
Approximate Synchrony: An Abstraction for

Distributed Time-Synchronized Systems

Ankush Desai
David Broman
John Eidson
Shaz Qadeer
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-136

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-136.html

June 30, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Approximate Synchrony: An Abstraction for
Distributed Time-Synchronized Systems

Ankush Desai, David Broman, John C. Eidson, and Sanjit A. Seshia
{ankush, broman, eidson, sseshia}@eecs.berkeley.edu

University of California, Berkeley

Shaz Qadeer
qadeer@microsoft.com

Microsoft Research

Abstract—Time synchronization plays a central role in the
design of reliable distributed embedded systems. However, the
clocks of nodes that are time-synchronized are only guaranteed
to be equal within a certain tolerance. Thus, when modeling and
verifying distributed protocols that involve or rely upon time
synchronization, abstractions are needed that accurately capture
the notion of systems being “almost synchronized.” In this paper,
we present the concept of approximate synchrony, a modeling
and verification abstraction for time-synchronized systems. Ap-
proximate synchrony is a sound and tunable abstraction. We have
implemented approximate synchrony as a part of a model checker
and used it to verify the Best Master Clock (BMC) algorithm,
the core component of IEEE 1588 precision time protocol and
the time-synchronized channel hopping protocol that is part of
the IEEE 802.15.4e standard.

I. INTRODUCTION

Many distributed systems, especially in the cyber-physical
systems domain, require coordination based on a common
sense of time across all nodes [6]. Examples may be found
in safety-critical aircraft and industrial control systems, and
scientific applications such as the operation of the CERN
particle accelerator. Traditionally, a common sense of time
is established using systems or protocols such as the global
positioning system (GPS), network time protocol (NTP), and
the IEEE 1588 [15] precision time protocol (PTP) that synchro-
nize the clocks of the nodes in the distributed system. These
protocols are commonly referred to as time-synchronization or
clock-synchronization protocols. It is important to note that all
of these protocols do not guarantee that the time-synchronized
nodes in the distributed system step synchronously. Instead,
the guarantee is that the difference in the time values of the
clocks of the various nodes of the system is bounded.

Formal modeling and verification of time-synchronized
systems must accurately capture this notion of the nodes being
“almost synchronized.” In essence, each node has a clock that
moves at a variable (but bounded) rate. At any time point,
clocks of different nodes can have differing values, but time
synchronization ensures that those values are within a specified
offset of each other. Given this setting, one approach is to
model hybrid systems [2], with continuous variables repre-
senting clocks. However, state-of-the-art hybrid verification
tools, such as SpaceEx [12], do not scale when the discrete
state space of the model is large. An alternative is to encode
models of multirate time systems as timed automata, which
can be verified in real-time model checking tool, such as
UPPAAL [16]. Although there exist several techniques in the
literature to model multirate systems as timed automata [9],
[14], [19], all these approaches approximate real valued clocks
as integer clocks. Therefore, it is natural to employ an al-
ternative approach that uses suitable discrete abstractions of
distributed systems. For instance, one approach is to use
full asynchrony, assuming that all possible interleavings of
actions at different nodes is possible. However, this abstraction
retains no properties of time synchronization, and consequently
can be too coarse to prove properties and too inefficient for
state space exploration, as it considers too many spurious

interleavings. There exist also several work on untimed ab-
stractions for capturing asynchrony; for instance, multiclock
Esterel [18], the quasi-synchronous approach [8], [13], and
bounded asynchrony [11]. However, none of these abstraction
techniques capture all aspects of the clock dynamics in a time-
synchronized system.

In this paper, we introduce the notion of approximate
synchrony (AS), an abstraction technique for modeling time-
synchronized distributed systems where components execute
“almost synchronously.” Based on parameters characterizing
clock rates and offsets between clocks, we show how to
compute a bound ∆ such that the number of steps of any two
components do not differ by more than ∆. As a consequence,
we can create a purely discrete model of the system by
composing components asynchronously under the approximate
synchrony bound ∆. Since the bound ∆ can vary from system
to system, we term approximate synchrony a tunable abstrac-
tion. Additionally, we derive machine-checkable conditions
for the soundness of this abstraction. We show through case
studies that approximate synchrony is an effective abstraction
method in practice: it greatly reduces the state space that a
finite-state model checker must explore to prove desired safety
and liveness properties, or find bugs.

We apply modeling and verification based on approximate
synchrony to two practical case studies: (i) the best master
clock (BMC) algorithm of the IEEE 1588 protocol, and (ii)
a time-synchronized channel hopping protocol that is part of
the IEEE802.15.4e [1] standard. The latter protocol requires
the nodes to be time-synchronized a priori in order to operate
correctly; we show how the approximate synchrony abstraction
captures enough timing information to prove its correctness.
On the other hand, the BMC algorithm, which is the first
phase of the 1588 time synchronization protocol, does not
itself require time synchronization for correctness. However,
we show that we can use approximate synchrony along with
the fact that time synchronization is achieved a posteriori to
substantially speed up the verification of the BMC algorithm
by model checking.

Our abstraction technique can be used with any finite-state
model checker. However, in this paper we implement it on top
of the ZING model checker [4]. One of the attractive features
of ZING is the ability to control the model checker’s search
using an external scheduler that enforces the approximate
synchrony condition. ZING comes with a modeling language
called P [10], which provides an easy mechanism to specify
protocols and facilitates not only verification, but also code
generation from the formally-verified model.

To summarize, this paper makes the following contribu-
tions:

• A tunable abstraction technique, termed approximate syn-
chrony, for formal modeling and verification of time-
synchronized distributed systems (Sec. III and IV),
• A formalization of the conditions under which approximate

synchrony is sound, along with a automatic procedure to

(b)

C1

n1

C2

C3

C4

n3

n2

(a)

C1

n1

C2

M S

C3

M

S

P

C4

S

M

n3

n2

Grandmaster clock

Fig. 1: Fig. (a) shows four clocks C1, C2, C3, and C4,
connected using three networks n1, n2, and n3. Fig. (b)
depicts the resulting master-slave synchronization hierarchy
after executing the BMC algorithm. The dashed line indicates
that the link is not used in the spanning tree.

derive a sound value of ∆ for two important classes of
protocols (Sec. IV), and

• Formal modeling and verification of two important dis-
tributed protocols for embedded systems, the BMC algo-
rithm (a central component of the IEEE 1588 standard),
and the time synchronized channel hopping protocol (Sec. V
and VI).

II. MOTIVATION

In this section, we provide an overview of two motivating
case studies. The first case study concerns verification of the
best master clock algorithm in the IEEE 1588 precision timed
protocol [15], where clocks are not (initially) synchronized, but
the drift of clocks are bounded. This protocol is representative
of a class we term a posteriori time-synchronized, since it
forms the first phase of a time synchronization protocol.
The second case study concerns time-synchronized channel
hopping (TSCH) that is part of the IEEE802.15e protocol [1].
This latter case study shows an example where the correctness
properties are proven for an a priori time-synchronized system.

A. IEEE 1588 Precision Time Protocol

The IEEE 1588 standard [15], also known as the pre-
cision timed protocol (PTP), is a distributed protocol that
enables precise synchronization of clocks over a communi-
cation network. The protocol consists of two parts: the best
master clock (BMC) algorithm and a time synchronization
phase. The BMC algorithm is a distributed algorithm and its
purpose is twofold: (i) to elect one grandmaster clock that
is the best clock in the network, and (ii) to find a unique
spanning tree in a network, where the grandmaster clock is
the root of the tree. Thus, the goal of the BMC algorithm
can be characterized as convergence to a particular stable
configuration, comprising agreement on network topology and
leader (grandmaster clock). The time synchronization phase
uses the spanning tree to synchronize the time of all clocks in
the network against the grandmaster clock. In this case study,
we are focusing on the correctness of the BMC algorithm, not
the time synchronization phase.

0 (seconds)1 2 3 4

e1 e1 e1
a2a2a2 a3 a3

Fig. 2: The figure shows periodic state decision events e1 for
clock C1 and announce messages a2 and a3 received from
clocks C2 and C3, respectively.

