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Abstract

Although traditional virtual memory manage-
ment policies perform well for most applica-
tions, several important applications,
including database management systems, sci-

entific applications, and multimedia systems,

have poor paging performance. They access
memory in unique ways that are not handled
well by the default virtual memory manager.
New approaches to the management of mem-
ory should be developed, that support applica-
tion-specific tuning of the virtual memory
management system.

Some existing systems address aspects of this
problem, and allow application-specific mem-
ory management. They don’t, however, pro-
vide adequate programmer support for the
development of such management, and don’t
provide sufficient tool support for judging
the memory access efficiency of applications.

To help software developers build applica-
tion-specific virtual memory managers, the
user-level virtual memory subsystem should
include an easily extensible pager. Also, inter-
active graphical performance monitors
should be provided to help programmers
judge the effectiveness of their virtual mem-
ory management policy.

This paper describes current application-spe-
cific virtual memory systems and describes
two tools that help in building application-
specific virtual memory managers: (1) an
extensible user-level pager, built on a virtual
memory management system that supports
application-specific tuning, and (2) a graphi-
cal performance analysis tool, called VMProf.
These tools are demonstrated by using them
to tune a scientific application.

1. Introduction

Operating systems attempt to efficiently
utilize processor and storage resources,
and at the same time allocate these
resources fairly to competing applica-
tions. Operating systems hide the poor
performance of input/output by using
multiprogramming and virtual memory

management. These general-purpose sys-
tems have been very successful in squeez-
ing good performance out of computer
systems for many years. A combination
of new software requirements and recent
developments in hardware technology,
however, suggests that systems designers
reconsider whether the general-purpose
orientation of traditional operating sys-
tems is appropriate.

A perfect page replacement policy tosses
out the in-memory page that is needed at
the farthest point in the future (or one
that’s never needed again). Since it’s not
usually possible for a policy to predict
every application’s future use of pages,
an imperfect policy that is highly accu-
rate in predicting page usage is normally
used instead.

The most common general-purpose page-
replacement policy is an approximation
to the least-recently-used (LRU) algorithm.
The LRU policy manages a set of virtual
memory pages by throwing out the in-
memory page that hasn’t been touched
for the longest period of time. For applica-
tions that mostly fit into memory, LRU
works well, because its policy decisions
closely mirror the locality of the pro-
gram’s memory accesses. In most cases, it
accesses the disk as few times as possible.
This is increasingly important, because
disk speeds are becoming slower relative
to processor speeds, raising the cost of a
page fault.

However, the LRU policy performs
poorly for applications that access mem-
ory in non-standard ways, or those that
exhibit locality on a scale larger than
physical memory. Some of these head-
ache-causing applications include:

* Scientific applications
* Database management systems
* Garbage collectors
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¢ Multimedia systems

These applications all have memory
requirements that can exceed the capacity
of physical memory on a machine, but
they don’t exhibit the locality necessary

for management with a general-purpose .

virtual memory page replacement policy
(e.g. least-recently-used).

It is unlikely that changes in hardware
systems will make it easier to manage
memory for such applications. Adding
more memory to a machine alleviates
thrashing problems for applications that
need slightly more physical memory than
is available. However, many applications
use widely varying amounts of memory.
Using LRU with such programs often
results in dramatic performance degrada-
tion when physical memory finally runs
out; these applications would still benefit
from a policy that degrades performance
gradually as it runs out of physical mem-
ory. Since the cost of a page fault is rising,
due to the relatively poor performance of
disk storage systems, it is increasingly
important to avoid unnecessary page
faults. A policy that supports gradual per-
formance degradation would avoid many
faults. No obvious improvements in hard-
ware technology will be able to offer the
kind of improvement in performance that
a good page replacement policy could.

One approach to building a improved
page replacement policy is to attempt to
build a “heroic” memory manager, that
can handle a larger set of applications
than LRU- (see [Hagmann 1992] ). The
difficulty in developing such a system is
that the operating system page replace-
ment policy must correctly anticipate the
needs of all applications. Any change that
benefits those programs that perform
poorly under LRU may have an adverse
effect on the performance of the vast
majority of programs that do well with it,

and thus hurt overall system perfor-
mance.

A different approach allows each applica-
tion to specify its own application-specific
memory-management  policy.  Mach
[Young et al 1987, Rashid et al 1988], V++
[Harty & Cheriton 1992], and Apertos
[Yokote 1992] are all systems that imple-
ment this functionality. This approach
offers the potential for near-optimal per-
formance, but it requires more effort on
the part of application developers than a
general-purpose page-replacement pol-
icy. The operating system is responsible
for allocating physical page frames
among competing jobs; user-level pagers
associated with each program decide
which of the program’s virtual pages are
to be cached in the available physical
memory. Any program which performs
well with LRU can use the system'’s
default policy; other programs can use a
policy or policies tuned to their specific
memory-access patterns.

Obviously, this approach gives the pro-
grammer more than enough rope to hang
himself. The application-specific
approach needs language facilities and
user-interface tools to hide some of the
difficulty of building application-specific
page replacement modules. Software
engineers should be able to diagnose
problems with page replacement policies,
easily change the policy, and measure the
difference in performance. Notationally
separating concerns about memory man-
agement from other program declara-
tions assists programmers in evaluating
their programs.

This paper describes a toolkit designed to
make it easier for programmers to
develop new application-specific page
replacement policies. First, an extensible
user-level virtual memory system is
described. This system is object-oriented,
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with disciplined entry points for non-
expert programmers to easily modify key
policy decisions. Second, a graphical anal-
ysis tool, VMProf, is described. VMProf
allows a user to evaluate competing poli-

cies using a simple user-interface. These

tools were used to tune the page replace-
ment policy of several programs, using
an instruction-level simulator to capture
their paging behavior. A case study of
successive over-relaxation (SOR), a scien-
tific program, is used to illustrate the
application of the virtual memory tools.

