
Real-time Image Processing on Low Cost Embedded

Computers

Sunil Shah

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-117

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-117.html

May 20, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Without the generous support of 3DRobotics and advice from Brandon
Basso, this project would not have been possible. Additionally, several
other graduate students collaborated on and contributed extensively to this
project: Constantin Berzan, Nahush Bhanage, Gita Dombrowski and Hoang
Nguyen.

!

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2014

Electrical Engineering and Computer Science

Robotics & Embedded Software

REAL-TIME IMAGE PROCESSING ON LOW COST EMBEDDED
COMPUTERS

SUNIL SHAH

This Masters Project Paper fulfills the Master of Engineering degree
requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: RAJA SENGUPTA/CIVIL AND
ENVIRONMENTAL ENGINEERING

!
!
2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: PIETER ABBEEL/ELECTRICAL
ENGINEERING AND COMPUTER SCIENCES

!

Abstract

In 2012 a federal mandate was imposed that required the FAA to integrate unmanned aerial
systems (UAS) into the national airspace (NAS) by 2015 for civilian and commercial use. A significant
driver for the increasing popularity of these systems is the rise in open hardware and open software
solutions which allow hobbyists to build small UAS at low cost and without specialist equipment.
This paper describes our work building, evaluating and improving performance of a vision-based
system running on an embedded computer onboard such a small UAS. This system utilises open
source software and open hardware to automatically land a multi-rotor UAS with high accuracy.
Using parallel computing techniques, our final implementation runs at the maximum possible rate of
30 frames per second. This demonstrates a valid approach for implementing other real-time vision
based systems onboard UAS using low power, small and economical embedded computers.

1 Introduction

To most, the rapid deployment of unmanned aerial systems (UAS) is inevitable. UAS are now vital to

military operations and, as the hobbyist multi-rotor movement takes off, the colloquialism drone has

become a frequent reference in popular culture. Hobbyists can buy vehicles off-the-shelf for less than a

thousand US dollars and fly them almost immediately out of the box.

Figure 1: UAS companies incorporated by year (own data).

In 2012, President Obama imposed a

federal mandate that the Federal Avi-

ation Administration (FAA) must pro-

pose rule changes to integrate UAS

into the National Airspace (NAS) by

2015 [15]; currently all non-military

and non-government flight is prohib-

ited. While the incumbent defense com-

panies are prepared for this approach-

ing rule change, many nascent busi-

nesses and established technology com-

panies are looking to gain a foothold in this market. In particular, there has been a dramatic growth

in the number of startups looking to provide UAS products and services (as shown in figure 1), as well

as previously unprecedented acquisitions of UAS businesses by technology behemoths like Google and

Facebook. Amazon recently made use of UAS for marketing purposes and has devoted an entire team

to researching their potential integration into their business. This growing commercial interest in the

use of UAS extends from applications such as precision agriculture [7] [21] to package delivery. Industry

association AUVSI predicts that integration of UAS will cause $82 billion of economic activity [4].

The rise in hobbyist interest in UAS has been driven by several factors: 1) the appearance of affordable

prototyping tools (such as the Arduino platform and 3D printers); 2) affordable sensors (such as the

1

accelerometers used in smartphones); and 3) growth in popularity of open source software. The growth in

recent years of online communities centred around hardware and software which facilitate interaction with

the physical world - for example, the Arduino platform, have made it possible for others to build robotics

applications on top of relatively stable and well understood hardware. DIYDrones, the foundation for

our industrial sponsor 3DRobotics’ business, is one of these. As an online community formed around

the creation of an Arduino-based open source autopilot called ArduPilot, DIYDrones has become a

force majeure. For just a few hundred dollars, a motivated hobbyist is now able to buy the necessary

intelligence to fly a model aircraft autonomously.

Unfortunately, the simple and economical design of these boards causes lacklustre performance. While

the ArduPilot project has moved on from the Arduino platform, their next generation autopilot, the

PixHawk, is still insufficient for complex processing tasks, running at a mere 168 MHz with just 256

kilobytes of memory [1]. While it is possible to write highly optimised code for this platform - it is time-

consuming for users looking to quickly prototype a sensing application. Additionally, the limited memory

available makes it infeasible to re-use open source libraries without significant manual manipulation

during installation.

This Master’s project, therefore, extends the concept of a ‘co-computer’ from the research of the

Cyber-Physically Cloud Computing lab in the Civil Systems department at UC Berkeley. Their research

typically involves integration of various subsystems to produce UAS suited for particular applications such

as the tracking of pedestrians or collaborative sensing. Their systems offload heavy sensor data processing

to a secondary co-computer [12], usually a much faster computer with a traditional x86 instruction set

processor. This design allows the UAS to compute advanced computer vision and robotics algorithms

onboard in real-time.

This approach is commonplace amongst the design of computational systems for complex robots. Stan-

ford’s DARPA Grand Challenge winner, the autonomous car Stanley, used six rack-mounted computers

which individually handled processing of various subsystems that carried out localisation, sensor fusion,

planning and other tasks [20]. It is almost certain that FAA certification of UAS for commercial flight

will be predicated on having redundant subsystems that allow the UAS to maintain control if higher

level functions fail.

Because of their specialist use cases, the computers traditionally used are often expensive and typically

cost over a thousand dollars at current prices. Furthermore, using processors intended for desktop use

requires larger and hence heavier cooling equipment, meaning that their weight and size renders them

infeasible as payload on hobbyist sized multi-rotor UAS. Furthermore, their power draw is significant at

between 60 to 80 watts.

2

This paper therefore concentrates on the increasingly prevalent open source ARM-based embedded

computers. We focus on the popular BeagleBone Black, a single core ARM Cortex A8 board that costs

just $45, and the Hardkernel Odroid XU, an octo-core ARM Cortex A15 board that costs $169 but is

considerably more powerful. Each of these boards draws less than 20 watts of power and is easily carried

on small multi-rotor aircraft.

