Implementing an Efficient Portable Global
Memory Layer on Distributed Memory
Multiprocessors

Steve Luna
ssl@cs.berkeley.edu

Report No. UCB/CSD 94/4#810, May 1994
Computer Science Division -- EECS
University of California, Berkeley, CA 94720

Abstract - Libsplit-C is a library of communication and global storage primitives for dis-
tributed memory multiprocessors. The library has been implemented on the CMAM and
CMAML active message layers for the CMS5, the HPAM active message layer for an FDDI
network of HP workstations, the NX message passing library for the Paragon, and the
MPLp message passing library for the SP1. This paper describes the issues involved in
porting this library to different message layers, and it shows that the library can be imple-
mented efficiently on these message layers. This paper presents microbenchmarks and
performance of applications for all the implementations. It also discusses the primitives
exported by the library and the library’s relationship to languages.1 2
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1.0 Introduction

In this document, we investigate the implementation of an efficient global memory and

global communication layer on a spectrum of modern distributed memory multiproces-

sors. To make the investigation concrete, we focus on Libsplit-C, which serves as a sub-
strate for the parallel language Split-C.

There are several goals for Libsplit-C. First, it should provide a foundation on which par-
allel languages can be built, Second, it should be portable to a variety of architectures,
including the Thinking Machines CMS5, Intel Paragon, IBM SP1, and networks of work-
stations. Finally, it should provide the highest performance possible to languages on which
it will be built.

Currently, Split-C is the only language that has been built on Libsplit-C, but the primitives
that it exports would be useful to many languages. It has functions that do blocking and
non-blocking reads and writes of remote memory. It has low latency communication for
small transfers and high bandwidth communication for large ones. It provides global com-
munication and synchronization, atomic functions, and the ability to allocate global mem-
ory in a coordinated fashion.

Although the initial implementation of Libsplit-C only ran on the CM5,we have recently
re-engineered it so that it is portable to a variety of message layers[3,4]. It is now renning
on CMAM, CMAML, HPAM, and NX. CMAM and CMAML are two different versions
of active messages for the CMS5. HPAM is a version of active messages for an FDDI net-
work of HP workstations. NX is the message passing layer that comes with the Inte] Para-
gon. In the future, this library will be ported to many more message layers, and it will
serve as a substrate for a single version of Split-C that can run on all the message layers.

Related work includes SAM, Nexus, and distributed memory systems[1,5]. SAM provides
a global address space at the level of user defined types; whereas, Libsplit-C provides a
flat global address space. SAM does caching but aveids consistency problems by having a
no overwrite policy. Libsplit-C does not do caching because the overhead of caching con-
flicts with the goal of making Libsplit-C as efficient as possible. Nexus has a flat global
address space, but it is multithreadid. Libsplit-C was not made multithreadid because it
was felt this would add too much overhead. Distributed memory systems, such as Munin,
have higher overheads because they are implemented in the operating system. They also
transfer entire pages, which increases the possibility of false sharing.

This paper is mainly focused on two issues: 1) porting the library to multiple message lay-
ers and 2) implementing the library efficiently. As a quick overview to Split-C and Lib-
split-C, section 2 describes the Split-C compilation process, and section 3 describes the
primitives that Libsplit-C exports. Section 4 describes the issues involved in porting Lib-
split-C to different message layers. Section 5 presents the performance of several message
layers and the performance of Libsplit-C on these message layers. Section 6 presents the
performance of applications on three architectures. Section 7 is the conclusion,
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2.0 Relationship between Split-C and Libsplit-C

Figure 1 shows Libsplit-C’s relationship to other software. Libsplit-C is designed to be a
compiler target. Its interface is independent of the message layer that is being used. Com-
pilers, such as Split-C, can achieve portability by targeting the library. Libsplit-C is retar-
geted to a new message layer for every new machine. For the CMS, Libsplit-C was
implemented on two different active message layers, CMAM and CMAML. For the net-
work of HP workstations with Medusa FDDI cards, it was implemented on the active mes-
sage layer HPAM. For the Paragon, it was implemented on the message passing library,
NX.

Applications Applications
Machine
Split-C Other Languages Independent
Libsplit-C Machine
Dependent
CMAM/CMAML HPAM NX
CMS5 HP Medusa Paragon

FIGURE 1. Libsplit-C is retargeted for every machine and exports a portable interface.

The Split-C compiler translates a Split-C program into a C program with Libsplit-C calls.
The Split-C compiler is responsible for type checking and translating the Split-C syntax
into types and routines that are defined in the library. The library is responsible for defin-
ing types, operations on these types, and communication and global storage primitives.

2.1 Types and Primitives Defined in Libsplit-C

Libsplit-C defines two types: a global pointer type and a counter. The global pointer type
is used to point to addresses that can exist on any of the memories in a distributed memory
machine. A global pointer is implemented as a concatenation of a processor id and a local
address, but this implementation is not exposed because future machines may provide
hardware support for global pointers. The library exports functions to manipulate global
pointers. There are functions to set or return the processor id or local offset, to increment
and decrement global pointers, and to index global pointers that point to arrays (called
spread pointers). Counters are used to record the completion of non-blocking events.
Split-C uses instances of counters that are defined in the library. To record the completion
of non-blocking communication on a fine granularity, counters can be defined in a pro-
gram and Libsplit-C primitives can be called directly with these counters as arguments. To
check for the completion of the communication, there are Libsplit-C primitives that take
counters as arguments. On all the current implementations, counters are implemented as

Implementing an Efficient Portable Global Memory Layer on Distributed Memory Multiprocessors 5



integers, but this implementation is not exposed because future machines (e.g. Cray T3D)
will provide hardware support for detecting completion.}

The communication and global storage primitives provided by Libsplit-C include global
memory, bulk transfer, global communication, global storage, and atomic procedures.
Global memory and bulk transfer procedures take global pointers and counters as argu-
ments. The global pointers are used as the source or destination address of remote mem-
ory. The counters are used to record completion. Global memory operations transfer
intrinsic data types (i.e. char, short, int, float, double). Bulk transfer moves sequences of
bytes. Both global memory and bulk transfer provide primitives to do blocking reads and
writes and non-blocking gets, puts, and stores. Global communication functions consist of
barrier synchronization and other global communication functions like broadcast. Global
storage provides a special malloc for dynamically allocating global memory. Atomic pro-
cedures provide support for manipulating remote memory atomically.

2.2 Split-C Syntax

Split-C adds to C type modifiers for creating two new types of pointers. The global type
modifier turns a pointer into a global pointer and the spread type modifier turns a pointer
into a spread pointer. Both pointers point to an object on any processor. The difference
between them is how pointer arithmetic is performed. Incrementing a global pointer will
always increment the local address; whereas, incrementing a spread pointer will increment
the processor id until it is incremented past the last processor id. Then, the processor id is
reset to O and the local address is incremented.

Split-C also adds to C two neéw assignment operators. The operator : = specifies that an
non-blocking assignment (i.e. get or put) should take place. Completion of these events
can be assured by calling the Libsplit-C procedure, sync (). The operator : - specifies that
a store should be used. Srore differs from put because it does not have an acknowledg-
ment. A processor can wait until a certain number of bytes have been stored to it by calling
the Libsplit-C procedure, store_sync{). Completion of all stores can be assured by call-
ing the Libsplit-C procedure, all_store_sync (), on all processors.

2.3 Translation Process

The Split-C compiler validates all Split-C statements. It must ensure that the right hand
side of a store is local, and it must also do type checking.

Once the compiler has validated the program, it translates declarations of global or spread
pointers into declarations of the Libsplit-C global pointer type. The compiler translates
assignment statements into calls to the appropriate calls to global memory procedures.

