Temporal Lensing and its Application in Pulsing
Denial of Service Attacks

Ryan Rasti
Mukul Murthy
Vern Paxson

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-129
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-129.html

May 26, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Temporal Lensing and its Application in Pulsing Denial of Service Attacks

Ryan Rasti
UC Berkeley

Abstract

We introduce temporal lensing—a technique that con-
centrates a relatively low-bandwidth flood into a short,
high-bandwidth pulse. By leveraging existing DNS in-
frastructure, we experimentally explore lensing and the
properties of the pulses it creates. We also show how
attackers can use lensing to achieve peak bandwidths
more than an order of magnitude greater than their up-
load bandwidth. While formidable by itself in a puls-
ing DoS attack, we note how lensing can be compatibly
combined with amplification attacks to potentially allow
attackers to produce pulses with peak bandwidths orders
of magnitude larger than their own.

1 Introduction

Denial of service (DoS) first gained significant attention
more than a decade ago [13], but its essential features
have largely remained unchanged. That is, DoS attacks
have grown larger in scale (most notably with distributed
denial of service, or DDoS), but have often retained the
mindset of brute-force flooding.

However, there are certain variants on DoS that are
more intelligent. Some exploit abstracted-away features
of protocols. For example, SYN flooding attempts to
mount a state-holding attack in implementations of TCP.
In addition to protocols, certain types of DoS attacks also
exploit existing infrastructure. Reflector attacks [15], for
instance, trick innocent third parties into assisting. The
reflector can serve the dual purpose of hiding the at-
tacker’s identity and increasing the efficacy of the attack,
usually by reflecting a larger payload to the victim.

The plethora of protocols and deployed
infrastructure—much of it originally designed with
little regard for security—opens the door to exploitation.
We introduce temporal lensing, which (a) exploits
existing infrastructure (reflectors) in the novel way of
concentrating a flood in time, and that (b) can be used to

Mukul Murthy
UC Berkeley

Vern Paxson
UC Berkeley

significantly increase the effectiveness of an attack on a
feature of a widely deployed protocol (TCP congestion
control). We experimentally validate lensing and note its
ability to empower an attacker.

2 Related Work

Kuzmanovic and Knightly [8] first describe the concept
of bursty, low average bandwidth pulses as “shrew” at-
tacks. The attack aims to send enough packets in a short
duration to cause a TCP RTO (retransmit timeout) in
clients and then periodically induce another RTO with
each pulse. They note that such attacks, due to their
low average bandwidth, are harder to detect than tradi-
tional flooding. They show that such an attack is ef-
fective at reducing throughput by an order of magnitude
or more. Also, they perform experimentation showing
the drawbacks of two proposed defences. Specifically,
RED requires longer measurements to correctly identify
shrew pulses; increased randomization of RTOs involves
a trade-off with throughput in the absence of an attack.

Luo and Chang [12] generalize the idea of shrew at-
tacks from attacks on RTO to attacks on TCP congestion
control in general. That is, they also consider an attack
on TCP’s AIMD (additive increase multiplicative de-
crease) mechanism and show that it can also severely de-
grade TCP flows. Guirguis et al. [5] further abstract such
low average bandwidth attacks as a type of RoQ (reduc-
tion of quality) attack—that is, pulsing exploits transients
in a system (congestion control for the example of puls-
ing), instead of its steady state capacity (victim’s band-
width). Their empirical analysis was limited to a system
other than TCP and congestion control (they experiment
on bursty web requests effects on system resource utiliza-
tion and ability to serve other requests). However, they
were able to show the theoretical and practical potential
of RoQ attacks in general.

While pulsing DoS boasts impressive theoretical and
experimental efficacy, it has seen little use in practice.

We suggest a reason to be as follows: senders are limited
to their uplink bandwidth in a pulse, so simple pulsing
cannot intuitively perform better than flooding in terms
of damage inflicted. However, the idle time between
pulses indicates room for improvement. We propose a
method that allows an attacker to send in a flood, but
concentrates this flood into pulses at the victim, allowing
the attacker maximal bandwidth utilization.

Paxson [15] describes the role of reflectors in DoS at-
tacks as amplifying the flooded traffic and helping at-
tackers evade detection. He also notes the natural use
of open DNS resolvers as reflectors. Our attack proto-
type takes advantage of this last fact and the abundance
of such resolvers (estimated to be in the tens of millions
[16]). However, we take a new angle on reflectors, in-
stead using them to concentrate the arrival of packets at
the victim, much like a lens focuses light. This method
is orthogonal to traditional amplification attacks.

The proposed attack requires the ability to calculate
latencies between arbitrary hosts, in our case between a
reflector and the victim. The first major effort at latency
estimation was IDMaps [4] which calculated distance be-
tween any two hosts using a map of network tracers. Af-
ter IDMaps, many other systems emerged [14, 3, 18, 17].
However, dependence on new protocols or infrastructure
limit these schemes applicability to our proposed attack.

These schemes note certain relevant pitfalls with esti-
mating latencies. Namely, Ledlie et al. [9] discuss fac-
tors which cause differences between expected and ac-
tual latency between hosts. One unavoidable factor is
that latencies can be skewed by certain anomalous data
such as timeouts, which Ledlie et al. [10] remedy by us-
ing medians instead of means and employing various fil-
ters. We borrow some of these methods (specifically giv-
ing less weight to outliers in favor of medians and outlier-
independent measures) when building our estimates of
latencies.

Another latency estimation system, Gummadi et al.’s
King [6] offers the impressive advantage that it does not
need additional architecture or cooperation beyond what
is currently found in DNS. King works by finding DNS
servers close to the end hosts, and estimating distances
using recursive DNS queries. King is particularly well
suited to our task because: (a) it requires no additional
architecture or explicit agreement beyond standard DNS
queries, (b) it is most accurate if either (or both) hosts are
DNS servers, and (c¢) recursive protocols, such as DNS,
naturally lend themselves to use in reflection. We also in-
troduce an addition to King—by taking its cache poison-
ing trick a step further—allowing for a direct round-trip
time computation between an open DNS resolver and an
arbitrary host in Section 7.1.

Reflector 2
Path Time = 25
R I] g
- Reflector 1

Path Time = 15

Attacker Victim

(a) At t = 0, attacker sends one packet towards re-
solver 2

t=1.0s

Reflector 2
Path Time = 25

™ >)
@Eﬁ':"@‘ Reflector 1

Path Time = 1s

Attacker Victim

(b) Atr = 1, the first packet is halfway along its path

to the victim and the attacker sends another packet
to resolver 1

t=2.05

Reflector 2
Path Time = 25

- 3 D
@3’:‘:’9 Reflector 1

Path Time = 1s

Attacker Victim

(c) Att = 2, both packets arrive at the victim

Figure 1: Attack illustration. Paths through reflectors
1 and 2 have attack path latencies of 1 and 2 seconds
respectively. The attacker sends at a rate of 1 pps, but
he concentrates his flow such that two packets arrive in
one second at the victim. For a brief moment, he has
effectively concentrated his bandwidth two-fold.

