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Abstract

Towards Autonomous Situation Awareness

by

Nikhil Naikal

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Shankar S. Sastry, Chair

Technological advances in communication and computing coupled with low costs of sensors
have enabled large-scale deployment of video camera networks in our environment nowadays.
They are increasingly being used by decision-makers for perceiving elements of an environment in
real-time, comprehending their meaning and predicting their status in the near future. Such situa-
tional awareness is crucial in dynamic scenarios that arise in military command and control, facility
security and emergency services such as policing and fire-fighting. While human perception driven
situation awareness has worked well in constrained settings, it is unfortunately not scalable. Fur-
thermore, scenarios such as security and surveillance commonly involve highly complex cognitive
tasks that can quickly become monotonous and mentally taxing for human operators. In this thesis,
we present new frameworks for automating the perception stage of situation awareness.

We begin this thesis with the development of a system that is capable of categorizing objects
and landmarks in an efficient and distributed manner. Our system is designed to operate with net-
works of wireless smart cameras for local perception, and a central station for global inference.
We demonstrate that this decoupling of the algorithm pipeline can drastically minimize the power
and bandwidth consumed by the wireless cameras. Further, we experimentally validate that our
multiple-view inference framework can significantly improve the performance of object and land-
mark categorization over traditional single-view settings.

In the second part of the thesis we extend our distributed object categorization framework to
address the problem of automatic human activity detection and categorization. We are particularly
interested in the development of rich representations for human motion that are invariant to per-
spective, scale and the speed at which actions are performed. We propose a generalized framework
to perform spatiotemporal fusion of dynamic imagery from multiple wireless smart cameras, and
validate the efficacy of our fusion framework on both publicly available, and novel datasets.

In most realistic scenarios that require situation awareness, objects and people occur in cluttered
scenes and exhibit immense variability in their appearance, shape and pose. In the final part of this
thesis, we analyze the interplay between computer vision tasks such as segmentation and cate-
gorization and present joint frameworks that significantly improve the performance of each task.
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Our experimental analysis demonstrates that detection and categorization hypotheses help provide
good segmentation results, and that segmentation can be used to prune errors in the hypothesis.
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Chapter 1

Introduction

1.1 Motivation
Situation awareness is the process of perceiving elements of an environment, comprehending their
meaning, and predicting their status in the near future. It has primarily been studied in military
theory where decision makers must deal with human performance in tasks that are physical or
perceptual, as well as consider human behavior involving highly complex cognitive tasks with
increasing frequency. Such tasks commonly arise in air traffic control, ship navigation, manufac-
turing systems operation, power plant operation, military command and control and emergency
services such as fire fighting and policing. Many other everyday activities such as driving in heavy
traffic, operating heavy machinery and medical procedures also call for a dynamic update of the
situation for effective decision making. Thus, situation awareness serves as a means to close the
loop between new information and existing knowledge in order to maintain a composite picture of
any situation.

Situation awareness is typically broken down into three stages - perception, comprehension and
projection [26]. The primary stage of perception involves the processes of monitoring, cue de-
tection and simple recognition, which lead to an awareness of multiple situational elements (i.e.
objects, events, people) and their current states (i.e. locations, conditions, actions). An air force
tactical commander, for instance, might need accurate data on the location, type, number, capabil-
ities and dynamics of all enemy and friendly forces in a given area and their relationship to other
points of reference. The secondary comprehension stage involves a synthesis and integration of
disjointed pieces of perceived information through the processes of pattern recognition, interpre-
tation and evaluation in order to understand how it impacts goals and objectives. For example,
the tactical commander must comprehend that the appearance of three enemy aircrafts within a
certain proximity of one another indicates certain things about their objectives. Finally, the ability
to project the future actions of the elements in the environment - at least in the vey near term -
forms the third projection stage of situation awareness. This is achieved through knowledge of the
status and dynamics of the elements and comprehension of the situation. For example, knowing
that a threat aircraft is currently offensive and is in a certain location allows a tactical commander
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Figure 1.1: Detecting and categorizing objects in the scene

Figure 1.2: Two pairs of images with the same person in each pair exhibiting pose variability in the image
pair.

to project that the aircraft is likely to attack in a given manner.
While human perception driven situational awareness has worked well in constrained settings,

it is unfortunately not scalable. In today’s world, we are faced with a seemingly ever-increasing
human population who have a strong desire for instant information, automation and a quickly
diminishing tolerance of failure. This has led to a growing demand for autonomous and reliable
situational awareness systems in both public and private places composed of networks of smart
sensors and actuators for perception, and centralized algorithms with human decision makers in-
the-loop for comprehension and projection.

Video cameras are arguably the most useful sensors for perception. They are cheap to manufac-
ture and robustly sense both small and large environments under varying lighting conditions. The
low cost of video cameras coupled with the decreasing cost of network communication and com-
puting have made automated perception a core research topic in the disciplines of computer vision
and signal processing. In the context of computer vision, perception is studied as the following
interesting and challenging sub-topics:

1. Object detection and categorization: This is the task of finding objects in an image or
video sequence and identifying their semantic categories, e.g., cars, bikes, trees, etc. as
shown in figure 1.1. Detecting and categorizing objects is a challenging problem because
of their appearance variability due to differences in view-point, size, scale, translation and
rotation. Objects could also be partially occluded from the field of view of the camera.
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Figure 1.3: First column shows the query images to be segmented and the next three columns show example
segmentations given by three different humans. Notice that for each image, the segmentations given by
different people exhibit several differences.

2. Human detection: Human detection is an essential and significant task in any scenario that
requires reliable localization of a person in camera footage. It is typically studied under two
areas of research, namely - face detection and holistic person detection. Face detection is
also studied along with face recognition in certain scenarios. Human detection is arguably a
harder problem when compared to static object detection because a single person can himself
exhibit a wide set of pose configurations as shown in figure 1.2.

3. Segmentation and tracking: Segmentation is the process of grouping together pixels in an
image corresponding to a particular semantic category. Segmentation is generally consid-
ered as an ill-posed problem as even humans demonstrate a large variability in defining true
region boundaries in images. This can be observed in figure 1.3 where different human anno-
tators provide slightly varying segmentations for the same image. A closely related problem
to segmentation is tracking. The objective of tracking is to predict the location of the pix-
els corresponding to a particular segmentation, in successive frames of a video sequence.
Tracking can be very challenging in certain scenarios where the objects being tracked can
get occluded from a camera’s field-of-view.

4. Gesture and activity recognition: Gesture and activity recognition is the process of analyz-
ing a human’s body language. Unlike object and human detection, most gesture and activity
recognition algorithms rely on the temporal information in video streams in order to disam-
biguate different human gestures. This can be a challenging problem because of the subtle
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variations in the the rate and kinematics of different people performing the same actions.

Robust and scalable solutions to these sub-topics can enable autonomous situational awareness
in a wide variety of settings. For instance, networks of wireless smart cameras can be a valuable
tool for security and surveillance applications. They can be used to automatically detect what
people are doing in public spaces, track and recognize objects that have been removed from or
introduced into the scene, and alert authorities of perpetrators of crime while requiring fewer per-
sonnel to monitor raw camera imagery. Annotating raw camera footage with actions of people can
also aid in content based retrieval of security camera footage. In the search and rescue context,
wireless networks of cameras mounted on the search crew, and on unmanned aerial vehicles can as-
sist in perceiving the environment and locating missing individuals. Modern hospitals and elderly
care centers could utilize smart cameras to monitor the health and activities of patients and alert
the nursing staff when a patient needs assistance. They can also be used to track the movement
of health care professionals and patients within a hospital in order to map and mitigate spread of
diseases.

In modern built environments such as smart offices and smart homes, gesture based control of
appliances can increase convenience for inhabitants, and improve their productivity. Categorizing
the objects in these environments can also help in easily tracking down items such as fire extin-
guishers and defibrillators during emergency situations. In urban settings, detecting and tracking
pedestrians and bicyclists within an intelligent transportation system framework can be extremely
useful in preventing traffic accidents. Intelligent camera network installations in these settings can
also be used to ease traffic congestion by keeping track of open spaces for slower drivers who are
looking for parking spots, and to alert authorities when accidents occur. Finally, networks of smart
cameras can aid in automatic foul detection and commentary during sporting events such as tennis
and basketball, which can be very useful for fans who want specific information during game play.

1.1.1 Automated Perception System Requirements
It is clear from the several motivating scenarios presented previously that the first task of situa-
tion awareness, i.e. perception, needs to be robust to error and scalable. The three fundamental
requirements for such an automated system are presented in what follows:

1. The system should be composed of wireless smart cameras capable of performing basic
image processing, and transmitting meta-data to a central server

There are several advantages to using wireless cameras instead of wired solutions. One
of the primary advantages is the ease of installation. Wired cameras require significant re-
sources and infrastructure for connecting each camera to the network and for supplying
power to each one. Wireless cameras on the other hand, are easy to install, can be re-
configured to obtain any network topology, and existing networks can easily expand to in-
corporate new wireless camera nodes when it is desired. This versatility makes wireless
solutions desirable in scenarios that require situational assessment.
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In order to have a truly scalable camera network for situational assessment, each cam-
era should possess some basic processing capabilities on board each node, while off-loading
computationally intense operations to a central processing station that they are communicat-
ing with. One of the primary limitations of using wireless cameras is the large amount of
energy required to transmit image streams to a central monitoring station. For example, a
camera sensor that consumes 10 mW of power for simple image compression would require
over 1 Watt of power to transmit each image frame to distances between 10-100 feet. Such
high transmission power requirements can drain a single AAA battery in less than a month.
Performing simple perceptual operations on-board the smart cameras and transmitting the
extracted meta-data to a central processing station for further analysis, can significantly re-
duce power requirements for the wireless smart camera nodes.

2. Data from all wireless smart cameras should be fused effectively at the central server

The process of partitioning the algorithmic operations has several advantages beyond
saving power on smart camera nodes. For instance, the basic perceptual operations on board
the wireless smart cameras can be carefully chosen so that they are largely stabilized while
requiring minimal updates. Hence, only the central server would need to be upgraded when
new semantic categories are included, or new algorithms for comprehension are developed.
This versatility will also enable easy integration of more wireless smart camera nodes in
the network, thereby providing scalability and robustness. Another significant advantage
of global inference is the improved situation assessment accuracy that can be achieved by
fusing information extracted from sensors placed at different vantage points.

3. Data fusion algorithms should be capable of performing multiple computer vision tasks

From the motivating scenarios presented in the previous section, it is clear that the same
network of smart cameras should be used for addressing multiple tasks, namely - detection,
segmentation and categorization of objects, humans and their actions. Thus, it is necessary
to design computer vision algorithms that treat all these sub-problems in unison. Further,
designing such fusion frameworks can significantly improve the accuracy of the solutions to
each individual sub-problem.

For instance, object recognition and human detection are clearly related problems under
realistic scenarios. This can be seen in the security and surveillance setting, where it is im-
portant to monitor unattended bags in any area. Recognizing an object as a bag and then
associating it to a specific person can be challenging if the two problems are treated inde-
pendently. If the two problems are tackled simultaneously however, then it becomes easier
to narrow down the possible categories of an object that has been in contact with a person,
thereby simplifying the semantic labeling process. Segmentation and categorization are also
very related problems. Isolating the image regions corresponding to a person (or object) in
an image can help identify who (or what) has been segmented. This is because segmentation
would suppress the remaining parts of the image that could potentially confuse detectors. By
the same token, using a learned model for a human or object can significantly help isolate
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their corresponding regions in the image. Finally, gesture and activity recognition algorithms
can significantly be improved if only the exact regions of the video corresponding to people
are segmented and tracked over time and provided as input to these recognition algorithms.
Further, recognizing what a person is doing before he completes the task can provide some
form of motion model for tracking algorithms to predict where the person is going to be in
successive frames.

1.2 Thesis Goals and Contributions
The goal of this thesis is to design an automated perception system for situation awareness. We
have two main objectives - our preliminary objective is the development of a system that is capable
of categorizing objects, landmarks and human actions in a distributed manner. In this regard, we are
interested in designing a system that is composed of networks of smart cameras for local perception
and a central station for global inference. Our secondary objective is to perform an analysis of
the interplay between different computer vision tasks such as segmentation and categorization
of objects. We focus on developing fusion frameworks that leverage the solutions of one task
to improve the performance of the other. Specifically in this thesis, we propose the following
contributions.

1.2.1 Object Categorization using Wireless Camera Networks
We begin this thesis by proposing an efficient distributed object categorization system for sensing,
compression, and recognition of 3-D objects and landmarks using a network of wireless smart
cameras. Our system is partitioned into distributed image feature extraction (performed on a wire-
less smart camera) and centralized inference (performed at a base station). While there are several
approaches for object recognition, we focus on the Bag-of-Word (BoW) based models for repre-
senting objects and landmarks [20]. These histogram based models rely on the detection of image
features that are scale invariant and to a large extent, view-point invariant. Such features are easy to
associate across different vantage points, thereby reducing the complexity of matching query and
target images of objects. The foundation of our work is based on the observation that histograms
constructed from these image features exhibit a certain degree of sparsity. Motivated by the emerg-
ing theory of compressive sensing, we overview a sparsity based distributed sampling scheme to
compress feature histograms that concisely represent the appearance of a common object observed
by multiple cameras from different vantage points. We demonstrate that the corresponding fea-
ture histograms can be efficiently compressed in a distributed fashion, and the joint signals can be
simultaneously decoded based on distributed compressive sensing theory.

First, we propose a new multiple view object database as a public platform to benchmark our
system, which we referred to as the Berkeley Multiview Wireless (BMW) database. It captures
the 3-D appearance of 20 landmark buildings sampled by five low-power, low-resolution camera
sensors from multiple vantage points. We assume the camera sensors and the network station are
connected only through a band-limited wireless channel. Then we review and benchmark state-
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of-the-art methods to extract image features and compress their sparse representations. Finally,
we propose a fast multiple-view recognition method to jointly classify the object observed by the
cameras. We demonstrate that our multiple-view classification improves the performance of object
recognition upon the traditional per-view classification algorithms in both small-baseline and large-
baseline situations. Further, our system is capable of adapting to different network configurations
and varying wireless bandwidth.

1.2.2 Segmentation of Informative Features for Improved Object
Categorization

The accuracy of BoW classifiers is often limited by the presence of uninformative features ex-
tracted from the background or irrelevant image segments. Most existing solutions to prune out
uninformative features rely on enforcing pairwise epipolar geometry via an expensive structure-
from-motion (SfM) procedure. Such solutions are known to break down easily when the camera
transformation is large or when the features are extracted from low-resolution, low-quality camera
networks. In this thesis, we we explore the use of Sparse PCA as a variable selection tool for seg-
menting informative features in the object images captured from our low-resolution camera sensor
networks. First, we show that using a large-scale multiple-view object database, informative fea-
tures can be reliably identified from a high-dimensional visual dictionary by applying Sparse PCA
on the histograms of each object category. Second, we propose a state-of-the-art algorithm that
improves the speed of Sparse PCA using the Augmented Lagrange Multiplier (ALM) approach
[66]. The new solver outperforms the state of the art for estimating sparse principal vectors as a
basis for a low-dimensional subspace model. To mitigate the high dimensionality of the visual dic-
tionary, a direct variable elimination method called SAFE is presented to prune out uninformative
features for object recognition prior to the Sparse PCA process. We compare our implementation
(SPCA-ALM) with existing algorithms on simulated data. The experiments shows that our algo-
rithm outperforms previous convex programming approaches in terms of speed while maintaining
the same estimation accuracy. Finally, we perform object recognition experiments on the BMW
database, which demonstrate improved recognition by successfully suppressing uninformative fea-
tures.

1.2.3 Human Activity Detection and Categorization
Automatic recognition of human actions in video has been a highly addressed problem in robotics
and computer vision. Majority of the work in literature has focused on classifying pre-segmented
video clips, and some progress has also been made on joint detection and recognition of actions in
complex video sequences. These methods, however, are not designed for wireless camera networks
where the sensors have limited internal processing and communication capabilities.

In this thesis, we extend our distributed recognition pipeline to the spatio-temporal setting for
joint detection and categorization of human actions. The foundation of our work is based on De-
formable Part Models (DPMs) for detecting objects in static images [32]. We have extended this
framework to the single-view and multi-view video setting to jointly detect and recognize actions.
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We call this the Deformable Keyframe Model (DKM) and tightly integrate it within a centralized
video analysis system. Our system can handle video sequences captured by a single or multiple
wireless smart cameras with overlapping views. Each wireless smart camera in our system is capa-
ble of extracting, encoding, and transmitting a feature vector corresponding to foreground objects
of interest in every frame where motion is detected. At the base station, feature vectors from a
single or multiple camera sources are fused within a graphical model framework for localizing and
categorizing actions of interest. Our analysis demonstrates that this decoupling of the algorithm
pipeline can significantly minimize the power and bandwidth consumed by the wireless cameras.

We experimentally validate our DKMs on two data sets. We first demonstrate the competitive-
ness of our algorithm by comparing its performance against other state-of-the-art methods, on a
publicly available dataset. Then, we extensively validate our system on a novel dataset called the
Bosch Multiview Complex Action (BMCA) dataset. Our dataset consists of 11 actions continu-
ously performed by 20 different subjects while being captured by cameras located at 4 different
vantage points. In our experiments, we demonstrate that the presence of multiple-views improves
the performance of action detection and categorization significantly over the single-view setting.