The BMC algorithm is distributed, meaning that there is no
central node that coordinates the execution of the algorithm.
Consider Fig. 1(a) that depicts four devices with separate
clocks C1, C2, C3, and C4, that are connected using three
networks n1, n2, n3. Fig. 1(b) depicts the final result after
executing BMC. A tree is formed where C1 is the root (the
grandmaster). The parent/child relationships are defined using
the states of the ports: master (M) and slave (S) indicate parent
and child, respectively. Note also that the cycle between C2,
C3, and C4 is broken by disabling the link between C2 and
C4, by specifying one of the ports as passive (P).

Each port in the network operates logically as a state
machine, determining (somewhat simplified) if it is a master
port, a slave port, or a passive port. During execution of
the BMC algorithm, each port executes periodically at state
decision events to exchange messages, where the (slightly
varying) period is termed the announce interval. These events
are fired by timers defined by each individual local clock.
Because all clocks can start at different states and be drifting
away from each other, there is no guarantee that the clocks
will be synchronized. The only assumption that can be made
is that the clock drift is bounded. Such a bound is specified
by the IEEE 1588 standard. Consider Fig. 2 that shows an
example where state decision events e1 at clock C1 are fired
periodically and announce messages a2 and a3 are received
from clocks C2 and C3, respectively. Announce messages are
used by the BMC algorithm to inform the clocks in the network
about clock characteristics and to communicate the current best
clock; it is the main mechanism used for forming the spanning
tree and electing the grandmaster clock.

There are several sources of non-determinism during the
BMC phase. Firstly, note for instance that in Fig. 2 the state
decision events e1 occurs with a period of 2 seconds, but
are drifting slightly for every event. The rate of the drift is
bounded, but the clock skew (the difference of time between
two clocks) may increase over time. Secondly, the length of
an announce interval can vary within a tolerance of ±30%
(see section 9.5.8 in [15]). Note for instance how announce
messages a2 and a3 appears at different times, and how the
jitter caused by sending these messages (e.g., because of
internal queues and protocol stacks) can result in variation
of the number of messages received between two consecutive
events; a2 appears once between the first two events, but twice
between the second two events.

The challenge we consider in this case study is to verify
the correctness of a central aspect of the BMC algorithm: for a
specific topology, we verify that the BMC algorithm converges
to one specific grandmaster clock. The non-determinism of
when announce messages are received and when periodic
events occur make the model checking problem particularly
challenging. In this paper, we address the problem of how
to model such non-determinism, by providing an analytic
solution that abstract away the real-time aspect of the BMC

algorithm and transform the model checking problem into an
untimed model. In this case we see that events and announce
messages are “almost synchronous”, where non-determinism
is introduced by bounded clock rates, jitter when sending
messages, and by unknown initial clock states.

B. Time-Synchronized Channel Hopping

The time-synchronized channel hopping (TSCH) [1] proto-
col is being adopted as a part of the low power Medium Access
Control (MAC) standard IEEE802.15.4e. It has a time-slotted
architecture and time-slots are grouped into scheduled-super-
frame which repeats over time. A global schedule instructs
each node on what time-slot to transmit/receive data to/from
which node. The TSCH protocol makes the strong assumption
that the nodes in the system are time-synchronized within a
bound called the ‘guard’ time. Hence, nodes can wake up
just before start of the time-slot allotted by the schedule and
remain in sleep mode otherwise. In the absence of precise
time-synchronization, the time-slots across nodes would not
be aligned within the guard bound and hence nodes will fail
to communicate successfully during the allotted slot.

Nodes keep track of time-slots using timers maintained by
local clocks. Over a duration of time because of the drift
in clocks, nodes may get desynchronized. A central server
computes a global schedule to ensure that nodes always
synchronize at least once within the threshold period after
which they would be desynchronized. Nodes synchronize on
receiving messages from the master node, hence successful
communication with the master node periodically is essential
and should be ensured by the schedule.

The TSCH standard provides no recommendation on build-
ing the schedule. It is the responsibility of the central server
to compute the right schedule given the worst-case clock drift
and the environmental assumptions. Over-synchronization by
communicating more frequently than required may keep all
nodes synchronized, but is not desirable because of power
constraints. The challenge is to verify the reliability prop-
erty that given a network deployment, worst-case drift, lossy
channels, and a global schedule can all nodes in the system
be always synchronized. The assumption is that the nodes
are time-synchronized and the property to check is that the
protocol extended with the schedule ensures that the nodes
remain synchronized.

III. FORMAL MODEL AND APPROACH

In this section, we present the formalism used for modeling
time-synchronized distributed systems, as well as terminology
used when formalizing the notion of approximate synchrony in
Sec. IV. The section concludes with a sketch of our verification
strategy.

A. Nodes, Clocks, Channels, and Processes

The overall distributed system is a networked composition
of concurrent components. We refer to each concurrent compo-
nent as a node. Nodes are modeled as concurrent composition
of processes. Communication channels that connect nodes
are also modeled as processes, but these are not associated
with any single node. The simplest model of a channel is
an instantaneous, error-free, first-in-first-out (FIFO) queue. In
this model, messages are delivered instantaneously, without
loss or corruption, in FIFO order. More general channel models
are also possible by modeling message delays, reordering, or
losses using non-deterministic modeling.

Each node has an associated physical clock χ. χ can be
modeled as a local state variable associated with the node
taking non-negative real values. There are three concepts
associated with clocks in a distributed system that are central
in this paper:

1. Clock Skew: The skew between two clocks χi and χj is the
difference in their values |χi − χj |.

2. Clock Drift: The drift in the rate of a clock χ is the
difference per unit time of the value of χ from an ideal
reference clock.

3. Clock Offset: The initial offset between two clocks χi and
χj is the difference between their values at time 0 of an
ideal reference clock.

Informally speaking, time synchronization ensures that the
skew between any two physical clocks in the network is
bounded. More formally,

Definition 1. (Time/Clock Synchronization) A distributed sys-
tem comprising K nodes with physical clocks χ1, χ2, . . . , χK
is said to be time synchronized if there exists a parameter ξ
such that for any two nodes i and j in the system, |χi−χj | ≤ ξ.

Example 1. The IEEE 1588 precision time protocol can have
bounds on the physical clock skew on the order of 10s of
nanoseconds or even less [17]. The typical clock drift is about
10−5. The initial offset between clocks at different nodes can
vary widely and there is typically no prescribed bound on its
value.

We formalize a process as a transition system that steps on
the tick of a “process clock.” The process clock can be different
for different processes on the same node. Even for a single
process, the size of a clock tick can vary over time. Formally,
a process P is a tuple (S, δ, I, τ) where S denotes the set of
(discrete) states, δ ⊆ S × S denotes the transition relation,
I denotes the set of initial states, and τ denotes the process
clock, modeled as a real-valued variable. Although processes
typically have inputs and outputs, for simplicity we do not
separate them from state in the formal representation. We will
further assume, for simplicity, that the individual processes on
a single node are deterministic, implying that the transition
relation for each such process is in fact a function. This is the
case for both practical protocols we have considered in this
paper, and the assumption is not fundamental to the theoretical
results of this paper. Thus, the only sources of non-determinism
are the timing behavior of processes (which determines their
interleaving) and the network channels. Finally, note that τ is
the only continuous state variable in the process.

B. Timing Behavior

Each process Pi steps (executes) on the tick of its local
process clock τi. However, note that the size of a step by Pi
(the time between ticks of the process clock) is not a constant.
We now define the dynamics of τi.

First, note that the step size of a process Pi executing at
node Ni is determined in part by the physical clock χi at
Ni. χi can be modeled as a real-valued variable obeying the
following differential inclusion:

χ̇i ∈ [1− α, 1 + α], where α ∈ [0, 1) (1)

Note that if α = 0, then the physical clock tracks real time (the
ideal time reference) perfectly. However, this does not hold in
general due to clock drift.

Example 2. Consider a network where the maximum drift at
any node is 10−5. Then, the dynamics of a physical clock at
each node can be modeled as χ̇i ∈ [0.99999, 1.00001].