3 The Attack

3.1 Motivation and Attack Description

A normal pulsing attack has one major place for im-
provement: a majority of the attacker’s bandwidth is un-
used in between pulses. Therein lies the question of how
to send packets during these idle times but have these
packets still arrive at the victim within a pulse.

We draw an analogy to the military strategy “Time on
Target” [7] to synchronize artillery fire. Using synchro-
nized clocks and estimates of projectile flight times, a
coordinated military can fire from different locations but
have all their fire hit the target at the same time. In a
more modern version of this idea, “Multiple Rounds Si-
multaneous Impact”, a single artillery can make multiple
rounds rendezvous at the target by varying the angle of
fire, charge, and thus the flight time. By varying pro-

jectile paths, an artillery can make more shots arrive at
the victim in one period of time than it can send in that
period. We leverage the wide range of paths and laten-
cies on the Internet to accomplish a similar feat. If an
attacker can schedule sending in such a way that the at-
tacker first sends packets that will take longer to arrive
and then sends those that will take shorter to arrive, they
can rendezvous within a small window of time.

However, if the attacker sends directly to the victim,
the latency is constant. Every packet will take about the
same amount of time to reach the victim since they travel
along the same path.

Reflectors introduce the ability to have variable attack
path latencies: the time from attacker through reflector
to victim. Each reflector used potentially introduces a
new path for attack traffic and thus a different attack path
latency. A simple example is illustrated in Figure 1.

In the remainder of this paper, we will call this tech-
nique temporal lensing or simply lensing, as reflectors
can temporally concentrate packets, much like a lens fo-
cuses light. Also, when describing how the attack works,
we prefer the term concentration to amplification, as the
former is more fitting and the latter is already used to
describe an orthogonal attack.

3.2 Strategy

The actual attack can be decomposed into three main
parts, which we develop in the next three sections of the

paper:

e determining attack path latencies through resolvers
to the victim (Section 4)

e building a sending schedule to create maximal lens-
ing from these latencies (Section 5)

e conducting the attack (Section 6)

After experimentally validating lensing, we turn our at-
tention to extensions to our basic attack (Section 7) and
finally to defenses (Section 8).

4 Obtaining latencies on the Internet

To actually carry out the attack using some set of reflec-
tors, we first need to know, for each reflector, the attack
path latency. Estimating attacker to reflector and attacker
to victim latencies are trivial—any sort of ping will suf-
fice. We still need a way to measure latency from the
reflector to victim.

Measuring latencies between two Internet end hosts,
however, is a well studied problem [4, 14, 3, 18, 17]. We
chose a particular method, King [6], that is particularly

(Reflector)

Name Server B (i
Name Server A (Victim)

foo.bar

3. Reply Q: IP addr of xyz.foo.bar
A
2. Request Q (Forwarded) 4

Our Client C (Attacker)
(King)

Figure 2: The operation of King (reprinted with approval
from [6]), with the relevant actors for lensing added in
red

well suited to our task. King operates by issuing recur-
sive DNS queries between two DNS servers located close
to the end servers in question. In Figure 2 we use a fig-
ure from King and overlay it with labels of the attacker,
victim, and reflector, which are features of our attack.
The figure shows how, with a single recursive query, an
attacker can get an estimate for the attack path RTT, by
taking the difference in time between when the attacker
sends the query to when the attacker receives a response.

King must deal with two conflicting caching issues.
First, it “primes” the resolver so that it caches the fact
that the victim is authoritative for its domain. This pre-
vents the resolver from iterating through the DNS hi-
erarchy for a query. Second, the attacker must issue
queries for different subdomains of the domain the vic-
tim (foo.bar in the example), lest the attacker hit the
resolver’s cache and short-circuit the query. King (and
our attacker) bypasses this last issue by sending queries
for random subdomains, each of which requires the en-
tire chain of packets 1-4 in the figure to be sent.

So, for our attack, if we limit our reflectors to recursive
DNS resolvers (which by their recursive nature can per-
form such reflection naturally), such estimates are made
more accurate. If we further limit the victim to a DNS
server! as well, then King accurately measures the attack
path RTT, which can be halved to obtain the attack path
latency. One may intuit that halving the RTT may give
a one-way latency, but this by no means needs to be the
case. Our positive experimental results on lensing and
pulsing in Section 6, however, experimentally validate

The reader may correctly note that pulsing DoS attacks (which
attack TCP congestion control) will probably have little impact on a
UDP based service with short quasi-flows such as DNS. We defer a
discussion of estimating attack path latencies to TCP-based hosts to
Section 7.1

©
3
3

®
8
3

3
8

RTT through resolver (ms)
RTT through resolver (ms)

2
8
3

500

v

— 200.195.148.99

700
600
500

400

RTT through resolver (ms)

4 8 20 24 4 8

12
Time (hr)

12
Time (hr)

20 24 4 8 16 20 24

12
Time (hr)

Figure 3: Two good resolvers (Google and Eindhoven University of Technology) with minimal path latency variation
(roughly flat lines), an obviously bad resolver with high path latency variation (where 1000ms is a timeout), and a
resolver that appears good over small samples of time but is actually bad for our attack, respectively. We took samples

2 minutes apart.

this heuristic.
In short, King provides a suitable method for estimat-
ing the attack path latency.

4.1 Open DNS Resolvers

We take a short detour to discuss relevant practical as-
pects of DNS.

[16] has put recent estimates of the number of open
DNS resolvers in tens of millions, with many running on
(often outdated) commodity hardware. Further it notes
that many of such resolvers are ephemeral and last on a
given IP on the order of days to weeks.

[16] also notes that many resolvers do not iterate the
DNS hierarchy themselves, but instead forward the work
off to auxiliary resolvers. TurboKing [11], an extension
of King, explicitly acknowledges this possibility to im-
prove its accuracy. However, since the traffic for our at-
tack will follow the same path as that for determining
latencies, such DNS nuances should not affect the attack
path latency calculations.

4.2 Attack Path Latency Variation
4.2.1 Short-term Variation

One point of concern is how accurate attack path latency
measurements are over a short period of time. In partic-
ular, it may take a few minutes to just measure latencies
to all of the resolvers (as is the case for our prototype).
We want to explore how attack path latencies vary over
this period of time. Depending on how much they do, it
may render just minutes-old estimates invalid.

To this end, we took a sample of 44 resolvers from a
public list of about 3000 [1] and measured the path la-

tency through each one once every two minutes.” Fig-
ure 3 shows selected examples of what the path latencies
looked like over time in the cases of (from the attacker’s
point of view): good latency variation, bad variation, and
deceptively good variation.

After taking a few samples over a few seconds, it
would be obvious that the resolvers in the first graph are
good? and the resolver in the second graph are not. How-
ever, the resolver in the third graph may also be consid-
ered good because it had few timeouts and a fairly consis-
tent latency over a short period of time. But over longer
periods of time, it looks as if there are routing changes
that abruptly change the attack path latency; this could
cause packets sent to this resolver to miss the pulsing
window.

We found that the interquartile range (IQR, which is
defined as the difference between the 75th and 25th per-
centiles) was an effective feature for identifying these
misleading resolvers. Fortunately for an attacker, these
misleading resolvers are also rare; while the one in that
third graph had an IQR of 122 ms, Figure 4 shows that
almost half our resolvers had an IQR of less than 12 ms.

