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Abstract

Formal Modeling and Verification of CloudProxy

by

Wei Yang Tan

Master of Science in Computer Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Services running in the cloud face threats from several parties, including malicious clients,
administrators, and external attackers. CloudProxy is a recently-proposed framework for se-
cure deployment of cloud applications. In this thesis, we present the first formal model
of CloudProxy, including a formal specification of desired security properties. We model
CloudProxy as a transition system in the UCLID modeling language, using term-level ab-
straction. Our formal specification includes both safety and non-interference properties. We
use induction to prove these properties, employing a back-end SMT-based verification en-
gine. Further, we structure our proof as an “assurance case”, showing how we decompose
the proof into various lemmas, and listing all assumptions and axioms employed. We also
perform some limited model validation to gain assurance that the formal model correctly
captures behaviors of the implementation.
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Chapter 1

Introduction

With computation steadily shifting to the cloud, security in cloud computing has become a
concern. Providers of Infrastructure as a Service (IaaS) lease data center resources (proces-
sors, disk storage, etc.) to mutually non-trusting users. While IaaS providers use virtualiza-
tion to isolate users on a physical machine, even if the virtualization software is assumed to
be secure, a malicious user may still exploit misconfigurations or vulnerabilities in manage-
ment software to gain complete control over data center networks and machines. Moreover, a
malicious data center administrator can steal or tamper with unprotected disk storage. This
can be catastrophic because applications may save persistent secrets (for example databases,
cryptographic keys) and virtual machine images (containing trusted program binaries) to
disk. These threats are a challenge for deploying security-critical services to the cloud.

CloudProxy [20] is a framework that is recently proposed for secure deployment of cloud
applications on commodity data center hardware. It implements a trusted service that is
available via an API to applications to

1. Protect confidentiality and integrity of secrets stored on secondary storage;

2. Cryptographically prove that they are running unmodified programs, and

3. Securely communicate with other applications over untrusted networks.

In this thesis, we consider the problem of formal specification and verification of Cloud-
Proxy. Through formal verification, we aim to achieve higher assurance in CloudProxy for
industrial adoption. Our first challenge is formulate security properties for a detailed model
of CloudProxy. We construct an assurance case [22] that decomposes our proof into several
axioms and assumptions about our trusted computing base, as well as lemmas that must be
proved. This assurance case argues that our set of lemmas is complete — under our docu-
mented assumptions, our lemmas imply the high-level security goals outlined by the authors
of CloudProxy [20]. Among many other lemmas, we prove that CloudProxy does not leak
information between mutually non-trusting applications, or allow applications to interfere
with each other via the CloudProxy API. In formalizing these lemmas, we use well-known
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characterizations of non-inteference [10] and semantic information flow [19]. Finally, we build
a detailed term-level [6] model of CloudProxy, and prove these properties using Satisfiability
Modulo Theories (SMT) solver.

Term-level abstraction is a modeling technique which data is represented using symbolic
terms, and precise functionality is abstracted away with uninterpreted functions [5, 6]. This
is useful for our work because in several instances, we need to deal with data of arbitrary
length (for example modeling binaries and data for encryption). Moreover, we can efficiently
abstract cryptographic functions using uninterpreted functions, since we are not reasoning
about the strength of the cryptographic primitives.

The SMT problem is a decision problem over first-order logic with (typically) background
theories such as theory of equality and arrays [5, 4]. As compared to boolean satisfiability
problem (SAT), SMT allows greater expressiveness through the use of first-order logic. This
enables us to prove our properties on term-level models.

The structure of this thesis is as follows: first we give an overview of CloudProxy. Then
we describe our argument through assurance case to derive the security properties, the
assumptions, as well as the lemmas. Next, we give a brief description of the CloudProxy
model. Lastly we elaborate on the security properties that we have formulated and how we
perform verification on the model.

1.1 Summary of Contributions

The primary contributions of this thesis include:

• a formal model of CloudProxy (Chapter 4)

• an assurance case for systematically decomposing our proof into a set of assumptions
made by CloudProxy, and properties that must be proved on the model (Chapter 3)

• a semi-automatic, machine-checked proof of our properties on the formal model (Chap-
ter 5)

We begin in Chapter 2 with a brief description of CloudProxy.

1.2 Related Work

There has been some use of formal methods for building trustworthy cloud infrastructure.
CertiKOS [12] is a verified hypervisor architecture that ensures correct information flow
between different guest users. They use a compositional proof technique to decompose their
proof into individual lemmas that can be proved using different proof engines. On that note,
Klein et al. [17] provide a machine-checked verification of the seL4 microkernel in Isabelle.
These efforts are especially interesting since CloudProxy relies on a trusted OS/Hypervisor
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layer. While both efforts use interactive theorem proving for building machine checked
proofs, we use a more automated methodology based on model checking.

Our work builds upon several notions of secure computation proposed in literature. For
instance, we find applications of non-interference proposed by Goguen and Meseguer [10].
We also use the notion of semantic information flow proposed by Joshi et al [19].

Assurance cases have been applied in practice to present the support for claims about
properties or behaviors of a system. [1] presents safety cases (a slight variant of assurance
case) for safety critical systems such as military systems. Shankar et al. [24] use Evidential
Tool Bus to construct claims, and to integrate different formal tools to provide evidence for
each claim.
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Chapter 2

Overview of CloudProxy

CloudProxy is a software framework that implements secure, distributed, cloud-based ser-
vices. It is implemented as a stack of layers: the Trusted Hardware (TrHW), the Trusted
Hypervisor (TrHV), the Trusted Operating System (TrOS), and applications running on top
of TrOS. The Tao is part of the CloudProxy framework that enables recursive TrHW, TrHV
and TrOS form part of the trusted computing base for an application. Each layer consists of
a hosted system with CloudProxy services provided by a host; for example, the TrHW is the
host for the TrHV, and TrHV is the hosted system of TrHW. We label these applications as
CloudProxy applications or activity elements, and together they form an activity. An activ-
ity is an instance of a distributed computation executing on behalf of some activity owner.
These CloudProxy applications use the services of CloudProxy to protect their secrets.

In this chapter, we will first look at the threat model CloudProxy defends against (Section
2.1). We will then cover the core aspects of the CloudProxy architecture and implementation,
which are involved in our formal verification, in Section 2.2.

2.1 CloudProxy’s Threat Model

We briefly describe CloudProxy’s threat model. The scenario consists of data center ma-
chines leased to mutually untrusting users and managed by possibly malicious data center
administrators. A malicious client can exploit vulnerabilities in data center software to
assume control of all machines (except the machines running CloudProxy), as well as the
networks in the data center. A malicious administrator can move, examine, modify the disk,
and later re-install the modified disk on a powered-down CloudProxy machine. Without
necessary protection, this allows the administrator to observe application’s secrets like cryp-
tographic keys, replace program binaries with malicious programs, etc. However, we assume
that the intermediate state in CPU and memory is not visible to the adversary during op-
eration. This means that the adversary does not have direct access to the hardware during
operation and for a few minutes thereafter (and thus cold boot attacks [13] are not possible).
In practice, this assumption is reasonable because providers of Infrastructure as a Service
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(IaaS) employ facilities for enclosing racks of processors in cages.
Let the protected application be a CloudProxy application whose secrets we seek to

protect. CloudProxy’s threat model grants the following abilities to the adversary:

1. Control of all other applications (except the protected applications) on the same ma-
chine, and programs running in other guest partitions on the TrHV. In other words, the
adversary controls everything outside of the protected application’s trusted computing
base.

