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Abstract 

A number of studies in the last decade have argued that GPS-based surveys offer the potential to replace traditional 
travel diary surveys. GPS-based surveys impose lower respondent burden, offer greater spatiotemporal precision and 
incur fewer monetary costs. However, GPS-based surveys do not collect certain key inputs required for the 
estimation of travel demand models, such as the travel mode(s) taken or the trip purpose, relying instead on data-
processing procedures to infer this information. This study assesses the impact that errors in inference can have on 
travel demand models estimated using data from GPS-based surveys. We use simulated datasets to compare 
performance across different sample sizes, inference accuracies and estimation methods. Findings from the 
simulated datasets are corroborated with real data collected from individuals living in the San Francisco Bay Area, 
United States. Results indicate that the benefits of using GPS-based surveys will vary significantly, depending upon 
the sample size of the data, the accuracy of the inference algorithm and the desired complexity of the travel demand 
model specification. In many cases, gains in the volume of data that can potentially be retrieved using GPS devices 
may be offset by the loss in quality caused by inaccuracies in inference. For example, a Monte Carlo experiment 
finds that a relatively parsimonious model of travel mode choice behavior that could reliably be estimated using 100 
high-quality observations could need 10,000 observations and more, depending upon the accuracy of the inference 
algorithm. This study argues that GPS-based surveys may never entirely replace traditional travel diary surveys. For 
data from GPS-based surveys to be useful for existing modes of travel demand analysis, it needs either to be 
supplemented with data collected from traditional surveys or GPS-based surveys need to allow for direct interaction 
with the study participant. Alternatively, newer modes of analysis need to be developed that can compensate for 
inaccuracies in data from existing GPS-based surveys. 
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1. Introduction 

Traditional models of individual and household travel and activity behavior are estimated using travel diary datasets 
that ask a small subset of the population of interest to record over a period of one or two days which activities were 
conducted where, when, for how long, with whom and using what mode of travel. For example, SF-CHAMP (San 
Francisco Chained Activity Modeling Process), the state-of-the-art activity-based model of travel demand developed 
by the San Francisco County Transportation Authority, was estimated using travel diary data from about 30,000 
individuals collected over a period of two days (Cambridge Systematics, 2002). The size of that and other similar 
travel diary datasets pales in comparison to the volume of information that can potentially be retrieved from new 
technologies, such as Global Positioning System (GPS) sensors and smartphones, and social media platforms, such 
as Twitter and Facebook, now and in the future. Advances in GPS technologies in particular have received 
substantive attention in the recent past. Multiple studies have sought to develop GPS-based surveys to collect all the 
information that is usually collected by extant mail-back, phone-based or door-to-door travel diary surveys, but with 
very little input from survey participants (for a recent review of the literature, the reader is referred to Shen and 
Stopher, 2014). Though the use of these surveys thus far has been limited to pilot projects (e.g. Pereira et al., 2013), 
they are expected eventually to replace traditional travel diary surveys (Wolf et al., 2001). 

The benefits of using GPS-based surveys are manifold. They impose fewer requirements on survey respondents, 
offer greater spatiotemporal precision and are cheaper to implement. Nevertheless, as pointed out by Shen and 
Stopher (2014), GPS-based surveys “cannot record travel mode, trip purpose or the number of occupants in a private 
vehicle — all important attributes in a traditional travel survey. Therefore, data-processing procedures become 
critical to the usefulness of GPS surveys, because there would be insufficient information for travel modelling 
purposes without the results of the processing.” Numerous algorithms have been proposed for inferring one or more 
of these missing pieces of information from the GPS data, augmented in many cases with additional sources, such as 
accelerometer readings from smartphones (e.g. Reddy et al., 2008) or land use characteristics from Geographic 
Information Systems (GIS) databases (e.g. Bohte and Maat, 2009). However, even the most successful inference 
algorithm will have some error associated with it. For example, most published studies in the literature, including 
those cited here, report average accuracies of 60-90%. Errors in inference could potentially compromise the quality 
of data collected through GPS-based surveys and the validity of travel demand models developed using this data. 
And yet, to the best of our knowledge, no study has systematically examined the implications of using low-quality 
big data for traditional modes of analyses. 