So for some resolvers, the attacker must either per-
form latency measurements immediately before the at-
tack or have a longer period of statistics to show that the
resolver is not a good one and not use it. However, as
Figure 4 shows, these types of resolvers are uncommon.
So even if an attacker does not account for the cases of
misleading resolvers and just assumes every resolver that
appears good over a short period of time is indeed good,
performance will not significantly suffer.

2We take appropriate measures (previously discussed) to make sure
DNS caching does not invalidate our results.

3The spikes represent timeouts, which disproportionately distort the
graph. For resolvers where they occur infrequently, we believe them to
be the result of low (but non-zero) packet loss rates.

1.0

0.0

0 10 20 30 40 50 60
Resolver IQR (ms)

Figure 4: Cumulative Distribution Function of IQR
ranges of path latencies for each resolver, with samples
taken every 2 minutes over 24 hours.

4.2.2 Long-term Variation and Caching

Since we have just discussed some challenges gaining
accurate measurements of path latencies through dif-
ferent resolvers and declaring resolvers good, it makes
sense to consider caching these results to save time and
bandwidth computing them again later on. Note that be-
fore we were worried about how steady a resolver is over
a period of minutes; now we are concerned about the
validity of that measurement over the course of days or
weeks.

To examine how the latencies change over longer pe-
riods of time, we took our same sample of resolvers and
sent 50 packets (after taking care to warm-up NS record
caching and bypass A record caching) through each re-
solver every 4 hours for about 10 days. For each resolver
and each set of measurements, we took the median of the
50 latencies. For each resolver, we computed the stan-
dard deviation of these medians for each sample time
(there were a total of 59 of these medians, assuming all
measurements were successful for that resolver). Since
we are interested in comparing variation, we divided the
standard deviations by the means; these terms are called
coefficients of variation and are normalized standard de-
viations. The distribution of these coefficients of varia-
tion are shown in Figure 5.

Since the data shows that some resolvers have very lit-
tle variance over time, we believe that many resolvers’
measurements can be cached. Resolvers with coeffi-
cients of variation below a certain threshold (we believe
0.02 is reasonable) have consistent path latencies, and
their latency times can be cached. If we were to run
the same statistics on a much larger group of resolvers
- which would take excessive time and bandwidth - we

0.7 ¥

0.6

=4 I =4
w i n

Coefficient of Variance

I
N

01r

0.0 —

Figure 5: Box plot of the coefficients of variance of each
resolver’s set of medians. A low CV suggests that a re-
solver’s path latency to the victim did not change much
over the course of our 10-day period.

would be able to identify a large set of these resolvers
and save a shortlist of high-quality resolvers to speed up
future attacks.

We also note that we did not find many resolvers with
high attack path latencies. Having resolvers with high
path latencies (with low variation) would enable us to in-
crease our theoretical bandwidth gain because we would
have a longer period of time to send packets over (and
subsequently concentrate). However, we found that most
high latency paths exhibited high jitter and inconsistency.
As Figure 6 shows, none of the resolvers in our sample
with more than 450 ms latency had a coefficient of vari-
ance below 0.02, and resolvers over 600 ms latency had
about 0.1 coefficient of variance or greater. This makes
sense because higher latency paths generally have more
hops, which means more room for inconsistencies.

4.3 Amplification Attacks

Since we are using DNS resolvers as reflectors, it may
occur to the reader that lensing can be combined with
amplification. To study pulsing in isolation, however, we
will concentrate solely on lensing and defer a discussion
to how amplification might be added to the attack and its
consequences to Section 7.2.

Lastly, we emphasize that DNS is simply our chosen
vector for the attack because of: its simplicity in deter-
mining latencies, the availability of recursive DNS re-
solvers, and the fact that recursion allows reflection with-
out IP spoofing. However, essentially any type of reflec-
tion is compatible with lensing.

Means vs CVs

I
S
=]

e
W
«

=
w
=]

0.251

Coefficient of Variance
e
N
(=]

0.15f °
.' L]
o1l ° . °
L]) e
° L]
0.05 ol
o, ° L] ® o
L]
0.0 a'e, o o o0 . .
%900 200 300 400 500 600 700 800

Mean Latency (ms) of the medians of each sample

Figure 6: Plot of the average latency of each resolver
against that resolver’s coefficient of variance, as com-
puted earlier. Three resolvers had CVs greater than 0.4
and are not shown.

S Building an Optimal Schedule

Now that we have obtained path latency estimates for
resolvers, we must compute a sending schedule. This
schedule divides up the sending window into a set of time
slots T and states which resolver an attacker should send
to for each slot. The number of slots available for the
attacker to send is a function of the attacker’s maximum
bandwidth and the range of path latencies measured for
different resolvers.

We have some set of reflectors R and set of time slots
to send 7. Define the pulse window or simply window to
be the duration of the pulse as seen at the victim. In try-
ing to create the largest pulse, our goal is maximize the
expected number of packets that land in a predetermined
window. We use a greedy algorithm to compute the op-
timal schedule given an initial set of reflectors and esti-
mates of their corresponding attack path latencies. Ac-
cording to our algorithm, at each time slot 7, we simply
choose the reflector which provides the highest estimated
probability of landing within the window. This greedy al-
gorithm is indeed optimal. We defer a proof to Section
12.

However, the problem statement and proof do not ac-
count for distortions in the attack path latencies due to the
attack itself—such as those caused by effects of strain-
ing resolvers and congestion caused by the attack. Since
the attack is distributed over geographically diverse re-
solvers, any congestion should decrease exponentially
with the number of hops from the victim. So, it is not
clear if congestion would actually be detrimental from
an attacker’s point of view. Further, we find little evi-
dence of congestion that would actually inhibit an attack

in our experimentation.

6 Attack Experimentation

Armed with the ability to estimate attack path latencies
and to build an optimal schedule from them, we are fi-
nally ready to experiment with lensing.

6.1 Methodology

We simulate attacks on machines under our control. We
use an Windows Azure VM instance on the West Coast
as our attacker. We use another Azure VM instance and
an Amazon Web Services VM instance, both on the East
Coast, as our victims. We use a publicly available list of
just over 3,000 resolvers [1] as our reflectors.

We register a domain name* that allows us to have an
authoritative DNS server. We make the AWS victim in-
stance authoritative for our domain and the Azure victim
instance authoritative for a subdomain of the original.
This allows us to send recursive DNS queries through
any open recursive DNS server to either of our victims.

Before an attack, the attack machine quickly scans the
resolver list. It issues recursive queries to the resolvers
(just as in the attack) to obtain latency measurements.’
For each resolver, it constructs a histogram for the dis-
tribution of each attack path latency. Then, it essentially
performs the optimization algorithm in Section 5 with
the histograms serving to compute probabilities. During
the attack, we just send to the resolvers according to the
schedule.