1.2.4 Joint Frameworks for Segmentation and Categorization
One of the most important tasks for a situation awareness system is to detect people and objects of
interest precisely in image streams. In many situations, objects can occur in environments where
the background has similar color or texture when compared to some parts of the object. This in-
troduces and extra level of complexity when the image pixels corresponding to the object needs
to be segmented and categorized. Several formulations based on Random Fields (RFs) have been
proposed for joint categorization and segmentation (JCaS) of objects in images [7, 11, 51]. The
RF’s sites correspond to pixels or superpixels of an image and one defines potential functions (typ-
ically over local neighborhoods) which define costs for the different possible assignments of labels
to several different sites. Since the segmentation is unknown a priori, one cannot define potential
functions over arbitrarily large neighborhoods as that may cross object boundaries. Categoriza-
tion algorithms extract a set of interest points from the entire image and solve the categorization
problem by optimizing cost functions that depend on the feature descriptors extracted from these
interest points. There is some disconnect between segmentation algorithms which consider local
neighborhoods and categorization algorithms which consider non-local neighborhoods.

In this thesis, we propose to bridge this gap by introducing a novel formulation which uses
models of objects with deformable parts, classically used for object categorization, to solve the
JCaS problem. We use these models to introduce two new classes of potential functions for JCaS;
(a) the first class of potential functions encodes the model score for detecting an object as a function
of its visible parts only, and (b) the second class of potential functions encodes shape priors for
each visible part and is used to bias the segmentation of the pixels in the support region of the part,
towards the foreground object label. We show that most existing deformable parts formulations
can be used to define these potential functions and that the resulting potential functions can be
optimized exactly using min-cut [ref]. As a result, these new potential functions can be integrated
with most existing RF-based formulations for JCaS. We evaluate our JCaS algorithm on a publicly
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available image database which consists of articulated full-body images of people. Our results
clearly show the advantages of fusing segmentation and categorization into a joint framework.

1.3 Thesis Outline
The rest of the thesis is outlined as follows. In Chapter 2, we present our work on object and land-
mark categorization using static images captured by distributed smart cameras. We first present
a review of existing object categorization algorithms with specific emphasis on Bag-of-Word and
Deformable Part Model based frameworks. We then introduce our pipeline for distributed object
and landmark recognition for wireless smart cameras, and demonstrate its performance on a chal-
lenging data set. In Chapter 3, we study how to improve Bag-of-Word based object categorization
by suppressing uninformative background features. We explore the use of Sparse PCA as a variable
selection tool for segmenting only informative features in the object images captures from wireless
smart cameras, and demonstrate improved categorization by successfully suppressing uninforma-
tive features. In Chapter 4, we extend our distributed object categorization pipeline to the dynamic
setting, and tackle the problem of detection and categorization of human actions in distributed
smart camera networks. Our framework effectively fuses spatiotemporal information from multi-
ple smart cameras using template co-occurrence constraints similar to DPMs. We perform several
experiments on challenging data sets and demonstrate improved detection and categorization. In
Chapter 5, we present a framework for joint segmentation and categorization of objects in images.
Specifically, we propose a novel energy function that efficiently fuses DPM based energy functions
with traditional energy functions used for binary segmentation of foreground pixels corresponding
to an object of interest from the background. Finally, we summarize the conclusions of this work
in Chapter 6 and discuss future avenues of research that are based on the ideas proposed in this
thesis.
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Chapter 2

Distributed Object Categorization

2.1 Introduction

In this chapter we discuss a distributed object categorization system using a network of wireless
smart cameras. Distributed object categorization is a fast-growing research topic [98, 2, 112,
13, 12, 4], mainly motivated by the proliferation of portable camera devices and their integration
with modern wireless sensor network technologies. Given a wireless network of cameras, this
new paradigm studies how to classify a 3-D object that may be captured from multiple vantage
points. This setup can be extremely useful for automated surveillance and security applications,
especially in large areas with high foot-traffic. For instance, automatic recognition of objects
such as unattended baggage in airports, or number of cars and pedestrians in a given city block,
can be very useful for authorities for general monitoring, task planning and decision making. The
ability to acquire multiple-view observations of a common object can effectively compensate many
visual nuisances such as object occlusion and pose variation, and may further boost the recognition
accuracy if the multiple-view images are properly utilized.

2.1.1 Literature Review
Recent studies in distributed object recognition can be summarized in four intimately related areas.
The first area is focused on the development of smart camera platforms. In recent years, several
experimental platforms have successfully integrated high-resolution cameras (together with other
sensing modalities) with state-of-the-art mobile processors and considerable amounts of memory.
The reader is referred to [73] for more details in this area.

The second area concerns the extraction of dominant image features to represent the 3-D objects
that are captured in the images. Leveraging the available processing power of many smart cameras,
these image features can be directly extracted on the camera sensor without relaying the full-
resolution images to a base-station computer. Then, the choice of optimal object features for
particular applications boils down to two factors: on one hand, the efficiency to compute these
image features on the smart sensor; on the other hand, the accuracy to concisely represent the 2-D
appearance of the objects.
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There are different cues of information one could use from a training set of still images to learn
models for object categories. Many approaches use appearance patches around salient points [17,
35, 60, 71], or patches using dense grid sampling on the training images [24, 27]. Shape is also an
important cue for object categorization. Kumar et. al. [76] used object contours as shape features
within a pictorial structure framework; Boundary curves and boundary fragments have also been
used to represent the shape of many object classes [34, 72]. Jurie and Schmid [48] detect circular
arc features from boundary curves and use these as salient points for matching. While all these
approaches have been successful in restricted regimes, they have their own independent drawbacks.
One of the primary drawbacks is due to the lack of viewpoint invariance of image patch and shape
descriptors.

For these reasons, recent approaches based on local invariant feature detectors have become in-
creasingly popular. The Scale Invariant Feature Transform (SIFT) introduced by Lowe [62] is one
such feature descriptor that combines shape and appearance cues in a common feature descriptor.
The success of SIFT as a viewpoint invariant feature detector has led to the development of other
improved feature detectors and descriptors, such as SURF [39] and CHoG [97], which are better
suited for deployment on mobile camera platforms. Typically, local features are first extracted
independently in both a reference and a test image, then characterized by invariant descriptors
and finally associated to each other based on a matching score. The success of these methods is
mainly due to the viewpoint invariance of the feature descriptors, and the tolerance to clutter and
occlusions.

The third area deals with the models for representing 3-D objects captured from multiple van-
tage points by static cameras. In one approach, feature descriptors form the basis for a codebook
representation of object categories [5, 100, 60, 35, 16]. The codebook is in essence a learned
selection of feature descriptors from a corpus of training images. A particular instantiation of an
object class in an image is then composed form codebook entries, possibly arising from different
source images. Different codebook methods differ in the feature descriptors used, and codebook
learning methods. These methods are also referred to as ”Bag-of-Word” models as they do not
consider geometric relations between parts[88, 20, 17]. The other common approach for 3-D ob-
ject representation in static images deals with modeling the geometric relationship between feature
templates. These approaches build on the pictorial structures framework [30, 33]. Pictorial struc-
tures represent objects by a collection of parts arranged in a deformable configuration. Each part
captures local appearance properties of an object while the deformable configuration is charac-
terized by spring-like connections between certain pairs of parts. The notion that objects can be
modeled by parts in a deformable configuration provides an elegant framework for representing
object categories. While these models are appealing from a conceptual stand-point, it is generally
difficult to establish their value in practice. On difficult datasets, deformable models are often
outperformed by conceptually weaker models such as bag-of-words.

The fourth area concerns the correspondence and compression of image features extracted from
the multiple camera views. In a per-view basis, [13] argued that reliable feature correspondence
can be established in a much lower-dimensional space between camera sensors, even if the feature
vectors are linearly projected onto a random subspace. With multiple camera views, [12] studied
a SIFT-feature selection algorithm, where the number of SIFT features that need to be transmitted
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to the base station can be reduced by considering the joint distribution of the features among
multiple camera views of a common object. A recent work [74] further considered using robust
structure-from-motion techniques (e.g., RANSAC) to select strong object features between two
camera views that satisfy an epipolar constraint induced by a large baseline transformation, and
subsequently reject weak features as outliers from the final stage of object recognition.

2.2 Methods and Contributions
In this chapter we present a systematic study that focusses on distributed object recognition in
low-power wireless smart camera networks. The work is based on an open-source smart camera
platform, called CITRIC [73], which integrates a high-resolution camera with a 600 MHz fixed-
point mobile processor and 80 MB memory. First, we propose a new multiple-view object database
as a public platform to benchmark the system, which is referred to as the Berkeley Multiview
Wireless (BMW) database.

We assume the camera sensors and the network station are connected only through a band-
limited wireless channel. These assumptions impose stringent computation and network com-
munication constraints on the system. Given such limited computation on-board the sensors and
minimal network bandwidth, the bag-of-words model presents the most robust and flexible frame-
work to represent objects and landmarks. Although bag-of-word representations compress visual
information significantly, we observe that under extremely stringent communication constraints it
would be beneficial to compress the visual information as much as possible. Motivated by the
emerging theory of compressive sensing (CS), we overview a sparsity-based distributed sampling
scheme to compress bag-of-word based visual histograms that concisely represent the appearance
of a common object in multiple views [4]. We present the most recent developments in CS theory
to effectively recover sparse signals using fast `1-minimization (`1-min) algorithms.

Finally, we propose a multiple-view recognition method to jointly classify objects observed by
multiple cameras in the network, a concept that has been largely ignored by existing solutions. We
show that the multiple-view classification significantly improves the performance upon traditional
per-view classification algorithms in both small-baseline and large-baseline situations. Further-
more, the system is capable of adapting to the change in different network configurations and the
wireless bandwidth.

2.3 Berkeley Multiview Wireless Database

In the literature, there exist several public image-based object recognition databases, such as Ox-
ford Buildings [42], COIL-100 [81], and Caltech-101 [52]. However, most of the databases are
constructed using high-resolution cameras that do not take into account the real-world noise and
distortion exhibited by most low-power camera sensors in surveillance applications. In addition,
some databases only capture object images in lab-controlled indoor environments (such as COIL-
100), while others collect a wide variety of object images in the same categories that may not
necessarily share the same appearance in 3-D (such as Caltech-101). To aid peer evaluation of
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distributed object recognition methods for the wireless surveillance scenario, we have constructed
a public multiple-view image database, namely, the BMW database. The database can be accessed
online at: http://www.eecs.berkeley.edu/˜yang/software/CITRIC/.

The BMW database consists of multiple-view images of 20 landmark buildings on the campus
of University of California, Berkeley. For each building, 16 different vantage points have been
selected to measure the 3-D appearance of the building. The apparatus for image acquisition
incorporates five low-power CITRIC camera sensors [73] on a tripod, which can be triggered
simultaneously. Figure 2.1 shows the configuration of the camera apparatus. Figure 2.2 shows
some examples of the captured building images. The cameras on the periphery of the cross are
named Cam 0, Cam 1, Cam 4, Cam 3 with a counter-clockwise naming convention, and the center
camera is named Cam 2. Thus, the BMW database has a total of 960 images.

Figure 2.1: The apparatus that instruments five camera sensors.

(a) Five small-baseline images captured at one vantage point.

(b) Five large-baseline images captured at different vantage points.

Figure 2.2: Examples of multiple-view images of a building (the Campanile at UC Berkeley) in the BMW
database.

It is worth emphasizing the following properties of the BMW database:

http://www.eecs.berkeley.edu/~yang/software/CITRIC/
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1. The images have been captured outdoor in different sessions. Therefore, some variations in
ambient illumination exist within each building category and across different categories.

2. The image quality is considerably lower than many existing high-resolution databases, which
is intended to reproduce realistic imaging conditions for camera surveillance applications.
All images are 640×480RGB color images. Since the CITRIC camera sensor does not have
an auto-focus mechanism, the focal length of the camera is permanently set to maximum.
However, it is noticeable that some images are slightly out of focus. In some cases, small
image regions are visibly corrupted by dust residual on the camera lenses.

3. More importantly, the database provides a two-tier multiple-view relationship to systemati-
cally benchmark the performance of multiple-view object recognition algorithms, as shown
in Figure 2.2. Specifically, the five images sampled at each vantage point simulate small-
baseline camera transformations, while the images sampled at different vantage points sim-
ulate large-baseline camera transformations. Furthermore, the small-baseline image sets can
be used to simulate the scenario where a slowly moving camera continuously sample im-
ages in a short time frame. In Section 2.6, we will systematically examine the recognition
performance in both small-baseline and large-baseline scenarios.

2.4 Encoding Multiple-View Object Images via A Joint Sparsity Model

In this section, we briefly review a sparsity-based sampling scheme [4] to encode useful informa-
tion in multiple-view object images from a distributed camera network. To implement a fast codec
to recover distributed source signals in a sensor network setup, we also discuss the latest results on
accelerated `1-min algorithms in the CS and optimization literature [3].

2.4.1 The Joint Sparsity Model
We assume multiple cameras are equipped to observe a common 3-D scene from different vantage
points. For distributed object recognition, it is reasonable to simplify the communication model
between sensors and the base station as a single-hop wireless network, i.e., the topology of the
network is a star shape with the computer at the center and all the sensors directly communicate to
the computer.

Using a SIFT-type feature detector, certain viewpoint-invariant features can be extracted from
the images, as shown in Figure 2.3. For an object database (e.g., BMW), object features may be
shared between different object classes. Therefore, all features extracted from the training images
can be clustered/quantized based on their visual similarities into a vocabulary. The clustering
normally is based on a hierarchical k-means algorithm [41]. The size of a vocabulary for a large
database ranges from thousands to hundreds of thousands. For example, in this chapter, we use
hierarchical k-means to construct 10,000-D vocabularies for the BMW database, with k = 10 and
four hierarchies. Figure 2.4 shows the 10,000-D vocabulary tree constructed using all the CHoG
features from the BMW training set (see Section 2.6 for more detail).
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Figure 2.3: CHoG feature points detected in a pair of image views of a building.

Figure 2.4: The 10,000-D vocabulary tree built using all CHoG features extracted from the training images
in the BMW database. The tree is radially represented, with the center being the root node.

In [4], the authors have argued that, given a large vocabulary that contains quantized SIFT
features from many classes, the representation of the features extracted from a single image is
sparse, which is called a SIFT histogram. If we denote L as the number of the camera sensors that
observe the same object in 3-D, and x1,x2, · · · ,xL ∈ RD are the corresponding SIFT histogram
vectors. Then each coefficient in xi represents the instances of one type of the SIFT feature in the i-
th view. Since only a small number of the features may be exhibited in a single image, the majority
of the histogram coefficients should be (close to) zero. More importantly, since SIFT-type features
are robust to some degree of camera rotation and translation, images from different vantage points
may share a subset of the same features, thus yielding histograms with similar coefficient values,
as shown in Figure 2.5.
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Figure 2.5: The 10,000-D feature histograms corresponding to the image pair in Figure 2.3. The joint
sparsity patten indicates certain dominant features are shared between the two views.

The problem of encoding multiple-view object images can be formulated as the following. For
the high-dimensional histogram vectors extracted from the L images, define a joint sparsity (JS)
model as

x1 = xc + z1,
...

xL = xc + zL,

(2.1)

where xc represents the common component, and each zi represents an innovation. Furthermore,
both xc and zi are also sparse. On each camera sensor, an encoding function bi

.
= f(xi) ∈ Rd

is sought to compress the histogram vector xi. At the base station, upon receiving b1, · · · , bL
compressed features, the system should simultaneously recover the source signals x1, · · · ,xL,
and further proceed to classify the 3-D object represented by the multiple-view histograms.

2.4.2 Distributed Encoding of JS Signals
The fact that each xi is sparse against a large vocabulary provides a means to effectively sample
the signal via a linear projection, motivated by the CS theory. In particular, we define a random
matrix A ∈ Rd×D as an overcomplete dictionary (i.e., d < D) whose elements are sampled from
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independent and identically-distributed Gaussians. Then a random projection function is defined
as:

f : b = Ax. (2.2)

However, recovering x from (2.2) essentially is an inverse problem, as the number of obser-
vations in b is smaller than the number of unknowns in x. The CS theory [14, 19] shows that if
the underlying signal xi is sufficiently sparse and the projection dimension d > δ(A)D is above a
threshold determined by δ(A), then xi is the unique solution to a convex program called `1-min:

(P1) : min ‖x‖1 subject to b = Ax. (2.3)

In other words, (P1) guarantees that no information is lost by projecting xi onto a low-dimensional
random subspace, as long as xi is sufficiently sparse.

Now we can consider the decoding problem at the base station. Given the fact that all camera
views may share a sparse component xc, the ensemble x1, · · · ,xL can be simultaneously recov-
ered at the base station with the accuracy that may exceed that by estimating (P1) individually [4].
In particular, the JS model can be solved in a single linear system:[

b1
...
bL

]
=

[
A1 A1 0 ··· 0
... . . . . . .
AL 0 ··· 0 AL

][ xc
z1

...
zL

]

⇔ b′ = A′x′ ∈ RdL.

(2.4)

Enforcing the JS model can boost the estimation accuracy in (P1) when d1 = d2 = · · · =
dL = d is uniform. More importantly, it also makes it possible to choose different sampling rates
for individual camera sensors. This property is particularly relevant to wireless sensor networks,
where sensor nodes that have lower bandwidth or lower power reserve may choose to reduce their
sampling rates in order to preserve energy.

More specifically, the strategy of choosing varying sampling rates can be viewed as an appli-
cation of the celebrated Slepian-Wolf theorem [21]. For the simplest case of two source chan-
nels X1 and X2, the theorem shows that, given sequences x1 and x2 that are generated from the
two channels respectively, the sequences can be jointly recovered with vanishing error probability
asymptotically if and only if

R1 > H(X1|X2),
R2 > H(X2|X1),

R1 +R2 > H(X1, X2),

where R is the bit rate function, H(Xi|Xj) is the conditional entropy for Xi given Xj , and
H(Xi, Xj) is the joint entropy.

