
Automatic Functional Datapath Optimization

Wenyu Tang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-101

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-101.html

May 16, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automatic Functional Datapath Optimization
A System For Digital Circuit Frontend Specification

Wenyu Tang
University of California, Berkeley

wenyu@eecs.berkeley.edu

Abstract
Digital hardware frontend specification is defined by two ex-
tremes - RTL specification and HLS specification. RTL spec-
ification produces highly optimized designs, but requires ex-
tremely verbose low level specification on the part of the de-
signer. On the other hand, HLS specification requires much
less verbose high level specification from the designer, but
does not produce well optimized designs. In this thesis, I
present a middle ground that captures the pros of these two
extremes - a system in which the designer specifies a basic
datapath and uses a tool to automatically apply optimizations
to that basic datapath.

Contents

1 Introduction 1

2 Background 2
2.1 RTL And Its Limitations 2
2.2 Chisel . 2
2.3 HLS And Its Limitations 2

3 Proposed Solution 2

4 Evaluation 4

5 AutoMArch 4
5.1 Input Datapath Restrictions 4

5.1.1 IO Semantics 5
5.1.2 Variable Latency Unit Interface . . 5

5.2 Conventions 5
5.3 Automatic Pipelining 5

5.3.1 Pipelining Options and Specification 6
5.3.2 Circuit Node Graph Creation 6
5.3.3 Pipeline Register Placement 6
5.3.4 Data Hazard Resolution Option De-

tails 8
5.3.5 Pipeline Control Logic Generation . 8
5.3.6 Differences From VLSI Retiming . 10

5.4 Automatic Multi-threading 10
5.4.1 Multi-threading Options and Speci-

fication 10
5.4.2 Fixed vs Dynamic Interleave 10

5.4.3 Circuit Node Graph Creation 11
5.4.4 Pipeline Register Placement 11
5.4.5 State and IO replication 11
5.4.6 Pipeline Control Logic Generation . 11
5.4.7 Example Application 11

6 AutoFAME 12
6.1 FAME Introduction 12

6.1.1 FAME Design Partitioning Details . 14
6.1.2 AutoFAME Features 15

6.2 Input Datapath Restrictions 15
6.3 FAME1 Transform 15

6.3.1 Transformation 15
6.3.2 Example Application 16

6.4 FAME5 Transform 16
6.4.1 Transformation 16

7 Related Work 16

8 Conclusion and Future Work 16

9 Acknowledgements 17

1. Introduction
Over the past 30 years, progress in programming languages
has greatly increased the productivity of software design by
moving low level resource allocation and optimization tasks
away from the programmer to the compiler or interpreter. In
contrast, increase in productivity of digital hardware logic
design has largely stalled after the transition from schematic
based specification to to Register Transfer Level (RTL) spec-
ification languages such as Verilog or VHDL for front end
specification.

While RTL specification succeeds in providing the dig-
ital logic designer with a specification that is higher level
than transistor level or gate level schematic specification,
RTL specification is still quite a low abstraction level and
requires the designer to provide a very detailed specification
of the design. High Level Synthesis (HLS) has been an at-
tempt to increase the productivity of digital logic designers
by going to a much higher level of specification than RTL
and automatically synthesizing all of the details of the de-
sign. However, the higher abstraction level of HLS comes at

the cost of unsatisfactory performance, area, and power char-
acteristics due to inefficiencies introduced in the automatic
logic synthesis process.

In this thesis, I propose a system in which the designer
specifies a basic functional datapath in a RTL like man-
ner and selects optimizations that should be applied to the
design, which will then be automatically applied through
a tool. This middle ground method increases digital logic
designer productivity without producing designs with unac-
ceptable performance, power, and area characteristics like
HLS. I implement two examples of such a system, Au-
toMArch and AutoFAME, and I describe their implemen-
tation and example applications.

2. Background
2.1 RTL And Its Limitations
In a RTL specification, digital logic designers specify a syn-
chronous digital circuit in terms of data flow between syn-
chronous state elements such as flip-flops and SRAM mem-
ory blocks. There are generally two types of variables in
RTL languages: registers and wires. Registers correspond to
synchronous state elements and wires correspond to the out-
put of intermediate combinational logic blocks. The designer
specifies the state elements needed by declaring registers and
specifies the combinational logic that connects the state ele-
ments by using conditional assignment operators along with
arithmetic operators on registers and wires declared within
the design. This RTL specification is then synthesized into a
gate level specification through a synthesis tool and then fed
into the physical design portion of the IC design flow.

The first limitation of RTL specification is that main-
stream RTL languages, such as Verilog and VHDL, are
based on discrete event driven simulation languages and the
syntax and semantics of discrete event driven simulation lan-
guages are not entirely natural for specifying digital logic.
For example, state elements are not explicitly defined, but
are instead inferred from variables that are specified to up-
date when a clock signal transitions. This hurts source code
readability because in order to understand a design specified
by the RTL, the user needs to not only parse the semantics
of the RTL, but also mentally reason about the circuit con-
structs implied by the RTL. The semantics of discrete event
driven simulation languages also allows the designer to cre-
ate un-synthesizable constructs in RTL. This leads to RTL
designs that pass tests in simulation, but cannot be physically
realized as a circuit.

The second limitation of RTL specification is that al-
though RTL specification frees the designer from specify-
ing every transistor or logic gate and their connections, RTL
specification is still very tedious and verbose as the designer
has to worry about exactly how every state elements updates
every clock cycle. This also makes it easy for the designer
to lose the big picture algorithmic view of the design as the
designer is bogged down in the implementation details. The

functional behavior of the design is obfuscated by the imple-
mentation details of the optimizations applied to the design.

2.2 Chisel
The first limitation of RTL mentioned in the above section
can be addressed through use of RTL languages that are not
based on discrete event driven simulation languages. One
example of this is Chisel[1], a RTL language developed by
UC Berkeley. Unlike Verilog and VHDL, it specifies digital
circuits through explicit circuit component construction, not
inference based on a discrete event simulator semantics. This
makes it more intuitive to specify digital design through
RTL because there is a very simple mapping from the RTL
constructs to physical circuit constructs. Additionally, all
RTL designs written in Chisel that pass tests in simulation
can be physically realized as a circuit.

While Chisel does not address the second limitation of
RTL specification, it will be used to specify the base func-
tional datapath for the digital hardware frontend system pro-
posed in this thesis.

2.3 HLS And Its Limitations
High Level Synthesis (HLS) has been an attempt to address
both limitations of RTL specification mentioned in 2.1 by
going to a higher level of specification than RTL. In this
paradigm, the designer specifies the logic design as a data
flow graph through sequential variable updates in a C like
language, which frees the designer from having to specify
the cycle by cycle operation of a specific datapath. Then a
HLS tool maps the dataflow graph to a datapath based on
performance, power, and area constraints and synthesizes
a gate-level description of the design from the high level
specification, which is then fed into the physical design
portion of the IC design flow.

Unfortunately, designs synthesized from HLS specifica-
tions generally fail to have acceptable performance, power,
and area characteristics compared to equivalent designs syn-
thesized from RTL specifications. Much effort has been put
into making the synthesis process produce more optimal de-
signs, but rapid breakthroughs are unlikely given that sev-
eral subproblems in the process have been proven to be NP-
Hard[7].

3. Proposed Solution
HLS produces designs with unacceptable performance,
power, and area characteristics because the synthesis tool
has to solve the computationally difficult problem of formu-
lating a datapath that executes the dataflow graph and fits
within the given performance, power, and area constraints.
HLS tools do synthesize well optimized designs for specific
patterns that occur in the high-level specification, so hard-
ware designers working with HLS find themselves tuning
high-level code to make specific synthesis tools produce ex-
actly the datapath they want.