1. The T3D will at least require a new a implementation of counters, and it may require a new absiraction if
counters prove to be toe different from the hardware,
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Figure 2 illustrates the translation of a simple Split-C program into a C plus Libsplit-C
program. The compiler translates declarations of global pointers into declarations of glo-
bal pointer types. It translates the assignment statement into the appropriate Libsplit-C
procedure. Also, because we wanted the compiler to be able to use the library while still
achieving high performance, many of the library routines are inlined. This allows the com-
piler to perform optimizations across library boundaries.

void fool}

int *global gptr;
*gptr - 5;
}

void foo{)
{
—__globPtrType gptr:
__i_store{gptr, S5):
1

void foaol)
{
glabFtrType gptr;
__i_store_crtrigptr, 5, krecvBytes,
&sentBytes):
}

void fooi)
{
globPtrType gptrs
{
Processor pid = toproclgptrl;
int *addr = tolocal {gptr};:

ifipid == MYPROC) |
*{ksentBytes) += sizeof(int);
*addr = val;
*[krecvBytes) +=z sizeof(int};

}oelse f
*lasentByres] 1= sizeof(int):
am_reqguesti{pid, __i_store_handler, addr,
val, {&recvBylLesii;

|
!

FIGURE 2. Translation of a Split-C procedure.

3.0 The Libsplit-C Interface

Libsplit-C can be divided into five major components: global memory, bulk transfer, glo-
bal communication, global storage, and atomic procedures. Global memory consists of the
functions available for performing reads, writes, gets, puts, and stores to intrinsic data
types (i.e. char, short, int, float, double) on any processor’s memory. Bulk transfer allows
large sequences of bytes to be moved between memories. Global communication consists
of barrier synchronization and other global communication functions, like broadcast. Glo-
bal storage provides a special malloc for dynamically allocating global memory. The
atomic procedures allow atomic references to remote memory and allow arbitrary proce-
dures to be executed atomically on other nodes.

Implementing an Efficient Porwable Global Memory Layer on Distributed Memory Multiprocessors 7



3.1 Global Memory

Global memory procedures move intrinsic data types between memories. For each of the
data types, five types of operations are available: read, write, get, put, and store. Read and
write are blocking: get and put are non-blocking. Store is a pur that does not require an
acknowledgment. Store is an optimization that can be made for networks that are reliable,
such as the CMS5 or the Paragon. Global memory is optimized for low latency. For high
bandwidth, the bulk transfer should be used.

When a global memory operation is executed, two things happen. The data is transferred
between the virtual address spaces of two processors, and the event is recorded. As dis-
cussed in section 2.1, the completion of non-blocking communication is recorded using
counters. The procedures that the Split-C compiler inlines use instances of counters that
are defined in the library. The procedure, sync (), will wait for the completion of all gets
and puts.1 The procedure, is_sync (), will return 1 if all gess and puts have completed. To
detect completion of a single ger or pur, as opposed to all gets and puts, there are ger and
pur procedures that take a counter as an argument. A Split-C program can define a counter
and this counter can be used as an argument to one of these ger or put procedures. Sync_-
ctr() and is_sync_ctr () can be used to wait or test for the completion of one of these
get or put procedures.

The mechanism for determining whether a srore is complete is different from that for gets
and puts. Like gets and puts, the store procedures that are inlined by the library use
instances of counters that are defined by the library. But, because there is no acknowledg-
ment of a store, the sender cannot wait or test for the completion of a store. Instead, the
receiver must call store_sync () Or is_store_sync () with a number of bytes as an argu-
ment. Store_sync () will wait until that many bytes have been received. 1s_store_-
syne () will return true if that many bytes has been received. Another procedure,
all_store_sync (), must be called by all processors and will wait until all srores have
completed. To detect completion of srores on a fine granularity, procedures for issuing
stores and waiting or testing for completion are provided. These procedures take two
counters as arguments. The reason for having two counters will be explained in the section
4.1 which discusses implementation.

These are the procedures that the Split-C compiler inserts into the code. They are divided
into three groups: those that initiate a global memaory operation and use counters defined
in the library, those that initiate a global memory operation and take counters as argu-
ments, and those that are used for detecting completion. These procedures initiate a global
memory operation and use counters defined in the library.

char _c_read (c¢har *global src);
short __sh_read (short *globhal =rc);
int __il_read (int *global src);
float __f read (float *glohal sro);
double _d_read (double *global src);

long long __1l_read {long long *global src);

1. Except those that were issued with an explicil counter.
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char __c_write (c¢har *glchbal dst, char val)
short ___8h_write{short *global dst, short val)
int _ i_write {(int *global dst, int val)
float _f write (fleoat *global dst, float val)
double __d_write (double *global dst, doukle val)
long long __ 11 write{long long *global dst, long long val)
void __c¢_get (char *dst, char *globkal src);
void __sh_get (short *dst, short *global src);
void __i_get (int *dst, int *global src);
void _ _f_get (flecat *dst, fleat *global srch;:
void ___d_get (double *dst, dcuble *global src};
void __11_get(long long *dst, leng long *global src):
void __c_put (char *glebal dst, char val);

vold _ sh_put (short *global dst, short val);

void __i_put {int *glcbal dst, int val):

void _ f_put (fleat *glebal dst, float val) ;

void _d _put {double *global dst, double val);

void __11_put{long long *glcbal dst, long long val):

void _ c_store (void *global dst, char val);

void __sh_store{void *glchal dst, short val);

void __i_steore (void *global dst, int val) ;

void __f_store (veid *global dst, float val) ;

void __d_store (veid *glchal dst, double val);

veid __11l_store(void *global dst, long long wval):

s
.
7
7
’
.
?

’

These are the procedures that initiate a global memory operation and take counters as
arguments.

void __c_get_ctr (char *dst, char *global src, Counter *ctr);
void _ sh_get_ctr(short *dst, short *glcochal sr¢, Counter *ctr);
vold __i_get_ctr (int *dst, 1nt *glcbal src, Counter *ctr);
void __f _get_ctr (fleat *dst, float *glebal sre¢, Counter *ctr);
veid __d_get_ctr (double *dst, double *global sre¢, Counter *ctr);
vold __ 11 _get_ctr (leng long *dst, long long *global src, Counter
*ctr);
void ___¢_put_ctr (char *global dst, char val, Counter *ctr);
void _ sh_put_ctr{short *glokal dst, short wval, Counter *ctr);
vold __i_put_ctr (int *glebal dst, int val, Counter *ctr):
veld __f_put_ctr (fleat *global dst, float val, Counter *ctr);
vold __d put_ctr (double *global dst, double val, Counter *ctr):
veid __11_put_ctr (long long *global dst, long long val, Counter
*ctr);
vold __c_store_ctr (void *global dst, char wval,

Counter *rbytes, Counter *sbytes);
void __sh_store_ctriveid *glchal dst, short wval,

Counter *rbytes, Counter *shytes);
voeid __i_store_ctr {(veid *global dst, int val,

Counter *rbytes, Counter *shytes):
volid __f_store_ctr {(void *global dst, float wval,

Counter *rbytes, Counter *shytes):
vold __d_store_ctr (veid *glebal dst, double val,

Counter *rbytes, Ccunter *shytes);
void __11_store_ctr(veid *glchal dst, long long wval,

Counter *rbytes, Counter *shytes);

These are the procedures that are used to wait or test for completion,

void sync (veid):
bool is_sync(veid);

Implementing an Efficient Portabte Global Memory Layer an Distnbuted Memory Multiprocessors



void all_store_sync{void);
void store_sync{int bytes_expected);
bool is_store_sync(int bytes_expected);

void sync_ctr(Counter *ctr);
bool is_sync_ctr(Counter *ctr):
volid store_sync{int bytes_expected, Counter *rbytes,
Counter *sbytes);
bocl is_store_sync{int bytes_expected, Counter *rbytes,
Counter *shytes);

3.2 Bulk Transfer

The procedures for bulk transfer are optimized for high bandwidth. These procedures
transfer a series of bytes from the virtual address space of one processor to the virtual
address space of another. They also record the completion of the transfer after it has fin-
ished.

