilistic model to avoid searching some addi-
tional expressions. Libraries such as Swing often contain many constants that are intended
to be used only in certain contexts. For example, KeyEvent.VK_ENTER helps determine if the
user pressed the Enter key. To avoid using such constants in unrelated contexts, CodeHint’s
probabilistic model stores exactly how they are used in practice. This allows it to avoid
generating expressions such as tree.getComponent(KeyEvent.VK_ENTER), as it recognizes
that KeyEvent.VK_ENTER was never used as an argument to getComponent in the analyzed
code.

During this iteration, CodeHint will find that tree.getTopLevelAncestor(), whose
static return type is Container, has type JFrame at runtime. CodeHint will then explore all
the methods it can call on a JFrame, including getJMenuBar, which returns a JMenuBar. It
will thus add ((JFrame)tree.getTopLevelAncestor()).getJMenuBar() to its next set of
candidates.

At this point, CodeHint will also explore some expressions that it avoided before due to
its probabilistic model, such as calls to JTree.getNextMatch. This allows the algorithm to
prioritize more likely expressions while remaining complete.

Since it calls each method with all possible type-safe combinations of the previous set of
candidates, CodeHint might end up making an large number of calls to a single method. For
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example, in this iteration it attempts to call the getTreeCellRendererComponent method
of the DefaultTreeCellRenderer class. This method has seven arguments, including one of
type Object (of which CodeHint has seen over 70 unique values), one of type int (of which
CodeHint has seen over one hundred unique values), and four booleans (each of which can
be true or false), which would result in well over 100,000 calls. To avoid spending so much
time calling a single method, CodeHint only calls it a small number of times. Specifically, if
a method can be called more than a certain number of times that grows exponentially with
the current iteration, CodeHint calls it at most that many times with arguments that were
candidates from previous iterations.

At the end of this iteration, CodeHint will have generated and evaluated over 700 ex-
pressions. Without either the equivalence class or the probabilistic model optimizations
described above, CodeHint would have generated almost 7,000 expressions and therefore
done an order of magnitude more work.

Once it has finished this process, CodeHint will find which of its candidates satisfy
the user’s pdspec. In this case, ((JFrame)tree.getTopLevelAncestor()).getJMenuBar(),
when assigned to o, is the only expression that satisfies the pdspec. Before showing it to the
user, CodeHint will generate more satisfying expressions by replacing its subexpressions with
equivalent expressions. For example, because SwingUtilities.getRoot(tree) is equivalent
to tree.getTopLevelAncestor(), CodeHint knows without any additional evaluations that
((JFrame)SwingUtilities.getRoot(tree)).getJMenuBar() will yield the same result and
hence also satisfy the user’s pdspec. CodeHint will thus generate this expression and three
others that are all equivalent to the original expression.

Now that it has expressions to show to the user, CodeHint will use its probabilistic model
to present the user with the more likely options closer to the top. A call’s likelihood is the
number of calls to it that the model contains and an expression’s likelihood is the product of
its subexpression’s likelihoods. In this case, the getTopLevelAncestor method was called
19 times in the model while getRoot was called 15 times, so the former expression is shown
first.

CodeHint will then show the user these expressions that, when assigned to o, meet the
specification (as well as their values, side effects, and string representations):
((JFrame)SwingUtilities.getWindowAncestor(jtree)).getJMenuBar()
((JFrame)tree.getTopLevelAncestor()).getJMenuBar()
((JFrame)SwingUtilities.getRoot(tree)).getJMenuBar()
...

If CodeHint had not found any results that satisfied the user’s pdspec at this point, it
would have notified the user and asked if it should continue for another iteration.

Note that the results CodeHint found all rely on being able to discover the dynamic type
of an expression and downcast to it, something that static tools will find difficult to do.

Refinement. The user can now examine these expressions, their results, and their docu-
mentation to try to pick the one she wants to use. If she is unsure which is correct, she can
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Figure 2.3: A high-level overview of our approach.

refine the set of results by running the program on a different input.
Let us assume that the user modifies the code so that the tree is contained within an

applet that is itself contained within the top-level window, which might be useful for running
the same code both by itself and within a web browser. Once she makes this change, she can
run the new program until it reaches the point where she ran the previous search. CodeHint
will then evaluate the previous results in the new context. In this case, two of them, including
((JFrame)tree.getTopLevelAncestor()).getJMenuBar(), will crash. CodeHint will show
this smaller set of results to the user, who may select one of them to use or continue the
process with yet another input.

2.2 Programming by Demonstration
In our methodology, the user begins by giving an initial trace of the algorithm on a concrete
input by stepping through and showing its execution. We transform this trace into a partial
program that represents multiple programs that encompass the ambiguities in the trace.
Using automated pruning techniques, we resolve as many ambiguities as we can. We then
generate a new input that will resolve some of the remaining ambiguities and interactively
execute it with the user, who resolves any ambiguities that are encountered and hence refines
the partial program. During this interactive trace process we infer control flow that is missing
from the user’s traces. We continue this process as long as we can, at which point we present
the final program to the user. We present a graphical overview of this approach in Figure 2.3.
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Figure 2.4: The first trace of a left rotation of a binary tree. The user is shown the left tree
and manipulates it to reach the right tree.

We now demonstrate our approach by showing how it can be used to write code for a left
rotation of a binary search tree. Various self-balancing binary search trees such as red-black
trees [34] use rotations to improve their worst-case lookup time. A left rotation rotates a
subtree counter-clockwise. The top part of Figure 2.4 shows a left rotation around the node
pointed to by the variable x.

A user of our tool will first define the types his code requires and the signature of the
function he is writing. He may then supply code that generates inputs to this function
and checks that the output is correct. This correctness condition is not required but often
proves to be helpful (see Section 5.2 for details). In our example, we assume the user writes
a postcondition that specifies only that the output should be a valid tree (ignoring the
red-black property) that contains the same elements as the input tree.

The user is shown a sample input to his function, such as the tree shown in the left of
Figure 2.4. He then graphically manipulates the pointers (e.g., by dragging them to point to
different objects) until he reaches the tree shown to its right, which is the correct output. Our
tool creates a trace of this editing process, which is shown in the bottom-left of Figure 2.4.

It then synthesizes a partial program that could yield this trace. In certain cases, multiple
different expressions might yield a value seen in the trace, so our tool creates a hole that
represents the multiple possibilities for the desired expression. For example, due to aliasing,
we are unsure whether the node with value 3 should be accessed via x or tree.right, and
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Figure 2.5: The second trace of a left rotation of a binary tree. The user is shown the left
tree and manipulates it to reach the right tree.

similarly whether node 1 is tree or x.parent. The code in the bottom-right of Figure 2.4
is a simplified form of what this partial program looks like after seeing the above trace (the
real version has many more holes).

Upon analyzing this partial program and running it on newly-generated inputs, our tool
will discover that line 3 will dereference null on some inputs. It will thus present the user
with such an input tree and ask him to give another trace and show how to avoid crashing. To
make the user’s task easier, the tool will suggest the next statement to execute by graphically
showing it to the user, who can step forward as in a debugger.

Our tool might thus present the user with the input tree shown in the left of Figure 2.5.
He can follow the tool’s suggestions for the first two statements (x and tree.right are still
aliased, so there is no ambiguity) to reach the tree shown to its right. At this point, our
tool realizes that executing the next statement would crash, and so it suggests to the user
that there might be a conditional at this point in the program. The user will recognize that
y.left.parent should only be modified when y.left is non-null, and so will tell the tool
this by demonstrating the condition (or its result) and the new branch. The partial program
at this point is shown in the bottom of Figure 2.5.

Our tool will analyze this partial program and realize that all possible paths will fail the
user’s postcondition on some inputs, such as the one in the left of Figure 2.6. This is because
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Figure 2.6: The third trace of a left rotation of a binary tree. The user is shown the left tree
and manipulates it to reach the right tree. The red arrows represent the choices our tool
shows the user and the blue arrows are the correct changes.

line 5 currently sets a right pointer to point to y, while the correct code might instead set
a left pointer depending on whether x is a left or right child of its parent. For example, on
this tree, the current code would change node 1’s right pointer to point to node 5 (the red
arrow in the right of in Figure 2.6), which would orphan nodes 7 and 9.

The tool will thus present an input such as the one on the left of Figure 2.6 to the user
and ask him to walk through the algorithm. However, when executing line 2, it will recognize
that there are two different possibilities, as x and tree.right represent two different objects.
It will thus present both options to the user and ask which is correct (just as in the left
of Figure 2.6); the user can simply click the correct option to resolve the ambiguity and
continue.1

Upon reaching line 5, our tool will suggest changing node 1’s right pointer to point to
node 5 (with the red arrow in the right of Figure 2.6). The user will recognize that this is
incorrect and tell the tool that there is a conditional at this point. Having now seen inputs

1In practice, our implementation will avoid asking the user this question by instead presenting him with
a different input where it is not needed.
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Figure 2.7: The fourth trace of a left rotation of a binary tree. The user is shown the left
tree and manipulates it to reach the right tree.

that go down both paths in the conditional, he realizes that the conditional must check
whether x is a left or right child of its parent, and that in this case the left pointer must
change (the blue arrow). The partial program after this new demonstration is shown in the
bottom of Figure 2.6 and shows how our tool can infer conditionals.

Our tool will then realize that line 5 of this new partial program will dereference null
when x has no parent and so will show the user a tree like the one shown in the left of
Figure 2.7. The user will walk through the trace, accepting the suggested changes, until the
execution reaches line 5, where a crash would occur. As before, the tool then suggests to the
user that there is a conditional here, and the user will show the tool the correct action (to
assign y to tree).

Our tool will be unable to find any failing inputs on the new partial program. It will then
automatically generate new inputs and use them to prune incorrect possibilities and resolve
the remaining ambiguities. For example, given inputs where x is the root of the tree, the
x.parent possibilities will crash and so must be incorrect. Similarly, given a tree where x
is not equal to tree.right, using the latter on line 4 will set the parent pointer incorrectly
and hence fail the postcondition. This pruning allows our tool to generate the correct code
shown in the bottom of Figure 2.7.

In this example, the user gave four traces before finding the correct code. Since the
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code contained one conditional with three branches, the user must give at least three traces.
We thus asked one trace more than the minimum required; with a different random seed,
we might ask more or fewer questions. We asked the user to disambiguate among multiple
possible actions once; as noted, we would likely not ask that in practice.
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Chapter 3

Synthesis Algorithm

We now define pdspecs and our synthesis algorithm, which we use in both CodeHint and
our PBD tool.

3.1 Approach
Without loss of generality, let us assume that we have an incomplete program in which a
statement, say sT ∈ S, is missing. Here S is the set of all syntactically valid statements.
The developer wants to synthesize sT using CodeHint. She creates a test input so that the
execution of the program on the test input reaches the program location, say `, that is just
before the missing statement. Let σ be the program state when the program reaches the
program location `. We use Σ to denote the set of all feasible program states. The goal
of CodeHint is to discover the missing statement sT . Let exec(σ, s) ∈ Σ × S → Σ be the
program state obtained by executing the statement s in state σ. Let us use σ′ to denote
exec(σ, sT ), i.e., the program state reached after the user executes the missing statement sT
in the state σ. As a running example, let us assume that σ is {x 7→ 42} and sT is x = 2 * x.
Then σ′ is {x 7→ 84}.

The user does not know the missing statement sT , but she might have a good idea about
what the program state should look like after the execution of sT (i.e., σ′). With CodeHint,
the user can indirectly provide a hint about the statement sT by giving information about the
state σ′ using pdspecs. A pdspec can give absolute information about σ′ by describing the
updated program variables and their corresponding values or it can be a predicate relating
the states σ and σ′. For example, a pdspec can specify x′ == 84, where x′ represents the
value of x in state σ′, or it could specify x′ > x, a predicate that relates the states σ and σ′.
In general, a pdspec can consist of any expression in the host language.

Note that a pdspec that is specified in the state σ may not be a correct pdspec if the
program is in a different state at the location `. (A different state at location ` can be
reached by executing the program on a different test input.) For example, x′ > x is not a
correct pdspec if the program state at location ` is {x 7→ −20}, but it is a correct pdspec
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if the state is {x 7→ 10}. Similarly, x′ == 84 is not a correct pdspec for any program state
with x != 42. Note that x′ == 2 * x is a correct pdspec for all program states that reach
the location `.

Formally, a pdspec is a logical predicate φ ∈ Σ×Σ→ {true, false} where φ(σ, σ′) checks
whether σ′ is a desired output state given the input state σ. As a notational convenience, for
a pdspec φ(σ, σ′), we refer to variables in the input state σ using their names and variables
in the output state σ′ using their primed names. All variables not given in a pdspec must
be equal in the two states and all expressions in a pdspec must be free of side effects.

The user of CodeHint gives a sequence of pairs of program states at ` (reached by
executing the program on different test inputs) and their corresponding correct pdspecs:
(σ0, φ0), (σ1, φ1), · · · . Based on the sequence of pairs of states and pdspecs, CodeHint returns
a set of candidate program statements that could replace the missing statement. For example,
if the user provides the sequence of pairs (σ0, φ0), · · · , (σn, φn), the set of suitable statements
for the location ` is reduced to the set

Cn =

s ∈ S :
∧

0≤i≤n
φi(σi, exec(σi, s))

 .

The predicate φi(σi, exec(σi, s)) is true if the state σi and the state obtained after executing
statement s in the state σi satisfy the pdspec φi. Statement s is in the candidate set if this
predicate is true for all i. If a statement s is in the candidate set, it implies that at least for
the program states σ1, · · · , σn observed at the location `, the execution of the statement s
will result in the user’s expected program state. If we could compute the candidate set for
all possible pairs of programs states reachable at ` and their corresponding correct pdspecs,
the set is guaranteed to contain the target statement sT . However, in practice it not possible
to enumerate all such possible pairs. Instead, the user demonstrates such pairs one-by-one
and CodeHint computes a candidate set from the pairs provided by the user. Note that
Cn+1 ⊆ Cn, so the size of the candidate set shrinks as CodeHint receives more pairs. At any
point, if the user notices a statement she could use as a substitue for the missing statement,
she stops the process and uses the statement.

As the set of legal statements S could be infinite, CodeHint restricts it to a finite set F .
For example this set could only include statements whose abstract syntax trees have height
at most k and only use the variables available in the current scope. We call k the depth of
the search space.

In practice, users often have some idea of the structure of the statement they desire. In
our running example, the user might know that she wants to multiply x by something but
might not know exactly what should be multiplied. By providing a skeleton (discussed more
in Section 3.2), the user can further restrict the search space F into FH . Here, this skeleton
might be x = ?? * x, where ?? could be replaced by any valid expression.

In our running example, given the initial state {x 7→ 42}, the pdspec x′ > 42, and the
skeleton x = ?? * x, we present the user with the following set of candidate statements:
C0 = { x = 2 * x, x = x * x, · · · }
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Without the skeleton, we would additionally have included statements like x = 84,
x = x + 1, and x = x + x. In either case, the number of candidate statements might
be large but will be finite.

Given another initial state {x 7→ 6}, the pdspec x′ == 12, and the same skeleton, we
present the user with the subset C1 = { x = 2 * x }.

3.1.1 Properties
While sT is the missing statement that the user is trying to find, there might be other
statements that also model the user’s desired behavior, such as x = x + x. We define S∗
as the set of all such statements. These statements need only be equivalent to each other
in states in which they can actually be executed. We thus define the notion of valid states,
which are those in which the user implicitly expects statements in S∗ can be executed. We
refer to the set of all valid states as ΣS∗ .

To reason about the equivalence of statements, we define an equivalence relation ∼σ on
statements in a given program state where s1 ∼σ s2 iff exec(σ, s1) = exec(σ, s2). With this
definition, we can say that any two statements in S∗ are equivalent under all valid initial
states:

∀s, s′ ∈ S∗.∀σ ∈ ΣS∗ .s ∼σ s′

Continuing our running example, x = x + x is equivalent to sT . In addition, if sT can never
be executed when x is negative, then x = (x < 0 ? 5 : x + x) is also equivalent to sT .

A user might mistakenly provide a pdspec that does not hold for the statement sT , such
as x′ == x + 2. We say that a pdspec φ is valid if it is a correct description of the user’s
desired behavior (i.e., that of the statements in S∗) in a given valid state. A pair (σ, φ) is
valid, denoted V (σ, φ), iff both σ and φ are themselves valid, i.e.,

V (σ, φ) = σ ∈ ΣS∗ ∧ ∀s ∈ S∗.φ(σ, exec(σ, s)).

If a user gives an invalid pdspec that does not hold for any of the statements in S∗, none
of those statements will be in the corresponding Cn. However, if all of his pdspecs are valid,
Cn will include all statements in S∗ that are also in FH .

