
Polynomial-Time Verification of PCTL Properties of

MDPs with Convex Uncertainties

Alberto Alessandro Angelo Puggelli

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-118

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-118.html

May 20, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Polynomial-Time Verification of PCTL Properties
of MDPs with Convex Uncertainties

by Alberto Alessandro Angelo Puggelli

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Koushik Sen
Research Advisor

(Date)

* * * * * * *

Professor Alberto L. Sangiovanni-Vincentelli
Second Reader

(Date)

To me, Beauty is the wonder of wonders.
It is only shallow people

who do not judge by appearances.

Oscar Wilde, The Picture of Dorian Gray

Abstract

We address the problem of verifying Probabilistic Computation Tree Logic (PCTL)
properties of Markov Decision Processes (MDPs) whose state transition probabili-
ties are only known to lie within uncertainty sets.

We first introduce the model of Convex-MDPs (CMDPs), i.e., MDPs with convex
uncertainty sets. CMDPs generalize Interval-MDPs (IMDPs) by allowing also more
expressive (convex) descriptions of uncertainty.

Using results on strong duality for convex programs, we then present a PCTL veri-
fication algorithm for CMDPs, and prove that it runs in time polynomial in the size
of a CMDP. This result allows us to lower the previously known algorithmic com-
plexity upper bound for IMDPs from co-NP to PTIME, and it is valid also for more
expressive (convex) uncertainty models.

We validate the proposed approach on two case studies: the verification of a con-
sensus protocol and of a dynamic configuration protocol for IPv4 addresses.

A concise version of the results presented in this thesis can be found in [1]:

A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli, S. A. Seshia, Polynomial-Time
Verification of PCTL Properties of MDPs with Convex Uncertainties, Computer
Aided Verification, 2013.

i

Acknowledgments

I consider the journey that led to the results presented in this thesis as unusual,
surprising and, to some extent, exciting. Or at least this is how I lived it. Starting
from a class project, I dove into a body of material that was completely new to
me and that I had to discover and understand mainly by myself. My stubbornness
made me continue the research on this field also after the class was over, and my
naiveness on the material (and a great deal of good luck) led me to take a different
approach to tackle a problem that had been investigated for the previous ten years,
and devise the first-known polynomial time algorithm to solve it.

I would first like to thank my mates along this journey, Wenchao Li, John B. Finn
and prof. Seshia. Our “productive” meetings saw the development of a big part of
the skeleton of the results presented in this thesis, and our conversations have been
the closest to what I consider the ideal “maieutic” approach. The knowledge was
inside us, and we discovered it through a sequence of well-posed questions.

I would then like to thank my two advisors, prof. Sangiovanni-Vincentelli and prof.
Alon, for supporting me and this activity, although it was taking time away from
my main research projects. Their love for research crossed the boundaries of the
specific projects I was assigned to work on, and the results have been proven to be
successful for everybody.

I would also like to thank prof. El Ghaoui, for introducing me to the fundamentals
of convex optimization, and for giving the following precious piece of advise: “If
you are faced with a convex problem, take its dual and things will get simpler”.
This could be a nice and witty summary of how the presented results were discov-
ered. Thank you also to prof. Sen. It was a pleasure for me to have one of the first
researchers in the field be my research advisor for this thesis.

I will soon write a longer “acknowledgment” section on my Ph.D. dissertation in
which I will have time to thank everybody that I have had the pleasure to work with
in these last few years, which the work presented in this thesis only represents a
small fraction of. Nevertheless, I would like to thank Eleonora also here, for being
next to me every day while developing this work and for understanding every time
I had to spend my weekends working instead of doing things together. Her help
cannot be matched and a large part of this success is to be shared with her.

Finally, I would like to thank my parents and my sister for the unconditional support
during the months in which I was working on the project. The time spent on it gave
me even less time to share with them, but they have always managed to make me
feel close to them, despite the geographical distance. And a special thank you to
my Mother for coming to St. Petersburg after I presented this work at CAV 2013 to

ii

spend some time with me, given the difficulties of staying together during the year.
We had a great time together!

iii

Contents

Page

Chapters

1 Introduction . 1

1.1 Motivations . 1

1.2 Main Contributions . 4

1.3 Outline . 5

2 A Framework to Model Probabilistic Systems . 6

2.1 Convex Markov Decision Process (CMDP) . 6

2.2 Models of Uncertainty . 8

Interval Model. 8

Likelihood Model. 9

Ellipsoidal Model. 9

Entropy Model . 9

2.3 Probabilistic Computation Tree Logic (PCTL) 9

3 Related Work . 13

4 Probabilistic Model Checking with Uncertainties 16

5 Verification Routines . 18

5.1 Next Operator . 18

5.2 Unbounded Until Operator . 19

iv

Convex Programming Procedure (CP). 19

5.3 Bounded Until Operator . 22

6 Case Studies . 24

6.1 Consensus Protocol . 24

6.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local

Addresses . 28

7 Conclusions and Future Work . 31

References . 32

Appendices

A Example of a Full Linear-Program Formulation 36

v

List of Figures
Page

1 Simple Interval-MDP used to exemplify the operation of the proposed
algorithms. 10

2 Value of Equation (16) as a function of the value of parameter R while
varying the uncertainty level u. 26

3 Analysis of the scalability of the CP procedure. 27

4 Value of Equation (17) as a function of the confidence level CL. 29

5 Value of Equation (17) for increasing number of devices in the network. 30

vi

List of Tables
Page

1 Known Upper-Bound on the Complexity of PCTL Model Checking. 5

2 PCTL semantics for Convex-MDPs . 11

3 Runtime Comparison . 28

vii

Chapter 1
Introduction
In this chapter, we present the motivations that drove the work described in the
thesis. We then summarize the main achieved contributions and outline the content
of the rest of the thesis.

1.1 Motivations

In the last decade, industrial and commercial electronics has been driven towards
two only-at-first-glance opposite directions. The infinitesimally small, with single-
digit nanometric devices, enabling always-increasing computational resources at
low power consumption. And the immensely huge, with networks of billions of de-
vices connecting the whole world, enabled by the larger availability of miniaturized
and energy efficient devices. Indeed, embedded electronic systems are ubiquitous,
both in the environment around us and in the gadgets (often smart-phones) that
we always bring along with us. This situation is foreseen to further expand, and a
swarm of sensors connected to the IT cloud is predicted to surround us from the
early 2020s, when it is estimated that there will be more then a 1000 electronic
devices per person. While these advances will enable a massive increase of the
availability of information around us, a key challenge to be faced to make this ex-
traordinary scenario true will be managing the increased complexity in the design,
verification and operation of these systems.

This thesis will focus on formal techniques for the verification of the behavior of
stochastic systems. Formal verification is a field in rapid expansion because it ad-
dresses the need of exhaustively validating the correct functionality of systems that
exhibit too many behaviors (due to their complexity) to be fully tested through sim-
ulation. Since the cost of putting in the market a faulty product, and then recall
it to fix it, is unbearable for most businesses, formal verification is playing an in-
creasingly bigger role in the development flow of electronic systems. While formal
verification for deterministic systems have already reached a reasonable level of
maturity (although some level of domain-specific expertise is still often required
to abstract the main system behaviors and improve the scalability of the analysis),
the focus of the research community is now shifting towards stochastic systems.

1

System behavior can be considered stochastic either because of the presence of ac-
tual randomization (for example, random back-off schemes in wireless transmission
protocols), or as a modeling tool to abstract complex deterministic behaviors (for
example, the electricity power demand of a city neighborhood can be captured by
its mean and standard deviation varying during the day, since capturing the actual
deterministic data would be too computationally expensive). Given the importance
of such systems, stochastic verification techniques are required.

Stochastic models like Discrete-Time Markov Chains (DTMCs) [2] and Markov
Decision Processes (MDPs) [3] have been used to formally represent systems that
exhibit random or probabilistic behaviors. These systems need quantitative anal-
ysis [4] to answer questions such as “what is the probability that a request will
be eventually served?”. Properties of these systems can be expressed and analyzed
using logics such as Probabilistic Computation Tree Logic (PCTL) [5] — a prob-
abilistic logic derived from CTL which includes a probabilistic operator P — as
well as techniques for probabilistic model checking [6].

One critical step in the modeling of probabilistic systems is the estimation of state
transition probabilities. When modeling randomized protocols (e.g., a randomized
consensus protocol), transition probabilities are usually inferred from the ideal be-
havior of the system. For example, a probability of 0.5 is assigned to the two pos-
sible results of a coin toss. On the other hand, when modeling a stochastic physical
system (e.g., the quality of a wireless channel), transition probabilities are inferred
by performing a measurement campaign and by computing the occurrence frequen-
cies of each possible (discretized) observation of the physical phenomenon. For
example, if 4 out of 10 sent packages across a wireless channel drop, the proba-
bility of successful transmission will be 0.6. While widely adopted for their intrin-
sic simplicity and computational tractability, these techniques for the estimation of
transition probabilities might fail to capture some critical behavior of the system
under analysis. For randomized protocols, faulty agents or agents under a security
attack might fail to behave as in the ideal scenario. Continuing the example of the
coin toss, this would translate into an equivalent “biased” coin toss, in which, for
example, expected probabilities might be 0.4 for “tail” and 0.6 for “head”. In the
estimation of physical processes, the finite precision in taking measurements and
the finite number of measurements that can be taken in a practical scenario limit the
accuracy of the inferred transition probabilities.