BaseGDatapathGSpecifiedGinGRTL OptimizationGSpecification

OptimizedGDatapath

AutomaticGoptimizationGtool
appliesGspecifiedGoptimizationsG
toGbaseGdatapath

RestGofGASICG
ToolGFlow

NodeGGraphGRepresentation
GofGBaseGDatapath

Figure 1: General Tool Flow

This is clearly a case of automation trying to do too much.
The HLS tools have a hard time formulating optimized data-
paths, so the designers have to essentially tell the HLS tools
what datapath they should use in a roundabout way by tun-
ing the high-level specification. Clearly, designers would be
more productive if they can specify the datapath directly.

It seems like this conclusion tells us that designers should
just do logic design using RTL in the traditional manner.
However, much of traditional RTL specification deals with
issues outside of simple datapath design. Logic designers
spend much of their time specifying additional logic re-
quired to make the datapath fit performance, power, and
area constraints. Some common optimization techniques in-
clude time-multiplexing functional units, pipelining, multi-
threading, out-of-order execution, etc. These commonly
used datapath optimization techniques can be captured as
algorithms and applied automatically.

This thesis proposes a system in which the designer cre-
ates a RTL specification of a functionally correct base datap-
ath with no optimizations implemented and separately spec-
ifies a series of optimizations to be performed on the datap-
ath. Then automatic tools that know how to generically ap-

ply common optimization techniques can apply the specified
optimizations to the base functional datapath and produce
an optimized gate level specification to be fed into the next
step in the IC design flow which may be physical design,
FPGA synthesis, or simulation. This work flow is shown in
Figure 1. This system of specification will hence be referred
to as Automatic Functional Datapath Optimization (AFDO).
AFDO allows the designer to specify a digital circuit with
higher productivity than RTL specification without incurring
the performance, power, and area penalties of HLS specifi-
cation.

The automatic optimization tools discussed above work
in the following manner. First, some initial processing trans-
forms the RTL specification of the base datapath into a node
graph data structure, where each node represents a digital
circuit component (wire, combinational logic block, or state
element) and each node contains input and consumer point-
ers to other nodes representing the topology of the circuit.
Second, the tools implement the specified optimizations by
modifying this node graph - creating new nodes, changing
input/consumer pointers, copying existing nodes, etc. Third,

the tool outputs the modified circuit in some specified repre-
sentation.

Although AFDO can be implemented if the base datap-
ath is specified in discrete event simulation based RTL lan-
guages such as Verilog or VHDL, it is better for the base dat-
apath to be specified in a structural construction based RTL
language such as Chisel. First, as mentioned in 2.1, discrete
event simulator semantics are not particularly well suited
for digital hardware specification and create a host of prob-
lems for the designer. Second, creating a node graph repre-
sentation of the base datapath is much easier in structural
construction based HDL languages such a Chisel as there
is a one to one mapping between language construct and
nodes in the node graph. In the case of Chisel, the automatic
tools can directly operate on Chisels internal node graph
data structure. In discrete event simulation based RTL lan-
guages, we have to first send the RTL specification through
a gate level synthesis tool before we can construct the node
graph data structure. This makes preserving names difficult
and prevents the designer from using RTL level simulations
of the automatically optimized designs. All of the automatic
optimization tools discussed in the following sections apply
transformations to base datapaths specified in Chisel or a re-
duced Chisel like RTL specifically designed to demonstrate
AFDO that will be referred to as Scalpel.

AFDO increases logic designer productivity by address-
ing both limitations of RTL specification covered in 2.1.
By using a structural construction based RTL language like
Chisel to specify the base functional datapath, the problems
caused by discrete event simulator semantics are eliminated.
By allowing the designer to specify only the base functional
datapath, which is generally much less complex than the op-
timized design, and applying optimizations automatically,
source code verbosity and algorithm obfuscation is elimi-
nated. Now the designer can specify designs much faster and
with fewer errors as he only has to specify the simple base
functional datapath and use automatic tools to systematically
apply the desired optimizations. Additionally, AFDO allows
designers to more easily do design space exploration as they
can produce new design points by simply selecting differ-
ent optimization options for the automatic tools to apply in-
stead of rewriting obfuscated RTL for each new design point.
For example, adding a pipeline stage to a processor design
in RTL is generally non-trivial in RTL because the pipeline
control logic is entwined within the datapath specification.
If the designer specifies a base functional 1 stage version of
the processor and uses an automatic tool to pipeline the pro-
cessor, adding a pipeline stage would be trivial on the part
of the designer as he would simply have to tell the automatic
pipeline tool to generate one more stage.

At the same time, AFDO retains performance, power, and
area benefits of RTL specification by preserving a high level
of correlation between language constructs and the gener-
ated hardware. The generated datapath is simply the base

functional datapath modified with the designer specified op-
timizations. Unlike HLS, the designer knows the number and
types of functional units used in the datapath as well as the
state elements that are present in the datapath along with how
those state elements are updated.

4. Evaluation
I implement two automatic optimization tools, AutoMArch
and AutoFAME, to demonstrate how the AFDO specifica-
tion system could work. The first tool AutoMArch automat-
ically applies in order pipelining and multi-threading to a
base functional datapath. The second tool AutoFAME auto-
matically applies the FPGA emulation optimizations intro-
duced in the A Case for FAME: FPGA Architecture Model
Execution paper [11] to a base functional datapath.

5. AutoMArch
AutoMArch is capable of creating multi-threaded in-order
designs of any number of threads and any number of pipeline
stages that is functionally equivalent to n-copies of the input
base functional datapath, where n is the number of threads.
The functionality of the input base datapath is defined by
its input output behavior and its next state update behav-
ior. Two designs are defined as functionally equivalent if
given the same starting architectural state and sequence of
inputs, the two designs transition to the same ending archi-
tectural state and produce the same sequence of outputs. Ar-
chitectural state elements are defined as the state elements
present in the input base functional datapath. AutoMArch
always preserves the state elements present in the input base
functional datapath, but may add additional state elements
such as pipeline registers that are not considered architec-
tural state. AutoMArch takes an input base functional data-
path specified in Scalpel and outputs the multi-threaded in-
order design as a Chisel source file, which can be feed into
various simulation, FPGA, and ASIC flows.

5.1 Input Datapath Restrictions
The input base functional datapath can be an arbitrary FSM
specified in Scalpel with the following restrictions:

(1) The input FSM must communicate to the outside
world through ready/valid ports

(2) The designer cannot use input valid or output ready
signals as inputs to any part of their circuit

(3) Any functional units that may take more than one
clock cycle to return responses(caches, multipliers, dividers,
etc) must be accessed through the Variable Latency Unit
Interface discussed below.

Condition (1) is necessary because the transformed de-
sign will have different input to output latency than the orig-
inal design depending on what stages the input and output
ports are placed in the pipeline. Additionally, some pipeline
stages may contain bubbles or be stalled and it would be
incorrect to receive inputs or produces outputs under these

Figure 2: Single Thread View of Variable Latency Unit
Interface Black wire are user facing IO, red wires are tool
facing IO

conditions. Thus by enforcing that only ready/valid IO ports
are used, correct IO behavior can be defined by only the se-
quence of valid inputs tokens accepted and sequence of valid
outputs tokens produced, without any restriction on the ex-
act timing of when the input tokens are accepted and output
tokens are produced.