Lemma 1 (Qualified completeness).

∀0 ≤ i ≤ n.V (σi, φi)⇒ S∗ ∩ FH ⊆ Cn

Proof. Let s ∈ S∗∩FH . For all 0 ≤ i ≤ n, since V (σi, φi) holds by assumption, φi(σi, exec(σi, s)),
and so s ∈ Cn.

In general, Cn might contain statements that do not have the behavior desired by the
user on all states. The user can remove such statements from subsequent Cn by providing
well-chosen input states or pdspecs.
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Lemma 2 (Soundness).

∀s 6∈ S∗.∃0 ≤ i ≤ n.¬φi(σi, exec(σi, s))⇒ Cn ⊆ S∗

Proof. Let s ∈ Cn. If s 6∈ S∗, then by assumption ∃0 ≤ i ≤ n.¬φi(σi, exec(σi, s)). Then by
definition s 6∈ Cn, which is a contradiction, so s ∈ S∗.

We can combine our notions of soundness and completeness to specify when we find
exactly the statements in S∗ ∩ FH .

Theorem 3 (Qualified correctness).

∀s 6∈ S∗.∃0 ≤ i ≤ n.¬φi(σi, exec(σi, s)) ∧ ∀0 ≤ i ≤ n.V (σi, φi)⇒ Cn = S∗ ∩ FH

Proof. Follows from Lemmas 1, 2, and the fact that Cn ⊆ FH .

We note that our formalism could be extended to search for sequences of statements
by considering a block of statements as a single statement. It can also extend to search
expressions by generating an assignment to a fresh temporary variable.

3.1.2 Classification of pdspecs
As we saw in the previous section, a valid pdspec only needs to hold for the desired statement
in the current state. It does not necessarily need to reject all undesired statements or hold
in all states. We now define and discuss these properties in more detail.

As logical formulae, it makes sense to talk about the strength of a pdspec using logical
implication. A pdspec φ is clearly stronger than φ′ if φ ⇒ φ′. However, our pdspecs are
given in the context of a program state and are used to refine the Cn generated by previous
states and pdspecs. It thus seems natural to compare the strength of pdspecs by the number
of statements in the current set of candidates that satisfy them in the given state.

Formally, we say that a pdspec φ is stronger than φ′ in a state σ if, given a set of
candidates Cn,

|{s ∈ Cn : φ(σ, exec(σ, s))}| ≤ |{s ∈ Cn : φ′(σ, exec(σ, s))}|.

We note that if φ⇒ φ′ then φ is stronger than φ′ in all states.
If the user gives a stronger pdspec, the corresponding set of candidates Cn will be smaller,

which means that the user will need fewer refinement iterations before finding the desired
statement. However, even weak pdspecs can be helpful as the number of refinements n
increases.

Some pdspecs, such as x′ == x + x above, are valid for all valid states, while others, such
as x′ > 42, are only valid for certain input states. We thus define the context-dependence of
a pdspec, which describes how much it depends on the corresponding state. Formally, we
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Figure 3.1: The spectrum of pdspecs that we allow, with some special cases.

say that a valid pdspec φ is more context-dependent than a valid pdspec φ′ if it holds in
fewer valid states:

|{σ ∈ ΣS∗ : V (σ, φ)}| ≤ |{σ ∈ ΣS∗ : V (σ, φ′)}|.

The concepts of strength and context-dependence define a spectrum of pdspecs, which
is depicted in Figure 3.1. Other pdspecs, such as o′.toString().contains("Alice") from
Section 2.1.1, help fill out the center of this diagram.

3.1.3 Relation to Previous Work
The classifications of pdspecs we developed in Section 3.1.2, which is graphically depicted
in Figure 3.1, can help us explain how our approach relates to previous work. By allowing
a wide variety of specifications that previous work has shown to be useful, we believe our
pdspecs will be helpful to users.

Work on Programming by Demonstration [39, 24, 55, 50] synthesizes statements from
programmer-provided demonstrations of their results. These demonstrations correspond to
value demonstrations such as x′ == 42 that are stronger than all other valid pdspecs and
(usually) very context-dependent, and so Programming by Demonstration fits in the upper-
left part of Figure 3.1.

Programmers using tools from program synthesis [81, 48, 47] can give functional specifi-
cations of their desired program and get back code that is synthesized using techniques such
as SMT solvers. As these specifications often need to be quite strong for the synthesis to be
successful, these approaches often fall in the lower-left part of Figure 3.1.1

1These techniques usually give their specifications statically; we note that we could allow programmers
to give completely context-independent pdspecs without an explicit execution context.
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Research on exploring new APIs [59, 44, 74, 88] generally finds code given queries that
specify the desired output type. Our pdspecs can easily encode these specifications, e.g.,
x′ instanceof JMenuBar. These queries are often fairly weak and context-independent,
placing this body of work in the bottom-right part of Figure 3.1.

3.2 Algorithm
We have developed two versions of our algorithm: a deterministic version and a stochas-
tic version. We begin by explaining the pieces that both share before describing them in
detail in Sections 3.2.1 and 3.2.2. While the general approach we describe here can synthe-
size arbitrary statements, our current implementations of both versions only use them to
synthesize expressions (and simple assignments using them). We describe how our current
implementations can synthesize more complex statements in Sections 4.1 and 5.3.

Our algorithm begins by collecting all the variables in scope and then iteratively uses the
current set of statements to generate larger ones. When it reaches a fixed maximum size, it
removes those that do not satisfy the user’s pdspec.

A key insight is that if two statements have the same effects, we can treat them as
equivalent when generating further statements. We take advantage of this fact by grouping
statements into equivalence classes based on their effects and values. As an example, there
might be hundreds of pure boolean-valued expressions at a given depth, but they all evaluate
to either true or false.

We define an equivalence relation on statements such that two statements are equivalent
if they have the same side effects (and yield the same value if they are expressions) in the
current state. We write s1 ∼σ s2 to denote that the statements s1 and s2 are equivalent in
the state σ.

We take the current set of side effects into account when generating new statements from
representatives of these equivalence classes. For example, when x is 42 we will notice that
x and 42 are equivalent. Later, when considering expressions to add to x++, we will use the
equivalence class for the state where x is 43 and consider x and 42 separately.

Later in the search we can use the equivalence classes to generate extra statements with-
out executing them by replacing equivalent substatements. For example, if x and z.f(0) are
equivalent, then once we generate p.bar(x) we can automatically generate p.bar(z.f(0))
as well.

We apply a number of optimizations to improve the efficiency of our algorithm. We use a
variety of simple structural techniques to avoid enumerating obviously equivalent expressions
(such as x+y and y+x for integers x and y). We cache the result and effects of each statement
and use them instead of the statement itself in future evaluations to avoid duplicating work.

By actually executing the generated statements, our algorithm can synthesize real-world
Java code, including file I/O, binary libraries, reflection, foreign function calls, and calls to
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the user’s own methods.2 Thus while the individual statements we generate appear somewhat
simple, they can in fact be quite complicated. In addition, we are able to synthesize code
for Android without any extra modeling.

Probabilistic models. To guide our algorithm toward exploring more likely statements,
we have added a probabilistic model based on an offline analysis of over ten million lines
of code. This allows us to compute how often certain types, methods, and fields are used.
Having analyzed how often each method and field is accessed, we define the probability of
accessing member m (calling a method or accessing a field) of type T as

P (m) = P (m|T )P (T ) = # accesses of m on T
# of accesses on T × # of accesses on T

# of accesses

= # accesses of m on T
# of accesses .

To smooth this model, if the type T had not been seen before, we gave the access the average
probability of all accesses in the model, and if T had been seen but m had not, we gave it
the probability 1

# of accesses . This model is somewhat simplistic, as it assumes that all method
calls are independent, but we have found it very helpful in practice. The probability of a
statement is the product of the probabilities of its individual accesses.

In addition, as Java classes often contain many constants, we store, for each constant
field, all the places it is used as an argument to a method. Then the probability of using
constant c as the ith argument to method m is

P (c,m, i) = P (c,m, i|c)P (c) = # uses of c on method m at index i
# of uses of c × # of uses of c

# of uses

= # uses of c on method m at index i
# of uses .

We use this probabilistic model to guide the search as well as to sort the candidates
presented to the user.

Skeletons. As mentioned earlier, users may provide a skeleton to shape the search space
explored and guide it toward candidates they know to be likely. Skeletons consist of normal
Java code with holes for unknown code that should be synthesized. The language contains
two types of holes: simple holes (denoted ??) and list holes (denoted **). Simple holes can
take the value of any expression or name in the language or be annotated with a set of
candidates. List holes are used for calling functions with an unknown number of arguments,
each of which is a separate expression hole. Users may additionally check boxes indicating
whether or not constructor calls and infix/prefix operators should be searched.

2Some of these features require the user to allow searching native calls, in which case we cannot undo
side effects.
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Algorithm 1 Deterministic synthesis algorithm.
Initialize classes with null, this, and local variables.
for i← 2,maxDepth do

newExprs← genOneLevel(getRepresentatives(classes))
Evaluate newExprs
Add newExprs to classes

end for
result← checkPdspec(getRepresentatives(classes))
result← expandEquivalences(result)

To give some examples, ??.?? represents accessing some field of an unknown expression,
foo.??{bar,baz}(??) represents calling either the bar or the baz method of the foo object
with a single unknown argument, and ??(**) represents calling an unknown method with
any number of unknown arguments.

While not as general as other similar languages (e.g., [65]), our skeleton language has the
advantage of being simple and easy to use. Users need only remember two pieces of syntax:
they can put ?? wherever they are unsure of an expression or a name and ** when calling
a method with an unknown number of arguments.

Since the given pdspec applies to the whole statement, we must explore the cross product
of all the specified holes. Given a skeleton, we fill each hole with type-correct values using
the algorithm described above (unless the hole has been annotated with candidate values,
in which case we simply try those values in lieu of a search). If a skeleton has many holes,
we reduce the depth of our search for each hole.

3.2.1 Deterministic synthesis algorithm
Our deterministic synthesis algorithm, shown in Algorithms 1 and 2, searches the space of
possible expressions in a manner similar to breadth-first search. In particular, it generates
expressions in increasing order of depth, which is the height of the parse tree. As examples,
x has depth 1, foo.bar(x,y) has depth 2, and foo.bar.baz(x+y) has depth 3.

As shown in Algorithm 1, our algorithm iteratively builds all expressions up to a fixed
depth, evaluating them with a timeout and creating equivalence classes as it goes. For
each equivalence class, we use only one representative to generate further expressions. For
example, if x and z.f(0) are equivalent, we generate x+1 and foo(x) but not z.f(0)+1 or
foo(z.f(0)).

Algorithm 2 shows how a single iteration generates larger expressions. For each expression
seen so far, it constructs larger expressions using it based on its type. For numbers, it
generates infix operations with all numbers, and it indexes into arrays with all numbers.
For objects, it generates all field accesses and calls all methods with all correctly-typed
combination of the expressions seen so far.
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Algorithm 2 A portion of one level of the deterministic synthesis algorithm, which works
similarly to a single iteration of a breadth-first search.
procedure genOneLevel(exprs)

newExprs← ∅
for all e ∈ exprs do

if e is a number then
for all numbers o ∈ exprs do

newExprs← newExprs ∪ {e+ o, e− o, · · · }
end for

end if
if e is an array then

newExprs← newExprs ∪ {e[i]|i ∈ exprs, i is a number}
end if
if e is an object then

newExprs← newExprs ∪ {e.id|id ∈ fields(e)}
for all methods m of e do

newExprs← newExprs ∪ {e.m(e1, e2, · · · )|ei ∈ exprs, ei : argType(m, i)}
end for

end if
end for
return newExprs

end procedure

When the desired depth has been achieved, we test the equivalence classes for the initial
state against the pdspec, filter out those that do not satisfy it, and recreate the full set of can-
didate expressions from the equivalence classes. Once we discover that an expression satisfies
the pdspec, we know that all expressions generated from it by replacing its subexpressions
with expressions that are equivalent in the current state will also satisfy the pdspec.

We use the probabilistic model to avoid calling rare methods and using constants in
places they were rarely used by artificially increasing the depth of expressions that include
them.

The size of the space of expressions that our algorithm must search at a given depth is
exponential due to method calls. If at one point during a search we have seen 50 different
integer values, there will be 503 different ways to call a method with three integer arguments.
Such growth can easily overwhelm our algorithm, so we heuristically prune calls to methods
that would otherwise be called with a large number of different arguments, especially ones
our probabilistic model defines as uncommon. That is, if a method can be called more than a
certain number of times that is exponential in the current depth, we artificially increase the
depth of calls to it. As we will see in Section 4.3.1, such calls occur infrequently in practice.
We believe this would be a promising area in which to integrate symbolic techniques.
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Algorithm 3 Stochastic synthesis algorithm.
Initialize classes with null, this, and local variables.
for i← 1,maxIters do

expr ← choose an expression from classes
newExpr ← extendExpression(expr)
Evaluate newExpr
newExprs← expandEquivalences(newExpr)
Add newExprs to classes

end for
result← checkPdspec(getRepresentatives(classes))

Properties. Unlike symbolic techniques, our algorithm cannot “look inside” method calls
and other operations and must treat them as black boxes. It is optimal given this restriction,
as thanks to the equivalence classes, each expression it retains yields a unique value and could
potentially be the only expression to satisfy the pdspec.

The number of expressions at a given depth is exponential because of method calls (al-
though we address this problem below) and the total number of expressions is exponential in
the depth of expressions. Despite this, we show in Section 4.3.1 that our algorithm performs
well in practice and has synthesized up to ten lines of code at a time.

An additional benefit of our synthesis algorithm is that each iteration of the search
should be easier to parallelize than SAT-based approaches, which require careful work to
obtain parallel speedups.

3.2.2 Stochastic synthesis algorithm
Unlike the breadth-first approach used by our deterministic algorithm, our stochastic search
algorithm, shown in Algorithms 3 and 4, uses a best-first search. Specifically, it uses the
probabilistic model described above with some additional components to choose a single
expression to extend each iteration and to choose how to extend it.

Note the differences between the stochastic search in Algorithm 3 and the deterministic
search in Algorithm 1. The two run a different number of iterations, as each iteration
in the stochastic search evaluates a single expression while iterations in the deterministic
search evaluate many expressions. The deterministic search extends all expressions in a
single iteration while the stochastic search extends only one. The deterministic search only
expands equivalent subexpressions at the end of the search (when it knows exactly which
ones it needs to expand) while the stochastic search expands after each new expression is
evaluated.

The algorithm for expanding equivalent subexpressions is slightly different in the stochas-
tic search. Given the newly-evaluated expression, it begins by generating expressions equiv-
alent to it by replacing its subexpressions with equivalent ones. It then expands expressions
that contain expressions equivalent to these expressions.
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Algorithm 4 A portion of one level of the stochastic synthesis algorithm.
procedure extendExpression(e, classes)

if e is a number then
o← choose a number from classes
⊕ ← choose an operator from {+,−, · · · }
return e⊕ o

else if e is an array then
i← choose a number from classes
return e[i]

else if e is an object then
id← choose a method or field of e
if id is a field then

return e.id
else

(e1, · · · )← (choose an expression from classes of type argType(m, 1), · · · )
return e.id(e1, e2, · · · )

end if
end if

end procedure

The choose operator in Algorithms 3 and 4 chooses an element from a set based on their
probabilities. For example, if the set is {e1, e2} with P (e1) = 2P (e2), then e1 is twice as
likely as e2 to be chosen. We implemented this with a modified version of roulette wheel
selection [32, 1] that computes the probabilities of each element, chooses a random number
between 0 and their sum, and then uses binary search on the prefix sum to find the index
of the chosen element. Formally, given elements e1, e2, · · · , en, we compute the prefix sums
of their probabilities P (e1), P (e1) + P (e2), · · · ,∑n

i=1 P (ei), choose a number in the range
[0,∑n

i=1 P (ei)), and then use binary search to find the right element.
We chose this selection algorithm due to its incremental nature. During the search

we constantly update the set of expressions we can extend (each iteration generates a new
expression and adds it to this set). With this algorithm, adding a new element takes constant
time, as we simply add it and its probability to the end of the list.

We make the following changes and additions to the probabilistic models described above.

New weighting. Previously, the probability of an expression was computed as the prod-
uct of the probabilities of its subexpressions. Given that the probability of any individual
expression is very small, this causes almost all larger expressions to have much smaller prob-
ability than almost all smaller expressions. For the deterministic algorithm this suffices, as
it simply means that shorter expressions are placed higher on the list shown to the user.
But it would mean that the stochastic search would mimic a breadth-first search, as the
probabilities would cause it to prefer shorter expressions to larger ones.
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To avoid this undesired behavior, the stochastic search computes the probability of an
expression based on the average probabilities of its subexpressions. Doing only this would
bias the search too much toward larger expressions made up of common subexpressions, so it
also divides this probability by a function of the size of the expression. Given an expression
made up of n subexpressions, our implementation currently computes its probability as the
average probability of its subexpressions divided by 2n. This allows the search to prioritize
more common subexpressions while still preferring smaller expressions.