There are again five operations: read, write, get, put, and store. These procedures are anal-
ogous to the global memory procedures. Read and wrire are blocking. Get and put are non-
blocking. Store is a put that does not require an acknowledgment. These procedures
manipulate counters in the same manner that the global memory procedures do. Each of
these procedures has a form which uses implicit counters, and a form which takes one or
more explicit counters as argurnents. Waiting or testing for completion is done using the
same procedures that are used for global memory. However, unlike global memory rou-
tines, the bulk transfer routines are not inlined.

These are the bulk transfer procedures.

vold bulk_read {voird *dst, void *glebal src, int len);
void bulk_write {(veoid *glchal dst, void *src, int len};
void bulk_get {void *dst, void *glebal src, int len});
void bulk_put {void *global dst, void *src, int len);
void bulk_store {(veoid *global dst, void *src, int len);
void bulk_get_ctr {(volid *dst, void *global src, int len,
Counter *ctr);
void bulk_put_ctr (void *glchal dst, veoid *src, int len,
Counter *ctr):
void bulk_store ctr (veid *glcbal gptr, char =*lptr, int len,

Counter *rbytes, Counter *shytes);

3.3 Global Communication

These functions require all the processors to participate (i.e. all processors must call the
function). Barrier, broadcast, reduce, and scan are the functions provided. Barrier synchro-
nizes the processors by ensuring that no processors leaves the barrier until all have entered
it. Broadcast sends a message from processor 0 to all other processors. Reduce computes
the following function for the operations: add, multiply, max, min, logical or, logical xor,
and logical and.

a, @ ...@a,® .. D a wherea isthe argument from processori
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For a scan, processor i computes the following function for the operations: add, multiply,
max, min, logical or, logical xor, and logical and.

a, ® ... ®a;,where a,is the value from processor

These are the global communication functions.

int all_reduce_to_one_add{int val);

unsigned int all_reduce_to_one_uadd(unsigned int wval);
flocat all_reduce_to_one_fadd(float val);

doukle all_reduce_to_one_dadd(double val);

int all_reduce_to_cne_mult(int wval):

unsigned int all_reduce_to_ocne_umult{unsigned int wval);
float all_reduce_tec_one_fmult(float val);

double all_reduce_to_one_dmult (double val);

int all_reduce_to_one_max(int val):

unsigned int all_reduce_to_one umax(unsigned int val);
float all_reduce_to_one_fmax{float val);

double all_reduce_to_one_dmax{double val);

int all_reduce_to_cne_min(int wval);

unsigned int all_reduce_to_one_umin{unsigned int val};
float all_reduce_to_one_fmin(fleat val);

double all_reduce_to_one_dmin(double val);

int all_reduce_to_ocne_or{int val);

unsigned int all_reduce_to_one_ucr{ unsigned int val):
float all_reduce_to_cone_fmax(flecat val);

double all_reduce_to_one_dmax{double val};

int all_reduce_to_one_min(int wval);

unsigned int all_reduce_to_cne_umin{unsigned int wval):
float all_reduce_to_one_fmini(flcat val);

double all_reduce_to_one_dmin{double val};

int all_reduce_to_cne_ori{int wval);
unsigned int all_reduce_to_one_uor({ unsigned int wval);

int all reduce_to_ocne_xeorfint vall;
unsigned int all_reduce_to_one_uxor(unsigned int wval);

int all_reduce_to_ocne_and(int val};
unsigned int all_reduce_to_one_uand(unsigned int val);:

int all_kecast{int val};

int all_kcast_if(int val);

unsigned int all_bcast_u{unsigned int val);
float all_bcast_f(flecat val);

double all_bcast_d(double val);

int all_scan_add({int val);

unsigned int all_scan_uadd{unsigned int val);
float all_scan_fadd(float wval);

double all_scan_dadd (double val};

int all_scan_mult(int wval);

unsigned int all_scan_umult{unsigned int wval);
float all_scan_fmult(float val);

double all_scan_dmult (double val):
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int all_scan_max({int val):

unsigned int all_scan_umax{unsigned int wval);
float all_scan_fmax(flocat wval);

double all_scan_dmax(double val);

int all_scan_min(int wval);

unsigned int all_scan_umin{unsigned int wval);
float all_scan_fmin(float wval);

double all_scan_dmin{double val)}:

int all_scan_or(int val);
unsigned int all_scan_uer(unsigned int wval);

int all_scan_xor(int valj;
unsigned int all_scan_uxor{(unsigned int wval});

int all_scan_and(int wval):
unsigned int all_scan_uand{unsigned int wval);

3.4 Global Heap

Libsplit-C exports a function, all_spread_malloc(}, which dynamically allocates glo-
bal memory. Global memory includes the data segment and a portion of the heap. This
portion of the heap has the same starting address on every processor. Local memory, by
contrast, contains the stack, static and external variables, and the portion of the heap that is
allocated by malloc (). Note that besides the memory starting at the same address on
every processor, there is no difference between global and local memory. A global pointer
can point to local memory and a local pointer can point to global memory.

The reason global memory needs to have the same starting address on every processor is
so that a pointer to an array that is spread across the processors can be described by a pro-
cessor id and a local offset. If the data started at different addresses on different nodes, an
additional level of indirection would be required.

h]addﬁknlﬁ)all_spread_malloc(),all_spreadwfree()isakm)pﬂhﬁded.ThiSfunC-
tion allows dynamically alocated data to be freed. Here are the prototypes of the global
heap functions.

voeid *spread all_spread_malloci{int count, int object_size);
void all_spread_free (void *spread sptr);

Spread_malloc () is no longer supported in Libsplit-C. The reasons for this are discussed
in section 4.4.2.

3.5 Atomic Procedures

Libsplit-C provides several primitive atomic procedures: test_and_set (), fetch_an-
d_ada (), exchange(), and cmp_and_swap (). These operations are built on a more
general facility that allows an application to define its own atomic procedures. Here are
the prototypes of the atomic procedures.

Implementing an Efficient Portable Global Memery Layer on Distribuled Memory Multiprocessors 12



int exchange{int *global loe¢, int wval};

int test_and_set{int *glcbhal loc);

int cmp_and_swap(int *glcbal loc, int test_val, int new _wval);
int fetch_and_add(int *gleokal loc, int wval);

void atomic{veoid (*fun){), veid *global gptr, ...!}:

int atomic_i(veid (*fun) (), veid *glcbal gptr, ...);
double atomic_d(veid (*fun){), wveid *glocbal gptr, ...);
veid atomic_return_i(int val};:

void atomic_return_d{int val};

The RPC functions are no longer supported in Libsplit-C because atomic provides the
same functionality.

4.0 Implementing Libsplit-C

The focus of this paper is implementing Libsplit-C efficiently on multiple message layers.
This section will discuss the issues involved in porting the different components of Lib-
split-C to three different message layers. Section five will discuss the efficiency of the
library.

The three implementations that will be discussed are the CMS5, the FDDI network of HP
workstations, and the Paragon. On the CMS, there are two message layers that Libsplit-C
has been ported to, CMAM and CMAML. Except for global communication, these inter-
faces are almost identical so only CMAM will be discussed. On the network of HP work-
stations, Libsplit-C was built on the active message layer, HPAM. On the Paragon,
Libsplit-C was built on the message passing software, NX, that comes with the machine.