5.1.1 IO Semantics
When input ready or output valid is driven high by the in-
put FSM, this implicitly signals to the tool that the input
FSM requires the use of the input or output port on the cur-
rent state update. Thus, the tool generates logic that exam-
ines the input ready or output valid and stalls the pipeline if
the corresponding input valid or output ready is not driven
high by external modules. The designer should design the
input FSM so that input readies and output valids are only
driven high when absolutely necessary to avoid unnecessary
stalling the automatically multi-threaded and pipelined ver-
sion of the circuit.

5.1.2 Variable Latency Unit Interface
In order to accommodate caches and long latency arithmetic
units in the base functional datapath specification that does
not allow any optimization or control logic to be imple-
mented, the tool provides the Variable Latency Unit Inter-
face. The designer should access any caches or long latency
arithmetic units through a Variable Latency Unit Interface
and treat that Variable Latency Unit Interface like a piece of
combinational logic in the input FSM specification. The de-
signer should not use the Resp Pending port of the Variable
Latency Unit Interface to drive any part of their circuit and
should pretend that the Variable Latency Unit Interface al-
ways gives a valid response immediately. The tool will auto-
matically generate control logic that deals with the Variable

Latency Unit Interface not immediately outputting a valid
response.

When the tool performs the multithreading transforma-
tion, each Variable Latency Unit Interface in the input min-
imal FSM is replicated n times, where n is the number of
threads. It is up to the designer to create glue logic that
deals the copies of the Variable Latency Unit Interfaces in
a top level module that instantiates the automatically multi-
threaded module. The designer can instantiate n copies of the
functional unit, one for each Variable Latency Unit Interface,
or can create additional logic that multiplexes all copies of
the Variable Latency Unit Interface onto a single functional
unit.

5.2 Conventions
State Element Partitioning

State elements in the input FSM will be considered as
multiple circuit components. For singular registers, the read
output is considered a separate component from the write
data and write enable inputs and will be referred to as the
register’s read port. The write data and write enable input is
considered together as a single circuit component and will
be referred to as the register’s write port. For memories,
which could be either an array of registers or a SRAM block,
each read port and each write port is considered a separate
component.

This partitioning of the state elements into separate read
and write ports make it easier for AutoMArch to analyse
the input datapath because it allows the datapath to viewed
as a acyclic circuit component graph in which data flows
from the state element read ports and input pins through
combinational logic nodes into the state element write ports
and and output pins.

Pipeline Terminology
Traditionally, in order pipelining is discussed with re-

gards to processors or stateless combinational units. Pipelin-
ing stateless combinational units is trivial as there are no
inter-pipeline stage dependencies. When pipelining proces-
sors, we consider the dependencies between each instruc-
tion flowing down the pipeline when creating pipeline con-
trol logic. However, pipelining as discussed in this thesis can
be applied to arbitrary finite state machines. In this context,
it does not make sense to talk about instruction to instruc-
tion dependencies as we are not only dealing with arbitrary
FSMs. Instead, we will consider there to be a series of next
state updates flowing down the pipeline. When constructing
pipeline control logic, we will consider dependencies be-
tween each next state update flowing down the pipeline.

5.3 Automatic Pipelining
I will first cover the specification and node graph transforma-
tions required to produce a single thread in-order pipelined
datapath from the input base functional datapath. The spec-
ification and node graph transformations needed to create
multi-threaded in-order pipelined datapaths will build upon

the framework established in this section and will be dis-
cussed in 5.4.

5.3.1 Pipelining Options and Specification
First the designer must select the number of pipeline stages
the optimized design should have. This is the minimum spec-
ification needed. If no additional specification is provided,
the tool will automatically place all of the pipeline registers
and default to generating an inorder pipeline that resolves all
pipeline hazards by interlock.

Pipeline Stage Placement By default, the tool places
all of the architectural state element read ports in the first
pipeline stage and the architectural state element write ports
along with the output ready/valid ports in the last pipeline
stage. The tool then automatically places the rest of the
circuit components in a pipeline stage that minimizes the
critical path delay.

If this default placement is not suitable, the designer is
given the option to manually place specific circuit compo-
nents. For example, in a RISC processor design, the PC
register write port should be placed as early as possible in
the pipeline to minimize branch penalty. The designer does
this by annotating circuit components with the desired stage
number in the RTL source file of the base functional data-
path. Then when the tool does the automatic placement of
the circuit components, it will first place the user annotated
components in their specified pipeline stage before it auto-
matically places the rest of the unannotated circuit compo-
nents.

Thus, the designer has the flexibility to manually place
none, some, or all of the circuit components in the base func-
tional datapath. The designer can initially let to the tool place
all of the circuit components and gradually manually place
components as performance issues are discovered. The de-
signer should be aware that manually placing components
constrains the automatic placement algorithm and could po-
tentially lead to suboptimal critical path delays. Thus, the
designer should have a good understanding of the design be-
fore he starts manually placing components.

Pipeline Hazard Resolution In the traditional frame-
work of inorder processor pipeline design, there are three
types of hazards - data hazards, control hazards, and struc-
tural hazards. Only data hazards need to be dealt with by
the tool. Data hazards arise when the next state update in
pipeline stage X reads a state element R that could be written
by a next state update in pipeline stage Y, where Y > X, but Y
<= the stage of the R’s write port. This situation would make
the next state update in pipeline stage X use stale read data
and result in a non functionally correct design. In traditional
pipelined processors, control hazards arise when the next
PC information is not available soon enough for branch and
jump instructions. This is really just a data hazard on the PC
register and does not need to be considered separately. Like-
wise, in traditional pipelined processors structural hazards
arise when instructions in different stages of the pipeline

need to write to the register file at the same time, but there
is only one register file write port. This cannot happen in
AFDO because the input base functional datapath does not
have multiple pipeline stages and the tool will not generate
logic to have instructions at different pipeline stages write to
the same architectural state element write port.

There are three common ways to resolve data hazards -
interlocking, bypassing, and speculation. Each option has
different performance and area characteristics. The tool gen-
erates logic that implements interlocking by default. The de-
signer may choose bypassing or speculation on a read port
by read port basis by annotating the particular architectural
state element read port they want to be bypassed or specu-
lated in the base functional datapath RTL source. Details of
each hazard resolution option will be discussed in 5.3.4

5.3.2 Circuit Node Graph Creation
Because AutoMArch uses Scalpel to specify the input base
functional datapath, it does not need to do any additional
work to create a node graph data structure representing the
input base datapath. Scalpel’s internal data structure already
uses a node graph to represent the design. All IO pins,
wire, logic gates, and state element read and write ports
are represented as individual nodes and all nodes maintain
a list of their inputs and a list of their consumers. This node
graph is convenient for AutoMArch to use directly because
it follows the conventions in 5.2 as it uses separate graph
nodes to represent every state element’s read and write ports
and by extension has a acyclic node graph. AutoMArch
modifies Scalpel’s internal node graph data structure directly
and uses Scalpel’s built in elaboration methods to produce
the Chisel source file that represents the final multi-threaded
and pipelined design.

5.3.3 Pipeline Register Placement
The automatic pipelining tool first creates a legal placement
of pipeline registers and then creates a optimized place-
ment by balancing the critical path delay in each stage. The
automatic placement process preserves the user specified
pipeline stage of user annotated base datapath components.

Pipeline Legality
For a pipeline register placement to be legal, it must

satisfy the following conditions:
(1) Every combinational logic node has all input signal

with the same stage number.
(2) The stage number of every combinational logic node’s

output signal is equal to the shared stage number of its input
signals.

(3) There are two ways to determine the stage number
of a node. One way is to trace through the node’s inputs
to a pipeline register and set the stage number of the node
equal to the stage number of that pipeline register. Another
way is to trace through the nodes consumers to a pipeline
register and set the stage number of the node equal to the
stage number of that pipeline register - 1. For all nodes in

the graph, the stage number of the node obtained through
both methods must be the same.