2. Physical access to all data center hardware and infrastructure, except the computer
(i.e. CPU, memory, chipset, backplane, disks) that is currently running CloudProxy.

3. Control of all data center networks, and all machines that are not running CloudProxy

In this threat model, CloudProxy protects the protected application’s secrets that a) reside
locally on the machine, and b) are communicated to other trusted applications over an un-
trusted network channel. Note that CloudProxy does not defend against denial of service
(DoS) or storage attack replay (for example rolling back the state of the compromised disk to
an earlier state), although CloudProxy applications may implement such protections them-
selves. For our verification effort, we will ignore these threats (techniques to mitigate these
attacks are mentioned in [20]).

2.2 Overview of CloudProxy Architecture

Figure 2.1: Overview of CloudProxy architecture. CloudProxy comprises of the trusted
hardware, trusted OS / hypervisor, KeyServer and TCService. The disk and the networks
are untrusted. Malicious applications may be running on the same machine as the protected
applications.
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Figure 2.1 gives a structural overview of the CloudProxy architecture. CloudProxy assumes
that it runs on trusted hardware, which includes a trusted CPU, and a trusted mother-
board containing a measurement-based security principal (namely Trusted Platform Mod-
ule (TPM) [21] unit) for measured boot, sealing/unsealing, and attestation. Currently, the
trusted operating system (OS) is a hardened Linux kernel. At the very least, this OS protects
each application’s memory from being observed or modified by other applications. Chapter 3
further describes what guarantees we require from the trusted OS.

The crux of CloudProxy is the TCService process. It uses the TPM to perform cryp-
tographic operations at initialization. TCService is the main CloudProxy component that
services several mutually untrusting CloudProxy applications. It exposes a set of applica-
tion programming interfaces (APIs) (see Section 2.4) for an application to a) seal its secrets
before saving them to disk storage; b) measure itself and the underlying OS so as to prove
that it is running unmodified code, and c) authenticate itself to other parties via the attest
API. The applications’ requests to TCService are buffered in tcioDD, which is a device driver
running at the kernel space. tcioDD queues all received requests from the applications into
a buffer, and dispatches the requests one at a time to TCService. This guarantees that
TCService is synchronous: processing a request will not be interrupted by any subsequent
requests until this current operation has finished. The return data of TCService will also
go through tcioDD back to the caller. Hence, TCService is implemented as a single-thread
process.

We briefly describe how this architecture protects us from our three threats above:

1. TCService is designed such that a malicious application cannot use the TCService API
to affect a protected application’s behavior. We verify this property in the present work.
The OS/Hypervisor layer enforces separation from other malicious guest partitions on
the same machine.

2. To protect from insider attacks that steal or modify disks, TCService provides seal
(and unseal) API to add cryptographic confidentiality and integrity protection before
writing secrets to disk.

3. To protect from attacks that observe or tamper messages sent over network, TCService
provides an attest API that an application can use to authenticate itself to a KeyServer.
If the application has the expected measurement, which reflects that its code and
configurations are loaded as intended, the authentication protocol results in a certificate
signed by KeyServer containing the application’s public key.

4. Finally, CloudProxy implements a cryptographic protocol (which is a restricted version
of TLS) for establishing a secure communication channel with another application.

We use an assurance case in Chapter 3 to make a systematic argument for why CloudProxy
provides sufficient defense against this threat model.
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2.3 Deploying and Initializing CloudProxy

Applications

if is first time running then
generate a new pKA and sKA

SealApp(sKA, pKA)
SealTCS(sKTCS, sKA)
write sealed blobs to secondary storage

else
read sealed blobs from secondary storage
UnsealTCS(sKTCS, sealed sym key)
UnsealApp(sKA, sealed private key)

end if

Figure 2.2: Sealing / unsealing keys at initialization. pKA and sKA refer to the
private and symmetric key of the CloudProxy application respectively. SealTCS(sKTCS, .)
/ UnsealTCS(sKTCS, .) refer to invoking seal and unseal API of TCService respectively,
and they both use TCService symmetric key. SealApp(sKA, .) / UnsealApp(sKA, .) refer to
invoking seal and unseal API of the CloudProxy application respectively, and they both use
the application’s symmetric key.

For an application to use any of the CloudProxy services or security features (i.e. to run
as a CloudProxy application), it has to run a CloudProxy routine for initialization. Hence,
our verification assumes that CloudProxy applications correctly run initialize themselves.
There are two important phases during initialization: a) CloudProxy applications get their
symmetric key and private-public key pair either by generating a new set of keys, or by
recovering from previously generated set of keys. b) CloudProxy applications perform remote
attestation with the KeyServer.

Figure 2.2 illustrates the generation and recovering of keys during this initialization. The
initialization algorithm is divided into two cases: a) the application is running for the first
time or b) the application is not running for the first time. For the former case, the ap-
plication will first generate a symmetric key and private-public key pair. The application
will then seal the private key and symmetric key as sealed blobs, followed by writing these
blobs onto secondary storage. The private key will be sealed using the application’s gen-
erated symmetric key through the application’s seal API (SealApp(pKA)). The generated
symmetric key will be sealed using TCService symmetric key through TCService’s seal API
(SealTCS(sKA)). As for the latter case, the application will read the sealed blobs from the
secondary storage and unseal them accordingly.

After generation of keys, deployment of a CloudProxy application involves: a) a virtual
machine image containing the trusted OS with TCService running on it, and b) the trusted
KeyServer. The KeyServer is deployed with public endorsement keys of each TPM chip, de-
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Figure 2.3: Remote attestation of a CloudProxy application. PK0 and pK0 are the
public key and private key of activity owner respectively, whereas PKA and pKA are the
public key and private key of application A respectively.

sired measurement of the host systems, TCService, and the applications. When the machine
boots up and starts TCService, TCService uses the TPM to measure its trusted computing
base (the OS and TCService binary), and sends the TPM’s attestation to this measurement
along with TCService’s public key to the KeyServer. If the measurement matches the ex-
pected value, the KeyServer returns a certificate binding TCService to its public key. This
establishes trust between the KeyServer and TCService for all future communication. Next,
TCService starts the application, e.g. CloudClient in Figure 2.1. To establish trust with
the KeyServer, TCService, acting as part of CloudClient’s host environment, measures the
CloudClient application before its execution. CloudClient then sends the TCService’s attes-
tation to this measurement along with the CloudClient’s public key to the KeyServer. In
response, the KeyServer produces a signed certificate binding each application instance to its
attested public key. These certificates are rooted in a public key embedded in CloudProxy
components as part of program measurement. Thus, additional public key infrastructures run
by third parties is not required. As a result, a program demonstrating “proof-of-possession”
of a private key corresponding to the public key can authenticate itself. Since that private
key is sealed by the host and cannot be revealed except to an isolated program with the
same measurement, the authentication is secure from adversarial attack. Here, we are mak-
ing some assumptions on the CloudProxy application: a) the application’s private key is
never leaked, and b) the application does not have any vulnerabilities for the attacker to
exploit. CloudProxy components use the encrypted, integrity protected channel provided
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by TLS to ensure the confidentiality and integrity of information exchanged between them
over a public network. Figure 2.3 shows the exchanging of the asymmetric keys between an
application and the KeyServer.