Recall that processes make steps at the ticks of their process
clock, but that their step sizes — the time intervals between
those ticks — is variable. However, motivated by our case
studies with the IEEE 1588 and 802.15.4e standards, it is a
common requirement that all processes step at regular intervals
of nominal size. For instance, a periodic process Pi might
intend to make steps at time instants τi = 0, 1, 2, 3, . . ., but
variation in the dynamics of τi between ticks might make the
step sizes differ slightly from 1. Typically, the process clock is
implemented using a timer that is set to expire after a certain
amount of time elapses. Since this timer is ultimately based on
the physical clock χi, the dynamics of τi is a function of that of
χi. Moreover, this function is not the same for all processes
executing on the same node. This is especially the case for
software implementations of protocols, due to, for example,
operating system scheduling jitters, which can introduce minor
variations in the step sizes of different processes.

Let us consider how the dynamics of τi depends on that
of χi. Abusing notation slightly, suppose that the steps of a
process P are at values of its process clock τ denoted by
τ1, τ2, τ3, Suppose that the interval between values τk and
τk−1 is set using a timer to expire after δt time units, measured
using the physical clock χ on that node. Further, assume that
J denotes the jitter (because of software) in determining the
size of that interval. Then, we have, for every step k of P:

τk − τk−1 = J +

∫ δt

0

χ̇(t) dt (2)

In general, the jitter J can vary over time and for each process,
but for brevity of notation we hide this dependence. Typically,
one can derive bounds on J , say J ∈ [Jl, Ju]. From these
bounds and Equations 1 and 2, we can infer that

Jl + δt(1− α) ≤ τk − τk−1 ≤ Ju + δt(1 + α) (3)

We can rewrite the above equation as, for every step k,

τk − τk−1 ∈ [τ0
i − ε, τ0

i + ε] where ε ∈ [0, τ0
i) (4)

where τ0
i = δt + Jl+Ju

2 denotes the nominal step size of the
process. The drift of the process clock is denoted by ε =
α · δt+ Ju−Jl

2 .

Example 3. In the IEEE 1588 specification [15], the interval
between ticks of the process clock is termed as the announce in-
terval. The size of this interval(δt) across all nodes, is 1 second.
The typical drift assumed on physical clocks is ±10−5. While
the allowed bound on jitter is ±30% of announce interval, a
more typical value is ±10−3 sec; i.e., Ju = −Jl = 10−3. Thus,
the nominal step size τ0

i is the same as the announce interval,
1 second. Further, the drift in the process clock is bounded
by ε = 10−3 + 10−5. Therefore, the step size of processes in
typical IEEE 1588 implementations can be derived to lie in
the interval [0.99899, 1.00101].

When we consider distributed systems comprising pro-
cesses with symmetric timing behavior (they step on the same
values of τi), synchronization of physical clocks implies a
synchronization of process clocks. We therefore extend the
definition of time synchronization from physical clocks to
process clocks for such systems. If the distributed system is
time-synchronized, there exists a parameter β such that for all
i and j,

|τi − τj | ≤ β (5)

Example 4. In the time-synchronized channel hopping (TSCH)
protocol in IEEE 802.15.4e, all nodes step on a common
notion of time slot. If the physical clocks of all nodes are
time-synchronized, then the process clocks will also be time-
synchronized.

The initial value of τi also depends on whether the system
is time-synchronized in the initial state. If so, for simplicity, we
assume that in the initial state τi = 0 for all i. If not, then we
assume the initial value of τi is non-deterministically chosen
from the interval [0, θ] where the parameter θ determines the
maximum initial offset between process clocks.

C. Composition and Traces

The network topology determines the structural form of
composition of processes corresponding to nodes and channels.
Some of the more commonly used simple topologies include a
linear chain, a star, and a ring [17]. Given a network topology
and the processes modeling various nodes and channels that
form the network, one can compose together those processes
to obtain the overall model of the system.

The overall model of the distributed system MC is
obtained as the synchronous composition of processes
P1,P2, . . . ,PK . (See Appendix IX-B for a definition of syn-
chronous composition.) Let δcfull denote the transition relation
for the full composed concrete model. A timed trace of the
composed system is a timestamped record of the execution
of the system according to the global time reference men-
tioned above. More formally, a timed trace is a sequence
h0, h1, h2, . . . where each element hj is a triple (sj , ~τj , tj)
where sj ∈ S1 × S2 × . . . × SK is a discrete (global) state,
~τj = (τ1,j , τ2,j , . . . , τK,j) is the vector of process clock values,
δcfull(sj , sj+1) holds for all j ≥ 0, and the transition into sj
occurs at time tj .

D. Verification Problem and Approach

The main problem considered in this paper is as follows:

Problem 1. Given a distributed systemMC modeled as above,
and a linear temporal logic (LTL) property Φ with propositions
over the discrete states of MC , verify whether MC satisfies
Φ.

A brief introduction to LTL is provided in Appendix IX-A.
One way to model MC would be as a hybrid system (due to
the continuous dynamics of process clocks), but this approach
currently does not scale well due to the extremely large discrete
state space.

Our approach to solve this problem is based on computing
a sound discrete abstraction MA of MC that preserves the
relevant timing semantics of the ‘almost-synchronous’ systems.
There are two phases in our approach:

1. Compute Abstraction Parameter: Using parameters of MC
(relating to clock dynamics), we compute a parameter ∆
characterizing the “approximate synchrony” condition, and
use ∆ to generate a sound abstract model MA.

2. Model Checking: We verify the temporal logic property Φ
on the abstract model using finite-state model checking.

The key to this strategy is the first step, which is the focus of
the following section.

IV. APPROXIMATE SYNCHRONY

We now formalize the concept of approximate synchrony
(AS), a tunable timing abstraction for time-synchronized dis-
tributed systems. We also present algorithmic techniques to
compute a sound AS abstraction.

A. Definition

We construct an abstract modelMA fromMC along with
a scheduler that decides when each process gets to execute.
In essence, the scheduler performs a form of asynchronous
composition of processes, where at each step, any subset of
processes can execute provided their execution does not vio-
late a certain condition known as the approximate synchrony
condition. The condition depends on a parameter ∆ which is
computed based on the parameters appearing in the definition
of the dynamics of the process clock variables. Appendix IX-B
includes the definition of asynchronous composition; note that
it permits simultaneous steps.

We now define the notion of approximate synchrony.

Definition 2. (Approximate Synchrony) Two processes Pi
and Pj are said to execute in approximate synchrony (are
approximately synchronous) with parameter ∆, if, the number
of steps Ni and Nj taken by the two processes from an initial
state always satisfy the following condition:

|Ni −Nj | ≤ ∆

If a system composed of multiple processes is such that, for
some ∆, any pair of processes is approximately synchronous
with parameter ∆, then we say that the system is approximately
synchronous with parameter ∆, or, more succinctly, that the
system is ∆-abstract; We also say that the system is formed
using approximately synchronous composition. We will refer
to the condition in Definition 2 above as the approximate
synchrony (AS) condition with parameter ∆, denoted AS(∆).

Note that ∆ is a parameter that characterizes the “ap-
proximation” in approximate synchrony. For example, for a
perfectly synchronous system ∆ = 0, since processes step
at the same time instants. For a fully asynchronous system,
∆ =∞, since one process can get arbitrarily ahead of another.

B. Approximate Synchrony Abstraction

We model an approximately synchronous system by ex-
plicitly including a scheduler that constrains when processes
can execute. Formally, a ∆-abstract model MA is an asyn-
chronous composition of abstract processes P̂1, P̂2, . . . , P̂K
with a constraining scheduler ρ∆. where each P̂i is formed
from the corresponding concrete process Pi by simply drop-
ping the process clock τ ; i.e., P̂i = (Si, δi, Ii). The set
of possible states for the composed abstract processes is
S = S1 × S2 × . . . × SK . The scheduler ρ∆ maintains as
state counts Ni of the numbers of steps taken by each process
P̂i from the initial state.1 A configuration of MA is a pair
(s,N) where s ∈ S and N ∈ ZK is the vector of step counts
of the K abstract processes. The abstract model MA changes
its configuration according to its transition function δafull where
δafull((s,N), (s′, N ′)) iff (i) δcfull(s, s

′) and (ii) N ′i = Ni + 1 if
ρ∆ permits P̂i to make a step and N ′i = Ni otherwise.

1The inclusion of step counts may seem to make the model infinite-state.
We will show in Sec. V how the model checker can be implemented without
explicitly including the step counts in the state space.

