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ABSTRACT
Sensor network research has facilitated advancements in var-
ious domains, such as industrial monitoring, environmen-
tal sensing, etc., and research challenges have shifted from
creating infrastructure to utilizing it. Commercial build-
ings provide a valuable setting for investigating automated
metadata acquisition and augmentation, as they typically
comprise large sensor networks, but have limited, obscure
’tags’ that are often meaningful only to the facility man-
agers. Moreover, this primitive metadata is imprecise and
varies across vendors and deployments. Extracting mean-
ingful information from a building’s sensor data, or control
applications using the data, depends on the metadata avail-
able to interpret it, whether provided by novel networks or
legacy instrumentation.

This state-of-the-art is a fundamental barrier to scaling an-
alytics or intelligent control across the building stock, as
even the basic steps involve labor intensive manual efforts
by highly trained consultants. Writing building applications
on its sensor network remains largely intractable as it in-
volves extensive help from an expert in each building’s de-
sign and operation to identify the sensors of interest and
create the associated metadata. This process is repeated
for each application development in a particular building,
and across different buildings. This results in customized
building-specific application queries which are not portable
or scalable across buildings.

We present a synthesis technique that learns how to trans-
form a building’s primitive sensor metadata to a common
namespace by using a small number of examples from an
expert, such as the building manager. Once the transfor-
mation rules are learned for one building, it can be applied
across buildings with a similar metadata structure. This
∗ Primary Author.

common and understandable namespace can enable analyt-
ics applications that do not require apriori building-specific
knowledge.

Initial results show that learning the rules to transform 70%
of the primitive metadata of two buildings (with completely
different metadata structure), comprising 1600 and 2600
sensors, into a common namespace ([13]) took only 21 and
27 examples respectively. The learned rules were able to
transform similar primitive metadata in close to 60 other
buildings as well, enabling writing of portable applications
across these buildings.

1. INTRODUCTION
Buildings are sites of very large sensor deployments, typ-
ically containing up to several thousand sensors reporting
physical measurement, continuously. Moreover, with the re-
cent interest in reducing building energy consumption and
increasing their efficiency, it is important to consider ways
to quickly bootstrap a set of building data streams into an
analytical pipeline. These analyses consist of jobs that mea-
sure the performance of the building with respect to overall
comfort, determine where there are opportunities for energy
savings by detecting rooms that drive the energy consump-
tion down – also known and rogue rooms/zones – and finding
broken sensors.

Ideally, such analyses could be deployed across many build-
ings, quickly. However, current ‘point’ naming conventions
and unsystematic recording of metadata form a bottleneck
in the scalability of the data integration process. A ‘point’
refers to a physical location where a sensor is taking mea-
surements. In addition, expanded descriptive information
about the point is sometimes unavailable – so determining
their meaning is painfully slow or impossible. Because these
are conventions carried out by humans, they are inconsis-
tent within and across building data sets. This makes the
integration process laborious for building experts and a non-
starter for non experts.

If we want to quickly run the job across many sites we need
to explore methods automatically normalizing the data and
boosting the existing set of metadata per point. This will
allow wide searchability of points across many buildings at
once. In order to meaningfully deal with disparate building
streams in a scalable fashion the streams should be search-



able across various properties, such as building name, room
location, and type. Moreover, we assert that wide searcha-
bility is necessary for achieving scalability. By providing a
tool for searching across building streams, we minimize the
deployment time for applications that allowing them to be
used in all buildings, not just a single one.

Consider a simple analysis program, which has the ability
to identify anomalous readings from a specific kind of sen-
sor. To execute this job, the process organizes each sensor
by type and location, organizes a the distribution of read-
ings across them, and identifies broken sensors where some
fraction of their readings are above some threshold value
on the distribution. The identification step in the process
in the perhaps the most challenging because of the prob-
lems described. Ideally, the program would search for points
the way you search for web pages in a search engine – us-
ing semantically meaningful terminology. Some codes and
metadata across buildings might be unique but we aim to
discover the overlap to order for the search results to yield
a higher harvest (increased coverage of the points that meet
the search criteria). We can treat both the name and the
description as a set of terms that are associated with a mea-
surement point.

Sensor ’point’ names (from building-system nomenclature)
contains set of codes that are semantically meaningful to the
building manager of a specific building. For example, the
point BLDA1R435__ART is constructed as a concatenation of
such codes. The name of the building (first 4 characters),
the air handling unit identifier (the fifth character), the room
number (R435), and the type ART (area room temperature)
– which indicates that this are measurement is produced by
a temperature sensor. In addition, to point names there
may be some descriptive metadata. The description for this
point (if it exists) would describe that this is a “tempera-
ture sensors in room 435”. However, point names do not
always follow the exact same structure within and across
buildings and certainly do not follow the same convention
across vendors. In this paper we aim to boost the existing
metadata by learning the rules of construction through a
programming-by-example approach where the user provides
some input-output examples to boost the existing metadata
with extra terms. We can then search across the boosted
metadata to increase our search harvest over time.

We propose a set of techniques which learns how to trans-
form a building’s metadata to a common namespace by us-
ing a small number of examples from an expert. Once the
transformation rules are learnt for one building, it can be ap-
plied across buildings with a similar metadata structure. We
show how our approach makes it easier to write applications
across buildings by demonstrating its use by three different
applications: 1) a rogue zone detector and 2) an application
that identifies and ranks the most comfortable rooms. We
illustrate these on a testbed consisting of nearly 60 buildings
comprising more than 16,000 sense points. We also illustrate
how this common namespace can help a user write analytics
applications that do not require building-specific knowledge
and scales across different buildings.

We believe this is an important study given the recent trends
in the penetration of the internet of things into our homes

and environments. Our technique can be used to unify that
data across many deployment and enable broad search and
exploration of new applications. For example, sensing device
names for the internet of things are likely to follow similar
conventions with very little context. We argue that unifica-
tion through boosting will be necessary in this broader do-
main. Buildings are but one example that serve as a testbed
for the proposed techniques.