2.4 CloudProxy API

Once the applications have been initialized, they may invoke any of the following CloudProxy
APIs, in any order. We now briefly describe the semantics of each of these APIs (formal
semantics in [20]).

1. GetHostedMeasurement(): computes the measurement of the calling application.

2. Attest(data): returns a certificate (signed by TCService) binding data to the caller by
including the caller’s measurement in part of the signed information in this certificate.

3. GetAttestCertificate(): returns a certificate (signed by KeyServer) binding the caller’s
public key.

4. Seal(secret): encrypts the concatenation of secret and the caller’s measurement, and
then attaches the message authentication code (MAC) of the ciphertext.

5. Unseal(sealed secret): performs integrity check on the MAC, and decrypts the input
data if the integrity check succeeds. Next, TCService checks if the caller’s measurement
is equal to the measurement field in the plaintext. If this check succeeds, the plaintext
is returned to the caller.

6. GetEntropy(n): returns a cryptographically-strong random number of size n bits.

7. StartApp(filename): Fork a new application process.
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Chapter 3

Assurance Case For CloudProxy

Our primary goal is to prove that CloudProxy protects its client applications from the threats
allowed in our threat model. These security guarantees are quite informal, and hence do not
translate to statements in a formal language. Our first contribution in this work is to
formalize these high-level security properties into a set of axioms, assumptions, and lemmas
that are provable on a CloudProxy model. Although we formalize our assumptions and
lemmas, we use an informal assurance case as a meta-level argument for why our lemmas
and assumptions fulfill the high-level security properties. In Chapter 4, we construct a
formal model of CloudProxy, and in Chapter 5, we prove a subset of our lemmas on this
model. This model will act as a golden specification for all future revisions to CloudProxy’s
implementation.

An assurance case is a documented body of evidence that provides a systematic, albeit
informal, argument that a system satisfies a set of properties [3]. An assurance case first
starts with a goal, and then iteratively decomposes it into constituent goals and assumptions,
until all goals are supported by direct evidence [22, 25]. There have been a few adoptions
of assurance cases for safety critical systems in literature and in the industry [27, 15]. We
believe that through the employment of assurance case framework, we will be able to make
the argument for our proofs clearer, more systematic and consistent. Domain experts would
also have a common documentation for checking and analyzing the entire verification process.
However, note that a limitation to this work is that this assurance case has yet to be examined
by multiple domain experts.

3.1 Goal Structuring Notation (GSN)

There are a few notations for expressing assurance cases. We follow the goal structuring
notation (GSN) [16, 11] for our assurance case framework described in [22]. For the rest
of this section, we will only use a subset of GSN, and the following defines this subset of
elements [11]:

• Goal : A claim forming part of the argument.
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• Strategy : A description of the nature of the inference that exists between a goal and
its supporting goal(s).

• Evidence: A supporting proof for a claim.

• Context : Information describing the context of the referenced element.

• Assumption: An intentionally unsubstantiated statement.

GSN also defines the representation of the relationships between these elements:

• SupportedBy : An inferential (an inference between goals in the argument) or evidential
(the link between a goal and the evidence used to substantiate it) relationship. Permit-
ted connections are: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal.

• InContextOf : A contextual relationship. Permitted connections are: goal-to-context,
goal-to-assumption, goal-to-justification, strategy-to-context, strategy-to-assumption
and strategy-to- justification.

Figure 3.1 shows the graphical representation of the elements and Figure 3.2 shows the
graphical representation of the elements relationships.

For evidence elements that have dotted outline, we have not completed the proofs for
these evidences and are either work in progress or future works.

3.2 Structuring CloudProxy Assurance Case in GSN

In this section, we present our argument from a top-down approach by iteratively decompos-
ing into sub-claims and finally proving each sub-claim with evidence or through assumptions.
Note that our argument for the decomposition into sub-claims is informal and may be in-
complete, and thus there may be possible modifications in the future.

CloudProxy is too complex to verify in its entirety. However, it can be modularized into
different components. As shown in Figure 2.1, CloudProxy relies on several components: a
trusted hardware, a trusted OS/Hypervisor layer, to-be-verified TCService, and a trusted
remote key server. In figure 2.1, we separate CloudProxy into a trusted hardware, a trusted
OS/Hypervisor layer, TCService, and applications. In this work, we only verify TCService,
and assume that properties about other components hold. This is encoded as assumption
A1 in Figure 3.3: the hardware, the Hypervisor, and the OS (including the TPM driver)
are trusted. We are aware of orthogonal efforts [12] on verifying security properties of
hypervisors, TLS protocol implementation, etc.

Proving that CloudProxy protects the protected application’s secrets (G1) is decomposed
into 3 goals G2 - G4, one for each ability granted to our adversary by the threat model. It
must be noted that CloudProxy does not prevent an application from erroneously leaking
its secrets to the adversary; it only exports an API that, if used correctly, enables the
application to protect its secrets. Consequently, verifying application logic is out of scope
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Figure 3.1: Elements in GSN. Elements in
GSN[11].

Figure 3.2: Relationships among elements
in GSN. Relationships among elements in
GSN[11].

(Ct1). Each goal in G2 - G4 is realized by one or more goals in G5 - G9. G7 protects
the application from attacks that change the application’s binary or TCService’s binaries on
disk before the machine boots up. G7 is supported by verification of the measured launch
sequence (E1), which uses the TPM to compute a cryptographic hash of the binaries before
launching TCService and applications. The memory protection of OS/Hypervisor layer (A1)
obviates the need for measuring binaries after launch. In addition, based on our threat model
assumption, an insider is not able to access the memory chip of the machine that is running
CloudProxy (A2). All top-level security goals G2 - G4 depend on G7 because successfully
mounting a modified TCService binary will nullify all security guarantees. G5 and G6
together guarantee that a protected application’s secret is never revealed in plaintext to an
adversary on the same machine as the protected application. G5 enforces that a malicious
program does not observe a protected application’s execution. Our notion of execution
only considers an application’s state updates; we do not consider information leaks via side
channels, or via channels intended for communication between applications (e.g. network).
G6 enforces that the protected application’s secrets have cryptographic confidentiality and
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Figure 3.3: CloudProxy assurance case. The CloudProxy assurance case shows the
top-level goal, G1, is iteratively decomposed into subgoals (square nodes), evidences (circle
nodes) and assumptions (oval nodes). Ct1 defines the context for goal G1 and G20. Table
3.1 describes each node in detail.

integrity protections before being saved to disk. G8 and G9 together protect an application’s
secret that is sent over the network. G8 is needed for authenticating mutually trusting
applications (E2) over an untrusted network. Consider Figure 2.1 where CloudServer must
authenticate a request from CloudClient. TCService attests to CloudClient’s measurement,
which allows CloudServer to verify CloudClient’s identity. Following remote attestation,
G9 enforces that future communication takes place over a cryptographically secure channel.
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CloudProxy uses a restricted version TLS [20] (E3) for secure communication. We do not
verify this TLS implementation in this work.