In distributed object recognition, with the JS model, a necessary condition for simultaneously
recovering x1, · · · ,xL can be found in [18]. Basically, it requires that each sampling rate δi = di

D

guarantees the so-called minimal sparsity signal of zi is sufficiently encoded, and also the total
sampling rate guarantees that both the joint sparsity and the innovations are sufficiently encoded.
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Figure 2.6: Flow diagram of the sparsity-based distributed object recognition system.

2.4.3 Decoding Sparse Signals via Fast `1-Minimization Algorithms
Finally, we briefly discuss the state of the art in effectively solving the convex program (P1) via an
accelerated `1-min technique. A comprehensive review of existing fast `1-min algorithms can be
found in [3].

The convex program (P1) has traditionally been formulated as a linear programming problem
called basis pursuit (BP), which has several well-known solutions via iterative interior-point meth-
ods. However, the computational complexity of these interior-point methods is often too high
for many real-world, large-scale applications. The main reason is that they all involve expensive
operations such as matrix factorization and solving linear least squares.

Recently, iteraive shrinkage-thresholding (IST) methods have been recognized as a good al-
ternative to the exact BP solutions. The approach is also appealing to large-scale applications
because its implementation mainly involves lightweight operations such as vector operations and
matrix-vector multiplications, which is in contrast to most past `1-min algorithms.

In a nutshell, IST considers a variation of (P1) that takes into account the existence of measure-
ment errors in the sensing process:

(P1,2) : min ‖x‖1 subject to ‖b− Ax‖2 ≤ ε, (2.5)

where ε is a bound on the additive white noise in b. By the Lagrangian method, (P1,2) is rewritten
as an unconstrained composite objective function:

min
x
F (x)

.
=

1

2
‖b− Ax‖22 + λ‖x‖1, (2.6)

where λ > 0 is the Lagrangian multiplier.
We can immediately see that the main issue in optimizing such a composite function F (x) is

that its second term ‖x‖1 is not a smooth function and therefore is not differentiable everywhere.
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Nevertheless, one can always locally linearize the objective function in an iterative fashion as [82,
1]:

x(k+1) = arg minx{f(x(k)) + (x− x(k))T∇f(x(k))
+1

2
‖x− x(k)‖22 · ∇2f(x(k)) + λg(x)}

≈ arg minx{(x− x(k))T∇f(x(k))

+α(k)

2
‖x− x(k)‖22 + λg(x)},

(2.7)

where the hessian∇2f(x(k)) is approximated by a diagonal matrix α(k)I .
One can further show that the linearized objective function (2.7) has a closed-form solution

called the soft-thresholding function [82, 1]. Furthermore, the speed of convergence from an initial
guess x(0) to the ground-truth sparse signal can be accelerated by a numerical technique called the
alternating direction method (ADM) [45]. Based on the IST algorithm, ADM iteratively optimizes
both the sparse signal x and the residual term e:

min
x,e
‖x‖1 +

1

2µ
‖e‖2 subject to b = Ax + e. (2.8)

It is easy to see that when e is fixed, (2.8) can be converted to the standard IST problem in (2.7);
when x is fixed, since the `1-norm ‖x‖1 becomes a constant, the objective function becomes
smooth and its optimum is trivial to compute.

2.5 Multiple-View Object Recognition using a Hierarchical Vocabulary
Tree

In this section, we explain an efficient multiple-view object recognition algorithm that takes multiple-
view histograms as the input, and outputs a label as the classification of the object in 3-D. Figure
2.6 summarizes the complete system diagram.

Given a large set of robust image features (e.g., SIFT), we can construct a vocabulary tree using
hierarchical k-means, where k represents the branch factor of the tree [20]. On the highest level
of the tree, all the feature descriptors are partitioned into k clusters, with the mean of each cluster
representing the cluster center. At each lower level, k-means is applied within each previous cluster
in order to further partition the space into k clusters. The process is continued until there are kH

clusters at the H-th level (as shown in Figure 2.4).
With the vocabulary tree constructed, the feature descriptors in each training image are prop-

agated down the tree. Then a term-frequency inverse-document-frequency (tf-idf ) weighted his-
togram y can be defined for each training image as follows. First, assign an entropy-based weight
wp to each quantized leaf node feature p in the vocabulary tree as

wp
.
= log

N

Np

, (2.9)

where N is the total number of the training images, and Np is the number of training images that
contain the same feature vector p. With the weight wp computed in this manner, all the elements of
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the training histograms y and test histograms x are multiplied element-wise with this weight func-
tion in order to achieve the tf-idf weighting scheme. For each object category, i = 1 · · ·C, multiple
weighted histograms are generated for all m training images of that object and grouped into a set,
Yi = {y1,y2, · · · ,ym}. All the C sets further form the training set, Y = {Y1, Y2, · · · , YC}.

During the testing phase, feature descriptors are extracted for each single-view query image
and propagated down the vocabulary tree by the same fashion to obtain a single weighted query
histogram X = {x}. The query image is then given a single-view relevance score s based on the
`1-normalized difference between the weighted query and the ith training set Yi:

s(x, Yi) = min
yj∈Yi

‖ x

‖x‖1
−

yj
‖yj‖1

‖1. (2.10)

When multiple-view histograms of the query object are available, X = {x1,x2, · · · ,xL}, a
new method to perform joint classification is necessary to take into account the multiple-view
information. In this case, the median of the single-view relevance scores is used to determine the
averaged multiple-view relevance score:

s(X, Yi) = medianxj∈Xs(xj, Yi). (2.11)

We choose median as a robust mean operator, which is more suitable for situations where some
query images are not well matched with any training images in 3-D. Notice that when X only
contains a single camera view, (2.11) is identified as (3.1).

Finally, the label of the object category for the multiple-view histograms is assigned as:

label(X, Y ) = arg min
i∈[1···C]

s(X, Yi), (2.12)

which is simply the object category that achieves the minimal multiple-view relevance score.
In this chapter, we are concerned with the implementation of the above multiple-view recog-

nition system on a band-limited camera sensor network. As shown in Figure 2.6, on the sensor
side, each query histogram after the quantization process is projected onto a lower-dimensional
feature space by random projection, and transferred to a base-station computer. On the computer
side, the received feature vectors b1, b2, · · · , bL are jointly decoded in (2.4) by `1-min to obtain the
estimates X = {x̂1, x̂2, · · · , x̂L} of the original weighted histograms. Finally, the joint classifica-
tion algorithm (3.2) is employed to recover a label of the object that minimizes the multiple-view
relevance score s.

2.6 Experiments

2.6.1 Setup
We use the BMW database to benchmark the performance of the algorithm (3.2). First, we divide
the database into a training set and a testing set. As the vantage points of each object are named
numerically from 0 to 15, images from all the even number locations are designated as the training



CHAPTER 2. DISTRIBUTED OBJECT CATEGORIZATION 21

set, and the ones from the odd number locations are assigned to the testing set. Furthermore, since
the main purpose of the experiment is to validate the recognition performance of using multiple-
view testing images, we do not include the redundant multiple views in the training set. More
specifically, only training images from a single camera, i.e., Cam 2, are used for the construction
of the vocabulary tree and for the subsequent recognition process.

Based on the BMW database, we choose to compare how discriminative three existing ro-
bust feature descriptors are in representing the image appearance of objects, namely, SIFT[62],
SURF[39], and CHoG[97]. The original SIFT framework includes a gradient-based interest-point
detector with a single-scale 128-D descriptor for each feature. The SURF algorithm is based on
sums of approximated 2D Haar wavelet responses, and it also makes use of integral images to
speed up the keypoint detection and descriptor extraction. The quantization process yields a 64-D
vector. The relatively newer CHoG feature detector and descriptor has been specially designed for
platforms with low processing capabilities, and yields a 45-D descriptor for each detected feature.

We design two testing scenarios to evaluate the performance of the distributed recognition
scheme, namely, the small-baseline and the large-baseline scenarios. In the small-baseline sce-
nario, images captured concurrently from multiple cameras at one vantage point are used to deter-
mine the object category. We evaluate the recognition performance using one camera (i.e., Cam
2), two cameras (i.e., Cam 1 and Cam 2), and three cameras (i.e., Cam 1, Cam 2, and Cam 3). In
the large-baseline scenario, images captured from one to three vantage points are randomly chosen
from the same testing category for recognition. The two scenarios are well illustrated in Figure
2.2.

In terms of system implementation, the CITRIC mote has been shown to have the capacities to
locally extract and compress high-dimensional histograms [4]. Nevertheless, in this chapter, the
data processing and classification on the BMW database are performed on a Linux workstation.
All the code has been implemented in MATLAB/C++ with a MEX compiler interface.

2.6.2 Small-Baseline Results
To establish a baseline performance, we first evaluate the recognition accuracy of (3.2) without
involving the random-projection and `1-min codec. In other words, we assume the classifier can
directly access and process all the images in their full resolution. Table 2.1 shows the recognition
rates for the three camera configurations based on the SIFT, SURF, and CHoG feature descriptors.
It shows that in all the three cases, the recognition rates improve when more views of the query
object are included in the global recognition scheme. Overall, CHoG features yield the best recog-
nition rates compared to the other two feature descriptors. We find this to our benefit, as CHoG
features have been designed for distributed wireless camera applications [97], and thus have the
lowest dimensionality and extraction time compared to SURF and SIFT feature descriptors. For
this reason, we will choose the CHoG features exclusively for the multiple-view recognition ex-
periment in the rest of the section.

Next, we activate the `1-min codec in the same camera configurations, and evaluate the recog-
nition accuracy when the query histograms are projected from its original 10,000-D space to lower
projection dimensions ranging from 1000 to 9000. For each projection dimension d and each cam-
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Table 2.1: Small-baseline recognition rates without histogram compression. The best rates are marked in
bold face.

Expt.
# Train # Test SIFT SURF CHoG
Images Images Rate(%) Rate(%) Rate(%)

1 Cam 160 160 71.25 80.62 81.88
2 Cam 160 320 72.5 81.25 84.38
3 Cam 160 480 73.75 81.88 86.25

era sensor j, we create a fixed random projection matrix Adj offline. The `1-min algorithm to
reconstruct the JS signals (2.4) is based on the alternating direction method [45]. Figure 2.7 shows
the recognition rates for the three experiments against the projected dimension.

Figure 2.7: Comparison of the CHOG recognition rates (in color) in the small-baseline scenario with
different random projection dimensions.

We observe that, with small projection dimensions close to 1000, the recognition rates using
two or three cameras improves significantly compared to the single-view recognition rates. For
instance, at d = 1000, the recognition rate from a single camera (i.e., Cam 2) is about 45%. The
rate is boosted to 68% with two cameras and 82% with three cameras. It is also important to note
that the improved recognition rates using the multiple-view information are also higher than merely
increasing the projection dimension in the single-camera scenario. For instance, The recognition
rate for 2-Cam at d = 2000 is higher than the rate for 1-Cam at d = 4000.

As the projection dimension increases, the recognition rates for the three scenarios increase as
well and reach a plateau beyond d = 8000. Interestingly, for the 3-Cam case, the ground-truth
recognition rate of 85% is achieved in a very low projection space of 3000-D.
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2.6.3 Large-Baseline Results
The large-baseline performance is evaluated using the same procedure as in the small-baseline
experiments. Table 2.2 shows the recognition rates for the three camera configurations without
involving the `1-min codec. Again, the recognition rates improve when more views of the query
object are included in the global recognition scheme. Recognition using the CHOG features not
only outperforms that with the other two feature descriptors, but is also drastically better than the
CHOG recognition rates in the small-baseline experiments of Section 2.6.2. Specifically, there is
about 10% improvement in the recognition rates in the 3-camera case. The result demonstrates
that multiple large-baseline images contain much more information about a common object in 3-D
than a set of small-baseline images.

Table 2.2: Large-baseline recognition rates without histogram compression. The best rates are marked in
bold face.

Expt.
# Train # Test SIFT SURF CHoG
Images Images Rate(%) Rate(%) Rate(%)

1 Cam 160 160 71.25 80.62 81.88
2 Cam 160 320 76.88 88.13 93.75
3 Cam 160 480 83.13 90.00 94.88

When the `1-min codec is included, Fig. 2.8 shows the recognition rates versus the random
projection dimension. Clearly, the recognition rates using a single camera does not change from
the small-baseline scenario. As shown in the plot, the recognition rates at the low projection
dimension of 1000 are lower than those of the small-baseline scenario for the 2 and 3-cam cases.
However, as the projection dimension increases, the multiple-view recognition rates reach about
95% and begin to plateau. Such rates are never achieved even without random projection in the
single view case.

2.7 Conclusion and Discussion

We have presented a framework to jointly classify objects observed from multiple vantage points in
a distributed wireless camera network. The method is well suited for situations where the camera
sensors and the base station are connected only by a band-limited communication channel, and the
multiple-view information of the object is available to boost the global recognition. We have drawn
from recent developments in compressive sensing theory to formulate a distributed compression
scheme to transmit high-dimensional object histograms from camera sensors viewing a common
object in 3-D. Most importantly, the algorithm does not require any calibration between the cam-
eras. Therefore, it is very flexible to the addition or omission of some cameras in the network, and
the cameras can also be mounted on mobile robot platforms. Finally, we have constructed a new
multiple-view object database, namely, the BMW database. The performance of the system has
been extensively validated using the database.
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Figure 2.8: Comparison of the CHOG recognition rates (in color) in the large-baseline scenario with dif-
ferent random projection dimensions.

Our investigation also has led to several intriguing problems for further investigation. First, the
multiple-view images may adversely introduce large amounts of outlying features from different
background images into the recognition process. However, it is possible to reject these features
by considering the geometric consistency between the multiple views during the (offline) training
process, such as using the RANSAC technique in [74]. Second, the best recognition rate based
on the images of the 20 landmarks is about 95%. To successfully deploy such systems in real-
world surveillance applications, the recognition rates have to be improved dramatically (e.g., >
99%). Finally, robust techniques must be studied to deal with situations where multiple objects
of interest are captured in the images, or certain test images are irrelevant (as outliers) to the
given training categories. In the next chapter, we address the first issue of segmenting informative
features in multi-view images of a common object or landmark, and integrate it into our multi-view
recognition framework.
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Chapter 3

Segmenting Informative Features for
Categorization via Sparse PCA

3.1 Introduction

In the past decade, the exponential growth of storage capacity and the proliferation of modern
smartphones equipped with mobile cameras has enabled people to capture and upload personal im-
ages to large online image databases such as Picassa and Flickr. Further, the mobility and ease of
use of smart phones has empowered users to capture images of objects and events in public spaces.
This has enabled a host of applications that can automatically recognize common objects and land-
mark buildings in man-made urban environments. These applications range from location based
services to augmented reality and computational photography. Further, these ”crowdsourced” im-
ages and videos are also being used by news media and law enforcement for situation awareness
in public spaces as they offer scene imagery from varying vantage points. These images in essence
can be viewed as being captured form a virtual smart-camera network, and thus can be processed
using the computational machinery that has been developed for multi-view camera networks.

The existence of common objects and landmarks in these images has motivated research in
visual object recognition [59, 29, 46, 114]. Images in these coarsely labelled databases are used to
train classifiers that can be used to recognize different object categories. To tackle the problem of
recognizing a large number of objects in large image databases, a visual-dictionary based approach
has been proposed [44, 20], which further led to several other methods to recognize objects in
both the single-view and multi-view settings [98, 2, 112, 12, 4, 67]. Essentially, most of the
methods work with certain visual descriptors (e.g., SIFT and its many variants) extracted from the
images to construct visual histograms, which represent the object appearance in the images using
a precomputed visual dictionary.

Although vocabulary-tree methods have proven to be efficient in describing object images, the
accuracy of the classifiers is often limited by the presence of uninformative image features typically
extracted from the background or irrelevant image segments, such as pedestrians and vegetation
(see Figure 3.1 for an example). When the irrelevant segments take on a significant portion of
an image, the uninformative features can dominate the representation in the visual histogram, and
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hence lead to inferior recognition accuracy. In [74], Turcot and Lowe suggested, if a subset of
so-called useful features or informative features can be systematically selected during the training
stage, it not only further reduces the number of visual descriptors needed, but also significantly
improves the recognition accuracy. Since in man-made environments, most objects of interest,
in particular landmark buildings, are rigid objects, 3-D perspective geometry can be leveraged to
select informative features that satisfy a pairwise epipolar constraint via RANSAC. This is known
as the Structure-from-Motion (SfM) approach.

Motivated by the literature, in this chapter, we study how to improve informative feature se-
lection in both speed and accuracy from possibly low-resolution, low-quality camera networks.
The proposed approach can be also applied to improve object recognition in the traditional sense
using high-end photography [44, 20, 74]. One major difficulty in enforcing the epipolar constraint
on images collected from low-power camera networks instead of high-end photography is that es-
tablishing wide-baseline feature correspondence of SIFT-type features is known to be not robust
even when using state-of-the-art bundle adjustment techniques [90]. In addition, the quality of im-
ages sampled from low-power camera sensors also presents a challenge to reliably extract accurate
features to describe the appearance of interesting objects in multiple views.

We propose to address this problem by a principled semidefinite programming (SDP) tech-
nique, known as Sparse Principal Components Analysis (Sparse PCA) [117]. As an extension of
the popular PCA method, Sparse PCA addresses a drawback of classical PCA that the principal
vectors (PVs) as a basis of a low-dimensional subspace typically have dense non-zero loadings. In
particularly, in high-dimensionality setting, the dense linear combinations of all the variables make
it difficult to interpret the corresponding principal components (PCs).