Form model. The form model computes the probabilities of different AST nodes used
in expressions. For example, it computes the probability of a method call compared to a
field access. It also computes the probabilities of different operators, e.g., * and !, and the
probability of a static method call compared to an instance one.

The algorithm uses this model to ensure that the expressions it searches roughly match
those used in practice. For example, when it is going to extend a number, its choice of
whether to use a unary or a binary operator and which operator to use are both based on
this model’s probabilities. It also chooses whether to extend an object, array, or number
based on this model’s probabilities of operations on objects (field and method accesses),
numbers (infix and prefix operators), and arrays (array accesses and length).

Type model. The type model ensures that the search encounters a variety of different
types instead of simply focusing on the most popular ones. For example, many methods
return an int or a boolean, but the latter will likely not help once we have seen both true
and false, and searching an extra integer-valued expression is more useful when the search
has encountered five different ints than when it has encountered 100.

Specifically, given a query for an expression with type T, the type model weighs a method
or field based on its type S in the following order.

1. S is a subtype of T

2. S is a supertype of T

3. Given two types, prefer the one for which the search has encountered fewer values.

Thus the model prefers expressions that return T or a subtype of T, then those that return
a supertype of T, then those for which it has encountered fewer values. As a special case,
booleans are given a very low weight after both true and false have been encountered.3 As
an example, when searching for type JMenuBar, the search prefers expressions of that type
to those of type Object, which are preferred over those of type IUnicorn (or some other
rare type), which are preferred over ints, which are preferred over booleans once both true
and false have been seen.

3Note that we still might want to search booleans in this case because they could be the user’s desired
expression or have useful side effects.
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Chapter 4

CodeHint

We begin in Section 4.1 by describing our implementation of CodeHint, which is based on
the techniques we have just described. We then discuss the various probabilistic models we
implemented while exploring different implementation strategies in Section 4.2. Finally, we
evaluate the performance and productivity benefits of CodeHint in Section 4.3.

4.1 Implementation
We have developed an implementation of our approach, which we call CodeHint, as a plugin
for the Eclipse IDE for Java. This allows users to develop normally, using our approach
only when they wish to do so. CodeHint, its source, and video demos are available at
https://github.com/jgalenson/codehint. Figure 4.1 provides an example of CodeHint’s
interface that shows the user’s pdspec and the results CodeHint finds.

To use CodeHint, a programmer must start a debug session and navigate to the program
location and state in which she wishes to insert code. She then enters a pdspec and possibly
a skeleton through a dialog. There are also shortcuts to demonstrate a value (by giving an
expression and evaluating it) and the desired dynamic type.

CodeHint then uses the deterministic synthesis algorithm from Section 3.2.1 to synthe-
size candidate statements from the grammar shown in Figure 4.2, which includes variables,
array accesses, casts, field accesses, method calls, constructor calls, and unary and binary
operators, including calls to static methods and fields of imported classes.1 It shows them,
their results and toStrings, and their side effects to the user, who can select which to keep.
The user may also view the Javadocs of methods and fields used in the candidates and sort
or filter them. If she does not find any expressions she wants, she can continue the search
with an increased depth.

We wrap the expressions selected by the user in a call to a special choose method, which
yields a source code representation of the set of statements C0 from Section 3.1. When

1There seems to be no technical barrier to extending this language to cover all Java expressions (except
for closures and anonymous class declarations), but we have seen no need to do so yet.

https://github.com/jgalenson/codehint
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Figure 4.1: The CodeHint GUI on the example from Section 2.1.1.

there is only a single element, we replace the choose call with a call to a chosen method
(which has identical semantics) as an indicator to the user that the process is complete.
Figure 4.3 shows our Java implementation of these two methods (with a few minor details
omitted). This simple runtime library allows the program to remain executable at all times
so it can be used outside of our environment. When used inside our environment, the choose
method triggers the UI for refinement; when used without the plugin it asserts that all of its
arguments are equal.

Since the candidate expressions are inserted directly into the code, the user can directly
modify Cn at any time. For example, she can simply select the desired expression and delete
everything else, or she can remove expressions that she knows are incorrect so they are not
considered again. Users who are only interested in the output with a particular set of inputs
– of a one-time script, perhaps – may never need to find the exact statement.

After selecting the desired candidate expressions, the user can end the debug session
and continue with a new input (perhaps from a different test case). She may also continue
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(demonstration) d
(type) t

(local/arg) v
(identifier) id
(constant) c ::= 0 | 1 | null
(infix op) ⊕ ::= + | - | * | / | && | || | == | != | < | <= | > | >=

(expression) e ::= d | c | this | v | e ⊕ e | -e | !e | e[e] | e.id | t.id |
e.id(e,· · · ) | t.id(e,· · · ) | new t(e,· · · ) | (t)e | (e)

(assignment) a ::= e.id = e | v = e
(statement) s ::= e; | a; | { s s · · · }

Figure 4.2: The grammar of expressions and statements CodeHint can generate.

public class CodeHint {
public static <T> T choose(T first, T... rest) {
for (T choice : rest) // We omit the special case when rest is null.
assert first == null ? choice == null : first.equals(choice);

return first;
}
public static <T> T chosen(T choice) {
return choice;

}
}

Figure 4.3: Our implementation of the choose and chosenmethods (with some minor details
omitted).

execution by using the value of one of the candidates. In practice, this works well for rapidly
refining statements that are contained in loops or are otherwise executed multiple times.

Repeat encounters with an inserted choose statement are handled by inserting a break-
point at the line and registering a listener that activates when that breakpoint is hit. This
handler overrides the default implementation of choose given in Figure 4.3 and shows the
user the previously-chosen candidates and their values in the new context. She may enter a
new pdspec to refine the current set of candidates or she may abandon the current results
and start a new search, which can be useful if she previously gave an invalid pdspec or if our
search did not find any correct statements.

Java algorithm details. Following standard Java idioms and practices, two values v1 and
v2 are equivalent if
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Algorithm 5 Statement synthesis algorithm.
procedure genStmts(φ, exprs)

Let vars = {v1, v2, · · · , vn} be the set of variables that are primed in φ.
Define mod : vars→ 2exprs
for all v ∈ vars do

assigns← {v = e|e ∈ exprs, e’s static type is a subtype of v’s}
calls← {e ∈ exprs|e is a method call, v is a subexpression of e}
mod(v)← assigns ∪ calls

end for
return {e1; e2; · · · en; |ei ∈ mod(vi)}

end procedure

• both are primitives and v1 == v2,

• both are objects of the same type and v1 == null ? v2 == null : v1.equals(v2),
or

• both are arrays of the same type with the same number of elements and all correspond-
ing elements are equivalent.

As an optimization, we call the hashCode method to speed up checking equivalence between
objects.

We note that this definition depends on the equals method (and the optimization on the
hashCode method) and so could potentially be unsound and incomplete, but this is unlikely
to occur in practice; the Java documentation even states that the equals method defines
an equivalence relation and that calling hashCode on objects that are equal with respect to
the equals method “must” produce the same result [6]. We have not encountered any such
problems during development.

In Section 3.2.1 we explained our deterministic synthesis algorithm in the context of syn-
thesizing expressions but not statements. Our current implementation of CodeHint generates
such expressions and can optionally assign them to a variable that the user marks.

We have developed heuristics for synthesizing more complex statements. Given a pdspec
with n primed variables, we can synthesize a block containing n statements, each of which
is either an assignment to one of the n primed variables or a call that passes one of the n
primed variables as an argument. Algorithm 5 presents the details.

Discussion. We cache some information about the results of the expressions we explore
(such as those that crash) in order to speed up subsequent searches. This makes it easier for
users to try multiple different pdspecs, which can make it easier to find a desirable one. In
addition, we display each expression that satisfies the user’s pdspec as soon as we discover
it, which means that users can often find their desired expression even before our search is
complete.
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Due to erasure, the type of generic methods and objects is not available at runtime [16].
We thus might generate statements that do not compile (e.g., if an argument to a method
was erased), so we currently detect and filter out such cases. In addition, our current
implementation might miss expressions that use the erased return value of a method (e.g.,
we might think a method returns an Object when it really is statically known to return
a String), but we handle this case by downcasting the result to the actual type. We are
investigating using reflection to get more precise type information. This ability to handle
generics with runtime type checks highlights the fact that our approach can reason about
generics without significant modeling effort.

The number of expressions that satisfy a pdspec can be quite large, especially when
there are many candidates at higher depths. Since we present all of these expressions to the
user, such a case could easily be overwhelming. We have, however, found that sorting the
candidates by their likelihood usually puts the desired result near the top of the list. The
ability to filter and sort the results can also be useful when there are many candidates. and
we believe we can improve further by directly encoding the equivalence classes instead of
eagerly expanding them.

Our search only uses the simple numeric constants 0 and 1 (and only uses them in
infix expressions). Together, these two constants account for over two-thirds of the numeric
constants used in practice and all other constants are used only rarely (see Section 4.2).
We thus decided that including only these constants allowed us to make the synthesis more
powerful without making the search space too much larger.

We note that our pdspecs allow users to express a form of duck typing. For example, the
pdspec x′.getData() != null might lead us to find multiple results of incomparable types
that contain a getData method.

4.1.1 Handling Side Effects
Our implementation detects in-memory side effects while evaluating expressions by installing
watchpoints to listen for changes to fields. This allows us to log all the side effects of an
evaluation and afterwards undo them and show them to the user. We use Java’s security
manager to disable external side effects such as deleting files and we block unknown native
calls (which do not go through the security manager). Users can selectively enable or disable
these features to control the tradeoff between efficiency, soundness, and completeness.

The basic idea is to use JVM watchpoints to break on field writes. For example, in
the code given in Figure 4.4, if this.mutable++ is executed, the watchpoint that waits for
modifications to the mutable field triggers, and we can log the update on the this object
with the old and new values. However, there are a number of complications.

While the JVM can notify us of field accesses and modifications (e.g., this.mutable++),
it cannot notify us of array accesses and updates (e.g., this.arr[0]++). To work around
this, for all array fields, we add access watchpoints and conservatively copy the array when
it is first read. This copy includes all levels of nested arrays, but not deep copies of objects
inside them. At the end of the execution, we can compare the current value of the array to
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1 public class SideEffectsExample {
2 private int mutable = 0;
3 private final int immutable = 0;
4 private int[] arr = new int[] { 0 };
5 private Object unknown = null;
6 public static void main(String[] args) {
7 //Helper h = new Helper();
8 (new SideEffectsExample()).foo();
9 }

10 public void foo() {
11 System.out.println("Current location");
12 }
13 }
14 class Helper {
15 private int helperMutable = 0;
16 private static int helperStatic = 0;
17 }

Figure 4.4: Java code with a number of fields.

the stored value and reset it if necessary. If an array is passed as an argument to a method,
we conservatively do this backup automatically.

As an extra implementation complication, in Java, arrays are subtypes of Object. So
fields of static type Object (such as unknown in the example) can hold both normal objects
and arrays. We thus have to be sure not to double-count changes to a field if it switches
between being an object and an array during execution.

In addition, changing the value of a field through reflection does not trigger watchpoints
on that field. We handle this case by adding breakpoints to the Field.set methods that do
these changes and logging the change as if it were an actual field update. We similarly log
calls to reading the value of a field array.

We would thus ideally put watchpoints on all fields, listening for modifications of non-
final fields (e.g., we do not need a watchpoint on the immutable field) and accesses of fields
that could be arrays (e.g., unknown) in the project. However, Eclipse performs poorly if you
ask it to install this many breakpoints, so we need to reduce the number of breakpoints we
install.

We currently install breakpoints only on fields of classes that are currently loaded, since
while the JDK is very large, much of it will be unused in most executions. We then ask the
JVM to notify us when classes are loaded and add new breakpoints for their fields. In fact,
in such cases we only need to add breakpoints for their static fields, since by definition no
instances of these objects existed before the execution, so we do not care about changes to



CHAPTER 4. CODEHINT 38

their instance fields. (However, we must be careful not to log and revert static initializations
of static fields loaded during execution.) As an example, the Helper class has not been
loaded, but future code could load it and change its helperStatic field. For similar reasons,
as an extra optimization we ignore instance fields of classes that are loaded but have no
instances in scope at the beginning of execution.

Furthermore, we need only install breakpoints on fields that are reachable from the
current program location. We thus do a depth-first search from the local variables and
static fields currently visible and do not install breakpoints on fields whose classes have been
loaded but are not reachable. In our example, the fields of Helper are not reachable even
if the commented line is uncommented and thus its helperMutable field does not need a
watchpoint.

To handle effects outside the JVM, we disable external effects like writing files and sending
network packets using Java’s security manager. The JVM of course cannot do anything about
effects in native calls, but we already let the user disallow those, in which case they are not
a problem.

We apply a few more optimizations to improve this process. We ignore changes to fields
of objects that were allocated after the execution began. We coalesce all writes to the same
field of a given object and store only the initial and current values (unless they are equal, in
which case we log nothing). We also ignore changes to certain fields that are harmless, such
as the hash field of the java.lang.String class, which acts as a cache for the result of the
String’s hashCode method.

To further reduce the number of breakpoints installed during this process, we run an
offline analysis, shown in Algorithm 6, that determines fields that are never modified and
do not install breakpoints on them. This is a simple syntax-directed analysis that computes
fields that are never assigned, incremented, or decremented in the code. Note that the code
contains special cases to handle arrays, since as mentioned above modifying an element of an
array counts as modifying the array. It also avoids reporting final fields of arrays, since our
implementation already ignores those. In our experiments, this analysis reduces the number
of breakpoints by approximately 20%.

4.2 Probabilistic models
We built the probabilistic models described in Section 3.2 by analyzing the following projects:

• Tomcat 7.0.30 (a web server)

• FindBugs 2.0.1 (a static analysis tool)

• Hadoop 1.0.4 (a framework for distributed computing with a distributed file system)

• Hibernate 4.1.7 (a library that maps objects into a database)

• NetBeans 7.2.1 (an IDE)
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Algorithm 6 Determining fields that are never modified.
Initialize mod,maybemod, visible, simple with ∅.
for all field accesses e do

if getParent(e) is the target of an assignment, increment, or decrement then
mod← mod ∪ {e}

else if getParent(e) is the argument to a method and e can be an array then
maybeMod← maybeMod ∪ {e} . The callee might modify an array element.

end if
if e’s declarer is final or not public or e is private or package protected then

invisible← invisible∪ {e} . Ignore externally visible fields that users can change.
end if
if e cannot be an array and e is declared final then

simple← simple ∪ {e} . Ignore fields that can obviously not be modified.
end if

end for
notModified← (allF ields \ (mod ∪maybeMod)) ∩ invisible
return notModified \ simple
procedure getParent(e)

if e is the left-hand side of an array access then
return getParent(e’s parent)

else if e is the child of a parenthetical, a cast, or is the body of a conditional then
return getParent(e’s parent)

else
return e

end if
end procedure

• IntelliJ 123.72 (an IDE)

• Eclipse 4.2.2 (an IDE)

Together, these projects contained over 10.8 million lines of code.
In addition, we have explored a number of possible ways to improve these probabilistic

models. While they greatly reduce the search space, they are fairly simplistic, so building an
improved model would enable CodeHint to search for code snippets far more effectively. In
addition, the probabilistic models also guide CodeHint toward snippets that are more likely
to be the ones that users want. Improving them would thus make it more likely that we find
code that users like instead of code that happens to satisfy their pdspec through luck. We
also use the models to sort the results we show to the user, so as they improve our ranking
heuristic does as well.

We have implemented a number of different probabilistic models and evaluated them to
attempt to learn which will benefit CodeHint the most. Our results suggest that our current
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models are effective but that we might be able to improve them, perhaps by combining
multiple models.

Beyond unigrams. An n-gram model is a language model that predicts the next element
given the previous n−1 items. A 1-gram, which is called a unigram, thus ignores correlations
between multiple elements. Higher-order models, such as a 2-gram (bigram) or 3-gram
(trigram), begin to take this information into account.

Our current model of the probability of a method or field access is a unigram model, as
we assume that all subexpressions are independent. We compute the probability of calling
each method and accessing each field, and the probability of a larger expression is simply
the product of the probabilities of its subexpressions.

One example of how this independence assumption can fail deals with getting and setting
the sizes of graphical elements. Users are probably more likely to set the size of newly-created
objects and get the size of existing objects. Thus after calling new JLabel("Hi") to create
a new graphical label, we are more likely to call setSize and less likely to call getSize than
our current model would assume.