Consider the assurance case for G5: no malicious application can compromise TCService
or the protected applications. This responsibility is shared between the OS protections
(G11) and the TCService API guarantees (G12). G11 stipulates that our OS a) protects an
application’s address space from reads or writes by other programs, and b) protects the TPM
driver’s address space from other malicious programs. Both requirements can be fulfilled by
a separation kernel [23]. While separability is a strict requirement (and possibly unreasonable
for commodity OS), we assume for this discussion via A4 that we have a separation kernel.
With OS-enforced separation between protected applications and malicious applications,
the TCService interface is the last remaining means by which a malicious application can
interfere with the protected application’s execution. To that end, G12 stipulates a non-
interference property on TCService: responses to the protected application’s API requests
are independent of the malicious applications’s API requests. We prove this property (E4) on
our UCLID model, and make an initial attempt of validating this model with respect to the
implementation (E5). Model validation proves that all behaviours in the implementation are
captured by the model. However, model validation is still a work in progress (see Chapter 6).

Consider the assurance case for G6: protected application’s secrets have cryptographic
confidentiality and integrity protections before being written to disk. These secrets must be
sealed using TCService’s seal API. With this guarantee, an adversary is unable to observe a
secret’s plaintext (confidentiality) and is also unable to tamper a secret’s ciphertext without
being detected (integrity). The proof for G6 hinges on two sets of lemmas: a) G13-G16:
TCService’s implementation of seal preserves confidentiality and integrity, and b) G10:
TCService never reveals its sealing key. We make a crucial assumption (A6) that we have a
Dolev-Yao adversary [14]. Analyzing the strength of cryptographic operations is beyond our
scope. In other words, our proof assumes axioms of strong encryption, pre-image resistance
of hash functions, and strong collision resistance of hash functions. TCService performs
seal by first encrypting the secret, and then appending the MAC (implemented using hash
function) of the ciphertext. Goal G14 is fulfilled by the confidentiality assumption about
ideal encryption scheme. Goal G16 is fulfilled by the strong collision resistance axiom about
hash function used in MAC.

TCService also appends the application’s measurement within the sealed secret. The
measurement is used to decide if it should unseal a sealed secret on behalf of an application.
An application’s measurement must match the measurement that is sealed together with
the secret. Therefore, we also need goals G13 (fulfilled by E6) and G15 (fulfilled by E7)
to prove that TCService does not incorrectly unseal the protected application’s secret on
behalf of the malicious application. We further assume in A4 that our OS / hypervisor layer
enforces separation between all applications and TCService, or else the malicious application
can exploit the OS to observe secrets. While building a formal model, we uncovered an
undocumented assumption A5 that the OS does not reuse process identifiers at any point
of time — the process identifier (pid) is used to identify the application invoking the API
call. In other words, once the OS has generated a pid for an application, even after this
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application has terminated, there will never be any other subsequent application that has
this same pid .

Consider the assurance case for G10: the protected application and TCService do not
reveal keys needed for attestation and sealing. We must prove that this property holds during
a) TCService’s initialization (G17), b) application’s initialization (G18), and c) servicing of
API request by TCService (G19). Note that verifying application logic is out of scope, but
the CloudProxy application’s initialization is handled by CloudProxy. This initialization is
verified by G18. Both TCService and application use the same initialization routine, with
the exception that the application uses the TCService’s API for cryptographic operations,
while TCService uses the TPM’s API. This allows us to share G21 for fulfilling both G17
and G18. Since the TPM driver and the crypto-library are trusted (A6 and A5), we use
their axioms to verify the remainder of the initialization routine (G21).

E8 fulfills G22 by proving that that each write (e.g. file write, socket send) out of the
process sandbox is either sealed or the written value is independent of the keys. Finally,
the proof in E9 fulfills goal G19: TCService does not leak its sealing and attestation key
in response to an API request. G19 is necessary even though we prove non-interference in
G12. This is because TCService may leak the protected application’s secrets by erroneously
revealing its own sealing key.
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Table 3.1: Descriptions of assurance case nodes. Node refers to the the assurance case
node in Figure 3.3. Proof Obligations are either nodes in the assurance case, or property
number(s) in Chapter 5.

Node Description Proof Obligation
A1 Hardware, Hypervisor and OS are trusted.
A2 Adversary cannot physically access computer currently running

CloudProxy.
A3 KeyServer is trusted.
A4 Hypervisor and OS layers enforce separability.
A5 OS will not reuse PID.
A6 Perfect cryptographic primitives.
A7 TPM driver does not leak TCService’s secrets.
Ct1 Verifying app logic (excluding CloudProxy initialization) is out of

scope.
E1 Verify measured launch mechanism.
E2 Verify remote attestation protocol.
E3 Use restricted version of TLS for network communication.
E4 Prove G12 on UCLID model. Ppty (5.3)-(5.4), (5.8)-(5.9)
E5 Validate UCLID model.
E6 Prove G13 on UCLID model. Ppty (5.13)
E7 Prove G15 on UCLID model. Ppty (5.14)
E8 Prove G22 on UCLID model. Ppty (5.16)
E9 Prove G19 on UCLID model.
G1 CloudProxy secures protected app’s secrets. A1, G2-G4
G2 Secure against malicious programs running on same machine. G5-G9
G3 Secure against malicious physical access. A2, G5-G7
G4 Secure against network attacks. G7-G9
G5 No malicious app can compromise TCService or protected app. G11-G12
G6 Data confidentiality and integrity of protected app’s secrets. G10,G13-G16
G7 Protected app and TCService should be launched from unmodified

code.
E1

G8 Remote attestation through untrusted channels. A3, E2, G10
G9 Use cryptographic protocol for app’s communications. E3
G10 Protected app and TCService do not reveal attestation and sealing

keys.
G17-G20

G11 Isolation of apps memory space from other apps. A5
G12 Non-interference of protected apps through TCService APIs. A4, E4-E5
G13 TCService Seal API provides data confidentiality. A4-A5, E5-E6
G14 Cryptographic Seal provides data confidentiality. A6
G15 TCService Seal API provides data integrity. A4-A5, E5, E7
G16 Cryptographic Seal provides data integrity. A6
G17 TCService does not reveal keys during initialization. A7, G21
G18 Protected app does not reveal keys during initialization. A6, G21
G19 TCService does not leak keys within responses to API calls. E5, E9
G20 Protected app does not reveal keys after initialization.
G21 CloudProxy initialization algorithm does not reveal keys. G22
G22 Plaintext-writes do not leak keys. E5, E8
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Chapter 4

CloudProxy Abstraction

Formal verification is a resource-intensive process. Therefore, it is often infeasible to perform
formal verification for the entire system. Our assurance case in Chapter 3 allows us to focus
our verification effort on the composition of TCService with the protected and malicious
applications. We have assumed that the OS, hypervisor and hardware are trusted, and
hence we need not precisely model the entire trusted computing base. In other words,
we are only focusing our verification effort mainly on TCService and part of CloudProxy
framework which CloudProxy applications use.