(4) All the read ports of a state element must have the
same stage number and all the write ports of a state element
must have the same stage number. The stage number of a
state element’s read port(s) must <= that state element’s write
port(s).

(5) All of the user facing IO pins of a Variable Latency
Unit Interface must have the same pipeline stage number, as
the designer treats a Variable Latency Unit as a combina-
tional logic unit.

(6) Every input ready/valid IO must have a stage number
<= the minimum stage number of every output ready/valid
IO. (inputs must be placed before outputs)

It is possible that the designer manually annotates the
base datapath in such a way that no legal pipeline register
placement can be produced without changing the stage of
the user specified components. If this is the case, an error is
triggered.

Obtaining a Initial Legal Placement
To make pipeline register placement easier, the tool cre-

ates a slightly modified node graph to represent the input
base datapath. In this modified node graph, all of the read
ports of a state element are merged into one node and all of
the write ports of a state element are merged into one node,
in order to maintain pipeline legality condition (4). Then, all
of the user facing IO pins of a Variable Latency Unit Inter-
face are merged into one node in order to maintain pipeline
legality condition (5). Then all of the pins associated with a
ready/valid port are merged into a single node. Additionally,
a node representing a wire is inserted between all combina-
tional logic nodes in the original design. This ensures that
a pipeline boundary never has to fall across a combinational
logic node, which would be difficult to reconcile with the no-
tion of Pipeline Legality discussed above. All other aspects
of the Scalpel node graph remain the same.

In this node graph, the register readports are source
nodes(which have no inputs) and all architectural state el-
ement write ports and output ready/valid ports are sink
nodes(which have no consumers). All nodes in the input
base datapath can be reached through the source nodes’ con-
sumer pointers, with the exception of nodes driven only by
constants, which don’t need to be considered in the pipeline
register placement process. All nodes in the input base dat-
apath can be reached through the sink nodes’ input point-
ers. The tool produces the initial legal pipeline placement
by propagating stage numbers out from the source nodes
to their consumers and the sink nodes to their inputs in a
pseudo breadth-first-search (BFS) manner. When two prop-
agation frontiers with different stage numbers meet at the
same node, propagation down that path stops and pipeline
registers are inserted at that node. The source and sink nodes
are guaranteed to have pipeline stage numbers at the be-

ginning of the process, whether through user annotation or
through the defaults mentioned in 5.3.1

We must maintain the following conditions during the
pipeline stage propagation process:

(1) Adjust the propagation rates of each propagation fron-
tier so that two different propagation frontiers never meet at
a combinational logic node and always meets at a wire node,
because it does not make sense to split a combinational logic
node in half with a pipeline register.

(2) The stage number propagated to a combinational logic
node with multiple inputs must be the maximum of the stage
numbers of all of its inputs. If this was not maintained, we
would have some inputs of the combinational logic node
have a greater stage number than the stage number of the
output of the combinational node, which violates 2nd con-
dition of Pipeline Legality. This also means that we cannot
propagate to a Chisel node with multiple inputs from the in-
put side until all of its inputs have been propagated to.

(3) The stage number propagated to a combinational logic
node with multiple consumers must be the minimum of the
stage numbers of all of its consumers. If this was not main-
tained, we would have some consumers of the combinational
logic node have a smaller stage number than the stage num-
ber of the output of the combinational node, which cause
that consumer to violate the 3rd condition of Pipeline Le-
gality. This also means that we cannot propagate to a Chisel
node with multiple consumers from the consumer side until
all of its consumers have been propagated to.

Obtaining an Optimal Placement
After a legal pipeline register placement is obtained, the

tool automatically optimizes the pipeline register placement
with regards to critical path delay by balancing out the criti-
cal path length in each pipeline stage.

It does this by first assigning a delay value for each
node in the node graph. In the current implementation, a
naive assignment is used. All combinational logic nodes
are assigned a delay of 1.0 and all wires are assigned a
delay of 0.0. Memory read ports as well as Variable Latency
Units are also assigned a delay of 1.0. A more sophisticated
assignment based on the delay data collected from ASIC
tools could be used, but this naive assignment is mostly
sufficient because VLSI retiming can be applied on top of
the pipeline register placement performed by the tool. Thus,
the pipeline register placement optimization only has to be
approximately correct to produce good critical path delay
once the design is pushed out through the ASIC design
flow. Additionally, real ASIC delay characteristics cannot
be fully captured by a static assignment of delay values to
each node because they are highly dependent on gate level
optimizations performed by the ASIC tools, which varies
per design, as well as wire delays, which are dependent
the layout of the circuit. So putting too much effort into
assigning highly accurate delay values to nodes is futile.

Then, the tool uses the following pressure based algo-
rithm to move the pipeline stage boundaries:

(1) The tool finds the critical path in each pipeline stage
and calculates their delays.

(2) On each pipeline stage boundary, the side with the
longer critical path delay “pushes” the boundary towards the
other side. This “push” is accomplished by taking the end
node from the critical path on the side with the longer critical
path delay and moving it across the pipeline boundary.

(3) Repeat until the maximum critical path of all the
stages stops decreasing.

5.3.4 Data Hazard Resolution Option Details
Data hazard resolution options are selected on a read port per
read port basis. Every read port of every architectural state
element can have a different data hazard resolution option.
By default, data hazards on every read port is resolved by
interlocking and the designer can annotate the read ports
whose data hazards they want to be resolved by bypassing
or speculation.

Interlocking
Interlocking is the simplest way to resolve data hazards.

When the next state update at stage X has the possibility of
using stale read data due to a next state update at stage y >

x writing to an architectural state element being read by the
next state update at stage X, we simply stall the pipeline at
stage X and inject bubbles into stage X + 1 until the next
state update at stage y flows down the pipeline and finishes
writing to the architectural state element. Interlocking has
the lowest cost in terms of area and cycle time, but has
the highest cost in terms of performance because it inserts
bubbles into the pipeline whenever a data hazard occurs.

Bypassing
Bypassing allows data hazards to be resolved with fewer

bubbles inserted into the pipeline if the write data and write
enable signal of the contested architectural state element is
earlier than the stage of the write port by inserting muxing
the read data pin of the read port with the write data signal
as soon as it is available. If the write data and write enable
signals are available in the stage immediately after the read
port, no bubbles need to be inserted at all. If the write data
and write enable signals are only available at the stage of the
write port, then bypassing does not produce fewer bubbles
than interlocking. Compared to interlocking, bypassing has
higher cost in terms of area and cycle time due to the bypass
network, but has lower cost in performance because inserts
fewer bubbles into the pipeline.

In order to select bypassing as the data hazard resolution
option, the designer simply annotates the desired read port
as bypassed in the RTL source file of the base functional
datapath.

Speculation
For certain architectural state elements such as the PC

register in RISC processors, interlocking is not acceptable
because of the performance penalty and bypassing does not

help because the write data signal of the PC register’s write
port is not immediately available. In these cases, it is de-
sirable to speculate on the next read value of the architec-
tural state element and then kill next state updates present in
the pipeline between the stage of the read port and the stage
of state element write port, including the next state update
present in the stage of the read port, if the speculated value
is determined to be incorrect later.

Control logic generation for arbitrary speculation is very
complex, so the tool places the following restrictions on
what kind of speculation maybe performed:

(1) Only the read ports of registers maybe speculated
upon.

(2) There may only be one speculated register read port
per pipeline stage.