In fact, formal statistical techniques to capture this uncertainty in the estimation of
transition probabilities do exist and they have been widely studied in the statistics
and optimal control community [7]. Most of these techniques assume that the tran-
sition probabilities are not known with precision but only lie in an uncertainty set
of potentially observable probabilities. To keep computation tractable, these uncer-

2

tainty sets are usually convex, e.g., a closed interval, an ellipsoid or a likelihood
region. Also in the verification community, the concept of transition uncertainty
has been proposed. Interval-valued Discrete-Time Markov Chains (IDTMCs) have
been introduced to capture modeling uncertainties [8]. IDTMCs are DTMC models
where each transition probability is assumed to lie within a compact range. Two se-
mantic interpretations have been proposed for these models [9]: Uncertain Markov
Chains (UMCs) and Interval Markov Decision Processes (IMDPs). An UMC is in-
terpreted as a family of (possibly uncountably many) DTMCs, where each member
of the family is a DTMC whose transition probabilities lie within the interval range
given in the UMC. In IMDPs, the uncertainty is resolved through non-determinism.
Each time a state is visited, a transition distribution within the interval constraints
is adversarially picked, and a probabilistic step is taken accordingly. Thus, IMDPs
allow modeling a non-deterministic choice made from a set of (possibly uncount-
ably many) choices. For both semantics, the verification problem amounts to de-
termine whether a desired property holds also under the worst-case resolution of
uncertainty. In this thesis, we do not consider UMCs and focus on IMDPs. From a
modeling standpoint, IMDP semantics represents the worst-case scenario of UMCs,
since in IMDPs a new adversarial state transition probability distribution is chosen
at each step, while in UMCs the adversarial transition probability distribution is
chosen only once. Further the development of verification algorithms for UMCs
has been proven in [10] to be harder than for IMDPs, so UMCs are less amenable
to a scalable analysis.

An upper-bound on the complexity of model checking PCTL properties on IMDPs
was previously shown to be PSPACE [9], and the result was later improved to co-
NP [10]. These results rely on the construction of an equivalent MDP that encodes
all behaviors of the IMDP. For each state in the new MDP, the set of transition
probabilities is equal to the Basic Feasible Solutions (BFS) of the set of inequali-
ties specifying the transition probabilities of the IMDP. Since in the worst case the
number of BFS is exponential in the number of states in the IMDP, the equivalent
MDP can have size exponential in the size of the IMDP. Given the aforementioned
results, no computationally efficient algorithm was known for the verification of
formal properties of systems whose transition probabilities were captured in uncer-
tainty sets.

An interval model of uncertainty may appear to be the most intuitive to analyze.
However, there may be significant advantages in being able to accommodate more
expressive (and less pessimistic) uncertainty sets in addition to intervals. In [11], a
financial portfolio optimization case-study is analyzed in which uncertainty arises
from estimating the rate of return for each asset. The authors claim that the in-
terval model of uncertainty is too conservative in this scenario, because it would

3

suggest to invest the whole capital into the asset with the largest worst-case return.
The ellipsoidal model of uncertainty proposed in that paper returns instead a solu-
tion that spreads the capital across multiple assets, a more profitable strategy in the
long run. As a further example, the authors of [12] consider the problem of esti-
mating transition probabilities from measurements. If the probabilities x are nor-
mally distributed with mean µ, and covariance matrix Σ, the ellipsoid defined by
(x−µ)TΣ−1(x−µ) ≤ 1 is a valuable approximation that eliminates “almost” im-
possible outliers, which would otherwise be included by an interval approximation.
Further, depending on the field, researchers use different models to represent uncer-
tainty. Maximum likelihood models are often used, for example, to estimate chem-
ical reaction parameters [13]. Entropy models are instead used when the available
data points are limited or it is costly to collect them, e.g. in text segmentation [14]
and political vote prediction [15].

1.2 Main Contributions

In this thesis, we present three main contributions.

First, we present the first-known polynomial-time algorithm (in both size of the
model and size of the formula) for the verification of the same fragment of PCTL
considered in [9,10] (the Bounded Until operator is disallowed). This shows that the
problem is in the complexity class PTIME (also known as P). We then extend the al-
gorithm to full PCTL (with Bounded Until), and show that its time complexity only
increases to pseudo-polynomial in the maximum integer time bound in Bounded
Until.

Second, in order to increase the expressiveness of the model under verification, we
introduce the model of Convex-MDP (CMDP), i.e., an MDP whose state transition
probabilities are only known to lie within convex uncertainty sets. We show that the
algorithms proposed in this paper can be extended to verify CMDP for a wide and
relevant class of convex uncertainty sets (e.g., sets expressed with the ellipsoidal and
likelihood models of uncertainty), while maintaining the same complexity results
proven for IMDPs. Moreover, different models of uncertainty can be used within the
same CMDP to represent different sources of uncertainty, thus further increasing the
expressiveness of the proposed approach. We also note that the complexity results
presented in [9] and [10] cannot be trivially extended to verifying CMDPs. This is
because BFS are not defined for generic convex inequalities, so the construction of
an equivalent MDP would not be possible. The complexity results are compared in
Table 1.

Finally, we demonstrate the relevance of our approach with two case studies. First,
we study the behavior of a distributed stochastic consensus protocol when one of

4

Table 1: Known Upper-Bound on the Complexity of PCTL Model Checking.

Model DTMC [5] IMDP [10] IMDP/CMDP [ours]
Complexity PTIME co-NP PTIME

the processes participating in the protocol is faulty or behaving maliciously. Sec-
ond, we analyze the performance of a wireless protocol for domotic applications
operating across a lossy link. Results show that a small uncertainty in the transi-
tion probabilities indeed yields a significant change in the verification results, thus
revealing the importance of the proposed analysis. Further, we demonstrate the run-
time scalability of the proposed approach to the analysis of problems of practical
relevance.

1.3 Outline

The rest of the thesis is organized as follows.

In Chapter 2, we introduce the framework used in this work to model the behavior
of probabilistic systems. We first formally introduce the concept of Convex-MDPs.
We then describe the convex models of uncertainty analyzed in this work. Finally,
we define the Probabilistic Computation Tree Logic, i.e., the logic used to express
properties of Convex-MDPs.

In Chapter 3, we survey related work in the literature both in the fields of formal
verification and robust control.

In Chapter 4, we give an overview of the proposed approach to verify PCTL prop-
erties of CMDPs, and formalize the new theoretical complexity results.

In Chapter 5, we give details of the proposed verification algorithm and prove that
it runs with algorithmic complexity polynomial in the size of the model and of the
specification.

In Chapter 6, we describe two case studies analyzed with the proposed approach —
a randomized consensus protocol and a dynamic configuration protocol for domotic
applications.

Lastly, we conclude and discuss future research directions in Chapter 7.

5

Chapter 2
A Framework to Model
Probabilistic Systems
In this chapter, we introduce the framework used in this work to model the behavior
of stochastic systems. We begin with preliminary definitions of concepts that will be
used in the subsequent derivations. We then introduce the model of Convex-MDPs,
i.e., Markov Decision Processes whose state transitions are only known to lie in
convex uncertainty sets, and provide details of the mathematical representation of
four convex uncertainty sets commonly used in statistics. Finally, we conclude the
chapter by introducing Probabilistic Computation Tree Logic, i.e., the formal logic
that we use to express properties of Convex-MDPs.

We give the definition of Probability Distribution (PD), of convex set and of convex
function.

Definition 2.1. A PD over a finite set Z of cardinality n is a vector µ ∈ Rn sat-
isfying 0 ≤ µ ≤ 1 and 1Tµ = 1. The element µ[i] represents the probability of
realization of the event zi. We call Dist(Z) the set of distributions over Z.

Definition 2.2. A set C is convex if the line segment between any two points in C
lies in C, i.e., if for any x, y ∈ C and any α with 0 ≤ α ≤ 1, we have: αx + (1 −
α)y ∈ C [16].

Definition 2.3. A function h : RN → R is convex if its domain D is a convex set,
and for all x,y ∈ D and α with 0 ≤ α ≤ 1, we have: h (αx+ (1− α)y) ≤
αh(x) + (1− α)h(y) [16].

2.1 Convex Markov Decision Process (CMDP)

Definition 2.4. A CMDP is a tupleMC = (S, S0, A,Ω,F ,A,X , L), where S is a
finite set of states of cardinality N = |S|, S0 is the set of initial states, A is a finite
set of actions (M = |A|), Ω is a finite set of atomic propositions, F is a finite set of
convex sets of transition PDs, A : S → 2A is a function that maps each state to the
set of actions available at that state, X = S ×A→ F is a function that associates

6

to state s and action a the corresponding convex set Fas ∈ F of transition PDs, and
L : S → 2Ω is a labeling function.

The set Fas = Distas(S) represents the uncertainty in defining a transition distri-
bution forMC given state s and action a. We call fas ∈ Fas an observation of this
uncertainty. Also, fas ∈ RN and we can collect the vectors fas ,∀s ∈ S into an
observed transition matrix F a ∈ RN×N . Abusing terminology, we call Fa the un-
certainty set of the transition matrices, and F a ∈ Fa. Fas is interpreted as the row
of Fa corresponding to state s. Finally, fasisj = fasi [j] is the observed probability of
transitioning from si to sj when action a is selected.

A transition between state s to state s′ in a CMDP occurs in three steps. First,
an action a ∈ A(s) is chosen. The selection of a is nondeterministic. Secondly,
an observed PD fas ∈ Fas is chosen. The selection of fas models uncertainty in the
transition. Lastly, a successor state s′ is chosen randomly, according to the transition
PD fas .

A path π inMC is a finite or infinite sequence of the form s0
f
a0
s0s1−−−→ s1

f
a1
s1s2−−−→, · · · ,

where si ∈ S, ai ∈ A(si) and faisi,si+1
> 0 ∀i ≥ 0. We indicate with Πfin (Πinf)

the set of all finite (infinite) paths ofMC . π[i] is the ith state along the path and, for
finite paths, last(π) is the last state visited in π ∈ Πfin. Πs = {π | π[0] = s} is the
set of paths starting in state s.