6.2 Features Measured
6.2.1 Dimensions

We measure pulsing on a few dimensions—specifically
how our attack metrics vary as a function of:

e attacker bandwidth (to simulate attacker’s with dif-
ferent resources, we throttle our sending appropri-
ately)

e maximum bandwidth to each reflector (to see how
this affects this attack, and to avoid overburdening
or getting throttled by a resolver)

e pulse window size (the duration during which we
are trying to have packets arrive at the victim)

4pulsing .uni.me
SWe chose to take ten samples from each resolver, which turned out
well for our attack

In addition, the attacker might have separate reasons own
for throttling bandwidth to any given reflector (for ex-
ample to avoid arousing suspicion). Also, since the re-
sources of the reflectors we use are unknown, we err on
the side of caution when sending to them. To any given
one, we send at a maximum bandwidth of 500 pps over a
course of 20-100 ms (which translates to a maximum of
5 KB).

We do not explicitly explore the number of reflectors
used as a dimension, because the number of reflectors
heavily depends on the existing dimensions of attacker
bandwidth and maximum bandwidth to each reflector.

6.2.2 Maetrics

In Section 5 we defined an optimal schedule as one
that has the greatest expected amount of packets falling
within the pulse window. This is intuitively a natural pa-
rameter to maximize. However, if we solely use absolute
number of packets as our metric of efficacy, it will be ar-
tificially inflated just by increasing the uplink bandwidth
of the attacker or increasing the target window size. So,
we choose some additional bandwidth-agnostic metrics:

bandwidth in the pulse window at the victim
attacker’s maximum sending bandwidth

e bandwidth gain:

packets landing in window
total packets sent

e concentration efficiency:

The first metric is the most important from the short-
term point of view of the attacker. It gives the attacker a
sense of how much extra bandwidth can be produced.

The second metric, however, provides a good basis
for determining how the attack scales with the attacker’s
bandwidth. Because the size of the reflector pool is con-
stant, as we increase sending (i.e., attacker) bandwidth,
there will be more time slots when there will be no avail-
able resolver to send to (because we throttle bandwidth
to any given reflector). In this case, the bandwidth gain
will artificially decrease. To see this, imagine we send a
maximum of one packet to each of 100 reflectors—then
we can at most send 100 packets to the victim, regardless
of our uplink bandwidth. However, all things equal, the
concentration efficiency will remain constant.

These two metrics must be used in conjunction with
each other, as it is easy to inflate one metric at the ex-
pense of the other. A large pulse window size would lead
to concentration efficiency of 1 (ignoring packet drops)
but no bandwidth gain. An ultra-small target window
could result in an extremely high bandwidth gain (if one
packet lands in it) but a very low concentration efficiency.

Lastly, we measure bandwidth in terms of packets per
second. The packets we send and that are reflected are
small (around 100 bytes), which may make the num-
bers look artificially high. For a sense of scale, 10K pps
roughly translates to 8 Mbps.

6.3 Results

Figure 7 shows the results of a pulse simulating attackers
with different bandwidths at a fairly thin pulse window
of 20 ms. The simulation artificially caps our outgoing
bandwidth by appropriately adjusting the minimum time
between which any two packets can be sent. The band-
width gain can essentially be calculated by dividing the
height of the pulse bucket by that of the tallest bucket for
the attacker’s sending. For the low-bandwidth case, we
see a gain of slightly over 14 times for low bandwidth,
10 times for the moderate bandwidth, and 5 times for the
high bandwidth. The efficiency can be calculated by di-
viding the area of the pulse bucket by that of all the buck-
ets on the left (sending) graph. The efficiency is around
50% for the low and medium cases and just under 40%
for the high bandwidth case.

The colors on Figure 7a map onto the reflectors used—
we can see that a number of reflectors contribute to the
pulse and some do not at all (because their latency mea-
surements were off).

We see what look like multiple pulses on Figures 7b
and 7c. The packet traces reveal that these secondary
spikes are retransmits by the resolvers. The victim (an
authoritative DNS server) was not able to keep up with
the rate of queries and failed to respond to many of them.
The resolvers then timeout and retransmit; since many
of them share a common retransmit timeout, their re-
transmits rendezvous at time = (original pulse time) +
(retransmit timeout). We were able to determine, then,
two common retransmit timeouts of 800 ms and 2 s. We
discuss some ways an attacker may be able to leverage
retransmits in section 7.4.2. Another feature of retrans-
mits is that the total number of packets received by the
victim often exceeds the total number sent by the attacker
by about a factor of two.®

Figure 8 shows how the lensing metrics vary with
pulse window duration (the dimensions attacker band-
width 10K pps, max bandwidth to reflector of 500 pps are
fixed). Bandwidth gain (and absolute pulse bandwidth)
are expected to fall as window size increases because we
are essentially spreading the pulse out. Efficiency sees a
slight increase, but seems to level off at larger window
sizes. We hypothesize that there are a number (about
40%) of reflectors that show an extremely high attack
path latency variation but are nonetheless chosen as re-
flectors.

Figure 9 shows lensing properties as a function of
maximum bandwidth to any reflector (dimensions at-
tacker bandwidth 10K pps, window size 20 ms are fixed).
The variation in the metrics of bandwidth gain and pulse
bandwidth are not too illuminating, since they vary only

But our metrics are carefully chosen so that retransmits do not af-
fect them.

Packets as Seen Leaving Attacker Packets as Seen Arriving at Victim

40
20
Oll= II- l

0 100 200 300 400 500 600 700 0 200 300 400 500 600 700
Time (ms) Time (ms)

Number of Packets
= = =
o) o N IS
o o o o

Number of Packets

(=)}
o

(a) Pulse from Low Bandwidth (500 pps) sending, 75 reflectors sent to

Packets as Seen Leaving Attacker Packets as Seen Arriving at Victim
2000
41500 8
[T} [T}
X~ X~
(9} (%}
© ©
[« o
by -
o o
21000 g
£ €
=3 =}
=2 =2
500 ‘
% 1000 2000 3000 4000 1000 2000 3000 4000
Time (ms) Time (ms)

(b) Pulse from Medium Bandwidth (10,000 pps) sending, 816 reflectors sent to

Packets as Seen Leaving Attacker Packets as Seen Arriving at Victim
2000
4} 2
[[
¥ 1500 <
© ©
o a
G 5
2 2
€ 1000 €
> =]
=2 2
500
L I
%1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time (ms) Time (ms)

(c) Pulse from High Bandwidth (20,000 pps) sending, 1201 reflectors sent to

Figure 7: Selected Pulses performed on the AWS Instance (using dimensions of max bandwidth to reflector 500 pps,
window size 20 ms). The bucket size is set equal to the pulse window size (20 ms).