(3) Assuming the stage of a speculated read port is stage
X and the stage of the corresponding write port is stage Y,
there may not be IO ports, Variable Latency Units, archi-
tectural state element write ports, and other speculated read
ports present in the stages between stage X and stage Y, in-
clusive of stage X.

The user specifies that a register read port should be spec-
ulated upon in by annotating the desired read port as specu-
lated in the RTL source file of the base functional datapath.
The user creates a speculative clone of the register associated
with the read port speculated upon and creates the update
logic for that speculative clone register in the RTL source of
the base functional datapath. Then the user uses some anno-
tations to label this clone register as the speculative clone of
the original register. The tool will generate logic that muxes
the read data port of the original register with the read data
port of the speculative clone register. The read data from the
speculative clone register will be chosen except on the clock
cycle immediate after a mispredict. During that cycle, the
data held in the speculative clone register is synced with the
correct data in the original register. Mispredicts are detected
by pipelining the speculative read data until the stage of the
register write port. If the speculative read data at the stage
containing the next state update immediately after the next
state update present in the write port state is different than
the actual write data in the write port stage, all stages be-
tween the read port stage and the write port stage, inclusive
of the read port stage, are killed.

5.3.5 Pipeline Control Logic Generation
After the tool places the pipeline registers, it then automati-
cally generates the pipeline control logic that keeps the func-
tional behavior of the pipelined data path the same as the
functional behavior of the base input circuit. The pipeline
control logic will need to deal with both the availability
of valid tokens at the ready/valid IO ports as well as the
data hazards introduced by pipelining. I will first present
the scheme necessary to generate control logic that deals
with the availability of IO ports and handles all data hazards
through interlocking. Then I will present the control logic

r w
we

R

D

V

R

D

V

INPUT Ready/Valid IO OUTPUT Ready/Valid IO

Valid Valid Valid

Stall we we

Stall

no RAW

no IOBusy

no RAW

no IOBusy

no RAW

no IOBusy

no VarLatIOBusy no VarLatIOBusy

Not Stall

Valid

Not Stall

Valid

Not Stall

Valid

no VarLatIOBusy

no RAW

no IOBusy

no VarLatIOBusy

next stage stall no RAW

no IOBusy

no VarLatIOBusy

r w
we

R

D

V

R

D

V

INPUT Ready/Valid IO OUTPUT Ready/Valid IO

Figure 3: Basic interlocking control logic generated for a 3 stage pipeline. The combinational logic of the original input
datapath is not shown for clarity.

needed for bypassing and speculation as modifications on
top of the basic interlocking scheme.

The following signals are generated in the basic interlock-
ing scheme:

IO Busy Signals
An IO port is considered busy if the input ready/output

valid signal is driven high, which implicitly signals that the
data from this port is needed to be consumed/produced,
and the input valid/output ready signal is driven low by an
outside module, which indicates that the port is not available.

VarLatIO Busy Signals
A Variable Latency Unit is busy if its RespPending port

is driven high.

RAW Hazard Signals
A read port belonging to stage X which has correspond-

ing write ports in stage Z has a RAW hazard signal for ev-
ery stage Y, write port W pair, where X < Y <= Z and 0 <

W < number of corresponding write ports. A read
port is consider to have a RAW hazard for stage Y, write port
W if there is a valid next state update in stage Y and there
is a possibility that the next state update in stage Y will do a
write to the state element associated with the read port at the
same address as the read address at stage X. For registers,
the read port has a RAW hazard for stage Y, write port W if
the version of the write enable signal of write port W at stage
Y is high or the write enable signal is produced after stage Y.

For memories, the read port has a RAW hazard for stage Y,
write port W if the read enable is high AND (the version of
the write enable in stage Y is high or the write enable signal
is produced after stage Y) AND (the read address equals the
version of the write address in stage or the write address is
produced after stage Y).

Valid Signals
The tool generates a valid signal for each pipeline stage.

Stage X is currently valid if stage X-1 was valid on the
last clock cycle, no state element read ports in stage X
has a RAW hazard, no IO port in stage X is busy, and
no Variable Latency Unit in stage X is busy. The input
ready signals, output valid signals, Variable Latency Unit
Req Valid signals, and state element write enable signal
are masked with the valid signal for the pipeline stage they
belong in.

Was Valid Signals
In order to determine if any pipeline stage was valid on

the last clock cycle, the valid signal of every stage is fed into
a register. The output of this register is known as the was
valid signal. Stage X’s was valid signal is fed into the AND
gate driving the valid signal of stage X+1.

Stall Signals
The tool generates a stall signal for each pipeline stage.

When a pipeline stage is stalled, the contents of that pipeline
stage do not progress into the next pipeline stage. The
boolean equation for stage X’s stall signal = stage X + 1
is stalled OR (stage X was valid last cycle AND (a read port
in stage X+1 has a RAW hazard OR a IO port in stage X+1
is busy OR a Variable Latency Unit in stage X+1 is busy)).
The input ready signals, output valid signals, Variable La-
tency Unit Interface Req Valid signals, and state element
write enable signal are masked with the valid signal for the
pipeline stage they belong in.

The above scheme is illustrated in Figure 3
In order to implement bypassing, the above scheme is

modified in the following way. The RAW hazard signals be-
longing to read ports that are specified to be bypassed are not
fed into the AND gate driving the stage valid signal. Instead,
the RAW hazard signals are used as the select signals of the
bypass muxes placed in front of the bypassed read ports.

In order to implement speculation, RAW hazard signals
belonging to read ports that are specified to be speculated
upon are removed. Kill signals are generated for every stage
between the read port stage and the associated write port
stage, inclusive of the read port stage. Every kill signal is
driven high when a mis-speculation is detected. The kill
signals of each stage are then fed into the AND gate driving
the stage valid signals.

5.3.6 Differences From VLSI Retiming
The automatic pipelining ability of AutoMArch appears to
be similar to well known VLSI Retiming methods, but it is
much more powerful. VLSI Retiming methods are only ca-
pable of adding pipeline stages to purely combinational dat-

apath or moving registers around in a manually pipelined se-
quential datapath. It is not capable of adding pipeline stages
to an unpipelined sequential datapath and the way it can
move registers around in a manually pipelined sequential
datapath is constrained by the placement of the manually
constructed pipeline control logic. AutoMArch is capable
of adding pipeline stages to arbitrary sequential datapaths
as long as they follow the restrictions in 5.1. Additionally,
AutoMArch has full freedom to place the pipeline registers
in sequential datapaths because it can generate the correct
pipeline control logic for any legal pipeline register place-
ment.

5.4 Automatic Multi-threading
The specification and node-graph transformations needed
for producing a multi-threaded in-order datapath from a base
functional datapath builds upon the framework established in
5.3. The multi-threaded pipelines produced by AutoMArch
have all of their architectural state elements, the IO ports,
and the Variable Latency Unit IOs replicated n times, where
n is the specified number of threads, and the combinational
logic is not replicated. From the outside world, the opti-
mized datapath will be functionally equivalent to n-copies
of the original base datapath, but the optimized datapath re-
quires much less than n-times the area, where n is the num-
ber of threads. The multi-threaded datapaths produced in
this manner also obtain better throughput/area than the base
functional datapath in the right conditions because multi-
threaded datapaths can get rid of next state update to next
state update data dependencies and can hide the long access
latencies of functional units wrapped in Variable Latency
Unit Interfaces.

5.4.1 Multi-threading Options and Specification
In addition to the pipeline configuration options discussed
in 5.3, the designer can specify the number of threads they
want and whether to use fixed or dynamic interleave thread
scheduling policies.