Although we consider CMDPs as the underlying model of the system, the proposed
techniques can be extended also to Convex Markov Chains (CMCs), which can be
seen as CMDPs with a single action, i.e., M = 1.

To model uncertainty in state transitions, we make the following assumptions:

Assumption 2.1. Fa can be factored as the Cartesian product of its rows, i.e., its
rows are uncorrelated. Formally, for every a ∈ A, Fa = Fas0 × · · · × F

a
sN−1

. In [7]
this assumption is referred to as rectangular uncertainty.

Assumption 2.2. If the probability of a transition is zero (non-zero) for at least one
PD in the uncertainty set, then it is zero (non-zero) for all PDs.
Formally, ∃fas ∈ Fas : fass′ = (6=)0 =⇒ ∀fas ∈ Fas : fass′ = (6=)0. The assumption
guarantees the correctness of the preprocessing verification routines used later in
this work, which rely on reachability of the states of the MDP underlying graph.

We determine the size R of the CMDPMC as follows.MC has N states, O(M)
actions per state and O(N2) transitions for each action. Let Da

s denote the number
of constraints required to express the rectangular uncertainty set Fas (e.g. Da

s =

7

O(2N) for the interval model, to express the upper and lower bounds of the transi-
tion probabilities from state s to all states s′ ∈ S), and D = max

s∈S,a∈A
Da
s . The overall

size ofMC is thusR = O(N2M +NMD).

In order to analyze quantitative properties of CMDPs, we need a probability space
over infinite paths [17]. However, a probability space can only be constructed once
nondeterminism and uncertainty have been resolved. We call each possible resolu-
tion of nondeterminism an adversary, which chooses an action in each state ofMC .

Definition 2.5. Adversary. A randomized adversary for MC is a function α =
Πfin×A→ [0, 1], with

∑
A(last(π)) α(π, a) = 1, and a ∈ A(last(π)) if α(π, a) > 0.

We call Adv the set of all adversaries α ofMC .

Conversely, we call a nature each possible resolution of uncertainty, i.e., a nature
chooses a transition PD for each state and action ofMC .

Definition 2.6. Nature. Given action a ∈ A, a randomized nature is the function
ηa : Πfin × Dist(S) → [0, 1] with

∫
Fa
last(π)

ηa(π, fas) = 1, and fas ∈ Falast(π) if

ηa(π, fas) > 0. We call Nat the set of all natures ηa ofMC .

An adversary α (nature ηa) is memoryless if it depends only on last(π). Also, α
(ηa) is deterministic if α(π, a) = 1 for some a ∈ A(last(π)) (ηa(π, fas) = 1 for
some fas ∈ Falast(π)).

2.2 Models of Uncertainty

We only consider CMDPs whose transition PDs lie in uncertainty sets that satisfy
Assumption 5.1 (introduced later for ease of presentation). This assumption holds
for all the uncertainty models analyzed in [7]. We report results for the interval,
likelihood, ellipsoidal and entropy models.

Interval Model. Intervals commonly describe uncertainty in transition matrices:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,1T fas = 1} (1)

where fas , f
a

s ∈ RN are the element-wise lower and upper bounds of f . This model
is suitable when the transition matrix components are individually estimated by
statistical data.

8

Likelihood Model. This model is appropriate when the transition probabilities are
determined experimentally. The transition frequencies associated to action a ∈ A
are collected in matrix Ha. Uncertainty in each row of Ha can be described by the
likelihood region [18]:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑

s′ h
a
ss′ log(f

a
ss′) ≥ βas} (2)

where βas < βas,max =
∑

s′ h
a
ss′ log(h

a
ss′) represents the uncertainty level. Likelihood

regions are less conservative uncertainty representations than intervals, which arise
from projections of the uncertainty region onto each row component.

Ellipsoidal Model. Ellipsoidal models can be seen as a second-order approxima-
tion of the likelihood model [7]. Formally:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1, ‖Ra
s (f

a
s − has) ‖2 ≤ 1, Ra

s � 0} (3)

where matrix Ra
s represents an ellipsoidal approximation of the likelihood Re-

gion (2).

Entropy Model The entropy model of uncertainty can be viewed as a variation
of the likelihood model. In the likelihood setting we bound the divergence from
an empirically extracted distribution, whereas in the entropy setting we bound the
divergence from a reference analytical distribution q [7]. We will thus consider sets:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑

s′ f
a
ss′ log

(
fa
ss′
qa
ss′

)
≤ βas} (4)

Remark 2.1. Each setFas within the same CMDP can be expressed with a different
uncertainty model to represent different sources of uncertainty.

To illustrate our results, we will use the IMDPMC in Figure 1, with S = {s0 · · · s3},
S0 = {s0}, A = {a, b}, Ω = {ω, ϑ}, A : {s0, s1, s2} → {a} ; {s3} → {a, b},
L : {s0, s3} → ϑ ; {s2} → ω. The uncertainty intervals are shown next to each
transition. For example,

Fas0 = {f
a
s0
∈ RN | [0, 0.6, 0.2, 0] ≤ fas0 ≤ [0, 0.8, 0.5, 0],

∑
s′∈S f

a
ss′ = 1}.

2.3 Probabilistic Computation Tree Logic (PCTL)

We use PCTL, a probabilistic logic derived from CTL which includes a probabilistic
operator P [5], to express properties of CMDPs. The syntax of this logic is defined

9

Figure 1: Simple Interval-MDP used to exemplify the operation of the proposed
algorithms.

as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | Ponp [ψ] state formulas

ψ ::= Xφ | φ1 U≤kφ2 | φ1 Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1] and k ∈ N.

Path formulas ψ use the Next (X), Bounded Until
(
U≤k

)
and Unbounded Until (U)

operators. These formulas are evaluated over paths and only allowed as parameters
to the Ponp [ψ] operator. The size Q of a PCTL formula is defined as the number
of Boolean connectives plus the number of temporal operators in the formula. For
the Bounded Until operator, we denote separately the maximum time bound that ap-
pears in the formula as kmax. Probabilistic statements about MDPs typically involve

10

Table 2: PCTL semantics for Convex-MDPs
s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P/p [ψ] iff Pmax
s ({π ∈ Πs | π |= ψ}) / p

s |= P.p [ψ] iff Pmin
s ({π ∈ Πs | π |= ψ}) . p

π |= Xφ iff π[1] |= φ
π |= φ1 U≤kφ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1

π |= φ1 Uφ2 iff ∃k ≥ 0 | π |= φ1 U≤kφ2

universal quantification over adversaries α ∈ Adv. With uncertainties, for each ac-
tion a selected by adversary α, we will further quantify across nature ηa ∈ Nat to
compute the worst case condition within the action range of ηa, i.e., the uncertainty
set Fas . We define Ps(α, ηa)[ψ]

4
= Prob ({π ∈ Πs(α, η

a) | π |= ψ}) the probabil-
ity of taking a path π ∈ Πs that satisfies ψ under adversary α and nature ηa. If α
and ηa are Markov deterministic in state s, we write Ps(a, fas), where a and fas are
the action and resolution of uncertainty that are deterministically chosen at each
execution step by α and ηa. Pmax

s [ψ] (Pmin
s [ψ]) denote the maximum (minimum)

probability Ps(α, ηa)[ψ] across all adversaries α ∈ Adv and natures ηa ∈ Nat, and
the vectors Pmax[ψ],Pmin[ψ] ∈ RN collect these probabilities ∀s ∈ S. The seman-
tics of the logic is reported in Table 2, where we write |= instead of |=Adv,Nat for
simplicity.

For ease of computation, we would like to restrict our attention to memoryless
and deterministic adversaries and natures to compute quantitative probabilities, i.e.,
solve problems:

Pmax
s [ψ] = max

a∈A(s)
max
fas ∈Fas

Ps(a, f
a
s)[ψ]

?

≤ p (5)

or

Pmin
s [ψ] = min

a∈A(s)
min
fas ∈Fas

Ps(a, f
a
s)[ψ]

?

≥ p (6)

We extend a result from [19] to prove that this is possible.

Proposition 2.1. Given a CMDP MC and a target state st ∈ S, there always
exist deterministic and memoryless adversaries and natures for MC that achieve
the maximum (minimum) probabilities of reaching st, if A is finite and the in-

11

ner optimization in Problem (6) always attains its optimum σ∗s(a) over the sets
Fas ,∀s ∈ S,∀a ∈ A(s), i.e., there exists a finite feasible fas ∈ Fas such that
Ps(a, f

a
s)[ψ] = σ∗s(a).

Sketch of proof. The proof is divided into two parts. First, we prove the existence
of an adversary and a nature that achieve the maximum (minimum) probabilities
of reaching ts, using Banach fixed-point theorem [19]. Second, we prove that at
least one such adversary and nature is memoryless and deterministic. The proof
extends the one in Puterman [19], Theorem 6.2.10. We need to prove that Problem
(6) always attains the maximum (minimum) over the feasibility sets Fas , i.e., ∀s ∈
S,∀a ∈ A(s),∃fas ∈ Fas : ||fas ||2 < ∞, Ps(a, fas)[ψ] = σ∗s(a). This is indeed true
for all the convex sets Fas considered in this thesis. The interval and ellipsoidal
models result in compact sets Fas on which Weierstrass theorem holds. For the
likelihood model we use the notion of consistency, which guarantees the existence
and uniqueness of a point in Fas where the optimum is attained. ut

The verification of a PCTL state formula φ can be viewed as a decision problem.
The verification algorithm V needs to determine whether a state s ∈ S0 is (or is not)
contained in the set Sat(φ) = {s ∈ S | s |= φ}. We can thus define the following
properties for V:

Definition 2.7. Soundness (Completeness). Algorithm V is sound (complete) if:

s ∈ SatV (φ)⇒ s ∈ Sat(φ) (s 6∈ SatV (φ)⇒ s 6∈ Sat(φ))

where SatV (φ) is the computed satisfaction set, while Sat(φ) is the actual satisfac-
tion set.