The objective of this study is to evaluate the impact of errors in inference on travel demand models estimated with 
GPS data. The paper is structured as follows: Section 2 describes a Monte Carlo experiment that compares model 
performance across different sample sizes, inference accuracies and estimation methods; Section 3 uses validated 
GPS data collected from individuals residing in the San Francisco Bay Area, United States to corroborate findings 
from the Monte Carlo experiment; and Section 4 concludes the paper with a summary of findings and implications.  

2. Monte Carlo Experiment 

In this section, we simulate a Monte Carlo experiment to assess the impact of inference errors on estimation results. 
A Monte Carlo experiment is especially useful because the true parameters underlying the data generating process 
are known, and the impact of inference errors can be evaluated under a wide variety of conditions, leading to more 
generalizable results that aren’t specific to any one dataset. Section 2.1 describes how the data is generated. Sections 
2.2 and 2.3 compare the parameter values recovered from two different estimation methods.  

2.1 Data Generation 

To measure the impact of errors in inference on estimation results, we create a two-step Monte Carlo experiment. 
First, we simulate datasets for a hypothetical Random Utility Maximization (RUM) model of travel mode choice 
behavior. The RUM model is by far the most popular model among studies on individual and household travel and 
activity behavior, and travel mode choice behavior perhaps the most widely studied problem (see, for example, Ben-
Akiva and Lerman, 1985). Second, we simulate the probability that the chosen travel mode is correctly identified 
using a hypothetical inference algorithm modeled along the lines of a decision tree. Decision trees are classifiers 
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developed in machine learning and data mining that have proven to be popular with studies on travel and activity 
inference using location traces and other data (see, for example, Zheng et al., 2010).  

We begin by describing the RUM model of travel mode choice behavior. We assume that for a given trip, a 
decision-maker can choose between four travel modes: walk, bike, car and transit. The utility of each travel mode is 
defined as a linear function of the travel time, cost and greenhouse gas emissions incurred by that mode: 

U!" = V!" + ε!" = ASC! + β!!tt!" + β!"#$cost!" + β!"!ghg!" + ε!",    ε!"~Gumbel 0,π! 6  (1) 

, where U!" is the utility of travel mode j as perceived by decision-maker n; and V!" is the systematic component of 
the utility and ε!" is the stochastic component, assumed to be i.i.d. Gumbel with location zero and scale parameter 
π! 6. The systematic component is some function of the variables, tt!", cost!" and ghg!", denoting respectively the 
travel time, cost and greenhouse gas emissions incurred by travel mode j on decision-maker n, and the model 
parameters ASC! , β!! , β!"#$  and β!"! , denoting respectively the alternative-specific constant and the mean 
sensitivities to travel time, cost and greenhouse gas emissions. Decision-makers are assumed to be utility-
maximizing in that they choose that travel mode that offers them the greatest utility: 

  y!" =
1;   if  U!" ≥ U!"!   for  j′ = 1,… , J
0;   otherwise                                                              

 (2) 

, where y!" is an indicator of the actual choice.  The assumption that ε!" is i.i.d. Gumbel with location zero and scale 
parameter π! 6 results in the familiar multinomial logit expression for the choice model: 

P y!" = 1|𝐀𝐒𝐂, β!!, β!"#$, β!"!; 𝐭𝐭𝐧, 𝐜𝐨𝐬𝐭𝐧, 𝐠𝐡𝐠𝐧  

=
exp ASC! + β!!tt!" + β!"#$cost!" + β!"!ghg!"
exp ASC!! + β!!tt!!! + β!"#$cost!!! + β!"!ghg!!!!!