In case of visual-dictionary based object recognition, the variables in a high-dimensional his-
togram are associated with the codewords that represent either informative foreground features or
uninformative background. We contend that in a large-scale object image database, the subset of
informative features can be reliably selected by the sparse coefficients in the first few PVs. The
new solution is more robust to wide-baseline camera transformation and numerically more efficient
than the existing solutions of establishing pairwise rigid-body correspondence.

3.1.1 Main Contributions
In this chapter, we explore the use of Sparse PCA as a variable selection tool for selecting informa-
tive features in the object images captured from low-resolution camera sensor networks. Firstly,
we present a scheme for using Sparse PCA with high-dimensional covariance matrices constructed
from visual histograms to extract a sparse visual codeword support for each object category. We
compare its performance with the SfM technique applied to large-baseline, low-quality multiple-
view images. Secondly, we propose a state-of-the-art algorithm that improves the speed of Sparse
PCA using the Augmented Lagrange Multiplier (ALM) approach [8, 3]. To mitigate the high
dimensionality of the visual dictionary, a direct variable elimination method called SAFE is pre-
sented to prune out uninformative features for object recognition prior to the Sparse PCA process.
We compare our implementation (SPCA-ALM) with existing algorithms on simulated data. The
experiment shows that the algorithm outperforms the previous convex programming algorithm
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Figure 3.1: Comparison of informative feature selection on low-quality multiple-view images. Top: A
subset of 16 training images of a building (Campanile at UC Berkeley) in the BMW database [67] with
SURF features superimposed in blue. Middle-top: Informative features detected by SfM (green). For each
image pair, SURF features are deemed informative if the consensus of the corresponding epipolar constraint
exceeds 25% of the total feature pairs. Middle-bottom: Informative features selected by thresholded PCA
(pink), with desired cardinality equal to that of Sparse PCA Bottom: Informative features selected by
Sparse PCA (red) based on the first two leading PVs. The selected features primarily lie on the Campanile,
while other features on the trees, lamps, and other objects are successfully suppressed. For this particular
dataset, the SfM method performs poorly due to unreliable epipolar transformations found between these
wide-baseline images.

(DSPCA) [23] in terms of speed while maintaining the same estimation accuracy. Finally, we
perform object recognition experiments, which demonstrate improved recognition by successfully
suppressing uninformative features.
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3.2 Review of Recognition via Vocabulary Trees

In object recognition, certain local invariant features have become a popular representation of
the object images, which can be extracted and encoded into high-dimensional descriptors using
algorithms such as SIFT [62] and SURF [39]. In bag-of-words (BoW) approach, these invariant
features are further quantized to form a dictionary of visual words. All the feature descriptors in
the training set are hierarchically clustered into visual word clusters (e.g., using hierarchical k-
means [41]). This hierarchical tree is commonly referred to as a vocabulary tree [20]. The size
of a vocabulary tree for a large database ranges from thousands to hundreds of thousands. For
example, we use hierarchical k-means to construct 1,000-D vocabularies for our training image
database, with a branch factor of k = 10 and four hierarchies.

To start the training process, feature descriptors in each training image are propagated down the
vocabulary tree to form a BoW model for the image. Then a term-frequency inverse-document-
frequency (tf-idf ) weighted visual histogram y is defined for each training image [20]. For each
object category, i = 1 · · ·C, m weighted histogram are generated from the m training images of
that category respectively: Ai = {y1,y2, · · · ,ym}. All the C sets form the training set, A =
{A1, A2, · · · , AC}.

During the testing phase, feature descriptors are extracted for the query image and propagated
down the vocabulary tree by the same fashion to obtain a single weighted query histogram q. The
query image is then given a relevance score s based on the `1-normalized difference between the
weighted query and the ith training set Ai:

s(q, Ai) = min
yj∈Ai

‖ q

‖q‖1
−

yj
‖yj‖1

‖1. (3.1)

Finally, the label of the visual histogram q is assigned as the object category that achieves the
minimal relevance score:

label(q) = arg min
i∈[1···C]

s(q, Ai). (3.2)

3.2.1 Failure of SfM on low quality images
It was suggested by Turcot and Lowe [74] that the accuracy of object recognition in large image
databases can be improved by suppressing uninformative visual words that typically represent
irrelevant image background. In [74], SfM techniques were used to enforce pairwise epipolar
constraints of rigid objects. The authors argued that, between a pair of images that render the
same object in space, uninformative features can be easily pruned out as outliers w.r.t. a dominant
epipolar constraint by RANSAC. Along similar lines, Philbin et. al. [43] introduced a Geometric
Latent Dirichlet Allocation model for constructing image adjacency graphs. Subsequently, rich
latent topic models were built from the adjacency graphs with the identity and locations of visual
words specific to the objects, thereby rejecting uninformative visual words. Knopp et. al. [49]
augmented query images with rough geolocation information combined with wide-baseline feature
matching to detect and suppress uninformative features before invoking vocabulary tree based
object recognition.
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All these methods rely on the accuracy of wide baseline feature matching to establish pairwise
epipolar geometry. However, they tend to fail when the quality of the images in the database is very
poor, as is the case with images captured from mobile cellphones or distributed camera networks.
Furthermore, man-made landmarks such as buildings often have repetitive texture and patterns that
tend to confuse feature correspondence algorithms (e.g., Bundler [90]). Figure 3.1 (Middle-top)
shows an example where SfM fails at determining the wide-baseline transformation across images
of an object captured from multiple vantage points. More examples can be found in Figure 3.4
later.

3.3 Identifying Informative Features

Classical PCA is a well established tool for the analysis of high-dimensional data. For a data
matrix A, PCA computes the PCs via an eigenvalue decomposition of its empirical covariance
matrix Σ. It has also been observed that in general the loadings of the corresponding PVs have
dense and nonzero. In certain applications, it is desirable to obtain PVs that can explain maximum
variability in the data A using linear combinations of just a few nonzero variables, and hence
improves interpretability of such data. It is with this motivation that Sparse PCA was developed
[117, 23] and has proven to be a very useful tool for identifying focalized hidden information in
data where the coordinate axes involved have physical interpretations.

In our BoW approach to object recognition, each coordinate axis in the visual histogram cor-
responds to a particular visual word in the vocabulary tree. We contend that the visual words that
explain maximum variability in data corresponding to each object category can be regarded as
informative features for object recognition. In order to use Sparse PCA to identify these visual
words, an empirical covariance matrix must be computed for each object category in the database.

Let us considerm available training images of an object category. Using the constructed vocab-
ulary tree learned from all the categories, the SURF descriptors in each image are converted into
a visual histogram y ∈ Rn. The m vectors {yj} are then normalized to have unit length and cen-
tered, and grouped into a data matrix: A = [ỹ1, ỹ2, · · · , ỹm] ∈ Rn×m. The empirical covariance
matrix is then computed from this data matrix as ΣA = 1

m
AAT .

Sparse PCA that computes the first sparse eigenvector of ΣA optimizes the following objective
[117]:

xs = arg maxxTΣAx subj. to ‖x‖2 = 1, ‖x‖1 ≤ k. (3.3)

We denote the indices of the non-zero coefficients in xs by I (i.e., the nonzero support of xs).
These indices correspond to the visual words that explain maximum variability in A, and are sub-
sequently used in the object recognition process (explained in section 3.6).

In practice, it is common that the leading first sparse PV may not be sufficient for obtaining a
variable support, and it is desirable to further estimate a few subsequent sparse PVs as well. In
optimization, it is a common practice to estimate succeeding eigenvectors by sequentially deflating
the covariance matrix with the preceding ones. Several techniques have been explored for reliably
deflating a covariance matrix for Sparse PCA [64]. We adopt a simple technique called Hotelling’s
deflation that eliminates the influence of the first sparse PV to obtain a deflated covariance matrix
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Σ′A as follows:
Σ′A = ΣA − (xs

TΣAxs)xsxs
T . (3.4)

Then, the second sparse eigenvector x′s of ΣA becomes the leading sparse eigenvector of Σ′A, and
can be estimated again by Sparse PCA (3.3). In our experiment, we observe that the first two sparse
PVs are sufficient for selecting informative features that lie on the foreground objects in the BMW
database (as shown in Figure 3.1 and 3.4). Finally, If we denote the indices of the non-zeros in the
second PV x′s as I ′, then the union I ∪ I ′ provides the support corresponding to the informative
features of a particular category.

We have also compared the variable selection performance of Sparse PCA with thresholded
PCA. To obtain a thresholded PCA support set, we perform classical PCA on the same covariance
matrix ΣA and pick the top k indices of the corresponding first and second PVs with highest ab-
solute value as the informative features. Here, k is chosen as the cardinality of the corresponding
Sparse PVs for the same category. The third row of Figures 3.1 and 3.4 show the informative fea-
tures selected by thresholded PCA (pink). It is clear in these figures that majority of the informative
features do not lie on the foreground objects.

3.4 Speeding up Sparse PCA using ALM

Sparse PCA has been an active research topic for over a decade. Notable approaches include SCoT-
LASS [47], SLRA [115], and SPCA [117], all of which aim at finding modified PVs with sparse
loadings. However, one drawback of all the above algorithms is that the formulation requires solv-
ing nonconvex objective functions. Recently, d’Aspermont et. al. [23] derived an `1-norm based
semidefinite relaxation for Sparse PCA called DSPCA, and it is currently the most widely known
convex formulation of the problem. This algorithm, however, has a slow convergence rate which is
a major bottleneck when analyzing high dimensional data. Augmented Lagrange multiplier (ALM)
based algorithms have recently gained a lot of popularity due to their rapid convergence and speed
in `1-minimization [3] and Robust PCA [113] problems. These have motivated us to develop a new
algorithm for solving the semidefinite relaxation form of Sparse PCA using ALM.

We begin by considering an empirical covariance matrix Σ ∈ Sn, with n representing the
dimensionality of the data. Sparse PCA can be formulated as:

max
‖x‖2≤1

xTΣx− ρ‖x‖0, (3.5)

where ρ > 0 is a scalar parameter controlling the sparsity in x. By following the `1-norm relaxation
and lifting procedure for semidefinite relaxation presented in [23], and dropping a nonconvex rank
constraint, we can rewrite (3.5) as:

max
X

Tr(ΣX)− ρ‖X‖1 : Tr(X) = 1, X � 0, 1 (3.6)

1‖X‖1 represents the entrywise norm: 1T |X|1.
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where X = xxT is a matrix variable. Duality allows us to rewrite this problem as a SDP:

min
U

λmax(Σ + U) : − ρ ≤ Uij ≤ ρ. (3.7)

As presented in [23], assuming Σ is fixed and given, the maximum eigenvalue function λmax(·)
can be approximated by a smooth, uniform objective (i.e., with Lipschitz continuous gradient):

fµ(U) = µ log(Tr exp((Σ + U)/µ))− µ log(n), (3.8)
∇fµ(U) = exp((Σ + U)/µ)/Tr(exp((Σ + U)/µ)), (3.9)

where µ = ε/2 log(n) produces an ε-approximate solution. With this approximation, (3.7) can be
rewritten as,

min
U

fµ(U) : − ρ ≤ Uij ≤ ρ. (3.10)

The basic idea of ALM methods is to eliminate the constraints and add to the cost function a
penalty term that prescribes a high cost to infeasible points [8]. This augmented cost function is
called the augmented Lagrangian function. In our case, the box constrained convex problem of
(3.10) can be written in an unconstrained form as:

min
U
{fµ(U) +

∑
1≤i,j≤n

P (Uij, Yij, c)}, (3.11)

where Yij, 1 ≤ i, j ≤ n represents the Lagrange variable, c determines the severity of the penalty,
and

P (u, y, c) =


i.e.y(u− ρ) +

c

2
(u− ρ)2 if ρ− y

c
≤ u,

y(u+ ρ) +
c

2
(u+ ρ)2 if −ρ− y

c
≥ u,

y2

2c
otherwise. i.e.

(3.12)

We denote as F (U, Y ) the cost function of (3.11), which is our smooth and convex augmented
Lagrangian function with Lipschitz continuous gradient∇UF (U, Y ).

The algorithm for Sparse PCA using ALM (SPCA-ALM) is presented in Algorithm 1. Note that
in each iteration of the outer loop of the algorithm, we need to solve the unconstrained minimiza-
tion problem in (3.11), which has no closed-form solution. Thus, we employ Nesterov’s first order
gradient technique [68]. Once this augmented Lagrangian function is minimized, the Lagrange
multiplier Y will be updated using the rule:

Y k+1
ij =


i.e.Y k

ij + ck(Uk
ij − ρ) if Y k

ij + ck(Uk
ij − ρ) > 0,

Y k
ij + ck(Uk

ij + ρ) if Y k
ij + ck(Uk

ij + ρ) < 0,
0 otherwise. i.e.

(3.13)

After the algorithm converges, the primal variable is given by the gradient in (3.9), i.e., Xk =
∇fµ(Uk). Then the sparse principal component is recovered as the leading eigenvector of Xk.
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Algorithm 1 SPCA-ALM
Input: Covariance Σ and ρ > 0.

1: U1 ← 0, Y 1 ← 0, X1 ← 0, c1 ← 1.
2: while not converged (k=1,2,3,...) do
3: t1 ← 1, V 1 ← Uk, W 0 ← Uk, Z ← rand(n, n).
4: α0 ← ‖V 1−Z‖2

‖∇F (V 1,Y k)−∇F (Z,Y k)‖2 .
5: while not converged (l=1,2,3,...) do
6: Find smallest i ≥ 0 for which
7: F (V l, Y k)− F (V l − αl−1

2i
∇F (V l, Y k), Y k) ≥ αl−1

2i+1 ‖∇F (V l, Y k)‖2.
8: αl ← 2−iαl−1, W l ← V l − αl∇F (V l, Y k).
9: tl+1 ← (1 +

√
4tl2 + 1)/2.

10: V l+1 ← W l + tl−1
tl+1 (W l −W l−1).

11: end while
12: Uk+1 ← W l

13: Update Y k+1 using the update rule (3.13).
14: Xk+1 ← ∇fµ(Uk+1).
15: ck+1 ← 2k.
16: end while
Output: Sparse principal vector, xs ← leading eigenvector of Xk.

3.4.1 Performance
We have evaluated our SPCA-ALM algorithm by comparing its performance against the DSPCA
solver [23]. Both algorithms have been implemented in MATLAB and benchmarked on a 2.6 GHz
Intel processor with 4 GB memory. We generate synthetic data of varying dimensionality as fol-
lows. First, in the n-dimensional vector space, 10% of its indices are selected as nonzero support.
Next, the values of the nonzero coefficients are drawn from an independent and identically dis-
tributed Gaussian x0(i) ∼ N(0, 200). Finally, random noise ε ∼ N(0, 1) is added to x0 to form
a noisy version of the empirical covariance matrix, Σ = (x0 + ε1)(x0 + ε1)T . This covariance
matrix, along with an optimal choice of the parameter ρ to encourage sparsity, is provided to both
the SPCA-ALM and DSPCA algorithms. The process repeats 10 times for each problem dimen-
sion n, while n varies from 100 to 500 and the mean speed and precision are computed for each n.
Figure 3.2a compares the speed of the two algorithms, while Figure 3.2b compares the estimation
error of the first estimated sparse principal vector. The simulation shows SPCA-ALM converges
much faster than DSPCA (for example, at n = 500, SPCA-ALM is about 10 times faster), while
maintaining approximately the same reconstruction accuracy.
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(a) Speed vs Data Dimension (b) Estimation Error vs Data Dimension

Figure 3.2: A comparison of SPCA-ALM and DSPCA using simulated data.

3.5 Variable Elimination via SAFE
In this section, we further examine a dimensionality reduction technique as a preprocessing step
to speed up Sparse PCA. Particularly in object recognition, the covariance matrix Σ often can
be of high dimension (e.g., 1000 and higher). Directly calling SPCA-ALM may still be very
time consuming. To mitigate this problem, we invoke a feature elimination method presented in
[108, 25], called SAFE. The method allows to quickly eliminate variables in problems involving a
convex loss function and a `1-norm penalty, thereby leading to substantial reduction in the number
of variables prior to running optimization. The following Theorem [108, 25] states the SAFE
method applied to Sparse PCA. An illustration of this process is shown in Figure 3.3.

Theorem 1 (SAFE Variable Elimination for Sparse PCA). Given a covariance matrix Σ, denote
σk as its kth diagonal entry. For the Sparse PCA problem (3.5), if ρ > σk, then the kth element of
the solution xs will never be in the support. Hence, the kth row and column of Σ can be removed
from the optimization.

Therefore, for a predefined choice of ρ, we first obtain a reduced covariance matrix by elimi-
nating all the rows and columns corresponding to those variables with sample variance less than
ρ. The number of variables thus eliminated is a conservative lower bound on the total number of
zero-weight variables in the final solution of Sparse PCA. In our experiments, we typically can
eliminate about 90% of the variables using SAFE without sacrificing the accuracy of preserving
important informative features.

3.6 Experiments

In order to test the effectiveness of suppressing uninformative features for the task of object recog-
nition, we have evaluated the performance of our method on the Berkeley Multiview Wireless
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Figure 3.3: SAFE feature elimination process. Top: The red rows and columns of a sample covariance
matrix Σ are eliminated to form new covariance matrix Σ̃, as the corresponding variances are less than
chosen ρ = 0.1. Bottom: The loadings of the corresponding indices are subsequently zeroed out in xs.

(BMW) database [67]. The database consists of multiple-view images of 20 landmark buildings
on the campus of University of California, Berkeley. For each building, wide baseline images have
been captured from 16 different vantage points. Further, at each vantage point, 5 narrow baseline
images have been captured, thereby summing to 80 images per category. All images are 640× 480
RGB color images. It is important to note that the image quality in this database is considerably
lower than many existing high-resolution databases, which is intended to reproduce realistic imag-
ing conditions for mobile camera and surveillance applications. Further, it is noticeable that some
images are slightly out of focus and in some cases, even corrupted by dust residual on the camera
lenses.