In the initial state, all processes P̂i are enabled to make
a step. At each step of δafull, ρ∆ enforces the approximate
synchrony condition by only enabling P̂i to step iff that step
does not violate AS(∆). Behaviors ofMA are untimed traces,
i.e., sequences of discrete (global) states s0, s1, s2, . . . where
sj ∈ S, s0 is an initial (global) state, and each transition from
sj to sj+1 is consistent with δafull defined above.

Approximate synchrony is a tunable timing abstraction.
Larger the value of ∆, more conservative the abstraction.
The key question is: for a given system, what value of
∆ constitutes a sound timing abstraction, and how do we
automatically compute it? Recall that one model is a sound
abstraction of another if and only if every execution trace of
the latter (concrete model) is also an execution trace of the
former (abstract model). In our setting, the ∆-abstract and
concrete models both capture the protocol logic in an identical
manner, and differ only in their timing semantics. The concrete
model explicitly models the process clocks of each process
as real-valued variables whose dynamics can be described as
in Sec. III. The executions of this model can be represented
as timed traces (sequences of timestamped states). On the
other hand, in the ∆-abstract model, processes are interleaved
asynchronously while respecting the approximate synchrony
condition stated in Definition 2. An execution of the ∆-abstract
model is an untimed trace (sequences of states). We equate
timed and untimed traces using the “untiming” transformation
proposed by Alur and Dill [3]; in essence, the traces must be
identical with respect to the discrete states.

Next, we address this question of computing a sound
abstraction. Two cases are considered: (i) protocols such as
TSCH that run on top of a layer of time-synchronization
and require a priori time synchronization, and (ii) protocols
such as the BMC algorithm that are themselves part of a
time synchronization protocol and do not rely on a priori
time synchronization. Both classes of protocols share three
characteristics:

(a) The nominal step size of a process is constant across all
processes, denoted by τ0;

(b) The process clocks have bounded drift ε, and
(c) The processes step at the same sequence of values of their

respective clocks.2

C. A Priori Time-Synchronized Systems

The first case for deriving ∆ is for protocols that, in
addition to the two properties listed in Sec. IV-B, satisfy the
following condition:

(d) They begin operation after the distributed system has
reached a time-synchronized state. Recall from Sec. III,
Equation 5, that this implies the skew between any two
process clocks τi and τj must be bounded by a parameter
β.

This condition holds for the time-synchronized channel hop-
ping (TSCH) protocol in the IEEE 802.15.4e standard.

Suppose Pi is specified to step at the following sequence of
values of τi: τ1

i , τ
2
i , τ

3
i , Similarly, Pj must step at values

τ1
j , τ

2
j , τ

3
j , . . . of τj . Since the processes step on the same

sequence of clock values, we know further that τ li = τ lj for
all l = 1, 2, 3, However, at any time t (the ideal time

2Since the clocks of different processes in general have different values, the
processes will not in general step synchronously.

reference), τi(t) differs from τj(t) by at most β. Thus, Pi and
Pj make their lth step within β time units of each other.

If β > 0, then ∆ ≥ 1 since two processes are not
guaranteed to step at the same time instants, and so the number
of steps of two processes can be off by at least one. In the
general case, the value of ∆ is given by the following theorem.

Theorem 1. If the dynamics of process clocks in a distributed
system MC obey Equations 4 and 5, and the system satisfies
conditions (a), (b), (c), and (d) above, then processes of MC
obey the approximate synchrony condition with

∆ = d β

τ0 − ε
e

Proof: Consider two arbitrary processes Pi and Pj . We
show that |Ni −Nj | ≤ d β

τ0−εe at all time points.

Consider an arbitrary time point t according to an ideal
time reference. Without loss of generality, assume Ni(t) >
Nj(t) (i.e., that Pi has made more steps than Pj) and that Pj
has performed a step at time t. We seek to bound the number
of additional steps that Pi has made over Pj .

Since Pi and Pj step at the same values of their respective
clocks, it must be the case that τi > τj . Due to time
synchronization, we also have τi − τj ≤ β. Further, the step
size of Pi is bounded below by τ0 − ε. Thus, the number
of additional steps Pi could have taken at time t over Pj is
bounded above by

dτi − τj
τ0 − ε

e ≤ d β

τ0 − ε
e

Thus, |Ni −Nj | ≤ d β
τ0−εe at time t, for any t. This yield the

desired value of ∆.

Thus, if the abstract model MA is constructed as the ∆-
abstraction of MC with ∆ as given in Theorem 1, then MA
is a sound abstraction of MC : every trace of MC satisfies
AS(∆).

In practice, if β is much smaller than τ0 − ε, then ∆ = 1.
This is the case for the TSCH protocol.

D. A Posteriori Time-Synchronized Systems

We now consider the second scenario in which we are
verifying a protocol that forms part of a time-synchronization
scheme. More precisely, the protocol comprises the first phase
of a time synchronization scheme, in which all nodes agree on
a stable network configuration that is then used to synchronize
clocks. We refer to this agreement as logical convergence. The
goal is to verify that logical convergence is attained within a
finite time bound (and maintained thereafter).

In this case, the analysis of Sec. IV-C does not apply as
the distributed system may not be time-synchronized when the
protocol begins operation. However, we show in this section
that, even in this case, for the specific verification task of prov-
ing that logical convergence is attained, we can derive a sound
approximate synchrony abstraction. Our approach is motivated
by the BMC algorithm of the IEEE 1588 protocol, and also
applies to other similar time synchronization protocols.

Example 5. As described in Sec. II, IEEE 1588 uses the BMC
algorithm to logically converge on a unique spanning tree

with the best clock at its root. Nodes in the 1588 network
have a common nominal step size called Announce Interval
of 1 second; thus, we can model each process as intending
to step at time 0, 1, 2, 3, (Due to imperfect process clocks,
the processes will end up stepping at slightly different time
instants.) After the logical convergence of BMC algorithm the
time-synchronization phase of the protocol is performed that
synchronizes all the physical clocks. Generally, the time from
logical convergence of BMC to all the clocks being physically
synchronized is approx. 30 seconds, which is approximately
equivalent to 30 steps of a process.

For simplicity in the main body of this paper, we will as-
sume that the physical clocks are instantaneously synchronized
after logical convergence is attained; Appendix IX-C discusses
the (minor) modification to our theory when this is not the case.

We now present an iterative approach to construct a sound
∆-abstract model of a protocol satisfying conditions (a), (b),
and (c) for the purpose of verifying logical convergence of
the protocol. Our abstraction method operates in the following
steps:

1. First, from ∆ and ε, we compute a number Nmin such that
if we can prove the ∆-abstract modelMA achieves logical
convergence before any process makes Nmin steps, then this
implies the same for MC . We describe this derivation of
Nmin in Sec. IV-D1 below.

2. Second, we verify using model checking on the ∆-abstract
model that the system achieves logical convergence before
any process makes more than Nmin steps.

If the second (verification) step succeeds, then we can conclude
that MC achieves logical convergence within Nmin steps.
Otherwise, we increment ∆ and try Steps 1 and 2 again.
When we terminate,3 we have a value Nmin such that logical
convergence is guaranteed to be attained when any process
reaches Nmin steps. Under the assumption that physical time
synchronization is instantaneous, from this time point in the
trace, the analysis of Sec. IV-C holds and a corresponding
value of ∆, say ∆′, can be derived accordingly. We then update
∆ as ∆← max(∆,∆′) and use the resulting value to compute
the abstract modelMA. We formalize the soundness argument
in Theorems 2 and 3 below.

1) Computing Nmin: Recall that the nominal step size of
a process is τ0, and that the step size of any process is at least
τ0 − ε, and at most τ0 + ε.

Let Pf be the fastest process (the one that makes the most
steps from the initial state) and Ps be the slowest (the fewest
steps). Denote the corresponding number of steps by Nf and
Ns respectively. Then the approximate synchrony condition in
Definition 2 is always satisfied if Nf −Ns ≤ ∆. We wish to
find the smallest number of steps taken by the fastest process
before AS(∆) is violated. We denote this value as Nmin, and
obtain it by formulating and solving a linear program.