 

 

(3) 

We describe the process of generating synthetic datasets for the model framework over the subsequent paragraphs. 
In terms of the variables, we employ the following distributions: 

tt!"#$~𝒰 1.5tt!"#, 2.5tt!"# ,    cost!"#$ = 0,    ghg!"#$ = 0 (4) 

tt!"#$~𝒰 tt!"#, 1.5tt!"# ,    cost!"#$ = 0,    ghg!"#$ = 0 (5) 

tt!"#~𝒰 10, 50 ,    cost!"#~𝒰 0, 20 ,    ghg!"#~0.89
!!!"#
!"

𝒰 40, 60  (6) 

tt!"#$%&!~𝒰 tt!"#, 2.5tt!"# ,    cost!"#$%&!~𝒰 0, 4 ,    ghg!"#$%&!~0.28
!!!"#$%&!

!"
𝒰 20, 30  (7) 

, where travel time is measured in minutes, cost in dollars and greenhouse gas emissions in pounds of CO2 
equivalent; and 𝒰 𝑎, 𝑏  denotes a continuous uniform distribution over the range 𝑎, 𝑏 . The parameter values are 
enumerated below: 

ASC!"#$ = 0,    ASC!"#$ = −4.5,    ASC!"# = 0.5,    ASC!"#$%&! = −1 (8) 

β!! = −0.30,    β!"#$ = −0.45,    β!"! = −0.10 (9) 

Following the methodology proposed by Williams and Ortúzar (1982) and the approach outlined by Raveau et al. 
(2010), values for each of the model parameters are chosen such that: (1) the marginal rates of substitution between 
travel time, cost and greenhouse gas emissions are consistent with values observed by studies in the literature; (2) 
the part-worth utilities of each of the explanatory variables are comparable in terms of magnitude; (3) the model is 
identifiable; and (4) the error in the data is roughly 25%, i.e. one in four simulated decision-makers change their 
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choice because of the stochastic component, thereby ensuring that the decision-making process is neither 
deterministic nor completely stochastic.  

Equations (1)-(9) provide a blueprint for generating any number of observations. However, for any given 
observation, the travel mode actually chosen, as identified by equation (2), will not always be the same as the travel 
mode inferred to have been chosen. Over the course of the subsequent paragraphs, we describe how we simulate 
errors in travel mode inference. Let y!"!  be an indicator of the inferred choice, i.e. y!"!  equals one if decision-maker n 
is inferred to have chosen travel mode j, and zero otherwise. We assume that the classifier used for inference 
employs a decision tree learning algorithm trained on a single feature - the average speed across the trip, denoted r! 
for the trip made by decision-maker n. The average speed is assumed to have the following lognormal distributions 
conditional on the chosen travel mode (the parameters for the distributions were estimated using real data), and 
draws are taken for each simulated decision-maker: 

r!~

ln𝒩 0.28, 0.43 ;   if  y!,!"#$ = 1    
ln𝒩 1.38, 0.38 ;   if  y!,!"#$ = 1      
ln𝒩 2.05, 0.63 ;   if  y!,!"# = 1          
ln𝒩 1.89, 0.79 ;   if  y!,!"#$%&! = 1

 (10) 

For some desired value for the average accuracy of the decision tree, we tune two parameters: the maximum depth 
of the tree and the minimum number of samples required at any leaf, until the accuracy for the sample is within 1% 
of the desired value. Once we have an acceptable classifier, we use it to infer the travel mode most likely to have 
been used for each trip in the sample. In all, 100 datasets each are generated for 100, 1000 and 10000 pseudo-
observed decision-makers hypothesized to behave according to the decision-making process described above, and 
average accuracies of the inference algorithm between 60% and 100%, implemented in 5% increments, resulting in 
a total of 2700 datasets. Over the following subsections, we describe our attempts to recover estimates for the model 
parameters for each of these datasets, and how the estimates compare with the true values. 