Section 2 describes why application-spe-
cific virtual memory management is use-
ful. Section 3 describes the current
support for user-level virtual memory
management. Then, section 4 describes
the extensible pager to be used for appli-
cation-specific tuning. Section 5 describes
the tool VMProf. Section 6 is a case study
of how virtual memory problems related
to successive over-relaxation may be alle-
viated using the virtual memory manage-
ment toolkit. Section 7 describes related
research. Section 8 is the conclusion.

2. Motivation

This section describes difficult situations
for traditional virtual memory manage-
ment systems. It also describes the diffi-
culties and shortcomings of some of the
suggested ways of improving perfor-
mance.

2.1 Poorly performing applications

There are several general categories of
applications that perform poorly with
default LRU managers due to their non-
standard memory reference patterns.
These include scientific applications, data-
base management systems, garbage col-
lectors, and complex graphics systems.

It is common for all of these applications
to solve memory-related performance
problems by pinning a set of memory
pages, and doing their own buffer man-
agement. This method works, but it does
not integrate well in a multi-application
environment, where there may be conten-
tion for those pinned pages.

2.1.1 Scientific applications

Scientists who use large data sets are
accustomed to dealing with difficult
memory management issues. To get accu-
rate results, they often increase the size of
matrices or other structures being used.
However, many of these data sets do not
fit into physical memory, and are usually
not traversed in a way that can be man-
aged effectively using an LRU policy. The
data sets are often cycled several times
from beginning to end. In such cases,
LRU throws out the least recently used
data page, even though it will be needed
sooner than the most recently touched
one (which will not be used again until a
complete cycle through the data set).

It is common for scientific programmers
to avoid virtual memory management
altogether, opting instead to do memory
management by hand. In fact, Cray super-
computers don’t include any virtual
memory management facilities. Many
books have been written on how to prop-
erly code numerical problems; memory
management is one of their chief con-
cerns [Press 1989].

2.1.2 DB Management Systems

Database management systems also fre-
quently deal with very large data sets,
and have difficult memory management
problems [Kearns & Defazio, 1989]. It is
generally acceptable to manage the code
of the DBMS using a standard LRU pol-
icy, but management of the data memory
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is a different story. DBMS'’s often scan
through very large data sets in a sequen-
tial or oddly-patterned way; the ideal
memory management policy changes
from operation to operation.

Modern DBMS'’s are often made up of .

varying computer memories and disks
distributed across a network. A DBMS
made up of these systems will not be effi-
cient, unless decisions are made based on
the costs associated with different memo-
ries (e.g. DRAM, flash RAM, battery-
backed RAM) and disk access costs.
DBMS’s will only perform well in such
environments if they have an application-
specific virtual memory policy that offers
accurate cost models.

The DBMS often understands how it will
need to manage memory, but the operat-
ing system typically does not provide pro-
grammer-friendly facilities that allow the
DBMS to inform it of its memory needs
and get information about current mem-
ory allocation. As a workaround, data-
base management systems allocate and
control their own buffer spaces in physi-
cal memory, to avoid some of the prob-
lems associated with the general-purpose
memory management policy of the oper-
ating system.

There are several patterns common to
relational database access that are under-
stood by the DBMS, but which are not
managed well by an LRU policy. [Stone-
braker 1981] suggests that operating sys-
tems should provide better support to
database management systems. He says
that the DBMS should simply give
“advice” to the OS’s virtual memory man-
ager, relieving the DBMS of most of its
buffer management responsibilities, and
avoiding buffer management conflicts
between the OS and the DBMS. An appli-
cation-specific virtual memory manager
would make this kind of tuning possible,

and an extensible one would also allow
the DBMS designer (or application
designer) to easily add new memory man-
agement policies for different kinds of
complex data structures that are not eas-
ily handled by relational access methods
(e.g. spatial data, structured data types).

2.1.3 Garbage collection

Mark-and-sweep garbage collectors also
access memory in a way that doesn’t con-
form well to the least-recently-used page
replacement policy [Alonzo & Appel
1990]. Once a page has been garbage-col-
lected, it is not needed until the heap
swings around again, yet LRU will keep
it in memory because the page has been
recently touched. If another program is
running, and needs some pages, it could
end up causing the swap-out of the next
page to be heap-allocated, instead of
swapping out the one needest the fur-
thest into the future. Ideally, a memory
manager for this application should give
a high priority to the garbage collector’s
own code and data, so that regions of col-
lected memory are always swapped out
first. Further, the memory allocator
should not re-use parts of the heap that
have been swapped out until there is
room for those pages to be swapped back
in.

2.1.4 Graphics applications

Interactive graphics programs currently
being developed require sophisticated
memory-management techniques [Teller
& Sequin 1991]. They often precompute
vast amounts of information to enable
real-time interaction. Access to this infor-
mation is often sequential and the size of
the needed information is frequently
larger than available physical memory;
this causes thrashing to occur under an
LRU page replacement policy. This type
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of application could produce more
detailed images and exhibit much higher
throughput if the page replacement pol-
icy of the operating system could be mod-
ified to fit the access-patterns of the

program itself (e.g. through pre-fetching

or an application-specific page replace-
ment policy).

Multimedia  applications, including
HDTV applications, also require special-
purpose memory management. These
applications must effectively manage
many megabytes of information in real-
time. A least-recently-used policy is not
appropriate for this kind of memory man-
agement. Virtual memory management
systems should be flexible enough to
accommodate application-specific page
replacement policies for these applica-
tions. "

2.1.5 Discussion

Many applications, including some of
those described above, may be able to
~modify their run-time behavior according
to the availability and cost of system
resources [Harty & Cheriton 1992, Cheri-
ton, et al. 1991]. For example, certain sim-
ulations generate a final result by
averaging the results of a number of runs.
Fewer runs of the simulation may be
used to get an equally accurate result, if a
larger sample size is used. If the simula-
tor knows how much memory is avail-
able, it will be able to choose the sample
size that fits into memory. Adapting
application behavior to the amount of
available physical memory is straightfor-
ward if there is user-level control over vir-
tual memory, but it is very difficult or
impossible if paging is implemented in
the kernel, hidden from the application.