Algorithms to verify non-probabilistic formulas are sound and complete, because
they are based on reachability analysis over the finite number of states ofMC [20].
Conversely, we will show in Section 5 that algorithms to verify probabilistic formu-
las φ = Ponp [ψ] in the presence of uncertainties require to solve convex optimization
problems over the set R of the real numbers. Optima of these problems can be ar-
bitrary real numbers, so, in general, they can be computed only to within a desired
accuracy εd. We consider an algorithm to be sound and complete if the error in
determining the satisfaction probabilities of φ is bounded by such a parameter εd,
since the returned result will still be accurate enough in most settings.

12

Chapter 3

Related Work
In this chapter, we give an overview of previous work presented in the literature
both in the area of formal verification and robust control. We begin with a brief
review of model-checking techniques and their theoretical complexity. This analy-
sis clarifies the improvement in theoretical complexity described in this thesis. We
then present model-checking tools proposed in the literature and conclude with ref-
erences to works focusing on the problem of devising robust control strategies for
MDPs with uncertainties.

Automatic verification techniques such as model checking [21] are ways of estab-
lishing formal guarantees for a system with respect to given logical specifications.
Traditionally, model checking has been focused on developing methods for analyz-
ing qualitative properties of system models, e.g. checking that a communication
protocol never deadlocks. Many applications however often involve stochastic be-
haviors due to interaction with physical processes (e.g. failure of an unreliable com-
ponent) or built-in randomization (e.g. random back-off schemes in IEEE 802.11).
These applications need quantitative analysis [4] in order to answer questions such
as “what is the probability that a request will be served within a given time limit?”.
Stochastic models like Discrete-Time Markov Chains (DTMCs) [2] and Markov
Decision Processes (MDPs) [3] have been used to formally represent systems that
exhibit random or probabilistic behaviors. These systems need quantitative anal-
ysis [4] to answer questions such as “what is the probability that a request will
be eventually served?”. Properties of these systems can be expressed and analyzed
using logics such as Probabilistic Computation Tree Logic (PCTL) [5] — a proba-
bilistic logic derived from CTL which includes a probabilistic operator P — as well
as techniques for probabilistic model checking [6]. These methods often rely on de-
riving a probabilistic model of the underlying process, hence the formal guarantees
they provide are only as good as the estimation. In a real setting, these estimations
are affected by uncertainties due for example to unmodeled dynamics, measurement
errors or approximation of the real system by mathematical models.

Interval-valued Discrete-Time Markov Chains (IDTMCs) have been introduced to
capture modeling uncertainties [8]. IDTMCs are DTMC models where each transi-
tion probability is assumed to lie within a compact range. Two semantic interpreta-

13

tions have been proposed for these models [9]: Uncertain Markov Chains (UMCs)
and Interval Markov Decision Processes (IMDPs). An UMC is interpreted as a fam-
ily of (possibly uncountably many) DTMCs, where each member of the family is
a DTMC whose transition probabilities lie within the interval range given in the
UMC. In IMDPs, the uncertainty is resolved through non-determinism. Each time
a state is visited, a transition distribution within the interval constraints is adversar-
ially picked, and a probabilistic step is taken accordingly. Thus, IMDPs allow mod-
eling a non-deterministic choice made from a set of (possibly uncountably many)
choices. In this thesis, we do not consider UMCs and focus on IMDPs. Moreover,
while all previous work focused only on interval models of uncertainty, we also
incorporate more expressive models such as the ellipsoidal, likelihood and entropy
models [7].

An upper-bound on the complexity of model checking PCTL properties on IMDPs
was previously shown to be PSPACE [9], and the result was later improved to co-
NP [10]. These results rely on the construction of an equivalent MDP that encodes
all behaviors of the IMDP. For each state in the new MDP, the set of transition
probabilities is equal to the Basic Feasible Solutions (BFS) of the set of inequali-
ties specifying the transition probabilities of the IMDP. Since in the worst case the
number of BFS is exponential in the number of states in the IMDP, the equivalent
MDP can have size exponential in the size of the IMDP.

In this work, we improve the previously best-known complexity result of co-NP
in [10] to PTIME, for the fragment of PCTL without U≤k. We also characterize the
complexity of our algorithm for the full PCTL syntax [5] based on the sizeR of the
IMDP model, the sizeQ of the PCTL formula, and the maximum bound kmax in the
U≤k operators. Our algorithm runs inO(poly(R)×Q×kmax) time, which is pseudo-
polynomial in kmax (i.e. polynomial if kmax is counted in its unary representation
and exponential if kmax is counted in its binary representation). On the other hand,
classical PCTL model checking for DTMCs [5] runs in time polynomial in kmax
counted in its binary representation. The difference stems from the computation
of the set Sat

(
Ponp

[
φ1 U≤kφ2

])
. For (certain) MDPs, this computation involves

raising the transition matrices F a,∀a ∈ A to the kth power, to model the evolution
of the system in k steps. With uncertainties, we cannot do matrix exponentiation,
because F a ∈ Fa might change at each step. However, matrix exponentiation is
seldom used in practice because the transition matrix of an MDP is often sparse and
repeatedly squaring it causes fill-ins [20]. Moreover, both Q and kmax are typically
small in practical applications [13,22,23], so the dominant factor for runtime is the
size of the model R. Hence, our algorithm is favorable in terms of scalability of
the verification problem. We note that the complexity results of [9] and [10] can be
extended to the PCTL with U≤k.

14

In parallel to the formalization of the aforementioned theoretical results, the com-
munity has also worked on the development of tools for the model checking of prob-
abilistic systems. To list a few, we mention INFAMY [24], MRMC [25], ETMCC [26],
VESTA [27], Ymer [28] and the PRISM Model Checker [6]. At the time of writ-
ing, the PRISM Model Checker appears to be at the frontier in this effort. The
tool has been used to analyze a multitude of applications, from communication
protocols and biological pathways to security problems. PRISM is capable of an-
alyzing several different probabilistic models (e.g. discrete and continuous-time
Markov Chains (DTMCs/CTMCs), Markov Decision Processes (MDPs), Proba-
bilistic Timed Automata (PTA)) and properties expressed in a variety of specifica-
tion languages (e.g. Probabilistic Computation Tree Logic, Linear Temporal Logic).
Along the years, the tool has been used to verify and analyze properties of a hetero-
geneous set of systems ranging from biochemical reactions and power-management
units to security protocols and many others. By further considering uncertainties in
the probabilistic transitions of the MDP for model checking PCTL specifications,
our work extends the capabilities of these tools.

Convex uncertainty models [7] similar to the ones analyzed in this thesis have been
considered recently in the robust control literature, where the problem is to synthe-
size a robust optimal controller for an MDP in order to satisfy a Linear Temporal
Logic (LTL) specification where only one probabilistic operator is allowed [29].
Their technique first converts the LTL specification to a Rabin automaton (which
is worst-case doubly exponential in the size of the LTL formula), and composes it
with the MDP. Robust dynamic programming is then used to solve for the optimal
control policy similar to [7]. We consider PCTL, and allow nested probability op-
erators. Additionally, our algorithm is polynomial both in the size of the model and
of the formula, leveraging results on strong duality for convex programs.

Recently, there has also been work that aims to provide robustness to PCTL model
checking based on the notion of Approximate Probabilistic Bisimulation (APB) [30].
In that paper, the existence of an APB to a Labeled Markov Chain (LMC) with
precision ε is proven to imply the preservation of ε-robust PCTL formulas in the
LMC. The notion of APB is tailored to finite-precision approximation of a numeri-
cal model. Our work is different because we aim to check PCTL formulas of MDPs
whose transition probabilities are affected by uncertainties due to estimation errors
or imperfect information about the environment. Further, our goal is different in
that we aim to expose the effect of uncertainties (small perturbations) in the process
behavior on the satisfaction of the property that we are verifying.

15

Chapter 4

Probabilistic Model Checking
with Uncertainties
In this chapter, we formally define the verification problem analyzed in this thesis,
and give an overview of the proposed approach to solve it.

PCTL model checking with uncertainties. Given a Markov Decision Process model
with convex uncertaintiesMC of sizeR and a PCTL formula φ of sizeQ over a set
of atomic propositions Ω, verify φ over the uncertainty sets Fas ∈ F ofMC .

As in verification of CTL [31], the algorithm traverses bottom-up the parse tree for
φ, recursively computing the set Sat(φ′) of states satisfying each sub-formula φ′.
At the end of the traversal, the algorithm computes the set of states satisfying φ
and it determines if s |= φ by checking if s ∈ Sat (φ). For the non-probabilistic
PCTL operators, the satisfying states are computed as: Sat (True) = S, Sat(ω) =
{s ∈ S | ω ∈ L(s)}, Sat(¬φ) = S\Sat(φ) and Sat(φ1∧φ2) = Sat(φ1)∩Sat(φ2).
For the probabilistic operator P on [ψ], we compute:

Sat (P/p [ψ]) = {s ∈ S | Pmax
s (ψ) / p} (7)

Sat (P.p [ψ]) =
{
s ∈ S | Pmin

s (ψ) . p
}

(8)

In this thesis, we propose polynomial-time routines to compute Sets (7) - (8) for
MDPs whose transition matrices F a are only known to lie within convex uncertainty
sets Fa, ∀a ∈ A.

Using Proposition 2.1, the proposed routines encode the transitions ofMC under the
sets of deterministic and memoryless adversaries and natures into convex programs
and solve them. From the returned solution, it is then possible to determine the
quantitative satisfaction probabilities Pmax

s [ψ] (or Pmin
s [ψ]) ∀s ∈ S, which get

compared in linear time to the threshold p to compute the set Sat (Ponp [ψ]). To
prove the polynomial-time complexity of the model-checking algorithm, we use
the following key result from convex theory [32].