2. MOTIVATION
Buildings are notoriously complex from a management per-
spective. They consume a large fraction of the energy pro-
duced in the United States and much of is wasted [15]. There
has been much work in the building science community to
reduce their energy consumption and make them more ef-
ficient, but the route to broader impact is typically carried
out through regulations guided by the findings of studies in
those communities.We aim to let solutions reach buildings
directly by making sense of the data they produce as quickly
and accurately as possible. In order to achieve this at scale,
we must explore ways to deal with the data produced from
sensors within them and to enable broad analysis across sev-
eral buildings at a time. Our study focuses on any building
equipped with a network of sensors. Nearly three-quarters
of commercial buildings contain a rich sensing fabric, in-
stalled as part of the building management system [21]. It
is the data from these system and variants of it, that we
wish to unify and make sense of in a more systematic and
automated fashion.

The data problems parallel the complexity of buildings. Ad-
hoc data management practices make it difficult for any an-
alytical solution to be widely ported or run across build-
ing systems. When dealing with a small number of points
such differences are usually not a problem. Upon visual
inspection, encodings are similar enough that the engineer
can decode the meaning. However, for automatic process-
ing or processing a large number of points across buildings,
these kinds of variations makes it difficult to generalize the
character-construction rule set. Fundamentally, full cover-
age is attainable if we could learn all the codes and map them
to more descriptive search terms.

At a high level we want to normalize the metadata across all
buildings so that one query can run across all of buildings,
and we want the normalization process to be automatic, so
that the overhead in adding a new building to the set is small
– the latter of which is important for achieving scale. Fun-
damentally, a tradeoff exists between the degree to which
we can automate the normalization task and the level of
coverage you get in the general rule construction. You can
get full coverage with no automation. This is essentially
the approach that is common today. Every solution that
incorporates a building’s data is manually adjusted, specifi-
cally for that particular building. You can get some degree
of coverage if you use a general set of rules, increasing the
automation factor and decrease the manual one. Tuning
is quite arduous and in most cases, non-programmers are
tuning the data ingestion script.

The problem for a large number of buildings is particularly
pernicious to the goal. Although there are some similarities
for certain kinds of sensor labels and metadata, searching



across them yields results of varying success. Consider the
simplest kind of a search, a grep scan across the metadata as-
sociated with the points across a set of buildings. If we wish
to attain all the temperature sensors or set points for a par-
ticular building, without knowing these codes, we should be
able to attain it by search for all points in a particular build-
ing that measure ”temperature“ or that have “setpoint” in
their description.

We demonstrate this by collecting all the metadata across
our building testbed. The testbed consists of almost 60
buildings and over 20,000 sense points. We collected the
names for each of the set points and any associated meta-
data that describes the meaning of the name. Then, we run
a number of grep searches on the data and calculate the rel-
ative success of the query. Figure 1 shows the results for two
queries. The ‘temperature‘ grep string is “buildingA room
temp” and the ‘setpoint‘ grep string is “buildingA room set-
point”. For the temperature query we attain 87.5% of the
actual sense points we are searching for, while for the set-
point query we attain only 56% of the setpoints in the build-
ing. We could try different search queries that yield differ-
ent results, however, because there’s only some overlapping
metadata terms across buildings, coverage tends to be quite
poor.
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Figure 1: Results when running a grep search on the point
names in a single building.

A key observation we have made while attempting to write
ingestion scripts in that we create a program P1 to that
parses the data and generates a set of point names n1 with
coverage c1 of the points we need to obtain. We notice
there are points missing, so we write another program P2
that generates another set of points n2 which includes some
of all of the points in n1 and gives us coverage c2. We keep
noticing there are points missing and keep either expanding
or adjusting the program to get closer and closer to full
coverage. In practice, the coverage is not easily attainable
without an expert, familiar with the data set, inspecting the
results. So the challenge is to attain the good coverage in
one (or a few) buildings using input-out examples, using a
technique similar to the work by Gulwani et al [9], and use
this the resulting program and a few more example in each
building to have the process learn the variants of all the
codes and boost them with extra tags that are learned from
other buildings.

This process allows us to leverage the knowledge of the ex-
pert while minimizing the integration overhead per building.
Moreover, as more examples the provided, the better that
algorithm can learn how to cover a broader set of codes
and boost them with common tags. Also, the technique
used in previous work is well suited for our problem, since
users tend to be non-programmers. The input-output ex-
ample interactive model is well suited for interacting with
non-programmers and getting the kind of information we
need from them to automate the program creation process
to learn the various point code.

3. BUILDING TESTBED
In our experiments we used an extensive building testbed
that consists of 56 buildings containing over 16,000 sense
points. These buildings represent a vast range in age, size,
and density of deployment. It also represents deployments
that were set up by more than one vendor. As expected,
newer buildings have many more sense points than older
ones – although some old buildings that have been retrofitted
have over 1000 points within them. The general trend in the
number of sense points versus the year the building is built
is roughly linearly increasing in the log of the number of
points, as shown in Figure 2a.
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Figure 2: Relationship between the built year and the build-
ing size on the number of sense points. This data is sum-
marize from a testbed that we used for experiments that
consists of almost 60 buildings and over 16,000 sense points.

The maximum number of points in a single building is 1614
and the minimum is 27. The built years spans over 100 years
– from 1905 to 2005. The size range spans over an order
of magnitude in square footage from about 30,000 square



feet to over 360,000 square feet. There is no observable
correlation between the size of the building and the number
of sense points. Figure 2b shows a log-log plot of the number
of points versus the size of the building. There is one large
building with many sense points, but the size seems to have
little to do with the density of the deployment. The access
this this kind of breadth of system and building types makes
our study unique.

4. AUTOMATING METADATA ACQUISITION
In this section, we go into detail about how we apply pro-
gram synthesis techniques and the input-output model of
interaction to learn the various semantic labels contained
inside a sensor’s name1, in effect boosting the metadata as-
sociated with a sensor. We first introduce some basic termi-
nology followed by an overview of the synthesis technique.
We then describe how we adapt the technique to the con-
text of sensor name qualification and evaluate our adapted
technique on our testbed in Section 5.

4.1 Terminology
The expert is expected to point out (Tag Name, Tag Value,
Value Type) tuples in the sensor name. A tag is mapped on
to a substring of the sensor name, which is called its value. A
tag can have a constant or a variable value. A value should
be regarded a constant if it is not specific to that particular
sensor, and variable otherwise.