2.2 Maximum Likelihood Estimation  

For each of the 2700 datasets, estimates for the model parameters are recovered by maximizing the following 
likelihood function for the multinomial logit model: 

L 𝐀𝐒𝐂, β!!, β!"#$, β!"!|𝐲!, 𝐭𝐭, 𝐜𝐨𝐬𝐭, 𝐠𝐡𝐠  

= P 𝐲𝐧! |𝐀𝐒𝐂, β!!, β!"#$, β!"!; 𝐭𝐭𝐧, 𝐜𝐨𝐬𝐭𝐧, 𝐠𝐡𝐠𝐧
!

 

= P y!" = 1|𝐀𝐒𝐂, β!!, β!"#$, β!"!; 𝐭𝐭𝐧, 𝐜𝐨𝐬𝐭𝐧, 𝐠𝐡𝐠𝐧
!!"
!

!!

 

=
exp ASC! + β!!tt!" + β!"#$cost!" + β!"!ghg!"
exp ASC!! + β!!tt!!! + β!"#$cost!!! + β!"!ghg!!!!!

!!"
!

!!

 

 

 

 

(11) 

, where 𝐲𝐧!  is a J×1  vector whose j!" element is y!"! . All models are estimated in Python using an implementation 
of the BFGS algorithm contained in the SciPy library (Jones et al., 2001). We assess the impact of errors in 
inference by comparing estimates for the value of time, defined as the ratio of the estimates for β!! and β!"#$, and the 
value of green, defined as the ratio of the estimates for β!"! and β!"#$, with the true values for these willingness-to-
pay measures, assumed implicitly by equation (9) to be 40$/hr and 22¢/lb, respectively. For each of the 100 datasets 
belonging to a particular combination of the number of observations and the average accuracy of the inference 
algorithm, Figure 1 plots the mean and standard error in the estimates for these measures. For example, the left most 
point in the top-left plot denotes the mean estimate of value of time across the 100 datasets with 100 observations 
each and an average inference accuracy of 60%. For the model specification at hand, the bias in estimates  
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Figure 1: A plot of the mean and standard error in the value of time ($/hr) and value of green (¢/lb) estimated by 
maximizing the likelihood function given by equation (11) for each of the 100 datasets belonging to a particular 

combination of the number of observations and the average accuracy of the inference algorithm 

expectedly decreases as the average accuracy of the inference algorithm increases, eventually converging to the true 
values at an accuracy of 100%. However, the bias appears to be independent of the number of observations, though 
this could be an anomaly arising out of the particulars of the RUM model used to generate the data. What’s even 
more interesting though is the magnitude of the bias. The mean estimate for value of time for 10000 observations 
and an inference accuracy of 80% is 24.8$/hr, off by nearly 40% from the true value of 40$/hr. Even for higher 
accuracies, such as 95%, the mean estimate for 10000 observations is 34.3$/hr, off by 14%. Estimates for the value 
of green appear to be somewhat more robust. The mean estimates for value of green for 10000 observations and 
inference accuracies of 80% and 95% are 17.2¢/lb and 20.7¢/lb, off by 22% and 6%, respectively, from the true 
value of 22¢/lb. For lower inference accuracies, such as 60%, the mean estimates are off by as much as 49% in the 
case of value of time and 26% in the case of value of green.  

As has been shown by numerous studies across statistics and econometrics, a purely stochastic measurement error in 
the dependent variable does not bias estimation results for probabilistic models, though there is a loss in statistical 
efficiency (see, for example, Greene, 2002). This is because the relationship between the dependent variable and the 
independent variables has a stochastic component built into it, as represented by ε in equation (1). However, errors 
in inference are usually systematic and likely some function of the dependent variable itself. For example, in the 
context of travel mode inference, trips made on foot are easier to identify than trips made by bike, car or public 
transit (see, for example, Zheng et al., 2010). As a consequence, parameter estimates are likely to be biased, even 
when working with large datasets and high inference accuracies. In general, the magnitude of bias will vary from 
dataset to dataset. The purpose of the Monte Carlo experiment is not to determine an absolute range, but to 
demonstrate the variability in estimates that can be expected from inaccuracies in inference. 
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2.3 Maximum Weighted Likelihood Estimation 