4.1 Global Memory

The implementations of global memory on CMAM and HPAM have demonstrated to us
that global memory can be implemented easily and efficiently on active messages. Given
an active message layer, porting the Libsplit-C global memory to a new architecture is
trivial. The major issues involved in porting CMAM to HPAM involved the calling con-
vention of the processors and whether or not an unreliable network should be exposed to
Libsplit-C. However, the implementation of Libsplit-C on the Paragon demonstrated that
message passing does not support global memory without adding a layer of software on
top of it.

4.1.1 The CMS5

Active messages can be used to implement global memory easily and efficiently,. CMAM
provides support for sending a five word message. When a message arrives at the remote
node, the first word is used as the address of a handler. The handler is invoked with the
remaining four words as arguments.

Figure 3 depicts the implementation of a get. The four columns represent the global mem-
ory of four processors. The processor on which the ger is invoked increments the counter
and then sends an active message containing the address of the source, the destination, and
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the counter to the remote node. The handler on the remote node loads the data and sends it
along with the address of the destination and counter in a reply message. When the reply
message arrives, the handler stores the data into the destination address and then decre-
ments the counter.

request
4 L SIC
data
dest
counter event

FIGURE 3. The implementation of get and read on active messages.

Figure 4 depicts the implementation of pur on active messages. The processor on which
the pur is invoked increments the counter, loads the data, and sends it along with the
address of the destination and the counter to the remote node. The handler on the remote
node stores the data and sends the address of the counter in a reply message. When the
reply message arrives, the handler decrements the counter.

STC data L dest

counter _T event

FIGURE 4. The implementation of put and write on active messages,

Because the counters recard the number of gers or puts that still have not completed, pro-
cedures that test or wait for completion can be implemented easily. sync () and syne_-
ctr () waituntil a counter becomes zero. Is_sync () and is_sync_ctr() Teturn true if a
counter is zero.

Read and write can be implemented easily using get and pur. For read, a get is issued, and
for write, a put is issued. Then, the read or wrire waits until the get or put completes,

Figure 5 depicts the implementation of store on active messages. As mentioned in section
3.1, a store takes two counters as arguments. The processor on which the store is invoked
increments the local counter by the size of the data. Then it loads the data and sends it
along with the address of the destination and the remote counter to the remote node. The
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handler on the remote node stores the data and increments the remote counter by the size
of data.

STC dest
data A
event Y * event
focal remote
counter counter
remote local
counter counter

FIGURE 5. The implementation of store on active messages,

The procedures which wait or test for completion of stores can be implemented using
these counters. store_sync () is implemented by waiting until the local counter has been
incremented by the number of bytes that are expected. Once it has, that many bytes are
subtracted from both the local and the remote counter. When the processors execute all_-
stere_sync () each processor subtracts its local and remote counters, and then every pro-
cessor’s difference is summed. Once this value has reached zero, the same number of
bytes have been received as sent so all srores have completed.

4.1.2 The HPs

Implementing global memory on HPAM was easy because HPAM supports an active mes-
sage interface similar to CMAMs[4]. However, there were several issues that arose dur-
ing the port to HPAM. First, there is an architectural reason why HPAM supports the same
interface as CMAM. Second, because the calling convention of PA-RISC differs from the
calling convention of the Sparc, there is an opportunity for optimization. Finally, there was
the 1ssue of dealing with the unreliable network on which HPAM was built.

Both CMAM and HPAM send a five word message where the first word is the address of a
handler and the next four words are arguments to the handier, CMAM restricts the number
of arguments that a handler can have to four words because the CM5 network interface
limits message sizes to a few words. HPAM also restricts the number of arguments to four
words, but it does so for a different reason. The HP Precision Architecture specifies that
the first four arguments to a procedure will be passed in registers. By restricting the num-
ber of arguments to four, the HPs can load a message from the network interface and then
call the handler without having to store arguments to the stack.

The rationale behind HPAM’s five word limit is more fundamental than the rationale
behind CMAM’s limit. The CM5’s restriction is an artifact of the CMS5’s network interface
and will change with the next implementation of the CMS5. The Intel Paragon Supports
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larger message sizes. FDDI supports message sizes of up to 4KB, and ATM supports mes-
sage sizes of 12 words. However, many processors, including the 1860 on which the Para-
gon is based, support a calling convention which passes the first four arguments in
registers. Active messages on the Paragon will probably support the same interface as
HPAM and CMAM.

There are ways that the implementation on HPAM could have been optimized. HP PA
passes arguments of type float and double in floating point registers; whereas on the
Sparc, they are passed in integer registers. On the CM35, there was no need to provide any
procedure to invoke an active message other than the one that took four arguments in inte-
ger registers. But, on the HPs, if one of the arguments is a float or a double, it must be
moved from the floating point registers to the stack and then from the stack to integer reg-
1sters. It would be more efficient to provide an active message function which took one of
1ts arguments in floating point registers. The extra cost of moving a double to memory and
back into registers was measured at 40ns on a 99MHz HP 735.

Unlike the CM5 network, the network that HPAM is built on is unreliable. The experience
of implementing Libsplit-C on the HPs provided us insight into whether or not this unreli-
ability should be exposed to the library. In the initial version of HPAM, the cost of check-
ing to see if packets had been dropped was significantly higher than the cost to poll the
network. (In both CMAM and HPAM, the program must poll the network. The poll proce-
dure checks if new messages have arrived and extracts them if any exist.) Because Lib-
split-C provides procedures which wait or test for completion, Libsplit-C could check for
dropped packets during these procedures. Since a program that waits or tests for comple-
tion is probably waiting for messages anyway, this is a good time to pay the overhead of
checking for dropped packets.

The problem with checking for dropped packets during these procedures is that poll has
become exposed to application programmers in the form of a procedure called splitc_poll.
This procedure was originally provided as a way to increase performance. By making sure
that processors check the network frequently, an application can decrease the latency of
messages. However, now that it has become exposed, it is possible for applications to
write loops that do not wait or test for completion but instead loop on some condition and
call splitc_poll inside the loop. Unless poll checks for retransmission, deadlock is possi-
ble.

Because checking for retransmission in Libsplit-C would have left the possibility of dead-
lock, a second version of HPAM was designed that checked for dropped packets infre-
quently. This version of the poll procedure adds minimal overhead and checks for dropped
packets.

4.1.3 The Paragon

The implementation of Libsplit-C on the Paragon was built on message passing instead of
active messages. Porting to the Paragon provided us with experience implementing Lib-
split-C on a message layer other than active messages. It also filled a short term goal of
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getting Split-C running on the Paragon during the period before active messages was
available.

There are several obstacles to building get, put, and store on message passing. First, some
active operation is required on the receiving side. For get and put, a reply message must be
generated, and for store, a counter must be incremented. Because of this inherent problem
with building shared memory on message passing, any solution will have to post at least
one receive in advance, and it will have to periodically check to see if the receive has com-
pleted. If it has, it will have to perform some active operation.

Another problem with implementing put or store on message passing is that the destina-
tion address is not encoded in the send; it is encoded in the receive. In Libsplit-C, the
remote node has no way of knowing for which address it should post a receive. Because of
this problem, data will have to be buffered temporarily. Puts and stores cannot write
directly to their target address because the receiving node will have to look at the message
to determine this address.

One solution is to have each node post three receives, each with a different tag. One tag
would be for gets, another for puts, and a third for stores. Poll could check if any of the
receives had completed. If it had, it could handle each message separately. There are two
problems with this solution. First, it does not handle atomic procedures. A fourth tag must
be used to represent atomic procedures. Second, with NX it is advantageous to only have
one type of receive outstanding. The cost of checking whether a receive has completed is
five microseconds. If three different types of receives were used, the cost of a poll would
be 15 microseconls.