We build and implement a vision-based automated landing system based on the work of Sharp, Shak-

ernia, and Sastry in 2001 [18]. We follow a similar approach to theirs but optimise for re-use of popular

open source projects such as OpenCV, a computer vision library and ROS, a middleware system to allow

a modular software architecture. We then focus on improving the performance of this system - by first

optimising the hotspots inherent in our algorithm, and then by utilising processor specific optimisations

and parallel computing techniques to maximise throughput.

Automated landing is an interesting problem with a very clear commercial application. If UAS are

to be used in urban environments for tasks such as package delivery, it is necessary for them to be able

to land accurately. The current state of the art relies upon localisation using GPS. Our testing using

the built-in return-to-launch mode yielded a mean accuracy of 195.33 cm, with a standard deviation

of 110.73 cm over 10 launches. While this may be sufficient for landing in an uninhabited field, it is

certainly not sufficient for landing in an inhabited area with spatial constraints.

The next section surveys the prior work in this area. Section 3 describes the design methodology and

the optimisations implemented. The results of our work and a discussion of these are outlined in section

4. Finally, section 5 covers concluding remarks.

2 Prior Work

This project draws upon prior work in two different disciplines. Firstly, we consider accurate vision based

landing of a UAS, for which there have been several published approaches.

For this project we work with vertical takeoff and landing (VTOL) multi-rotor UAS - since these are

the most popular type of UAS used by hobbyist users and nascent commercial entities. Multi-rotors

have become popular in the recent past; traditional approaches to automated landing of VTOL aircraft

are modelled on the automated landing of helicopters.

The automated landing problem was investigated in the research literature of the early 2000s. Sharp,

Shakernia, and Sastry [18] designed an approach for automatically landing an unmanned helicopter. Their

landing target uses a simple monochromatic design made up of several squares. Onboard the helicopter,

they use a pan-tilt-zoom camera and two embedded computers with Intel CPUs. They discuss the details

3

of their approach to pose estimation, but omit the details of the helicopter controller. Using a real-time

OS and highly optimised custom code, they are able to get their vision system to operate at a rate of 30

Hz.

Saripalli, Montgomery, and Sukhatme [17] designed another approach for automatically landing an

unmanned helicopter. They use a monochromatic H-shaped landing target. Their onboard vision system

detects this landing target and outputs the helicopter’s relative position with respect to it. This is sent

wirelessly to a behavior-based controller running on a ground station, which then directs the helicopter

to land on top of the target. They are able to run their controller at 10 Hz this way. They are also using

a high-accuracy differential GPS system, and it is not clear how much their differential GPS and vision

systems contribute to a successful landing.

Garcia-Pardo, Sukhatme, and Montgomery [6] look at a more general problem, where there is no

pre-specified landing target, and their helicopter has to search autonomously for a suitable clear area on

which to land.

The second discipline we draw upon is that of high performance embedded computing on reduced

instruction set computers, such as those implementing the ARM architecture. Several efforts have been

made to explore the effect of parallelising certain robotics applications but these typically involve the

use of general purpose computing on the GPU. This doesn’t translate well to embedded computers due

to the lack of vendor support for graphics chips that are provided. These chips often don’t support

heterogenous parallel programming languages, such as OpenCL or NVidia’s CUDA.

However, there are several efforts looking at optimising performance for ARM-based processors [9].

This is driven by growing smartphone usage, nearly all of which use ARM processor designs. Qualcomm,

in particular, provides an ARM-optimised computer vision library for Android called FastCV. While

this is optimised for their own series of processors, it does have generic ARM optimisations that are

manufacturer agnostic. Efforts have been made to explore OpenCV optimisation for real-time computer

vision applications too [13].

Finally, it should be noted that this project isn’t the first attempt to use an open source embedded

computer on a UAS. Many hobbyists experiment with these boards, as noted in the discussion threads

on DIYDrones.

A San Francisco based startup, Skycatch Inc., uses a BeagleBone Black to provide a custom runtime

environment. This allows their users to write applications on top of their custom designed UAS in

scripting language JavaScript. While the user friendliness of this approach is evident, it is also clear

that using a high level interpreted application results in a tremendous loss of performance which makes

it impossible to do all but the most basic of image processing in real-time. This implementation is also

4

closed source.

Other commercial entities, such as Cloud Cap Technologies, provide proprietary embedded computers

running highly customised computer vision software. However, these cost many thousands of dollars and

are difficult to hack, making them impractical for research and startup use.

Ultimately, this project’s contribution is to demonstrate the tools and techniques that can be used

to implement highly performant vision algorithms onboard a UAS using low-cost open source hardware

and open source software.

5

3 Method & Materials

The intention with this project was to re-use readily available hardware and software as much as possible.

Along those lines, we made the decision to use several open source libraries and, as previously mentioned,

two open source embedded computers.

While specific implementation details may only be covered briefly in this paper, detailed instructions,

notes and the full source code is available online under the GNU Lesser General Public License at

https://github.com/ssk2/drones-267.

3.1 Hardware Architecture

3.1.1 Autopilot

Testing was carried out with version 2.6 of 3DRobotics’ APM autopilot. This runs their open source

ArduCopter autopilot software for VTOL UAS. A full specification is available online [2]. Using a USB

cable, we are able to exact high level control of the aircraft using the MAVLink protocol, described

further in section 3.2.1.

3.1.2 Embedded Computer

Our vision system was implemented on two popular open hardware boards which are both community

designed and supported. Documentation is freely available and the boards themselves are produced by

non-profit entities.

We considered boards that could run the entire Linux operating system - for ease of setup and flexibility

in software installation. This immediately discounted the archetypical “Arduino” family of boards - since

these are not general purpose computers and cannot run a full installation of Linux. The alternatives

are primarily ARM processor based boards - for their low cost processors which have efficient power

utilisation [16].