In this chapter, we will describe our formal model for CloudProxy which captures the
components and behaviors that we wish to verify. Verifying properties on this model will be
discussed in Chapter 5. Besides proving properties, this model may also serve as a golden
specification for all future revisions to CloudProxy’s implementation.

4.1 Modeling in UCLID

Figure 4.1 presents the structural overview of our model1, for which we use the UCLID [6]
modeling language.

This model is a synchronous composition of four transition systems:

1. App (protected application);

2. Mal App (malicious application);

3. Scheduler , and

4. TCService.

Our model assumes one protected application and one malicious application. We are mak-
ing this simplification of modeling one malicious application instead of arbitrary number of
malicious applications because the properties in Chapter 5 are reasoning over one malicious

1The model is available at the URL: http://uclid.eecs.berkeley.edu/cloudproxy
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Figure 4.1: CloudProxy model in UCLID. The CloudProxy UCLID model is a syn-
chronous composition of the transition systems App, Mal App, Scheduler , and TCService.
An arrow shows the data flow between the transition systems. Secondary Storage is a set of
state variables which other components can read values from or write values to.

application only. Our model captures the initialization routine of TCService and applica-
tions, as well as the semantics of each CloudProxy API. Recall that CloudProxy does not
place any constraints on the application’s behavior; secrets will get compromised if the ap-
plication erroneously leaks the plaintext secrets or the private sealing keys. For example, a
file server may erroneously respond to a malicious application’s request with the protected
application’s file. Therefore, we verify TCService in the presence of an arbitrary App and
an arbitrary Mal App. Note that since we are verifying CloudProxy, verification of a specific
application’s logic is beyond scope.

In the CloudProxy implementation, the applications may invoke TCService API calls
non-deterministically and asynchronously. We model this behaviour by having the Scheduler
non-deterministically trigger either App or Mal App to execute in each step. When triggered,
App and Mal App non-deterministically choose an API call and arguments to TCService in
each step of execution.

One difference between App and Mal App are that App has a symmetric key (sym key)
and a private key (private key), which are modeled as state variables. These state variables
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are used for modeling CloudProxy application initialization. Mal App does not need to have
the mentioned state variables, since it may run without using the CloudProxy initialization
code. Thus, the initialization logic, as described in Section 2.3, is only implemented in App.
Another difference is that we fix a symbolic term to represent App’s process ID (pid), and
any other pid that is not equal to App pid will be considered as Mal App’s pid .

In Section 2.2, we discussed how TCService uses a device driver called tcioDD to buffer
all API requests, and handles each request synchronously. Thus, we model TCService as a
sequential system, treating computation for each API to be an atomic state update. Here,
we assume that tcioDD has infinite buffer. As a result, we assume no loss in requests due to
filled buffer. We implement the semantics of each API from Section 2.4.

TCService maintains the following state variables: a) a private key (private key) for
remote attestation, b) a symmetric key (sym key) for use in seal and unseal , c) run-
ning pid table[] for process identifiers of all running applications, and d) measurements mea-
surement table[] of all running applications. Each API may involve reading and writing to
Secondary Storage, which is modeled as an unbounded memory. In the TCService imple-
mentation, TCService has a linked-list to keep track of the running applications and their
measurements (i.e. the hash of the application binary file). Each node in the linked-list
contains the pid and its measurements. We abstract this into an unbounded array in the
theory of Arrays, where the array maps integers to integers. Both running pid table[] and
measurement table[] are unbounded array data types in our model. The former maps the
pid to boolean true or false, whereby true implies the process with that pid is running,
and false otherwise. The latter maps the pid to the measurements.

4.2 Capabilities of Mal App

The following summarizes the assumptions on the capabilities of the malicious applications
(Mal App) in our model:

1. Mal App is able to execute any cryptographic functions as well as invoke any API of
TCService.

2. Mal App, just like App, can be started by TCService.

3. At initial state, Mal App does not have the knowledge of either App secrets or TCSer-
vice keys in plaintext.

4. Mal App is not able to eavesdrop on data returned by TCService to App. This assump-
tion is sound since we assume that the OS is trusted, and the OS controls the response
/ request channel. This also implies that tcioDD, the buffer that sends and receives
data between TCService and the applications, is protected from eavesdropping.

5. The malicious application has unlimited storage for data learned from invoking TC-
Service APIs and cryptographic functions at every transition step. In other words,
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Mal App may learn and generate new data from any combination of arbitrary function
call.

4.3 Model Assumptions and Axioms

In our UCLID model, we use uninterpreted functions and terms to abstract functions and
variables in the C++ implementation code respectively. To make our uninterpreted functions
meaningful, we impose some restrictions on the behaviors of these functions through axioms.

Let M be the set of measurements, P be the set of pid , D be the set of data. KTCS is the
symmetric key of TCService, PIDApp is the App pid , and PIDMal App is the Mal App pid .
We also define MApp to be the measurement of App and MMal App to be the measurement of
Mal App. The following is the list of axioms implemented in the model:

1. Authenticated encryption and decryption (ENC MAC(), DEC MAC()):

∀x ∈M :DEC MAC(ENC MAC(x,KTCS), KTCS) = x

∀x, y ∈M :(DEC MAC(x,KTCS) 6= DEC MAC(y,KTCS)⇔ (x 6= y)

2. Concatenation and extraction of terms (EXTRACT 1ST(), EXTRACT 2ND(),
CAT 2 PARAMS()):

∀x ∈ D :(EXTRACT 1ST (CAT 2 PARAMS(x,MApp)) = x)∧
(EXTRACT 1ST (CAT 2 PARAMS(x,MMal App)) = x)

∀x ∈ D :(EXTRACT 2ND(CAT 2 PARAMS(x,MApp)) = MApp)∧
(EXTRACT 2ND(CAT 2 PARAMS(x,MMal App)) = MMal App)

3. Cryptographic hash function (SHA256()):

∀x, y ∈ D :(x 6= y)⇔ (SHA256(x) 6= SHA256(y))

We also have a list of assumptions for our model:

1. The pid of App and Mal App are not the same:

MApp 6= MMal App

2. Let MAL APP BIN FILES SET be a predicate which returns true if the argu-
ment belongs to the set of Mal App binary files, and false otherwise. We also define
GET BIN FILE as a function that takes in a file name and returns the binary of the
file. Mal App should not have the same binary as App:

¬MAL APP BIN FILES SET (GET BIN FILE(APP FILE NAME))
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3. Mal App should not know App secret initially.

We derive these three stated assumptions from both our domain expertise as well as from
our properties verification (see Chapter 5). The first assumption (that the pid of App and
Mal App are not the same) is an important one. In other words, we are assuming that the
trusted operating system will not reuse pid for new processes. Chapter 5 discusses how this
assumption affects the properties we are verifying.

For the second assumption, the premise enforced by the CloudProxy host is that TCSer-
vice executes the very same binary as intended, and hence the binaries of Mal App would
not be the same as the App binary program. In other words, we are assuming that time-of-
check-to-time-of-use (TOCTTOU) attack is not possible. This is a result from CloudProxy
threat model, which ensures that the physical memory can only be modified by adversary
when there is no CloudProxy program running on it. Even if the adversary arranges Mal App
to have the same binary as App, Mal App would behave the same as App. This implies the
following two assumptions: a) App, when running a single copy of itself on its own, is secure,
and b) App, composed of multiple copies of itself, is secure.