Before we state the linear program, we introduce one of
its key components. At the time point where Ps has just
completed Ns steps (and Pf has finished Nf steps), the sum
of the step sizes of Pf must be less than the corresponding
sum for Ps The former can be bounded below by (τ0− ε)Nf
and the latter can be bounded above by (τ0 + ε)Ns. If Ps and
Pf start making steps at the same instant of time, then their

3Termination of this procedure is an open theoretical question at this point;
in practice, however, a single iteration of the loop has sufficed in all our
experiments.

sums of step sizes are equal, yielding the inequality:

(τ0 − ε)Nf ≤ (τ0 + ε)Ns

However, processes need not begin making steps simultane-
ously. Since each process must make its first step at least τ0+ε
seconds into its execution, the maximum initial offset between
processes is τ0 + ε. The smallest value of Nf occurs when
the fast process starts τ0 + ε time units after the slowest one,
yielding the inequality:

(τ0 − ε)Nf + (τ0 + ε) ≤ (τ0 + ε)Ns

Given the above analysis, we can set up the following
integer linear program (ILP) to solve for Nmin:

min Nf (6)
s.t.

Nf ≥ Ns Nf −Ns > ∆

(τ0 − ε)Nf + (τ0 + ε) ≤ (τ0 + ε)Ns Nf , Ns ≥ 1

Nmin is the optimal value of this ILP. In effect, it gives the
fewest steps any process can take (smallest value of Nf) before
the approximate synchrony condition AS(∆) is violated.

Example 6. Suppose ε = 10−3 and τ0 = 1, as is the case
for the IEEE 1588 protocol. Setting ∆ = 1, solving the above
ILP yields Nmin = 1001.

The quantity Nmin helps connect the ∆-abstract model
MA with the concrete model MC as formalized in the
following theorem.

Theorem 2. Suppose the ∆-abstract model MA reaches
logical convergence from any initial state before any process
has made M < Nmin steps, then the concrete modelMC also
reaches logical convergence from any initial state before any
process has taken M steps.

Proof: By the formulation of the ILP 6, for any timed
trace of MC , if we consider a prefix of the trace in which no
process makes more than Nmin steps, then that prefix is (after
untiming) also a prefix of a trace in MA (since the AS(∆)
condition holds for that prefix). If the ∆-abstract model MA
reaches logical convergence from any initial state before any
process has made M < Nmin steps, then it means that for any
trace ofMA, logical convergence is attained in a prefix of that
trace in which no process makes more than M steps. Since
this set of trace prefixes includes all trace prefixes of MC , it
follows that MC also attains logical convergence before any
process has taken M steps.

2) Temporal Logic Property: Once Nmin is computed, we
must verify whether the system (abstract model) achieves
logical convergence in less than Nmin steps. We perform this
by invoking a model checker to verify the following LTL
property, which references the variables Ni recording number
of steps of process Pi:

G
[(∨

i

(Ni = Nmin − 1)
)

=⇒ logicConv
]

(7)

If the verification passes, then we can conclude that from
any initial state of the abstract model — where all processes
are enabled to step — one can reach a logical convergence
before any process makes Nmin steps. If not, either logical
convergence does not hold, or we need to increase ∆; using
a model checker allows us to distinguish between these two
cases by replaying the counterexample on the concrete model
MC and increasing ∆ only if the counterexample is spurious.

Note that LTL Property 7 is equivalent to∧
i

[
G
(
(Ni = Nmin − 1) =⇒ logicConv

)]
and therefore, one can decompose the check into checking

corresponding properties on individual processes. When two
processes are symmetric (in functionality and network con-
nectivity), only one need be checked.

We conclude this section with the overall soundness result.

Theorem 3. If the ∆-abstract model MA satisfies the LTL
Property 7, then all traces of the concrete model MC are
traces of the abstract model MA (after untiming).

Proof: From Theorem 2, since the ∆-abstract modelMA
satisfies the LTL Property 7, the concrete model MC also
reaches logical convergence from any initial state before any
process has taken Nmin steps. Assuming instantaneous time
synchronization, and the update to ∆ based on the analysis of
Sec. IV-C (max(∆,∆′), as described above), the remainder of
the trace of MC (after logical convergence) also satisfies the
AS(∆) condition. Thus, every trace of MC is a trace of MA
(after untiming).

V. MODEL CHECKING WITH APPROXIMATE SYNCHRONY

In this section we describe the approach of model checking
with approximate synchrony as a scheduler. We also provide an
overview of the model checking algorithm used for verifying
soundness of AS abstraction for a given ∆.

A. Approximate Synchrony as a Scheduler

Verification using approximate synchrony is independent of
any specific model checker. The model checker does an asyn-
chronous composition of all the processes, where each process
is modeled as a transition system. Approximate synchrony
can then be implemented as a separate scheduler process that
enforces the AS(∆)-constraints (Definition 2). This scheduler
process represents the constraining scheduler ρ∆ described in
section IV-B.

Implementation: We used ZING an explicit state model
checker for verification of our case studies. The explorer in
ZING supports guided-search based on an external-scheduler.
The AS scheduler (implemented as a ZING external scheduler)
systematically explores only those traces that satisfy AS(∆). It
keeps track of the number of steps performed by each process
and schedules only those processes that do not violate the
AS(∆) condition. Implementing AS scheduler as an external
scheduler reduces the state space, as compared to including
the scheduler process as a part of the composed model. We
implement a small part of the scheduler as a part of system
state for soundness of the verification (See Appendix IX-D).

B. Checking Soundness of ∆ Abstract Model

Section IV-D describes an approach to verify whether an
∆ abstract model of a protocol is sound. The soundness
proof depends on verifying property 7. A naive approach for
checking this property would be to include a local variable
Ni in each process as part of the process state. We found that
the model checker cannot prove property 7 using this naive
approach because of state space explosion. To mitigate state
space explosion, the Ni information corresponding to each
process is maintained external to the system state, and as a
part of the explorer of the model checker.

typedef Stp List〈int〉;
var N : int ;
var Qstatetable : Dictionary〈S,Stp〉;

1: CheckSoundNess(s : S) {
2: var i : int ;
3: var s′ : S;
4: var steps ′ : Stp;
5: i := 0;
6: while (i < #P(s)){
7: steps′ := IncElement(i,Qstatetable [s]);

if (ρ∆(steps ′))∨
8: steps ′[i] > (N + ∆) then
9: continue ;

10: s′ := NextState(s, i);
11: if steps ′[i] = Nmin then
12: Check(logicConv(s′));

if (s′ /∈ Domain(Qstatetable))∨
13: ¬(steps ′ ≥pt Qstatetable [s′]) then
14: Qstatetable [s′] := steps ′;
15: CheckSoundNess(s′);
16: i := i+ 1 } };
17: }
18: }
19:Verify() {
20: Qstatetable [sinitial] = new Stp();
21: CheckSoundNess(sinitial);
22: }

ρ∆(steps ′) ≡ ∀s1 ∈ steps ′ ∀s2 ∈ steps ′(|s1 − s2| ≤ ∆)

Fig. 3: Algorithm for Verification of Property 7

Implementation: The algorithm in Fig. 3 performs bounded
depth first search (DFS) with the final bound on value of
steps as (N + ∆) (where N = Nmin − 1). The final bound
is considered as (N + ∆) so as to explore all processes till
atleast N steps. It systematically explores the AS transition
system described in section IV-B. A variable of type Stp is
used to store a tuple of steps executed by all processes. N
and ∆ values are derived using Equation 6. Qstatetable is
a map from reachable state (S) to the tuple of steps (Stp)
with which it was last explored. CheckSoundNess is called
recursively on all the successors of a state in DFS order.
#P(s) returns the number of processes in the current state
s. IncElement(i, t) increments the ith element of tuple t and
returns the updated tuple. NextState(s, i) returns the next state
from s after executing the ith process. At line 8 we check if
executing the current process would violate the AS(∆) (ρ∆)
or the final bound. Thus, ensuring that we explore only those
traces that satisfy AS(∆). If the steps executed is N then the
logicConv monitor is invoked to check if s′ |= logicConv (we
have reached logical convergence state). As an optimization,
to avoid re-exploring a state which may not lead to new
states, we don’t re-explore a state if it is revisited with steps′
greater than what it was last visited. The operator ≥pt does
a pointwise comparison of the integer tuples. steps in our
algorithm represents Ni in equation 7 and it is a part of the
explorer, which is external to the system state and hence we
avoid state space explosion caused by the naive approach.