Our first choice was the Beagleboard’s BeagleBone Black, a single core computer not dissimilar to

the Raspberry Pi, albeit with a faster processor. This quickly proved to be underpowered and we then

migrated to the faster, multi-core HardKernel Odroid XU. The specification for each of the boards we

used is outlined in table 1.

3.1.3 Peripheral Hardware

A considerable amount of research went into selecting and integrating low-cost embedded hardware. In

particular, it was necessary to trial several different wireless adaptors and USB hubs to find those that

6

https://github.com/ssk2/drones-267

Table 1: Summary of board specifications

Board BeagleBone Black Hardkernel Odroid XU

Processor AM335x 1GHz ARM Cortex-A8 Exynos5 Octa Cortex-A15 1.6Ghz
quad core and Cortex-A7 quad core
CPUs & Zynq-7000 Series Dual-core
ARM A9 CPU

Memory 512 MB 2 GB
Storage 2GB onboard & MicroSD e-MMC onboard (configurable)

Ports

USB 2.0 client USB 3.0 host x 1
USB 2.0 host USB 3.0 OTG x 1
Ethernet USB 2.0 host x 4
HDMI HDMI
2x 46 pin headers Ethernet

Cost $45 $169

had good driver support in Linux and provided enough power to peripheral devices (such as the camera).

Our architecture is shown in figure 2.

Due to hardware limitations, connecting a computer to the APM autopilot via USB turns off the

wireless telemetry that is natively provided. Therefore, it was necessary to set up and configure the

embedded computer as an ad-hoc wireless network to allow us to receive telemetry and debugging data

while testing.

Figure 2: Architecture of our automated landing system. We use inexpensive off-the-shelf hardware. The
laptop and remote control are for monitoring and emergency takeover by a human pilot. All
the computation is performed onboard the UAS.

7

3.1.4 Camera

Our testing rig and vehicle was equipped with a Logitech C920 USB web camera. This is a high end

consumer product that has higher than average optical acuity, good driver support on Linux and a global

shutter. (Cheaper web cameras use rolling shutters which allow increased low light sensitivity at the

cost of a slower shutter speed. This is acceptable when there is not significant motion in the frame but

unsuitable for this application.)

3.1.5 Integrating Co-computer

It was necessary to design a special rack to integrate the co-computer onto our UAS. Figure 3 shows our

design to allow for adequate ventilation and the requisite connections to power and the autopilot.

3.2 Software Design

3.2.1 Operating System and Library Setup

On each of these boards, we installed a supported (manufacturer supplied or recommended) variant of

Ubuntu Linux, ROS Hydro and OpenCV from source. Where possible, we enabled support for the ARM

specific NEON single instruction, multiple data extensions to increase performance [19].

In line with 3DRobotics’ open source ethos, we re-used existing libraries where possible. Substantial

progress has been made on the Robotics Operating System (ROS), a framework and set of libraries

that allow for a highly modular architecture with a natively supported robust publish/subscribe messag-

ing system [14]. ROS also provides simple scheduling mechanisms to let processing happen in an event

driven manner or at a fixed interval (e.g. 10Hz).

Using ROS allowed us to separate components into separate ROS nodes. While this makes it easier

to group similar code together, it will also make it trivial in the future to move individual nodes onto

heterogeneous boards connected by TCP/IP. Figure 4 shows how our code was modularised.

OpenCV, a computer vision library, is extremely popular and has considerable functionality relevant

to this project. It also supports Video4Linux, a project to support common video capture devices in

Linux. While other computer vision libraries exist, OpenCV is the most popular and hence is best

supported online [10].

Finally, we adapted roscopter, a compact ROS package that allows serial communication with de-

vices supporting the MAVLink protocol (a standardised protocol used for communication to and from

autonomous flight controllers or autopilots). This allows us to effect control over the autopilot from our

co-computer.

8

Figure 3: Our hardware stack fully assembled. Total
weight excluding batteries is 1.35 kg.

Figure 4: ROS nodes and topics for exchanging mes-
sages.

Programming Language Our choice of programming language was guided by framework support and

the need for performance when running on our boards. ROS has the most limited official support, having

bindings for just C++ and Python. Given the known poor performance of embedded Python on ARM

processors, our modules were implemented in C++.

3.3 Automated Landing

The implemented automated landing system was based on the pose estimation algorithm described by

Sharp et al. [18]. The following section describes our implementation of their approach and optimisations

to it.

3.3.1 Landing Pad Design

This particular algorithm requires the landing pad used for pose estimation to have a known pattern. In

this case, our design is a monochromatic design consisting of five squares within a sixth, larger, square.

The proportion of these squares to each other is known. For this pattern to be visible at higher altitudes,

it must be large. This causes issues at low altitude when the entire pattern cannot be captured within

the field of view of the camera. We discuss workarounds to this in section 4.2.2. Figure 5 shows our

landing pad and corner detection in action.

3.3.2 Vision Algorithm Overview

The overall structure of our vision algorithm is shown in figure 6.

Corner Detection As a first step, we detect the corners of the landing platform in an image, shown

visually in figure 7:

9

Figure 5: Left: Design of our landing platform. Right: Output of the corner detector (24 points, in
order).

1. Median Blur, Canny Edge Detection Denoise the image using a 3x3 median filter, and pass

it through the Canny edge detector.

2. Find Contours Identify contours and establish a tree-structured hierarchy among them.

3. Approximate Polygons Discard contours which are not four-sided convex polygons and which

have an area less than an experimentally determined threshold value. We look for four-sided

polygons and not specifically for squares, since they will not appear as squares under perspective

projection.

4. Get Index Of Outer Square Using the contour hierarchy, determine a contour which contains 6

other contours. This contour represents the boundary of our landing platform. Store coordinates

of the corners of these 6 inner contours.

5. Label Polygons Label the largest of the 6 polygons as ‘A’ and the farthest one from ‘A’ as ‘D’.

Label polygons as ‘B’, ‘C’, ‘E’ and ‘F’ based on their orientation and distance relative to the vector

formed by joining centers of ‘A’ and ‘D’.