16

Proposition 4.1. Given the convex program:

min
x
f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m

with x ∈ Rn and fi, i = 0, · · · ,m convex functions, the optimum σ∗ can be found
to within±εd in time complexity that is polynomial in the size of the problem (n,m)
and log(1/εd).

We are now ready to state the main contribution of this thesis:

Theorem 4.1. Complexity of PCTL model-checking for CMDPs.

1. The problem of verifying if a CMDPMC of size R satisfies a PCTL formula φ
without U≤k is in PTIME.

2. A formula φ′ with U≤k can be verified with time complexityO (poly(R)×Q′ × kmax),
i.e., pseudo-polynomial in the maximum time bound kmax of U≤k.

Sketch of proof. The proof is constructive. Our verification algorithm parses φ in
time linear in the size Q of φ [31], computing the satisfiability set of each oper-
ator in φ. For the non-probabilistic operators, satisfiability sets can be computed
in time polynomial in R using set operations, i.e., set inclusion, complementation
and intersection. For the probabilistic operator, we leverage Proposition 4.1 and
prove that the proposed verification routines: 1) solve a number of convex problems
polynomial inR; 2) generate these convex programs in time polynomial inR. The
correctness and time-complexity for formulas involving Next and Unbounded Until
operators are formalized in Lemma 5.1 and 5.2 (Section 5.1 and 5.2). It thus follows
that the overall algorithm runs in time polynomial inR and in the size of φ. Finally,
Lemma 5.3 formalizes the results related to the Bounded Until operator. ut

17

Chapter 5
Verification Routines
In this chapter, we give details about the routines for the verification of the tem-
poral operators allowed in PCTL. In particular, we analyze the Next, Unbounded
Until and Bounded Until operators. For each operator, we first present the algo-
rithmic procedure to determine the states in the Convex-MDP satisfying the PCTL
formula φ. We then prove the soundness and completeness of the procedure and
derive its algorithmic complexity.

We detail the routines used to verify the probabilistic operator P . We only consider
properties in the form φ = P/p[ψ], but the results can trivially be extended to φ =
P.p[ψ] [33] by replacing “max” with “min” in the optimization problems below.

5.1 Next Operator

We present the routine to verify property φ = P/p[Xφ1] on a CMDP of sizeR. First,
the set Syes = Sat(φ1) of all states satisfying φ1 is computed. Second, for each
state, the algorithm computes the probabilities defined in Equation (6) by solving
the problem:

Pmax
s [Xφ1] = max

a∈A(s)
max
fas ∈Fas

∑
s′∈Syes

fass′ (9)

In Problem (9), the inner max is a convex program since Fas is convex. We note
that the sets Fas can be expressed with models of uncertainty different from one
another, since each optimization problem is independent from the others. Finally,
the computed probabilities are compared to the threshold p to select the states that
satisfy φ.

Lemma 5.1. The routine to verify the Next operator is sound, complete and guar-
anteed to terminate with algorithmic complexity that is polynomial in the sizeR of
MC .

Proof. From Problem (9) we see that there is one “inner” convex program for each
state s ∈ S and action a ∈ A(s), for a total of at mostMN problems. Each problem
has at most N unknowns, representing the probability of transitioning from state s

18

to state s′ for s′ ∈ Syes. It has N + 1 constraints to guarantee that the solution
lies in the probability simplex, and Da

s constraints to enforce the solution to be
within the uncertainty set Fas . According to the definition in Section 2.1, the total
number of constraints is linear in R. Using Proposition 4.1, each inner problem is
solved in time polynomial in R. Soundness and completeness also follow directly
from Proposition 4.1, which states that the optimum of Problem (9) can be found to
within the desired accuracy ±εd in time linear in log(1/εd). ut

We verify φ = P≤0.4[Xω] in the example in Figure 1. Trivially, Syes = {s2}. Setting
up the inner problem for state s0 and action a, we get:

P a,maxs0 = max
f01,f02

f02

s.t. 0.6 ≤ f01 ≤ 0.8; 0.2 ≤ f02 ≤ 0.5; f01 + f02 = 1

with solution P a,max
s0

[Xω] = 0.4. Repeating ∀a∈A,∀s ∈S, we get Pmax[Xω]=
[0.4, 0.5, 0, 0.6], so Sat(φ)={s0, s2}.

5.2 Unbounded Until Operator

We present the routine to verify φ = P/p[φ1Uφ2] on a CMDP of size R. First, the

sets Syes def
= Sat (P≥1[φ1Uφ2]), Sno

def
= Sat (P≤0[φ1Uφ2]) and S? = S \ (Sno ∪

Syes) are precomputed in time polynomial in R using conventional reachability
routines over the CMDP underlying graph [20]. Second, the maximum probability
to satisfy φ, as introduced in Equation (6), is computed for all states s ∈ S at the
same time using the Convex Programming procedure described next. Finally, the
computed probabilities are compared to the threshold p.

Convex Programming Procedure (CP). We start from the classical LP formula-
tion to solve the problem without the presence of uncertainty [20]:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; s ∈ Syes; (10)

xs ≥ xTfas ∀s ∈ S?,∀a ∈ A(s)

where Pmax[φ1Uφ2] = x∗ is computed solving only one LP. Problem (10) has N
unknowns and N − Q +MQ constraints, where Q = |S?| = O(N), so its size is
polynomial inR.

19

Proposition 2.1 allows us to rewrite Problem (10) in the uncertain scenario as:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (11)

xs ≥ max
fas ∈Fas

(xTfas) ∀s ∈ S?,∀a ∈ A(s)

i.e., we maximize the lower bound on xs across the nature action range. The deci-
sion variable of the inner problem is fas and its optimal value σ∗(x) is parametrized
in the outer problem decision variable x. Problem (11) can be written in convex
form for an arbitrary uncertainty model by replacing the last constraint with a set
of constraints, one for each point in Fas . However, this approach results in infinite
constraints if the set Fas contains infinitely many points, as in the cases considered
in this work, making the problem unsolvable. We solve this difficulty using duality,
which allows to rewrite Problem (11) with a number of additional constraints only
polynomial in the size of the CMDP. For each state s ∈ S? and action a ∈ A(s),
we replace the primal inner problem in the outer Problem (11) with its dual:

σas (x) = max
fas ∈Fas

xT fas ⇒ das(x) = min
λas∈Das

g(λas ,x) (12)

where λas is the (vector) Lagrange multiplier and Das is the feasibility set of the
dual problem. In the dual, the decision variable is λas and its optimal value das(x)
is again parametrized in the outer problem decision variable x. The dual function
g(λas ,x) and the set Das are convex by construction in λas for arbitrary uncertainty
models, so the dual problem is convex. Further, since also the primal problem is
convex, strong duality holds, i.e., σas = das , ∀x ∈ RN , because the primal problem
satisfies Slater’s condition [16] for any non-trivial uncertainty set Fas . Any dual
solution overestimates the primal solution. When substituting the primals with the
duals in Problem (11), we can drop the inner optimization operators because the
outer optimization operator will nevertheless aim to find the least overestimates,
i.e., the dual solutions das ,∀s ∈ S, a ∈ A(s), to minimize its cost function. We get
the CP formulation:

min
x

xT1 min
x,λ

xT1

s.t. xs = 0; xs = 1; s.t. xs = 0; xs = 1; ∀s ∈ Sno;∀s ∈ Syes; (13a)

xs ≥ min
λas∈Das

g (λas ,x) ⇒ xs ≥ g (λas ,x) ; ∀s ∈ S?,∀a ∈ A(s); (13b)

λas ∈ Das ∀s ∈ S?,∀a ∈ A(s) (13c)

20

The decision variables of Problem (13) are both x and λas , so the CP formulation
is convex only if the dual function g(λas ,x) is jointly convex in λas and x. While
this condition cannot be guaranteed for arbitrary uncertainty models, we prove con-
structively that it holds for the ones considered in the thesis. For example, for the
interval model, Problem (13) reads:

min
x,λas

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno;∀s ∈ Syes;
xs ≥ λa1,s − (f sa)

Tλa2,s + (f
s

a)
Tλa3,s; ∀s ∈ S?,∀a ∈ A(s);

x+ λa2,s − λa3,s − λa1,s1 = 0; ∀s ∈ S?,∀a ∈ A(s);
λa2,s ≥ 0, λa3,s ≥ 0 ∀s ∈ S?,∀a ∈ A(s)

which is an LP, so trivially jointly convex in x and λas . Analogously, Problem (13)
for the ellipsoidal model is a Second-Order Cone Program (SOCP), so again jointly
convex in x and λas . For the likelihood model, Problem (13) reads:

min
xs,λas

xT

s 1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes;
(14a)

xs ≥ λa1,s − (1 + βas)λ
a
2,s+λ

a
2,s

∑
s′ h

a
ss′ log

(
λa2,sh

a
ss′

λa1,s−xs′

)
; ∀s ∈ S?,∀a ∈ A(s);

(14b)

λa1,s ≥ max
s′∈S

xs′ ; λ
a
2,s ≥ 0 ∀s ∈ S?,∀a ∈ A(s)

(14c)

We prove its joint convexity in x and λas as follows. The cost function and Con-
straints (14a)-(14c) are trivially convex. Constraint (14b) is generated by a primal-
dual transformation, so, according to convex theory, it is convex in the dual vari-
ables λas by construction. Moreover, convex theory also guarantees that the affine
subtraction of x from λas preserves convexity, so we conclude that Problem (14) is
convex.

For general CMDPs, we will assume:

Assumption 5.1. Given a CMDPMC , for all convex uncertainty sets Fas ∈ F , the
dual function g(λas ,x) in Problem (12) is jointly convex in both λas and x.