VI. EVALUATION

In this section, we present our empirical evaluation of the
approximate synchrony abstraction, guided by the following
goals:

• Verify two real-world standards protocols: (1) the best mas-
ter clock algorithm and (2) the time synchronized channel
hopping protocol.

• Evaluate how effective the approximate synchrony abstrac-
tion is in reducing the state space for model checking.

• Evaluate our approach as a bug finding technique.

We first describe the temporal properties verified for both the
case studies, followed by an explanation of our modeling ap-
proach. Finally, we present the experimental results in support
of the afore-mentioned goals.

A. Temporal Properties of Case Studies

Section II provided an overview of both the case studies
and also described the desired properties for the correctness
of these protocol. In this section we present the temporal
properties verified for the BMC algorithm and the TSCH
protocol.
Best Master Clock Algorithm: BMC algorithm is a complex
distributed protocol with the property that eventually it sta-
bilizes with a unique spanning tree having the grandmaster
at its root (under certain assumptions mentioned in detail in
section VI). The system is said to be in logicConv state when
the system has converged to the expected spanning tree. The
convergence property is:

FG (logicConv) (8)

It states that the system eventually stabilizes in the logicConv
state.
Time Synchronized Channel Hopping: Nodes in the TSCH
network should remain time-synchronized, they synchronize
on receiving messages from their master. A node is said to
be desynchronized – if it fails to synchronize with its master
within the threshold period. Once desynchronized, the node has
to perform a complete resynchronization which consumes a lot
of power and should be avoided. To avoid desynchronization,
the property that the system should satisfy is:∧

i∈nodes

G(¬desynchronizedi) (9)

It states that all nodes are always synchronized.

B. Modeling of Protocols in P

P [10] is a domain-specific language for writing asyn-
chronous event-driven protocols. A protocol model in P is a
collection of state machines interacting with each other via
asynchronous events or messages. The P compiler generates a
model for systematic exploration by ZING [4], an explicit state
model checker. P also provides ways of writing LTL properties
as monitors that are synchronously composed with the model.
Both the case studies, the BMC algorithm and the TSCH proto-
col, are modeled using P. Each node in the protocol is modeled
as a separate P state machine. The timeouts in the protocol
are modeled as non-deterministic choice. Message losses and
message delays are also modeled as non-deterministic choice
where messages are non-deterministically dropped or delayed.
ZING provides easy mechanisms to bound the total number of
messages lost or timeouts by bounding the appropriate choice
operators. We did not model node/link failures in the network.

C. Experimental Setup

All the experiments were performed on Intel Xeon ES-
2440, 2.40GHz (12 cores/24 threads) with 160 GB of memory
running 64-bit Windows server OS. ZING explorer can exploit
parallelism as its iterative depth-first search algorithm is com-
pletely parallelized. All timing results reported in this section

Network Safety Property Convergence Property with bounded Fairness Assumption

Topology Fully Asynchronous Model with Approximate Fully Asynchronous Model with Approximate

(#Nodes) Model Synchrony Model Synchrony
States Time Property ∆ States Time Property States Time Property ∆ States Time Property

Explored (h:mm) Proved Explored (h:mm) Proved Explored (hh:mm) Proved Explored (hh:mm) Proved
Linear(5) 1.2 E+9 7:12 Yes 1 9.5 E+5 0:35 Yes 9.1 E+11 13:11 Yes 1 7.2 E+8 8:34 Yes
Star(5) 2.4 E+10 9:40 Yes 1 5.8 E+5 0:54 Yes 8.3 E+11 12:44 Yes 1 4.4 E+7 5:23 Yes

Random(5) 9.19 E+9 9:01 Yes 2 5.5 E+6 1:44 Yes 4.1 E+13* * No 2 1.8 E+9 9:21 Yes
Ring(5) 7.1 E+12* * No 1 4.8 E+7 3:44 Yes 1.3 E+13* * No 1 8 E+9 8:34 Yes

Linear(7) 1.4 E+13* * No 1 4.6 E+7 3:05 Yes 1.2 E+13* * No 1 1.0 E+8 6:21 Yes
Star(7) 1.1 E+13* * No 2 3.7 E+8 5:06 Yes 2.1 E+12* * No 2 3.3 E+10 13:34 Yes
Ring(7) 3.3 E+12* * No 2 6.8 E+8 8:04 Yes 1.7 E+13* * No 2 2.1 E+10 11:11 Yes

* denotes end of exploration as model checker ran out of memory

TABLE I: Verification of Safety and Liveness property of BMC model.

are when ZING is run with 24 threads. We use the number
of states explored and the time taken to explore them as the
comparison metric.

D. Verification of the BMC Algorithm

We generated various verification instances by changing
the configuration parameters such as number of nodes, clock
characteristics, and the network topology. The results in Table I
for the BMC algorithm are for 5 and 7 nodes in the network
with linear, star, ring, and random topology. The ∆ values
(1 and 2) used for verification of these configurations were
derived by using the sound approach described in section IV-D.
We found that for Random(5), Ring(7) and Star(7) the ∆ value
required is 2 (for others ∆ = 1) because BMC model took
longer to converge for these configurations and hence nodes
would diverge beyond ∆ = 1 (BMC for these configurations
converges before Nmin = 2002 steps for ∆ = 2).

Verification of Safety and Convergence properties: P by
default checks a receptiveness safety property: that there is an
outgoing transition for the dequeued event in the current state
for each process. We also verified certain safety properties
of BMC model expressed as monitors in P. For checking the
convergence property (property 8) we composed the model
with bounded fairness assumptions, the BMC model can
converge only in the presence of bounded message delay and
bounded message loss. Our bounded fairness assumption is
based on strong fairness for scheduling and also bounds the
number of timeouts in the system which in turn bounds the
message loss/delay in the system.

Table I shows the total number of states explored and time
taken by the model checker for proving the safety and con-
vergence property. For demonstrating the state space reduction
obtained because of approximate synchrony we also conducted
the experiments with complete asynchronous composition, ex-
ploring all possible interleavings. The complete asynchronous
model is simple to implement but fails to prove the properties
for most of the topologies. It runs out of memory on the
server because of the large state space. Approximate synchrony
abstraction is orders of magnitude faster as it explores reduced
states space under the ∆ bound.

An upshot of our approach is that we are the first to
prove that the BMC algorithm in IEEE 1588 achieves logical
convergence to a unique stable state for some interesting
configurations. This was possible because of the sound and
tunable approximate synchrony abstraction. Although experi-
ments with 5/7 nodes may seem small, it is common to have
networks of this size in practice, e.g., in industrial automation
where one has small teams of networked robots on a factory
floor.

Network Round-Robin Scheduler Shared with CSMA
Topology States Time Property States Time Property
(#Nodes) Explored (h:mm) Satisfied Explored (h:mm) Satisfied
Linear(5) 4.4 E+4 0:20 Yes 1.2 E+2* 0:03 No

Random(5) 3.6 E+2* 0:01 No 6.2 E+3* 0:12 No
Mesh(5) 1.7 E+7 4:05 Yes 9.1 E+6 2:01 Yes

* denotes the states explored before generating the counter example

TABLE II: Verification of TSCH with different Schedulers

E. Verification of TSCH

We modeled three different topologies for the TSCH net-
work: linear, random, and mesh with 5 nodes. We verified
the desynchronization property (property 9) in the presence
of network characteristics like message loss, interference in
wireless network, etc using a failure machine that injects
bounded number of these failures in the system. Given the
failure model, network of nodes, and a global schedule, we
verified whether the desynchronization property holds for
the configuration. Recall that the correctness of the protocol
depends on the global schedule that instructs each node when
to perform operations. Since the standard provides no recom-
mendation on the schedule, a system designer may want to
experiment with different schedules that satisfy the property
but also consume minimum power. For the experiments we
considered two schedules (1) round-robin (2) shared with
CSMA, derived considering the threshold period of 30 time-
slots (Appendix IX-D). Table II present the results for TSCH
with different schedulers. We were able to verify if the property
was satisfied for a given topology under the global schedule,
and generated a counterexample otherwise. Thus, approximate
synchrony (with ∆ = 1) could accurately capture the “almost
synchronous” behavior of the a priori time synchronized TSCH
system.