Sample Input: Suppose the expert is presented with an ex-
ample BLDA1R465__ART. Suppose this sensor name indicates
that it is in Building BLD, is part of the first air handling unit
(ahu), indicated by the character A1, in room 465 (R465) and
it is the area temperature sensor (ART). He should qualify it
in order as

BLDA1R465__ART : (site, BLD, const), (ahu, A, const), (ahuRef,1,
var), (zone,R, const), (zoneRef, 465, var), (zone air temp
sensor, ART, const).

In this example the site tag’s value is BLD, which is not
specific to that particular sensor. Hence, the expert should
mark it as a constant. On the other hand, the value of the
ZoneRef tag is specific to that sensor, and hence should be
marked as variable.

Sample Output: The synthesis technique should then be able
to identify the tags in a new sensor name automatically. For
example, given the sensor name BLDA5R234___ART, it should
output the set of tuples shown below:

BLDA5R234___ART : (site, BLD), (ahu,A), (ahuRef,5), (zone,R),
(zoneRef,465), (zone air temp sensor,ART).

We term each of these tuples as a qualification, because it
qualifies a set of alphanumeric characters into normalized
metadata tags. We term the output as a full qualification, if
every alphanumeric character in the sensor name was qual-
ified by the set of outputted tags, and no extra erroneous
tags were applied. This is an input-output example we will
refer multiple times to throughout this section.
1We use the words sensor name and point name interchange-
ably

Tag Names : The goal of the expert should be to use tag
names from a normalized building equipment taxonomy schema
that has been widely adopted. Currently, there is no con-
sensus schema in the sensor network, or building manage-
ment system vendor community about a particular schema.
Some schemas such as Green Building XML [7], and Indus-
try Foundation Classes [2] require a very high level of detail
for every metadata tag, making it unsuitabe for use in our
context where that detail might not be available. Instead,
we assume that the expert qualifies the sensor names with
metadata tags that have been developed as a part of the
Project Haystack effort [13], which is an open source effort to
develop taxonomies and ontologies for building equipment.
This schema is, however, very limited, and not applicable
to a wide variety of building-specific sensor points (such as
specific alarms, etc). In these cases, we expect the expert
to use an easily understandable long-form tag, which is con-
sistent across the entire building. This can be achieved by
presenting the expert a set of tags that has already been
used in a that building to qualify a particular substring.

4.2 Synthesis technique overview
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Figure 3: Language for learning substring extraction

We will first describe the high-level logic of the synthesis
technique2. We will then describe the basic constructs of our
synthesis language before explaining some of the intricacies
which make it robust.

The Algorithm:

The main aim of the technique is to learn two sets of infor-
mation from the given input-output examples — (a) which
string transformation is applicable on a particular input to
produce the output, and (b) what is the set of regular expres-
sions that transform the input string to the output string.

From each user-provided input-output example, the set of
all expressions from the language (shown in Figure 3), that
could extract the required output string from that input
is computed. If there are multiple input-output examples,
the substring extraction rules of the multiple examples are
intersected to obtain a more concise set of expressions. If
the substring extraction rules cannot be intersected, they
are maintained as two disjoint sets, which we shall hereby
term as a partitions.

Finally, for each disjoint set of extraction rules/regular ex-
pressions, a boolean classifier is built in the Disjunctive Nor-
2similar to [9]



mal Form (DNF), to differentiate the examples in one parti-
tion to examples in all other partitions. When a new string
is given to this tool, the classifier is applied on it to figure
out which partition the new input falls into, and the corre-
sponding set of transformation expressions are then applied
on it.

The intuition is that we can independently consider each
(tag) to be a potential output for an inputed string sensor
name. If the tag can be applied to qualify a substring of
the sensor name, then the output would be the required
substring extraction program. In all other cases, the output
would be ε or the null string.

The Language:

The top level expression of the language is the classifier —
the If bi Then ei structure, which applies the substring ex-
pression ei to the input only if it matches the boolean ex-
pression bi. The boolean function is in DNF form and is
composed of predicates of the form Occurs(vi, r, k) , which
evaluates to true, iff the input vi has k occurrences of the
regular expression r, or OccursAtPos(vi, r, c) which evalu-
ates to true iff the input vi has a regular expression r which
occurs at index c.

The Substring expression SubString(vi, p1, p2), evaluates
to the substring between positions p1 and p2 of the string
vi. Constant(k) denotes the integer position k in the sub-
string. A position expression PrecedeSucceed(r1, r2, c)
when applied on a string s evaluates to an integer position t
in the subject string s such that r1 matches some suffix s[0..t]
and r2 matches some prefix of s[t...l] (where l = Length(s)).
Also, t is the cth such match starting from the left end of
the string. If such an position t does not exist in the string,
this operator fails. The regular expressions are either just
a single token τ , or a token sequence, Tokens(τ1..τn), or ε
(which matches the empty string). The tokens τ comprise
of a single token to denote alphabetic characters ( referred
to as AlphTok) , one for numeric characters (referred to as
NumTok), one for each special character, and one for each
constant tag value entered by the user. The output is ob-
tained by applying the resultant SubString(vi, p1, p2) op-
eration.

We provide a couple of examples to elucidate how this tech-
nique works.

Example 1:

Consider, again, the sensor name BLDA1R465__ART. If the
desired output is the substring ART can be obtained, among
other expressions, by either of the following language trans-
formations : SubString(s, Constant(11), Consant(14)), or
SubString(s, PrecedeSucceed(UnderscoreToken, AlphTok,1),
PrecedeSuccede(AlphTok,ε, 1)).

Example 2:

Suppose the synthesis algorithm has seen two examples (a)
BLDA1R465__ART, whose desired output is A at index 3, and
(b) BLD__R479_ART, whose desired output is 479. One of the
possible expressions that the synthesis algorithm can come

up with is : If b1 Then e1 Else if b2 Then e2, where b1 =
Occurs(s, AlphTok UnderscoreTok,1), e1 = Substring(s, Con-
stant(3), Pos(AlphTok, NumTok,1)), and b2 = Occurs(s,
UnderscoreTok AlphTok, 2) and e2 = SubString (s, Con-
stant(6), Constant(9)).