14
121 ¢ 1
[]
c 10+ . 1
£ .
(] o
= 8 ;
3 s
= L |
5 -
S []
[va] Atk i
H
oL J
0
0 20 40 60 80 100 120
Window Size (ms)
(a) Bandwidth Gain
. . 3 .
0.6 F - 8]
L]
° L) L]
051 o e |
1] S o
o .
= 04t .
[VN]
5
= 03 .
o
B
o
Y02t R
=
S
0.1f R
0.0 I I I I I
0 20 40 60 80 100 120
Window Size (ms)
(b) Concentration Efficiency
140 T . . . T
)
2 120 8 1
- L]
g 100p ° 1
3 H
£ 80 1
=
5 60} s]
3 g
D,E 40 + 1
T 20 ¥
&
0 I I I I I
0 20 40 60 80 100 120
Window Size (ms)
(c) Pulse Bandwidth

Figure 8: Lensing Metrics as a Function of the Desired
Pulse Window Size (with the AWS instance as victim—
fixed dimensions: attacker bandwidth 10K pps, max

bandwidth to reflector of 500 pps)

12 T T T T T

10+ e] R
H .
c
— 87 N
it .
=
T 6} ° .
= H
2
8 41 1
2L |
y o

0
0 100 200 300 400 500 600
Max Bandwidth to Any Reflector (pps)

(a) Bandwidth Gain
osf o ‘ T T T T 1
0.7¢ R
)
06 ° 1
[| [}
os| *° 8 s |
L] L]

o
w
T
|

Concentration Efficiency
(=]
=

e o
= [h¥}
T T
|

0.0 I I I I I
0 100 200 300 400 500 600
Max Bandwidth to Any Reflector (pps)

(b) Concentration Efficiency

120 T . . . T

100} o
80 8 ° .

60} ° .

Peak Bandwidth (thousand pps)
"0

0 I I I I I
0 100 200 300 400 500 600
Max Bandwidth to Any Reflector (pps)

(c) Pulse Bandwidth

Figure 9: Lensing Metrics as a Function of Throttled
Bandwidth to Each Reflector (with the AWS instance as
victim—fixed dimensions: attacker bandwidth 10K pps,
window size 20 ms)

14 . . : . 16 . . : .
12l . 1 14 .
o
12+ R
clop ¥ : = |33
3 U |
< 8t 1 = "
5 o 5 8t H .
= fl * . =
= =]
= ® c 6 0 §
& 4l H | o
s ar |
0
2 o 1 2t 1
0 1 1 1 1 0 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
Attacker Max Bandwidth (thousand pps) Attacker Max Bandwidth (thousand pps)
(a) Bandwidth Gain (a) Bandwidth Gain
0.5 bi | 0.6 |
= o L] = hd []
) v 0518 .
§04f - R
2 K",
E o E 04t . 4
- 03} . 1 p R
S o 2 03} e |
© s g
e 02} 1 b=
g : H g 0.2}]
= =
S 01 S
= i 0.1t R
0.0 I I I I 0.0 I I I I
0 10 20 30 40 50 0 10 20 30 40 50
Attacker Max Bandwidth (thousand pps) Attacker Max Bandwidth (thousand pps)
(b) Concentration Efficiency (b) Concentration Efficiency
70 ‘ . . . 140 . . : .
L]
—_ . —_
S 60| e ., ° o | 8 120} ° 3 .
- ° ° ° ko] : L]
G 50f o 1 @ 100} o 1
5] v
3 = L]
o [} L]
£ 40| 8 . £ 80} .
= =
T 30t R T 60+ R
z = L)
2 55le 2
S 20t . S a0f e 1
m m
- Y4
m 10 . s 20| 1
8] & ..
0 ! I I I 0 I I I I
0 10 20 30 40 50 0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps) Attacker Max Bandwidth (thousand pps)

(c) Pulse Bandwidth (c) Pulse Bandwidth

Figure 10: Lensing Metrics as a Function of the At-
tacker’s Maximum Bandwidth (with the Azure Instance
as victim—fixed dimensions: pulse window 20 ms, max
bandwidth to reflector of 500 pps)

Figure 11: Lensing Metrics as a Function of the At-
tacker’s Maximum Bandwidth (with the AWS instance as
victim—fixed dimensions: pulse window 20 ms, max

bandwidth to reflector of 500 pps)
10

because of high throttling of bandwidth to a constant
size pool of reflectors (discussed in more detail section
6.2.2). The illuminating metric is that of concentration
efficiency. We see little variation, except for at very
high throttling (effectively sending a maximum of 1 or
2 packets to reflector), where there is high efficiency.
With these high efficiencies, however, comes no band-
width gain, meaning that there was no pulse created due
to excessive throttling. Due to lack of variation in effi-
ciency, we conclude that there is little to be gained by
limiting the bandwidth to each reflector. That said, we
did not investigate sending over 500 pps to a reflector for
aforementioned reasons, and we are hesitant to extrapo-
late these results.

Figure 10 shows how the attack scales as a function
of the attacker’s bandwidth (we fix the pulse window to
20 ms and a maximum peak bandwidth of 500 pps to
each reflector). The relatively constant efficiency at the
beginning indicates that the attack scales well; the drop-
ping bandwidth gain can be explained by the fact that
we throttle bandwidth to each reflector while keeping the
pool of available reflectors constant (as discussed in Sec-
tion 6.2.2). However, we see all metrics perform poorly
at higher bandwidths. Figure 10c offers a potential clue:
it should scale linearly with the attacker’s bandwidth, but
instead we see it level off at about 50-60 thousand pack-
ets per second—meaning that the largest pulse we can
create of duration 20 ms has bandwidth of 50-60K pps.

Now, there are two main explanations for this apparent
pulse degradation at scale: either that (a) it is a feature of
the attack scaling poorly, or (b) it is due to the attack
working—increased jitter and queuing that would cause
pulse flattening or packet loss would actually be expected
in a successful attack.”

To determine the cause of the poor scaling of the
Azure instance, we flooded it at a rate of 100K pps for
a short duration. After three trials, we found the maxi-
mum download bandwidth for small DNS packets to be
between 56.8K and 62.4K pps; thus, we conclude that the
scaling issues are a sign of the attack’s efficacy—namely
that it saturated Azure’s bottleneck resource in receiving
these packets.

To further corroborate this attribution, we also tried
the same tests on the AWS instance which we found can
take more packets per second (Figure 11). Here the at-
tack only starts to scale poorly at much higher peak band-
widths of about 110-120K pps—further evidence that the
attack was not exhibiting poor scaling on the Azure in-
stance. Unfortunately we were not able to generate more
than a 100K pps® flood, so we were not able to directly

7Of course, we are assuming that measurement error is 0. To this
end, we note that the packet capture tool we used, tcpdump reported
no packet drops.

8The reader may wonder how we came up with the 110-120K pps

11

determine with certainty what causes the poor scaling at
120K pps.

However, the difference in behavior between the
Azure and AWS instances with regards to unaccounted
for packets provides a hint in attributing the 120K pps
leveling. We define unaccounted for packets as those that
are sent by the attacker but whose reflection is never re-
ceived at the victim. There are some subtleties here. Due
to retransmits, almost all of the sent packets arrive even-
tually. So, we redefine “unaccounted” packets as those
that do not arrive within 200 ms of the pulse window
(which for the figures is only 20 ms) to avoid the poten-
tial problems with retransmitted packets.