We note that our model that computes where constants are used is a form of a bigram
model. For example, it knows that the integer SwingConstants.LEFT is more likely to be
used in certain places in the Swing GUI library than as an index into a String. This partial
bigram feature can significantly reduce the search space, suggesting that further similar
improvements might greatly help as well.

Previous research [17, 43] has examined using such probabilistic models to improve au-
tocomplete. We are solving a harder problem, but we hope to leverage some of this work.

Beyond methods and fields. Our current models only consider method calls and field
accesses. They do not consider other language constructs such as binary and unary operators
or control flow constructs. This has sufficed since we mainly target API code that uses mostly
method calls, but we would still like to improve the models to cover the whole Java language.
This knowledge would help us broaden CodeHint to be more useful for code that does not
involve unfamiliar APIs.

We have already implemented some of this in the form model used in the stochastic
synthesis algorithm described in Section 3.2.2. Table 4.1 presents its specifics. In addition,
the probability of a static access (method call or field access) is 25.2% while an instance
access has probability 74.8%. 45.1% of numeric constants are 0, 22.5% are 1, 5.3% are 2,
and 2.1% are 3, followed by a long tail.

Exploring different models. We have implemented the following probabilistic models
for method calls.

• The char models simply look at the characters in the source code. We have imple-
mented a unigram, bigram, and trigram version of this model.
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Form Prob

Call 40.5%
Infix 14.2%
Field 8.1%
null 6.3%
new 5.2%
this 3.0%
Prefix 2.0 %

Array access 1.2%

Infix op Prob

== 22.8%
!= 20.3%
+ 19.5%
&& 10.6%
< 5.8%
|| 5.7%
- 4.6%
> 3.7%
>= 1.6%
& 1.3%
* 1.0%

Prefix op Prob

! 72.8%
- 22.0%
++ 3.0%
˜ 1.1%
– 1.0%

Table 4.1: The probabilities used by our form model. Probabilities below 1% are omitted,
as are certain things not in the grammar that we synthesize (Figure 4.2) such as postfix
expressions and primitive constants.

• The token models break the source code into tokens. We have implemented a unigram,
bigram, and trigram version of this model.

• The calls unigram model is a unigram model based on the name of the method: it
simply stores how often methods with a certain name are called. Note that this model
is a subset of the unigram token model, which contains this information as well as
usage information about other tokens such as if and +.

• The similar calls model computes the number of times two methods are called in the
same method. The probability of a certain method m1 being called from method m2 is
then the average of the probability of m1 being called with every other method called
in m2.

• The bigram callsmodel is a bigram model based on the names of methods: it stores how
likely a method is to be called given the previous method called. Note that this model
is different from the bigram token model, as in most cases the token that precedes a
call is a period.

• The calls type unigram model is a unigram model based on the fully qualified name
of the method, i.e., the fully qualified name of the type that declares the method
combined with the name and signature of the method. It thus differs from the calls
unigram and unigram token models because they cannot differentiate between two
unrelated methods with the same name.
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Figure 4.5: The median percentage ranking assigned to the correct method by various prob-
abilistic models.

• The calls by type model is part of the model from Section 3.2 that computes the
probability of a method separately for each receiver type. It computes the probability
of a method call as the probability that a method of that name is called given that a
method is called on something of the receiver’s type.

• The calls by type bigram model is an extension of the calls by type unigram model that
multiplies its probability by the probability that a method is called on a certain type.

• The calls context model is a generalization of a bigram that also considers the context
in which a method is called. For example, it differentiates between using a call as the
first and the second argument to another call.

We smoothed all of the models using the one-count method [20], which interpolates n-
gram models with their (n− 1)-gram counterparts. For example, it uses the unigram token
model to help smooth the bigram token model.

We compared these models by using them to attempt to autocomplete methods. For
each method call in our corpus (defined above), we used the type of the receiver to discover
all the methods that could be called at that location. We then used each model to rank
these methods and computed the percentile of the ranking of the method that was actually
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Figure 4.6: The sizes of various probabilistic models.

called. If the model assigns multiple methods the same probability as the correct one, we
assume the correct method is assigned the middle ranking.

Figure 4.5 presents the results of this analysis. The calls by type, calls by type bigram,
and calls context models are the best, with the correct method being near the 6% location,
followed by the trigram token model at almost 10%.

Figure 4.6 shows the sizes of each of these models. We computed the sizes by serializing
our unoptimized implementation of each model to disk and then compressing it. While
the exact numbers are thus relatively unimportant, the differences between various models
is interesting. For example, the similar calls and bigram calls models are approximately
equally good at ranking methods but the former takes up approximately three times as
much space.

These results suggest that our current models, which are similar to the calls by type,
calls by type bigram, and calls context models, are very good.

4.3 Evaluation
We now show, through empirical analysis and two user studies, that CodeHint is sufficiently
scalable and that it makes users more productive.
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Normal algorithm Side effects Brute force

Depth 2 Depth 3 Depth 4 Depth 2 Depth 3 Depth 3

# Time # Time # Time Time Time #
P 1 34 0.1 611 0.6 19644 6.1 0.1 1.5 3397815
P 2 52 0.1 727 0.7 34763 8.3 0.3 2.5 948871
P 3 53 0.1 1091 0.6 125217 17.8 0.3 4.3 6728128
P 4 7 0.1 53 0.2 583 0.9 0.1 0.1 135
P 5 22 0.1 239 0.3 2979 1.0 0.1 0.4 147437
S 1 8 0.2 223 1.0 1402 2.2 0.3 2.4 39439
S 2 12 0.1 275 1.0 2044 2.5 0.3 2.6 51080
S 3 70 1.0 814 1.5 6652 6.6 0.7 8.3 1867197
S 4 103 0.3 842 1.5 22144 9.1 0.3 7.7 61239025
S 5 32 0.2 599 1.4 35843 12.6 0.5 11.0 270911
R 1 20 0.1 93 0.2 893 0.6 0.2 0.8 36264
R 2 12 0.0 137 0.2 1161 0.5 0.0 1.0 1080
R 3 8 0.2 20 0.2 58 0.7 0.2 0.7 116
R 4 6 0.0 19 0.1 68 0.3 0.1 0.4 48
R 5 24 0.2 226 0.4 1998 2.3 0.2 24.9 103124
Avg 30.9 0.2 397.9 0.7 17029.9 4.8 0.3 4.6 4988711.3
Med 22 0.1 239 0.6 2044 2.3 0.2 2.4 103124

Table 4.2: An empirical analysis of our algorithm. Each row represents one task from the
first user study. The first six result columns show how our algorithm performs at different
depths, the next two show the performance when we undo side effects, and the last shows
the performance with key parts of the algorithm disabled. The # columns show the number
of expressions searched and times are in seconds.

4.3.1 Empirical Evaluation
Scalability. To analyze the efficiency of our implementation and demonstrate its scalability
with regards to depth (as defined in Section 3.2), we ran the tasks used in our first user
study (described in Section 4.3.2) with a typical pdspec (i.e., the one most frequently used
by subjects in the study) and a skeleton indicating that we should not search constructors
and operators. For each task, we varied the maximum depth searched, and for each depth,
we recorded the number of unique expressions evaluated and the total time taken.

The experiments were performed on an Intel Core 2 Duo E6850 with two 3 GHz processors
and 3 GB RAM (although our current implementation is single-threaded) running Linux
3.15.8, Java 1.8.0_11, and Eclipse 4.4.0.



CHAPTER 4. CODEHINT 45

The results in Table 4.2 show that our current implementation, when not undoing side
effects, can explore a search space of depths 1, 2, and 3 in well under one second and depth 4
in under five seconds. We do not show depth 5, for which we have not optimized and all but
six benchmarks timeout after two minutes. When undoing side effects, our implementation
takes well under one second to search depth 2 and under five seconds to search depth 3.
We believe these results are more than sufficient for a useful tool, and results from the user
studies show that users agree.

As part of our methodology, CodeHint finds all expressions in its search space that satisfy
the user’s pdspec, not just one. Since we display each such candidate expression as soon
as we discover it, users can usually see some candidate expressions well before the search
terminates.

To measure the effectiveness of various parts of our algorithm, we searched depth 3 with
pruning, equivalence classes, and the probabilistic model disabled. The results, given in the
rightmost column of Table 4.2, show that these improvements significantly reduce the search
space, enabling CodeHint to find larger expressions. Without them, it would not be able to
search even depth 3.

To show that CodeHint can synthesize large code fragments, we tracked the size of the
expressions explored for each task. The largest such code snippet contained ten method
calls, showing that our algorithms can indeed scale to non-trivial code fragments.

Analysis of expressions. To justify our algorithm, we analyzed five medium to large
open-source Java projects. The key result is that the vast majority (99%) of assignment
statements are actually quite simple (with a depth of at most 4).

We analyzed four of the projects presented in Section 4.2 (Hadoop, Tomcat, FindBugs,
and Hibernate) as well as JDK, the implementation of Java.

For each program, we analyzed the right-hand side of assignment statements, which is
the exact class of statements we currently generate. Hadoop version 1.0.4 contains 47,248
such expressions, Tomcat 7.0.30 contains 30,740, FindBugs 2.0.1 contains 18,589, Hibernate
4.1.7 contains 54,580, and JDK 6.25 contains 227,731.

We began by analyzing the depth of the expressions. All five programs followed a similar
pattern: on average, 27% of expressions had depth 1, 52% had depth 2, 15% had depth 3,
5% had depth 4, and 1% were more complicated. This shows that the vast majority (99%
in our study) of statements in real Java code have depth at most 4, which our results above
show that CodeHint can easily search.

To show that these results also hold for code programmers struggle to write, we repeated
the same experiment on code snippets gathered from questions asked on the popular Stack
Overflow website. We examined 43 code samples containing 3333 lines of code and found
nearly the same distribution: 25% had depth 1, 59% had depth 2, 13% had depth 3, and 3%
had depth 4.

Figure 4.7 shows these results. The numbers are very similar across all the projects,
which suggests that they accurately represent reality. While users might want to synthesize
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Figure 4.7: The cumulative percentage of expressions with at most the given depth.

multiple lines of code at a time, we believe these results suggest that our current algorithms
can help real programmers.

We conservatively bounded the number of cases in which we pruned calls to methods
that could be called with many different arguments by analyzing the number of calls with a
given number of arguments. All five programs followed a similar pattern: 51% of calls had
no arguments (excluding the receiver), 31% had one argument, 12% had two arguments, 3%
had three arguments, and 3% had four or more. Thus 94% of calls in practice contain two or
fewer arguments and hence little combinatorial explosion, and so biasing our search to avoid
the rest seems beneficial. We additionally note that just because a method has multiple
arguments does not mean that there will be many ways to call it, as arguments are often of
types that have few values in practice, such as singletons. Our heuristic will not avoid such
calls.

4.3.2 User Studies
We conducted two user studies to evaluate the usability of CodeHint and learn how devel-
opers use it. The first study focused on constrained single line code edits and the second
focused on larger open-ended tasks and used an improved version of CodeHint. Observations
from these studies generated additional areas for improvement that we implemented in the
meantime, including the skeletons of Section 3.2.



CHAPTER 4. CODEHINT 47

Methodology

Study 1: Line-level tasks. For the first study, we created three scenarios with five sub-
tasks each that mimic code completion tasks programmers face in practice. To focus on
particular tasks where CodeHint could be applied, we provided working wrapper code that
participants had to extend. The Parse (or P) scenario manipulated strings and parsed email
headers and command-line arguments. The Swing (or S) scenario created a small GUI.
The RandomWriter (or R) scenario created a Markov model to generate output that looked
similar to input text.2 We chose the first two scenarios to represent common tasks involving
APIs and the third as an example application. The first part of Section 2.1.1 is a slightly
modified version of one of the tasks. Appendix A lists the code for these scenarios.

At the time of the study, CodeHint could solve thirteen of the fifteen tasks; we included
the remaining tasks to see how subjects handled cases it could not solve (both could have
been found with a slightly higher search depth and can be found by the current version of
the tool).

In our within-subjects study, each user received a random assignment of control, exper-
imental, or choice conditions to scenarios. In the control condition, users could not use
CodeHint, in the experimental condition they were required to use it (although they could
write code normally if it failed), and in the choice condition they could decide whether or
not to use CodeHint for each task. We counterbalanced the order of the experimental and
control groups and assigned the choice condition last so participants had experience both
using CodeHint and writing code normally.

Study 2: Open-ended tasks. The tasks in the second study were larger – each task
required writing three to sixteen lines of code that used complex APIs. Two scenarios had
three tasks each, again scaffolded by wrapper code. We also included comprehensive tests to
ensure that subjects wrote correct code. The Eclipse scenario implemented a simple Eclipse
profiler plugin and the Note scenario involved writing a GUI note-taking application that
synchronized data to the cloud. Example tasks included finding all the objects in the heap
of a program running in Eclipse and adding a menu item that made selected text bold.
Appendix A lists the code for the Eclipse scenario.

Each participant solved one scenario in the control group and the other in the choice
group (as defined above). Subjects in the choice group could solve tasks using a combination
of CodeHint and traditional techniques. Both the scenarios and the groups were ordered
randomly. We additionally allowed subjects who could not solve Eclipse tasks in the control
group to solve them with CodeHint. The tasks were designed to be difficult to solve, so we
stopped subjects if they had not completed a task after twenty minutes.

2This was directly inspired by an assignment given in the Stanford introductory programming courses.
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Participants

Nine subjects initially completed the first study; another five were recruited later to complete
only the choice condition of the same study with an improved version of the tool to collect
additional data. Twelve were graduate students in Computer Science at UC Berkeley and
two were undergraduates.

Another fourteen subjects completed the second study, which used a further improved
version of CodeHint. Ten were undergraduates and four were graduate students in Computer
Science at UC Berkeley.

In both studies, participants practiced on some training tasks first and completed a post-
test questionnaire. They were allowed to use a web browser to search for help. None of the
subjects had ever used CodeHint before, but all were somewhat familiar with both Java and
Eclipse.

Measures

We defined the following measures:

• Task completion time: Time taken to either complete or abandon a task.

• Task completion rate: Percentage of tasks users successfully completed.

• Code quality: Number of bugs in participants’ task code.

• Tool choice: Fraction of tasks in the choice condition for which participants opted to
use CodeHint.

Results

We first discuss quantitative results followed by qualitative impressions of how our partici-
pants used CodeHint.

Productivity and preference. Completion time: In all but one case, participants in
the first study completed all tasks, so we focus our analysis on task completion times. On
average, subjects using the improved version of CodeHint completed tasks in 46 seconds
and control participants took 97 seconds (see Figure 4.8). This difference is significant
(two-sample t(11) = 2.42, p = 0.033, two-tailed). This suggests that programmers are more
productive when using CodeHint.

Completion rate: Participants in the second study did not complete many tasks, so we
focus on task completion rates. Figure 4.9 shows the task completion rate for users in our
second study with and without CodeHint. On average, subjects using CodeHint completed
69% of sub-tasks while those not using it completed 27% (χ2(1, N = 14) = 26.06, p < 0.001),
which strongly suggests that programmers complete more difficult API tasks when using
CodeHint.
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Figure 4.8: The task completion time of subjects in our first user study. The error bars show
the standard error.
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Figure 4.9: The task completion rate of subjects in our second user study. The error bars
show the standard error.

Code quality: Participants introduced 11 bugs in 122 tasks solved with CodeHint in our
first study and 24 bugs in 93 tasks in code written without it (two-sample t(12) = 2.81, p =
0.015, two-tailed). This suggests that CodeHint improves code quality. To focus on the
completion rate, we gave subjects in the second study a comprehensive test suite, so they
wrote almost no bugs.

Tool choice: In the choice condition, each user could elect whether or not to use CodeHint
for each task. On average over both studies subjects used CodeHint 71% of the time,
suggesting that users found CodeHint valuable.

In the questionnaire, participants in both studies rated the overall usefulness of CodeHint
at an average of 7.7 out of 10 (with a standard deviation of 1.2). All users reported that they
would use CodeHint for their own development if it were available for their language and
editor and had some simple flaws fixed. Six of the subjects asked for the plugin shortly after
completing the user studies and installed it. When describing the tool, users stated that
“[Using the tool] seems natural” and was “way better” for some tasks than the traditional
approach.
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Qualitative results. Frommanual inspection, it seems that users chose not to use CodeHint
mainly for simple statements that they already knew how to write, often by using auto-
complete. They seemed to use it when it was easy to give a pdspec or when the code
involved using an unfamiliar API.