F. Bug finding using AS

We also evaluated whether approximate synchrony enables
us to find bugs faster. A few realistic bugs were injected
into our BMC model, to capture both safety and liveness
violations. We then compared the number of states explored
and time taken to find these bugs. Table III shows that by
using the approximate synchrony abstraction, we are able to
find these bugs orders of magnitude faster. The reason for this
is that approximate synchrony explores reduced state space,
whereas complete asynchrony explores a lot of spurious
interleaving. For example, for Liveness Bug 1, with complete
asynchrony we failed to uncover it, but it was found with AS.

Buggy Complete Asynchrony with AS
Models States Time States Time

Explored (h:mm) Explored (h:mm)
Safety Bug 1 2.4 E+7 3:23 1.7 E+4 0:10
Safety Bug 2 5.3 E+8 4:11 9.5 E+4 0:22

Liveness Bug 1 * * 2.2E+8 4:49

* → failed to find the bug and search ran out of memory

TABLE III: Finding Bugs Faster with AS

VII. RELATED WORK

The related work can be categorized into two parts: (i)
existing approaches for modeling time-synchronized systems
using timed models, and (ii) existing untimed abstractions that
are similar to approximate synchrony, but used in different
domains.

Modeling: The choice of modeling formalism greatly influ-
ences the verification approach. Time-synchronized systems
can be modeled as a hybrid system [2]. However, it is important
to note that, unlike traditional hybrid systems examples from
the domain of control, the discrete part of the state space for
these protocols is very large. Due to this we observed that lead-
ing hybrid systems verification tools, such as SpaceEx [12],
cannot explore the entire state space.

There has been work on modeling protocols similar to
IEEE 1588 using real-time formalisms such as timed au-
tomata [3], where the derivatives of all continuous-time vari-
ables are equal to one. One of the more established tools
for modeling real-time systems using timed automaton is
UPPAAL [16]. The current official version of UPPAAL (ver-
sion 4.0) does not, however, explicitly support modeling of
mutlirate time systems [2]; that is, systems with skewed clocks
where clocks proceed at different rates. There exist, however,
techniques for approximating multirate clocks by making the
clock skew part of the model. For instance, Huang et al. [14]
propose the use of integer clocks on top of UPPAAL models.
Such clocks are basically integer variables that are periodically
updated by a global pulse generator. Daws and Yovine [9]
show how multirate timed systems can be abstracted into
timed automata. Vaandrager and Groot [19] models a clock
that can proceed with different rate by defining a clock model
consisting of one location and one self transition (more details
in Appendix IX-F).

Such models do not completely represent multirate time
systems, but an approximation. By contrast, our approach
algorithmically constructs abstractions that can be refined to
be more precise by tuning the value of ∆, and results in an
untimed model that can be directly checked by a finite-state
model checker. Consequently, for the systems we consider, our
approach do not suffer from any approximation on integer
clocks and we do not need to resort to advanced real-time
model checkers such as UPPAAL.

Untimed abstractions: There have been numerous efforts
devoted towards capturing the asynchrony in synchronous sys-
tems [7], [13]. Multiclock Esterel [18] and CRP [5] are similar
extensions to the synchronous language Esterel. Multiclock
Esterel provides language extensions to partition clocks into
two categories: those that tick simultaneously and those that
can have unbounded skew and drift. In time-synchronized
systems there is a guarantee of a fixed bound which is
captured by approximate synchrony but cannot be captured by
these abstractions. The quasi-synchronous [8], [13] approach,
which is based on Lustre-Scade, is designed for processes
communicating over shared memory that are periodic and
have almost same period. They do capture the clock skew

and non-determinism because of clock jitters, but do not
capture bounded clock drift (which may lead to bounded
variable progress). Bounded asynchrony is another approach
to restricting the degree of asynchrony with applications to
biological systems [11] and cannot be applied directly to
time-synchronized systems. Processes in bounded asynchrony
synchronize after each step and are interleaved asynchronously
between two steps, hence inappropriate for modeling the non-
deterministic, but bounded progress drift between processes.

Approximate synchrony is designed to capture all the
imperfections in clock dynamics in time-synchronized system
— bounded clock skew, clock drift, and initial offset. It is a
sound and tunable abstraction, directly usable for verification.
Approximate synchrony with ∆ = 1 is equivalent to quasi-
synchrony and bounded asynchrony with some minor variation
in the way systems are modeled.

VIII. CONCLUSIONS

We have introduced the notion of approximate synchrony
as an abstraction technique for protocols operating on time-
synchronized systems, along with techniques to compute sound
abstractions. The approach is demonstrated by efficiently ver-
ifying properties of two IEEE standard protocols.

REFERENCES

[1] 802.15.4e 2012. IEEE standard for local and metropolitan area
networks-part 15.4: Low-rate wireless personal area networks (LR-
WPANs) amendment 1: MAC sublayer. 2012.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical computer science, 1995.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 1994.

[4] T. Andrews, S. Qadeer, S. Rajamani, J. Rehof, and Y. Xie. Zing: A
model checker for concurrent software. In Proceedings of CAV. 2004.

[5] G. Berry, S. Ramesh, and R. Shyamasundar. Communicating reactive
processes. In Proceedings of POPL, 1993.

[6] D. Broman, P. Derler, and J. C. Eidson. Temporal issues in cyber-
physical systems. Journal of Indian Institute of Science, 2013.

[7] P. Caspi. Embedded control: From asynchrony to synchrony and back.
In Embedded Software, 2001.

[8] P. Caspi, C. Mazuet, and N. R. Paligot. About the design of distributed
control systems: The quasi-synchronous approach. In SAFECOMP.
2001.

[9] C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with Kronos. In Proceedings of RTSS, 1995.

[10] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and
D. Zufferey. P: Safe asynchronous event-driven programming. In
Proceedings of PLDI, 2013.

[11] J. Fisher, T. A. Henzinger, M. Mateescu, and N. Piterman. Bounded
asynchrony: Concurrency for modeling cell-cell interactions. In FMSB.
2008.

[12] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In CAV, 2011.

[13] N. Halbwachs and L. Mandel. Simulation and verification of asyn-
chronous systems by means of a synchronous model. In Proceedings
of ACSD, 2006.

[14] X. Huang, A. Singh, and S. A. Smolka. Using Integer Clocks to Verify
the Timing-Sync Sensor Network Protocol. In Proceedings of NFM,
2010.

[15] IEEE Instrumentation and Measurement Society. IEEE Standard for a
Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems, 2008.

[16] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.
International Journal on STTT, 1997.

[17] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. Gonzalez Cobas,
A. Rubini, and P. Moreira. Performance results of the first white rabbit
installation for cngs time transfer. In Proceedings of ISPCS, 2012.

[18] B. Rajan and R. Shyamasundar. Multiclock esterel: a reactive frame-
work for asynchronous design. In IPDPS, 2000.

[19] F. W. Vaandrager and A. de Groot. Analysis of a biphase mark protocol
with Uppaal and PVS. Formal Aspects of Computing, 2006.

IX. APPENDIX

A. Linear Temporal Logic

Given a finite set of atomic propositions Σ, formulas
in linear temporal logic (LTL) are constructed as per the
following grammar:

ψ ::= p | ¬ψ |ψ ∨ ψ |Xψ |ψUψ

where p ∈ Σ is an atomic proposition, X is the temporal
operator next and U is the temporal operator until. Other
temporal operators can be derived using these two temporal
operators and Boolean operators, for example, “eventually ψ”
as Fψ = trueUψ and “globally ψ” as Gψ = ¬F¬ψ.

B. Synchronous/Asynchronous Composition

Our use of synchronous composition is standard. Given two
processes Pi = (Si, δi, Ii, i, τi) and Pj = (Sj , δj , Ij , j, τj) the
synchronous composition is the process P = (Si ×Sj , δ, Ii ×
Ij , ID, (τi, τj)) where δ

.
= δi ∧ δj (interpreting transition

relations as Boolean formulas in the usual way).