The solution that was chosen was to build an active message layer, NXAM, on top of NX.
It posts some recelves of the same type in advance. A poll procedure checks if the receives
have completed, and if they have, it uses the first word of the message as the address of a
handler, and the remaining four words as arguments to the handler. This solution requires
that only one type of receive needs to be checked on each call to poll. Atomic procedures
are implemented in the same way that they are implemented in CMAM and HPAM.

It is interesting to note that NX actually provides active message-like functionality. It is
possible to perform a send which executes a handler on the remote node. The problem is
that the cost of this operation is twice the cost of a normal send/receive. With the message
processor turned off, the round trip latency of an NX active message is about one millisec-
ond, whereas the round trip latency is about half a millisecond for send/receive.

4.1.4 Concluding Remarks on Global Memory

Building global memery on top of active messages is easy. However, message passing
does not provide enough flexibility to implemnent global memory without building another
layer of software on top of it. Building an active message like interface on top of message
passing is the simplest way to implement global memory. This also provides atomic proce-
dures at no extra cost.
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The experience of porting global memory to HPAM provided us with two insights. First,
because global memory is supposed to provide the lowest possible latency, its implemen-
tation is closely tied to the calling convention of the processor. On the sending side, data
should be moved directly from the registers to the network interface. On the receiving
side, data should be moved directly from the network interface to the registers. Data
should not have to pass through memory. Second, unreliable networks should not be
exposed to Libsplit-C. Once splitc_poll has been exposed to the programmer, there is no
clear dichotomy between Libsplit-C procedures that should do retransmission and those
that should not.

In all the current implementations, counters are implemented as integers, but counters
have been defined as an opaque type. Future architectures (e.g. T3D) will provide support
for global memory. They will also provide ways to determine if non-blocking events have
completed. By making the counters an opaque type, Libsplit-C reserves the ability to
record the completion of events in some manner other than counters.

4.2 Bulk Transfer

Because of the large difference in maximum packet size, the CM35 and the HPs have dif-
ferent implementations of bulk transfer. On the CM35, overhead is paid at the beginning of
a message so that the full payload of subsequent messages can be used to transfer data. On
the HPs, packet size is large enough that this overhead is unnecessary. On the Paragon,
overhead is paid at the beginning of the transfer so that a receive with the correct address
can be posted on the remote node before the data arrives. Posting this receive avoids an
extra copy.

4.2.1 The CMS5

CMAM requires that a segment be opened on the receiving node before a bulk transfer can
be initiated. Opening this segment is required because of two artifacts of the CM5’s archi-
tecture. First, because packets can become unordered in the CM5’s network, a record of
how many bytes remain needs to be kept on the receiving node. Otherwise, the receiver
would have no way of determining that the transfer had completed. Second, because
packet sizes are small, as much of the payload as possible should be used to transfer data.
Transferring information that is used to record completion (the address of a handler)
should not be sent with every message because this would restrict bandwidth unnecessar-
ily. It1s better to put this information in a segment on the receiving node so that the final
message will be able to invoke the handler with the address of the counter.

I the CM5’s network was ordered, or if the maximum message size was larger, a segment
would not be required. If the network was ordered, the first packet could contain the
address for its data. The final packet would contain the address of a handler so that com-
pletion could be recorded. If the maximum packet size was larger, fragmentation could be
pushed up to Libsplit-C. Each packet could contain the address of a handler. For a store,
the handler would increment the counter by the number of bytes transferred. For a getor a
put, 1t would send a reply message which would decrement the counter on the node which
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Initiated the get or put. If packet sizes are large, the cost of transferring the address of the
handler and counter with each packet is negligible.

For a get, the cost of setting up a segment is negligible because no communication needs
to occur. But, for a put or a store, a full round trip latency must be paid before the bulk
transfer can start. For both the put and the store, the initiating node must send an active
message to the remote node. The handler of this message allocates a segment and sends a
reply message containing the segment id. The initiating node waits until this id has
arrived. Once it has, it can transfer data to the remote address. Completion is recorded by a
handler which is called after the transfer is complete. For a pur, this handler sends a reply
message which decrements a counter on the initiating node. For a store, this handler incre-
ments a counter by the number of bytes that have been stored.

4.2.2 The HPs

The network on which HPAM is built is both ordered and allows 4KB message sizes. But
because the network is unreliable, it is not good enough to have the last packet record
completion. If a packet before the last packet is dropped, completion of the event can be
recorded before all of the fragments have actually arrived. Pushing fragmentation up to
Libsplit-C is an acceptable solution though. It eliminates having to set up a segment before
data is transferred.

HPAM provides a bulk transfer procedure that takes a remote node, a source address, a
destination address, a length, a handler, and the address of a counter. It copies length bytes
from the source address into a packet, sends this packet to the remote node, copies the data
to the destination address, and then calls the handler with the address of the counter as an
argument.

For a put, Libsplit-C increments the counter of puts that are outstanding by the number of
fragments into which the bulk transfer must be broken. The initiating node sends these
fragments to the remote node. After a fragment is copied to the destination address on the
remote node, a handler is invoked which sends a reply message with the address of the
counter to the initiating node. When the reply message arrives, a handler is invoked which
decrements the counter, Only after all fragments have been copied to the remote node will
completion for all the puss in this bulk transfer be recorded. Note that although a reply
message is generated for each of the fragments, a reply must be generated anyway because
the network is unreliable. The message which records the completion for a fragment is
piggybacked on the acknowledgment,

A store 1s similar to a put, except that when the handler on the remote node is invoked, the
counter is incremented by the number of bytes that were in the fragment. Note that for a
Store, each message generates an acknowledgment even though no information is required
by Libsplit-C. This acknowledgment is needed because the network is unreliable.

For a get, the counter of gets outstanding is incremented by the number of fragments. For
each fragment, a message is sent to the remote node. The handler for this message replies
with an HPAM bulk transfer message. After the data has been copied to the destination
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address, the handler for this message decrements the counter of gets outstanding. Only
after all data has been received will the completion for all the gers in this transfer be
recorded.

4.2.3 The Paragon

The Paragon implementation must pay the extra overhead of sending a message for every
bulk put and bulk store because it is built on message passing. If a receive is posted before
data arrives, the receiving node can copy data directly into the destination address. If the
receive is posted after the data arrives, the receiver must buffer the data until the receive is
posted. This buffering adds the overhead of an extra copy and will decrease bandwidth.

For a put or a store, a NXAM message is sent to the remote node. The handler for this
message posts a receive for the destination address of the actual store. Posting this receive
allows the NX layer to avoid an extra copy of the data. Immediately after sending the mes-
sage to the remote node, the node on which the pur or srore was initiated sends the data.
Note because the sending node does not wait for an acknowledgment, the posting of the
receive and arrival of the data could become unordered. If they become unordered, the
message passing software will buffer the data and the put or store will still function ¢or-
rectly. In the common case, the messages will be ordered and the copy will be avoided.

4.2.4 Concluding Remarks on Bulk Transfer

Having both an unordered network and a small maximum packet size forces the imple-
mentation to set up a segment on the receiving node before the data is transferred. For a
put or a store, this translates into the cost of one round trip latency. If a network allows a
large maximum packet size, segments are not required. If a network is both ordered and
reliable, segments are not required.

In order to get maximum bandwidth out of an implementation built on message passing, a
receive must be posted on the receiving node before the message arrives. For a put or a
store, this translates into the overhead of sending an additional message.

4.3 Global Communication

The CMS5 provides hardware support for global communication. The implementation of
Libsplit-C on CMAML uses this hardware for all global communication. CMAM only
uses the hardware for barrier synchrontzation, but because this barrier is fast, it influenced
the way other global communication functions were implemented. On the HPs and the
Paragon, there is no hardware support for global communication. The resulting implemen-
tation is optimized for machines that have to build all global communication from point to
point messages.
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4.3.1 The CMS

The implementation of Libsplit-C on CMAML uses the control network on the CM35 for
all global communication functions. The implementation that is built on CMAM only uses
it for broadcast, but because the broadcast is fast (3 microseconds), it is used as a building
block for the other global communication functions.