According to Proposition 4.1, Problem (13) can thus be solved in polynomial time.
Also for this formulation, Pmax[φ1Uφ2] = x∗, so all the satisfaction probabilities

21

can be computed by solving only one convex problem. Finally, we note that we
can combine models of uncertainty different from one another within a single CP
formulation, since each dual problem is independent from the others according to
Assumption 2.1. As an example, if both the interval and ellipsoidal models are used,
the overall CP formulation is an SOCP.

Lemma 5.2. The routine to verify the Unbounded Until operator is sound, com-
plete and guaranteed to terminate with algorithmic complexity polynomial in the
sizeR ofMC , ifMC satisfies Assumption 5.1.

Proof. The routine solves only one convex program, which is generated in time
polynomial inR as follows. We formulate Constraints (13b) and (13c) for all s ∈ S?

and a ∈ A(s), i.e., O(MQ) constraints, where Q = |S?| = O(N). They are
derived from MQ primal-dual transformations as in Equation (12). Each primal
inner problem has N unknowns, N + 1 constraints to represent the probability
simplex andDa

s constraints to represent the uncertainty setFas . From duality theory,
the corresponding dual inner problem has N +1+Da

s unknowns and 2N +1+Da
s

constraints (N + 1 + Da
s constraints are “structural”, i.e., in the form λ ≤ 0 or

λ ≥ 0 [16]). Overall, Problem (13) has O ((N + 1 +D)MQ) more unknowns and
O ((2N + 1 +D)MQ) more constraints of Problem (10), so its size is polynomial
in R. IfMC satisfies Assumption 5.1, Problem (13) is convex. Using Lemma 4.1,
we then conclude that it can be solved in time polynomial inR. Finally, when strong
duality holds for the transformation in Equation (12), soundness and completeness
of the final solution are preserved because the dual and primal optimal value of each
inner problem are equivalent. ut

We verify φ = P≥0.3[ϑ U ω] on the example in Figure 1. Problem (13) written with
the data of the model has 19 variables and 11 constraints (attached in Appendix A).
The solution reads: Pmin[ϑ U ω] = [0.2, 0, 1, 0.32], and, in conclusion, Sat(φ) =
{s2, s3}.

5.3 Bounded Until Operator

We present the routine to verify property φ = P/p[φ1U≤kφ2] on a CMDP of size

R. First, the set Syes def
= Sat(φ2), Sno

def
= S \ (Sat(φ1) ∪ Sat(φ2)) and S? =

S \ (Sno ∪ Syes) are precomputed. Second, the maximum probabilities Pmax[ψ] =
xk = Gk(0) to satisfy φ are computed for all states s ∈ S applying k times mapping

22

G defined as:

xi = Gi(xi−1) =

0; 1; ∀s ∈ Sno; ∀s ∈ Syes;

0; ∀s ∈ S? ∧ i = 0;

max
a∈A(s)

max
fas ∈Fas

(xi−1)T fas ∀s ∈ S? ∧ i > 0

(15)

and x−1 = 0 ∈ RN . Finally, the computed probabilities are compared to the thresh-
old p.

Lemma 5.3. The routine to verify the Bounded Until operator is sound, complete
and guaranteed to terminate with algorithmic complexity that is polynomial in the
sizeR ofMC and pseudo-polynomial in the time bound k of U≤k.

Proof. For the first part, the proof is similar to the one for the Next Operator. To
apply Mapping (15), we need to solve O(MQ) “inner” convex programs with Q =|
S? |, i.e., one ∀s ∈ S?, a ∈ A(s). Each problem has at most N unknowns, N +
1 + D constraints, and it is solved in time polynomial in R. Further, the pseudo-
polynomial complexity in k comes from applying Mapping (15) k times. While
each inner problem can be solved with accuracy ±εinn in time linear in log(1/εinn)
by Proposition 4.1, we are left to prove the soundness and completeness of the
overall solution, since the εinn-approximations in computing xi,∀i get propagated
at each iteration, and might in principle result in a larger error at the end of the
procedure. We call εis the error accumulated at step i for state s, xis = xis,id + εis,
where xis,id is the solution with no error propagation, and εks the error in the final
solution. Also, fa,is ∈ Fas is the optimal solution of the inner problem at step i. We
solve this difficulty by noting that the optimal value of the the inner problem is
computed by multiplying vector xi by fa,is ∈ Fas , with 1T fas = 1,∀fas ∈ Fas ,∀a ∈
A(s). At the first, second and ith iteration:

x1s = x1s,id + ε1s = fa,1s x0 + εinn

x2s = fa,2s x1 + εinn = fa,2s

(
fa,1s x0 + εinn1

)
+ εinn = fa,2s fa,1s x0 + 2εinn

xis = fa,is xi−1 + εinn = fa,is
(
fa,i−1s xi−1 + (i− 1)εinn1

)
+ εinn = fa,is fa,i−1s . . . fa,1s x0 + iεinn

so εis increases linearly with i. The desired accuracy εd of the final solution can thus
be guaranteed by solving each inner problem with accuracy εinn = εd/k. ut

We verify φ = P≤0.6[ϑ U≤1ω] in the example in Fig. 1. We get Syes = {s2},
Sno = {s1}. Applying once Mapping (15), we get Pmax[ϑU≤1ω] = [0.4, 0, 1, 0.6]
and Sat(φ) = {s0, s1, s3}.

23

Chapter 6
Case Studies
In this chapter, we present an experimental evaluation of the functionality of the
proposed algorithms. We first describe the experimental setup. We then present two
case studies. In the first case study, we analyze the performance of a distributed
stochastic consensus protocol where one of the participating processes is faulty or
behaving maliciously. In the second case study, we analyze the performance of a
wireless protocol operating across a lossy physical link.

We implemented the proposed verification algorithm in Python, and interfaced it
with PRISM [6] to extract information about the CMDP model. We used MOSEK [34]
to solve the LPs generated for the interval model and implemented customized nu-
merical solvers for the other models of uncertainty. The implemented tool is avail-
able at [35]. The algorithm was tested on all the case studies collected in the PRISM
benchmark suite [36]. In this thesis, we report two of them: the verification of a con-
sensus protocol and of a dynamic configuration protocol for IPv4 addresses. The
goals of these experiments are two-fold:

1. quantitatively evaluate the impact of uncertainty on the results of verification of
PCTL properties of CMDPs;

2. assess the scalability of the proposed approach to increasing problem size.

The runtime data were obtained on a 2.4 GHz Intel Xeon with 32GB of RAM.

6.1 Consensus Protocol

Consensus problems arise in many distributed environments, where a group of dis-
tributed processes attempt to reach an agreement about a decision to take by access-
ing some shared entity. A consensus protocol ensures that the processes will even-
tually terminate and take the same decision, even if they start with initial guesses
that might differ from one another.

We analyze the randomized consensus protocol presented in [22, 37]. The protocol
guarantees that the processes return a preference value v ∈ {1, 2}, with probabil-
ity parameterized by a process independent value R (R ≥ 2) and the number of

24

processes P . The processes communicate with one another by accessing a shared
counter of value c. The protocol proceeds in rounds. At each round, a process flips a
local coin, increments or decrements the shared counter depending on the outcome
and then reads its value c. If c ≥ PR (c ≤ −PR), it chooses v = 1 (v = 2). Note
that the larger the value of R, the longer it takes on average for the processes to
reach the decision. Nondeterminism is used to model the asynchronous access of
the processes to the shared counter, so the overall protocol is modeled as an MDP.

We verify the property Agreement: all processes must agree on the same decision,
i.e., choose a value v ∈ {1, 2}. We compute the minimum probability of Agreement
and compare it against the theoretical lower bound (R − 1)/2R [22]. In PCTL
syntax:

Pmin
s0

[ψ] := Pmin
s0

(F ({finished} ∧ {all coins equal 1})) (16)

We consider the case where one of the processes is unreliable or adversarial, i.e.,
it throws a biased coin instead of a fair coin. Specifically, the probability of either
outcome lies in the uncertainty interval [(1 − u)p0, (1 + u)p0], where p0 = 0.5 ac-
cording to the protocol. This setting is relevant to analyze the protocol robustness
when a process acts erroneously due to a failure or a security breach. In particular,
our approach allows to study attacks that deliberately hide under the noise thresh-
old of the protocol. In such attacks, the compromised node defers agreement by
producing outputs whose statistical properties are within the noise tolerance of an
uncompromised node, so that it is harder to detect its malicious behavior.

Figure 2 shows the effect of different levels of uncertainty on the computed prob-
abilities for P = 4. With no uncertainty (u = 0), Pmin

s0
increases as R increases,

because a larger R drives the decision regions further apart, making it more diffi-
cult for the processes to decide on different values of v. As R goes to infinity, Pmin

s0

approaches the theoretical lower bound limR→∞(R− 1)/2R = 0.5. However, even
with a small uncertainty (u = 0.01), Pmin

s0
soon decreases for increasing R. With a

large uncertainty (u = 0.15), Pmin
s0

quickly goes to 0. A possible explanation is that
the faulty process has more opportunities to deter agreement for a high R, since R
also determines the expected time to termination. Results thus show that the proto-
col is vulnerable to uncertainties. This fact may have serious security implication,
i.e., a denial-of-service attack could reduce the availability of the distributed ser-
vice, since a compromised process may substantially alter the expected probability
of agreement.

Lastly, we study the scalability of the CP procedure, by evaluating Equation (16)
while sweeping R both for P = 2 and P = 4. We use MOSEK [34] to solve
Problem (13) and set the Time Out (TO) to one hour. In Figure 3, we plot the sum

25

Figure 2: Value of Equation (16) as a function of the value of parameter R while
varying the uncertainty level u.