The last assumption is that the Mal App should not know App secrets initially. Clearly,
this must hold for the verification effort to be meaningful.

One challenge is that the instantiation of these axioms may cause a memory blowup
during the verification phase. Thus, we only list the axioms necessary for our properties in
the subsequent chapters. Also, whenever possible, we manually instantiate terms (such as
the Mal App pid) instead of reasoning on a universal quantifier over the entire domain to
circumvent this memory blowup problem.
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Chapter 5

Verification

In this chapter, we formalize and verify properties of the UCLID model for each evidence in
our assurance case as presented in Chapter 3. Subsequent sections will describe the details of
each property, as well as the approach in verifying them using the UCLID decision procedure.
The evidences marked with a dashed line represent proofs that are currently in progress or
left for future work.

5.1 Property 1: Non-interference

G11 in Figure 3.3 stipulates that TCService exhibits non-interference: the responses to
an application’s API requests are independent of the malicious applications’s API requests.
Consider a system that has inputs and outputs from two users: App and Mal App. Both
App and Mal App are treated as the environment inputs of TCService, where they can non-
deterministically choose any API request and arguments. Informally, the non-interference
property states that Mal App’s inputs can be removed without affecting App’s outputs, and
vice versa. In the context of CloudProxy, non-interference requires two checks:

1. secure information flow: App’s secrets are not leaked to Mal App when Mal App
invokes an API request.

2. non-interference: the results of App’s API calls are unaffected by Mal App’s API
requests.

We adopt Goguen and Meseguer’s formalization of non-interference for both checks [10].
A trace is a sequence of states. Let T be the set of infinite traces allowed by the composition
of TCService ‖ App ‖ Mal App. Also, let inApp(t) and inMal App(t) be the sequence of API
requests invoked by App and Mal App, respectively, in a trace t. Similarly, let outApp(t)
and outMal App(t) be the sequence of API responses by TCService to App and Mal App,
respectively, in a trace t. The following property checks secure information flow to
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Figure 5.1: Non-interference property for CloudProxy. The figure shows three traces
t1, t2 and t3, where trace t2 replaces App API requests in t1 with ε, and t3 replaces Mal App
API requests in t1 with ε.

Mal App:

∀t1, t2 ∈ T :(inApp(t2) = ε ∧ inMal App(t1) = inMal App(t2))⇒
(outMal App(t1) = outMal App(t2)) (5.1)

and the following property checks non-interference from Mal App’s API requests:

∀t1, t3 ∈ T :(inMal App(t3) = ε ∧ inApp(t1) = inApp(t3))⇒
(outApp(t1) = outApp(t3)) (5.2)

where ε denotes no API invocation (modeled as stuttering steps). Note that this definition
only applies if the following two conditions are met:

1. TCService must be deterministic (App and Mal App need not be deterministic), and

2. TCService must be total with respect to inputs.

A hyperproperty is a set of sets of infinite traces [8]. As properties (5.1) and (5.2) reason
over a pair of sets of traces, they are both are hyperproperties. We can rewrite them as
2-safety properties [8] and prove them using induction.

As Figure 5.2(a) illustrates, we construct a 2-fold parallel self-composition of the system,
resulting in a pair of traces t1 and t2. In our presentation, we close the system (TCService)
together with its environment (App and Mal App), treating inputs and outputs as functions
of system state. Let I be the set of all inputs to the system, and O be the set of all outputs
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Figure 5.2: Proving non-interference in UCLID. S denotes the state of TCService
in our UCLID model. We prove secure information flow in (a) by proving that Mal App
cannot distinguish s′1 from s′2. We prove non-interference in (b) by proving that App cannot
distinguish s′1 from s′3.

from the system. R ⊆ S× in×S is the transition relation of TCService over set of states S,
where in ∈ I. For TCService’s state s, we use inApp and inMal App to refer to App’s input
to TCService and Mal App’s input to TCService respectively, where inApp, inMal App ∈ I.
outApp(s) and outMal App(s) refer to TCService’s output to App at state s and TCService’s
output to Mal App at state s respectively, where outApp(s), outMal App(s) ∈ O. Let Sys1 and
Sys2 be the two instances of the system, which we let them run in parallel. Let s1 be the
state in Sys1, and s2 be the state in Sys2. We define R1 to be the transition relation of Sys1,
and R2 to be the transition relation of Sys2. We also define in1 be the input of Sys1, and
in2 be the input of Sys2. For secure information flow, we prove the following inductive
property:

∀s1, s2.Init(s1) ∧ Init(s2)⇒ ΦMal App(s1, s2) (5.3)

∀s1, s′1, s2, s′2, in.
(ΦMal App(s1, s2) ∧R1(s1, in, s

′
1) ∧R2(s2, in, s

′
2))⇒

ΦMal App(s
′
1, s

′
2) (5.4)

where

ΦMal App(sa, sb)
.
=

∀s′a, s′b.R(sa, in, s
′
a) ∧R(sb, in, s

′
b)⇒

(outMal App(s′a) = outMal App(s′b)) (5.5)

R1(s, in, s
′) = R(s, in, s′) (5.6)

R2(s, in, s
′) = (R(s, in, s′) ∧ inApp = ε) (5.7)
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Note that s1, s2, s
′
1, s

′
2 represent internal states of TCService. For any pair of states

sa and sb, predicate ΦMal App(sa, sb) is true if and only if those states are indistinguishable
to Mal App — for the same API call, TCService produces identical output in both sa and
sb. Since output variables are part of state, we enforce indistinguishability of two states by
invoking the same, albeit arbitrary, API request from both states and comparing the output
variables in the next states. Property 5.3 checks the base case that Φ holds on any pair of
initial states. This is a trivial proof because TCService is always initialized to a concrete
initial state. The inductive step (property 5.4) proves that from any pair of states s1 and s2
that is indistinguishable to Mal App, TCService must transition to a pair of states s′1 and
s′2 (respectively) that are also indistinguishable to Mal App. Due to insufficient quantifier
instantiation, we needed an auxiliary inductive invariant Ψaux: the component of TCService
state that affects Mal App is identical in s and t.

Proving non-interference between App and App requires a similar inductive proof. For
conciseness, we only list the property here; the above discussion applies verbatim if App is
substituted for Mal App for each other. Mal App’s API requests does not affect App’s API
observations if:

∀s1, s3.Init(s1) ∧ Init(s3)⇒ ΦApp(s1, s3) (5.8)

∀s1, s′1, s3, s′3, in.
ΦApp(s1, s3) ∧R1(s1, in, s

′
1) ∧R2(s3, in, s

′
3)⇒

ΦApp(s
′
1, s

′
3) (5.9)

where

ΦApp(sa, sb)
.
=

∀s′a, s′b.R(sa, in, s
′
a) ∧R(sb, in, s

′
b)⇒

(outApp(s′a) = outApp(s′b)) (5.10)

R1(s, in, s
′) = R(s, in, s′) (5.11)

R2(s, in, s
′) = (R(s, in, s′) ∧ inMal App = ε) (5.12)

UCLID took about 40 seconds to prove each property. 1

1UCLID was running on virtualbox and the machine was a 2.6GHz quad-core with 2GB of memory space
allocated to this virtualbox environment.
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5.2 Property 2: Data Confidentiality

In this section, we describe our proof of G6: Mal App cannot acquire the plaintext of a
sealed secret belonging to App. Recall from Figure 3.3 that we split this goal into two
lemmas:

• Lemma 1: Mal App cannot obtain the plaintext by breaking the underlying cryptog-
raphy (goal G14 in Figure 3.3). We assume a Dolev-Yao [9] model where such attack
is infeasible.