When watching the subjects use CodeHint, we noticed some interesting patterns. Some
users chose an expression without carefully examining the list of candidates, which sometimes
caused them to choose an incorrect expression. On the other hand, examining the entire list
of candidates and considering the difference between related expressions allowed some users
to realize that they had written bugs in similar code earlier.

CodeHint presented only a small number of candidates to the user after the initial pdspec:
in the first study, the average number of candidates across all episodes was 13 and the median
was 2, and in the second, the average was 34 and the median was 3. When refining an
existing set of candidates, users in both studies provided pdspecs that reduced the number
of candidates by 31% on average. However, 47 out of the 89 refinements did not reduce the
size of the candidate set at all, mostly because all the candidates were already equivalent on
all possible inputs. Ignoring those, the average reduction was 66%.

Choosing a pdspec requires trading the strength of the specification for the ease of encod-
ing it and the cost of evaluating it. To examine this tradeoff, we classified all of the pdspecs
used by subjects while completing the user studies and found that in the first study, 53%
demonstrated the desired value, 33% gave the desired type, and 14% were arbitrary predi-
cates. In the second study, subjects used only type demonstrations for the Eclipse scenario
(as its difficulty lay in finding and using complex types), but for the Note scenario they gave
51% value demonstrations, 38% type demonstrations, and 10% arbitrary predicates. This
shows that users can get benefits with CodeHint even while demonstrating simple pdspecs
but that the ability to provide more expressive pdspecs is sometimes valuable.

We list the arbitrary pdspecs we saw below, omitting duplicates, to give a flavor of the
pdspecs users found helpful.

1 x′.contains("-x") && x′.contains("-y")
2 x′.get(0).equals("-x") && x′.get(1).equals("-y")
3 x′.getWidth() == w && x′.getHeight() == h
4 x′ >= 0 && x′ < 3
5 x′ >= 0 && x′ < followers.size()
6 x′.toString().contains("home")
7 x′.charAt(0) == ’<’

The first two pdspecs express the same property, but the second is stronger than the first
as it contains ordering information. Similarly, the fourth and fifth pdspecs also express the
same property (in this case, trying to find a random integer in a range), but the fourth uses
the concrete value of followers.size() and so is more context-dependent. The sixth pdspec
differentiates between many values of the same type by finding the one whose toString
method returns a desired value), which allowed the user who wrote it to avoid figuring out
how to express a property about a complicated API (and directly inspired Example 2.1.1 in
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Section 2.1).
When in the experimental group, one subject manually created a new test case that made

giving a pdspec significantly easier. This highlights the importance of the test case used; the
same pdspec can yield significantly different results for different test cases.

During the first user study, several users found interesting ways to synthesize complicated
expressions. We had included two tasks that were deliberately outside the scope of what was
then directly solvable with a single search in the tool. Two users, once they realized this, split
the task into two sub-tasks by adding a temporary variable. They computed the temporary
using the tool and then gave their original pdspec again, letting the new temporary be used
in the generated expressions. Another user gave a new pdspec that led to a related (but
simpler) expression and then modified that by hand to find the correct expression. These
examples show that CodeHint can be useful even when it cannot find the desired expression.

4.4 CodeHint.js: Bringing CodeHint to JavaScript
Thanks to the rapid growth of the web, JavaScript has become one of the most popu-
lar programming languages [8]. Thanks to recent advances in Just-in-Time compilers for
JavaScript [29], it has become feasible to write large projects in JavaScript and even auto-
matically compile native code to JavaScript [9, 97]. JavaScript is thus likely to become even
more popular in the future.

Unfortunately, due to its dynamic nature, IDE support for JavaScript is far behind that
for languages such as Java [27]. Even simpler tasks such as code navigation and completion
often do not work well, and there are few advanced analyses.

We thus believe that a tool such as CodeHint is uniquely placed to benefit JavaScript
programmers. Due to its dynamic nature, it can easily discover information, such as the
dynamic types of variables, that is not available to most static IDE tools. Thanks to the
rising popularity of JavaScript, such a tool has the potential to have a large impact on
programmers.

We have implemented a prototype tool called CodeHint.js. Its source code and a demo
(shown in Figure 4.10) are available at https://github.com/jgalenson/codehint.js.
This prototype can currently synthesize code involving arithmetic, array and property ac-
cesses, and function and method calls and uses equivalence classes to reduce the search space,
but it does not correctly handle side effects.

Beyond requiring a re-implementation in a different language, many of the main concepts
of CodeHint.js are different from CodeHint.

Dynamic features. Language features such as dynamic typing, variadic functions, and
undefined values will require changes to the search algorithm CodeHint uses. These features
are used in a non-trivial fraction of real JavaScript code [72].

While JavaScript’s dynamic type system provides an opportunity for CodeHint.js to
benefit developers, it makes the search space much larger.

https://github.com/jgalenson/codehint.js
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Figure 4.10: A simple web interface to the CodeHint.js prototype.

For example, consider the following Java code.
class Foo {
String bar(File f, int x) { ... }

}
During our search, when we encounter an object of dynamic type Foo, we will try to call
all its methods, including bar. Thanks to Java’s static type system, we will know that bar
expects two arguments, a File and an int, and so we will call it with only arguments of the
correct types.

Now consider the corresponding JavaScript code:
Foo.prototype.bar = function (f, x) { ... };
As before, when we encounter a Foo object during a search, we will try to call its bar method.
We will see that it expects two arguments but will not know what their types should be. A
naïve search, which our prototype currently implements, would thus call the method with
all possible arguments, which would greatly increase the search space.

A related difficulty is variadic functions. In the above example, the JavaScript bar
method can be called with any number of arguments, not just the two that it declares. We
might thus want to call it with all combinations of three arguments or even any subset of
possible arguments, either of which would greatly increase the search space.
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An additional problem is JavaScript’s undefined value. This value can represent an
unassigned variable or parameter, a missing field, a function that does not return a value,
or more. It thus sometimes, but not always, represents an error, making it difficult for an
automated search to decide whether it is useful.

Functional features. JavaScript supports first-class functions, unlike Java, and so func-
tions can be passed as arguments and returned from functions. First-class functions greatly
increase the search space, as CodeHint.js must now treat functions like other values such
as integers and add them as candidates.

In addition, JavaScript supports closures and anonymous functions. Creating new anony-
mous functions as part of our search would greatly increase the search space, as each expres-
sion we would normally search could be contained inside an anonymous function with any
number of arguments.3

Usability. CodeHint was developed as a plugin to Eclipse, which provided many of the
features needed to implement the tool (such as finding the local variables and dynamically
evaluating code). Since JavaScript contains more dynamic features than Java and developers
use many editors when programming it, we have decided to implement CodeHint.js as a
library.

This allows our code to be portable. As an example, in our current prototype, using
CodeHint.js is as simple as:
CodeHint.synthesize({ x: x, person: person },

function(rv) { return typeof rv == ’string’; })
This code works in any environment, including Node.js or in a web browser.

This approach contains extra difficulties, however. Certain features available to Eclipse
plugins such as CodeHint are not available to JavaScript code. For example, Eclipse provides
a simple API to query for the local variables, which we use to seed our search, but JavaScript
does not seem to have an API with the same functionality. We currently work around this
with more verbose syntax; the first line of the code snippet above requires the user to provide
values (and their strings) manually to seed the search.4

3Java’s anonymous classes provide similar functionality, but they are less common so CodeHint does not
search them. The newly-released Java 8 supports closures directly, but CodeHint does not yet support them.

4It is worth noting that while this syntax is more verbose, it is also more powerful, as it allows the
user to direct the search space in a manner somewhat similar to CodeHint’s skeletons by providing complex
expressions or not providing certain variables.



54

Chapter 5

Programming by Demonstration with
Little User Interaction

We now show how we can use CodeHint’s algorithms to build a Programming by Demon-
stration tool. We begin in Section 5.1 by describing our overall approach and then describe
the two key new algorithms in Sections 5.2 and 5.3. We then discuss our implementation in
Section 5.4 and evaluate it in Section 5.5.

5.1 Approach
We now give more details of our approach, which is graphically depicted in Figure 1.1.

A trace consists of a sequence of actions given by the user. These actions are a super-
set of the statements in the host language because they allow heap values to be used as
expressions. For example, x = y, x = 1, and Node@123.x = 42 are all valid actions while
Node@123 = x is not valid (where Node@123 represents a heap object). This extension allows
users to give demonstrations that refer to values in addition to names, and it allows graphical
programming patterns such as dragging pointers and values to make assignments.

A partial program consists of a normal program in the host language with two additional
types of expressions. Unseens, denoted by ?, represent code that has not been encountered,
e.g., on a branch that has not yet been taken, and holes like ?(x,y,z+1) represent an
ambiguous expression that could be any of the inner expressions. We note that these partial
programs can sometimes be executed automatically, as they might not contain any holes or
unseens or all the possible expressions in a hole might yield the same result.

We translate traces into partial programs by finding expressions that can result in the
actions seen in a trace. For example, the action Node@123.x = 42 might become the state-
ment ?(p,q).x = ?(42,a) if a has value 42 and p and q point to the object used in the
trace. We use a slightly modification of the algorithms presented in Section 3.2; we discuss
the details in Section 5.4.
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We have developed pruning algorithms that automatically resolve many ambiguities in
the code. We discuss them in Section 5.2.

Since we resolve some of the ambiguities in partial programs by asking users to give
more traces, we need to be able to find inputs whose traces will help us. An input is
helpful if it cannot be executed without encountering an ambiguity (in such a case the user
will demonstrate the correct action and resolve the ambiguity). For example, given the
statement ?(p,q).x = ?(42,a), an input is helpful if, when executed to this line, p != q
or a != 42; if neither holds, then the user can give us no new information about this line.
We discuss how our implementation finds helpful inputs in Section 5.4.

If the partial program is complete (i.e., has no holes or unseens), we will not be able
to find any helpful inputs and so will terminate our algorithm and present the user with
the final code. However, in some cases we might not be able to find a helpful input even
when the partial program contains ambiguities. This may either be due to aliasing (e.g.,
we will never be able to disambiguate ?(x,y) if x is always equal to y at that point) or to
incompleteness in our search for useful inputs. In this case, we will present the user with a
partial program that she must complete manually.

In the interactive trace process, we help the user give us a new trace. At each step of the
program, we suggest the next action to take if there is no ambiguity in the current line and
suggest the possible actions we expect the user to take otherwise. These suggestions make
it easier for the user to give a trace, and her disambiguations help us complete the partial
program.

Since a trace might not explore all branches in a conditional, we must handle control
flow specially. During an interactive trace, a user may note that a conditional has been
encountered and mark where the branch begins and ends. We then synthesize a ? unseen in
our partial program to note that we have not seen the other branch and should try to explore
it later. However, this approach somewhat breaks our trace abstraction, as it forces the user
to think about something not encountered (the untaken branch) on a single trace. We thus
have extended our approach to automatically infer conditionals if users do not specify them
(see Section 5.3 for details).

If the user marks that a loop is encountered, we continue normally until the user marks
that the first iteration has completed. We then immediately synthesize a partial program for
the loop body and prune it to resolve some ambiguities, which allows us to suggest actions
to the user and resolve ambiguities as later iterations are encountered during the same
interactive trace. In addition to reducing the burden on the user, this technique ensures that
a user need only demonstrate each line of code once (although she might have to respond
to a finite number of extra disambiguation queries). There is thus a finite bound on the
amount of work a user must do during an interactive trace.
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Input a = [6, 8, 1, 3, 7]
Trace: Partial program:

if (|a| > 1)
last = 7

if (|a| > ?(1, a[2]))
last = ?(a[4], a[|a| - 1])

Figure 5.1: A contrived example of our pruning algorithm. The top shows a concrete input,
the left shows the user’s trace, and the right shows the generated partial program.

5.2 Pruning
After demonstrating each line of code once, the main work our approach requires of users is
resolving ambiguities, so by doing this automatically we can greatly reduce the burden on
the user. We now describe the techniques we use for this purpose.

Given a partial program and an input, we execute all paths through the partial program
(which means executing all complete programs the partial program represents) and note
which crash or fail the user-provided postcondition. Then, for all holes that were seen on all
successful paths, we remove all the possibilities that were never used on a successful path.

An example is shown in Figure 5.1. The top part of the figure shows the input array,
the left shows the user’s trace, and the right shows a partial program we might synthesize
that corresponds to this trace. Our algorithm then explores all four possible paths through
this partial program on a different input. On the input array [9, 2], three of these paths
crash, and only one is successful. We can thus automatically prune the expressions (a[2]
and a[4]) that were never used on a successful path.

Intuitively, each successful path could be the complete program desired by the user, so
any expression in a hole that is used on such a path is potentially needed and must be kept.
If we assume that one of these paths corresponds to the desired program, all expressions not
used on any successful paths can be safely discarded.

We note that we cannot prune possibilities for holes that we do not see on all successful
runs. For example, consider a program that contains a loop whose condition is a hole. Some
paths might not enter the loop (e.g., if the program iterates over all elements of an array)
while others will. If a potential expression inside a hole in the array always fails on such
an input, we cannot be sure if this is because it is invalid or because the desired program
simply does not execute the loop.

We consider all paths that encounter an unseen as being successful. This is the best we
can do, as the code inside could do arbitrary computations and yield a correct output.

Some of the paths we explore might not terminate. For example, if the user demonstrates
a loop with an induction variable i that is initially 0 and is updated to be 1, we might
generate the hole i = ?(1, i + 1) where the first possibility can easily lead to an infinite
loop. Since it is impossible to always determine whether some code will halt, we must thus
timeout long-running executions and consider them to be successful.1

1Our implementation actually treats timeouts as failing, which is unsound but works well in practice.
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This algorithm is sound, as if the partial program contains a correct program that does
not crash on any valid input, this algorithm will only remove possibilities that do not occur
on any correct programs represented by the partial program. It is also as strong as possible
(with respect to the inputs tested), as it only keeps potential expressions that might be used
in the user’s desired program.

Using strong postconditions can greatly improve the effectiveness of this approach. Even
without any postcondition, it can still be effective at pruning expressions that cause crashes,
but strong postconditions can allow it to remove many (sometimes even all) incorrect possi-
bilities, as we show in Section 5.5.

We note that this pruning is more effective when there are fewer unseens, as we must
consider all paths that contain one to be successful. This suggests that when generating
inputs for interactive traces, we prioritize those that bring the user to unseens, which we
currently do (see Section 5.4).

This algorithm explores all potential paths through the partial program (somewhat sim-
ilar to model checking [21, 40]) and so is exponential in the size of the program. We thus
apply a number of optimizations that make it quite efficient in practice.

Equivalence classes. We can separate the possibilities for a hole into equivalence classes,
grouping together elements that evaluate to the same result. Paths then contain not single
expressions for each hole but rather sets of expression, all of which yield the same result. If
we execute the same hole more than once (due to loops or recursion), we split the current
equivalence class into new classes each time its members are no longer equivalent. This
optimization usually significantly decreases the search space.

Formally, we define two possibilities for a hole as equivalent on a trace if they yield the
same result whenever that hole is encountered on the trace. There is clearly no benefit from
treating such equivalent possibilities separately.

As an example, assume that we encounter the hole ?(x.right,y,x.left,null) during a
search. If x.right == y and x.left == null, we need only search two paths ([x.right,y]
and [x.left,null]) instead of all four. If on this same path we return to this hole due
to a loop and x.right != y but x.left == null, we must consider three possible paths
([x.right], [y], and [x.left,null]).

Shortcuts. We can avoid searching paths that we know will not help us. Since we can
only prune possibilities from holes that were seen on all successful paths, once we have seen a
successful path without a certain hole, it is only useful in giving us information about other
holes. We call such holes unhelpful. Thus if a path uses, for each helpful hole, a possibility
that we have seen on a successful path (or, when combined with the equivalence classes
optimization, an equivalence class all of whose possibilities we have seen on a successful
path), we do not need to explore different possibilities for the unhelpful holes at the end of
the path. This optimization greatly reduces the search space when there are many unhelpful
holes, which can occur due to conditionals, loops, or unseens.
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As an example, take the partial program shown in Figure 5.1. For a given input, we
might explore a path that does not enter the conditional, and so we know that the second
hole is unhelpful. We might then explore a path that chooses 1 for the first hole and a[4]
for the second and find that it is successful. We then do not need to explore the path that
uses 1 for the first hole and a[|a|-1] for the second; if it were successful, we would want
to mark 1 as being used on a successful path, which we have already done, and if it were
unsuccessful, we would simply continue.

As soon as a path encounters an unseen, we immediately mark it as successful. Any holes
not seen on this path, including those potentially reachable from the unseen, will thus be
marked as unhelpful. This also helps us avoid searching paths we know will not give us new
information.

Small inputs. When pruning multiple times in sequence, we can first prune with smaller
inputs and then move on to larger ones. Since smaller inputs are more likely to be edge cases
and not execute the entire program, this can allow us to quickly remove some possibilities,
reducing the search space for subsequent prunes with larger inputs.