(N + T) of the number of states (N) and transitions (T) of the CMDP, which are
independent of the uncertainty in the transition probabilities, to represent the model
size (top), the sum (V +C) of the number of variables (V) and constraints (C) of the
generated LP instances of Problem (13) (center), and the running time tCP (bottom).
V +C always scales linearly withN+T (the lines have the same slope), supporting
the polynomial complexity result for our algorithm. Instead, tCP scales linearly only
for smaller problems (P = 2), while it has a higher-order polynomial behavior for
larger problems (P = 4) (the line is still a straight line but with steeper slope, so it
is polynomial on logarithmic axes). This behavior depends on the performance of
the chosen numerical solver, and it can improve benefiting of future advancements
in the solver implementation. In Table 3, we compare the CP procedure with two
tools, PRISM [6] and PARAM [38], in terms of runtime, for varying values of P
and R. Although neither tool solves the same problem addressed in this thesis,
the comparison is useful to assess the practicality of the proposed approach. In

26

Figure 3: Analysis of the scalability of the CP procedure.

particular, PRISM only verifies PCTL properties of MDPs with no uncertainties.
PARAM instead derives a symbolic expression of the satisfaction probabilities as
a function of the model parameters, to then find the parameter values that satisfy
the property. Hence, PRISM only considers a special case of the models considered
in this work, while our approach only returns the worst-case scenario computed
by PARAM. Results show that the CP procedure runs faster than PRISM for some
benchmarks, but it is slower for larger models. This is expected since the scalability
of our approach depends mainly on the problem size, while the performance of
the iterative engine in PRISM depends on the problem size and on the number of
iterations required to achieve convergence, which is dependent on the problem data.
Finally, our approach is orders of magnitude faster than PARAM, so it should be
preferred to perform worst-case analysis of system performances.

27

Table 3: Runtime Comparison

Tool
P = 2, R = 2 R = 7 R = 128 P = 4, R = 2 R = 32 R = 44 P = 6, R = 4
N + T = 764 2, 604 47, 132 97, 888 1, 262, 688 1, 979, 488 14, 211, 904

CP 0.02s 0.1s 2.1s 8.3s 1, 341s 2, 689 TO
PRISM 0.01s 0.09s 196s 1s 2, 047s TO 1860s
PARAM 22.8s 657s TO TO TO TO TO

6.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local
Addresses

The ZeroConf protocol [39, 40] is an Internet Protocol (IP)-based configuration
protocol for local (e.g. domestic) networks. In such a local context, each device
should configure its own unique IP address when it gets connected to the network,
with no user intervention. The protocol thus offers a distributed ”plug-and-play”
solution in which address configuration is managed by individual devices when
they are connected to the network. The network is composed of DVtot devices.
After being connected, a new device chooses randomly an IP address from a pool
of IPA = 65024 available ones, as specified by the standard. The address is non-
utilized with probability p0 = 1 −DVtot/IPA. It then sends messages to the other
devices in the network, asking whether the chosen IP address is already in use. If
no reply is received, the device starts using the IP address, otherwise the process is
repeated.
The protocol is both probabilistic and timed: probability is used in the randomized
selection of an IP address and to model the eventuality of message loss; timing de-
fines intervals that elapse between message retransmissions. In [40], the protocol
has been modeled as an MDP using the digital clock semantic of time. In this se-
mantic, time is discretized in a finite set of epochs which are mapped to a finite
number of states in an MDP, indexed by the epoch variable te. To enhance the user
experience and, in battery-powered devices, to save energy, it is important to guar-
antee that a newly-connected device manages to select a unique IP address within a
given deadline dl. For numerical reasons, we study the maximum probability of not
being able to select a valid address within dl. In PCTL syntax:

Pmax
s0

[ψ] := Pmax
s0

(¬{unique address} U {te > dl}) (17)

We analyzed how network performances vary when there is uncertainty in estimat-
ing: 1) the probability of selecting an IP address, and; 2) the probability of message
loss during transmission. The former may be biased in a faulty or malicious de-
vice. The latter is estimated from empirical data, so it is approximated. Further, the

28

IMDP semantic of IDTMCs (Section 1), which allows a nature to select a differ-
ent transition distribution at each execution step, properly models the time-varying
characteristics of the transmission channel.

In Figure 4, we added uncertainty only to the probability of message loss using the
likelihood model, which is suitable for empirically-estimated probabilities. Using
classical results from statistics [7], we computed the value of parameter β from
Set (2) corresponding to several confidence levels CL in the measurements. In par-
ticular, 0 ≤ CL ≤ 1 and CL = 1 − cdfχ2

d
(2 ∗ (βmax − β)), where cdfχ2

d
is the cu-

mulative density function of the Chi-squared distribution with d degrees of freedom
(d = 2 here because there are two possible outcomes, message lost or received). Re-
sults show that the value of Pmax

s0
increases by up to∼10× for decreasing CL, while

classical model-checking would only report the value for CL = 1, which coarsely
over-estimates network performance. The plot can be used by a designer to choose
dl to make the protocol robust to varying channel conditions, or by a field engi-

Figure 4: Value of Equation (17) as a function of the confidence level CL.

29

Figure 5: Value of Equation (17) for increasing number of devices in the network.

neer to assess when the collected measurements are enough to estimate network
performances.

In Figure 5, we compose different models of uncertainty, i.e., we also add uncer-
tainty in the probability of selecting the new IP address using the interval model.
This probability thus lies in the interval [(1−u)p0, (1+u)p0]. We, arbitrarily, fixed
dl = 25 and swept DVtot in the range [10 − 100], which covers most domestic
applications, to study how network congestion affects the value of Equation (17).
We studied four scenarios: the ideal scenario, returned by classical model-checking
techniques; the confident, normal, conservative scenarios, where we added increas-
ing uncertainty to model different knowledge levels of the network behavior, a situ-
ation that often arises during the different design phases, from conception to deploy-
ment. Results show that Pmax

s0
[ψ] gets up to ∼ 15× higher than the ideal scenario,

an information that designers can use to determine the most sensitive parameters of
the system and to assess the impact of their modeling assumptions on the estimation
of network performances.

30

Chapter 7
Conclusions and Future Work
We addressed the problem of verifying PCTL properties of Markov Decision Pro-
cesses whose state transition probabilities are only known to lie within uncertainty
sets. We considered the class of Convex-MDPs (CMDPs), i.e., MDPs with con-
vex uncertainties. Using results on strong duality for convex programs, we proved
that model checking is decidable in PTIME for the fragment of PCTL without the
Bounded Until operator. For the entire PCTL syntax, the algorithmic complexity
becomes pseudo-polynomial in the size of the property. We validated our approach
on two case studies. Results show that uncertainty substantially alters the computed
probabilities, thus revealing the importance of the proposed analysis.

As future work, we aim to relax the rectangular uncertainty assumption, to limit
the adversarial choices of state transition probability distributions, i.e, the action
range of nature, and obtain a less conservative and more realistic analysis. Also, we
plan to verify a complex physical system, e.g. an airplane power system, in which
modeling uncertainties are present both in the underlying physical process and in
the failure probabilities of its components.

31

References
1. A. Puggelli, W. Li, A. Sangiovanni-Vincentelli, and S. Seshia, “Polynomial-

time verification of pctl properties of mdps with convex uncertainties,”
in Computer Aided Verification, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds. Springer Berlin Heidelberg, 2013,
vol. 8044, pp. 527–542. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-39799-8 35

2. C. Courcoubetis and M. Yannakakis, “The Complexity of Probabilistic
Verification,” J. ACM, vol. 42, no. 4, pp. 857–907, Jul. 1995. [Online].
Available: http://doi.acm.org/10.1145/210332.210339

3. A. Bianco and L. Alfaro, “Model Checking of Probabilistic and Nondeter-
ministic Systems,” in Foundations of Software Technology and Theoretical
Computer Science, ser. Lecture Notes in Computer Science, P. Thiagarajan,
Ed. Springer Berlin Heidelberg, 1995, vol. 1026, pp. 499–513. [Online].
Available: http://dx.doi.org/10.1007/3-540-60692-0 70

4. M. Kwiatkowska, “Quantitative Verification: Models, Techniques and Tools,”
in Proc. 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE). ACM Press, September 2007, pp. 449–458.

5. H. Hansson and B. Jonsson, “A Logic for Reasoning About Time and
Reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535, 1994.
[Online]. Available: http://dx.doi.org/10.1007/BF01211866

6. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
Probabilistic Real-Time Systems,” in Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and
S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

7. A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes
with Uncertain Transition Matrices,” Operations Research, vol. 53, no. 5, pp.
780–798, 2005. [Online]. Available: http://pubsonline.informs.org/doi/abs/10.
1287/opre.1050.0216

8. I. Kozine and L. Utkin, “Interval-Valued Finite Markov Chains,” Reliable
Computing, vol. 8, no. 2, pp. 97–113, 2002. [Online]. Available: http:
//dx.doi.org/10.1023/A%3A1014745904458

9. K. Sen, M. Viswanathan, and G. Agha, “Model-Checking Markov Chains in
the Presence of Uncertainties,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science, H. Hermanns
and J. Palsberg, Eds. Springer Berlin Heidelberg, 2006, vol. 3920, pp.
394–410. [Online]. Available: http://dx.doi.org/10.1007/11691372 26

32

http://dx.doi.org/10.1007/978-3-642-39799-8_35
http://dx.doi.org/10.1007/978-3-642-39799-8_35
http://doi.acm.org/10.1145/210332.210339
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/BF01211866
http://pubsonline.informs.org/doi/abs/10.1287/opre.1050.0216
http://pubsonline.informs.org/doi/abs/10.1287/opre.1050.0216
http://dx.doi.org/10.1023/A%3A1014745904458
http://dx.doi.org/10.1023/A%3A1014745904458
http://dx.doi.org/10.1007/11691372_26

10. K. Chatterjee, K. Sen, and T. Henzinger, “Model-Checking ω-Regular
Properties of Interval Markov Chains,” in Foundations of Software Science
and Computational Structures, ser. Lecture Notes in Computer Science,
R. Amadio, Ed. Springer Berlin Heidelberg, 2008, vol. 4962, pp. 302–317.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-78499-9 22

11. A. Ben-Tal and A. Nemirovski, “Robust Solutions of Uncertain Linear
Programs,” Operations Research Letters, vol. 25, no. 1, pp. 1 – 13,
1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167637799000164

12. V. Kreinovich, A. Neumaier, and G. Xiang, “Towards a Combination of Inter-
val and Ellipsoid Uncertainty,” Department of Computer Science, UT-El Paso,
Tech. Rep. UTEP-CS-07-42b, 2008.