2.2 Discussion of propoéals

Several alternative strategies to user-level
virtual memory management have been
proposed. These solutions are difficult to
implement, and would be more widely
used if they were made more palatable to
the average programmer.

The idea of avoiding or fighting the oper-
ating system’s built-in memory manage-
ment is common to most of the solutions.
The virtual memory client’s (program-
mer’s) point of view is not addressed
very well by any of them; software engi-
neers have to buy more memory or think
like an operating system designer to use
any of them.

2.2.1 Buy more memory

Many times, thrashing may be avoided
most simply by buying more memory.
This is attractive because memory is
cheap and getting cheaper. However,
many application programmers typically
would like to increase the size of the data
set that they use, if possible. Irrespective
of the amount of physical memory, many
problems will require more memory than
the physical memory can support [Hag-
mann 1992].

Some users push the performance of their
computer systems until the machine
starts to thrash. In such situations, when
physical memory needs are nearly met, a
carefully designed memory management
policy could prevent thrashing by allow-
ing the system to degrade more grace-
fully than LRU.

When data sets are several orders of mag-
nitude larger than the size of any afford-
able physical memory, neither buying
more memory, nor an application-spe-
cific policy will prevent thrashing. How-
ever, using a performance analysis tool
and extensible virtual memory system
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may be able to marginally improve the
performance or assist in the re-design of
the application’s data access methods.
(Section 6 demonstrates how to handle
this situation).

2.2.2 Restructure the application to
improve locality of reference

Often, programmers resort to completely
restructuring their code to improve spa-
tial and temporal locality. This technique,
known as “blocking”, is commonly used
in scientific code to improve processor
cache performance. It may also be used
similarly to improve virtual memory per-
formance. Effective blocking often
requires making the program structure
more complex. This complexity often
obscures the problem being solved, and it
is very difficult to block code without
making it difficult for humans to read.
Applications with very clear memory-
access patterns, such as matrix scans, are
relatively easy to block. Applications
with irregular or frequently-changing
access patterns are very difficult
(although not impossible) for program-
mers to block.

VMProf, the virtual memory profiler
described in section 5, could help pro-
grammers quickly come. up with good
blocking code, by providing a visual rep-
resentation of the data being managed by
the blocked code. However, VMProf
doesn’t reduce the complexity of blocked
code. A well-structured, extensible user-
level pager, on the other hand, could help
separate some of the memory manage-
ment concerns from the main code, reduc-
ing (if not eliminating) the blocking
needed for the code without reducing its
performance. This partial separation of
memory management concerns from
other program concerns could make the
blocked code less difficult to write. Part

of the case study in section 6 shows how
blocking can be combined with virtual
memory tools such as VMProf and an
extensible user-level pager to get both
improved performance and improved
human-readability.

2.2.3 Pin and manage a pool of the
operating system’s memory

[Stonebraker 1981] suggests bypassing
the operating system’s virtual memory
system by pinning a pool of the applica-
tion’s pages into physical memory. This
solution is frequently used by DBMS'’s.
The user code explicitly manages the
buffer pool as a cache for disk by decid-
ing which disk pages get swapped into
main memory.

This solution works fairly well, but there
are some problems with it. Developers
must spend a lot of time building this
kind of manager; user-friendly tools
could reduce this time. Also, all accesses
to program data must go indirectly
through the user-written buffer manager.
Lastly, it is inflexible in a multipro-
grammed environment [Harty & Cheri-
ton 1993].

Good tools for virtual memory manage-
ment should separate memory manage-
ment concerns from other program code.
Also, they should allow for code re-use
and a quick analysis of memory usage. It
should be possible to notationally sepa-
rate concerns about memory manage-
ment from the program itself. The tools
described in the sections that follow
allow a programmer to write their main
code in terms of normal memory reads
and writes, and to write or extend a sepa-
rate virtual memory management module.
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Application D
| efault User
g:g:egr Default Level Pager

SSystem Calls/

Application
Custom User Using Custom
Level Pager Pager

‘Upcalls

Operating System Kernel

Figure 1: The interactions of applications, their pagers, and the kernel

3. Kernel Support for User-Level
Virtual Memory Management

The traditional kernel-encapsulated vir-
tual-memory management system some-
times forces application developers to
devise elaborate ways of accessing mem-
ory, to adjust to the expectations of the
default LRU page replacement policy.

An application-specific memory manage-
ment systems moves virtual memory
management policy from the kernel to
the user-level, and allows programmers
to separate the issue of how to use the vir-
tual memory management abstraction
from the issue of how to implement it.
This separation allows those clients who
do not need to adjust their policy deci-
sions to continue to use the simple
default abstraction. It also means that
even in those cases where programmers
must work around the default policies
(e.g. databases, garbage collectors, scien-
tific applications), they can cleanly divide
their attention between working with the
application, and working with the basic
virtual memory abstraction.

Application-specific virtual memory man-
agement is a departure from traditional
virtual memory management and
requires different kernel support. There

are several systems that provide kernel
support for user-level virtual memory
management. These include Mach,
extended by [McNamee & Armstrong
1990], V++, and Apertos. These kernel
implementations have many features in
common, which are described below in
terms of the responsibilities of and the
interactions between the kernel, the appli-
cation, and the application-specific mem-
ory manager.