We divide the database into a training set and a testing set. The vantage points of each object are
named numerically from 0 to 15. All these 16 images of each category captured from camera #2
are designated as the training set, and the remaining images are assigned to the testing set. Thus,
there are 16 training images and 64 testing images for each category. We extract SURF keypoints
in each of the images and construct a vocabulary tree with 1000 leaf nodes using the keypoints
descriptors from all the training images.

3.6.1 Results
We first evaluate the recognition accuracy of the classifier (3.2) without suppressing any features
from the training and testing sets to obtain a baseline performance. The results of this experiment
are presented in Table 3.1. For the 20 object categories tested, the average baseline recognition
rate is around 80%.

Next, for each object category i, we obtain its corresponding visual word support set Ii by
determining the indices of the non-zero variables in the first and second sparse PVs. These are
estimated by running Sparse PCA on the covariance matrix corresponding to the training histogram
vectors in ith category. We then form the total support set ISPCA for the entire database by taking
the union of all the individual visual support sets for all the 20 object categories, i.e.,

ISPCA = I1 ∪ I2 ∪ · · · ∪ I20.
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Figure 3.4: Top: Images of 6 objects in the BMW database with superimposed SURF features; Middle-
top: Informative features detected by the SfM approach; Middle-bottom: Informative features detected by
thresholded PCA; Bottom: Informative features detected by Sparse PCA (given by first two leading sparse
PVs).

In our experiments, we have set the sparsity controlling parameter ρ to 0.002 for all the categories.
With this choice of ρ, at roughly 20 variables per category, our total support set ISPCA identifies
405 informative features, thereby rejecting a fraction of 3

5
of the visual words from the 1000-D

vocabulary. With this subset of visual words, we further evaluate the recognition accuracy of (3.2)
again. The results of this are also presented in Table 3.1. As one can see, for most of the categories,
there is a significant improvement in the recognition accuracy, leading to the average recognition
rate at 85%, 5% higher than the baseline.

For some of the object categories, the SfM method (section 3.2.1) does seem to work reasonably
well, and with these categories, we have formed a SfM index set, ISFM. We have tested the
recognition accuracy of these visual words on the database as well and we have obtained an average
rate of 78%. It can be seen in the fifth column of table 3.1 that the performance of the SfM method
is inferior to that of the SPCA method for almost all object categories. Some visual comparisons
between the results from Sparse PCA and SfM are presented in Figure 3.4.

3.7 Conclusion and Discussion

We have presented a novel and effective solution to select informative features for object recog-
nition by Sparse PCA. For applications that involve low-quality mobile cameras or camera sensor
networks, existing SfM solutions to detect and suppress uninformative features tend to fail. We
have shown that Sparse PCA can successfully identify important visual features that explain max-
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imum variability in the visual histogram vectors. For our database, these features correspond
to those visual words that most often represent the appearance of foreground objects. To fur-
ther speed up the execution of Sparse PCA, we have developed an improved numerical solution,
namely, ALM. The new algorithm has proved significantly faster than the other convex semidefi-
nite programming solutions. Using a public multiple-view image database, our experiment shows
the estimated informative features improve the overall recognition rate by 5% compared to the
baseline solution, and by 7% compared to the SfM solution.

For future work, we believe the two existing approaches, namely, Sparse PCA and SfM, are
complementary under more general object recognition settings, which may lead to further im-
provement of the performance. We would like to focus on further combining our batch numerical
technique with a geometric RANSAC scheme to robustly detect informative features in both low-
quality and high-quality image databases.

Table 3.1: Recognition rates for all object classes. The best rates are marked in bold face. The number of
informative features chosen per category are presented in the fourth and last columns for Sparse PCA and
SfM respectively. The categories for which SfM failed have 0 informative features in the last column.

Cat.
Baseline Sparse Sparse SfM SfM
Rate(%) PCA PCA Rate(%) # Feat

Rate(%) # Feat
Bo 98.61 94.44 35 83.33 0
Cal 90.27 91.66 23 90.27 35

Cam 56.94 66.66 15 58.33 0
EAL 70.83 81.94 12 65.27 30
Ev 77.77 91.66 56 81.94 0
FH 95.83 88.88 23 87.50 0
G 79.16 93.05 34 86.11 0

Haas 77.77 91.66 30 72.22 0
HG 56.94 73.61 45 63.88 11
HM 51.38 65.27 9 61 0
Hg 83.33 76.38 76 69.44 13

HMC 81.94 83.33 28 70.83 0
LC 62.50 72.22 43 52.77 0

MaL 98.61 93.05 20 90.27 37
MuL 69.44 80.55 36 75.00 0
PL 58.33 79.16 53 80.55 66
SG 100.00 90.27 17 84.72 0
Sp 98.61 93.05 45 100.00 56

VLSB 97.22 83.33 24 86.11 0
Wu 98.61 100 46 95.83 0
Avg. 80.02 84.51 33 77.77 36
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Chapter 4

Joint Detection and Categorization of
Human Actions

4.1 Introduction
Traditional Closed Circuit TV (CCTV) camera based surveillance systems typically consist of
several wired cameras distributed within a building and the surrounding site, transmitting video
streams to a control room as shown in Fig. 4.1. The security personnel employed are expected to
monitor activity on all the video feeds, due to which several events can go unnoticed. Further, for
applications such as indexing and retrieval of surveillance video, manual methods can be extremely
time consuming, monotonous and stressful.

Figure 4.1: Typical CCTV control room with video feeds from several cameras
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In the computer vision and robotics research communities, on the other hand, significant progress
has been made in the areas of action recognition [9]-[84]. Most of this work has focussed on au-
tomatically recognizing human actions in publicly available datasets composed of pre-segmented
video clips [9, 84]. The methods developed have primarily addressed variability in scale of the
subjects, background clutter suppression and handling occlusions in the video clips [96]. These
methods, however, are not directly applicable to surveillance systems as the temporal segmentation
of continuous video is a challenging problem. Some recent works have focussed on partitioning
the temporal segmentation and recognition process for long video sequences [57, 83]. However,
these methods perform poorly, as low-level temporal cues are generally not discriminative enough
for precisely partitioning the video. Some algorithms have also been developed for detecting and
recognizing actions in generic video sequences [69, 92, 56]. These methods typically require a
lot of processing at the image level, therefore making them hard to implement on a wireless smart
camera.

In this chapter, we present a novel system for simultaneous detection and recognition of human
actions in wireless smart camera networks. This system is an extension of the distributed object
recognition system presented in Chapter 2. Our system is capable of handling video sequences
captured by a single camera or multiple cameras with overlapping views. It is partitioned into dis-
tributed feature extraction (performed on the wireless smart cameras) and centralized spatiotem-
poral multi-view activity detection and recognition (performed at a base station). Each wireless
camera in our system is capable of extracting, encoding and transmitting a descriptor vector cor-
responding to foreground objects of interest in every frame where motion is detected. At the base
station, descriptor vectors from a single or multiple camera sources are fused within a graphical
model framework for localizing and recognizing actions of interest. Our graphical model frame-
work is based on the famous Deformable Part Models (DPMs) for object detection in static images
proposed by Felzenszwalb et al. [33]. We have extended the DPM framework to the spatiotem-
poral setting for both single and multiple view video streams. At its core, our algorithm replaces
part appearance templates of the DPM by class-specific keyframes, and enforces spatiotemporal
constraints between pairs of keyframes in the single-view setting. In the multiple-view setting,
homography constraints [63] induced by the ground plane are used to enforce spatial connectivity
between object regions in images from pairs of cameras.

The exposition of this chapter is as follows. In section 4.2 we provide a brief literature review
of activity recognition, while focussing on recent work that address similar problems as ours. We
present our overall system pipeline in section 4.3 and discuss those basic elements of our pipeline
that are drawn from previous work. The primary contribution of our chapter is the centralized,
multi-view spatiotemporal action detection and recognition algorithm and is presented in section
4.4. We validate the performance of our algorithm by performing experiments on standard and
novel datasets, as presented in section 4.5. Section 4.6 provides a conclusion and an outline for
future work.
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4.2 Literature Review
Spatiotemporal bag-of-word representations are amongst the most popular approaches for action
recognition because of their ease of use, and high discriminating capabilities [61, 84]. They have
successfully been employed in both single view [57, 70, 101] and multi-view settings [107]. Al-
though they work very well on temporally segmented video clips, they cannot be extended to action
detection directly, as they ignore spatial and temporal relationships between discriminative tem-
plates. Further, detecting and describing spatiotemporal interest points would require significant
processing, which can be a challenge for a low-power smart camera.

Other spatiotemporal template and filter based methods have also gained significant traction
for action detection and recognition. Gorelick et al. [9] extract foreground silhouettes of moving
people and use them to construct volumetric features for action recognition. Rodriguez et al. [79]
use MACH filter responses to detect actions of interest. Ali & Shah [6] extract kinematic features
from images to recognize actions. [96] provides an excellent survey of similar state-of-the-art
methods. All these methods, however, require features extracted from every frame in a temporal
volume. Thus, they would not work well within our framework, where the frequency of sampling
images and transmitting extracted features needs to be variable in order to accommodate varying
bandwidth constraints.

In the image based human pose and object detection literature, DPMs have gained a lot of pop-
ularity [33, 109]. Such human pose detectors have been fused with traditional image segmentation
techniques to extract foreground pixels corresponding to people in static images [65]. Niebles et al.
adapted the DPM framework to temporal action detection [69]. Tian et al. [92] and Lan et al. [56]
have extended the framework to the spatiotemporal setting. While these methods are similar in
spirit to our algorithm, their focus is on generic videos where no assumptions can be made regard-
ing the background. Thus, these methods are very computationally intensive and cannot be easily
adapted to wireless surveillance applications. Further, it becomes exponentially complex to extend
their inference algorithms to multi-view scenarios, even after incorporating epipolar constraints.

Generative methods for activity recognition have been extensively addressed by the computer
vision and control community. Sminchisescu et al. [89] have proposed conditional models for
human action recognition. Fox et al. [105] and Tao et al. [91] have used Hidden Markov Models
with Dirichlet and sparsity priors respectively for action and gesture recognition. Niebles et al. [70]
have used Probabilistic Latent Semantic analysis for learning human actions in an unsupervised
setting. Wang et al. [102] have used HMMs to recognize actions performed by gymnasts in
multi-view settings. 3D exemplar based HMMs are used by Weinland et al. [103] to recognize
actions in arbitrary views of camera networks. All these generative methods tend to perform poorly
in the presence of actions that are not pre-defined during training. Further, in real surveillance
settings, transition probabilities are very hard to estimate as different people being tracked might
have different goals and destinations.

Some recent works on joint segmentation and recognition of human actions have addressed a
problem related to ours. Shi et al. [85] introduce a Semi Markov model framework to capture the
temporal structure of actions in video sequences. They present a structured learning framework to
learn the parameters of their graphical model, and a Viterbi-style inference algorithm that works
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real-time on long video sequences. Hoai et al. [40] employ a similar approach with a multi-class
SVM for learning model parameters and a slightly different cost function for inference. While these
methods can be extended to our wireless surveillance camera setting, they still require transmission
of every frame captured by the camera sensor, which can be challenging in resource constrained
settings. Further, since their framework is purely temporal, multi-view information across pairs of
cameras cannot be easily utilized.

4.3 System Pipeline

Figure 4.2: System pipeline. See text for details.

Our system consists of multiple smart cameras communicating wirelessly with a central pro-
cessing station as shown in Fig. 4.2. In our current framework, we assume that all the cameras
connected to the base station are viewing the same scene from different vantage points, and that
images from all of them share some amount of overlap. We also assume that the cameras are time
synchronized, and that minimal extrinsic calibration is available between pairs of cameras. The
details of our calibration and the spatiotemporal multi-view recognition algorithm of the central
processing station are presented in the section that follows.
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Each wireless smart camera is capable of separating foreground objects, extracting gradient
features for each object, and transmitting these features to the central processing station. We use
an off-the-shelf background subtraction algorithm [116] to extract foreground object silhouettes
in each camera. The size of the bounding box around the object can be used to determine the
scale of the object. Nonetheless, it is impossible to uniquely disambiguate the size of the object
and its distance from the camera as this information is lost during perspective projection. For our
activity recognition application, however, we argue that the scale encodes sufficient information,
as the distance covered by a smaller person translating closer to a camera can be comparable to
that covered by a larger person further away.

Some activity recognition papers use features computed on silhouettes as inputs to their algo-
rithms [9, 85, 40]. However, due to self occlusion, discriminative details within the object boundary
can be lost when using silhouettes. For instance, this can be seen in the silhouette extracted by the
first camera in Fig. 4.2, where the arm of the person is fully encapsulated by the boundary around
his silhouette. In order to utilize maximum information available in each image, we extract HOG
descriptors [22] within the bounding box around the foreground object. Specifically, we use the
silhouette to extract the foreground pixels within the bounding box, and apply a grid to the fore-
ground region. The number of rows and columns of the grid are kept constant for all foreground
regions. In our experiments we have used 5 × 5 grids for each foreground object. HOG descrip-
tors are extracted within each grid and vectorized to represent the appearance of the foreground
object. These appearance descriptors along with the bounding box coordinates are subsequently
transmitted wirelessly to the central processing station.

System Analysis: The processing performed on board each wireless camera is largely stabi-
lized, making it amenable to deployment with minimal requirements for firmware updates. Even in
situations where the number of action classes or the entire action recognition framework changes,
the basic operations performed on the smart camera can remain unaltered. The primary purpose of
feature extraction on-board the camera is to minimize the data transmitted. In the current frame-
work, only 800 bytes (5 × 5 × 32) of data is transmitted for every object detected. Further, we
can leverage the sparsity of the feature descriptors and utilize a compression scheme similar to that
presented in [40]. In comparison, H.264 video compression provides an average bit rate of 64K
bytes per image for 640 × 480 color images [104] (roughly 2 orders of magnitude higher) with
more complex processing performed on the imaging platform. Although this analysis assumes
that only one object is detected in any frame, this is still a conservative estimate of transmission
savings, as there are going to be situations where no people are present or moving in front of the
cameras. This leads us to believe that our system is an attractive wireless alternative for automated
surveillance applications.
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Figure 4.3: Multi-view graphical model that represents any particular action. Filled nodes represent
keyframes in reference camera, and empty nodes represent keyframes in other two cameras.

4.4 Spatiotemporal Multi-View Action Recognition

4.4.1 Deformable Keyframe Model (DKM)
Single-view Model: Our keyframe based action detection framework is closely related to the DPM
model commonly used for object detection [33]. We represent a video sequence as D and any
particular action as an N node directed graph, G = (V,E). The nodes in the graph, V , correspond
to keyframes. Any given node i ∈ {1...N} has an anchor position pi = (xi, yi, ti), where (xi, yi)
represent the pixel location of the center of the bounding box around an object in the image, and ti
represents the frame number in the video sequence. Edges in the graph, E, specify which pairs of
keyframes are constrained to have relations. The framework is very general and edges in the graph
need not be successive. For instance, jump edges can be used to connect nodes corresponding to
repetitive keyframes in cyclical actions.

The score, S, associated with a particular action model and keyframe-labeling can be written
as [33]:

S(p|D,w) =
∑
i∈V

〈wi, φapp(D, pi)〉+
∑
i,j∈E

〈
wij, φ

def (pi, pj)
〉

(4.1)

where, φapp(D, pi) is the HOG appearance descriptor of the object detected at frame ti (see section
4.3 for details), and φdef (pi, pj) models the deformation between pairs of frames. In the single-
view setting, the deformation is given by φdef (pi, pj) = [dx, dx2, dy, dy2, dt, dt2], where dx =
xi − xj , dy = yi − yj and dt = ti − tj . For the right match, the keyframe appearance template,
wi, will have a maximum inner product response with the appearance descriptor at location pi in
the video D. The deformation weight wij models the Mahalanobis distance between the pairs of
keyframes in the model, and its parameters need to be learned during training. We address the
learning of appearance and deformation weights in section 4.4.3.

Multi-view Model: We extend our single-view keyframe model framework to incorporate mul-
tiple cameras capturing the same scene. In this case, we choose one reference camera, and all other
cameras are connected to it, thereby yielding a directed graphical model as shown in Fig. 4.3. In
this chapter, we do not model the spatiotemporal relationship between nodes corresponding to each
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Figure 4.4: Deformation constraints between reference view in the middle and two other cameras viewing
the scene. Deformation cost modeled as spring connecting center of line between bottom corners of each
bounding box, as they lie on the ground plane. All three images are captured at same time instant from three
vantage points.

non-reference camera. This would, however, be a straightforward extension as the introduction of
spatiotemporal edges in non-reference cameras would not introduce any cycles in our directed
graph.

The score function for the multi-view setting remains the same as that in the single-view model
in eqn. 4.1. The deformation function between frames captured at the same time instance from two
views, however, needs to account for the epipolar constraints between the views. In most surveil-
lance settings, it is common to have significant overlapping views of the ground plane on which
people move about. We use the homography induced by this ground plane to enforce pairwise
constraints between views.

Specifically, we compute the ground plane homography, Hr
l , between any camera l in the net-

work that shares scene overlap with the reference camera r. Since the homography is a linear
transform that maps pixels in one view of a plane to another, it can be used to determine the
distance between object detections across views. Further, since the people in the cameras’ fields-
of-view are in contact with the ground plane at most times, the centre of the line connecting the
bottom corners of the bounding box detection around them can be used as a proxy for their 3D
location in the scene. Although this assumption can be easily violated when people are closer to
the camera, in surveillance applications, that is unlikely as cameras are intentionally positioned far
from reach.