Now, in Azure, it seems as if a router buffers the pack-
ets beyond the VM’s quota when the burst is too high, as
can be seen by the pulse spreading in Figure 12, but the
AWS instance does not (compare to Figures 7b and 7c).
Instead, the reflected packets never appear at the AWS
end. Figures 13 and 14 quantify this difference. With
the Azure instance as victim, we see a relatively constant
proportion amount of unaccounted packets to those sent;
thus, we see that the attack delivers most of the packets—
even at high attacker bandwidths. However, at these
higher bandwidths, the AWS victim receives much fewer
of these packets, as shown in Figure 14. It appears as
though AWS (most likely not the VM, but AWS routers)
responds to an excessive download by dropping packets,
instead of queuing them as does Azure. So, this discrep-
ancy between Azure and AWS indicates that the attack
is indeed effective (from the Azure results, we know al-
most all of the reflected packets arrive at the East Coast,
but they are most likely just dropped by AWS routers be-
fore getting to our VM) and that the leveling-off at 120K
pps is due to a limit on the end of AWS.

In short, the attack displays impressive numbers and
scales well. As the peak pulse bandwidth nears the vic-
tim’s maximum capacity, however, the attacker sees di-
minishing returns.

7 Extending the Attack

7.1 Attacks on Arbitrary End-hosts

We previously limited our attack to one on DNS name-
servers. Since DNS typically operates over UDP with
extremely short flows (if they can even be called such),
the efficacy of a pulsing attack (which attacks TCP con-
gestion control) is low. Clearly, an attacker would wish
to target a more rewarding victim. However, to attack
an arbitrary end-host (and not just a authoritative DNS

poor scaling range while being unable to generate more than 100K pps.
The answer is that the attacker’s sending bandwidth could not exceed
100K pps, but at the receiving end of the attack, the packets concen-
trated into a higher 120K pps pulse

Packets as Seen Leaving Attacker

Packets as Seen Arriving at Victim

1000

800

600

Number of Packets

400

200

0 500 1000 1500

Time (ms)

2000

Number of Packets

0 500 1000 1500

Time (ms)

2000

Figure 12: Illustration of Pulse Spreading at the Azure Victim (with dimensions of attacker bandwidth 20,000 pps,

window size 20 ms)

nameserver), an attacker must somehow calculate attack
path latencies to that host.

As a first step, we borrow a method from King [6] that
uses something similar to DNS cache poisoning to calcu-
late latencies between a DNS resolver and any other type
of DNS server (not just an authoritative one). Say we
want to calculate the latencies between a resolver NSy
and any type of DNS server (possibly a resolver) NSg, as
in Figure 15. Using the figure as an example, we make
a DNS entry in our own authoritative DNS server—
mydomainname.com—saying that NSp (10.0.0.0)
is authoritative for 10-0-0-0.mydomainname.com.
Then, if we issue queries to NS4 for subdomains
of 10-0-0-0.mydomainname.com, NS4 will have
cached the NS record that NSp is authoritative for
10-0-0-0.mydomainname . com and it will query NSp.
NSp will reply with an error, but the chain of queries will
reveal to us the attack path RTT.

Now, we propose our own addition to King’s cache-
poisoning trick to extend it to arbitrary end hosts. We
replace NSp, which in the above example is any type of
DNS server, with B any arbitrary server (not necessarily
DNS), but keep the rest the same. Now, when B receives
a DNS query from NSy, it most likely won’t have a ser-
vice running on port 53 (DNS). According to RFC 1122
[2], B “SHOULD” respond with an ICMP Port Unreach-
able and that in response to such a message, the UDP
layer of NS4 “MUST” pass an error up to the application
layer. If NS4’s DNS implementation responds to the er-
ror passed up, and immediately responds to us, we again
can calculate the attack path RTT.

There are two caveats to the above method. First, B
may not even receive a packet on port 53 due to a firewall,

12

or it may be explicitly configured not to respond. Second,
the resolver implementation must respond to ICMP error
messages passed up and deal with them appropriately.
Our server, using the default configuration of BIND9 on
Ubuntu Linux, does in fact do both: it issues an ICMP er-
ror when a service is not running on port 53; as a resolver,
BIND9 will immediately respond back to the client when
obtaining an ICMP. Further, we have tested this method
to build schedules and create pulses and have found that
it does indeed work with many resolvers; some resolvers,
however, do not react to the ICMP and instead timeout,
leaving us with no latency data. In short, we expect this
addition to King to allow us to better estimate path laten-
cies to many more types of hosts than just DNS servers.

Lastly, the simplest method is to attempt to find a DNS
server co-located with the actual victim. As noted in
[6], this is relatively common, but may introduce error
in latency measurements of the attack path. However, if
this error is the same for each attack path (as would be
expected for a DNS server in the same network as the
victim), then this error will have no effect on the actual
pulses. For example, if every measurement has error of
+20 ms, then each reflected packet will arrive at the vic-
tim at 20 ms before it is expected, but all packets will still
arrive at the same time.

7.2 Amplification

A natural extension to concentrating a flood in time is to
make the flood larger via amplification. Indeed, a com-
mon use for reflectors is amplification. Both amplifica-
tion and lensing can compatibly leverage open DNS re-
solvers as reflectors—in fact resolvers are already used
in amplification attacks. The idea would be to take at-

800 T . . T

700} . |
w 6001 . . 1
c
é 500 | . ¢ 1
v L]
8 400+ N |
@300 . |
@
a 200} @ ° 1
..
100} 1
'1':
0 1 1 1 1
0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

(a) Absolute Number of Unaccounted Packets

0.12 ; T T
+ 010+ R
L]
] H H
(5]
@ 0.08 | . o o R
] e’ o °
a
- 0.06 ;* o ° 1
.
c °
L]
S 0.04]]
g p°
o
o 0.02} e 1
0
0.00 o I ! I I
0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

(b) Proportion of Unaccounted Packets

Figure 13: Unaccounted Packets as a Function of At-
tacker’s Maximum Bandwidth (with the Azure instance
as victim)

tack path latency measurements through reflectors using
the methods we borrow from King and during the actual
attack use these same reflectors for amplification.

Note that the form of lensing we have explored does
not use source address spoofing to enable reflection; in-
stead it relies on recursive queries. However, DNS-based
amplification does require spoofing. While spoofing
should work just fine with lensing, we decided against it
for our experimentation for simplicity and also to avoid
confusing analysts potentially investigating our traffic.

In such a scenario, the attacker would gain the best
of both worlds. For example, an amplification factor of
15 and lensing bandwidth gain of 10 could, at its worst,
allow attackers to create pulses at 150 times their uplink

13

2000 ; ; T T
[]
= 1500+ : R
2 °
[
w
& 1000} 1
|
A L]
18]
=
IS
& 500} .® 1
[]
s 3
0 " I | | I
0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

(a) Absolute Number of Unaccounted Packets

0.30 T T T T

o

e

wu

T
L 1] L]

I

©
]
o
T
I

e
=
o
°

1

Proportion of Packets Lost
[]

o
o
a
ee?” W 3
)

%% %,

0.00 | | | |
0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

(b) Proportion of Unaccounted Packets

Figure 14: Unaccounted Packets as a Function of At-
tacker’s Maximum Bandwidth (with the AWS instance as
victim)

bandwidths!