3.1 Division of responsibilities

Responsibility for virtual memory man-
agement is divided between the kernel,
the application, and a separate, applica-
tion-specific user-level pager. This divi-
sion of responsibility is displayed in
Figure 1. In the simplest (and most com-
mon) case, an application needs no spe-
cial-purpose paging policy, and can use
one of the default pager policies; no
changes to the application code are
needed and no extension of the paging
policy is needed. In more complicated
cases, it may be necessary to change the
paging policy or use more than one pol-
icy to get good performance. In the most
difficult cases, it may be necessary to
modify or re-write one or more paging
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policies and also make changes to the pro-
gram body to get efficient use of
resources.

The operating system kernel allows the
_control of paging policy to be associated

with individual applications. Unlike a tra- -

ditional, monolithic organization, the ker-
nel is responsible only for allocating
physical pages among competing jobs
and for providing a mechanism for user-
level pagers to modify page tables. Each
user-level manager is given a set of physi-
cal pages to manage by the kernel, and it
decides which of the application’s virtual
pages are assigned to physical pages and
which are assigned to disk. In this way,
the mechanisms necessary to implement
virtual memory are separated from the
application-specific policy implemented at
the user level; the kernel is responsible
only for providing a set of building
blocks and tools that may be used to
make policy decisions.

In a traditional OS kernel, a kernel rou-
tine is invoked when a page replacement
decision is needed. To support user-level
VM management, this decision is no
longer done in the kernel; instead, an
upcall is made to the user-level pager asso-
ciated with the application of the faulting
page. For instance, on a page fault, the
kernel upcalls to the user-level pager, pro-
viding any needed information (such as
hardware page reference information) to
the user-level pager. The user-level pager
then chooses which page to replace. In
addition to making upcalls on a page
fault, the kernel must inform the user-
level pager of any changes in resources
that could affect the way memory is man-
aged at the user level (e.g. the number of
physical memory pages assigned to an
application could change) [Anderson et
al 1992].

In addition, a sophisticated application
may have a communication channel to
the user-level pager. The application can
inform the virtual memory system in
advance of phase changes where a differ-
ent policy might be used; the virtual
memory system can inform the applica-
tion of any increase or decrease in the
amount of available physical memory, to
allow the application to adapt its behav-
ior appropriately.

3.2 Interactions between applica-
tions, user-level pagers, and kernel

The interactions between the application,
the operating system’s kernel, and the
user-level pager are represented in Figure
1 and are described as follows:

* When a page fault occurs for a vir-
tual memory access, it triggers a
trap into the operating system. The
kernel makes an up-call to the ap-
plication’s pager with the faulting
virtual address. This upcall then
dispatches the user-level method
HandlePageFault within the user-
level pager. This procedure is re-
sponsible for placing the disk-
bound page into physical memory
(through system calls back to the
operating system).

e If all the process’s physical pages
are allocated, the pager is also re-
sponsible for choosing the in-
memory page to swap out. The
user-level pager polls the operat-
ing system to obtain information
(e.g. hardware page usage and
modified bits) regarding a pro-
cess’s page access patterns. This in-
formation is then used by the user
level paging policy when choosing
the page to replace. '

* Modified in-memory pages that
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are chosen for replacement must
be written back to disk. System
calls to the OS accomplish this.

* If an application wishes to change
its paging policy at run-time, or if

it needs to know which of its pages

are mapped to physical memory, it
makes requests over a communica-
tion channel between the user-lev-
el pager and the user application.

* When the resources (e.g. memory)
change, the kernel notifies the
user-level pager using an upcall. If
the user-level pager needs more or
fewer physical pages, it makes a
system call to the kernel [Harty &
Cheriton 1993].

* The user-level pager can make a
special request that the kernel un-
map a page but not remove it from
memory, causing the application
to trap on read or write references
to selected pages. This capability
can be used to collect more de-
tailed page usage information
[Levy & Lipman 1982] or to pro-
vide other features such as distrib-
uted virtual memory, transactional
memory, or automatic checkpoint-
ing [Appel & Li 1991].

It is important to keep in mind that there
is not a one-to-one mapping between
applications and paging policies. A single
default user-level pager may be used by
all of the applications that perform well
with an LRU policy. At the other end of
the spectrum, a single application may
use a variety of paging policies for differ-
ent segments of memory or for different
phases of the program’s execution.

Ideally, the operating system should
include a set of the most popular paging
policies, allow for “plug-and-play” use of
them, and also allow for easy extensions

to be made to them. Appliéation—specific
virtual memory will only be used if it is
easy for the programmer to understand.

4. An extensible user-level pager

Although many systems already provide
user-level virtual memory management,
they do not include enough user support
to encourage their use. There are many
applications that would benefit from
application-specific virtual memory man-
agement. Plenty of programmers would
like to avoid mixing memory manage-
ment issues into their code. The user-
friendly operating system structures and
tools described in the paper’s remaining
sections make it easier to build and ana-
lyze application-specific virtual memory
managers. This section describes the first
of the two user tools for managing virtual
memory: the extensible user-level pager.

The extensible user-level pager hides as
much complexity from the programmer
as possible, while allowing the most per-
formance-critical routines to be modified
for each application’s peculiar access pat-
terns. There are two objectives for the
pager. First, it should be built on a useful
set of built-in virtual memory manage-
ment facilities that perform tasks com-
mon to all memory managers; a large
amount of the code for traditional virtual
memory systems is taken up with book-
keeping code and other common code.
Second, the structure of the pager should
expose the most commonly-needed inter-
faces and values to the user, so that they
may be easily changed or extended. This
was done by structuring the code into
classes and methods, and allowing pro-
grammers to selectively inherit or rewrite
code based on the default classes. This
allows the construction of a new imple-
mentation containing only the essential
changes, following the protocol pre-
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sented by the extensible user-level pager
[Bershad et al 1988, Kiczales et al 1991].