• Lemma 2: Mal App cannot obtain the plaintext by invoking a sequence of CloudProxy
API calls (goal G13 in Figure 3.3).

Lemma 1 is simply assumed in our work since we assume a Dolev-Yao adversary. In
accordance with the Dolev-Yao model [9], our model represents data as terms of some ab-
stract algebra, and cryptographic primitives operate on those terms to produce new terms.
We have also used ProVerif [2], an automatic cryptographic protocol verifier which assumes
a Dolev-Yao adversary, to trivally prove this lemma.

Proving Lemma 2 is necessary because TCService implements the following logic (by
appending measurement to the secret prior to sealing) for deciding if it should fulfill an unseal
API request: After unsealing, if the secret’s measurement does not match the measurement
of API caller, then the request fails.

Let m be a measurement, mApp be the App’s measurement, and D be the set of terms
from an abstract algebra. Also, let ENC MAC be a cryptographic seal function that first
encrypts the plaintext, and then appends an integrity-protecting MAC of the plaintext.
Let I be the set of all inputs to the system. R ⊆ S × in × S is the transition relation
of TCService over set of states S, where in ∈ I. Let inMal App

API be the API call from the
Mal App to TCService, and let inMal App

arg be the arguments of the API call from the Mal App

to TCService. outMal App
result (s) is the return output of TCService to the Mal App which has

invoked the TCService API. Finally, sKTCS denotes the symmetric key used by TCService
to seal or unseal. We define Lemma 2 as follows and prove it via 1-step induction:

φ(s)
.
=∀secret ∈ D, s′.

(inMal App
API = unseal ∧R(s, inMal App, s′)∧

inMal App
arg = ENC MAC(sKTCS, secret,mApp))⇒

outMal App
result (s′) 6= secret (5.13)

where ENC MAC(sKTCS, secret,mApp) is a term encoding any sealed secret that can belong
to App, if secret is an unconstrained symbolic constant. This allows us to only consider API
calls whose argument has this form.

As a result, property (5.13) guarantees that TCService never returns the plaintext secret
as a result of calling unseal API. Lemma 1 guarantees that the adversary cannot obtain
the plaintext from a sealed secret by breaking the underlying cryptography.
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One possible scenario where Mal App may learn the secret of App without violating
(5.13) is when Mal App is able to somehow learn ENC MAC(sKTCS, secret,mMal App. We
argue that this is not possible without Mal App knowing either the secret beforehand. As we
have assumed that the authenticated encryption function ENCMAC() is unbreakable (A6),
this means that there is no way of generating ENCMAC(key, x, y) unless all three key, x
and y are known.

UCLID took about 30 seconds to prove this property. Moreover, we discovered the
following necessary assumptions to prevent spurious counter-examples to the inductive proof:

1. Mal App has a different measurement than App, i.e. mMal App 6= mApp, and

2. OS must guarantee that every process has a unique pid throughout at all times.

For the first assumption, besides assuming the usage of collision-free hash functions,
we need to argue that neither the path name of the malicious application is identical to
the benign application one nor are their binaries identical. One possible violation to this
assumption is the time of check to time of use (TOCTTOU) vulnerability. Malicious appli-
cation A may first request TCService to start application B via startapp. When TCService
reads in B’s path name and about to execute the binary, A swaps the binary of B to another
malicious application binary C. This results in TCService starting C instead of B. However,
this is not possible under the threat model of CloudProxy (see Section 2.1), since the adver-
sary is only allowed to access the disk and swap its content when CloudProxy is not running
any program on this disk.

The second assumption is necessary for this confidentiality to hold. If pid can be reused,
a malicious application is able to masquerade itself as the protected application by having
the same pid as this protected application. By invoking unseal on any sealed data of the
protected application, TCService will be tricked by the fake pid and the matching measure-
ments, and thus unseal the data for malicious application.

5.3 Property 3: Data Integrity

Besides data confidentiality, we also need to prove that there is no way Mal App may make
App unseal data tampered by Mal App itself for G6. Again, we assume perfect integrity
protection of the cryptographic seal function ENC MAC(key, ., .), and hence any modifi-
cation to ENC MAC(key, ., .) should not be able to unseal successfully (G16). We have
used ProVerif [2] to trivally show authenticity for this lemma. Only data that was previ-
ously sealed by TCService can be successfully unsealed by TCService (G15). Any other data
would fail the MAC check since the MAC check uses TCService’s symmetric key sKTCS. This
leaves the adversary with only one attack: replace App’s sealed data with Mal App’s sealed
data. Therefore, the following property checks that TCService does not unseal another
application’s sealed data on behalf of App.
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Let inApp
API be the API call from the App to TCService, and let inApp

arg be the arguments of
the API call from the App to TCService. outApp

success(s) is the return status of TCService to
the App which has invoked the TCService API. The status takes a boolean value, and shows
whether the invocation of the API is sucessful. Let M be the set of measurements, and D
be the set of data. We prove that an unseal request satisfies:

φ(s)
.
=∀secret ∈ D,∀m ∈M, s′.

(inApp
API = unseal ∧R(s, inApp, s′)∧

inApp
arg = ENC MAC(sKTCS, secret,m) ∧m 6= mApp)⇒
¬outApp

success(s
′) (5.14)

where ENC MAC(sKTCS, secret,m) is a term encoding any sealed secret that can belong
to any application other than App, if secret and m are unconstrained symbolic constants.
This allows us to only consider API calls whose argument has this form.

UCLID took less than 5 seconds to prove this property. Again, we require the same
assumptions to prevent spurious counter-examples to the inductive proof:

1. Mal App has a different measurement than App, i.e. mMal App 6= mApp. This is reason-
able because they run different binaries, and hash functions are assumed to be collision
free.

2. OS must guarantee that every process has a unique pid throughout at all times.

In Section 5.2 we have discussed the first assumption. The following illustrates an attack
without the second assumption. If a malicious application masquerades itself as the protected
application by having the same pid as this protected application, it can request TCService
to seal some malicious data. This piece of malicious data will be sealed together with the
same measurement as the protected application. Hence, the protected application will be
able to unseal this sealed malicious data through TCService without an error.

A caveat to note here is that CloudProxy does not have a mechanism to check for the
freshness of data. The adversary may perform a replay attack by replacing the App’s sealed
secret on disk with an older secret sealed by the App.