As mentioned in Section 2.1, classifiers such as decision trees predict for a given observation the probability of 
occurrence associated with every possible outcome. The outcome that has the greatest probability is assumed to have 
taken place and the probability distribution across outcomes is subsequently discarded. In doing so, the analyst is 
introducing measurement error into the choice model, resulting in biased parameter estimates, as evidenced by 
Section 2.2. Readers familiar with discrete choice models will recognize the analogy with sequential estimation in 
the context of Integrated Choice and Latent Variable (ICLV) models or Latent Class Choice Models (LCCMs). In 
the case of these models, mean estimates for latent variables obtained using standard estimators in the first step, such 
as principal components analysis or cluster analysis, are treated as observable explanatory variables in the discrete 
choice model in the second step. Ignoring the measurement error associated with the predicted estimates from the 
first step when estimating parameters in the second step can bias these estimates (see Ben-Akiva et al., 2002 or 
Walker and Li, 2007 for a discussion on the subject). For these reasons, ICLV models and LCCMs are usually 
estimated simultaneously. In our case, the solution may be translated as maximizing the following weighted 
likelihood function, assuming that the features used to train the classifier are either independent of the explanatory 
variables used in the choice model they or do not affect the choice outcome: 

L 𝐀𝐒𝐂, β!!, β!"#$, β!"!|𝐭𝐭, 𝐜𝐨𝐬𝐭, 𝐠𝐡𝐠, 𝐫  

= P y!"! = 1|r! P 𝐲𝐧|𝐀𝐒𝐂, β!!, β!"#$, β!"!; 𝐭𝐭𝐧, 𝐜𝐨𝐬𝐭𝐧, 𝐠𝐡𝐠𝐧, y!"! = 1
!!

 

= P y!"! = 1|r! P y!" = 1|𝐀𝐒𝐂, β!!, β!"#$, β!"!; 𝐭𝐭𝐧, 𝐜𝐨𝐬𝐭𝐧, 𝐠𝐡𝐠𝐧
!!

 

 

(12) 

, where P y!"! = 1|r!  is the probability that decision-maker n chose travel mode j, as predicted by the inference 
algorithm. Note that as the average inference accuracy approaches 100%, equation (12) converges to equation (11). 
Ideally, the analyst should jointly estimate the inference and choice model but for practical reasons that isn’t always 
possible. It is usually not straightforward to recast classifiers employed for inference as probabilistic models that can 
subsequently be estimated using maximum likelihood estimation. Most classifiers continue to be estimated using 
metrics derived from information theory that differ from the probabilistic framework employed by models of travel 
and activity behavior. But more importantly, the inference algorithm is often trained on a dataset where the 
explanatory variables used in the choice model are not available and/or collected. The alternative, as represented by 
equation (12), is to estimate the inference model independently, and to treat the outcomes predicted by the inference 
model as stochastic variables in the choice model, marginalizing over the estimated distribution. Such an approach 
leads to consistent but inefficient estimates (Ben-Akiva et al., 2002) in cases where it can be assumed that the 
features used to train the inference model are either independent of the explanatory variables used in the choice 
model or they don’t affect the choice outcome, as in the case of the Monte Carlo experiment described here. If the 
two sets of variables are correlated and the features do influence observed choice, as will likely be the case in reality, 
then estimates from the choice model may still suffer from omitted variable bias.  