The pager protocol described below
focuses on the interfaces that help appli-
cation programmers to develop efficient

paging systems, and- which hide the.

issues related to inter-application conten-
tion for resources. As far as an individual
application’s pager is concerned, it has a
segment of physical memory guaranteed
to it; other, system-wide, policies decide
how to divide physical memory among
competing programs. Issues related to
inter-application memory management
are addressed in [Harty and Cheriton
1993], who suggest some cost models for
physical memory distribution. This sec-
tion shows how to help the application
designer’s manage a single application’s
physical memory/virtual memory map-
ping problem.

4.1 Description of the extensible
user-level pager

The routines and classes that follow are
the defaults provided by the operating
system. To improve the performance of
an application, a programmer simply re-
writes the exact parts of the system that
aren’t appropriate for the application.
There is no need to re-implement the
entire pager, or to learn hundreds of lines
of code. The set of interfaces making up
the virtual memory pager protocol is suf-
ficiently simple that only one or two rou-
tines should have to change to improve
the performance of an application.

The user-level pager consists of a group
of extensible classes and their methods.
This section describes how the paging
system works, in general. Section 4.2
gives more details on the classes and
interfaces that make up the extensible
user level pager.

Memory management is tuned on a per-
process basis; the virtual memory man-
agement protocol is structured as follows:

* Each process has a ResidentPag-
eTable associated with it which
contains information about the
physical pages assigned to the pro-
cess by the kernel (e.g. the identity
of the virtual page contained in
each physical page). Typically,
there are three lists of physical
pages: a list of unallocated pages, a
list of deallocated but mapped
pages (providing a “second-
chance cache [Levy & Lipman
1982]), and a list of the allocated
and mapped pages. The kernel has
the authority to decide how many
physical pages to assign to a page
table, while the user-level process
controls how to map virtual pages
onto them.

* Each process gets an AddressMap
object, which encapsulates the in-
formation about the virtual pages
of the process. It is similar to a tra-
ditional page table. It contains a
virtual-to-physical map, and hard-
ware reference information (e.g.
dirty bits).

* When a page fault is triggered, the
HandlePageFault method of the
AddressMap class is messaged.
This message originates in the ker-
nel and travels via an upcall to the
user level.

* If there are no available physical
pages, the HandlePageFault meth-
od calls on FindPageToReplace to
pick a victim page to unmap from
memory.

* Theuser level pager may query the
kernel for information using the
method PollKernel. This allows
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user-level pagers and performance
tuners to obtain better metrics
when making policy decisions.

4.2 Programmer’s view of the vir-
tual memory management system

Section 4.1 described how the kernel and
user-level interactions occur. If a pro-
grammer keeps this knowledge in mind,
it is easy to extend the user-level pager.
This section describes the C++ interfaces
that programmers have to understand in
order to derive a new application-specific
pager from the default ones provided by
the operating system.

The classes and methods described below
are simple, but provide enough flexibility
that significant performance improve-
ments may be made by extending them.
The routines include those for the resi-
dent page table:
class RPTE // {“ResidentPageTableEntry”
int physicalFrame;
AddressMapEntry* virtualPage;
Bool free;
};

class ResidentPageTable {
public: // Upcalls from the kernel
void AddPageToAllocation
(int pageNum);
void RemovePageFromAllocation
(int pageNum);
int FindFreePage();
int GetNumFreePages():;
private:
int tableSize;
RPTEList* allocatedPages;
RPTEList* unmappedPages;
RPTEList* freePages;
}i
When the kernel gives out physical
pages, it associates one RPTE (resident

page table entry) with each of them. The
integer physicalFrame is the physical
page number of the page; it is metadata
describing the virtual memory system
which is used by both the pager and the
kernel. The ResidentPageTable class lists
the physical pages allotted to a process.
This list may change at run time; if this
happens, the kernel uses the methods
(upcalls)  RemovePageFromAllocation
and AddPageToAllocation to notify the
user-level pager of the change in the num-
ber of physical pages it may manage.

The AddressMap class encapsulates both
a process’s virtual memory and state
information for its page replacement pol-
icy. Each page of virtual memory has an
AddressMapEntry. The classes are
defined as follows:

class AddressMapEntry {
public:
RPTE* physicalFrame;
Bool valid;
Bool modified;
Bool used;
}i
class AddressMap {
public:
virtual int FindPageToReplace();
virtual void HandlePageFault
(int faultPage);
virtual void FetchPage
(int targetPage,
int faultPage);
virtual void PollKernel();
private:
AddressMapEntry* pageTable;
int pageTableSize;
ResidentPageTable coremap;
int LRUClockHand; // for LRU policy
};
Typically, the user-level pager periodi-
cally calls PollKernel to determine the
process’s recent page access patterns.
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Pageln reads the faultPage from the back-
ing store and stores it in pageToReplace,
writing the pageToReplace to the back-
ing store if modified.

In the simplest case, the user-level virtual

memory manager consists of an Address- -

Map instance and a ResidentPageTable
instance. The programmer creates a new
paging policy by changing the methods
for these objects, compiling a new mem-
ory manager and asking the kernel to
associate the new manager with the appli-
cation. More complicated paging systems
made up of multiple policies can also be
coded into the same manager, allowing
applications to change their page replace-
ment policy as their memory access pat-
terns change; for applications that can
predict their future memory accesses, this
capability is very effective in reducing
the number of page faults.