Our definition of asynchronous composition is slightly
different from the usual in that we allow multiple processes
to step simultaneously. In effect, given processes Pi and Pj
as given above, the asynchronous composition differs from
synchronous composition in that it is also possible for just
one process to step:

δ((si, sj), (s
′
i, s
′
j))

.
=(δi(si, s

′
i) ∧ δj(sj , s′j))∨

(δi(si, s
′
i) ∧ sj = s′j)∨

(si = s′i ∧ δj(sj , s′j))

This definition generalizes to K processes in the standard way,
allowing any subset of processes to step simultaneously at a
given point in time.

In order to enforce the approximate synchrony condition,
we permit steps consistent with asynchronous composition as
above provided the AS condition in Definition 2 is not violated.

C. Non-Zero Time to Physical Clock Synchronization

For a time synchronization protocol such as IEEE 1588,
there typically exists an integer L2P such that, if logical
convergence is achieved, the clocks of the nodes will be
time-synchronized within L2P steps of any process. L2P is
derived from a real-time bound on the amount of time between
achieving logical convergence and synchronizing the physical
clocks, by dividing this real-time bound by the smallest step
size of any process.

As an example, for the IEEE 1588 protocol the time from
logical convergence of BMC to all the clocks being physically
synchronized is approximately 30 seconds. With the nominal
step size (announce interval) of 1 second and ε = 10−3, the
value of L2P is d 30

0.999e = 31.

We can account for this delay to physical clock syn-
chronization by replacing Nmin in the LTL Property 7 with
Nmin − L2P. The rest of the theoretical analysis remains
unchanged.

D. Implementation of AS as scheduler

Section V gives an overview of how we implemented the
AS scheduler (ρ∆) as an external ZING scheduler. Hence the
entire logic of which process should be executed in the current
state is evaluated and enforced externally and not add any more
states to the existing state space (SS).

We used explicit state model checker with state caching
which means that if a state is already explored then it is
not re-explored when visited again. Consider two cases (1)
when the entire scheduler ρ∆ is part of the composed system
(SS = (PS×SchedS), where PS is the set of program state
and SchedS is the set of states of ρ∆ scheduler), this is when
ρ∆ is included as a process in the program model (2) when the
scheduler ρ∆ is implemented as a external scheduler without
adding any scheduler state (SS = PS). In the first case since
scheduler state is a part of the system state and hence we
would not miss any possible combination of program state
and scheduler state. In the second case since scheduler state
is not maintained, we miss soundness because we might visit
the same program state with different scheduler state (which
can mean that different out-going transitions are enabled) and
hence the state should be re-explored with the new scheduler
state. But because of state-caching only program state the
explorer assumes that all possible transition from this state
are explored and hence we don’t re-explore it and can miss
reachable state.

The fix for this is that we maintain minimal information
as a part of the system state that distinguishes the program
state when it is visited with different scheduler state (SS =
(PS × minSchedS), note that minSched is not the set of
states of ρ∆ scheduler). The way we do it is by storing the
steps executed by each process modulo ∆ and this is enough to
ensure all combination of program state and scheduler state are
explored. And the complex logic of evaluating which process
to execute next and enforcing AS condition is still in the
external scheduler. We did not add new scheduler process in
the system which does save a lot of states.

E. Parameters for Experiments

1) BMC Algorithm: Using the set of Equations 6, and the
values of ε = 10−3 we get for :

• ∆ = 1 Nmin = 1001

• ∆ = 2 Nmin = 2002

2) TSCH: In TSCH network, all the nodes are assumed to
start communicating at the start of the time-slot. To tolerate
some desynchronization the receivers start listening a small
time duration before the start of time-slot and keeps listening
sometime after. This duration is called the ‘guard’ time (Tg).
Typical Tg value is 1ms. Consider the system being equipped
with 60ppm crystals then two nodes can drift by 120µs.
The synchronization period is τsp and is calculated using the
equation 10. Which means that the clocks desynchronize 8s
after it last communicated. For safety we consider that the
nodes should communicate every 3s. If a step in the model
corresponds to 1 time-slot and the time-slot size if 100ms then
the number of steps between two periodic resynchronization
is Nperiod = 30

τsp =
Tg
drift

(10)

Hence Nperiod represents the threshold period referred to in
the evaluations section. Also, the round robin scheduler cycles

over all the nodes in the network periodically. Shared with
CSMA have only shared slots in them and use CSMA protocol
to resolve conflict.

F. UPPAAL Multirate Clock Modeling

Vaandrager and Groot [19] propose one possible approach
of modeling clocks with variable rate in a timed automata.
In this approach, a clock model consists of one location and
one self transition. The location has an invariant x ≤ max
and the transition has a guard x ≥ min , where x is a timer
represented as an UPPAAL clock with fixed rate of 1, and min
and max are the minimal and maximal number of time units
that can elapse between each clock tick, respectively. Each
time the transition is taken, the clock ticks and x is reset to 0.
The min and max parameters are bounding the clock rates,
similar to a multirate clock, but clock rates are specified using
integers rather than reals. For instance, if time is measured in
milliseconds and max = 1010 and min = 990, the timer x
will count to between 990 and 1010 before one tick occurs.

G. Temporal Properties of the BMC Algorithm

An instance of the model checking problem is a triple
(P,Γ,Φ) where P is the set of processes modeling nodes and
channels, Γ is the system configuration, and Φ is the temporal
logic property to be verified. In this section, we describe the
latter two elements.

Configuration. Configuration Γ is a tuple (C,Rank,NT)
where C represents the set of clocks (nodes) in the system
(either ordinary or boundary clock), Rank: C → N is a
function that assigns a rank to each clock in the system based
on its characteristics, and NT : C → 2C is a function defining
the network topology of the clocks in the system (chain, ring,
star, etc.). The characteristics of a clock is determined based
on features described in the 1588 standard [15]. The function
Rank is meant to capture the clock quality and provides a
total ordering among different clocks in the system. During
verification, we vary the parameters of Γ to generate interesting
configurations.

Properties. We present safety and convergence properties for
BMC algorithm here. Our properties are defined using two
functions eGM and eCut where eGM : C → C is a function
that given a clock in the system returns its expected grand-
master clock in the logically synchronized state. Similarly,
eCut is a set of edges in the network graph that partition
it into different trees if there are multiple grandmasters. To
encode this property, each clock Ci maintains a local variable
ParentGMi in which it stores its current GM. Initially,
ParentGMi is null and eventually as the clocks exchange
messages and converge to a stable state, ParentGMi should
point to the expected grandmaster eGM(Ci). Let logicConv
be the correct logically synchronized state of the system,
in which it must stabilize. Formally, we consider a state as
logicConv state if it satisfies the following property :

(∀iParentGMi = eGM(Ci)) ∧ (currCut = eCut) (11)

The above property specifies that in logicConv state all the
nodes should have the correct grandmaster information and the
network should be correctly partitioned into trees based on the
number of grandmasters in the system.

Convergence Property: The convergence property of the sys-
tem can be specified as

FG (logicConv) (12)

It states that the system eventually stabilizes in the logicConv
state.

Safety Properties: The protocol is said to be in a metaStable
state if the number of distinct values of the variable
ParentGM is equal to the number of distinct grandmasters in
the system. We capture this formally using a special function
termed range:

(|range(ParentGM)| = |range(eGM)|)⇔ metaStable
(13)

Given this definition, the BMC algorithm should satisfy the
following property:

G(metaStable→ (∀iParentGMi ∈ range(eGM))) (14)

Property 14 specifies that if the system is in metaStable state
then ParentGM of all the nodes should point to a valid
grandmaster node. This enforces a safety check that in all
intermediate metaStable states of the protocol, the protocol
always chooses a valid node as the grandmaster node.

H. Temporal Properties of TSCH

Let Nperiod be the allowed period calculated by the central
server based on the worst case drift of clocks in the system.
Each node in the network is modeled as a P state machine.
Each state machine i has a local variable lastSynchronizedi
that keeps track of when the node was last synchronized.
lastSynchronizedi is incremented each time the state ma-
chine performs a step (which in our case is one time-slot). If
a node receives message from its master then it synchronizes
using that message and sets lastSynchronizedi to 0. To verify
that given the model of the system and the schedule does it
satisfy the property that no node is ever desynchronized, we
check the following LTL property.

G(∀i(lastSynchronizedi ≤ Nperiod)) (15)