13. A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf, “Parameter
Identification for Markov Models of Biochemical Reactions,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, G. Gopalakrishnan
and S. Qadeer, Eds. Springer Berlin Heidelberg, 2011, vol. 6806, pp. 83–98.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-22110-1 8

14. A. McCallum, D. Freitag, and F. C. N. Pereira, “Maximum Entropy Markov
Models for Information Extraction and Segmentation,” in Proceedings of the
Seventeenth International Conference on Machine Learning, ser. ICML ’00.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 591–
598. [Online]. Available: http://dl.acm.org/citation.cfm?id=645529.658277

15. J. Gill, “An Entropy Measure of Uncertainty in Vote Choice,” Electoral Studies,
vol. 24, pp. 371–392, 2005.

16. S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University
Press, 2004.

17. M. Vardi, “Automatic Verification of Probabilistic Concurrent Finite State Pro-
grams,” in Foundations of Computer Science, 1985., 26th Annual Symposium
on, Oct 1985, pp. 327–338.

18. E. Lehmann and G. Casella, Theory of Point Estimation. Springer-Verlag,
New York, 1998.

19. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, 1994.

20. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated Verifica-
tion Techniques for Probabilistic Systems,” in Formal Methods for Eternal Net-
worked Software Systems (SFM’11), ser. LNCS, M. Bernardo and V. Issarny,
Eds., vol. 6659. Springer, 2011, pp. 53–113.

21. E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.
22. M. Kwiatkowska, G. Norman, and R. Segala, “Automated Verification

of a Randomized Distributed Consensus Protocol Using Cadence SMV

33

http://dx.doi.org/10.1007/978-3-540-78499-9_22
http://www.sciencedirect.com/science/article/pii/S0167637799000164
http://www.sciencedirect.com/science/article/pii/S0167637799000164
http://dx.doi.org/10.1007/978-3-642-22110-1_8
http://dl.acm.org/citation.cfm?id=645529.658277

and PRISM,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, G. Berry, H. Comon, and A. Finkel, Eds. Springer
Berlin Heidelberg, 2001, vol. 2102, pp. 194–206. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44585-4 17

23. M. Lahijanian, S. Andersson, and C. Belta, “Temporal Logic Motion Plan-
ning and Control With Probabilistic Satisfaction Guarantees,” Robotics, IEEE
Transactions on, vol. 28, no. 2, pp. 396–409, April 2012.

24. E. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “INFAMY: An Infinite-
State Markov Model Checker,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, A. Bouajjani and O. Maler, Eds. Springer
Berlin Heidelberg, 2009, vol. 5643, pp. 641–647. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02658-4 49

25. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The Ins and Outs of the Probabilistic Model Checker MRMC,”
Perform. Eval., vol. 68, no. 2, pp. 90–104, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.peva.2010.04.001

26. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “ETMCC:
Model Checking Performability Properties of Markov Chains.” in DSN.
IEEE Computer Society, 2003, pp. 673–. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/dsn/dsn2003.html#HermannsKMS03

27. K. Sen, M. Viswanathan, and G. Agha, “VESTA: A Statistical Model-Checker
and Analyzer for Probabilistic Systems,” in Quantitative Evaluation of Systems,
2005. Second International Conference on the, Sept 2005, pp. 251–252.

28. H. Younes, “Ymer: A Statistical Model Checker,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, K. Etessami and
S. Rajamani, Eds. Springer Berlin Heidelberg, 2005, vol. 3576, pp. 429–433.
[Online]. Available: http://dx.doi.org/10.1007/11513988 43

29. E. Wolff, U. Topcu, and R. Murray, “Robust Control of Uncertain Markov De-
cision Processes with Temporal Logic Specifications,” Intl. Conf. on Decision
and Control (CDC), 2012.

30. A. D’Innocenzo, A. Abate, and J.-P. Katoen, “Robust PCTL Model
Checking,” in Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control, ser. HSCC ’12. New
York, NY, USA: ACM, 2012, pp. 275–286. [Online]. Available: http:
//doi.acm.org/10.1145/2185632.2185673

31. E. Clarke and E. Emerson, “Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic,” in Logics of Programs,
ser. Lecture Notes in Computer Science, D. Kozen, Ed. Springer
Berlin Heidelberg, 1982, vol. 131, pp. 52–71. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0025774

34

http://dx.doi.org/10.1007/3-540-44585-4_17
http://dx.doi.org/10.1007/978-3-642-02658-4_49
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dblp.uni-trier.de/db/conf/dsn/dsn2003.html#HermannsKMS03
http://dblp.uni-trier.de/db/conf/dsn/dsn2003.html#HermannsKMS03
http://dx.doi.org/10.1007/11513988_43
http://doi.acm.org/10.1145/2185632.2185673
http://doi.acm.org/10.1145/2185632.2185673
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774

32. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics, 1994.
[Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611970791

33. A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli, and S. A. Seshia,
“Polynomial-Time Verification of PCTL Properties of MDPs with Con-
vex Uncertainties,” UC-Berkeley, Tech. Rep. UCB/EECS-2013-24, Apr
2013. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-24.html

34. “MOSEK,” http://www.mosek.com.
35. Online: http://www.eecs.berkeley.edu/∼puggelli/.
36. Online: http://www.prismmodelchecker.org/benchmarks/.
37. J. Aspnes and M. Herlihy, “Fast Randomized Consensus Using Shared

Memory,” Journal of Algorithms, vol. 11, no. 3, pp. 441 – 461,
1990. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0196677490900216

38. E. Hahn, T. Han, and L. Zhang, “Synthesis for pctl in parametric markov
decision processes,” in NASA Formal Methods, ser. Lecture Notes in Computer
Science, M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi, Eds. Springer
Berlin Heidelberg, 2011, vol. 6617, pp. 146–161. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20398-5 12

39. S. Cheshire, B. Adoba, and E. Gutterman, “Dynamic Configuration of IPv4
Link Local Addresses,” available from http://www.ietf.org/rfc/rfc3927.txt.

40. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Performance Anal-
ysis of Probabilistic Timed Automata Using Digital Clocks,” Formal Methods
in System Design, vol. 29, pp. 33–78, 2006.

35

http://epubs.siam.org/doi/abs/10.1137/1.9781611970791
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-24.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-24.html
http://www.eecs.berkeley.edu/~puggelli/
http://www.prismmodelchecker.org/benchmarks/
http://www.sciencedirect.com/science/article/pii/0196677490900216
http://www.sciencedirect.com/science/article/pii/0196677490900216
http://dx.doi.org/10.1007/978-3-642-20398-5_12
http://www.ietf.org/rfc/rfc3927.txt

Appendices

A Example of a Full
Linear-Program Formulation

This appendix reports the full linear-program formulation that was used in Sec-
tion 5.2 to verify property φ = P≥0.3[ϑ U ω] on the example in Figure 1. Prob-
lem (13) written with the data of the model has 19 variables and 11 constraints. All
variables are (implicitly) bounded to be positive apart from the ones labeled as free
at the bottom of the formulation.

max
x,λ1,λ2,λ3

x0 + x3 (18)

Subject to:
x2 = 1

x1 = 0

x0 ≤ λa1,s0 + 0.6λa2,s0s0 + 0.2λa2,s0s1 − 0.8λa3,s0s0 − 0.5λa3,s0s1
x1 − λa1,s0 + λa3,s0s0 − λ

a
2,s0s0

= 0

x2 − λa1,s0 + λa3,s0s1 − λ
a
2,s0s1

= 0

x0 ≤ +x3

x3 ≤ λa1,s3 + 0.1λa2,s3s0 + 0.5λa2,s3s1 + 0.3λa2,s3s2 − 0.5λa3,s3s0 − 0.8λa3,s3s1 − 0.4λa3,s3s2
x0 − λa1,s3 + λa3,s3s0 − λ

a
2,s3s0

= 0

x1 − λa1,s3 + λa3,s3s1 − λ
a
2,s3s1

= 0

x2 − λa1,s3 + λa3,s3s2 − λ
a
2,s3s2

= 0

x3 ≤ λb1,s3 + 0.3λb2,s3s0 + 0.4λb2,s3s1 − 0.7λb3,s3s0 − 0.6λb3,s3s1
x2 − λb1,s3 + λb3,s3s0 − λ

b
2,s3s0

= 0

x3 − λb1,s3 + λb3,s3s1 − λ
b
2,s3s1

= 0

Free: λa1,s0 , λ
a
1,s3
, λb1,s3

36

	Introduction
	Motivations
	Main Contributions
	Outline

	A Framework to Model Probabilistic Systems
	Convex Markov Decision Process (CMDP)
	Models of Uncertainty
	Interval Model.
	Likelihood Model.
	Ellipsoidal Model.
	Entropy Model

	Probabilistic Computation Tree Logic (PCTL)

	Related Work
	Probabilistic Model Checking with Uncertainties
	Verification Routines
	Next Operator
	Unbounded Until Operator
	Convex Programming Procedure (CP).

	Bounded Until Operator

	Case Studies
	Consensus Protocol
	ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local Addresses

	Conclusions and Future Work
	References
	Example of a Full Linear-Program Formulation