Given a pixel pl = (xl, yl, 1)T on the ground plane in the lth camera view, its position in the
reference camera can be estimated as p̃r = Hr

l p
l. The deformation function for the two views can

then given by φdef (pli, p
r
i ) = [dx, dx2, dy, dy2], where, [dx, dy] = (pr −Hr

l p
l)T . Fig. 4.4 shows an

example with deformation constraints between a reference camera and two other cameras on either
side of it.

4.4.2 Keyframe Selection
Analogous to parts in DPMs for object detection, our deformable keyframe models use appearance
templates corresponding to keyframes as node potentials. Thus, it is important for the same set
of keyframes to be present in all samples of a given action, at least while learning the model
parameters. We adopt the definition proposed by Bourdev & Malik [10] to define keyframes in
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our setting: Given a set of M training video samples {D1, ..., DM} of any action, the goal of
keyframe selection is to find a subset ofN representative frames in each sample such that, similarly
selected representative frames of actions are tightly clustered in 3D body configuration space. This
process of supervised clustering of keyframes can easily be done using motion capture, where
different subjects perform actions while simultaneously being recorded by a motion capture system
to capture their 3D pose and a camera network to capture their appearance in multiple views. Using
this method, we can automatically obtain ground-truth keyframe labelings {p1, ..., pM}, for all the
video samples. In our experiments, however, we have manually annotated the keyframes as we
were unable to find any publicly available complex action datasets captured using motion capture
and traditional cameras.

4.4.3 Learning
We employ a structured learning [94] approach to train the parameters of our model for each
action, c ∈ {1...C}, where C is the total number of actions in our database. Given a set of M
positive training examples {Dq} (q = 1, 2, ...M) for any action c, we are interested in learning
the appearance (wci ’s) and deformation parameters (wcij’s) given in eqn. 4.1 that would produce
the correct labeling {pq}. Since our scoring function (4.1) is linear in these parameters, it can be
rewritten as

S(pq|Dq,w
c) = 〈wc,Φ(Dq, pq)〉 , (4.2)

where, wc is a vector that includes all the appearance and deformation parameters that need to be
learned, and Φ(Dq, pq) is the corresponding appearance and deformation energy due to a certain
labeling pq.

In our setting, we are also interested in discerning different actions from each other, so we need
to learn models that can jointly detect and discriminate between different actions. We adopt a one-
vs-all learning policy for each action, and learn the model parameters that can jointly detect and
recognize any particular action given hard negative examples of other actions in the database.

We adopt the structural SVM framework of [94] and write our learning objective as,

argmin
wc,{ξq},{ηq,q′}≥0

1

2
‖wc‖2 + λ1

∑
q

ξq + λ2
∑
q,q′

ηq,q′ (4.3)

s.t. ∀q, 〈wc,Φ(Dq, pq)− Φ(Dq, p̃)〉 ≥ ∆(pq, p̃)− ξq
∀q, q′, 〈wc,Φ(Dq, pq)− Φ(Dq′ , pq′)〉 ≥ ∆(pq, pq′)− ηq,q′ ,

where, λ1, λ2 are user defined scaling parameters to minimize slack values in the optimization.
The first constraint in eqn. 4.3 implies that for the same class, any keyframe labeling p̃, other

than the ground-truth labeling pq, for the qth data sample, needs to be penalized according to the
loss function ∆(pq, p̃). The non-negative slack term ξq provides an extra level of robustness to
account for some violation of the constraint. The second constraint implies that given any ground
truth labeling pq for the qth sample of a particular action, any ground truth labeling pq′ of the {q′}th
sample of any other action sequence in the database will produce a lower score after filtering
through another violation accommodating hinge-loss ηq,q′ .
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The objective of the loss function ∆(pq, p̃) is to reflect how well a particular labeling hypothesis
p̃, matches the true labeling pq. We have adopted a simple binary loss function with ∆(pq, p̃) = 1
if p̃ = pq, and ∆(pq, p̃) = 0 otherwise. We employ the cutting-plane algorithm described in [94]
to solve our quadratic program (4.3).

Model bias: The learning procedure, however, does not produce weights of the same magnitude
for each action class. Thus, the modeling score for each action class has an associated bias bc, that
needs to be estimated and subtracted from the final score during inference. In order to determine
the bias for each action class, we apply the learned model for that action class to the training data
samples and take the median of these scores as the bias, i.e.,

bc = median{S(p1|D1,w
c), ...,S(pM |DM ,w

c)}. (4.4)

4.4.4 Inference
In our detection and recognition setting, given a query video sequence D, the inference problem is
to find the best action c∗, and correspond labeling p∗, that maximizes the modeling score:

{c∗, p∗} = argmax
p,c∈{1...C}

(S(p|D,wc)− bc). (4.5)

Since our directed graph is a chain in the single-view and a tree in the multi-view scenarios, infer-
ence can efficiently be done via dynamic programming [33].

4.5 Experiments
We evaluate our Deformable Keyframe Model (DKM) framework in three scenarios. In the first
scenario, we test the discriminating capabilities of our model by performing whole-clip recogni-
tion. In the second scenario, we test the joint detection and recognition capabilities of our model
in a controlled setting by synthesizing a complex action sequence by concatenating simple action
video-clips. In the final scenario, we test our algorithm for joint detection and recognition of ac-
tions on a novel complex data set consisting of continuous actions performed by different subjects
while being recorded by cameras placed at multiple vantage points.

4.5.1 Weizmann Simple Actions
The Weizmann dataset [9] is a popular dataset for validating action recognition algorithms, as it
consists of short video clips captured under controlled conditions. It is composed of 10 action clips
performed by 9 actors, all of whom remain un-occluded and at the same distance from the camera’s
focal plane. The background model of the scene is available, using which foreground silhouettes
of the actors have been extracted for every frame of the video.

Keyframe selection: Automatic keyframe selection for the Weizmann dataset is challenging
as there is no motion capture data available. Hence, we have manually selected keyframes for
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each action. A set of 5 keyframes have been manually selected for each action performed by every
individual.

We follow the same testing procedure proposed by [9] for the dataset. As presented in section
4.3, we extract HOG appearance descriptors for the foreground region in each frame, along with
the coordinates of the bounding box. We use these features within our DKM framework and pick
the action class that maximizes the modeling score (see eqn.4.5). Our DKM framework achieves
100% recognition accuracy. This is comparable to the perfect recognition recognition reported
by the authors of the dataset, and others who have also validated their methods after adopting the
same testing procedure [9, 92, 28].

4.5.2 Weizmann Complex Actions
In order to validate the joint detection and recognition capability of our DKM, we synthesize
complex actions by concatenating all the 10 actions performed by each of the subjects in the
Weizmann dataset, thereby yielding 9 videos. The order in which the actions are composed is
chosen at random for each subject. The frame level features are still extracted using the method
outlined in section 4.3.

Our training methodology is similar to that employed by Hoai et al. [40]. We adopt a leave-one-
out evaluation strategy: training on 8 sequences and testing on the left-out sequence. The models
and associated bias for each action are learned using the procedure outlined in section 4.4.3.

Our evaluation metric is also inspired by theirs. Specifically, we evaluate each of our models on
a query synthesized video. Multiple detections are found by each action specific DKM, and all the
overlapping detections with the highest score per class are retained. The temporal union of these
detections provides a class specific segmentation of the query video sequence. At this point, the
overall frame-level accuracy against the ground truth labels is calculated as the ratio of number of
agreements over the total number of frames. It is important to note that this segmentation based
metric is designed for joint segmentation and recognition algorithms such as [40] and it serves as
a harder baseline evaluation metric for our detection and recognition algorithm.

Fig. 4.5 shows the confusion matrix for the joint segmentation and recognition of the 10 actions
using the 9 complex video sequences. The average accuracy of our method is 86.28%. Hoai et al.
[40] report an average accuracy of 87.7%, which is just slightly higher than our accuracy. However,
their focus is on joint segmentation and recognition, and their algorithm yields a label for every
frame in the query video. In our detection based framework, there is no guarantee that all frames
will be assigned a class label, as evidenced by the white regions in our qualitative segmentation
results shown in Fig. 4.6. This leads us to believe that our method will perform well even in the
presence of previously unseen action classes, but we have not yet tested this hypothesis.

4.5.3 Bosch Multi-view Complex Actions (BMCA) Dataset
In the literature, there exist several public datasets for activity recognition, but continuous ac-
tion datasets for action detection are limited. Further, to the best of our knowledge, there are no
publicly available multi-view action detection datasets with subjects performing several actions
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Figure 4.5: DKM performance on the Weizmann complex dataset. Confusion matrix shows joint segmen-
tation and recognition accuracy of 10 actions at frame level. Off-diagonal numbers show frame misclassifi-
cation rates. Average accuracy of 86.28% achieved on dataset.

Figure 4.6: Qualitative segmentation of four complex videos. For each segmentation, top row shows true
class labels and bottom row shows estimated labels. Note the existence of white regions in the estimated
labels at frames where no reliable detections were found. As expected, majority of the error occurs at
segment boundaries. Image best viewed in color.

continuously. To aid in peer evaluation of distributed activity detection and recognition, we have
constructed a multi-view video dataset called the BMCA dataset which will be available online.
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The BMCA dataset consists of 11 actions performed back-to-back by 20 subjects. Each subject
performs three to four trials of each action while facing different directions, and at different loca-
tions within the capture area. The subjects are continuously recorded using 4 time synchronized
cameras arranged in the configuration shown in Fig. 4.7. The cameras capture color video at a
frame rate of 10 Hz, thereby yielding 4 long video clips of roughly 12-15 minutes each. The loca-
tion within the capture area and the direction to face while performing an action are decided by the
subjects themselves. However, they are all instructed to maintain angular orientations of roughly
{0o, 90o, 180o and 270o} relative to the reference camera. In our setting, camera-2 is chosen as the
reference view.

Figure 4.7: Configuration of cameras used to create BMCA dataset. Cameras capture color video at 10HZ,
and are time synchronized.

Keyframe selection: The background subtraction scheme presented in section 4.3 has been
used to obtain bounding boxes around people in the dataset. We have manually annotated the
dataset by providing the start and end times of each action and its associated action class labels.
The keyframes for each action have also been manually selected. Fig. 4.10 shows the keyframe
annotations of 3 subjects performing 3 different actions.

Training: We have partitioned our dataset of 20 people into 5 training and 15 test sets. The
5 training sets include 11 actions performed at 4 angular orientations. Thus, we have learned 44
DKMs using the framework presented in section 4.4.3. We learn separate models for the single-
view and multi-view experiments.

Testing: In order to validate our framework, we test our trained models on the 15 remaining test
sets. As in the experiment for the Weizmann complex dataset, we employ the joint segmentation
and recognition evaluation strategy. We only modify the segment labeling slightly so that all the
detections corresponding to different orientations of the same action class are assigned the same
label. We first evaluate the single-view DKM algorithm on the training videos captured by the
reference camera. The results of our method is presented in the confusion matrix of Fig. 4.8.
We obtain an average segmentation accuracy of 66.74%. Although this accuracy is lower than
that obtained on the Weizmann complex dataset, the BMCA dataset is a lot more challenging
as it is longer and has more complex actions. In fact some of the actions are duals to others in
the set; these include the ”stand to sit”, ”sit to stand”, ”stand to lay”, ”lay to stand”, ”stand to
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Figure 4.8: Confusion matrix for single-view joint segmentation and recognition on BMCA dataset. Aver-
age accuracy is 66.74 %.

bend” and ”bend to stand” classes. Without the spatiotemporal constraints, it would be very hard
to discriminate between these action duals. With the spatiotemporal constraints, however, there
is no misclassification between action duals, as evidenced by the zero off-diagonal values in the
confusion matrix.

Next, we evaluate the multi-view DKM algorithm on the same test sets by including the re-
maining camera views. The multi-view DKMs are evaluated on the test set using the same joint
segmentation and recognition strategy used in the single-view case. The resulting confusion ma-
trix is presented in Fig. 4.9. It is clear that the addition of multiple views significantly improves
the action detection and recognition performance. Specifically, an average accuracy of 81.28 %
is achieved which represents a 14.54 % increase in accuracy. We believe that incorporating more
overlapping views around the capture volume can improve the accuracy even further, but have not
yet tested this hypothesis.
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Figure 4.9: Confusion matrix for multi-view joint segmentation and recognition on BMCA dataset. Aver-
age accuracy is 81.28 %.

Figure 4.10: Keyframes for a few actions in the BMCA dataset. The first row shows the 6 keyframes
corresponding to the action ”run”. The second and third rows show the chosen keyframes for the actions
”lie-to-stand” and ”stand-to-sit” respectively.
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4.6 Conclusion
We have presented a framework for the joint detection and recognition of human actions on long,
complex video sequences. Our method is well suited for situations where the camera sensors and
the base station are connected only by a band-limited communication channel. We have made
three primary contributions in this chapter. The first includes a framework for feature extraction
on a wireless smart camera that can minimize its power and bandwidth requirements. Our second
contribution is the adaptation of the DPM object detection framework for single-view and multi-
view action detection in continuous video, and our final contribution is a novel scheme to learn
the bias and parameters of our deformable keyframe models. We have experimentally validated
our algorithm on a publicly available dataset, and have demonstrated the competitiveness of our
approach against state-of-the-art methods. Finally, we have introduced a novel multi-view contin-
uous action data set called the Bosch Multiview Complex Action dataset and extensively validated
the performance of our system using this dataset.

Our investigations have led us to several intriguing open problems for future investigation. First,
our framework for evaluating multiple deformable keyframe models concurrently on the data by
subtracting the model bias may deteriorate when more action classes are introduced. Perhaps a
detection strategy similar to the generalized Hough transforms adopted by [10] could make the
detectors more robust. Second, our best detection and recognition performance on our dataset is
82%. In order to successfully deploy such a system in real-world surveillance applications, the
recognition rates have to be improved dramatically (e.g. > 99%) with minimal false positives.
Finally, robust techniques must be studied in order to deal with real world situations such as poor
lighting, and occlusions in the scene. In such settings, a smart sensor selection scheme might have
to be explored.
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Chapter 5

Joint Categorization and Segmentation of
Objects

5.1 Introduction
One of the most important tasks for a situation awareness system is to detect people and objects of
interest precisely in image streams. In many situations, objects can occur in environments where
the background has similar color or texture when compared to some parts of the object. This in-
troduces and extra level of complexity when the image pixels corresponding to the object needs
to be segmented and categorized. Several formulations based on Random Fields (RFs) have been
proposed for Joint Categorization and Segmentation (JCaS) of objects in images [7, 11, 51]. The
RF’s sites correspond to pixels or superpixels of an image and one defines potential functions (typ-
ically over local neighborhoods) which define costs for the different possible assignments of labels
to several different sites. Since the segmentation is unknown a priori, one cannot define potential
functions over arbitrarily large neighborhoods as that may cross object boundaries. Categoriza-
tion algorithms extract a set of interest points from the entire image and solve the categorization
problem by optimizing cost functions that depend on the feature descriptors extracted from these
interest points. There is some disconnect between segmentation algorithms which consider local
neighborhoods and categorization algorithms which consider non-local neighborhoods. In this the-
sis, we propose to bridge this gap by introducing a novel formulation which uses models of objects
with deformable parts, classically used for object categorization, to solve the JCaS problem.

The goal of JCaS is to assign an object category label to each pixel in the image. Several solu-
tions to JCaS use RF-based formulations, wherein algorithms define a RF whose sites correspond
to pixels in the image and/or superpixels of the image [7, 11, 15, 36, 38, 37, 55, 53, 58, 75, 77,
54, 86, 93, 99, 106]. To solve the JCaS problem, one defines potential functions (or potentials)
which define costs for the different assignments of category labels to the sites. These potentials
aggregated over local neighborhoods are then used to define an energy function over the different
labelings, the minimizer of which is used to obtain a labeling for the image.

The potential functions used by most of the existing algorithms are local in nature. The unary
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potential for a site, which depends on the label of that single site only, is typically defined by us-
ing feature descriptors extracted from a local neighborhood of the site, e.g., [86, 53]. The features
cannot be extracted from arbitrarily large neighborhoods since they might cross the objects’ bound-
aries. Some methods consider non-local interest regions [106, 93] and use them to define pairwise
potentials, which depend on labels of just two sites. Unary and pairwise potentials are typically not
sufficient to describe all relationships amongst the sites. Hence, some algorithms use higher order
potentials that depend on several sites [53, 54, 55]. While these potentials are also defined over
local neighborhoods such as neighboring pixels or superpixels, there are a few exceptions [54, 87].

We argue that one can improve performance by using potentials that are defined over larger
non-local neighborhoods, preferably all the regions covered by an object. However, such potentials
can lead to a computational bottleneck. Therefore, it is preferable to define potentials over some
representative subset region of the object. In this work, we propose to use models of objects with
deformable parts [31, 32, 110], which have traditionally been used for object categorization, to
define higher order potential functions over non-trivial non-local neighborhoods. These models
assume that each object has a set of parts and the problem of detection corresponds to finding the
locations of these parts in the image. Our work is motivated by the fact that the locations of the
object’s parts help define the non-local neighborhoods for our proposed potentials.
Main contributions. We propose to address the aforementioned issues by integrating deformable
parts models with RF formulations for JCaS. We assume that we are given a set of hypotheses as
the output of detectors based on deformable parts models. Each hypothesis specifies for the object,
a size, a pose and the locations for the object’s parts. Given this, we propose a new energy function
for JCaS with the following properties.

1) The energy function solves for detection and segmentation in a unified framework. The
solution obtained by minimizing this function provides (i) a segmentation of the image, (ii) a list
of the hypotheses that are accepted from the given ones, and (iii) a list of the visible parts for each
of the accepted hypothesis.