The following methods are the standard
ones provided with the memory manag-
ers to implement the default approxima-
tion to LRU. They may be extended or
replaced with more effective methods,
depending on application performance
requirements.
void
AddressMap: :HandlePageFault

(int faultPage)

int pageToReplace;
if (coremap.GetNumFreePages()==0)
pageToSwap= FindPageToSwapOut();
else
pageToSwap= coremap.FindFreePage();
PagelIn(pageToSwap, faultPage);
}i

// Implementation of a one-bit clock
// algorithm approximating LRU
int
AddressMap: :FindPageToReplace()
{
while (1) // loop until page is found
{
LRUClockHand++;
if (pageTable[LRUClockHand].valid)
if (lpageTable[LRUClockHand] .used)
return LRUClockHand;
else
pageTable [LRUClocHand] .used
= FALSE;
if (LRﬁClockHand == pageTableSize)
LRUClockHand = 0;
}
};

4.3 Extending the user-level pager

To improve the performance of an appli-
cation, a programmer modifies those
parts of the system that don’t perform
well for the application. The set of inter-
faces provided by the user-level pager is
sufficiently simple that only one or two
routines should have to change. For
example, it could be that a most-recently-
used (MRU) page replacement policy is
appropriate for managing some memory.
(This would be the case for a cyclic
sequential scan of a large amount of mem-
ory, e.g. a database join). Parts of the pag-
ing system could be changed by
inheriting the default pager class, and
then modifying the parts that need
changes to improve performance. To
derive an MRU policy using the user-
level pager interfaces, the following sim-
ple code changes would suffice:
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class MRUAddressMap : public AddressMap {
public:

int findPageToReplace():;
private: _

int MRUClockHand;

}:

// One-bit approximation of MRU
int
MRUAddressMap: : findPageToReplace ()
«
while (1) // loop until page is found
{
MRUClockHand++;
if (pageTable[MRUClockHand].valid)
if (!pageTable[MRUClockHand] .used)
«
for ( int i=0;
i<pageTableSize; i++)
pageTable[i] .used = FALSE;
return MRUClockHand;
};
if (MRUClockHand == pageTableSize)
MRUClockHand = 0;
}:
};
The new method implementation for
findPageToReplace is now called when a
page fault occurs in a process running in
an MRUAddressSpace. To implement an
MRU policy through the protocol, the
programmer simply creates one new sub-
class and modifies one documented func-
tion. The details of other functions and
classes were unchanged. Similarly, Han-
dlePageFault could be modified to pin
and pre-fetch memory pages.

The programmer may also wish to pro-
vide multiple page replacement policies
for an application. For example, a DBMS
may wish to use an LRU policy on the

code segment, and use several different

access methods (i.e. page replacement
policies) on the data being scanned. In

this case, the programmer simply creates
a sub-class of the ResidentPageTable
class which breaks up the allocated physi-
cal pages into lists corresponding to the
different logical segments. The HandleP-
ageFault routine is then changed to call
an appropriate derivative of findPage-
ToReplace, according to the identity of
the page that faulted. In this way, the
user-level memory manager is better inte-
grated with the DBMS.

5. VMprof -- The Virtual Memory
Profiling Tool

Given the complex trade-offs involved
with the virtual memory system, it is not
enough to simply give the user control
over the implementation. Tools must also
be provided to help identify performance
problems with the particular applica-
tion/policy combination, to help identify
ways to improve performance. Also, the
user needs to be able to quickly evaluate
the performance effect of changes to the
application or the paging policy.

VMprof, the virtual memory profiling
tool, allows the programmer to easily
identify problems with virtual memory
performance by displaying the dynamic
behavior of the paging system graphi-
cally with an interactive tool. The user-
level extensible pager and VMprof com-
plement each other by decreasing the
time needed to tune virtual memory sys-
tem performance.

VMprof supplements other program per-
formance analysis tools such as UNIX
gprof [Graham et al 1982] and MemSpy
[Martonosi et al 1992]. A trace of page
faults is generated (using a modified ver-
sion of gpt, an instruction-level simulator
[Larus 1993]) and fed into VMProf.
VMprof allows the user to analyze both
spatial and temporal aspects of the vir-
tual memory management. VMprof’s
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Figure 2: Screen display of VMProf, the virtual memory profiler

graphs may be used to identify regions of
the address space with high page fault
rates. By adjusting the time frame, a user
may also investigate how fault behavior
develops with respect to time. The graphi-
cal nature of VMprof facilitates quick
analysis and improvement of virtual
memory performance.

Figure 2 shows the output of the VMprof
virtual memory profiler. The top graph is
a histogram of page faults in virtual mem-
ory. The horizontal dimension reflects sec-

tions of virtual memory, from low
memory on the left to high memory on
the right. The vertical dimension repre-
sents the frequency of page faults for
each section of virtual memory. Because
there can be a large number of virtual
pages under consideration, each point on
the graph refers to the aggregate number
of faults for a contiguous range of pages.
The bottom graph displays fault behavior
at a (configurable) finer level of detail
than the global view of the top graph. If a
user notices that there is an interesting



16 Tools and Strategies for the Development of Application-Specific Virtual Memory Managers

pattern in the global display, the scroll
bar may be moved to focus the local dis-
play on the desired region.

Behavior with respect to time may be dis-
played by moving a pair of sliders: begin-

time and end-time. Only the page faults

occurring in this time frame are dis-
played in the two graphs. Programmers
use this feature to isolate portions of the
program and judge whether they would
benefit from modifications to the paging
policy. The time sliders may be used to
move slowly through time to see how
page-fault patterns develop. The spatial
and temporal aspects of memory access
patterns may be evaluated by adjusting
the local view of page fault behavior and
the time frame under consideration.

Experience using VMprof suggests
improvements that would make it more
useful. One would be to more closely con-
nect the application’s symbolic program
constructs and the output of the virtual
memory profiler, creating a combination
debugger/performance analyzer. Cur-
rently, VMprof’s display offers enough
information for a rough view of memory
access patterns. A more useful tool would
allow the user to select the particular
memory objects to observe and to place
“breakpoints” in the program code that
would separate segments of the code that
exhibit different memory access patterns.

In addition, the user should be able to eas-
ily select memory objects to observe,
using their symbolic names or icons, and
associate a virtual memory policy with
each one. Also, it should be possible to
use a separate tool to see how multiple
programs interact when sharing the same
physical memory resources, for those pro-
grams that adjust their memory usage
based on run-time conditions. For
instance, [Harty & Cheriton 1993] suggest
that programs “bid” for physical mem-

ory; the kernel can then use a market
approach to system memory allocation.
Using VMprof, experiments could be per-
formed interactively with the profiler to

- see how different virtual memory policies

perform in isolation and in tandem, with
different memory allocation arbitration.