On CMAM, broadcast and reduce are implemented using stores. A tree of processors is
created statically using the following mapping.

MYPROC -1 ) . )
parent = T — lefichild = 2MYPROC+ t, rightchild = 2MYPROC + 2

Figure 6 shows the tree for eight processors. To implement broadcast, processors receive
values from their parent and send them to their children. To implement reduce, processors
receive values from their children, perform an operation on the values, and send the result
to their parent.

FIGURE 6. To do a broadcast the nodes propagate values down the tree. To do a reduce they
propagate values up the tree. To do a barrier, they propagate values up and then down.

The major issue involved in implementing broadcast and reduce this way is flow control.
Either an uniimited amount of buffer space must be required at every node or flow control
must be used. For a broadcast, if flow control is not used, a parent can send to its children
before they have sent the value of the previous broadcast to their children.

Because the CMS5 provides support for fast (3 microseconds) barrier synchronization,
these barriers are used to control flow. Before every global operation is performed, a bar-
rier is executed. This ensures that the previous global operation has completed; thereby,
guaranteeing that the buffers can be used for the next global operation. On a 4 node CMS5,
the overhead of the barrier is about 10% of the cost of a reduce or a broadcast, and on a 64
node CMS5 itis less than 5%.

Scans are implemented in a manner that is similar, but not identical, to broadcast and
reduce. The tree for scans is different, and scan is a two phase operation. Instead of just
passing values up or down a tree, processors first send values up the tree, and then they
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pass values down the tree. The overhead of a barrier in a scan is even less than the over-
head for a reduce or a broadcast because scan is a more expensive operation.

The implementation of global communication on the Cray T3D and the Meiko will proba-
bly be similar to the implementation on CMAM. Both machines provide support for a fast
barrier that is executed by the hardware,

4.3.2 The HPs

On the HPs, barrier is a much more expensive operation because hardware support for bar-
rier is not provided. Because the barrier can be twice as expensive as a reduce or a broad-
cast, another method is used for flow control.

Barrier is implemented using the same tree that is used for broadcast and reduce. All pro-
cessors wait for a signal from each of their children. Once all signals are received, they
pass a signal on to their parent. When processor 0 receives all its signals, it broadcasts a
signal down the tree. Once a processor has received the signal from its parent and passed
the signal to all its children, it is free to return from the barrier. This implementation
ensures that no processor leaves the barrier until all have entered it.

Note, this implementation is basically a reduce followed by a broadcast. The cost of the
barrier is about twice the cost of a reduce or a broadcast. The cost of these operations
would have been tripled if flow control was managed using barrier.

A more efficient method of doing flow control is to treat the tree as a static dataflow
graph. For a broadcast, a processor waits for a value from its parent and acknowledgments
from its children. Once these have been received, it sends the value to its children. After
the value has been sent, the buffer space that is used to hold the value can be reused for the
next broadcast. The processor sends an acknowledgment to its parent signifying that it is
ready for the next value. The implementation of reduce is similar,

Treating the tree as a static dataflow graph allows the operations to be pipelined. Log(p)
operations, where p is the number of processors, can be in progress at any given time. This
was not possible in the CM5 implementation because the barrier at the beginning of each
function prevents more than one function from being in progress at a time. The disadvan-
tage to this method is that an acknowledgment is required for every message up or down
the tree.

Scan cannot be pipelined easily because it is a two phase operation. The leaves of the scan
tree must initiate the scan by passing values up the tree. Then, they must wait for the result
to be passed back down the tree. Because the leaves both initiate and end the scan, multi-
ple operations cannot be pipelined. After the leaves have returned, all the nodes have com-
pleted the scan already. On the other hand, because scan is a two phase operation, flow
control is not required. Only one scan can be in progress at a time.
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An issue that arose with this implementation of scan is that there is a dependency hazard
between the result of a global function and a read from another processor. For example,
consider the following code fragment.

int g_buckets[PROCS]:: [RADIX];

int *bhuckets;
buckets = g_bhuckets [MYPROC];

for {i = 0; i < RADIX; i++) {

if (MYPROC == 0 && 1 > O)
buckets[1i] += g_buckets[PROCS - 1]1[i - 1];
buckets[i] = all_scan_add{buckets([i]);

)

This code worked on the CMS5 because that implementation of scan does a barrier before it
returns. The barrier synchronizes the nodes enough to ensure that processor PROCS-1 will
have stored the result of the scan before processor 0 reads g_buckets{PROCS-1][i-1]. The
implementation on the HPs does not synchronize processors before the function returns
because barrier is expensive. This means processor 0 can read g_buckets[PROCS-1){i-1]
before processor PROCS-1 has returned from the scan.

This is not a problem with the implementation. [t is actually a bug in the code fragment.
Even if a barrier were inserted at the end of the scan, the problem would still exist. The
barrier does not guarantee that all processors leave the barrier together, it only guarantees
that no processor leaves the barrier until all have entered it. It is possible for processor 0 to
leave the barrier and read from processor PROCS-1 before the barrier signal has propa-
gated to processor PROCS-1. This will cause processor 0 to get the wrong value because
processor PROCS-1 has not left the barrier and has not stored the result from all_sca-
n_add.

For the code fragment to be correct, there would have to be a barrier after the assignment
statement. This would ensure that the result of the function was stored on all processors
before the read took place. This hazard could have been hidden if the functions were pro-
cedures that took a reference instead of functions that returned a value. The procedures
could store the result in the reference and then execute a barrier. Although this would
make the global communication interface simpler, it would double the cost of every scan
on architectures that did not have hardware support for a fast barrier,

4.3.3 The Paragon

Like the HPs, the Paragon does not provide hardware support for global communication
functions. The issues involved in implementing global communication on the Paragon are
the same as those involved in implementing it on the HPs.

Note, NX provides global communication functions. 1t would have been nice to use their
global communication functions instead of having to implement our own. However, there
are two problems with this. First their global communication functions have ghastly per-

formance (2ms for a barrier). Second, there was no way to compose the NX global com-

munication functions with the message layer that we built on top of NX. Our message
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layer requires that the receive queue be polled in order for messages to be serviced. Since
NX does not poll our receive queue, a deadlock could ensue.

4.3.4 Concluding Remarks on Globa! Communication

If the hardware does not provide support for global communication functions, they must
be built from point to point messages. A method of flow control is needed to ensure that
multiple invocations of a global function do not interfere with each other. Executing a bar-
rier at the beginning of every global operation is an efficient way of controlling flow if
barriers are implemented efficiently in hardware. If hardware support for barriers is not
provided, techniques from static dataflow can be used.

Because adding a barrier at the end of a function does not guarantee that all processors
store the result of the function at the same time, a dependency hazard between the result of
a global communication function and a read of the result is exposed to the programmer.

4.4 Global Heap

Split-C differentiates between global and local memory. Global memory includes a por-
tion of the heap and the data segment. Local memory includes the stack, static and exter-
nal variables, and the portion of the heap that is allocated by malloc. The important
property of global memory is that the address of variables that are allocated in global
memory start at the same address on every node. This ensures that a global pointer that
points to a variable in global memory will point to the same global variable on other
nodes. For example, the following code fragment is an incorrect use of a global pointer.
foo ()
{
int *global gptr;
int flag;
gptr = teglcbhbal { (MYPROC+1)%PROCS, &flag);

*gptr = 1;
}

Because the address of stack variables are dependent on the calls that a processor executes
at run time, there is no guarantee that these variables will start at the same address on all
processors. Even if foo() is called by all processors, there is no guarantee that the stack
frame allocated to foo starts at the same address on all processors.