Forwarders (discussed in Section 4.1) introduce a po-
tential caveat to estimating attack path latencies in am-
plification attacks. If the resolver the attacker contacts is
indeed a forwarder, then during the attack path latency
measurements, there are two intermediary hops between
attacker and victim instead of just one. This was not
a problem for our attack, since attack traffic followed
the same path as latency measurements (attacker = for-
warder = resolver = victim). However, in an amplifica-
tion attack, it would be expected that the attacker would
place a large query response in a cache. If it is cached
in the forwarder, then the path of the actual attack traffic
will be one hop shorter (attacker = forwarder = victim).

HostA NS_A

8. Reply R2: Lookup Failed L

<
V5. Request R2: Resolve xyz.10-0-0-0. mydomain.com

................................. »> s
“Requesi K1 NS records of 10-0-0-0:mydomain.com” gur Client C
. (King)
5’ g
=
L I e :
S ol
El - 2e 5
g i
< 5 Our Name Server for
" mydomain.com
NS_C
v
S —
s
HostB NS_B
[10.0.0.0]

Figure 15: The sequence of queries to perform the King
cache poisoning trick (reprinted with approval from [6]).
The dotted lines represent queries to warm up caching
the NS record. The thick lines allow measurement of the
attack path RTT.

Turbo King [11], building off of King, noticed that
King overlooked forwarders and added the ability to de-
tect forwarders, by essentially positioning themselves at
both ends of the DNS query (in our example, as attacker
and victim). An attacker who sets up a personal DNS
server can do the same: identify potential forwarders,
measure the error they introduce, and weed them out as
needed.

Thus, as we have shown the efficacy of lensing on its
own, we stress that its combination with amplification
may make for a particularly potent threat.

7.3 Distributed Attack

A natural extension would be to use many geographi-
cally distributed machines and try to “add” their pulses
together at the victim. This extension would require rel-
atively accurate time synchronization between the attack
seeders, depending on the desired pulse duration. The
simplest way would be to use a time synchronizing pro-
tocol (such as NTP). Preliminary experimentation has
shown that NTP yields a high enough imprecision that
two attackers cannot reliably create larger pulses of win-
dow size 20 ms, but they can at window sizes of 40 ms.

7.4 Increasing the Bandwidth Gain
7.4.1 Increasing the attack-path latency

With longer attack path latencies, an attacker has a longer
period to send and thus funnel bandwidth. Currently, the
longest attack path latencies we find are around 800 ms.

14

We propose a way to extend the time a query takes, but
keep the time predictable.

One idea is to use IP spoofing as the reflection mech-
anism. For each resolver, we ask it to make a query that
will take a long time (for example if we query for a do-
main far from the resolver). When the resolver finally
obtains a response, it will respond to the victim a consid-
erable amount of time later.’ As a slight variation, the at-
tacker might make a query to a DNS server that does not
respond, causing the resolver to timeout and send back a
negative response after the timeout. Note that the time-
out can be measured in advanced with essentially 100%
precision (since timeouts are usually round numbers).

Thankfully, a traditional DNS-based amplification at-
tack is not compatible with any of these extensions be-
cause the amplified DNS payload is kept cached in the
resolver. So when the resolver is queried, it immediately
responds with the cached answer giving no chance to in-
crease the attack path latency.

7.4.2 Retransmits

As we saw in Figures 7b and 7c, resolver retransmits
can create secondary pulses of their own. The retransmit
timeouts that were the most common were 800 millisec-
onds and 2 seconds.

An attacker can predetermine which set of resolvers
have what timeouts. Then, this attacker can arrange to
send pulses at a period of these timeouts, so that new
pulses coincide with pulses generated from retransmits.
The attacker would then essentially be superimposing
pulses—allowing an even larger bandwidth gain.

Again, this attack is not compatible with IP spoofing
(and thus amplification). With spoofing, traffic reflected
off of the resolver consists of query responses (instead
of queries), and resolvers will not retransmit responses
(they only retransmit queries for which they do not get
an answer for).

8 Defenses

8.1 Detecting and Thwarting Reconnais-
sance

The method by which we conducted reconnaissance (ob-
tained attack path latency measurements) was extremely
noisy since the victim was notified on every measure-
ment with a query for a bogus subdomain. Attackers,

9There are probably many misconfigured DNS entries to help an at-
tacker here. Also, an attacker can intentionally misconfigure a personal
DNS server to this end, for example, adding an NS entry to server that
will not respond.

however may be able to hide their presence by making
queries for legitimate subdomains.'?

Perhaps the victim can thwart reconnaissance by poi-
soning attack path RTT measurements. The victim can,
for example, introduce artificial jitter. The most obvi-
ous approach, just adding a random delay to each request
will only slow down an attacker—by taking more mea-
surements an attacker can cut through the noise and de-
termine actual latencies. Instead, the victim might intro-
duce an amount of jitter as a function of the resolver’s
address. Ideally this function would be keyed and cryp-
tographically secure in the sense that knowing one jitter
would not reveal information of another.

However, none of this analysis considers that an at-
tacker may be able to take measurements to a nearby
server not under the victim’s control. In this case, the
victim will not be able to detect reconnaissance at all.
Without detection, the victim has little chance of thwart-
ing reconnaissance.

8.2 Detecting and Preventing Attacks

[8] suggests two methods to mitigate bursty attacks tar-
geting TCP’s RTO mechanism: RED and RTO random-
ization. The former method proves largely ineffective,
while the latter involves a trade-off with throughput in
the absence of an attack. [12] discusses a method to sim-
ply detect the presence of a pulsing DoS attack based
on the observation in high variability traffic to the vic-
tim (characteristic of a pulse) and subsequent decline in
ACK traffic back. However, our focus here is on how one
might defend against the lensing side of the attack.

Again, our defense revolves around introducing arbi-
trary jitter. A possible mechanism would be for routers to
somehow add jitter during an attack. While it is unclear
how they might coordinate such a mechanism without
introducing collateral damage, we explore how it might
play out in Figure 16. We add a uniform, random amount
of jitter after a sending schedule is produced, which is es-
sentially the same effect routers adding jitter would have.
The graph indicates that cutting a relatively small win-
dow pulse of 20 ms in half would require adding jitter of
60 ms!! to the attack path.

In short, smart attackers can completely hide their re-
connaissance from the victim. Mitigating an actual lens-
ing attack would require somehow changing attack path
latencies during an attack; it is unclear how to create
a mechanism to do so without harming legitimate traf-
fic, and even then, a significant amount of jitter needs

101¢ is true that the attacker will need to query distinct subdomains
for each reflector to avoid hitting the reflector’s cache. However, we
only used 5-10 queries to obtain latency measurements, so the attacker
would just need to find a few unique domain names.

1By this we mean adding a uniformly distributed amount of jitter in
the range 0-60 ms

15

120 T T T T T

|

_l
8
..
40 - “ .

100

80

60

20 |

Peak Bandwidth (thousand pps)

100 200 300 400 500 600
Maximum Jitter Added (ms)

0
0

Figure 16: Pulse Degradation as with the Addition of Ar-
tificial Jitter (parameters of: pulse window 20 ms, send-
ing rate 10K pps)

to be added. We unfortunately conclude that mitigating
this vector is likely impractical. Possibly a more fruit-
ful angle would be to tackle the pulsing side of the at-
tack (i.e., improving TCP congestion control robustness)
rather than the lensing side.