6. Label Corners For each polygon, label corners in anti-clockwise order.

Pose Estimation We define the origin of the world coordinate frame to be the center of the landing

platform, such that all points on the landing platform have a Z coordinate of zero. The corner detector

gives us image coordinates for the 24 corners. Thus, we have a set of 24 point correspondences between

world coordinates and image coordinates. Given this input, we want to compute the quadcopter’s pose,

i.e. the position and orientation of the camera in the world coordinate frame. To do this, we followed the

approach of Sharp et al. [18], whose details are omitted here for brevity. We use SVD to approximately

solve a linear system of 48 equations with 6 degrees of freedom.

10

Figure 6
Figure 7

The output from the pose estimator is a translation vector t =

[
tx ty tz

]⊤
and a 3x3 rotation

matrix R. We compute the camera position in world coordinates as C = −R⊤t, and the yaw angle as

α = arctan(R21/R11). (The roll and pitch angles can be computed similarly, but we do not require them

in the control algorithm.)

The approach above assumes a calibrated pinhole camera. For the pose estimates to be meaningful,

our camera had to be calibrated first. We calibrated our camera using the camera calibration tool

provided in the OpenCV tutorials, plus some manual tuning. We used the resulting calibration matrix

to convert the raw pixel coordinates into coordinates for a calibrated pinhole camera model, which we

then fed into the equations above.

3.3.3 Real-time Control

In order to actually land a vehicle using these pose estimates, it was necessary to implement a high-level

controller which worked in conjunction with the autopilot’s own stabilisation modes.

Our controller takes the form of a state machine, illustrated in Figure 8. The UAV starts out in

the FLYING state. When landing is desired, it switches into the SEEK HOME state. This uses the

autopilot’s return-to-launch mode to bring the UAV close to the original takeoff location, using GPS.

When the landing platform becomes visible, the UAV switches into the LAND HIGH state. Here we

use our vision-based pose estimates with a simple proportional controller to guide the UAV towards

the landing platform. (The error terms in our controller are given as x, y, z, and yaw deviations. The

controller descends at a fixed rate, using the z deviation only as an estimate of the altitude.) When the

UAV reaches a predefined altitude (where pose estimates are no longer possible, due to limited field of

11

view), our controller enters the LAND LOW state, and descends slowly by dead reckoning. When the

barometric pressure sensor indicates that the UAV has reached the ground, the controller switches into

the POWER OFF state.

Figure 8: State diagram of our landing
controller.

Due to the interface provided by roscopter, our control

input consists of the raw pulse width modulation (PWM)

values that would typically be read from the human pilot’s

radio-control receiver. For instance, a value of 900 repre-

sents no throttle, whereas 1800 represents full throttle. By

overriding these values, we can simulate human control input

from our controller. This crude approach is obviously lim-

ited - a better approach would be to extend the MAVLink

protocol with a new message type to allow for error values to

be sent directly into the inner control loop of the autopilot.

3.3.4 Optimisation Techniques

Our initial implementation operated at less than 3 Hz (i.e. it

calculated pose estimates less than 3 times a second). This

is far too poor for real-time control. The control loop of our

autopilot operates at 10 Hz, taking sensor input from the

GPS sensor at a rate of 5 Hz. In order to precisely control

the UAS, it is necessary to optimise our solution significantly

such that it provides us with estimates at least at 5 Hz. The

following optimisation methods described are nearly all applicable to other vision based systems.

Identifying Hotspots A full outline of our benchmarking technique is described in section 4.3.1. At

each stage of optimisation, we ran the pose estimation implementation through the same set of tests to

identify hotspots - areas which took the majority of processing time. Figure 9 shows hotspots inherent

in our overall process and figure 10 shows hotspots within the “Detect Corners” subroutine.

Removing Redundancy An obvious optimisation to our initial approach was to identify function calls

and substeps that were unnecessary. Through benchmarking, we attempted to remove or reduce the

impact of calls which were taking a significant amount of processing time. At each stage, we ensured

that robustness to image quality was retained by testing against approximately 6,000 images captured

in the lab and in the air.

12

Figure 9
Figure 10

Compiler Optimisations gcc and other compilers offer a myriad of optional performance optimisations.

For example, they offer user specified flags that cause the generated executable file to be optimised for

a certain instruction set. When compiling libraries such as OpenCV for an embedded computer, it is

typical to cross-compile; compilation on embedded computers typically takes many times longer. Cross-

compilation is when compilation happens on a more powerful compilation computer that has available

to it a compiler for the target architecture. In our case, compilation was on a quad-core x86 computer

for an ARM target architecture. At this stage, it is possible to pass certain parameters to the compiler

that permit it to use ARM NEON instructions in the generated binary code.

NEON is an “advanced SIMD instruction set” introduced in the ARMv7 architecture - the basis for

all modern ARM processors. Single instruction, multiple data (SIMD) instructions are data parallel

instructions that allow a single operation to be performed in parallel on two more operands. While the

compiler has to be conservative in how it utilises these in the generated binary code so that correctness

is guaranteed, these allow some performance gain.

Additionally, library providers may implement optional code paths that are enabled when explicitly

compiling for an ARM target architecture. For instance, the OpenCV maintainers have several functions

that have optional NEON instructions implemented. This also results in a performance boost.

Library Optimisations OpenCV utilises other libraries to perform fundamental functions such as image

format parsing and multi-threading. For core functions, such as parsing of image formats, a standard

library is included and used. For advanced functions, support is optional and so these are disabled by

default.

13

We experimented with enabling multithreading functionality by compiling OpenCV with Intel’s Thread

Building Blocks library. This is a library that provides a multi-threading abstraction and for which

support is available in select OpenCV functions [3].