5.4.2 Fixed vs Dynamic Interleave
In fixed interleave, the tool uses a fixed counter to select the
next thread to wake up. The tool enforces that the number
of threads is greater than or equal to the number of pipeline
stages, so there can not be any data hazards between any two
transactions in the pipeline because there is always at most
one transaction from each thread in the pipeline. This allows
the tool to not generate the data dependency check and
resolution logic. Additionally, in fixed interleave, the tool
does not generate logic to retry a transaction if it encounters
a Resp Pending from a Variable Latency Unit Interface.
Instead, the whole pipeline stalls. Fixed interleave provides
good performance at low area and cycle time cost if the
majority of the pipeline stalls will be caused by data hazards
in the pipeline and Variable Latency Unit stalls are short or
infrequent.

In dynamic pipelining, the tool uses a user supplied thread
scheduler that selects the next thread to wake up based on the
status of any long latency functional units in that thread. In
this mode, even if the tool restricts the number of threads
to be greater than or equal to the number of pipeline stages,
data hazards between two transactions in the pipeline can-
not be avoided because the user supplied scheduler is free to
choose any thread order and therefore can place more than
one transaction from each thread in the pipeline. Addition-
ally, in dynamic interleave, the tool generate logic to retry
a transaction if it encounters a Resp Pending from a Vari-
able Latency Unit Interface and does not stall the pipeline.
Dynamic interleave is required to get good performance if
Variable Latency Unit stalls are long or frequent.

5.4.3 Circuit Node Graph Creation
The circuit node graph creation process discussed in 5.3.2
does not need to be modified to accommodate multi-threading.

5.4.4 Pipeline Register Placement
The pipeline register placement process discussed in 5.3.3
does not need to be modified to accommodate multi-threading.

5.4.5 State and IO replication
Given a user specification of n threads, the tool first repli-
cates the IO ports the architectural state elements n times.
The input ready signals, output data signals, and the out-
put valid signals of the replicated IO elements are driven by
the corresponding original IO port signals. The state element
write data signals, and state element write enable signals of
the replicated state elements are driven by the corresponding
original state element write signals.

A mux is placed in front of the input data signals and all
consumers of the original input data signal is now driven by
this mux. Similarly, a mux is placed in front of the replicated
state element read data signals and all consumers of the
original read data signal is now driven by this mux. The
select pin on these muxes will be driven by the thread sel
signal generated by the thread scheduler.

5.4.6 Pipeline Control Logic Generation
The schemes for generating pipeline control logic that deals
with both IO port unavailability and the various data hazard
resolution strategies discussed in 5.3.5 can be modified to
produced multi-threaded in-order datapaths. The following
modifications have to be made:

(1) The thread sel signal generated by the thread sched-
uler has to be pipelined to every pipeline stage.

(2) Input ready signals, output valid signals, Variable La-
tency Unit Req Valid Signals, and architectural state ele-
ment write enable signals are masked with the thread sel
signal, so that the IO and state elements of thread X are ac-
cessed/updated only when thread X is selected.

(3) If dynamic interleave is selected, RAW Hazard signals
for read port R at stage Y are masked with the additional

condition thread sel at stage of R equals thread sel at stage
Y. If fixed interleave is selected, RAW hazards do not need to
be generated at all and interlock would be the only necessary
data hazard resolution option.

(4) If dynamic interleave is selected, the speculative
clone registers need to be replicated just like the architec-
tural registers and the mis-speculation detection logic will
need to signal mis-speculate only when the thread sel of the
pipelined speculated values match the thread sel of the ac-
tual write data and the speculated value does not match the
actual write value.

(4) Additional IO Busy and VarLatIO Busy signals need
to be generated for the replicated IO and Variable Latency
Unit Interface ports for each thread.

(5) IO Busy signals and VarLatIO Busy signals are
masked with the thread sel signal of the stage they belong
to.

(6) If dynamic interleave is selected, kill signals need to
be generated if a Variable Latency Unit signals Resp Pending
and the the thread sel signal of the stage of the Variable
Latency Unit equals the thread num associated with that
Variable Latency Unit.

5.4.7 Example Application
For evaluation of the tool, I created simple RISC processor in
Scalpel and explored the design space of number of threads
(1 - 4), number of pipeline stages (1 - 4), and fixed vs
dynamic interleave. The base RISC processor is a classic
RISC machine that contains a ICache with a miss latency
of 4 cycles, which is accessed through a Variable Latency
Interface, and a magic single cycle DMem.

In order to evaluate how effective the generated multi-
threaded designs are at hiding the latencies of long latency
functional units in general, which is one of the primary ad-
vantages of multi-threading, the ICache is made to pseudo
randomly miss based on the output of a LFSR. Each thread
accesses its own private ICache through the Variable La-
tency Unit Interface. This gives a representative evaluation
of multi-threaded design effectiveness regardless of the qual-
ity of the benchmark program used on the RISC processor.

The metric for performance used is Throughput/Area,
which can be broken down into Task/Cycle∗(Cycle/T ime)/Area.
Task/Cycle and (Cycle/T ime)/Area separately are shown
separately from the overall Throughput/Area for each de-
sign point. Cycle counts are obtained from running an arith-
metic benchmark on each design point in Chisel’s cycle ac-
curate C++ simulator. The cycle time and area numbers were
obtained by pushing each design point through synthesis on
a 40nm technology. No VLSI retiming was used.

Dynamic Interleave Results The trends shown in Fig-
ure 4. are generally expected. Cycle time should decreases
when number of stages increases. Because no retiming was
used, this trend shows that the automatic pipeline register
placement is working well. Cycle time also should not de-
pend significantly on number of threads. It seems that for

this design, the 3 pipeline stages is the tipping point before
the delay added by pipeline register setup and clk-q times
out weigh the decrease in delay caused by a shorter combi-
national path.

The trends shown in Figure 5. are generally expected.
Area used should increase when either number of threads
or number of stages increase.

The trends shown in Figure 8. are generally expected.
Task per cycle increases as the number of threads increases
due to fewer data dependency hazards and masking of
ICache miss latency. Task per cycle decreases as the number
of pipeline stages increases beyond the number of threads
because the pipeline becomes over saturated and the threads
beging to interfere with each other.

The trends shown in Figure 9. also make sense. For any
number of threads, (Cycle/T ime)/Area peaks at 3 stages
because going from 3 stages to 4 stages with any number of
threads causes a increase in area without decrease in cycle
time. (Cycle/T ime)/Area decreases as number of threads
increase because adding more threads increases the area and
decreases the clock frequency.

Multiplying Figure 8. and 10. togther, we obtain Figure
10. From this figure, we can see that the 2 thread, 3 stage
designs obtains the best overall Throughput/Area.

Fixed Interleave Results The cycle time and area char-
acteristics shown in Figure 6. and Figure 7 are very similar to
the cycle time and area characteristics of the dynamically in-
terleaved pipelines. Although we do see slightly smaller area
in the fixed interleave pipelines when the number of stages
is high, we don’t seem to get much savings using fixed inter-
leave for this base design.

Because the fixed interleave policy stalls the entire pipeline
whenever a Variable Latency Unit Interface signals Resp
Pending, the number of threads and number of pipeline
stages makes a negligible impact on Task per cycle as shown
in 11.

Figure 12. shows that the (Cycle/T ime)/Area statistics
are very similar to the (Cycle/T ime)/Area statistics for
dynamic interleave. This tells us that the additional control
logic required by dynamic interleave plays a negligible role
in determining area and delay.

Multiplying Figure 11. and 13. togther, we obtain Figure
13. From this figure, we can see that the 1 thread, 1 stage
designs obtains the best overall Throughput/Area. However,
all of the design points have much lower Throughput/Area
than their equivalents with dynamic interleave. Thus, we can
conclude that for the example RISC processor design, the
latency benefits gained from dynamic interleave outweigh
the additional area and delay cost of the more complex
control logic in dynamic interleave.