2) Our key contribution is the design of two new higher order potential functions for defining the
above energy function. The first family of potentials models the detection score for the deformable
parts model. The binary-valued variables of this family of potentials indicate whether a part is
detected/occluded at a certain location and the potential encodes the object detection score as a
function of the visible parts only. The second family of potentials is used to model the shape prior
of a part. Specifically, a part’s shape prior provides for each pixel in the support region of that
part, the probability that it belongs to the foreground object. Our proposed potentials use these
probabilities to bias the segmentations of the pixels towards the foreground object label.

3) The problem of computing the minimizer of our proposed function is a discrete optimization
problem, which can be NP-hard in general. We show that a global optimum to our optimization
problem can be computed using min-cut.
Related work. The following are a few examples that have used object models for non-local
potentials for JCaS. [58] modeled the object using multiple blobs. [38] and [37] used the output of
object detectors to localize the objects in images. [87] and [99] used Bag of Features as the object
model, while [7] and [11] used Poselets for their model. Our work, in contrast, uses the deformable
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parts model.
The works most closely related to our work are those of [51], [55] and [111]. [51] was perhaps

the first work to use deformable parts models for object segmentation. The solution is obtained via
an iterative process where the algorithm alternates between sampling from the space of possible
hypothesis and computing the segmentation given the hypothesis. [111] extends [51] to deal with
multiple object categories. [111] takes as input a set of hypothesis, all of which are used for
segmentation. Our proposed framework has a few differences with these. First, we model the
detection score as a function of the visible parts, while the above do not. Second, [111] computes
the solution using EM, while we compute the segmentation in a single step using min-cut. Finally,
in contrast to [111], our algorithm allows for rejection of some of the hypotheses provided as input.

[55] takes as input a set of hypotheses giving the locations of different parts of the image.
Given these hypotheses, [55] defines a potential function which penalizes the number of pixels in
the support region for each object part, which deviate from the foreground label. There is no shape
prior used to bias the pixels differently based on their location in an object part’s support region.
Moreover, they do not model the detection score as a function of the visible parts.
Outline. In §5.2, we review some definitions that are relevant to our proposed formulation. In §5.3,
we propose a new cost function for JCaS. We introduce two new higher order potentials for this
cost function and discuss the constraints on these potentials that make them amenable to efficient
inference using min-cut. We outline how the parameters of our cost function can be learned using
max-margin methods. In §5.4, we evaluate the performance of our formulation on the PARSE
dataset [78] and highlight our framework’s advantages/limitations.

5.2 Review
In this section, we briefly review some concepts relevant to our formulation.

5.2.1 Random fields (RFs) formulations for JCaS
Given an image I , we define a RF, the set of whose sites is denoted as V . These sites correspond
to pixels or superpixels of the image. A binary-valued random variable X(vi) is defined at each
site vi ∈ V and can take any value x(vi) in the set of possible labels B = {0, 1}. Any assignment
of labels to the random variables is referred to as a labeling and is denoted as x ∈ B|V|. We denote
the restriction of the random variables and labeling to a set of sites A⊆V as X(A) and x(A),
respectively. Note that x(vi) is the restriction of x to the site vi. Though the set of possible labels
can contain several values for multiple categories, we restrict our analysis to the case of two labels
for the ease of exposition.

The neighborhood of the RF is defined using the set of edges E ⊂ V × V . An edge that spans
two sites vi and vj is denoted by eij . Larger neighborhoods are defined using cliques, where a
clique c ⊂ V defines a set of sites, e.g., the set of pixels in a superpixel. We denote the set of
all cliques in the RF as C. One defines potential functions for each clique to model the scores for
different assignments of labels to the clique. The following are a few commonly used potentials.
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A unary potential ψi(x(vi); I) is defined for each site i ∈ V , such that ψi(b; I) defines the cost
of assigning the label b ∈ B to the site i. This cost is typically computed using appearance-based
or location-based feature descriptors. A pairwise potential ψij(x(vi), x(vj); I) is defined for each
pair of neighboring sites vi and vj ∈ V , where eij ∈ E , such that ψij(bi, bj; I) defines the cost
of assigning labels bi and bj to the sites vi and vj , respectively. These potentials help enforce the
spatial smoothness of x and align the edges across which the labeling changes with the edges in
the image. They are also used to encode context.

Recent work has addressed the use of higher order potentials defined on larger cliques [53, 54,
55, 87]. A higher order potential ψc(x(c); I) is defined on the clique c ∈ C, such that ψc(bc; I) is
the cost of assigning the labels bc ∈ B|c| to the clique c. The potential ψc(x(c); I) can be defined
over the the clique of pixels that belong to a superpixel. It can also be used to encode higher order
contextual information about co-occurence of different categories [54] or to encode bin counts of
histograms of quantized descriptors of interest points [87].

Most algorithms solve JCaS by minimizing an energy function of the form

E1(x; I) =
∑
c∈C

λcψc(x(c); I), (5.1)

where ∀c ∈ C, λc ∈ R. Note that (5.1) includes unary and pairwise potentials as special cases
when |c| = 1 and 2, respectively. E1(x; I) is typically designed such that min-cut based solvers
provide the global minimum for the 2-label case and a local minimum (with optimality bounds)
for the multi-label case.

As described in §5.1,it is preferable to have global object models that consider larger non-local
neighborhoods, preferably all the sites with the same label. Such neighborhoods cannot be imposed
apriori because the labeling is unknown.

5.2.2 Detection of objects with deformable parts
The algorithms in this genre assume that an object consists of P ∈ Z+ parts [31, 30, 32, 110].
Given an image I , a hypothesis θ specifies the object’s pose π(θ), object’s scale (size) s(θ) and
a set of locations l(θ) = [l1(θ), . . . , lP (θ)]> ∈ Ω(I)P for the different parts, where Ω(I) ∈ R2

+

denotes the pixel domain of image I . The algorithms compute a detection score for the different
hypotheses. The hypotheses with scores better than a threshold (say κ) are treated as accepted.

To define a detection score for a hypothesis θ, the algorithms consider two different kinds of
cost functions. The first type of cost function is an appearance-based cost for each of the different
parts. For the pth part (p = 1, . . . , P ), one extracts feature descriptors from a support region (say
Rp(θ)) around lp(θ), where the size of the support region depends on the object’s pose, scale and
the part. The appearance-based cost φapp

p (θ; I) for the pth part is then computed as the output of a
linear filter applied to these features descriptors, where the filter’s coefficients depend on the pose,
scale and part.

The second cost function takes into account the constraints on the relative locations of the
different parts. Given locations lp1(θ) and lp2(θ) for parts p1 and p2, the cost φdef

p1,p2
(θ) is a quadratic

function of the entries of the vector lp1(θ)− lp2(θ), where the coefficients of the quadratic function
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depend on the object’s pose and scale. While one may construct a deformation cost for each of the
P (P−1)

2
possible pairs of parts, most algorithms assume, for computational ease, that only a subset

of these pairs are relevant for the purpose of detection. In fact, it is assumed that this subset of
pairs can be represented using a tree. These connections between the parts are defined by the set
of edges Eobj = (p1, p2).

Given an image I , one then defines the detection score for a candidate θ as

E2(θ; I) =
P∑
p=1

φapp
p (θ; I) +

∑
(p1,p2)∈Eobj

φdef
p1,p2

(θ) (5.2)

Due to the small number (say M ) of possible poses and number (say S) of scales considered by
detection algorithms, it is possible to do a brute force computation of the energy for the different
poses and scales. Since the number of possible locations of the parts is high, i.e., |Ω(I)|P , it is not
possible to compute the energy for all possible locations. To address this, given partial information
for a hypothesis θ in terms of the pose π(θ) and scale s(θ), the part locations l(θ) that minimize
E2(θ; I) can be found using dynamic programming with time complexity O(|Ω(I)|P ) [30]. We
note that in the literature, the best hypothesis is typically obtained by solving a maximization
problem. We can always reformulate the problem to get an equivalent minimization problem. In
our work, we assume, without loss of generality, that the best hypotheses are obtained by solving
a minimization problem, i.e., lower hypothesis scores are considered better.

In this formulation, the algorithm assumes that for a given pose, each part is assumed to be
detected/visible in the image. There has been work to deal with occlusions, but an occluded pose is
modeled as a pose different from the original pose [31]. We argue that it is of interest to explicitly
model occlusion of parts within a certain pose rather than modeling occlusions using different
poses.

5.3 A Novel Energy Function for JCaS
In this section, we define a new energy function to model non-local interactions amongst the sites
of RFs for JCaS. For expositional ease, we make two simplifying assumptions. First, the number of
parts (say P ) is the same for all the poses. This is not necessary in practice. Second, we assume that
the image is segmented into two groups only – an object of a particular category vs. background.
Our analysis can be extended to deal with multiple semantic categories too.

We now introduce some notation. Given an image I , we denote the set of sites representing the
pixels as Vpixels = {v1, . . . , vN}, where N = |Ω(I)|. We do not introduce any additional sites for
superpixels since potentials defined over superpixels can be redefined as potentials defined over
the pixels [53]. We assume that we are given a set of H hypotheses, Θ = {θ1, . . . , θH}. For each
hypothesis θh (where h = 1, . . . , H), we define a set of P + 1 sites Vobj(θh) = {vh0 , vh1 , . . . , vhP}.
The site vh0 is used to represent the hth hypothesis θh and for p = 1, . . . , P , the site vhp is used to
represent the pth object part for hypothesis θh.

We introduce binary-valued variables for the sites. For each site vi ∈ Vpixels, the variable x(vi)
takes value 0 or 1 and represents segmentation as background or object, respectively. For each site
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vh0 , the variable x(vh0 ) takes value 0 or 1 and represents whether the hypothesis θh is rejected or
accepted, respectively. For each site vhp ∈ Vobj(θh), where p > 0, x(vhp ) takes value 0 or 1 and
represents whether the pth part for the hth hypothesis is occluded or visible, respectively.

In this work, we propose to solve the JCaS problem by computing the values for the variables
x that minimize an energy function of the form

EJCaS(x; I,Θ) = λsegEseg(x(Vpixels); I) + λhyp
H∑
h=1

Edet(x(Vobj(h)); I, θh)

+
H∑
h=1

P∑
p=1

λshape
p (π(θh))E

shape
p (x(vhp ),x(Rp(θh)); I, θh),

(5.3)

where λseg, λhyp and λshape
p (·) are all non-negative scalars, and Rp(θh) is the support region for the

p’th part in hypothesis θh. The term Eseg(·) is a segmentation-based energy function. It encodes
the cost of assigning segmentation labels to the pixels, where the cost is computed using feature
descriptors such as color, texture, etc. This energy can also be thought of in more general terms
and can be replaced by energy functions used by existing JCaS algorithms.

Our main contribution is the design of the energies Edet(·) and Eshape
p (·). The term Edet(·) is a

detection-based energy function and computes the detection score for each of the H hypotheses,
as a function of the visible parts only. The third term Eshape

p (·) is an energy function that connects
the segmentation and detection terms. It helps encode how the pth part, if visible, affects the
segmentation of the image region where the part is detected. We will discuss later, that it also
helps in the use of the segmentation of an image region to verify whether a part is visible or not. In
what follows, we define these energy functions and discuss how we can obtain x as the minimizer
of EJCaS(·).

5.3.1 Definition of the energy terms
5.3.1.1 Detection.

We first extend the detection score defined in (5.2) by introducing the binary-valued variables x(vhp )
that model the visibility/occlusion of the parts, as

φ(x; I, θh)=
P∑
p=1

φapp
p (θh; I)x(vhp ) +

∑
(p1,p2)∈Eobj

φdef
p1,p2

(θh)x(vhp1)x(vhp2). (5.4)

The appearance score for the pth part is accounted for only if it is visible (x(vhp ) = 1). The
deformation score for a pair of parts is accounted for only when both parts are visible. Hence, the
detection score depends on the visible parts only.

Given this definition of the score, we define the hypothesis score as follows

Edet(x(Vobj(θh)); I, θh)=


φ(x; I, θh)−κ if φ(x; I, θh)≤ κ

0 if φ(x; I, θh)≥κ and x(Vobj(θh))=0

∞ if φ(x; I, θh)≥κ and x(Vobj(θh)) 6=0

, (5.5)
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where κ is a pre-defined threshold applied to the detection score, to accept a hypothesis (recall
from §5.2.2). We have considered three different cases in defining Edet(·). In the first case, the
detection score is below the threshold and the hypothesis is accepted. The cost paid in this case
is a negative value and is precisely equal to φ(x; I, θh) − κ. When the detection score is above
the threshold, we want to reject the hypothesis and we don’t want any of the parts to be detected.
The third case in (5.5) ensures that none of the parts are detected when the detection score is more
than κ, by assigning a very high cost, i.e., ∞, to this undesirable case. The second case in (5.5)
corresponds to the case when we reject the hypothesis and no part is detected. In this case, we pay
a constant cost 0.

5.3.1.2 Shape prior.

Eseg(·) and Edet(·) are defined on disjoint sets of vertices, i.e., Vpixels and Vobj(·), respectively.
Eshape
p (·) serves to connect the segmentation variables with the hypotheses variables. Given a

hypothesis θh, we define for each part p, a shape prior (see Figure 5.1a) over its support region
Rp(θh), as

∀vi ∈ Rp(θh) : ξ(vi, p) = prob(x(vi) = 1|x(vhp ) = 1) (5.6)

More specifically, the shape prior specifies for each pixel in the support region of a visible part, the
probability that it will be assigned to the foreground object. Now, note that it is straightforward to
define an energy function for the pth part, as∑

vi∈Rp(θh)

(
−ξ(vi, p)x(vi)x(vhp )

)
. (5.7)

Specifically, when the pth part is detected (x(vhp ) = 1) and a pixel vi in its support region is
assigned to the foreground, a negative cost −ξ(vi, p) is paid. This implies that all the pixels which
have a high probability (as given by the shape prior) of belonging to the foreground, will have a
greater bias towards being segmented as foreground. In this manner, we see how the detection of
parts can help improve the segmentation. However, there must be a symbiotic interplay between
segmentation and detection, and we argue that segmentation must also help improve the detection.
We propose a constraint that a part must be treated as being detected/visible, only if a sufficient
number of pixels in its support region are segmented as belonging to the foreground. To this effect,
we define the energy function as

Eshape
p (x(vhp ),x(Rp(θh); I, θh),=

{∑
vi∈Rp(θh)

−ξ(vi, p)βp(π(θh)) if x(vhp ) = 0∑
vi∈Rp(θh)

−ξ(vi, p)x(vi) if x(vhp ) = 1
, (5.8)

where βp(π(θh)) > 0. When the pth part is not detected, a constant cost (which does not depend on
the segmentation) is paid. When the part is detected, the cost depends on the segmentation in the
support region. Moreover, notice from (5.8) that when a sufficient number of pixels in Rp(θh) are
assigned to the foreground, i.e., when

∑
vi∈Rp(θh)

−ξ(vi, p)x(vi) ≤ βp(π(θh))
∑

vi∈Rp(θh)
−ξ(vi, p),

this energy function biases the pth part towards being detected.
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5.3.2 Inference
The potentials defined in (5.5) and (5.8) are higher order potentials that depend on the labels of
more than two sites. We will now show how these potentials can be expressed using unary and
pairwise potentials. Since energy functions with unary and pairwise potentials can be minimized
using min-cut, our proposed potentials can be integrated into existing JCaS algorithms that use
min-cut based solvers.

To find the global optimum using min-cut, there are no constraints on the unary potentials. The
pairwise potentials, however, do need to satisfy the submodularity constraint [50]. If one considers
pairwise potentials that are defined over two binary-valued variables, say y1 and y2, the pairwise
potentials γ1y1y2 and γ2ȳ1y2 (where ȳ1 = 1− y1) are submodular only if γ1 ≤ 0 and γ2 ≥ 0 [50].

We first see that the energy Eshape
p (·) defined in (5.8) can be rewritten as

Eshape
p (x(vhp ),x(Rp(θh); I, θh) =

∑
vi∈Rp(θh)

−ξ(vi, p)
(
βp(π(θh))x̄(vhp ) + x(vi)x(vhp )

)
. (5.9)

It is easy to verify that for x(vhp ) = 0 and x(vhp ) = 1, the score in (5.9) is exactly the same as that
in (5.8). The first term in the summation in (5.9) is a unary term that depends only on x(vhp ). The
second term is a pairwise potential that depends on x(vi) and x(vhp ). In this case, we note that by
its definition in (5.6), ξ(vi, p) ≥ 0. Therefore, the potential −ξ(vi, p)x(vi)x(vhp ) is submodular by
construction.

We now use the variable x(vh0 ) to rewrite Edet(·) defined in (5.5), as

Edet(x(Vobj(θh)); I, θh) = (φ(x; I, θh)− κ)x(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )). (5.10)

When x(vh0 ) = 1, the hypothesis is accepted and the cost is equal to φ(x; I, θh) − κ. When
x(vh0 ) = 0, the hypothesis is rejected and the third term∞(x̄(vh0 )x(vhp )) ensures that all the x(vhp ) =
0 when x(vh0 ) = 0. The cost paid when x(Vobj(θh)) = 0 is equal to 0. Therefore, this energy
represents the detection energy in (5.5). Now, given the expression in (5.4), we can rewrite the
right hand side of (5.10) as

(φ(x; I, θh)− κ)x(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )) =
P∑
p=1

φapp
p (θh; I)x(vhp )x(vh0 )

+
∑

(p1,p2)∈Eobj

φdef
p1,p2

(θh)x(vhp1)x(vhp2)x(vh0 )− κx(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )).