Fast pruning. Since this algorithm explores all paths through the partial program for
a single input, it is best used multiple times for multiple different inputs. Despite these
optimizations, it is still exploring a large search space and so may be slow.

We have thus developed a lightweight and fast version of this algorithm that we call the
fast algorithm (as opposed to the full pruning discussed earlier). Given an input, we evaluate
the partial program as far as we can, aborting when we encounter either an unseen or a hole
whose possible expressions do not all evaluate to the same value. During this process, we
prune any possibilities we encountered whose execution crashed.

This algorithm is much weaker than full pruning, as it can only execute the partial pro-
gram until the correct path becomes ambiguous. However, it can usefully prune possibilities
that crash on some inputs, and so works especially well when given edge cases. In addition,
it is very fast, as it only partially executes a single program, so it can be applied many times
to many different inputs. Fast pruning can be used after full pruning, as the pruning done
by the latter might allow the former to explore more of the partial program. We note that
this new algorithm only prunes possibilities that the full algorithm would also prune, as if
this algorithm prunes a possibility, then all paths the full algorithm explores also crash on
that possibility.

5.3 Lazy Control Flow Inference
Requiring that users notify us of control flow constructs by marking the beginning and end
of all conditionals and loop iterations both increases the amount of work they must do and
increases the cognitive load, as they must now think about more than just the current trace
(e.g., by realizing that there is an untaken conditional at a certain point).
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We would thus like to infer the control flow structure of the program. Following the
approach given in Section 5.1 for synthesizing straight-line code seems impractical, however;
if we assumed that any point in the program could have conditionals or loops with unknown
guards and bodies, we would have many more holes and ask the user far too many questions.
Thus rather than eagerly attempting to guess the control flow structure of the program, we
try to infer it lazily.

To simplify the presentation, we begin by considering only conditionals and later extend
the approach to cover loops.

With this lazy approach, we take the user at her word: we use any conditionals she gives
us but assume that there are not any more. Thus our partial programs look exactly like they
did before and users are not required to mark conditionals initially (although they may do so
if they wish). Our assumption may turn out to be incorrect when in later traces the control
flow diverges from earlier traces by going down a different branch. When this happens, we
have learned that there is a conditional and seen both of its branches.

To help illustrate this approach, consider a user trying to synthesize a program that
contains a conditional. The initial input might take only one path through that conditional,
and it may not be immediately obvious to the user that there is another path (e.g., it might
be an edge case). Thus in her initial demonstration, the user does not mark the beginning
or the end of the conditional and does not show the condition. We then synthesize a partial
program without a conditional. A later input might drive the program down the other path
of the conditional. The user then recognizes that a different action is needed and will realize
that there must be a conditional. She can demonstrate the condition (or let us synthesize
it) and show what occurs in the new branch and when it ends. Our partial program then
contains the conditional, and we continue.

The user might recognize that a new conditional is needed, but even if she does not,
we can in certain cases infer that a conditional might exist. If during input generation or
pruning we encounter an input for which the partial program contains no successful paths
(including an input that can be executed fully but fails the postcondition), we know that a
missing branch might be executed on this input. If the user tries to do an action that we
do not expect during an interactive trace, she might be demonstrating a new branch of a
conditional. If due to pruning or a user’s demonstration we remove all the possibilities for a
hole, that could be a sign that there is a missing conditional above the current point in the
trace.

We will not always run into such an error; we might synthesize a complete program that
happens to be missing a conditional. Unfortunately, we have no easy way to recognize this
case. All we can do is generate many input/output pairs and check that they are valid.
If this approach finds an error, we realize that we might have missed a conditional and
proceed. Otherwise, if a conditional is missing, our final program will be incorrect. While
this is unfortunate, if neither the programmer nor her correctness condition recognize the
error, there is nothing more we can do.

When we recognize that the partial program is incomplete on a certain input, we ask the
user for an interactive trace. When she realizes that there must be a conditional, tries to
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demonstrate an action we do not expect, or if the current line would crash, we can recognize
that there is an error at the current point. The error could be due not to a missing conditional
but instead to our synthesis algorithm not finding the correct code or to mistakes in the user’s
demonstrations. We thus simply ask the user to fix the error, which might involve marking
a conditional.

Joins. Once we recognize that a conditional is missing, we first ask the user to demonstrate
the condition (or let us synthesize a boolean value). She can then demonstrate the new
branch as usual. However, when the new branch ends, we must learn where the control
rejoins the original partial program. We could ask the user for this information, but it would
require her to reason about more than just the current trace (by having to consider the rest
of the partial program).

We instead automatically learn where a new branch of a conditional rejoins the original
control flow. Once the user marks that the branch has ended, she continues giving the trace
as usual. We consider all possible join locations and see to which the user’s demonstrations
could correspond.

As an example, consider the following partial program.
x = 42
y = ?(x + a, x + b)
x = x + y
In a new interactive trace, the user might begin by telling us that there is a new conditional
and that its body contains a single assignment to x. At this point, any of the partial programs
below might be valid.

if (b)
x = 137

x = 42
y = -1
x = x+y

if (b)
x = 137

else
x = 42

y = -1
x = x+y

if (b)
x = 137

else {
x = 42
y = -1

}
x = x+y

if (b)
x = 137

else {
x = 42
y = -1
x = x+y

}

If the user next demonstrates an assignment to x that could correspond to either x = 42
or x = x+y, then only the first and third above partial programs are still possible (if the
second partial program were correct, the next action would assign -1 to y, and if the fourth
were correct, the trace would be finished). If the next action after that corresponds to
y = -1, we know the first must be correct, and if it assigns to x = x+y, we know the third
is correct.

In some cases it might seem that there are no valid join locations because the trace
continues into another unseen branch of a missing conditional. For example, consider the
following program.



CHAPTER 5. PROGRAMMING BY DEMONSTRATION WITH LITTLE USER
INTERACTION 61

if (b1)
x = 1

else
x = 2

if (b2)
y = 1

else
y = 2

If the first trace has b1 == b2 == true, then it will assign 1 to both x and y. If the next
trace has b1 == b2 == false, when the user demonstrates x = 2, we will learn the first
conditional. However, the next demonstration will be y = 2, which does not correspond to
any statement in our current partial program.

In such a case, we can re-execute a previously-seen trace with the knowledge of where the
first conditional begins. We can then ask the user to mark the end of the conditional branch
as usual, at which point we will have completely discovered the first conditional. Continuing
the example, we can re-run the trace where b1 == b2 == true with the following partial
program.
if (b1)
?

else
x = 2

unknown {
x = 1
y = 1

}
Here, the unknown block represents statements that lie either in the then branch or after the
conditional. The user will then show that the conditional ends after x = 1, at which point
we will have the correct code for the first conditional.

Because of this, in the worst case we might need to ask the user for two extra traces for
each conditional (the trace where we discovered the other branch and the re-executed trace).
However, since this re-executed trace is one the user has already shown us, we will ask no
disambiguation questions; the user need only accept our suggestions until she marks the end
of the unknown branch.

Discussion. This approach extends to loops. Users can not mark loops when they are ini-
tially executed and simply show the executions of their bodies (which might require nothing
if the loop is not entered or multiple iterations if it is run multiple times). When a later
trace requires a different number of iterations, the user will recognize that there must be a
loop and mark it. We have not yet implemented this feature.

An interesting consequence of this lazy approach to inferring control flow is that it might
cause us to prune correct possibilities when our partial program does not contain all the
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(value) v
(identifier) id

(range) r ::= e to e | e until e
(lvalue) l ::= id | e[e] | e.id

(infix op) ⊕ ::= + | - | * | / | && | || | == | != | < | <= | > | >=
(expression) e ::= v | l | e⊕ e | -e | !e | id(e,e,· · · )
(statement) s ::= s;s | e | l = e | if (e) s else s | while (e) s |

for (id in r) s | break

Figure 5.2: The grammar of the language our implementation supports. We synthesize the
expressions and assignments directly and learn the control flow structures with the techniques
described in Section 5.3.

conditionals. As an example, consider the following complete program.
if (y.left != null)
x = y.left.value

else
x = y.value

The first trace will only go through one of these branches and might become the following
partial program.
x = ?(y.left.value, 42)
If during pruning we pick an input where y.left == null, we will prune away the correct
expression y.left.value.

To avoid this problem, whenever we discover that we are missing a conditional, we add
all of the expressions we have pruned back into the partial program (unless they would have
been removed by one of the user’s subsequent demonstrations). Once we have added the
new conditional, we can run our pruning algorithm again, hopefully removing most of the
newly re-added expressions.

5.4 Implementation
We have implemented a prototype of our approach that is available at https://github.com/
jgalenson/pbd. We now describe our synthesis algorithm and give details of the techniques
described above, including the graphical interface.

Synthesis algorithm. Our implementation operates on a Java-like language that is shown
in Figure 5.2 and includes arrays, objects, unary and binary operators, field accesses, function
calls, assignments, conditionals, and loops.

As mentioned before, given an action seen during a trace, we synthesize the statements
that could have yielded that action and insert them into the partial program. Our algorithm

https://github.com/jgalenson/pbd
https://github.com/jgalenson/pbd
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is a slight modification of the deterministic synthesis algorithm given in Section 3.2.1. We
enumerate statements of a certain size (i.e., parse tree height), evaluate them, group them
into equivalence classes based on their results, and use representatives of those equivalence
classes to generate larger expressions. Once we have reached our fixed maximum size, we
keep the expressions that could have yielded the user’s action and plug in the equivalent
expressions.

As an example, if we determine that tree and x.parent are equivalent,2 we will only
use tree to generate further expressions such as tree.right and foo(tree). We will not
evaluate x.parent.right and foo(x.parent) because we know that they are equivalent to
expressions we have already generated. If we later find that tree.right could have yielded
the user’s action, we know that x.parent.right could have done so as well.

During an interactive trace, if users see that their desired action is not a possibility, they
can tell us to search for expressions of a larger size. This leads to an important difference
between this algorithm and the one from Section 3.2.1: we must sometimes search for ex-
pressions given multiple actions they should yield in different states. Continuing with the
previous example, in a second trace the user might ask us to search for larger expressions
when tree and x.parent are no longer equivalent.

The naïve extension of the previous algorithm to handle multiple states would be to
do the whole search using equivalence classes created from a single state and then use the
other states only to filter out expressions that do not yield the correct result. However,
this filtering step must happen after we plug in the equivalent expressions. To see this,
consider our running example. If tree and x.parent are equivalent in the first state but
tree.right does not yield the correct result in the second state, we would never consider
x.parent.right, even though in the second state it might yield a different and correct
result. Unfortunately, this process of expanding the equivalence classes can exponentially
increase the number of expressions we show the user. As an example, if a, b, c, and d each
have n equivalent expressions, there are n2 expressions equivalent to a+b and n4 equivalent
to (a+b)+(c+d). This naïve algorithm might thus generate exponentially more expressions
than are required.

Our algorithm, shown in Algorithm 7, instead generates expressions and equivalence
classes separately for each state. For each size, after we generate all expressions of that size,
we remove all expressions that crashed in one state, as well as any expressions equivalent
to them in that same state, from the equivalences classes of all other memories. Once we
have finished generating expressions of the maximum size, we generate the final equivalence
classes that represent all states and use them to expand the expressions that yield the desired
action in all of the states.

When we infer that a conditional must exist at a certain location in a partial program, we
use the information from previous traces at that point to synthesize the condition (or refine
the user’s demonstration of it). For example, if we discover a conditional on the third trace

2Our current implementation is sound in the presence of side effects, as we determine equivalence by
comparing the final states as well as the return values.
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Algorithm 7 Deterministic synthesis algorithm.
for all states σ do

Initialize classesσ with null, this, and local variables.
end for
for i← 2,maxDepth do

for all states σ do
newExprs← genOneLevel(getRepresentatives(classes))
Evaluate newExprs
Add newExprs to classesσ

end for
removeCrashers({classesσ|state σ})

end for
classes← combineEquivalances({classesσ|state σ})
result← filterFailing(getRepresentatives(classes))
result← expandEquivalences(result)

and the user tells us that the condition currently evaluates to true, we search for expressions
that would have evaluated to false when executed in the first two traces and true when
executed at the current state.

Input generation. We have mentioned that users may supply a generator function that
creates inputs to the function to be synthesized. In addition, users may also define filter
functions that define whether an input of the right type is a valid input to the function. It
has been shown [30] that these two approaches for finding valid inputs are complementary,
as in certain cases one is easier to write than the other.

As described in Section 5.1, to find helpful inputs we must find an input whose trace will
remove some of the ambiguities in the current partial program. We do this by randomly
generating multiple inputs of the correct type and executing them on the partial program
as far as possible (i.e., until an ambiguity is reached). If the execution finishes and passes
the postcondition, the input will not help. If it finishes and fails the postcondition, we likely
need to learn a new conditional or search for expressions of a larger size. As described in
Section 5.3, this invalidates any pruning that was already done, so we prioritize this case.

During pruning, we might discover that the program contains no successful paths on a
certain input. This also means that we likely need to learn a new conditional or search
larger expressions. However, we prefer the previous type of inputs to these, as we know
they contain no ambiguities and hence will require us to ask the user fewer disambiguation
queries.

If we cannot find an input that suggests our partial program does not contain the correct
code, we search for inputs that become stuck at unseens as opposed to holes, since as
described in Section 5.2, pruning is more effective when there are fewer unseens. For the same
reason, we prefer earlier unseens to later ones. If we find multiple inputs that become stuck
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Figure 5.3: An example of our graphical interface during an interactive trace stopped at a
hole. Memory is shown on the left and the partial program on the right. The user may
click one of the green arrows to select its assignment or drag a green value to one of the red
values.

at holes, we prefer the one where the user’s answer is likely to resolve the most ambiguities.
Our final heuristic is to prefer smaller inputs.

We note that a symbolic or concolic generation technique, e.g., [31], would be more
powerful, but we have not yet seen a need to integrate one.

Graphical interface. We present users with a graphical representation of memory with
objects containing fields and arrows representing pointers. We additionally show the current
code. Users can supply code telling us how to layout objects of certain types.

During a trace, users may manipulate memory bydragging a pointer to a new value (or a
special null object), dragging a value on top of another value, clicking on an expression (to
evaluate it), or dragging values onto special function call and operator nodes. Users can also
add new variables or values, mark the beginning and end of conditionals and loop iterations,
and mark the end of the trace.

The GUI enforces type safety: when the user selects and drags a value, it only lets him
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drop it on values of a supertype. Such legal targets are colored differently, which also provides
visual hints to the user about what to do next.

At each step during an interactive trace, we show the user the current memory and use a
different color to show the suggested change (e.g., by showing a differently-colored pointer).
When we encounter an ambiguous hole, we show all of the possible actions to the user, with
tooltips showing what expressions each represents. For pointer values, the user can simply
click on the desired new arrow; for other assignments, he can drag a potential right-hand
value to a potential left-hand value. An example is shown in Figure 5.3. If the user is not
happy with any of the possible actions, he can tell us to search for expressions of a larger
size.

Pruning. Our automated pruning algorithm can be very effective at disambiguating holes.
We thus prune whenever the user gives us new code and between all interactive traces. Since
pruning is more efficient with fewer unseens, we do it after the user fills in an unseen or
gives a new branch of a newly-inferred conditional, which may help automatically resolve
ambiguities later in the trace we would otherwise have been forced to ask the user to resolve.

When the user finishes demonstrating the first iteration of a loop, we immediately syn-
thesize code for its body. We then prune the current partial program with unseens inserted
after the loop to represent the unknown code. This allows us to reduce the number of queries
we ask the user as we walk through the loop (although not as much as we normally can, as
we cannot use the postcondition since the program is incomplete).

5.5 Case Studies
We now present some case studies we used to evaluate our methodology. Table 5.1 shows how
effectively our approach works for these problems. We do not present any timing information
because there were no long pauses. All results were averaged over three runs.

For the first four demonstrations in this section we did not explicitly mark any condition-
als. Our algorithm inferred them all easily, requiring no extra traces or queries and learning
join points as fast as possible, showing that our inference algorithm is very effective.

Left Rotation. We studied the problem of doing a left rotation for a binary search tree,
which was used in the example in Section 2.2. Our postcondition stated that the result is a
tree with the same elements as the input.

Since the final code has a conditional with three branches and no loops, any PBD system
would require at least three traces to learn the full code. Our system required an average of
only 0.7 additional traces to learn the code.