Figure 4: Dynamic Interleave Cycle Time The X-Axis
indicates the number of pipeline stages. The Y-Axis is in
units of ns.

Figure 5: Dynamic Interleave Area The X-Axis indicates
the number of pipeline stages. The Y-Axis is in units of um2.

6. AutoFAME
6.1 FAME Introduction
FAME, or FPGA Architecture Model Execution is a sys-
tem for efficiently emulating digital circuits on a FPGA
introduced in the A Case for FAME: FPGA Architecture
Model Execution paper [11]. The paper introduces a system
in which the concept of the emulated digital circuit, hence
known as the target machine, is separated from the concept
of the digital circuit that does the emulation of the target
machine, hence known as the host machine. By extension,
in FAME, the concept of time passing in the target machine,
hence known as target time, is separated from the concept of
time passing in the host machine, hence known as host time.

In naive FPGA emulation, the target machine and the host
machine are the same digital circuit. the RTL specification of
the target machine is mapped directly to an FPGA through
vendor tools with no change in the logic design. Because the
characteristics of a FPGA are sometimes significantly dif-
ferent from the characteristics of a ASIC in timing and area
characteristics, it is desirable to use a modified implemen-
tation of the design for emulation on a FPGA. In an mod-

Figure 6: Fixed Interleave Cycle Time The X-Axis indi-
cates the number of pipeline stages. The Y-Axis is in units
of ns. The data points where number of stages > number of
threads are not valid design points for fixed interleave, so
they do not exist on this chart.

Figure 7: Fixed Interleave Area The X-Axis indicates the
number of pipeline stages. The Y-Axis is in units of um2.
The data points where number of stages > number of threads
are not valid design points for fixed interleave, so they do not
exist on this chart.

ified implementation optimized for an FPGA, the host ma-
chine maybe different from the target machine and it may
take more than one or less than one host clock cycle emulate
one target clock cycle.

Using FAME, large digital designs can be broken up into
modules that talk to each other in a decoupled manner. The
partitioned system maintains the same target time behavior
as the original design even though the modules are commu-
nicating in a decoupled manner. Once the original design
is partitioned into decoupled modules, modules can be indi-
vidually optimized for FPGA emulation, with no restrictions
on the host time to target time relationship in each module,
while preserving the same target time behavior of the whole
system as the target time behavior of the original design.

The original design to be emulated is called a FAME0
level design. The original design should be viewed as a set
of FAME0 level modules connected together by registers and

Figure 8: Dynamic Interleave Task/Cycle The X-Axis
indicates the number of pipeline stages. The Y-Axis is in
units of task/cycle.

Figure 9: Dynamic Interleave (Cycle/Time)/Area The X-
Axis indicates the number of pipeline stages. The Y-Axis is
in units of GHz/um2.

Figure 10: Dynamic Interleave Throughput/Area The X-
Axis indicates the number of pipeline stages. The Y-Axis is
in units of (task/ns)/um2.

Figure 11: Fixed Interleave Task/Cycle The X-Axis indi-
cates the number of pipeline stages. The Y-Axis is in units of
task/cycle. The data points where number of stages > num-
ber of threads are not valid design points for fixed interleave,
so they do not exist on this chart.

Figure 12: Fixed Interleave (Cycle/Time)/Area The X-
Axis indicates the number of pipeline stages. The Y-Axis
is in units of GHz/um2. The data points where number of
stages > number of threads are not valid design points for
fixed interleave, so they do not exist on this chart.

Figure 13: Fixed Interleave Throughput/Area The X-
Axis indicates the number of pipeline stages. The Y-Axis is
in units of (task/ns)/um2. The data points where number
of stages > number of threads are not valid design points for
fixed interleave, so they do not exist on this chart.

queues. A FAME0 module naively modified to work as a
module that can be inserted into the partitioned system of
decoupled modules is called a FAME1 level module. Figure
14 shows a FAME0 design being transformed into a FAME1
design. A module that can be inserted into the partitioned
system of decoupled modules and emulates a FAME0 mod-
ule in an abstract manner, such as with a split functional
model/timing model implementation of the FAME0 module,
is called a FAME3 level module. A single module that can
be inserted into the partitioned system of decoupled modules
and emulates n copies of a FAME0 module through multi-
threading is called a FAME5 level module.

6.1.1 FAME Design Partitioning Details
Target time behavior is maintained in the partitioned system
in the following manner. The original design is partitioned
by placing module boundaries across registers and queues in
the target machine. The target machine registers are replaced
by FAME Registers and the target machine queues are re-
placed by FAME Queues. The FAME Register is a FIFO
containing tokens that represent the state of the target reg-
ister at particular target clock cycles. Tokens further ahead
in the FIFO represent the state of the target register at earlier
target clocks. The FAME Queue is a FIFO containing tokens
that represent the state of the target queue at particular target
clock cycles. Tokens further ahead in the FIFO represent the
state of the target queue at earlier target clocks. Both FAME
Registers and FAME Queues are initialized with one token.

It is important to separate these tokens, which represent
one target clock cycle’s worth of information about the target
register or target queue, from the entries in the target queues.
Enqueuing/dequeuing tokens from FAME Registers/FAME
Queues will be referred to as host enqueue/host dequeue
and the host enqueue/dequeue operations will be performed
through manipulating host ready and host valid signals. If a
FAME Register/FAME Queue does not contain any tokens,
it will be referred to as host empty and if a FAME Regis-
ter/FAME Queue cannot accept any more tokens, it will be
referred to as host full. In contrast, enqueueing/dequeue en-
tries from the target queues will be referred to as target en-
queue/target dequeue and the full/empty status of the target
queues will be referred to as target full/target empty.

For every advance of the target clock, each module
consumes a token from its input FAME Registers/FAME
Queues and outputs a token to its output FAME Regis-
ters/FAME Queues. A module may not advance its target
clock if any of its inputs are host empty or if any of its
outputs are host full. Since FAME Registers and FAME
Queues are FIFOs of tokens, tokens are allowed to accu-
mulate within FAME Registers and FAME Queues. Thus,
the target clock can advance in a decoupled manner while
still remaining functionally the same as the original design.

Figure 14: Transforming a FAME0 Design into a FAME1 Design

6.1.2 AutoFAME Features
AutoFAME is capable of creating FAME1 and FAME5 level
FPGA optimized designs given a base functional datapath
specified in Chisel. This is equivalent of automatically trans-
forming a FAME0 level design into a FAME1 or FAME5
level design. The tool performs the required circuit trans-
formations on the Chisel internal node graph and leverages
Chisel’s elaboration steps to output the optimized design as
either a cycle accurate C++ emulator or as a Verilog source
file.

6.2 Input Datapath Restrictions
Because the original design to be emulated should be split by
having module boundaries placed across registers or queues,
the input FAME0 module should have IO ports of the type
RegIO, which consists of a single data pin and indicates that
the IO port should be connected to a register in the original
design, and QueueIO, which consists of a ready pin, a valid
pin, and a data pin, and indicates that the IO port should be
connected to a queue in the original design.

6.3 FAME1 Transform
Given any FAME0 module that follows the restrictions in
6.2 and a user annotation in the Chisel source file containing
the module instantiation of the input FAME0 module that a
FAME0 to FAME1 transformation should be applied, Auto-
FAME will produce a FAME1 version of that module.

Automatically transforming a FAME0 level design into a
FAME1 level design is useful because it allows the FAME0
level design to be interfaced with FAME3 or FAME5 level
designs at the cost of no extra work by the designer.