The proper way to dynamically allocate a flag on every processor is to allocate an array on
the global heap.

foo ()

{
int *spread sptr;
sptr = all_spread_malloc(PROCS, sizeof(int)});
sptr[ (MYPROC+1) %PROCS] = 1;
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4.4.1 All_spread_malloc

A11_spread malloc() is & Libsplit-C function that returns data starting at the same
address on every node. On the CM35, the implementation of al1_spread_malloc () was
easy because a call to sbrk() on any of the nodes will become synchronized through the
host. (sbrk() is a Unix function that extends the heap by a given number of bytes.) The
host keeps track of the top of the heap for all the nodes and when it extends the heap, it
extends it for all the nodes. If a11_spread_malloc () needs more memory for its free
pool, it performs an sbrk (. It is guaranteed that the memory it receives from the sbrk ()
will start at the same address on all processors.

For machines that do not provide support for a global heap (e.g. the HPs and the Paragon),
all_spread_malloc() canbe written using sbrk (). Because malloc () relies on it being
the only function to use sbrk (), malloc () must also be rewritten,

In the implementation of malloc () and all_spread_malloc() for the HPs and the Para-
gon, both functions have their own free pools. When an sbrk () needs to be called from
within all_spread_malloc(), a global reduction is performed in order to determine the
maximum of all the top of heaps. Then all processors sbrk () to that value and put the
fragmented data on the local free pool. After that, all processors can sbrk () space from
the free pool because it will start at the same address.

Global Heap

Local

[ ]

FIGURE 7. The when a global sbrk needs to be performed, the local heaps are brought to the same
level and the fragments (in grey) are put on the local free pools. Then the global sbrk is performed.

4.4,2 Spread_malloc

The initial implementation of Libsplit-C on the CMS supported a function called
spread_malloc (). Itallowed any processor to autonomously allocate global memory on
all the processors. This was feasible on the CM5 because any processor can autonomously
extend the heap. But, on the implementation that is built on sbrk (3, it is difficult to pro-
vide a spread_malloc().

If a processor wants to allocate memory on other processors, it must have a way of send-
ing a message to all other processors. The most efficient way to do this is to form a broad-
cast tree. But, supporting autonomous global communication would require an active
message layer that allows a send, not just a reply, from within a handler. CMAM,
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CMAML, and HPAM do not support this. The other way to do the communication is to
have the processor send a message to all other processors, one by one. This is not scalable.
Also, it will also be necessary to stop processors from calling sbrk () while information
about the heap is being collected by the processor doing the spread_malloc().

Because implementing a scalable spread_malloc () would have been difficult, it was
removed from Libsplit-C. The decision to remove it was made easier by the fact that none
of the applications that we examined use spread_malloc (). They use all_spread_mal-
loc().

4.5 Atomic Procedures

On the CM5 and the HPs, atomic procedures were trivial to implement because active
message handlers are atomic procedures. On the Paragon, an active message layer,
NXAM, was built on the message passing library, NX. NXAM was built to provide sup-
port for global memory operations, but it also supports atomic procedures.

5.0 Performance of Libsplit-C

This section describes the efficiency of Libsplit-C on the different message layers. It com-
pares the cost of Libsplit-C operations with the cost of message layer operations. It
describes overhead and latency for global memory, bandwidth for bulk transfer, and exe-
cution time for global communication functions. Also, it reports the performance of Split-
C pointer operations. It shows numbers for the CM3, the HPs, and the Paragon.

The same mechanism was used to measure all events. In order to account for the overhead
of the timers, the event was repeated inside a loop and the loop was timed. The time to
execute the loop without the event was also measured and these two nambers were sub-
tracted. The result was divided by the number of iterations to get the cost of a single event.
In order to account for context switches, cold-start cache misses, ete, the previous mea-
surement was repeated several times. The first time was thrown out. The next three times
were used (o get an approximation to the mean time. If any of the remaining measure-
ments were greater than three fimes the mean, they were assumed to be corrupted by a
context switch and were thrown out. At least thirty iterations were always measured, but
enough iterations were measured so that the confidence interval was at most 10% of the
mean.

5.1 Global Memory

One goal of active messages is to provide a mechanism for sending messages with the
lowest overhead and latency possible. Libsplit-C provides portable global memory primi-
tives but at the cost of some overhead. In the process of designing and implementing Lib-
split-C, we tried to minimize the overhead that is caused by adding another layer on top of
active messages. This section shows that the extra overhead that Libsplit-C adds to active
messages 1s small.
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The comparison between active messages and Libsplit-C was made by comparing three
different measurements of active messages with the five Libsplit-C global memory opera-
tions. A read or a write operation spends time in the message layer that is equivalent to the
round trip time of an active message. A get or a put operation only pays the overhead of
sending and receiving a message. The latency through the network is masked by pipelin-
ing several operations. A store operation only pays the overhead of sending a message
because there is no acknowledgment,

The round trip time of an active message was measured by sending a message to a remote
node and then waiting for a reply. The send and receive overhead was measured by send-
ing N messages to a remote node and then waiting for N responses to be received. N was
chosen so that the overhead of sending and receiving messages would be greater than the
network latency. The send overhead was measured by sending a message and not waiting
for a response.

3.1.1 Overhead and Latency on the CM3 and the HPs

Figure 8 shows the cost of the five Libsplit-C global memory operations (e.g. store, get,
put, read, and write) for the implementations that are built on CMAM, CMAML, and
HPAM. Also included is the overhead of sending an active message (AM send overhead),
the overhead of sending and receiving an active message (AM send+recv overhead), and
the round trip latency for an active message (AM latency).

For CMAM and CMAML, the cost of a get or a put is approximately twice the cost of a
store. This makes sense if the cost of sending an active message is about the same as the
cost of receiving one. On HPAM, however, the cost of a get or put is closer to five times
the cost of a store. This is because there is a bug in the Medusa card that the HPs use for
their network interface. This bug causes several status packets to be sent whenever a mes-
sage 1s sent. The sender has to receive these status packets and this overhead makes the
send and receive averhead greater than twice the send overhead.

Note that the send overhead on HPAM is slightly misleading. On the HPs, packets are not
reliable so every send must reply. This means that a program that executes a store will
eventually have to pay the cost of receiving the reply and the extra status packets. AM
send overhead is actually equal to the AM send+recv overhead, but in figure 8 it is
reported as only the cost of the send.
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FIGURE 8. Overhead and latency of active messages and Libsplit-C on CMAM, CMAML, and
HPAM,

5.1.2 Overhead and Latency on the Paragon

For the Paragon, there are two overheads to consider. The overhead introduced by the
active message layer (NXAM) that is built on NX, and the overhead introduced by Lib-
split-C. NX and NXAM send overhead are the times to send an NX message or a NXAM
active message. NX and NXAM send and receive overhead are the times to send and
receive an NX or NXAM message. NX and NXAM latency are the round trip times of an
NX or NXAM message. These times are for OSF version 1.1,

The Paragon has a second processor on each node which can be used to send messages.
The faster of the times is for the message processor turned on, and the slower is for this
processor turned off. The times for the message processor turned off are reported because

only recently has it become possible to turn this processor on. Some sites have not done so
yet.
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FIGURE 9. Overhead and Jatency of NX and Libsplit-C on the Paragon.

5.2 Bulk Transfer

In addition to low overhead and low latency, the second goal of active messages is to pro-
vide a mechanism for sending data at the highest possible bandwidth. Libsplit-C provides
portable bulk transfer but at some reduction of bandwidth. This section presents the
amount of bandwidth that is lost by using Libsplit-C instead of active messages.