Secondly, we re-compiled OpenCV replacing the default JPEG parsing library, libjpeg, with a per-

formance optimised variant called libjpeg-turbo. This claims to be 2.1 to 5.3x faster than the standard

library [8] and has ARM optimised code paths. Using this, it is possible to capture images at 30 frames

per second on the BeagleBone Black [5].

Note also that we were unable to use the Intel Integrated Performance Primitives (IPP) library. IPP is

the primary method of compiling a high performance version of OpenCV. However, it accomplishes this

by utilising significant customisation for x86 processors that implement instruction sets only available

on desktop computers (e.g. Streaming SIMD Extensions (SSE), Advanced Vector Extensions (AVX)).

Disabling CPU Scaling Modern embedded computers typically use some sort of aggressive CPU scaling

in order to minimise power consumption through an ‘ondemand’ governor [11]. This is beneficial for

consumer applications where battery life is a significant concern and commercial feature.

However, for a real-time application such as this, CPU scaling is undesirable since it introduces a

very slight latency as load increases and the CPU frequency is increased by the governor. This is more

desirable still in architectures such as the big.LITTLE architecture used on the Odroid XU which actually

switches automatically between a low-power optimised processor and a performance optimised processor

as load increases.

This can be mitigated by manually setting the governor to the ‘performance’ setting. This effectively

disables frequency scaling and forces the board to run at maximum clock speed.

Use of SIMD Instructions As mentioned previously, modern ARM processors implement the NEON

SIMD instruction set. Compilers such as gcc make instruction set specific SIMD instructions available to

the programmer through additional instructions called intrinsics. Intrinsics essentially wrap calls to the

underlying SIMD instruction. Using intrinsics, it is possible to exploit data parallelism in our own code,

essentially rewriting higher level, non-parallel, function calls with low level function calls that operate

on multiple data simultaneously. This approach is laborious and is therefore used sparingly. It can,

however, yield significant performance improvements [9].

Use of Multi-threading Multi-threading is a promising approach. Certain library functions may inher-

ently exploit multi-threading and there is a slight benefit to a single-threaded process to having multiple

cores (the operating system will balance processes across cores). However, our single-threaded imple-

14

mentation still gains little performance from having multiple cores available - many of which were not

occupied with useful work. Our multi-threaded implementation separates out the Capture step from

the latter Detect Corners, Calibrate Image Points and Estimate Pose steps as shown in figure 11.

This is accomplished by creating a pool of worker threads (the exact quantity of threads is configurable

- generally 1 for every available core). Each time an image is captured, it is dispatched to the next

free thread in a round-robin fashion. Work is distributed evenly across threads and, since each thread

finishes computation of images in a similar time, pose estimates are published to the \simplePose topic

in order of image acquisition. This approach is essentially what is commonly known as pipelining, each

thread can be considered a pipeline, allowing concurrent processing of an image while the master thread

captures the next image. Figure 12 shows how frames are processed for a single threaded process above

that for a pipelined multi-threaded process.

We use the POSIX thread (pthread) libraries to assist with thread creation and management.

Figure 11

Figure 12

15

4 Discussion & Results

4.1 Accuracy

As mentioned previously, we experimentally determined the mean accuracy of GPS-based landing to be

195.33 cm away from the takeoff position. We verified the accuracy of our pose estimation implementation

using a test rig in our lab. The camera was held above the centre of the landing pad and the true measured

x, y and z were compared to those reported by the pose estimator.

Additionally, we also measured the standard deviation over multiple measurements at the same scene.

Table 2 shows these results. There is a small (1.4% relative) systematic overestimation of the true height.

This can be corrected by performing a more precise calibration.

The height estimate is very stable at these heights (small standard deviation). The x and y estimates

are also fairly accurate, although the error in these estimates is an order of magnitude greater than the

lower bound. This is consistent with the fact that there is some noise in the corner detection, and the

pose estimator finds an approximate solution. A possible solution around excessive noise in the pose

estimates would be to incorporate a Kalman filter.

true height z mean z std x bound x std y bound y std yaw std
88 cm 89.3 cm 0.05 cm 0.19 cm 0.43 cm 0.14 cm 0.39 cm 0.12 ◦

120 cm 121.1 cm 0.08 cm 0.26 cm 1.16 cm 0.19 cm 1.06 cm 0.12 ◦

170 cm 172.0 cm 0.18 cm 0.37 cm 2.74 cm 0.27 cm 2.17 cm 0.07 ◦

226 cm 229.0 cm 0.54 cm 0.49 cm 6.51 cm 0.36 cm 6.05 cm 0.34 ◦

Table 2: Accuracy of our pose estimates. “x bound” and “y bound” are lower bounds for the error on x
and y, given by the limited image resolution.

4.2 Other Challenges

4.2.1 Motion Blur

Despite choosing a high end web camera, the sensor was still sensitive to low-light situations. Under

lower-light conditions, such as a cloudy day, the captured images would suffer from motion blur, as shown

in figure 13. Blurry images would cause pose estimation to fail.

A potential way to mitigate this is to use a lit landing pattern along with a fixed exposure time. While

we have built a landing pattern using red LEDs, the specific camera used did not support a programmatic

way to manipulate the shutter speed and so this approach did not work.

4.2.2 Field Of View

16

Figure 13: An image where pose estimation fails.

We measured our camera’s field of view to 69◦

on the long side and 42◦ on the short side. This

means that at a height of one meter, we see an

area of 1.37 m by 0.77 m on the ground. Our

landing platform is about 0.76 m by 0.76 m. This

means that at a height of one meter, the UAV has

to be exactly above the landing pad in order to

see all of it; pose estimates can be calculated only

if the entire landing pad is visible. Since the UAV

is rarely exactly above the landing platform, the

limited field of view is also a problem at heights

above one meter.

The controller should switch to the LAND LOW state when below a height at which it was able

to calculate pose estimates. However, this was suboptimal: 1) ground effects made the motion of the

aircraft very unstable when hovering close to the ground and it would drift significantly as it lowered;

and 2) the drift in altitude estimates provided by the barometric pressure sensor made it difficult to tell

when to POWER OFF.