In general, there can be many expressions in the defined
language that can obtain the desired substring, and provide
a classifier to specify which types of inputs each type of
substring extraction should work on.

Thus, for each expert-given input-output example3 and for
each tag in the output of that example, we can compute the
set of all expressions from the language that could extract
the required tag’s substring from that sensor name. We then
learn a boolean classifier b1such that all tags that are present
in the example evaluate their If b1 Then e1 condition on
this example to True, and all the tags that are not, evaluate
theirs to be False. If False is returned, then the substring
extracted is ε, signifying that the tag is not applicable on
the sensor name.

If the same tag is present in multiple examples, the tag’s
new substring extraction expression set is the intersection
of its substring extraction expression sets for each of those
examples. This may result in disjoint partitions of rules
for a particular tag. Finally, a boolean classifier is built
to differentiate examples of each partition of a tag from all
other provided examples.

4.3 Language Intricacies
Challenges

Synthesis techniques in our context face certain challenges.
First, the number of tags required to fully qualify an en-
tire building might be large, whereas certain tags may be
applicable on a very limited number of sensor names. In
such a case, the classifiers and the corresponding regular ex-
pressions r should be expressive enough to differentiate a
small group of sensor names from the remaining. One way
to increase the expressive power of the regular expressions
r is to have certain building-specific tokens in addition to
the normal alphabetic, numeric and special character to-
kens. Different conventions of sensor naming from building
to building precludes us from having an a priori set of special
tokens.

Second, a building may have 1000s of sensor points, making
visual inspection of correctness of sensor name qualification
very hard. Hence, wrong application of a tag to a particular
sensor name is likely to go unnoticed. We mitigate this by
being more conservative with the boolean classifiers b.

Below, we list four techniques that augment the basic lan-
guage shown in Figure 3 to enable correct classification of

4.3.1 Token Set
There are various intricacies in our language to make it ro-
bust in the face of unstructured and noisy data. We con-
3which in our case is the list of tuples defined in the termi-
nology



ducted an experiment where we provided examples for sen-
sor names from a building containing 1585 sense points, ap-
plying the spreadsheet transformation technique in [9]. The
synthesis algorithm applies the tags that it has seen from its
existing set of input-output examples on the remaining sen-
sor names. After every run of the algorithm, on the present
set of input-output examples, a new example was chosen at
random from the corpus of all sensor names, and a full quali-
fication of it was provided as the next input-output example.
Figure 4 shows the result of our experiment.

We would expect the number of sensor names to have been
fully qualified to increase with each added input-output ex-
ample. We find this trend up to around 25 examples, after
which the synthesis technique started applying erroneous
tags to sensor names. At closer inspection, it turns out that
the tokens token set used by the regular expressions and the
Match predicates were not expressive enough to capture
the difference of applicability of different tags.

To illustrate the problem, consider the examples

Example 1 : BLDA4S1831_STA : [ (site, BLD, const), (ahu, A,
const), (ahuRef,4, var), (supply fan,S, const), (supply fan-
Ref,1831, var), (status point,STA,const) ] ; and

Example 2: BLDA3R5871_VAV : [ (site, BLD, const), (ahu, A,
const), (ahuRef, 3, var), (zone, R, const), (zoneRef, 5871,
var), (vav, VAV, const) ]
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Figure 4: Number of sensor names correctly fully quali-
fied with a token set consisting of AlphTok, NumTok, Spe-
cialCharToken

Both these sensor names have the exact same arrangement
of numeric and alphabetic characters, and special symbols,
and no regular expression comprising only alphanumeric and
special characters would be able to discern between the two.
This resulted in erroneous extra tags being applied to sensor
names. Hence, we modify the existing language and set of
tokens to stay general enough, yet be more expressive. Also
note that the set of tokens which make sense in the context
of sensor names vary across buildings, and across vendors.

To solve this, we utilize the constant tag values in the ex-
amples provided by the expert as special tokens for the
regular expressions to be generated from that example, in

addition to the normal tokens described above. Thus, the
sensor name BLDA1R465__ART4 is treated as a set of tokens
[ (BLD)(A)[NumTok](R)[NumTok]+ UnderscoreTok Under-
scoreTok (ART) ].

Similarly, suppose the input-output example provided by an
expert for a sensor name BLD2.PWR.CL42A.REACTIVE POWER
is [ (site,BLD2,const), (power meter, PWR,const), (power me-
terRef,CL42A,var), (reactive power, REACTIVE POWER, const)
] This string is treated as a combination of tokens [ (BLD2)
dotTok (PWR) dotTok [AlphTok]+[NumTok]+[AlphTok] dot-
Tok (REACTIVE POWER) ].

Note that this provides enough expressibility for the regular
expressions to differentiate between the two inputs
BLDA4S1831_STA, and BLDA3R5871_VAV from the user, which
was impossible using only the normal tokens.

4.3.2 Splitting constant tags
In order to improve the efficiency of the classifier, we con-
sider a tag having multiple constant values, as different tags.
For instance, in our test building, an exhaust fan tag was
applicable either as the constant characters E or the con-
stant character EF. Note that the index of the various other
tag’s values in a sensor name change depending on which
of the constant value appears, rendering previously learnt
Constant(k) operators useless.

We treat the same tags which maybe represented by two
different constant string to be two different tags altogether.
This enables a richer intersection set when tag outputs from
the expert-given examples are combined.

4.3.3 Boolean Classifiers
Since manual inspection of the qualification of all the points
is not feasible, we take steps to strengthen the boolean clas-
sifiers corresponding to each tag. We implement different
strategies for tags that have constant and variable values.

If a tag has a constant value, we ensure that each boolean
clause d in the DNF expression used by the If Then Else
operator has a Occurs(s, constTagValue, k) as the first con-
junct p1 , where k is the number of times the constant value
appears in the examples. This ensures that if a tag is eval-
uated to be applicable on a string, the constant substring
does exist in the string.

Next, in cases where a tag which has a variable value, and is
a reference to another tag with a constant value which is ap-
plicable on the same string, we mandate that the constant
tag also have been deemed applicable on the same sensor
name. For instance, in the example BLDA1465_ART, the tag
zoneRef whose value is to 465 has a reference to the zone
tag, which has a constant value. Thus, we would only eval-
uate the Substring expressions for zoneRef iff the zone tag
has been deemed applicable on the same point.