(5.11)

Notice that the first and second expressions are potentials defined over two variables
(
x(vhp )x(vh0 )

)
and three variables

(
x(vhp1)x(vhp2)x(vh0 )

)
, respectively. However any solution x∗ that minimizes

the energy satisfies the constraint that ∀p = 1, . . . , P, x∗(vhp ) = 1, only if x∗(vh0 ) = 1. To this
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effect, x∗(vhp )x∗(vh0 ) = 1, only if x∗(vhp ) = 1. Similarly, x∗(vhp1)x
∗(vhp2)x

∗(vh0 ) = 1, only if
x∗(vhp1)x

∗(vhp2) = 1. Hence, we can drop x(vh0 ) in the first and second terms and rewrite Edet(·) as

Edet(x(Vobj(θh)); I, θh) =
P∑
p=1

φapp
p (θh; I)x(vhp ) +

∑
(p1,p2)∈Eobj

φdef
p1,p2

(θh)x(vhp1)x(vhp2)

− κx(vh0 ) +∞
P∑
p=1

(x̄(vh0 )x(vhp )),

(5.12)

such that the minimizers of (5.10) and (5.12) are the same. The first and third terms in (5.12)
are unary potentials. The fourth term ∞x̄(vh0 )x(vhp ) is submodular by construction. The second
term φdef

p1,p2
(θh)x(vhp1)x(vhp2) is submodular if and only if φdef

p1,p2
(θh) ≤ 0. This score φdef

p1,p2
(θh) is a

quadratic function computed as

φdef
p1,p2

(θh)=

dl1dl2
1

>a1(s(θh), π(θh)) 0 b1(s(θh), π(θh))
0 a2(s(θh), π(θh)) b2(s(θh), π(θh))

b1(s(θh), π(θh)) b2(s(θh), π(θh)) c(s(θh), π(θh))

dl1dl2
1

, (5.13)

where [dl1, dl2]
> = lp1(θh) − lp2(θh) [30]. Note that by definition, a1(s(θh), π(θh)) > 0 and

a2(s(θh), π(θh)) > 0 [30]. We now describe how the parameters of φdef
p1,p2

(·) can be updated for a
given image, such that the classification results are not affected and φdef

p1,p2
(θh) ≤ 0 for all possible

(lp1(θh), lp2(θh)).
If we update φdef

p1,p2
(·) to φ̃def

p1,p2
(·), such that all the parameters are kept constant but c(·) is up-

dated as c̃(s(θh), π(θh)) = c(s(θh), π(θh)) + ∆c(s(θh), π(θh)), we have for all θh, φ̃def
p1,p2

(θh) =
φdef
p1,p2

(θh) + ∆c(s(θh), π(θh)). This does not alter the relative ordering of the scores of the dif-
ferent hypotheses. The detection results are the same if one updates the threshold κ as κ̃ =
κ+ ∆c(s(θh), π(θh)).

Given an image I , since there are only a finite number of locations used to compute the expres-
sion in (5.13), we can always find a ∆c(s(θh), π(θh)) for that image, such that φ̃def

p1,p2
(θh) ≤ 0 for all

possible (lp1 , lp2). This implies that we can always update the parameters to construct submodular
pairwise potentials.

5.3.3 Parameter learning
Notice that the energy EJCaS(x; I,Θ) defined in (5.3), can be rewritten as

EJCaS(x; I,Θ) = w>Ψ(x; I,Θ)

=


λseg

λhyp

...
λshape
p (πm)

...



> 
Eseg (x(Vpixels); I)∑H

h=1E
det (x(Vobj(h)); I,Θ)

...∑H
h=1 δ(π(θh) = πm)Eshape

p (x(vhp ),x (Rp(θh)); I, θh)
...

 ,
(5.14)
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where δ(·) is the 0-1 indicator function and w ∈ R2+(P×M) contains the parameters that regulate
the relative contributions of the different potentials.

Recall that we segment an image I by minimizing E(x; I,Θ). Hence, we want that the true
segmentation y of image I minimize the energy E(x; I) as ∀x ∈ BN+(H×(P+1)) \ y, E(x; I,Θ) >
E(y; I,Θ), i.e., w>Ψ(x; I,Θ) > w>Ψ(y; I,Θ). We now describe an optimization problem to
learn w, motivated by this property.

Assume that we are given a training set of T images {It}Tt=1 with ground truth labelings {yt}Tt=1.
We refer to any labeling of an image that is different from yt as a negative example of segmentation.
We denote the set of negative examples of segmentations for an image It as U−t . Since all negative
segmentation examples should not be treated equally, we propose to enforce the constraint

∀x∈U−t : w>
(
Ψ(x; It,Θt)−Ψ(yt; It,Θt)

)
>`(x,yt), (5.15)

where `(x,yt) is a loss function that quantifies errors in the segmentation, as

`(x,yt) =

∑
vi∈Vpixels

yt(vi)x̄(vi)∑
vi∈Vpixels

yt(vi)
+

∑
vi∈Vpixels

ȳt(vi)x(vi)∑
vi∈Vpixels

ȳt(vi)
. (5.16)

`(x,yt) computes the sum of fractions of misclassified sites per category.
Given a regularization parameter C > 0, we propose to learn w by solving

{w∗, {η∗t }Tt=1} = argmin
w,{ξt}Ni=1

1

2
‖w‖2 +

C

T

T∑
t=1

ηt, subject to ∀t = 1, . . . , T

(a) ∀x ∈ U−t : w>
(
Ψ(x; It,Θt)−Ψ(yt; It,Θt)

)
≥ `(x,yt,Θt)− ηt,

(b) ηt ≥ 0 and (c) w ≥ 0.

(5.17)

This formulation is mostly based on [95] and we solve (5.17) using the cutting-plane algorithm
described in [95]. While we refer the readers to [95] for the details, we now provide some intuition
for (5.17). The constraint (a) is similar to (5.15) except for the non-negative valued slack vari-
able ηt which allow for the violation of (5.15). Constraint (c) ensures that the resulting energy is
submodular.

5.4 Experiments
Description of dataset. For the evaluation, we use the Image Parse Dataset [78] which consists
of 305 articulated full-body images of people. The first 100 images are used as training data and
the remaining 205 as test data. We have manually segmented the images in the dataset for our
quantitative evaluation.

Algorithms compared in the evaluation. We first describe the construction of the energy EJCaS(·).
We define Edet(·) using the outputs of the detector of [110]. Although our method can handle
multiple detection hypotheses, we use only the highest scoring hypothesis for each image in our
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(a) (b)

Figure 5.1: (a) Shape priors generated for 4 part types using the parts model of [110]. (b) Two examples of
shape priors being superimposed to generate foreground hypothesis.

experiments. We now describe how we construct the shape priors for Eshape
p (·). We run the detec-

tion algorithm of [110] on the training images. For each part type detected in an image, we find
the associated patch in its ground truth segmentation enclosed by the detection box. Averaging
the segmentation patches over all the training images provides shape priors similar to those shown
in Figure 5.1a. Figure 5.1b shows examples where the learned shape priors are placed at part de-
tection sites. It is clear from this image how the shape priors influence the segmentation of the
people.

To construct Eseg(·), we use the given hypothesis to create a color-based unary potential. We
fit a a Gaussian Mixture Model (GMM) with 5 components to the RGB-colors of all the image’s
pixels that lie outside the detection boxes for the parts. Given the color of a pixel vi in the image,
we use this GMM to define the background unary potential ψclri (0; I). We set the foreground
unary potentials to zero, i.e., ψclri (1; I) = 0. This reduces dependency on color for segmenting
the foreground while relying entirely on the detection and shape prior potentials. We also define
a color-based pairwise potential as ψclrij (x(vi), x(vj)) = δ(x(vi) 6= x(vj))e

−β‖z(vi)−z(vj)‖2 where
z(vi) is the RGB color at pixel vi, and each vj is in the 4-neighborhood of pixel vi. In all our
experiments we set β = 10.

As a baseline for comparison, we consider the GrabCut algorithm [80], which considers only
unary and pairwise potentials. It alternates between (a) fitting GMMs of color for the fore-
ground/background, given the segmentation, and (b) computing the segmentation, given the po-
tentials constructed with these GMMs. We initialize GrabCut with a segmentation, where we label
all the pixels inside the detection boxes for the parts as the foreground, and the rest as background.
We run 10 iterations of GrabCut. Unlike the traditional GrabCut, we cannot place any hard con-
straints on the pixels’ labels, since the detection boxes contain pixels belonging to the background
as well as foreground. We choose this baseline to show that even if one is given a good initial
object detection, using low-level features such as color need not produce good JCaS results. This
motivates our argument for object models defined over non-trivial non-local neighborhoods.

We also consider a third algorithm, where we combine our algorithm with GrabCut. We alter-
nate between (a) computing the segmentation by minimizing EJCaS(·), and (b) improving the color
models given the segmentation.
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Foreground Background
Method mean std mean std

GC 0.74 0.15 0.46 0.20
DPRF 0.90 0.07 0.63 0.19

DPRF +GC 0.91 0.06 0.63 0.19

(a) Foreground I/U (b) Background I/U

Figure 5.2: Comparison of I/U for the segmentation results produced by the 3 methods.

The parameters for all the three algorithms are learnt as described in §5.3.3. In what follows,
we refer to our method as DPRF (deformable parts + random fields) and to GrabCut as GC. The
third algorithm is referred to as DPRF+GC.
Evaluation. We evaluate the segmentations using the Intersection/Union (I/U) metric given by

#TP
#TP+#FP+#FN

, where TP = true positives, FP = false positives and FN = false negatives.
Better segmentation corresponds to higher I/U.

The results are presented in the table and the boxplots in Fig. 5.4. The top/ bottom edge of
each boxplot for a set of values indicates the maximum/minimum of the values. The bottom/top
extents of the box mark the 25/75 percentile. The red line in the box indicates the median and the
red crosses outside the boxes show potential outliers. The 5% confidence intervals for determining
statistical significance of difference between the medians are shown as red triangles.

The median I/U is notably lower for GC in comparison to DPRF and the 5% confidence inter-
vals for these results do not overlap. However, the medians for DPRF and DPRF+GC are very
similar and the 5% confidence intervals do overlap. This combined with the results in the table
help us conclude that (a) DPRF produces better results than GC, and (b) the introduction of color
information into DPRF, i.e., DPRF+GC does not produce any significant improvement.

Figure 5.3 presents a qualitative comparison of the results. The first column shows the hypoth-
esis for the deformable parts (from [110]) overlaid on the image. The second column shows the
result of pruning some of the detections using DPRF. The third, fourth and fifth columns of the fig-
ure show the segmentation produced by GC, DPRF and DPRF+GC, respectively. The first 3 rows
show examples where the results of GC are inferior to those produced by DPRF and DPRF+GC.
In these examples, the detection algorithm has fit the articulated models to the data reasonably
well. The next two examples show scenarios where the detection algorithm errs and detects an
extra limb (circled in white). As seen in the second column, DPRF prunes out these errors and
provides a better segmentation than GC. The last two rows show examples where GC performs
comparable to or outperforms DPRF. The last failure case is due to the poor part detection as seen
in the first column in the last row. More success and failure cases are presented in figures 5.5 and
5.6 respectively.
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Figure 5.3: Column 1 shows the articulated model overlaid on the images. Column 2 shows the pruned
model that has rejected some part detections using DPRF. Columns 3-5 show the segmentations given by
GC, DPRF and DPRF+GC. See text for explanation.

5.5 Conclusion
We presented a JCaS framework where we proposed two new families of potentials that combine
detection hypothesis with the segmentation of the image. These potentials can be integrated with
existing RF-based JCaS algorithms. Results show that the detection hypothesis helps provide good
segmentation results, and the segmentation can be used to prune some errors in the hypothesis.
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(a) GCE (b) RI

(c) VOI (d) BDE

Figure 5.4: Quantitative comparison of segmentation produced by the 3 different methods using (a) Global
Consistency error (GCE), (b) Rand Index (RI), (c) Variation of Information (VOI) and (d) Boundary Dis-
placement Error (BDE). Note that better segmentation quality corresponds to a lower GCE, lower VOI,
lower BDE and higher RI.
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Figure 5.5: Success cases- Column 1 shows the articulated model overlaid on the images. Column-2 shows
the pruned model that has rejected some part detections using DPRF. Columns 3-5 qualitatively show the
segmentation achieved using GC, DPRF and DPRF+GC.
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Figure 5.6: Failure cases- Column 1 shows the articulated model overlaid on the images. Column-2 shows
the pruned model that has rejected some part detections using DPRF. Columns 3-5 qualitatively show the
segmentation achieved using GC, DPRF and DPRF+GC.
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Chapter 6

Discussion

In this thesis, we have presented algorithms to automate several perception tasks that are cru-
cial for situational awareness. In Chapter 2 we have presented a general framework to jointly
classify objects that are observed from multiple vantage points in a distributed camera network.
Our framework is well suited for wireless camera networks where each camera has limited pro-
cessing capabilities. With the growing demand for security and surveillance, and lowering costs
of connected devices, such smart camera sensors are starting to replace traditional CCTV based
surveillance systems. In order to enable their large scale adoption, some crucial bottlenecks need
to be addressed. One of the main constraints is the battery life - while it is possible to increase
battery life of these sensors by using better quality batteries, another factor that makes significant
difference is the choice of algorithms and processing on board the sensor. A second (and arguably
more important) factor is the amount of data that needs to be wirelessly transmitted to a central
station. In order to address the first constraint, we have evaluated several state-of-the-art compu-
tationally feasible feature detectors, and have chosen a representation that implicitly compresses
these visual features to enable fast transmission. Further, we have drawn from recent develop-
ments in compressive sensing theory to formulate a distributed compression scheme that further
minimizes the amount of data transmitted without loss of algorithmic performance. The degree
of compression within our scheme can be dynamically selected, thereby making it more general-
ized. We have validated the performance of our system on very challenging data and under varying
levels of compression.

One of the most challenging problems in computer vision, is that of segmenting objects of
interest from the background in images. Successful separation of object from background can
significantly help object detection and categorization. One benefit stems from being able to ex-
tract feature descriptors from segment regions, thereby improving the models of representation. In
Chapter 3 we focus on this problem, and present a statistical method to segment informative fea-
tures lying on foreground objects. Our method is scalable to large training image collections due to
several novel algorithmic improvements that we have presented. The improved object models that
we learn improves the recognition accuracy on our multi-view object database, while significantly
reducing the model size by suppressing uninformative data in the model.

In Chapter 4 we have extended our static object recognition framework to the dynamic setting.
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We present a joint human action detection and categorization framework for multi-view wireless
smart camera networks. Human activity detection and categorization is an extremely challeng-
ing problem. This is because humans can exhibit multiple pose configurations, can be present in
multiple scales with regards to the image sensor, and can be occluded by their own body parts
or by scene objects. The ability to successfully detect humans, track them over multiple frames,
and simultaneously recognize certain actions of interest automatically can significantly help au-
tomate several situational awareness tasks ranging from security and surveillance, to safety and
transportation. We have presented a framework for distributed human action detection and cate-
gorization that builds upon our object recognition pipeline. In our approach, the computational
overhead of extending inference to the temporal setting is localized to the central base station and
does not increase number of operations on board the camera sensors. This stability in the types
and number of operations on board the smart camera sensors enables easy deployment of such
wireless smart sensors. We have successfully tested the efficacy of our joint activity detection and
categorization framework on multiple challenging datasets.

Finally, in Chapter 5 we present a joint framework for general deformable object detection,
segmentation and categorization. The types of models we consider are general and encompass
rigid and non rigid objects. Our fusion of the top-down task of object detection and bottom-up
task of image segmentation provides a very holistic and principled approach for addressing several
challenging perception problems that arise in situational awareness applications. We experimen-
tally validate our approach on a very challenging image dataset of humans in various poses with
very challenging backgrounds. We strongly believe that the next wave of algorithms for automated
situation awareness will focus of combining top-down and bottom-up information.

6.1 Future Work
Our investigations have opened up several avenues for future research. To begin, we strongly
believe that the quality of object and landmark detectors can significantly improve with better
models of representation. While simple template occurrence based models such as the Bag-of-
words framework work reasonably well, they are mainly appealing in our distributed recognition
setting as they are computationally very efficient. However, models that consider the geometry
of the underlying object by accounting for the co-occurrence of part templates and the underlying
3D shape have been proven to be more precise in literature. Being able to extract such granular
and informative representations from images can significantly improve the object detection and
categorization performance.

We have discussed the importance of detecting humans precisely for several situation awareness
tasks, and presented graphical model based frameworks for improving human detection in static
images by fusing detection and segmentation. Although our method works well for static images,
it does not scale to the dynamic setting where image pixels corresponding to a human in multiple
image frames are all related to each other via the underlying kinematics of the human performing
the action. Although precise modeling of human action kinematics has received some attention in
the bio-mechanics communities, there is still significant room for research as there are several open
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problems. One such problem is the ability to model any human action, and improve the parameters
of this model using low-level bottom up image cues. Such joint frameworks for kinematic model
fitting, action detection and segmentation can significantly improve the precision of automated
perception systems for situation awareness.

Finally, Information extracted from the environment must be presented in a concise and compre-
hendible manner. In several complex and dynamic scenarios where situation awareness in critical
for guaranteeing safety of humans, it is important to present information to decision-makers in a
manner that is easy to comprehend. When data is transmitted from several sources at different loca-
tions and at different instances of time, a large amount of information is generated. This deluge of
information can significantly affect the timely responses of decision-makers if it is not easy to vi-
sualize. Developing a seamless visualization framework can help bridge the gap between machine
perception and human comprehension, thereby leading to truly autonomous situation awareness
with humans in-the-loop.
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