Estimates for the unknown parameters were recovered by maximizing the weighted likelihood function using the 
same optimization routines as in Section 2.2. Similar to the analysis in that sub-section, Figure 2 plots the mean and 
standard error of the estimates for value of time and value of green recovered from each of the 100 datasets 
belonging to a particular combination of the number of observations and the average accuracy of the inference 
algorithm. The vertical lines running through the plots indicate large standard errors in the parameter estimates, 
indicating a failure in the optimization routine to consistently recover unbiased estimates for either measure. 
However, the frequency with which these vertical lines appear decreases as both the number of observations and the 
accuracy of inference increase, and for large datasets with high inference accuracies the optimization routine is able 
to recover unbiased estimates for both the value of time and the value of green. For example, with 100 observations 
anything less than complete accuracy is unable to recover parameter estimates consistently, but with 10000 
observations the parameter estimates can be recovered consistently with average accuracies of 85% and above.  
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Figure 2: A plot of the mean and standard error in the value of time ($/hr) and value of green (¢/lb) estimated by 
maximizing the weighted likelihood function given by equation (12) for each of the 100 datasets belonging to a 

particular combination of the number of observations and the average accuracy of the inference algorithm 

These results indicate that increases in the amount of data that can potentially be retrieved using newer technologies 
are often offset by the loss in quality incurred by inaccuracies in inference. For example, Figure 2 suggests that the 
same information that could reliably be retrieved from 100 high-quality observations could potentially need 10,000 
observations and more, depending upon the accuracy of inference and the consequent quality of data. Conversely, 
one could argue that with sufficiently large datasets, e.g. location data retrieved from sparse sources such as 
cellphone towers that cannot provide the same accuracy in inference as denser sources such as GPS sensors, the 
parameters of interest could still be recovered with a high degree of precision. As before, the purpose of this analysis 
is not to develop normative guidelines on when to use low quality big data and when to forego it in favor of high 
quality ‘small’ data, but to illustrate the kinds of issues that might be encountered when working with these larger 
datasets, and the ways in which they can be controlled for, if only partially. 

3. Case Study: GPS-based Survey in the San Francisco Bay Area, United States 

In this section, we corroborate findings from Section 2 using real data collected from 45 smartphone users living in 
the San Francisco Bay Area, United States through the means of an app called E-Mission. The app is being 
developed by a team of researchers at the University of California, Berkeley. One of the objectives of E-Mission is 
to collect all the information that is usually collected by travel diary surveys, but with minimal input from the 
smartphone user. For more details about the app, the reader is referred to Shankari et al. (2014). For the purpose of 
our analysis, we will be limiting our attention to trip data. For a given trip, E-Mission records two pieces of 
information: the series of raw location traces that constitute the trip, used for inferring the travel mode(s) taken; and 
the travel mode chain that was actually used by the smartphone user to make the trip, used to validate the inference. 
In all, data from 3381 trips collected over a three-month period in 2014 is used for our analysis. First, for each trip in  
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Figure 3: A plot comparing the value of time ($/hr) as estimated by maximizing the unweighted and weighted 
likelihood functions given by equations (11) and (12), respectively, as a function of the average accuracy of the 

inference algorithm 

the dataset, we use the location traces to construct a vector of features comprising trip attributes such as speed, 
acceleration, heading change, etc. Second, we employ different subsets of the full set of features and the ground 
truth collected by E-Mission to train decision tree learning algorithms for travel mode inference with average 
accuracies between 60% and 100%. Third, for each trip in the sample, we generate the predicted outcome and the 
predicted probability distribution across all outcomes, as predicted by each of the decision trees trained in the 
previous step (we do not split the data into training and test sets, using the classifier trained on trips where we know 
the outcomes to predict outcomes for those same trips as if we didn’t know what the outcomes were1). Fourth, we 
derive the travel times and costs incurred by different travel modes for all trips in the sample using skims from the 
San Francisco Metropolitan Transportation Commission (SF MTC). And finally, we use the predictions from the 
inference algorithms and the level-of-service attributes derived from the skims to estimate multinomial logit models 
of travel mode choice, using both maximum likelihood estimation and maximum weighted likelihood estimation. 
For each trip, the decision-maker is hypothesized to have at most four travel modes to choose from: walk, bike, car 
and public transit, and the systematic component of the utility of each travel mode is defined as a linear function of 
the travel time and cost incurred by that travel mode. 