In order to mitigate these issues, we modified our original code and built a smaller landing pad. While

this requires the UAS to be closer (at a maximum height of 3 metres) to start receiving pose estimates, it

means the camera can see the entire pad until it is 50 centimeters from the ground. (This is considerably

better than the approximately 2 meter altitude where pose estimates would cut off for the larger pad.)

4.2.3 Control

While this project was not explicitly focussed on the control aspects, our control algorithm was necessary

to demonstrate that this approach is technically viable. Unfortunately, windy conditions when testing

combined with slow performance meant that the UAS was unable to maintain a steady position and

instead drifted signficantly as gusts of wind presented themselves.

Extending our proportional controller to a full PID controller would provide more aggressive control

and would perform better under these conditions. However, this approach would still rely on passing

raw PWM values to the autopilot via roscopter.

The most optimal approach would be to extend the MAVLink protocol such that only error values are

sent to the inner control loop of the autopilot. These error values would then be presented to the core

PID loop maintaining stability and as such, it would reduce the need for an extra control loop and hence

17

make redundant the extra level of indirection and corresponding tuning.

4.3 Performance

A considerable amount of effort went into optimising performance of this vision system when run on

an embedded ARM computer. The following section describes the methods used to benchmark various

implementations, what the maximum performance attainable is and what results we gained.

4.3.1 Benchmarking Methodology

Environment The large fixed size landing pad was used a fixed distance of approximately 1.5 meters

from the web camera. All tests were performed indoors in a room without windows and with a constant

lighting level produced by a fluorescent tube light. No other user space processes were running on each

computer aside from roscore and the pose estimator process itself.

Timing Data Each implementation was benchmarked using calls to C++’s gettimeofday function. For

each implementation we profiled the amount of time taken for various calls within our pose estimation

routine over 20 frames. For each test, we discarded the first 20 frame chunk since this is when the camera

automatically adjusts exposure and focus settings. This data was collected for 10 arbitrary 20 frame

chunks and averaged to provide overall figures.

4.3.2 Maximum Performance

The Logitech C920 web camera we are using captures frames at a 640 x 480 pixel resolution at a maximum

of 30 frames per second. It would be impossible to operate any quicker than the camera is capable of

delivering frames and therefore the upper bound for performance is 30 Hz.

Board BeagleBone Odroid

No computation 29.57 29.65
Basic decoding using OpenCV 18.69 24.60

Table 3: Baseline FPS for the BeagleBone and Odroid boards.

Using the framegrabber.c application provided in [5], it was possible to evaluate what the maximum

single threaded performance could be, assuming basic decoding of image frame using OpenCV and no

other computation. Table 3 shows the results of this benchmark. We see that the BeagleBone performs

at 75% of the speed of the Odroid - which is intuitively correct, given the slower clock speed of the

BeagleBone’s processor and the fact that it has just a single core - some amount of its load will be used

by operating system tasks that can be scheduled on other cores on the Odroid.

18

4.3.3 Performance of Naive Implementation

To begin with, we benchmarked our naive implementation with no optimisations on both boards and

a desktop computer with a quad-core Intel Core i5 processor. This showed an obvious discrepancy in

performance, with average FPS for each shown in table 4.

Board Pad visible
no yes

BeagleBone 2.94 3.01
Desktop 30.04 29.97
Odroid 8.80 8.93

Table 4: Naive implementation: average FPS for the BeagleBone, Odroid and a desktop computer.

The desktop computer has no issue running at the maximum 30 FPS but both the BeagleBone and

Odroid fail to give the necessary 10 Hz required for real-time control (as described in section 3.3.4).

There is a slight but obvious discrepancy between performance when the pad is in view and when the

pad is not which only appears to manifest itself on the two ARM boards (the BeagleBone and Odroid).

By profiling the steps of detect corners, the first four of which are shown for the Odroid in table 5, we

can begin to see why. Canny edge detection and finding contours takes very slightly longer on both

boards when there is no pad in view. Intuitively this is because when the pad is in view, it occludes a

significant part of the image. The pad is constructed of very simple quadrilaterals that are atypical of

the many small heterogeneous shapes that a normal frame is composed of. For the remaining tests the

figures represent performance when the pad is in view.

Pad Median Blur Canny Find Contours Approximate Polygons (1)

No 0.054 0.039 0.003 0.001
Yes 0.054 0.038 0.002 0.001

Table 5: Naive implementation: breakdown of first four steps of Detect Corners with and without a
frame in view for Odroid (similar results for BeagleBone).

Figure 14 show a breakdown of the naive implementation of the overall algorithm on all three of our

boards. It is clear that the majority of time is spent in the Capture and Detect Corners stages. Video

capture is handled by an OpenCV function so we are unable to easily profile that. However, figure 15

shows a breakdown of time spent in the Detect Corners subroutine. Again, here, it is clear that two calls

to Median Blur and Canny contribute the majority of processing time.

19

Figure 14: Naive implementation:
breakdown of overall algorithm

Figure 15: Naive implementation:
breakdown of Detect Corners

20

4.3.4 Performance of Naive Implementation with Optimised Libraries

The next stage of optimisation was to adapt the libraries used onboard. OpenCV was the primary focus

and we did three things, as described in 3.3.4:

1. Cross compile with NEON code generation enabled

2. Cross compile with NEON code generation and Thread Building Blocks (TBB) support enabled

3. Cross compile with NEON code generation, TBB support and libjpeg-turbo support enabled

Table 6 shows the improvement in average FPS for each adaptation. We get overall a 10% gain in

performance over the standard library. Note that the addition of Thread Building Blocks does very little

for performance because the OpenCV functions used were not optimised to use it.

Board Standard NEON NEON+TBB NEON+TBB+libjpeg-turbo

BeagleBone 2.91 2.84 2.98 3.20
Odroid 8.93 9.60 9.60 9.90

Table 6: Naive implementation with optimised libraries: average FPS for the BeagleBone and Odroid
with various library optimisations.