4whose output example provided by the expert was (site,
BLD, const), (ahu, A, const), (ahuRef,1, var), (zone,R, const),
(zoneRef, 465, var), (zone air temp sensor, ART, const).



4.3.4 Considering position of extracted tags
To make the classifiers more general, so that regular expres-
sions learnt for one building may be applicable to sensor
names of other buildings with a similar naming convention,
where similar tags occur at the same indices, we include the
contruct OccursAtPos(vi, r, k) which evaluates to true iff
the regular expression is satisfied at position equal to k.

Suppose, from the technique encounters only one example
BLDA1R465__ART , and for the zone temp sensor tag learns a
classifier b1 = OccursAtPos(s,(ART),1) for application of
the zone temp sensor tag. Now, if another building was
abbreviated as ART, and the synthesis technique encoun-
tered a sensor name of the form ARTA2R354__ART, the clas-
sifier would fail to apply the zone temp sensor tag because
there are two matches to the regular expression (ART) in
the string, and OccursAtPos(s,(ART),1) would evaluate
to false. Whenever possible, we apply OccursAtPos be-
fore Occurs expressions while generating classifiers.

5. EVALUATION OF LEARNING BY EXAM-
PLE

In this section, we gauge the effectiveness of our learning by
example technique by evaluating the number of examples
required to qualify labels in two large commercial buildings.

5.1 Testbed
We manually generated ground truth data for all the points
in two buildings whose building management system was
installed by different vendors. Building 1 has 1586 sensor
points and was built in the 1990s. Building 2 was built in the
2000s and has 2551 sense points. The label characteristics
of the two buildings are shown in Figure 5.

Figure 5a shows that in these two buildings, a few tags
(about 20 in each building) frequently appear in a lot of
sensor names. This is pretty common in commercial build-
ings, where a majority of the points are related to zone or
room information. For instance, Building 1, has a room set-
point sensor, an airflow sensor and temperature sensor for
each of its more than 200 rooms. For each of these points,
the zone and zoneRef tags are applicable because there ex-
ist characters which specify that it is a zone and it zone
number. These most frequent tags also fully qualify a large
number of the sensor names in both buildings. As shown in
Figure 5b, learning proper classifiers and qualifications for
about 20 labels could yield a full qualification for 70-80% of
the sensor names in both these buildings.

The distribution frequency of applicable tags also has a long
tail. These comprise of tags for building specific sensors,
alarms or status variables. Thus, one of the main objectives
of the learning algorithm is that it does not learn wrong
classifiers for tags based on sensor names that fall in this
long tail.

5.2 Choosing the Next Example
The large number of sensors in a building pose a challenge
in selecting the next example to present to the expert. First,
the expert might not always be able to browse through all
sensor points to check correct qualification. Also, an expert

]

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

0	
   20	
   40	
   60	
   80	
   100	
  

O
cc

ur
en

ce
 F

re
qu

en
cy

 (%
) 

Tags (Ranked by Frequency) 

Building 1 Building 2 

Most	
  frequent	
   Least	
  frequent	
  

(a) Percentage of sensor names each tag appears in.
The x-axis is sorted according to the frequency of oc-
currence of a label
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(b) Percentage of sensor names fully qualified by the
highest ranking tags. A point (x,y) indicates that y
sensor names could be fully qualified by using labels
ranked 1 ... x

Figure 5: Characteristics of tag application from two build-
ings we generated complete ground-truth data for, to test
our learning technique

might visually not be able to discern which points would add
the most amount of information to the learning process.

We implemented four different generators to evaluate which
example should be provided next to the expert:

Random: This generator just finds at random the next ex-
ample to present to the expert. While choosing the example,
the random algorithm chooses among the set of sensor names
which it feels it has not been able to fully qualify.

MinRemaining : This generator chooses the example, that
according to our tool, has the minimum string length left to
qualify. The intuition behind this is to gain more concrete
knowledge about a small number of labels.

MaxRemaining : This chooses the example, that the learn-
ing technique feels has the maximum string length left to
qualify. These examples would help the learning technique
gain coverage over the space of unseen labels. The more
labels the learning technique knows, the more sensor name
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(b) Building 2

Figure 6: The number of examples required to fully qualify
90% of sensor names in two buildings. The Random gener-
ator achieves 70% full sensor name qualification within 25
examples for Building 1 and 27 examples for Building 2.

information it will be able to qualify.

Self Correcting : There are some sensor names where the
learning algorithm can itself figure out that it has incor-
rectly qualified a sensor name. There can be three such
indicators. First, for a sensor name which has matched its
boolean classifier, but none of its set of SubString regular
expressions is applicable. Second, if the sensor name has
been qualified with labels that overlap over the same sub-
string region. Third, the learning algorithm can get a notion
of the qualification uncertainty of a sensor name, if its (tag,
value) tuples change drastically when a new example has
been added. This generator gives the expert the examples
that satisfy the most number of these three criteria. Once,
none of the points satisfy these criteria, this generator de-
faults to the MinRemaining generator.

Experiment :

We wrote a script that automatically gave the synthesis tool
the example that it asked for, and compared the qualifica-
tions for all sensor names outputted by it after the process-
ing the example, to the ground truth. We ran one experi-
ment for each of the generators. We terminated when the
number of correct full sensor qualifications reached 90%. A

full qualification of a sensor name into (tag, value) tuples is
correct if (a) the correct tags were applied on it and obtained
the correct values corresponding to each tag, (b) No extra
incorrect tag was applied to the sensor name, and (c) the
tags were able to fully qualify every alphanumeric character
of the sensor name.