Figure 3 plots estimates for the value of time, as recovered by the multinomial logit model from both maximum 
likelihood estimation and maximum weighted likelihood estimation, as a function of the average accuracy of the 
decision tree used for travel mode inference. The value of time estimated when then inference algorithm has 100% 
accuracy is 27.6$/hr. For our analysis, we will treat this as the true value, using it as a baseline when calculating bias. 
Figure 3 reveals a number of key trends. As the average accuracy of the inference algorithm increases, the 
magnitude of bias tends to decrease for both estimation methods. At lower average accuracies, the value of time 
recovered from maximum likelihood estimation is closer to the true value than that recovered from maximum 
weighted likelihood estimation, consistent with the high standard errors observed at lower average accuracies for the 
latter in the Monte Carlo experiment. At higher average accuracies, maximum weighted likelihood estimation 
performs better than maximum likelihood estimation, consistent once again with findings from the Monte Carlo 
experiment. However, both estimation procedures fall apart when the average accuracy is 85%, with the value of  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 We do not concern ourselves with overfitting because our objective here is not to train a classifier that can 
subsequently be used for prediction. 
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Figure 4: A bar and line plot where the bar plot represents the value of time ($/hr) estimated by maximizing the 
weighted likelihood function given by equation (12) and the inferred data is supplemented with ground truth, and the 

line plot represents the percentage of trips for which the accuracy of the inference algorithm is below 90% and 
ground truth is used, plotted as a function of the average accuracy of the inference algorithm 

time tending towards positive infinity for maximum likelihood estimation and negative infinity for maximum 
weighted likelihood estimation. This is likely due to incorrect inferences for a handful of trips that appear to exert a 
disproportionate influence on the estimation results. We could have removed these trips from our analysis, as would 
be the course to take in reality, but we decided to include them in our analysis to illustrate potential problems that 
the analyst may face when working with low-quality data. In general, the choice between the two estimation 
methods comes down to a tradeoff between bias and variance: maximum likelihood estimation yields efficient but 
inconsistent estimates, whereas maximum weighted likelihood estimation provides consistent but inefficient 
estimates. For a given dataset, the appropriate method will depend upon the sample size, the accuracy of the 
inference algorithm and the desired complexity of the travel demand model specification. In our case, for a sample 
size of 3381 trips and a relatively simple travel mode choice model specification, our results suggest that maximum 
likelihood estimation ought to be preferred when the average accuracy of the inference algorithm is below 85%, and 
maximum weighted likelihood estimation ought to be preferred when the average accuracy is above 85%.  