6. A case study: Using VM tools
with successive over-relaxation

This section illustrates how to use the
extensible user-level pager and VMProf
to improve a poorly-performing applica-
tion. It describes the analysis and
improvement of successive over-relax-
ation (SOR), an operation common to
many scientific applications. This exam-
ple is fairly simple, for illustrative pur-
poses, but the same extensible pager and
tool could be used with more complex
examples as well. The performance of
SOR is greatly improved through a com-
bined use of VMProf and the extensible
virtual memory pager.

To analyze SOR’s performance, memory
reference traces were gathered for a basic
implementation of the SOR application
using several different problem sizes. The
application’s paging behavior was deter-
mined by feeding these traces through a
simulator which invoked the user-level
policy module on each page fault. The
resulting page fault sequence was fed
into VMprof; this made it possible to
quickly identify problems with the appli-
cation’s virtual memory performance.

In successive over-relaxation, each ele-
ment of a matrix is averaged with its four
immediate neighbors (called a “relax-
ation step”). This operation is repeated
on the matrix until a steady state for the
matrix’s values is reached. The following
code fragment is a simplified (ignoring
boundary conditions) version of SOR:
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Figure 3: SOR with an LRU page replacement policy

while (lconverged) // Outer loop
for (r = 0; r < matrixRows; r++)
for (¢ = 0; c < matrixCols; c++)
matrix[r] [c]=(matrix[r-1][c] +
matrix{r][c+l] +
matrix[r+l][c] +
) matrix(r][c-1]) / 4;
Figure 3 displays the output of the
VMprof tool, profiling the initial SOR
implementation with an LRU page
replacement policy. The matrix size was
chosen to be 1K by 1K; each element is a
double precision floating point number.
In all, the matrix occupied 8 megabytes of
virtual memory. It was assumed, for this
example, that there were 8 megabytes
(2048 4KByte pages) of physical memory
available. Since the application code also
takes a small amount of space, the pro-

gram and its data together didn't fit in
physical memory.

Figure 3 shows how the cyclic sequential
access pattern of SOR, combined with
LRU, results in a large number of faults
(this pattern is also common in DBMS
applications). The row labeled faults
shows that page faults are frequent: there
is one fault per iteration of the loop per
page of data whenever the size of virtual
memory is larger than the amount of
physical memory. A user watching the
number of page faults updated with
respect to time sees a continuous left-to-
right cascading of faults, which suggests
that thrashing is occurring.

The performance of LRU is much worse
than optimal in this situation. VMProf
graphically shows the access pattern for



18 Tools and Strategies for the Development of Application-Specific Virtual Memory Managers

MATRIX: 0 NumCols
0 Page 1 Page 2
000000 000000
000000 000000
(Ideal Page) T
rel| | |re+l
- r,c e =
l
Page n+4 }
r-1,c
Page n+6
(Picked by LRU)
000000
NumRows

Figure 4: The matrix layout for successive over-relaxation

SOR in Figure 4. During the first iteration
of the outer loop, there are 2K compul-
sory page faults, since none of the pages
have been previously accessed; these
page faults would occur and cost the
same with any page replacement policy,
unless pre-fetching techniques were
employed to avoid some disk seek costs.

For iterations following the compulsive
page faults of the outer loop, however,
the number of page faults depends
greatly on the virtual memory policy
used. If calculating the value for
matrix[r][c] causes a page fault in reading
matrix[r+1][c], the LRU policy will
choose the physical page which has not
been used for the longest period of time
(page n+6 in Figure 4, assuming each row
of the matrix takes 2 pages of memory).
Unfortunately, due to the cyclic sequen-
tial memory access pattern, this will be
the very next page accessed in the matrix,
and this access will once again cause a

page fault. As indicated by VMprof, LRU
results in a page fault on every page of
the matrix for each iteration through the
outer loop.

An ideal page .replacement policy
replaces the page which will not be
needed for the longest time in the future.
When reading matrix[r+1]l[c] causes a
page fault, the page which will not be ref-
erenced for the longest time in the future
is the first full page located immediately
before matrix[r-1][c]. It is clear that a cus-
tom page handler should choose virtual
page n from Figure 4 for replacement.

A custom page replacement policy that is
specialized to the access pattern of -SOR
may be quickly created by simply writing
a new version of FindPageToReplace.
This custom policy has to be tailored to
the size of the array and the machine’s
page size. In this example, if a page fault
occurs in accessing virtual page v, then
the ideal page to replace is the physical
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Figure 5: SOR with a customized page replacement policy

page containing virtual page v-5 (since
there are 2 pages per row). The custom
policy has the flavor of the most-recently-
used (MRU) page replacement policy; it
treats the code segment with an LRU pol-
icy while treating the data segment with
an MRU policy.

This custom replacement policy is imple-
mented by slightly modifying the imple-
mentation of MRU. The address trace of
the SOR is run again through the simula-
tor, invoking the custom paging policy.
The resulting VMprof output is displayed
in Figure 5. Using this policy, after the
compulsive start-up costs of faulting the
array into main memory, there is only
one fault per iteration of the outer loop
(as opposed to one fault per page per iter-
ation). The result is a large reduction in
the number of page faults.

The magnitude of advantage of the cus-
tom paging policy relative to LRU
depends on the difference between the
virtual memory needed and the available

physical memory. Using LRU, the applica-
tion thrashes immediately when it needs
more virtual memory than the available
physical memory. Using the custom,
MRU-flavored custom policy, perfor-
mance degrades more gracefully.