Results :

Figures 6 show the results of the four generators on the two
buildings. The Random generator took the least number of
examples to achieve full qualification of 70% of the sensor
names, achieving it much quicker than the others. The rea-
son for this is due to the long tail of the label distribution
of tag names ( Figure 5a). The top 20 most occurring tags,
by themselves, can fully qualify about the majority of the
sensor names. A random generator has a high probability
of finding one of these points, thus acquainting itself more
quickly of the most frequently occurring labels. Neither of
the other three classifiers is able to achieve that. They get
stuck trying to learn regular expressions from sensors with
obscure tags (MinRemaining), or trying to cover more labels
by first qualifying sensors which have been least qualified,
which comprise mainly of sensor names which are inconsis-
tently named (MaxRemaining), or by choosing form the set
of ill-formed sensor names, which would indicate errors to
the learning algorithm (Self-Correcting).

The number of example reach 90% qualification, is how-
ever, similar across all the generators. Going from 70% to
90% takes about 85 extra examples for the Random gener-
ator. The process is much smoother for Building 2 which
has better defined point names, and fewer inconsistent or
incomplete point names.

Conlusion :

The results show that a Random approach while seeking the
next sensor name to get an example of, leads the synthesis
technique to quickly accurately fully qualify a large frac-
tion of the sensor names (70-80%). This result may also be
generalizable to other commercial buildings for which zone-
related sensors comprise a major fraction. However, going
from 70% full qualification to 90% full qualification takes
a long time, as these point comprise of tags that are infre-
quent.

5.3 Applying Learnt Expressions to unknown
buildings

One of the major goals of learning from examples provided
by an expert is that the learnt regular expressions may be
applicable to other buildings which have similar naming con-
ventions. In this section, we evaluate the efficacy of the reg-
ular expressions learnt on Building 1 of our testbed with
the remaining 55 buildings on campus, each of whose build-
ing management system sensors was commissioned by the
same vendor. As mentioned before, the remaining buildings
comprise about 16,000 sensor points.

Testbed for experiment:

Figure 7 shows the applicability of tags learnt from Building
1 to the remaining buildings. Tags which were most frequent
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(a) Applying Regular expressions obtained after 50%
full qualification of Building 1 by Random
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full qualification of Building 1 by Random
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Figure 8: Figure showing that while the Random generator can quickly obtain full qualification of 70% of a particular building’s
point names, it is less effective at learning the regular expressions for lower frequency tags, which may also be applicable
across a lot of Buildings (Figure 7b). However, if a lot more examples are given, such that the Random generator can fully
qualify 90% of Building 1’s point names (about 110), it get obtain good regular expression for the infrequent tags as well, and
be able to correctly apply them in an unknown building.

in Building 1 such as zone, zoneRef and ahuRef, were also
widely applicable throughout other buildings. This is ex-
pected because all these buildings are commercial offices,
with a large number of zone, and a set of points associated
with each zone. There are also a few tags which are in-
frequent in a particular building, but applicable across all
buildings, e.g the return water temp tag or the outside air
temp tag. Thus, fully qualifying even one building has the
potential to yield regular expressions that can then be prop-
agated across buildings.

Experiment: It was impractical to ground truth all the
buildings and its 16,000 sensor points for our experiment.
Hence, we hand wrote regular expressions to the best of our
efforts to qualify sensor names in those buildings. It is this
manual qualification data that we treat as ground truth in
the our experiment. We run three experiments, where we
use the regular expressions obtained after 50 and 90% full
qualification results obtained by the Random process in the
previous experiment(see Figure 6a).While running these ex-
pressions on a different building, we just replaced the token
corresponding to the tag site to the building-specific site

token.

Results:

Figure 8 shows the true-positive rate of the tags applied
to the 15000 sensor names across 55 buildings, based for
each tag based on our ground truth data. The true positive
rate indicates that the required tag was correctly applied
where it was applicable, and it was able to qualify the correct
substring from the corresponding sensor name.

There is direct effort-applicability correlation. The more
fully qualified a particular building is, the more tag applica-
bility expressions are learnt. When enough examples were
provided such that Building 1 had correctly fully qualified
only 50% of the sensor names, the synthesis technique had
either not encountered a lot of the lesser frequent tags, or did
not have enough examples to build a robust classifier, leav-
ing the regular expression set unable to discover the same
tags in the remaining point names(Figure 8a). Also, this
trend was true across buildings, where the inferior set of
regular expressions was not able to properly apply the lower
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(a) Occurrence frequency of tags learnt from Building
1 to the other 55 buildings in our testbed. The most
common tags in Building 1 ( e.g zoneRef ) are also ap-
plicable to around 35% of all the sensor in the testbed.
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(b) Occurrence frequency of a tag across buildings.
Even though some tags are less frequent (e.g Chilled
water temp tag), they do occur across 60-80% of the
buildings.

Figure 7: Applicability of existing tags learnt from Building
1 to the remaining 55 buildings in out testbed. Missing
values corresponding to an x-axis value indicates that the
particular tag did not appear in any of the other buildings

frequency tags on any building (Figure 8c).

However, when enough examples for 90% full qualification
was provided ( 110 examples for Building 1), the synthesis
algorithm was able to correctly identify and qualify a lot
of the tags which had a low frequency in Building 1. This
is due to the exhaustive list of regular expressions it had to
generate to fully qualify the obscure point names in Building
1 in order to get a 90% accurate full qualification.

Some of the tags could not be applicable to other build-
ings, because they use different constant values for the same
tag name. For instance, the exhaust fan tag is specified in
certain buildings as EF, whereas in Building 1 it was spec-
ified as E. Also, certain tags which extract variable values
(the zoneRef tag) face some challenges when scaling across
buildings.

Conclusion:

We conclude that using the Random generator to ask for the
next example, the number of examples required to qualify
a large fraction (e.g 70%) of a commercial building’s point
names might be few ( 24 example for Building 1 ). During
the process, though, the generator does not learn the ex-
pressions needed to qualify the lower frequency tags, a lot
of which are common across buildings.

Trying to accurate fully qualify 90% of a building’s point
names forces the synthesis algorithm to encounter a en-
counter the less frequent tag names ,and hence it is able
to apply these lower frequency tags when they apply across
buildings. However, Building 1 in our testbed required about
85 more examples to reach from a full qualification of 70%
of the sensor to a full qualification of 90% of the sensors.