Regardless of the chosen estimation method, even at high average accuracies the bias in estimates is sizeable. For 
example, at an average accuracy of 95%, the values of time recovered by maximum likelihood estimation and 
maximum weighted likelihood estimation are 34.5$/hr and 31.3$/hr, respectively, off by 25% and 13% from the true 
value, respectively. These results serve as a cautionary warning against the use of low-quality big data for travel 
demand analysis. Unless the average accuracy of the inference algorithm is close to 100%, the magnitude of bias in 
parameter estimates may render the use of such data for model development infeasible. In practice, no inference 
algorithm will ever be 100% accurate, and data collected passively through mobile sensors or social media platforms 
may always need to be augmented with ground truth for it to be usable. However, as the average accuracy of the 
inference algorithm deteriorates, the number of observations for which ground truth is needed will increase, as will 
the consequent burden on study participants. To get an estimate of the trade-off between estimation accuracy and 
participant burden, we perform the following experiment with each of the inference algorithms trained previously. 
For trips where the outcome predicted by the inference algorithm has a probability of occurrence abo                                                
ve 90%, we use the predicted probability distribution in calculating the weighted likelihood function. For trips where 
the outcome predicted by the inference algorithm has a probability of occurrence under 90%, we use the ground 
truth in calculating the weighted likelihood function, assuming that in these cases the study participant can be asked 
what they did, as they would be in a traditional travel diary survey. Figure 4 plots both the value of time recovered 
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from maximizing the weighted likelihood function thus constructed, and the percentage of observations for which 
study participants would potentially be required to provide ground truth under the scheme described above, as a 
function of the average accuracy of the inference algorithm. As is apparent from the plot, even at low accuracies, 
estimates are within 2-3% of the true value (though again, at an average accuracy of 85%, the estimation routine 
breaks down). However, as the average accuracy decreases, the burden on study participants increases. For example, 
at low average accuracies between 60% and 70%, using 90% as the threshold to determine when to ask for ground 
truth and when to rely on the inference algorithm, we would need to ask for ground truth for more than 80% of the 
trips. However, at higher accuracies, the burden is more acceptable. For example, when the average accuracy of the 
inference algorithm is 94%, and the threshold is still 90%, ground truth is needed for only 15% of the trips, but the 
bias in our estimate for value of time is less than 0.1%. In general, the analyst can decide upon an appropriate 
threshold for the partial collection of ground truth data based on the levels of participant burden and errors in 
estimation that are acceptable given the objectives of the study.  

4. Conclusions 

The last few years have been witness to great excitement over big data and its potential to address a multitude of 
societal problems, within transportation engineering and without, on an unprecedented scale and level of detail. The 
National Science Foundation’s recent call for research proposals on “Critical Techniques and Technologies for 
Advancing Big Data Science and Engineering”, the Transportation Research Board’s call for papers last year on 
“Big Data, ICTs, and Travel Demand Models” and Transportation Research Part C’s recent call for papers on “Big 
Data in Transportation and Traffic Engineering” reflect some of the ongoing interest. With regards to travel demand 
analysis, attention has centered on the development of fully automated GPS-based surveys that can allow for the 
collection of travel diary data from a greater subset of the population over a longer period of time at a fraction of the 
cost incurred by more traditional survey methods. The collection of richer travel diary datasets can lead to 
significant advances in our understanding of travel behavior and consequently, our ability to design transportation 
systems that serve the immediate needs of the population and satisfy long-term societal objectives.  

GPS-based surveys record an individual’s location over time, augmented in some cases by information from 
additional sensors, such as accelerometers and Wi-Fi devices. However, certain vital inputs to the travel demand 
modeling process, such as the travel mode(s) taken by the individual to make a trip or the purpose of the trip, must 
necessarily be inferred from this data. Errors in inference can compromise the quality of the data thus collected, 
raising questions about the validity of travel demand models estimated using this data. In an attempt to address these 
questions, this study examined the impact that errors in inference can have on estimation results. We used simulated 
datasets to compare performance across different sample sizes, inference accuracies and estimation methods. 
Findings were corroborated using real data collected from smartphone users living in the San Francisco Bay Area, 
United States. Results indicate that the benefits of using GPS-based surveys will vary significantly, depending upon 
the sample size of the data, the accuracy of the inference algorithm and the desired complexity of the travel demand 
model specification. If the data is truly big enough, the quality of inference may not matter. But in many cases, gains 
in volume could potentially be neutralized by losses in quality. For example, a Monte Carlo experiment finds that a 
relatively parsimonious model of travel mode choice behavior that could reliably be estimated using 100 high-
quality observations could need 10,000 observations and more, depending upon the accuracy of the inference 
algorithm. In practice, no algorithm will ever guarantee complete accuracy. For data from GPS-based surveys to still 
be useful for travel demand analysis, it will need either to be incredibly big, or to be supplemented with data 
collected from traditional survey methods that require direct interaction with the study participant. 
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