5.4 Property 4: Protecting Keys

During initialization, TCService generates a symmetric sealing key sKTCS, and a private
attestation key pKTCS. Similarly, a CloudProxy application uses TCService to generate a
symmetric key sKApp and private attestation key pKApp. This is because both TCService and
the CloudProxy applications use similar piece of initialization code, where the only difference
is the functions used for cryptographic operations. TCService uses the functions provided
by the TPM driver for cryptographic operations such as authenticated encryption, whereas
App uses the crypto-library provided by CloudProxy. In this section, we prove that keys
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sKApp and pKApp are never leaked in values written to disk (goal G18). We only focus our
attention on App’s keys in this section. We argue that the property and proof for TCService
is identical due to the same initialization code. However, we will need to further extend our
model to capture the initialization phase of TCService, as well as to abstract the TPM to
prove this explicitly. We express this property in the semantic information flow framework
introduced by [19]. For any pair of traces, where the traces start from symbolic states differing
in values of sKApp and pKApp (but all other state variables are identical), the outputs along
the two traces must be identical. In other words, values written to disk are not a function
of the keys. Once again, this is a 2-safety property of TCService ‖ App ‖ Mal App. We use
a 1-step induction to prove this property.

First, we define a specification state variable S that gets updated each time App invokes
TCService seal API on some data or during initialization.

S(x) =


true inApp

API = seal ∧ x = ENC MAC(sKTCS, in
App
arg ,mApp)

true initApp = true ∧ x = ENC MAC(sKApp, pKApp,mApp)

old(S(x)) otherwise

(5.15)

where initApp is a flag that determines whether App is at the initalization phase. In addition,
∀x.S0(x) = false where S0 is the initial state of S.

Let s1 and s2 be a pair of states, where pKApp,1 and pKApp,2 are App’s private keys in s1
and s2 respectively. sKApp,1 and sKApp,2 are App’s symmetric keys in s1 and s2 respectively.
s1 \ {pKApp,1, sKApp,1} denotes the set of all state variables in s1 excluding the two keys.
Finally, outdisk(s1) denotes the output to disk in state s1, and outdisk(s2) denotes the output
to disk in state s2. We formulate this property as follows:

∀s1, s2, s′1, s′2.
(s1 \ {pKApp,1, sKApp,1}) = (s2 \ {pKApp,2, sKApp,2})
∧R(s1, in

App, s′1) ∧R(s2, in
App, s′2)

∧ (¬S(outdisk,1(s′1)) ∨ ¬S(outdisk,2(s′2)))⇒
(outdisk(s′1) = outdisk(s′2)) (5.16)

UCLID took about two seconds to prove this property. An important caveat is that we
only prove this property for writes that the CloudProxy initialization code of App makes via
the system call interface. The soundness of this proof relies on the model validation proof;
model validation would prove that we have captured all possible file writes in our model.
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Chapter 6

Model Validation

Although we have proved the security properties of CloudProxy on the formal UCLID model,
we are left with an important question: is the model a sound abstraction of the original
system? A valid model must encode all behaviors that are allowed in the original system.
We have made first steps in using KLEE [7] to validate our UCLID model against the C++
implementation, using techniques in [26].

Since we do not precisely model all computation within TCService (crypto libraries are
abstracted away via axioms), we need to argue that the unmodeled code does not affect the
subset of TCService state that we do model. Let V denote the state variables that are present
in our UCLID model. Then, we manually identify code paths that will be pruned away from
our modeling. Finally, we prove that the pruned code does not affect any state variable within
V . This proof uses the Data-Centric Model Validation (DMV) technique from [26]. Once
we have validated our pruning, we must further prove that the model correctly abstracts
the pruned program. This is termed as Operation-Centric Model Validation (OMV) in [26].
Both validation steps are a work in progess.

The entire CloudProxy has about 58k lines of code (LoC), and the code that we are
working on is only about 8k compilable LoC (mainly containing TCService implementation
and initialization code). The cryptographic keys, measurement table, and the pid table in
TCService are our V set, and only approximately 1k LoC modifies V . We perform DMV by
creating a shadow variable for each variable in V , and then assert the values of the state
variables and their corresponding shadow variable are the same right after the pruned code
fragments. As noted in [26], while this check only ensures that the relevant variables are
modified at the boundaries of the pruned code, it is still useful in finding modeling errors.
To run KLEE, we need to change the main function of TCService code to run a bounded
number of loops which services CloudProxy applications requests. These requests are made
symbolic. Other code that we have also made symbolic are the cryptoprimitives outputs
and some of the system calls (such as read()). After this initial effort in DMV, we model
in UCLID the remaining 1K LoC. Completing DMV is still a work in progress. We need to
overcome the scalability issue as our DMV approach is still mostly manual, and KLEE takes
a very long time (more than an hour) to run just one iteration of the loop which generates
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TCService requests.
We encountered several challenges in performing OMV, and delay that to future work.

Some challenges include:

1. Cryptographic primitives validation;

2. Term-level abstraction validation (as compared to using bit-vectors abstraction), and

3. Show that the usage of the uninterpreted functions and predicates are a sound abstrac-
tion of the data structures (for example linked-lists) used in the code.

In general, the validation approach presented in [26] may still be applicable, except with
some minor changes. For instance, we need to convert the tuple of a pointer to some data
and the length of this data into a term during the OMV phase, and show that this conversion
is sound. We may also need to separately prove that the abstractions of data structures are
sound. In Chapter 4, we have described that TCService uses a linked-list data structure to
implement the measurement table. Our validation aim will be to prove that in the context
of TCService operations on this linked-list, abstracting it as an unbounded array in UCLID
is sound. One possible way is to use a program verifier such as Boogie [18]. To perform
validation on cryptographic primitives, we may again need to build a separate model, using
specialized tools for cryptographic reasoning, for validation.
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Chapter 7

Conclusion

In this thesis, we have presented the first formal model of CloudProxy. We use an assurance
case to systematically construct a proof that CloudProxy protects an application’s secrets in
our threat model. The assurance case lists practical assumptions we make about the trusted
computing base of CloudProxy applications. The remaining properties are formalized and
proved in our model. A valuable contribution of this effort is a formal API-level specifica-
tion for future implementations of CloudProxy. We have also uncovered a few unintended
assumptions made by the developers of CloudProxy.

7.1 Ongoing and Future Work

Model validation is a crucial component in our assurance cases, as the proven properties
are only as meaningful as how sound our model abstraction is. We are exploring a model
validation technique that can prove that our model encodes all the behaviours allowed by
the implementation. Currently, we are working on validating our UCLID model using the
techniques proposed in [26].

During modeling, tracing the counterexamples and deriving new (and non-contradicting)
assumptions can be tedious. Therefore, one possible future work is to automatically generate
the weakest assumption given some counterexample traces.

Axioms, which in general are implications, may have universal quantifiers in the an-
tecedents. Proving properties which have such axioms in them may cause UCLID’s quan-
tifier instantiation heuristics to run out of memory. This is particularly evident in cases
which there are more than one variable within the scope of the universal quantifier in the
antecedent. Hence, another possible future work is to look into this problem and perhaps
come up with some new techniques or heuristics to solve this out of memory issue.

Reasoning over cryptographic primitives may require specialized tools such as ProVerif
[2]. For properties that require such reasoning, we plan to model and prove them using
such tools. Our evidences in our assurance case will then involve multiple models and formal
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verification techniques. In this case, Evidential Tool Bus [24] will be a useful tool in managing
these various formal tools.
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