6. CASE STUDY
In this section, we demonstrate that with the metadata au-
tomatically expanded and normalizedusing the techniques
in Section 4, we are able to implement applications that are
generalizable from one building to another building with-
out modification. As a proof of concept, we implement two
applications on the two building as test bed: a) identify
uncomfortable rooms and b) detect rogue rooms. We also
evaluate the metadata expansion technique in terms of the
accuracy for both applications compared against the ground
truth.

6.1 Experimental Setup
We implement two applications and perform the analysis
on the same two buildings used in Section 5.1, and each
building is installed with a different management system.
Building 1 uses the system from Barrington while building
2 is installed with the Siemens BACnet system [1]. We used
the temperature data as well as setpoint information of the
rooms in each building. The temperature measurements are
reported every 15 seconds and the data used for analysis is
from one week in June 2009 and January 2012 respectively.
Particularly, we pick the data during the working hours from
9am to 5pm for analysis.

6.2 Uncomfortable Rooms
It’s not unusual to have rooms in a building stay extremely
cold or hot thus making the occupants feel uncomfortable
and incurring energy waste. The discomfort is usually caused
by improper setpoint configuration or dysfunction of the
HVAC systems, and being able to identify these uncomfort-
able zones or rooms in the building is vital to improve oc-
cupant comfort as well as achieve potential energy savings.
With the metadata normalized using our techniques, we are
able to search for the desired streams, e.g., the temperature
and setpoint of a room, and analyze the thermal perfor-
mance of different buildings despite of the different naming
schema used to label sensors and meters.

To identify the discomfort in a building, for each room we
are particularly interested in 1) how much does the temper-
ature deviate from the comfort range? 2) how much does
the temperature deviate from the setpoint? To answer both
questions, we first search through the points in each build-
ing for distinct temperature stream of each room and the
corresponding setpoint. Then we compare the temperature
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Figure 9: For each building, the distribution describes the temperature deviation between: a) room temperature and the
corresponding setpoint (solid), b) room temperature and the comfort range suggested by ASHRAE (dashed). The estimated
distribution (labeled as “E”) based on the expanded metadata and the ground truth distribution (labeled as “G”) are both
plotted. Note, the estimated ones overlap with the ground truth ones in the left graph.
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(b) Rogue Rooms

Figure 10: Breakdown of the uncomfortable and rogue rooms in building 1 by air handler unit zone. Uncomfortable rooms
are those whose temperature at least once exceeds the comfort range suggested by ASHRAE. Rogue rooms are those whose
temperature deviates from the setpoint more than 3 Celsius degree. For each zone, we show the number of rooms in it, the
number of zones at least once meets the criterion, and the number of rooms that meet the criterion in more than 50%/80%
of the one-week period.

with the setpoint as well as the suggested comfort range
by ASHRAE (73F-81F for summer and 67F-76F for winter)
to compute the temperature deviations from the aforemen-
tioned three different perspectives in one-week period. We
accumulate the results from all the rooms per building and
generate the distribution as illustrated in Figure 9.

Figure 9 presents the temperature deviation distribution for
both buildings where the results are generated from the ex-
panded metadata following the above steps. We also present
the ground truth of temperature deviation distribution, where
we manually find the temperature and setpoint streams for
all rooms. Each graph shows how much the temperature of
a building deviates from the setpoint (solid) and the com-
fort range (dashed). On average, both buildings are un-
comfortable to some degree and to better understand which
dominant rooms are uncomfortable, and the estimated dis-
tributions using expanded metadata are close to the ground
truth ones. To gain further insight, we rank the rooms in
each building by how much time they deviate from the com-
fort zone and the ranking results are shown in Table 1.

Moreover, for building 1 we group the identified uncomfort-
able rooms down to their corresponding air handler units
(AHU), as shown in Figure 10a. For each AHU zone, we
present the number of rooms in it, the number of rooms
whose temperature have been at least once outside the com-
fort range thus being uncomfortable, and , the number of
rooms that have been uncomfortable in more than 50% of
the one-week time. We see that for each AHU zone a large
portion of the rooms are uncomfortable in even more than
50% of the time, indicating the building was very likely to
operate under a improper schedule. The ground truth anal-
ysis covers all the rooms in each building, so all potential
uncomfortable rooms are identified here. However, the anal-
ysis using the name points expanded with our techniques
would miss some of the uncomfortable rooms because the
expansion contains certain error rates. We will discuss the
error rates later.

6.3 Rogue Rooms
Heating and cooling contribute to the largest portion of en-
ergy consumption of a building, and often, HVAC system



Bldg1 Bldg2
room# % room# %
326 1 330B 1
340 1 213 1
352 1 148 0.72
364 1 629 0.54
376A 1 768 0.49
380 1 458 0.45
384 1 621 0.44
405A 1 750 0.42
405B 1 571 0.35
410A 1 548 0.29

Table 1: Ground truth for how much time each room’s
temperature is outside the comfort range: rooms in each
buidling are ranked by how much time they are uncomfort-
able throughout the one week period, and the first ten rooms
on the ranking of each building are listed.

operates abnormally either because the system fails itself
or the schedule of the building is problematic. And there
are often some zones and rooms in a building that are con-
stantly cold or hot than the neighbors thus incurring energy
waste. We demonstrated the temperature deviation distri-
bution above, and we are particularly interested in the pe-
riods when a room deviates from the setpoint more than 3
Celsius degree, which indicates that the room is highly likely
to be under either heating or cooling. Therefore, for each
building, using this criterion, we zoom in to the interested
portion on the temperature deviation distribution and find
rooms falling into this portion in most of the time. The
ground truth results are summarized in Table 2. Again, we
group the rooms according to their air handler unit ID and
show the results in Figure 10b. We see that there are 13
rogues rooms all together in building 1, and 11 of them be-
long to AHU1, suggesting the unit might be either wrongly
configured or misoperating.

Bldg1 Bldg2
room# % room# %
330B 1 330B 1
340 1 213 1
420A 1 148 0.93
420 1 768 0.67
698 1 371 0.62
442 0.996 458 0.62
398 0.981 538 0.57
336 0.96 413 0.54
183 0.92 558 0.48
498 0.91 548 0.47

Table 2: Ground truth for how much time each room’s tem-
perature deviates from the setpoint more than 3 Celsius de-
gree. For each building, the first column is room number
and the second column is the percentage of the one-week
time that the room deviates that much. The first ten rooms
on the ranking of each building are listed.