6.3.1 Transformation
In order to make a FAME0 module work in the partitioned
system of decoupled modules, its RegIOs need to be con-
verted into FAMERegIOs, which attach a host ready and a
host valid pin to the RegIO port in order to interface with
the FAME Registers. Its DecoupledIOs also need to be con-
verted into FAMEDecoupledIOs, which also attach a host
ready and a host valid pin to the DecoupledIO in order to do
host enqueue/dequeues.

Then every state element write enable signal is masked
with a fire target clock signal. The fire target clock sig-
nal is driven low whenever any of the input FAME Reg-

isters/FAME Queues are host empty or any of the output
FAME Registers/FAME Queues are host full.

Then combinational logic is generated to host dequeue
the input FAME Registers/FAME Queues and enqueue the
output FAME Registers/FAME Queues whenever fire target
clock is high.

6.3.2 Example Application
Automatic FAME0 to FAME1 transformation was used to
interface a FAME0 level high performance research RISC
processor used by UC Berkeley’s ASPIRE Lab with a
FAME3 level hardware DRAM model for FPGA emula-
tion. The hardware FAME3 level DRAM model is necessary
to get accurate results for the processor in FPGA emula-
tion because the relative DRAM to processor clock rate on a
FPGA is much higher than the relative DRAM to processor
clock rate on a ASIC. In order to obtain performance fig-
ures accurate to the ASIC implementation in emulation, the
FAME3 hardware DRAM model is used as a intermediary
between the processor and the FPGA DRAM and makes the
FPGA DRAM appear slower to the processor. Additionally,
the FAME3 hardware DRAM model can be adjusted to sim-
ulate a variety of DRAM configurations, which would not be
possible if the processor interfaced directly with the FPGA
DRAM.

6.4 FAME5 Transform
Given any FAME0 module that follows the restrictions in
6.2 and a user annotation in the Chisel source file containing
the module instantiation of the input FAME0 module that a
FAME0 to FAME5 transformation should be applied along
with a specification of how many threads there should be,
AutoFAME will produce a FAME5 version of that module.

Automatically transforming a FAME0 module into a
FAME5 level design is useful because it allows the designer
to conserve area usage on the FPGA if the FAME0 level de-
sign is instantiated many times as the multi-threading only
replicates the state elements and not the combinational logic
in the FAME0 design. Additionally, the multi-threading al-
lows external memory access latencies to be hidden.

6.4.1 Transformation
First, all of the IO ports and the state elements are replicated
n times, where n is the user specified number of threads.

Then, like the FAME0 to FAME1 transformation, the
RegIOs and Decoupled IOs the input FAME0 design are
replaced with FAMERegIOs and FAMEDecoupledIOs.

A IO Ready signal and a Thread Selected signal is gen-
erated by each thread. The IO Ready signal of thread m is
driven high when all of the input ports associated with thread
m are not host empty and all of the output ports associated
with thread m are not host full. The Thread Selected signal
for thread m is high when the thread select id generated by
the thread scheduler equals m.

A fire target clock signal is created for each thread.
Thread m’s fire target clock signal when thread m’s IO
Ready signal is high and thread m’s Thread Selected Signal
is high. The write enables of all the state elements associ-
ated with thread m are then masked with the fire target clock
signal of thread m.

7. Related Work
Older work in the area [4][6][5][3][10] generally focus on
automatically verifying pipelined designs based on a given
ISA or describe automatic pipelining system that still require
manual intervention on part of the pipelining process.

Nurvitadhi et al [9] present separate tools T-spec for
transactional datapath specification and T-piper for auto-
matic pipeline synthesis. T-spec is used to describe trans-
actional datapaths as state elements and acyclic next-state
logic blocks that updates those state elements. Users man-
ually annotate all the state elements and next-stage logic
blocks with the pipeline stage number. T-piper analyses the
T-spec design to identify RAW hazards and generate haz-
ard resolution logic. [8] extends the above tool to be able to
generate multi-threaded in-order pipelines. AutoMArch is
different in that the pipeline specification does not require a
entirely separate language. Additionally, my tool is capable
of automatically assigning datapath components to pipeline
stage numbers, which saves a lot of designer specification
and potentially produces more balanced pipelines.

Galceran-Oms [2] present a method to automatically
pipeline synchronous elastic systems. The paper presents a
set of provably correct transformations on synchronous elas-
tic systems and show that it is possible to pipeline a micro
architecture by applying a sequence of such transformations.
AutoMArch is different than the system presented here be-
cause it applies pipelining and multi-threading optimizations
to ordinary finite state machines with a few IO restrictions
rather than to synchronous elastic systems.

8. Conclusion and Future Work
In this thesis, I presented a system for digital circuit frontend
specification named Automatic Functional Datapath Opti-
mization. In this system, the designer specifies a base func-
tionally correct datapath without any optimizations applied
in a RTL like manner and then selects optimization tech-
niques for automatic tools to apply to the base functional
datapath. This system of specification is a middle ground
approach between RTL specification and HLS specification
and tries to capture the conflicting pros of both approaches,
namely high designer productivity and the ability to gener-
ate highly efficient designs in terms of performance, power,
and area at the same time. I implemented two examples of
such a system, AutoMArch and AutoFAME, and presented
example applications of both.

I hope that AutoMArch can be extended to support more
general speculation and that a more general form multi-

threading, where combinational logic is replicated as well
as the state elements can be explored. I also hope that work
can be done to catalogue all of the commonly used digital
circuit optimization techniques so that they may one day be
implemented automatically

9. Acknowledgements
I developed the beginnings of the system presented in this
thesis as part of a class project along side of Huy Vo. I
would like to acknowledge his work in creating the initial
version of the automatic pipelining tool. I would also like
to acknowledge my advisers Jonathan Bachrach and Krste
Asanović for providing me with guidance and support for
this thesis. This research is supported by DoE Award DE-
SC0003624, and by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227).

References
[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović. Chisel: constructing hardware in a
scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12.

[2] M. Galceran-Oms. Automatic Pipelining of Elastic Systems. PhD
thesis, UNIVERSITAT POLITCNICA DE CATALUNYA, 2011.

[3] J. Higgins and M. Aagaard. Simplifying the design and automating the
verification of pipelines with structural hazards. ACM Trans. Design
Automation of Electronic Systems, 2005.

[4] D. Kroening and W.Paul. Automated pipeline design.
Proc.ACM/IEEE Design Automation Conf., 2001.

[5] M.-C. V. Marinescu and M. C. Rinard. High-level automatic pipelin-
ing for sequential circuits. Proc. Int, Symp. on Systems Synthesis,
2001.

[6] J. Matthews and J. Launchbury. Elementary microarchitecture algebra.
Lecture Notes in Computer Science, 1999.

[7] M. C. McFarland, A. C. Parker, and R. Camposano. The high-level
synthesis of digital systems. In Proceddings of the IEEE, 1990.

[8] E. Nurvitadhi, J. C. Hoe, T. Kam, and S. L. Lu. Automatic multi-
threaded pipeline synthesis from transactional datapath specifications.
In Design Automation Conference, DAC ’10, .

[9] E. Nurvitadhi, J. C. Hoe, T. Kam, and S. L. Lu. Automatic pipelining
from transactional datapath specifications. In Design Automation and
Test in Europe, DATE ’10, .

[10] A. K. P. Mishra. Synthesis-driven exploration of pipelined embedded
processors. Proc. Int. Conf. VLSI Design, 2004.

[11] T. Z., W. A., C. H. M., B. S., A. K., and P. D. A case for fame: Fpga
architecture model execution. In ISCA, 2010.