Figure 16 shows how the time taken for steps in the overall algorithm changes with each adaptation.

Compiling for the NEON architecture causes consistent gains across each procedure while using libjpeg-

turbo specifically optimises the Capture step. This can be explained by the fact that the Capture is

frame data encoded in Motion-JPEG from the web camera into the Mat object OpenCV uses internally.

Figure 16: Naive implementation with optimised libraries: breakdown of overall algorithm for Odroid
(similar results for BeagleBone).

21

4.3.5 Performance of Single-threaded Optimised Implementation

Our first optimisation to the code itself was to remove redundant calls and to minimise computation

whereever possible. It turns out that the Median Blur step within the Detect Corners subroutine was

unnecessary. Furthermore, some of our loops used to detect polygons would operate on all contours

detected and not just those of interest. This led to extra unnecessary computation.

Figure 17 shows how the time taken by each stage of Detect Corners before and after this change.

Table 7 shows the performance improvement of approximately 60% when run on the BeagleBone and

120% when run on the Odroid.

Board Optimised Libraries Optimised Single Threaded

BeagleBone 3.20 5.08
Odroid 9.90 21.58

Table 7: Single-thread optimised implementation: average FPS for the BeagleBone and Odroid

Figure 17: Single-thread optimised implementation: breakdown of Detect Corners for Odroid (similar
results for BeagleBone).

22

4.3.6 Performance of Multi-threaded Optimised Implementation

The next optimisation implemented was pipelining by using multiple threads. Profiling data was collected

for 1, 2, 4 and 8 threads and compared to the baseline single-threaded optimised version.

Figures 18 and 19 shows this for the BeagleBone and Odroid respectively. Performance suffers signifi-

cantly on the BeagleBone, a single core board, as context switching causes extra overhead. This context

switching is visible when using a single thread on the Odroid (because of context switching between the

master thread and the single worker thread) but the performance benefit becomes clear as additional

threads are introduced.

2 threads appears sufficient to get us to almost 30 frames per second - with the occasional frame not

getting processed due to fully loaded worker threads. With 3 or more worker threads, no frame gets lost.

Figure 18: Multi-thread optimised implementation:
average FPS for BeagleBone for different
numbers of threads

Figure 19: Multi-thread optimised implementation:
average FPS for Odroid for different num-
bers of threads

Table 8 shows the 1 minute average system load (also known as the number of waiting processes)

reported by Linux as additional threads are added when running on the Odroid. This does not increase

significantly beyond 2 threads, validating the earlier point that 2 threads is sufficient to carry out nearly

all of the computation.

23

Threads System Load

1 0.59
2 1.10
4 1.17
8 1.20

Table 8: Multi-thread optimised implementation: 1 minute average system load for Odroid for different
numbers of threads

24

4.3.7 Performance of Single-threaded Optimised Implementation (2)

When it became clear that our initial single-threaded optimised implementation was not working quickly

enough on the BeagleBone and when multi-threading failed to work, we re-visited the single-threaded

approach and looked for alternative approaches to computation.

By replacing Canny Edge Detection by adaptive thresholding, we were able to improve the performance

of our single-threaded implementation further to almost 6 FPS on the BeagleBone and to the maximum

30 FPS on the Odroid. The pose estimation results remain correct.

Table 9 shows the improvement in FPS over our original single-threaded optimised implementation.

Board Optimised Single Threaded Optimised Single Threaded (2)

BeagleBone 5.08 5.97
Odroid 21.58 30.19

Table 9: Single-thread optimised implementation (2): average FPS for the BeagleBone and Odroid

Figure 20 shows that the majority of the speed increase came from the reduction in time taken by the

Canny Edge Detection step. There was also a corresponding time saving during the Find Contours step

- presumably because thresholding is actually a more selective preprocessing method than Canny edge

detection.

Figure 20: Single-thread optimised implementation 2: breakdown of Detect Corners for Odroid (similar
results for BeagleBone).

25

4.3.8 Performance Summary

Figures 21 and 22 show the increase in average FPS for each of the implementations as various optimi-

sations were added. Our best performance was just under 6 FPS for the BeagleBone and at the full 30

FPS for the Odroid. Figure 23 shows the difference in processing time for each frame in Detect Corners

from the naive implementation to the optimised single threaded version. Notice that our optimisations

made a proportionally greater difference on the Odroid than the BeagleBone.

Figure 21: All implementations:
average FPS for BeagleBone

Figure 22: All implementations:
average FPS for Odroid

Figure 23: Naive to optimised implementation: breakdown of Detect Corners for BeagleBone and Odroid.

26

5 Conclusions & Future Work

In 2011, Sharp et al [18] reported results of 30 FPS while running this pose estimation algorithm. They

used highly optimised custom C code running on a much slower board and took significantly more time

to implement their algorithm. They made several optimisations which we have yet to explore, involving

running computationally intense steps of their pose estimation algorithm on lower resolution images to

provide approximate solutions for the larger resolution image.

While we were unable to achieve this result on the lower cost BeagleBone, we were able to get perfor-

mance that may be sufficient for some basic applications in situations which are less dynamic and do not

necessarily require an update rate of 10Hz. Using the Odroid we were able to prototype and implement

their approach at the maximum possible frame rate with plenty of system capacity to spare.

This suggests that it is now feasible for advanced robotics applications to run onboard using a multi-

core embedded computer. Additionally, our development time was significantly quicker - we were able

to implement their approach in months as opposed to years. This is a promising result.

Thus a hybrid approach is suggested. One can prototype a new application quickly using open source

libraries but some manual optimisation is required to gain peak performance. Since multi-core systems

are quickly becoming the norm, implementing multi-threading should provide significant speedups for

most vision processing tasks.