9 Future Work

9.1 Determining Impact on TCP Flows

Our work solely focused on concentrating a flood tem-
porally and the properties of such lensing. We have
done some preliminary experimentation with its effects
on TCP congestion control—simulating a relatively low-
bandwidth attacker, we have been able to bring a higher
bandwidth TCP flow to its knees. However, we have not
performed methodical measurements.

While, previous work has already demonstrated the
damaging effects of pulsing, the pulses created here dif-
fer in two important ways. First, they are not square wave
pulses, but are markedly more normally distributed. Sec-
ond, they are generated by multiple sources, meaning
routers close to the victim will deal with not just many
arrivals, but on different ports. This point may also make
it more difficult for the victim to filter malicious traffic.

9.2 Experimentally Validating Extensions

In Section 7 we discussed several ways to improve the
basic lensing attack we have developed—chief among
them being combining amplification with lensing. While
theoretically sound, it would be ideal to validate them in
practice and determine just how effective they are.

10 Conclusion

We introduce the idea of temporal lensing, which lends
itself quite naturally to pulsing DoS attacks. Using DNS
recursion to both estimate attack path latencies and to
create pulses from relatively low-bandwidth floods, we
further demonstrate its practicality and explore some of
its properties. We find that lensing allows an attacker to
concentrate the bandwidth of a flood by an order of mag-
nitude. Given these results, lensing’s compatibility with
amplification, and our inability to find suitable defenses,
we stress that the potential for abuse is high.

11 Acknowledgements

We are grateful to Mark Allman and Nick Weaver for
their helpful advice.

References

[1] Public DNS Server List, available at

http://public-dns.tk/.

May 2014.

[2] BRADEN, R. RFC 1122: Requirements for Internet Hosts. Re-
quest for Comments (1989), 356-363.

[3] DABEK, F., Cox, R., KAASHOEK, F., AND MORRIS, R. Vi-
valdi: A Decentralized Network Coordinate System. In ACM
SIGCOMM CCR (2004), vol. 34, ACM, pp. 15-26.

[4] FrRANCIS, P., JAMIN, S., JIN, C., JIN, Y., RAZ, D., SHAVITT,
Y., AND ZHANG, L. IDMaps: A Global Internet Host Distance
Estimation Service. Networking, IEEE/ACM Transactions on 9,
5(2001), 525-540.

[5] GUIRGUIS, M., BESTAVROS, A., MATTA, 1., AND ZHANG, Y.
Reduction of Quality (RoQ) Attacks on Internet End-systems. In
INFOCOM. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (2005), vol. 2, IEEE, pp. 1362—
1372.

[6] GuMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D. King:
Estimating Latency Between Arbitrary Internet End Hosts. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurment (2002), ACM, pp. 5-18.

[71 KOGLER, T. M. Single Gun, Multiple Round, Time-on-Target
Capability for Advanced Towed Cannon Artillery. Tech. rep.,
DTIC Document, 1995.

[8] KuzMANOVIC, A., AND KNIGHTLY, E. W. Low-rate TCP-
targeted Denial of Service attacks: The Shrew vs. the Mice and
Elephants. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munications (2003), ACM, pp. 75-86.

[9] LEDLIE, J., GARDNER, P., AND SELTZER, M. I. Network Co-
ordinates in the Wild. In NSDI (2007), vol. 7, pp. 299-311.

[10] LEDLIE, J., PIETZUCH, P., AND SELTZER, M. Stable and
Accurate Network Coordinates. In Distributed Computing Sys-
tems. ICDCS. 26th IEEE International Conference (2006), IEEE,
pp. 74-74.

[11] LEONARD, D., AND LOGUINOV, D. Turbo King: Framework for
Large-scale Internet Delay Measurements. In INFOCOM. The
27th Conference on Computer Communications. IEEE (2008),
IEEE.

[12] Luo, X., AND CHANG, R. K. On a New Class of Pulsing
Denial-of-Service Attacks and the Defense. In NDSS (2005).

[13] MOORE, D., SHANNON, C., BROWN, D. J., VOELKER, G. M.,
AND SAVAGE, S. Inferring Internet Denial-of-Service Activity.
Transactions on Computer Systems 24, 2 (2006), 115-139.

[14] NG, T. E., AND ZHANG, H. Predicting Internet Network
Distance with Coordinates-Based Approaches. In INFOCOM.
Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings (2002), vol. 1, IEEE,
pp. 170-179.

[15] PAXSON, V. An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks. ACM SIGCOMM CCR 31, 3 (2001),
38-47.

[16] ScHOMP, K., CALLAHAN, T., RABINOVICH, M., AND ALL-
MAN, M. On Measuring the Client-Side DNS Infrastructure.
In ACM SIGCOMM/USENIX Internet Measurement Conference
(Oct. 2013).

[17] SHARMA, P., XU, Z., BANERJEE, S., AND LEE, S.-J. Estimat-
ing Network Proximity and Latency. ACM SIGCOMM CCR 36,
3 (2006), 39-50.

[18] WONG, B., SLIVKINS, A., AND SIRER, E. G. Meridian: A
Lightweight Network Location Service without Virtual Coordi-
nates. ACM SIGCOMM CCR 35, 4 (2005), 85-96.

12 Appendix: Proof of Send Schedule Op-
timality

For each time ¢ € T that we consider sending and for
each reflector r € R, we have Pr(z, r), the probability that
if we send at reflector r at time ¢ the reflected packet will
land in the desired window—note that Section 4 gives us
estimates for this probability.

Say we have chosen a schedule for which at each time
t we send to reflector ;. Let X be the random variable
denoting how many packets arrive in the window. X =

Y X; where
teT

X - 1 if packet sent at ¢ lands in window
' 0 otherwise

So, E(X;) = Pr(t,r;). Then, due to linearity of expecta-
tion,

EX)=E(Y.X)=Y EX,)=) Pr(t,r)

teT teT teT

Now, we claim that any schedule that optimizes E (X)
must have the condition that for each ¢, we send to the
reflector with highest Pr(z,r) over r € R. To see this,

assume for the sake of contradiction that there is some
optimal schedule S such that at time t* we do not send to
the reflector r* that yields the highest probability, instead
we send to r**. Since r** is not the best, Pr(¢*,r*) >
Pr(#*,r**). Consider S’ which is the same schedule as S
except that at t*, it sends to r*. Let the expected number
of packets landing in the window of S and S’ be E(X)
and E(X') respectively; then the difference between the
expectation of the schedules is

E(X') - E(X)= Y E(X/)—)} E(X)

teT teT

=(Y EX)+Pi(,r)

teT Nt#t*

—(Y E)+Pe(t",r) (1

teT Nt #t*
=() EX)-) EX))
teT Nt#t* teT Nt#t*
+ (Pr(¢*,r*) — Pr(*,r'™))
= Pr(¢",r") — Pr(¢*,r"™)

But, we already established that this last term is greater
than 0. Thus, E(Xy) — E(Xs) > 0 and §’ is better than S,
which contradicts our assumption that S is optimal.

17