Despite the fact that there was much ambiguity in the graphical demonstrations required
for this example, we did not ask the user any disambiguation queries. Our pruning algorithm
thus worked very well, and we generated inputs that enabled us to quickly learn the control
flow without requiring any disambiguation.
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Minimum Normal No pruning

Traces Queries Traces Queries Traces

Rotate 3 0 3.7 9.3 10
Tree Insert 3 0.3 3 3 6
Selection Sort 1 1 2 2 3
List Reversal 1 0 1 5 2.7
RB Insert 2 2 2.6 5 6
DSW 1 2 1 14.3 3.3
Average 1.8 0.9 2.2 6.4 5.2

Table 5.1: Results for our case studies showing the number of queries asked and the total
number of unique traces required. The second column shows the minimum number of traces
required by any PBD system, the third and fourth columns show the results of our tool, and
the last two columns show the same results with pruning disabled.

The usefulness of our pruning can be seen in the last two columns of Table 5.1, which show
the same results with pruning disabled. In this case, we ask an average of 9.3 disambiguation
queries over ten traces, which requires significantly more work from the user.

Tree Insertion. We analyzed inserting elements into a binary search tree. Our postcon-
dition simply stated that the result is a sorted tree with different elements than the input.

The final code has a conditional with three branches outside the loop, so any PBD
system would require at least three traces to learn the code. Our system required exactly
three traces and is thus optimal in this respect. We asked 0.3 disambiguation queries on
average. This query was inside a loop during the initial trace. As mentioned in Section 5.1,
we automatically synthesize the loop body as soon as the first iteration is complete. However,
since the full program is not yet complete, we cannot do as much pruning as we would like,
so we must ask this extra query.

Without pruning, we ask far more queries in twice as many traces, significantly increasing
the burden on the user.

Selection Sort. We analyzed the selection sort algorithm with the postcondition that
the output array is sorted. We asked only one disambiguation query, which was needed to
determine how to update a loop index variable. This query was asked inside a loop during
the initial trace. We needed two traces, one more than optimal, because our initial input did
not exercise a branch. Without pruning, we needed an additional trace to ask an additional
query.
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List Reversal. We analyzed reversing a singly-linked list with the postcondition that the
output has the same number of elements as the input. We asked no disambiguation queries
in one trace, which is optimal. Without pruning, we required five queries and 2.7 traces to
find the same code.

Red-black Tree Insertion. We analyzed inserting elements into a red-black tree. Our
postcondition stated that the result is a valid red-black tree.

We asked two disambiguation queries. Even though this code contains many different
conditionals inside a loop, our system only required an average of 0.6 traces beyond the
minimum. With pruning disabled, we asked on average an additional three queries in 3.4
extra traces.

Deutsch-Schorr-Waite. We analyzed the Deutsch-Schorr-Waite algorithm (DSW) stack-
less graph marking algorithm [75], which has long been considered difficult for programmers
to understand [10]. Our postcondition stated that the graph structure was unchanged and
that all the nodes were marked.

We asked two disambiguation queries, both of which were inside a loop in the initial
trace, and required only a single trace to learn the program. Without pruning, we asked an
average of 14.3 queries in 3.3 traces, requiring significantly more work from the user.

When developing this example, we gave the demonstrations by following some pseudocode
of the algorithm. At some points, we misunderstood the missing portions of the code and gave
incorrect demonstrations. Our tool automatically found inputs on which our demonstrations
were incorrect, which helped us fix our bugs.

Discussion. The above results show that our approach successfully found the code for all
of our benchmarks, that our pruning algorithm significantly reduces the amount of work
required by the user, and that our conditional inference algorithm is effective. Overall,
we ask an average of only 0.9 queries in 2.2 traces (0.2 more than the average minimum
required). Without pruning, we ask 6.4 queries in 5.2 traces. We thus reduce the amount of
work required of the user by a factor of 2-6 and closely approach the minimum possible.

More than half of the disambiguation queries we asked the user were inside a loop during
the initial trace. As mentioned above, while we can still prune the loop and remove some
possibilities in such cases, we cannot use the postcondition, as we do not know what will be
executed after the loop. Since the alternative is requiring the user to demonstrate the entire
loop, we view this as a significant improvement.

In each case our postcondition did not encode the full correctness condition, so we re-
peated the above experiments with the strongest possible correctness conditions. The results
were the same as those reported above, which suggests that our system does not need the
strongest possible postcondition. Since disabling pruning is equivalent to pruning with the
trivial postcondition that accepts all results, we can see that having some postcondition is
very helpful.
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In the worst case, we require one initial demonstration of each line but an exponential
number of queries to resolve each hole. However, our results show that we do far better in
practice. There is only one hole for which we asked more than one disambiguation query,
which shows that our queries quickly prune the set of possibilities.
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Chapter 6

Related Work

6.1 Approach
Programming by demonstration, also called programming by example, is a popular area of
research [39, 24, 55, 50], much of which deals with synthesizing macros [51] and scripts [52].
Unfortunately, these techniques have not been widely adopted, in part because users have
difficulty understanding and correcting the learned generalizations [49]. We attempted to
avoid these problems by integrating CodeHint into the user’s workflow and encoding its state
directly in the code.

There has been much work on live programming and how it can benefit programmers [94,
18, 86]. This work inspired us to design our methodology to support concrete reasoning.

Program synthesis has had numerous successes at synthesizing code in small well-defined
domains such as bitvector logic [47] and data structures [79, 41] as well as somewhat more
general classes of programs [81, 48, 82]. As they are backed by decision procedures and SMT
solvers, these techniques are very efficient in certain domains that have been fully modeled,
while CodeHint is not domain-specific and works without any modeling (e.g., it can read
from the file system). We thus view these as complementary techniques.

There has been much research on helping programmers explore new APIs by mining
existing code to find snippets that are used in practice [59, 44, 74, 88, 37, 36]. Unlike such
systems, by evaluating code at runtime, we can differentiate between different values of the
same type, downcast precisely, and use more general specifications, as in Section 2.1.

Test generation techniques [91, 95, 77] generate inputs to explore branches within code
(which is equivalent to satisfying boolean specifications) but they do not always generate the
code to construct those inputs. Seeker [89] synthesizes code fragments with a combination
of dynamic and static analysis. Its reliance upon static analysis means it cannot generate
certain code fragments that CodeHint can but allows it to be more efficient in many cases.
We would like to integrate similar techniques into CodeHint.

Some existing code search tools [70, 19, 62, 13] allow more general specifications such
as natural-language queries or testcases, but they lack the full power of our pdspecs and



CHAPTER 6. RELATED WORK 71

our ability to use dynamic information. Our skeletons are similar to the partial expressions
of [65] and the holes of [81].

The Smalltalk method finder [14] allows programmers to specify concrete arguments
and the desired result and then evaluates all methods of the given receiver with the given
arguments to see which return that result. The algorithm is thus very simplistic, but it
allows giving multiple demonstrations, similar to our refinement methodology.

In summary, the key benefits of our approach are the precision enabled by our dynamic
nature, the generality of our pdspecs, and the fact that we can handle the full Java language
without any modeling. The main disadvantages are that we are less efficient and provide
fewer correctness guarantees than some existing techniques.

6.2 Algorithm
The way our algorithm iteratively generates expressions of larger depth is similar to the
approach used by CHESS [63], as we both search the space in a way that prioritizes elements
that are more likely to occur in practice. Our representation of the search space is similar
to version space algebra [51, 50] but we can more efficiently eliminate redundant elements.

Our equivalence classes are similar to ideas from Daikon [26], Randoop [64], TRAN-
SIT [92], and model finding [98]. Unlike Randoop, we enumerate all solutions, guided by our
probabilistic model toward more likely expressions, up to some bound instead of randomly
searching the space. Our techniques are also more powerful than these, and they handle
primitives, objects, and arrays. We also apply the algorithms in the new domain of program
synthesis, using them to gain the ability to synthesize real Java code. Most importantly,
unlike these approaches we are sound in the presence of side effects.

Many existing techniques for undoing side effects in Java focus on transactions [73] or
sandboxing [78, 85]. These approaches can be effective but often require modifying the client
code or the runtime system. In contrast, our watchpoint-based algorithms are slower but
require only a standard JVM. Research on speeding up watchpoints [99] could improve the
efficiency of our approach, or we could use a more efficient technique. Some researchers have
used standard JVM techniques to reset only static state [23]; our approach in some ways
generalizes this work to reset all state.

Some recent work has focused on building probabilistic models for programming lan-
guages that are based on natural language. Macho [22] tries to enable program synthesis
from natural language specifications by building a probabilistic model that relates code to
English. Other work [43] even builds a model of Java code by directly applying statistical
models for the English language. By focusing on natural language, it might be easier to
incorporate other pieces of information, such as comments in the code.

We would also like to consider other types of probabilistic models. Work that mines
API usage protocols [67] might greatly improve our ability to synthesize code involving
complicated APIs. Since one of the major benefits of CodeHint is that it executes code in
a dynamic context, it might make sense to build a model based on traces of executed code
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rather than the static source code. Previous efforts have had success using such a model of
dynamic traces to aid program synthesis [96, 67].

Our current model was based on analyzing seven projects that together contain over ten
million lines of code. While this is not a small corpus, it could be much larger, and the
fact that it is drawn from only a small number of projects could introduce biases. There
has been much work in mining source code information at a large scale, analyzing hundreds
of millions of lines of code in hundreds or thousands of different projects [11, 28], that we
would like to leverage, and there are many existing datasets we might even be able to use
directly [11, 33, 45]. Our model is more complex than many existing models in that it requires
type information. Many of these models are lexical models that simply parse tokens, and
even those that parse code into an AST usually do not compute types, although there has
been work on inferring types from incomplete snippets [84]. In our case, the type information
is useful to differentiate between methods with the same name. Computing a large model
with types would be slower and more difficult than using an existing model (we would have
to tap into the build system), but might be a useful contribution to the field by itself.

6.3 Programming by Demonstration
Tinker [56, 54] is a PBD system that generates LISP code from concrete traces. It can
learn conditionals by noticing discrepancies between multiple examples. However, it cannot
handle conditional branches joining as well as we can. Additionally, its demonstrations are
not as general as ours; for example, its users must specify any functions they are calling,
while in our system users can give the result and we will synthesize the call.

CoScripter [52, 58] is a tool that records user interactions with a webpage so that they
can later be replayed as an automated script. Rather than focusing on algorithms, as we do,
it is designed to make it easy to share and reuse scripts. We believe it would be useful to
combine these ideas.

Some work has focused on using version space algebra [51] to synthesize code from
traces [50]. Like ours, this work can generalize traces and learn conditionals and loops. How-
ever, it cannot automatically generate new testcases and refine the program being learned,
nor can it infer that conditionals are missing in the traces seen so far.

Existing PBD systems deal with ambiguities in different ways. Rather than taking ad-
vantage of information about the whole program and its intended behavior as our pruning
algorithm does, some approaches simply require enough demonstrations of an individual
statement to learn it uniquely [50]. Others develop techniques to rank potential solutions to
try to guess the correct expression to present to the user [35, 66]. Some simply make users
choose the correct disambiguation [58]. We believe our approach, which uses correctness
conditions instead of heuristics, is complementary, and a combination of these techniques
seems promising.

PBD has also been used in the HCI field [25], where researchers have studied different
ways to resolve ambiguities [60] with an emphasis on usability. We believe a careful study
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of this work could improve our own approach and help make it easier to use.
There are many graphical programming languages that allow users to write code visu-

ally [71, 93, 69]. Our system uses some of the designs developed in these languages to try to
make it easier for users to give us traces.

The Sketch project [81] allowed programmers to write partial programs that it used to
synthesize complete code. We have adopted their syntax for our partial programs, but the
user experience is vastly different, as its users give partial programs rather than the traces we
require. Angelic programming [15] allows users to develop algorithms by examining traces,
but it still requires that they write partial programs rather than give traces.

There is a large body of work on program synthesis [82, 47, 81, 79, 41]. Many of these
systems generate code from specifications of the output given some hint about the desired
code and some formal models; we take advantage of postconditions but only require traces
of the algorithm.
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Chapter 7

Future Work and Conclusion

We now present our two main proposals for future work: improvements to our probabilistic
model (Section 7.1.1) and CodeHint.js, the JavaScript version of CodeHint (Section 7.1.2).
We then briefly mention some other potential avenues in Section 7.1.3.

7.1 Future Work

7.1.1 Probabilistic model of code
We would like to build a database of larger snippets (e.g., ten lines of code instead of a few
method calls) that are used in practice. This would allow us to synthesize significantly larger
code snippets and bias the search toward code used in practice. We would like to investigate
ways of clustering and intersecting the code snippets [19] and plugging them into the current
state. We believe that we can combine this model with the smaller-scale models discussed
thus far, e.g., by using the smaller models to rank the likelihood of the larger snippets.

A probabilistic model is little help in synthesizing code that involves never-before-seen li-
braries (perhaps a company’s internal library or something the developers wrote themselves).
We would like to be able to retain CodeHint’s ability to synthesize such code but keep the
advantages of using models. One possibility is to update our models based on the user’s
current project, which would allow us both to analyze any types we have not seen before
and let us learn how the current user’s code differs from the code in our model.

7.1.2 Improving CodeHint.js

Because JavaScript is dynamically typed, the search space of potential code snippets is much
larger than for Java, as we cannot use method argument types to reduce the search space.
We believe that we can solve this problem by doing type inference. By learning some of
the types in the JavaScript code, we will be able to reduce the search space, bringing it
closer to the Java version. We can attempt to use an existing type inference algorithm,
e.g., [12, 46, 38], or develop our own, perhaps by using simple and targeted heuristics or
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adapting solutions to a similar problem in Java [68]. Another possibility is to use techniques
based on lazy initialization [7] to infer argument types as we execute code.

Our Java version of CodeHint handles side effects by installing breakpoints in the JVM
and using them to detect and undo the effects. Since this approach is specific to Java, we
will need an alternate approach to handle side effects in Java expressions. We see multiple
possible solutions to this problem. We could use a record and replay or dynamic analysis
system that supports rolling back values [76]. Newer implementations of JavaScript support
techniques similar to the watchpoints used by CodeHint [2, 7]. The popular Node.js frame-
work [90] contains a module for executing code in a different context [5] or process [3] or on a
cluster [4]. An additional benefit of this approach is that it might make it easy to parallelize
our search, making it even more efficient.

The Java version of CodeHint is targeted mainly at programmers using new or confusing
APIs, and our user study results show that it is useful in such cases. Programmers use
JavaScript in different ways than they use Java, however, so CodeHint.js might well target
different use cases. We would like to investigate how programmers use JavaScript and what
sort of tasks they would want solved so that we could design CodeHint.js to be of the most
help.

7.1.3 Other potential future directions
Doing more with breakpoints. We believe that our breakpoint-based algorithms for
detecting and undoing side effects are novel and deserve more attention. Specifically, we
would like to continue investigating ways to improve their implementation such as applying
instance filters to reduce the number of spurious breaks. We would also like to separate the
code from CodeHint, which would enable it to communicate with the JVM directly rather
than going through the Eclipse APIs. There are also other issues worth considering, such
as how to handle writes by multiple threads, and it would be interesting to benchmark our
approach and compare it to other techniques.

We also believe that we can use similar approaches for other purposes. For example, we
currently have a prototype implementation for CodeHint of a form of lazy initialization that
uses watchpoints to detect which fields an evaluation touches and uses that to infer which
expressions’ results can be known without evaluation.

For example, the JComponent type (a supertype of most GUI components in the Swing
toolkit) contains a getClientProperty method that takes in an Object and returns a prop-
erty associated with it. During some of our testing, we ended up calling this method over
100 times with different arguments, but the receiver object contained no properties and so
all the calls returned the same value. With this technique, we could detect that a call does
not read any field of the current argument and infer that all arguments of the same type
would have the same result.

Handling generics. Due to Java’s erasure, the type of generic methods and objects is
not available at runtime [16]. CodeHint thus might generate statements that do not
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compile (e.g., integerList.add("Hi")), so it currently detects and filters out such cases.
In addition, the current implementation might miss expressions that use the erased return
value of a method (e.g., we might think a method returns an Object when it really is
statically known to return a String), but it handles this case by downcasting the result
to the actual type. We would like to investigate using reflection to get more precise type
information to make our search more efficient and precise.

Integrating symbolic techniques. We would like to integrate symbolic techniques into
CodeHint. Such techniques would complement our approach; our algorithm can handle
arbitrary Java method calls while symbolic techniques can quickly explore a very large search
space in certain domains.

Methods that can be called a large number of times with different arguments (e.g., a
method with four integer arguments when we have seen 100 different integer values) are
the worst case for our approach. However, if the method can be modeled by a symbolic
technique, e.g., by translating it into SMT, such solvers could likely find multiple solutions
very efficiently. We would thus like to consider building a symbolic technique (or using an
existing one) that can handle a subset of Java and use it on cases where it would outperform
our normal approach.