6 Acknowledgements

Without the generous support of 3DRobotics and advice from Brandon Basso, this project would not have

been possible. Additionally, several other graduate students collaborated on and contributed extensively

to this project: Constantin Berzan, Nahush Bhanage, Gita Dombrowski and Hoang Nguyen.

27

References

[1] 3DRobotics. 3DR Pixhawk. [Online]. 2014. url: https://store.3drobotics.com/products/3dr-

pixhawk.

[2] 3DRobotics. APM 2.6 Set. [Online]. 2013. url: http://store.3drobotics.com/products/apm-

2-6-kit-1.

[3] OpenCV Adventure. Parallelizing Loops with Intel Thread Building Blocks. [Online]. 2011. url:

http://experienceopencv.blogspot.com/2011/07/parallelizing- loops- with- intel-

thread.html.

[4] AUVSI. The Economic Impact of Unmanned Aircraft Systems Integration in the United States.

[Online]. 2013. url: http://www.auvsi.org/econreport.

[5] Michael Darling. How to Achieve 30 fps with BeagleBone Black, OpenCV, and Logitech C920

Webcam. [Online]. 2013. url: http://blog.lemoneerlabs.com/3rdParty/Darling_BBB_30fps_

DRAFT.html.

[6] Pedro J Garcia-Pardo, Gaurav S Sukhatme, and James F Montgomery. “Towards vision-based

safe landing for an autonomous helicopter”. In: Robotics and Autonomous Systems 38.1 (2002),

pp. 19–29.

[7] Stanley R Herwitz et al. “Precision agriculture as a commercial application for solar-powered un-

manned aerial vehicles”. In: AIAA 1st Technical Conference and Workshop on Unmanned Aerospace

Vehicles. 2002.

[8] libjpeg-turbo. Performance. [Online]. 2013. url: http://www.libjpeg- turbo.org/About/

Performance.

[9] Gaurav Mitra et al. “Use of SIMD vector operations to accelerate application code performance

on low-powered ARM and Intel platforms”. In: Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE. 2013, pp. 1107–1116.

[10] Stack Overflow. What is the best library for computer vision in C/C++? [Online]. 2009. url:

http://stackoverflow.com/questions/66722/what-is-the-best-library-for-computer-

vision-in-c-c.

[11] Venkatesh Pallipadi and Alexey Starikovskiy. “The ondemand governor”. In: Proceedings of the

Linux Symposium. Vol. 2. sn. 2006, pp. 215–230.

[12] E. Pereira, R. Sengupta, and K. Hedrick. “The C3UV Testbed for Collaborative Control and

Information Acquisition Using UAVs”. In: American Control Conference. AACC. 2013.

28

https://store.3drobotics.com/products/3dr-pixhawk
https://store.3drobotics.com/products/3dr-pixhawk
http://store.3drobotics.com/products/apm-2-6-kit-1
http://store.3drobotics.com/products/apm-2-6-kit-1
http://experienceopencv.blogspot.com/2011/07/parallelizing-loops-with-intel-thread.html
http://experienceopencv.blogspot.com/2011/07/parallelizing-loops-with-intel-thread.html
http://www.auvsi.org/econreport
http://blog.lemoneerlabs.com/3rdParty/Darling_BBB_30fps_DRAFT.html
http://blog.lemoneerlabs.com/3rdParty/Darling_BBB_30fps_DRAFT.html
http://www.libjpeg-turbo.org/About/Performance
http://www.libjpeg-turbo.org/About/Performance
http://stackoverflow.com/questions/66722/what-is-the-best-library-for-computer-vision-in-c-c
http://stackoverflow.com/questions/66722/what-is-the-best-library-for-computer-vision-in-c-c

[13] Kari Pulli et al. “Real-time computer vision with OpenCV”. In: Communications of the ACM 55.6

(2012), pp. 61–69.

[14] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA workshop on

open source software. Vol. 3. 3.2. 2009.

[15] John L. Rep. Mica et al. “FAA Modernization and Reform Act of 2012”. In: (2012).

[16] Katie Roberts-Hoffman and Pawankumar Hegde. “ARM cortex-a8 vs. intel atom: Architectural

and benchmark comparisons”. In: Dallas: University of Texas at Dallas (2009).

[17] Srikanth Saripalli, James F Montgomery, and Gaurav S Sukhatme. “Vision-based autonomous

landing of an unmanned aerial vehicle”. In: IEEE International Conference on Robotics and Au-

tomation. Vol. 3. IEEE. 2002, pp. 2799–2804.

[18] Courtney S. Sharp, Omid Shakernia, and Shankar Sastry. “A Vision System for Landing an Un-

manned Aerial Vehicle.” In: IEEE International Conference on Robotics and Automation. IEEE,

2001, pp. 1720–1727.

[19] Eric Stotzer et al. “OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip”. In:

OpenMP in the Era of Low Power Devices and Accelerators. Springer, 2013, pp. 114–127.

[20] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”. In: Journal

of field Robotics 23.9 (2006), pp. 661–692.

[21] Chunhua Zhang and John M Kovacs. “The application of small unmanned aerial systems for

precision agriculture: a review”. In: Precision agriculture 13.6 (2012), pp. 693–712.

29

	Introduction
	Prior Work
	Method & Materials
	Hardware Architecture
	Autopilot
	Embedded Computer
	Peripheral Hardware
	Camera
	Integrating Co-computer

	Software Design
	Operating System and Library Setup

	Automated Landing
	Landing Pad Design
	Vision Algorithm Overview
	Real-time Control
	Optimisation Techniques

	Discussion & Results
	Accuracy
	Other Challenges
	Motion Blur
	Field Of View
	Control

	Performance
	Benchmarking Methodology
	Maximum Performance
	Performance of Naive Implementation
	Performance of Naive Implementation with Optimised Libraries
	Performance of Single-threaded Optimised Implementation
	Performance of Multi-threaded Optimised Implementation
	Performance of Single-threaded Optimised Implementation (2)
	Performance Summary

	Conclusions & Future Work
	Acknowledgements