Eventually, of course, if the matrix size is
much larger than will fit in virtual mem-
ory, even the custom policy will perform
slowly, although optimally. Figure 6
shows the number of page faults incurred
by SOR (z-axis) as a function of the num-
ber of iterations of the outer loop (x-axis)
and the difference between available
physical memory and required virtual
memory (y-axis). The plot shows that the
number of page faults for the custom pol-
icy is dependent on the relative amount
of physical and virtual memory. The per-
formance of the LRU policy is uniformly
poor, independent of the number of avail-
able physical pages. The plot also shows
that as the number of available physical
pages decreases, the customized policy’s
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Figure 6: Number of page faults of SOR with different policies

performance begins to approach that of
the least-recently-used policy.

Modifying the paging policy by itself
does not help when the matrix is very
large with respect to the amount of physi-
cal memory. Instead, to get good perfor-
mance in such a situation, the
application’s implementation should also
be changed to exhibit more spatial and
temporal locality. The first implementa-
tion scanned the entire matrix from begin-
ning to end for each and every relaxation
step. For example, if it took 10 relaxation
steps for the matrix to converge, each
page of memory would be crossed 10
times using the original code.

Instead, to improve performance, a
“blocked” implementation of SOR could
be used, in which several relaxation steps
are performed during a single sweep
through the array. For instance, after com-
puting the relaxation for rows 1 to r dur-
ing iteration i, the implementation can
immediately compute the next iteration

for rows 1 to r-1, without changing the
original data dependency ordering of the
application. As long as r is smaller than
the size of physical memory, the program
can compute more relaxation steps for
the same number of page faults relative
to the original implementation.

Even the blocked version of SOR benefits
from a custom page replacement policy
in some cases. The blocked implementa-
tion must still scan multiple times
through the entire array to complete the
relaxation. As with the original version of
SOR, if the size of the matrix is slightly
bigger than the amount of physical mem-
ory, LRU will tend to throw out pages
that are about to be scanned, while a cus-
tom policy can be easily devised to throw
out pages that are not needed for the
longest time into the future.

Pre-fetching could further improve the
performance of the SOR application. Pre-
fetching is most useful when an applica-
tion accesses a large number of pages in
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sequence. Rather than having to fault
each new page in turn, pages can be
brought into physical memory before
they are needed. The application would
still be limited by disk bandwidth, but it

would incur less overhead waiting for

faults to be serviced.

In summary, the following steps are typi-
cally needed to tune a program to
decrease the number of page faults:

* Identify and isolate phase transi-
tions in the program using the vi-
sual cues provided by the VMprof
performance tool.

* Experiment with different page-re-
placement policies by modifying
the extensible user-level paging
system. Use VMprof to determine
the policy most appropriate for the
observed access pattern for each
phase of the program.

* If performance is still not good
enough, write a “blocked” version
of the program. Use VMprof to de-
termine whether it performs well
using LRU or still requires a cus-
tom policy.

The methods described above can be
used in combination to switch policies on
the fly by communication with the user-
level pager during execution of a pro-
gram. In this way, phase transitions that
occur during execution may be matched
with appropriate management policies.

VMprof may be used to determine mem-
ory access patterns of different phases
and evaluate modifications to user-level
virtual memory policy and algorithm
implementation. Proper use of the well-
defined programmer’s interface to virtual
memory and the simple VMprof profiler
improves the speed with which efficient
programs may be built.

7. Discussion

Some researchers interested in meta-level
architectures suggest that the problems
addressed here are not unique to virtual
memory management systems. The focus
of most open implementation work has
been to develop frameworks through
which those systems that need to expose
aspects of their implementation can do so
in a clean, modular and maintainable
fashion.

Application-specific virtual memory man-
agement is an instance of a larger trend
towards structuring system software to
allow application control over policy deci-
sions. Other examples include thread
scheduling [Anderson 1992], interprocess
communication [Bershad 1991], compiler
optimizations [Steele Jr. 1990], database
access routines [Dewitt & Carey 1984,
Stonebraker 1987], and desktop publish-
ing [Aldus 1992, Clark 1992, Dyson 1992].
In all of these cases, allowing the applica-
tion to control policy offers the potential
for more flexibility and better perfor-
mance, in part because it is difficult to
design a complex system to be optimal
for all users of the system.

It is important to accompany these appli-
cation-specific system software designs
with well-designed, user-oriented perfor-
mance monitors. A programmer cannot
always rely on deriving new implementa-
tions from the provided system facilities
when faced with inadequate perfor-
mance. With virtual memory, there are
times when the lack of available memory
causes very poor application perfor-
mance, irrespective of the paging policy
(even the optimal page replacement policy
for a given application results in poor per-
formance). In these cases, it is necessary
to rewrite the application to use a smaller
working set. Tools such as VMprof can be
used to identify such instances and to
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suggest ways in which the application
can be rewritten to improve performance.

Several research efforts in the operating
system community have looked at mak-
ing various pieces of the operating sys-
tem customizable. Apertos [Yokote 1992]
is designed to be entirely reflective to
allow every part of the operating system
to be under application control. Presto
[Bershad et al. 1988] is a user-level thread
system linked into parallel applications
as a runtime library; because different
applications might need different thread
scheduling policies, Presto was struc-
tured to make scheduling easy for users
to change. Work is also being done to
define a good framework for multi-appli-
cation (i.e. runtime-environment-specific)
allocation of memory and other resources
[Harty & Cheriton 1993].

8. Conclusion

The combination of the extensible, user-
level page replacement module and the
graphical analysis tool VMProf helps pro-
grammers to tune virtual memory perfor-
mance. Together, they allow users to
easily experiment with various page
replacement policies and to get quick
feedback from the user interface. This
feedback may be used to develop a pag-
ing policy that better meets the applica-
tion’s demands, or, in some cases, to
modify the application to exhibit better
paging behavior. The programmer’s inter-
face of the user-level pager allows users
to easily modify parts of a complex sys-
tem, and the graphical user interface of
VMProf provides a facility that eases the
evaluation of the different trade-offs
involved with modifying operating sys-
tem policy.
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