6.4 Miss Rate
The metadata expansion can contains certain errors in it
therefore when we do a search over the expanded metadata

Bldg 1 Bldg 2
Uncmft 156/0/8 4/0/0
Rogue 13/0/3 3/0/3

Table 3: The number of missed rooms for the two applica-
tions for the two test bed buildings. In each cell, we show
the ground truth number of rooms/the number of rooms
missed by analysis on metadata expansion/the number of
rooms missed by a simple grep.

we might not get all the desired streams for analysis. Fig-
ure 11 shows the error rates of the search results over ex-
panded metadata for the two test bed buildings. On the
left, 50% of the points in building 1 are correctly fully ex-
panded, and doing the two searches “room temperature” and
“room temperature setpoint” will get us all desired streams
(232 temperature and 243 setpoint). Therefore, performing
the uncomfortable and rogue rooms analysis will not miss
any rooms in this case. Meanwhile, for building 2 on the
right, when 50% of the points are correctly fully expanded,
we missed 14 out of 176 for temperature and 27 our of 304
for setpoint, for the same two searches as done on building
1. Since some of the temperature and setpoint streams are
not recalled, we would miss some of the uncomfortable and
rogue rooms as a result. We also perform another set of
experiments where we have 70% of the points in each build-
ing correctly fully expanded, but the results are the same as
those of 50% expanded case.

We show the miss rates of the two applications when us-
ing the expanded metadata and using a simple grep as a
baseline. In each cell of Table 3, the three numbers are for
the ground truth number of rooms, the number of rooms
missed by running the application on expanded metadata,
and the number of rooms missed by running the application
on the grep results. We see that, even though the expan-
sion has errors in it, we are still able to find most of the
problematic rooms that are otherwise difficult to identify.
We conclude that with the expanded and normalized meta-
data of a building, we can run useful analysis and identify
potential problems in it.

7. RELATED WORK
There has been much prior work on metadata generation
for videos [6], pictures [17], business audios [22] and taxon-
omy expansion [23]. Our work is focused on building sensor
data and borrows from from the literature in the context
of providing a way to search through data from sensors in
buildings. Our approach consists of two main components:
metadata boosting and search. Our main focus in this paper
is on metadata boosting. We use the technique introduced
by Gulwani et al.[9] in order to learn the expanded form of
‘point‘ tags. In their work, and related extensions [12, 18,
19, 11, 16, 10], they provide a set of libraries that implement
algorithms to learn the various patterns for strings in excel
spreadsheets. Because many excel users are not program-
mers, it is clear that the interaction model should be based
on having the user provide input-output examples and for
a the system to iteratively learn the pattern the user would
write if they were more technical inclined. In our work we
use a similar approach and make non-trivial extensions to
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Figure 11: The error rates of searches over the expanded metadata using our techniques. Two searches are performed
particularly: “room temp” and “room temp setpoint”.

it in order to boost the existing metadata with a normal-
ized set of tags. This allow users to broadly search across
all points for multiple buildings at once, without having to
engage in the tedious pattern adjustment task for expansion.

The de facto approach in buildings is to form communities
that follow are particular standard. Each of the vendors fol-
lows their own general structure in point naming, however
there are evolving standards that unify these across ven-
dors, such as the Building Information Model (BIM) [20]
and Green Building XML [7]. These are used to codify an
object structure to describe the various physical components
of the building. For example, there are objects for the inter-
nal subsystems, the walls, the construction if the windows,
and sensors within the building as well, among other things.
Each Building software vendor extends or modifies their own
BIM version. These standards are mainly for use by archi-
tectural design firms to construct and share building mod-
els across software suites. We could potentially make use of
BIMs in incorporating the descriptive names/tags as extra
metadata. We leave this exercise for future work.

Google is incorporating 3D models of buildings and embed-
ding their into Google Earth 3D Buildings offering [8], mak-
ing them searchable according to their metadata and loca-
tion. The effort does not include a granularity down to the
sensors, but with the recent acquisition of NEST [14], index-
ing the metadata that describes the physical measurement
points within buildings may come next. Our approach is
to normalize the metadata for the sensors, so that we can
maximize coverage and do analysis across many buildings at
once. Because standards are not followed, boosting is criti-
cal to achieving normalization and maximizing coverage.

A different approach entiring are those taken by open stan-
dards such as BACnet and LonTalk [5, 1] and more recent
approaches to describe the sensors more systematically, such
as sMAP [3], HomeOS [4] and Building Depot [24]. From
a metadata perspective, they essentially bypass the normal-
ization issue. We use them as metadata sources but we
address a fundamental data integration problem to achieve
wider coverage, faster.

8. CONCLUSION AND FUTURE WORK

In order to meaningfully deal with disparate building streams
in a scalable fashion the streams should be searchable across
various properties, such as building name, room location,
and type. Searchability is necessary for achieving scalability.
By providing a tool for searching across building streams, we
minimize the deployment time for applications that allowing
them to be used in all buildings, not just a single one. We
describe how a set of programming by example techniques
can be used to learn how to transform a building’s meta-
data to a common namespace by using a small number of
examples from an expert.

In order to adapt synthesis techniques presented in prior
work [9] we have to overcome three fundamental challenges:
1) attaining full tag coverage for a building is difficult and
the number of tags necessary to attain full coverage is very
large. 2) merging the substring rules for each tag is non-
trivial and 3) because there are so many points, visual in-
spection of correctness is very hard. Our adaptation par-
tially overcomes these challenges and we show how the tag
expansion results can be applied across many building.

For future work we look to integrate standard feature ex-
traction techniques to enrich the metadata with semanti-
cally descriptive terms that can be used to search for points
of interest based on deeper attributes embedded in the data
itself. Moreover, we plan to integrate more buildings into
the metadata suite to cover a large fraction of building and
enable wide development of analytics and applications. We
also look to explore how our current technique could be ap-
plied in the wider internet of things context, as more sensors
streams are deployed in the home environment. We believe
that such metadata boosting and term indexing technique
are necessary to make sense of the explosion of data com-
ing from sensors. Buildings present a major challenge and
surely the solutions in this space can be applied in other
domains.
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