If properly implemented this approach could greatly increase the space of code snippets
that we can search.

Improving usability. We believe that we can improve the usability of CodeHint to make
it easier for programmers to use. One idea is that instead of simply giving users a (sorted)
list of results that satisfy their pdspec, we could group together related expressions. For
example, instead of listing the expressions
cat.eat(), cat.meow(), foo.bar(a), foo.bar(b)
we could show the user something like
cat.??{eat,meow}(), foo.bar(??{a,b})
that represents all of the similar possibilities. This would help users manage a large number
of results.

This technique could also help make our search more interactive. Instead of doing a
search and then presenting users with its results, we could show them, in a fashion similar to
the snippet with holes above, the possible expressions we might search and let them choose
which we should explore further. In the above example, the user might mark that we should
explore expressions that involve the cat methods but not those that call foo.bar. This
technique might allow us to work with the user to synthesize large code fragments.

Automatically generating benchmarks. We currently evaluate CodeHint on a handful
of manually-created benchmarks. However, using only this small set makes it difficult to
evaluate changes to the algorithm, as we run the risk of overfitting solutions.
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To alleviate this problem, we would like to develop a methodology for automatically
generating benchmarks. As opposed to existing approaches such as bug finding (which can
look for bugs in real-world programs) and probabilistic models (which can test how many
methods would be correctly identified by autocomplete), the generality of our pdspecs makes
this a difficult problem.

One possible solution is to automatically run tests for certain codebases, extract the types
and values certain expressions return, and use those as the pdspecs and desired code. We
could handle refinement by generating multiple such input-output pairs. For more compli-
cated pdspecs, we could look for asserts or unit tests.

Programming by Demonstration. Our current approach requires that the user demon-
strate each statement in a trace in the correct order. We would instead like to allow users
to show a desired final or intermediate state. This would enable users to give more modular
traces; they could initially demonstrate some parts of a trace in detail while giving only the
end result of executing a certain chunk of code.

To be able to demonstrate a trace to our tool, users must understand how their algorithm
processes concrete inputs. To remove this limitation, we would like to support users who
have only incomplete knowledge of how their desired algorithm proceeds, e.g., by suggesting
traces to the user.

We believe that graphical abstractions could be very useful for demonstrating algorithms
in different paradigms (e.g., functional) and applications (e.g., cryptography).

7.2 Conclusion
We have presented a novel methodology that helps programmers write difficult statements.
This methodology is dynamic (evaluating code and runtime and letting users inspect the
results), easy-to-use (accepting a wide range of specifications), and interactive (helping users
gain information about the missing code). Our algorithms are efficient and let us synthesize
code that uses real-world Java features such as native calls and reflection. We have run
two user studies that shows that our tool CodeHint significantly improves programmer pro-
ductivity. We have also presented a novel programming methodology that synthesizes code
from user’s demonstrations of concrete traces of their algorithms. We have developed auto-
matic techniques to reduce the burden on the user and have shown that they are effective in
practice.
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Appendix A

Benchmark programs

We list below some of the code for our benchmarks. The first three were used in the first
user study and our empirical evaluation while the last was used in our second user study.
The other benchmark used in the second user study is split over multiple different files so we
do not list it here. Its tasks involved serializing objects to/from strings, handling graphical
clicks, and implementing bold, italics, and underline. The code for this missing task as well
as the full code for the other examples can be viewed at https://github.com/jgalenson/
codehint/tree/master/examples.

The code snippets below show the benchmarks as shown to the subjects with the solution
code commented out. Tasks are denoted by printlns or comments.

Listing A.1: The Parse program.
1 import java.util.HashMap;
2 import java.util.List;
3 import java.util.Map;
4 import java.util.Arrays;
5
6 import codehint.CodeHint;
7
8 @SuppressWarnings("unused")
9 public class Parse {

10
11 /*
12 * Builds a Map that, for each line in the string, has whatever is
13 * before the separator map to whatever is after it.
14 * For example, given the email below, it will map "Subject" to
15 * "[cs-grads-food] Pizza" and "Date" to "Mon, 27 Feb 2012 15:28:03 -0800".
16 */
17 private static Map<String, String> parse(String email, String separator) {
18 String[] lines = email.split("\n");
19 Map<String, String> parts = new HashMap<String, String>(lines.length);
20 for (String line : lines) {
21 int index = 0;
22 //index = line.indexOf(separator);

https://github.com/jgalenson/codehint/tree/master/examples
https://github.com/jgalenson/codehint/tree/master/examples
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23 System.out.println("Task: Find the first index where the separator string
occurs in the line.");

24
25 String header = null;
26 //header = line.substring(0,index);
27 System.out.println("Task: Find everything that comes before the separator

in the line.");
28
29 String body = null;
30 //body = line.substring(index + separator.length());
31 System.out.println("Task: Find everything that comes after the separator

in the line.");
32
33 parts.put(header, body);
34 }
35 System.out.println(parts);
36 return parts;
37 }
38
39 /*
40 * Find the argument that comes offset arguments after the target string, if it

is in the array.
41 * For example, getArgument(new String[] {"a", "b", c", "d"}, "a", 2) returns "c

".
42 */
43 private static String getArgument(String[] argsArr, String target, int offset) {
44 List<String> argsList = null;
45 //argsList = Arrays.asList(argsArr);
46 System.out.println("Task: Convert the array of arguments into a list.");
47
48 int index = 0;
49 //index = argsList.indexOf(target);
50 System.out.println("Task: Get the index of the target string in the array/list

.");
51
52 if (index == -1)
53 return null;
54 int newIndex = index + offset;
55 if (newIndex >= argsArr.length)
56 return null;
57 return argsList.get(newIndex);
58 }
59
60 private static final String TEST_EMAIL = "Message-ID: <4F4C1183.3030805@cs.

berkeley.edu>\nDate: Mon, 27 Feb 2012 15:28:03 -0800\nFrom: Redacted\nUser-
Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:10.0.2) Gecko/20120216
Thunderbird/10.0.2\nMIME-Version: 1.0\nTo: cs-grads-food@eecs.berkeley.edu\
nSubject: [cs-grads-food] Pizza";

61
62 public static void main(String[] args) {



APPENDIX A. BENCHMARK PROGRAMS 90

63 parse(TEST_EMAIL, ": ");
64 getArgument(new String[] { "--foo", "--bar", "--baz", "42" }, "--baz", 1);
65 getArgument(new String[] { "--foo", "--bar", "--baz", "42" }, "--foo", 0);
66 getArgument(new String[] { "--foo", "--bar", "--baz", "42" }, "--bar", 0);
67 }
68
69 }

Listing A.2: The Swing program.
1 import java.awt.Dimension;
2 import java.awt.Window;
3 import java.awt.event.MouseAdapter;
4 import java.awt.event.MouseEvent;
5
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JTree;
9 import javax.swing.SwingUtilities;

10 import javax.swing.tree.TreePath;
11
12 import codehint.CodeHint;
13
14 @SuppressWarnings("unused")
15 public class SwingTest {
16
17 private static void createAndShowGUI(JFrame frame) {
18 Dimension dim = null;
19 //dim = frame.getPreferredSize();
20 System.out.println("Task: Find a Dimension that somehow represents the size of

the frame.");
21
22 int w = (int)dim.getWidth();
23 int h = (int)dim.getHeight() / 2;
24 Dimension newDim = null;
25 //newDim = new java.awt.Dimension(w,h);
26 System.out.println("Task: Make a Dimension with the given width and height.");
27
28 JLabel label = new JLabel("Hello, world!");
29 MySwingHelper.resizeLabel(label, newDim);
30 frame.add(label);
31
32 Window window = null;
33 //window = frame;
34 System.out.println("Task: Find a Window that contains the label.");
35 window.setAlwaysOnTop(true);
36 }
37
38 /*
39 * A JTree displays data in a hierarchical form, where child nodes can be hidden

or expanded as necessary.
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40 * When run, this code will make a small little JTree that will pop up on the
screen.

41 */
42 private static void createJTree(JFrame frame) {
43 final JTree jtree = MySwingHelper.createTree();
44
45 /*
46 * This adds a mouse handler that triggers whenever the use clicks on the tree

.
47 */
48 jtree.addMouseListener(new MouseAdapter() {
49 public void mousePressed(MouseEvent e) {
50 JTree tree = jtree;
51 int mouseX = e.getX();
52 int mouseY = e.getY();
53 int row = 0;
54 //row = tree.getRowForLocation(mouseX,mouseY);
55 System.out.println("Task: Figure out which row (0-based, containing all

elements in the tree, including the top-level one) the user
clicked, or -1 if they didn’t click a valid element.");

56
57 TreePath path = null;
58 //path = tree.getPathForRow(row);
59 System.out.println("Task: Find the path the user clicked, or null if

they didn’t click a valid element.");
60
61 System.out.println(row);
62 System.out.println(path);
63 }
64 });
65
66 frame.add(jtree);
67 }
68
69 public static void main(String[] args) {
70 SwingUtilities.invokeLater(new Runnable() {
71 public void run() {
72 JFrame frame = MySwingHelper.makeFrame("Swing test");
73 createAndShowGUI(frame);
74 createJTree(frame);
75 MySwingHelper.showFrame(frame);
76 }
77 });
78 }
79
80 }

Listing A.3: The RandomWriter program.
1 import java.util.ArrayList;
2 import java.util.Collection;
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3 import java.util.HashMap;
4 import java.util.List;
5 import java.util.Map;
6 import java.util.Random;
7
8 import codehint.CodeHint;
9

10 public class RandomWriter {
11
12 /*
13 * Make a model that computes, for each string of size order in text (called a

seed),
14 * all the characters that follow that seed.
15 * As an example, given "abacabc", with order 1, "a" is followed by "b", "b", and

"c";
16 * with size 2, "ab" is followed by "a" and "c", and so forth.
17 * Note that this is case-sensitive.
18 */
19 private static Map<String, List<Character>> makeMarkovModel(String text, int

order) {
20 Map<String, List<Character>> model = new HashMap<String, List<Character>>();
21 /* Loop over all the substrings of length order and update the information

about the characters that follow them. */
22 for (int i = 0; i < text.length() - order; i++) {
23 int j = i + order;
24
25 String seed = null;
26 //seed = text.substring(i,j);
27 System.out.println("Task: Find the seed string.");
28
29 char follower = 0;
30 //follower = text.charAt(j);
31 System.out.println("Task: Find the character that follows the seed.");
32
33 /* Add this following character to the list of characters we’ve seen that

follow this seed. */
34 if (!model.containsKey(seed))
35 model.put(seed, new ArrayList<Character>());
36 model.get(seed).add(follower);
37 }
38 return model;
39 }
40
41 /*
42 * Find the seed that occurs most often in the model.
43 * Ties are broken arbitrarily.
44 */
45 private static String getMostCommonSeed(Map<String, List<Character>> model) {
46 String best = null;
47
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48 Collection<String> allKeys = null;
49 //allKeys = model.keySet();
50 System.out.println("Task: Find a Collection of all the keys in the model.");
51
52 /* Given the set of keys, find one that occurs the most often. */
53 for (String seed: allKeys)
54 if (best == null || model.get(seed).size() > model.get(best).size())
55 best = seed;
56 return best;
57 }
58
59 /*
60 * Randomly generate a string similar to the original input text by starting
61 * with the most commonly-occurring seed and updating that with a character

chosen
62 * based on the probabilities of what followed that seed in the original text.
63 */
64 private static String doRandomWrite(Map<String, List<Character>> model, int

length) {
65 String seed = null;
66 //seed = getMostCommonSeed(model);
67 System.out.println("Task: Get one of the seeds that occurs the most in the

input string / model.");
68
69 String text = seed;
70 Random random = new Random();
71 /* Generate the next character of the text and update the seed to include it.

*/
72 while (text.length() < length && model.containsKey(seed)) {
73 List<Character> followers = model.get(seed);
74
75 int rand = 0;
76 //rand = random.nextInt(followers.size());
77 System.out.println("Task: Get a random index inside the list of followers.

");
78
79 char next = followers.get(rand);
80 text += next;
81 seed = seed.substring(1) + next;
82 }
83 return text;
84 }
85
86 public static void main(String[] args) {
87 Map<String, List<Character>> model = makeMarkovModel("This is a test of the

emergency broadcast system.", 2);
88 String commonSeed = getMostCommonSeed(model);
89 System.out.println(doRandomWrite(model, 100));
90 }
91
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92 }

Listing A.4: The Eclipse program.
1 package memanalyzer.handlers;
2
3 import java.util.ArrayList;
4 import java.util.List;
5
6 import memanalyzer.ReportDialog;
7 import memanalyzer.SizeUtils;
8 import memanalyzer.StackInfo;
9 import memanalyzer.TypeInfo;

10
11 import org.eclipse.core.commands.AbstractHandler;
12 import org.eclipse.core.commands.ExecutionEvent;
13 import org.eclipse.core.commands.ExecutionException;
14 import org.eclipse.debug.core.DebugException;
15 import org.eclipse.debug.core.model.IStackFrame;
16 import org.eclipse.debug.core.model.IThread;
17 import org.eclipse.debug.core.model.IVariable;
18 import org.eclipse.debug.ui.DebugUITools;
19 import org.eclipse.swt.widgets.Shell;
20 import org.eclipse.ui.handlers.HandlerUtil;
21 import org.eclipse.jdt.debug.core.IJavaStackFrame;
22
23 import codehint.CodeHint;
24
25 import com.sun.jdi.ArrayReference;
26 import com.sun.jdi.ArrayType;
27 import com.sun.jdi.ClassType;
28 import com.sun.jdi.InterfaceType;
29 import com.sun.jdi.ObjectReference;
30 import com.sun.jdi.ReferenceType;
31 import com.sun.jdi.VirtualMachine;
32
33 @SuppressWarnings("unused")
34 public class MemoryAnalyzerHandler extends AbstractHandler {
35
36 /*
37 * This method is called when the user clicks the
38 * "Analyze Memory" item. It is a standard part of
39 * Eclipse plugins; in fact, the plugin creation wizard
40 * created an empty version of it for us.
41 */
42 @Override
43 public Object execute(ExecutionEvent event) throws ExecutionException {
44 try {
45 /*
46 * TASK 1
47 * ------
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48 * Find the IThread representing the current
49 * thread and use it to create a StackInfo
50 * object that represents the size of the
51 * stack.
52 *
53 * Note that you should only do this for the
54 * current thread (i.e., the one that is
55 * stopped at the breakpoint), not for all
56 * threads.
57 */
58 IThread curThread = null;
59 StackInfo stackInfo = null;
60 /*curThread = ((IJavaStackFrame)DebugUITools.getDebugContext()).getThread

();
61 IStackFrame[] stacks = curThread.getStackFrames();
62 int totalStackSize = 0;
63 for (IStackFrame stack: stacks)
64 totalStackSize += SizeUtils.getStackFrameSize(stack);
65 stackInfo = new StackInfo(stacks.length, totalStackSize);*/
66
67
68 /*
69 * TASK 2
70 * ------
71 * Find the VirtualMachine representing the
72 * running VM and use it to get all the loaded
73 * types. For each loaded type with at least
74 * one instance, create a TypeInfo object that
75 * represents the total size of objects of
76 * exactly that type in the heap. Also compute
77 * the total size of all objects in the heap.
78 *
79 * Note that there are multiple ways to get the
80 * number of instances of a given type that can
81 * be inconsistent. Don’t worry about that;
82 * just choose one.
83 */
84 VirtualMachine vm = null;
85 List<TypeInfo> typeInfos = new ArrayList<TypeInfo>();
86 long totalHeapSize = 0;
87 /*vm = ((org.eclipse.jdt.internal.debug.core.model.JDIDebugTarget)

curThread.getDebugTarget()).getVM();
88 List<ReferenceType> types = vm.allClasses();
89 long[] instanceCounts = vm.instanceCounts(types);
90 for (int i = 0; i < types.size(); i++) {
91 ReferenceType type = types.get(i);
92 long instances = instanceCounts[i];
93 if (instances == 0)
94 continue;
95 long typeSize = SizeUtils.getTotalSizeOfType(type, instances);
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96 totalHeapSize += typeSize;
97 typeInfos.add(new TypeInfo(type.name(), instances, typeSize));
98 }*/
99

100
101 /*
102 * TASK 3
103 * ------
104 * Create and open a ReportDialog to show the
105 * information to the user.
106 */
107 ReportDialog myDialog = null;
108 /*Shell shell = null;
109 shell = HandlerUtil.getActiveShell(event);
110 ReportDialog myDialog = new ReportDialog(shell, typeInfos, totalHeapSize,

stackInfo);*/
111
112 myDialog.open();
113 } catch (DebugException e) {
114 throw new RuntimeException(e);
115 }
116 return null;
117 }
118
119 }
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