The comparison between active messages and Libsplit-C was made by comparing the
bandwidth that can be achieved for active messages (and NX) with the bandwidth of the
five Libsplit-C bulk transfer operations.

Figure 10 shows the bandwidth of the four active message layers and NX. These measure-
ments do not include the cost of opening segments for CMAM and CMAML, nor do they
include the cost of posting a receive in advance on the Paragon. The CM5 reaches a peak
bandwidth of about 10 MB/sec, and it gets half of peak bandwidth for a message size of
about 50 bytes. The Paragon reaches a peak bandwidth of 38MB/sec with the message
processor and a peak of 29 MB/sec without it. It gets half of peak for a message size of
about 4KB. The HPs reach a peak bandwidth of 39 MB/sec for transfers under 4KB and
half of peak bandwidth for a message size of about 150 bytes. The bandwidth on the HPs
drops considerably once the message size becomes larger than 4KB because the network
interface for the HPs contains enough memory to allocate a 4KB buffer for every send. 39
MB/sec 1s the rate at which data can be stored into the network interface. For transfers
larger than 4KB, the data rate starts to drop to the FDDI bandwidth of 12 MB/sec.
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FIGURE 10. The bandwidth of four active message layers and NX.

Figures 11 through 15 show the bandwidth of the five Libsplit-C bulk transfer operations.
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FIGURE 11. Bandwidth of bulk store.
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FIGURE 12, Bandwidth of bulk get.
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FIGURE 13. Bandwidth of bulk put.
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FIGURE 15, Bandwidth of write.

5.3 Global Communication

The cost of global communication is a function of the number of processors. Because we
only had four HP workstations with medusa cards, we were only able to measure their per-
formance for four processors. CMS5 performance was measured on 4 nodes to compare
with the HPs, and on 64 nodes because a 64 node CM35 was available. The performance of
the Paragon differs by an order of magnitude, so it is displayed separately.
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5.3.1 Global Communication on the CMS and the HPs

For global communication functions, CMAML is the fastest because it uses the CMS5’s
control network. Barrier on CMAM also uses this network. CMAM for other operations
and HPAM are slower because they must perform each of these functions by sending mes-
sages. The times for both the CMS5 and the HPs are for four processors.

W HPAM

barrier boos t reduce soon

FIGURE 16. Cost of global communication for four processors ot CMAM, CMAML, and HPAM.
5.3.2 Global Communication on the CM5
The times for broadcast, reduce, and scan are higher for CMAM on a 64 node machine.

The times for CMAML remain about the same because CMAML uses the control net-
work.

B ovam
B CMAML

barrier boost reduce sCON

FIGURE 17. Cost of global communication for 64 processors on CMAM and CMAML.

5.3.3 Global Communication on the Paragon

Figure 18 shows two sets of times for the Paragon. Barrier is the cost of global communi-
cation using the same implementation that was used on the CMS. For this version, flow
control is handled with barriers. The dataflow version uses static dataflow techniques. It
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avoids the cost of the barriers and it can be pipelined. Barrier could not be optimized so its
cost is the same for both versions.

M catafiow

barrier boost reduce soon

FIGURE 18. Cost of global communication for eight processors on the Paragon.

5.4 Overhead of Split-C Pointer Operations

The previous sections have shown the overhead of using Libsplit-C operations versus
active messages or message passing. This section shows the overhead of several Split-C
pointer operations.

Sptr(i] is the cost of indexing a spread array. For_my_1d is a macro that iterates through
all the local elements of a one dimensional spread array. The cost of one iteration of the
macro is shown. For_my_2D iterates through all the local elements of a two dimensional
spread array, and the cost is for one iteration. Sptr++ is the cost of incrementing a spread
pointer.

The cost of the Split-C pointer operations is a rough guide of the relative scalar perfor-
mance of the processors on the different machines. The CMS is built with 32 MHz Sparc2
processors. The HPs are built with 99 MHz PA RISC processors. The Paragon is built with
50 MHz 1860 processors.
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FIGURE 19. Overhead of Libsplit-C array, loop, and pointer operations.

6.0 Performance Comparison of Applications on Three
Platforms

This section continues to investigate the efficiency of Libsplit-C by describing the perfor-
mance of applications on the different implementations. The applications, radix sort and

matrix multiply, were measured for different problem sizes on four HPs, four nodes of the
CMS5, and four nodes of the Paragon. For the CMS5 and the Paragon, scaled speedup curves
were also generated. For the HPs, we were unable to generate speedup curves because we
only had four machines available. Also, because our Paragon is only 8 nodes, the SDSC

Paragon was used to generate the speedup curves. The SDSC Paragon is running NX (ver-
sion 1.2) and is slower than ours. The performance of global memory and bulk transfer on
the SDSC Paragon is described in Appendix A. Our Paragon is running NX (version 1.1).

6.1 Matrix Multiply

Figure 20 shows the performance of matrix multiply for different problem sizes. Two
square matrices were multiplied. 64x64 means that each processor contained a 64x64 ele-
ment square of each matrix. The performance on the HPs drops from 87 to 29 MFLOPS
when going from 128x128 to 256x256. This happens because the HPs have a 256KB
cache. For small problem sizes, the matrices fit in cache.
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FIGURE 20. The performance of matrix multiply for different problem sizes on four processors.

TABLE 1, The performance of matrix multiply for different problem sizes (in MFLOPS).

MFLOPS

.
;
- o©
[£=] [a¥]
b %
»
[£w) [ vl
[N ]
&

problem size /proc

256:x256 ¢

12512 4

—— CMAM
—&— CMAML
—8— HPAM

CMAM CMAML | HPAM NX
64x64 19 14 77 13
128x128 23 21 &7 18
256x256 23 22 29 19
512x512 21 21

Figure 21 shows the scaled speedup of matrix multiply on the CM5 and on the SDSC Par-

agon. For this problem, two square matrices were multiplied, and each processor con-

tained a 128x128 element square of each matrix.
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FIGURE 21. Scaled speedup of matrix multiply.

TABLE 2. Scaled speedup of matrix multiply (in MFLOPS).

#PROCS | CMAM CMAML | NX (1.2)

4 23 21 18
16 76 79 59
64 301 311 245

6.2 Radix Sort

The radix sort operates on 32 bit integers. It has three stages: fill, scan, coalesce. Fill histo-
grams the keys locally. Scan computes the global histograms using the global communica-
tion function, all_scan_add. Coalesce moves the keys to their correct posttions. The fill
time is always small. The scan time is a function of the radix and is constant with the num-
ber of keys per processor. Coalesce time is a function of the number of keys per processor
and the number of passes that have to be performed.

For the CMS5 and the HPs, global communication is fast enough that a 16 bit radix could
be used. For a 16 bit radix, 65,536 scans must be performed for each pass, and two passes
are required. Because global communication on the Paragon is much more expensive, an
eight bit radix was used. For an eight bit radix, 256 scans must be performed for each pass,
and four passes are required. The two extra passes increase the coalesce time on the Para-
gon, but this is advantageous because the global communication time is so slow.

Figures 22 through 25 show the performance of radix sort on CMAM, CMAML, HPAM,
and NX. Each of these figures is for times on four processors.
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FIGURE 22, Performance of radix sort on CMAM for different problem sizes.
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FIGURE 24. Performance of radix sort on HPAM for different problem sizes.
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FIGURE 25. Performance of radix sort on NX for different preblem sizes,

Figure 26 shows the scaled speedup of radix sort. For the times in this figure, 524,288
keys per processor were used. On the CM5, a radix of size 16 was used, and on the Para-
gon, a radix of size eight was used. The times for the Paragon on this figure differ from
those in figure 25 because these times are for the Paragon at SDSC running NX version
1.2. For the performance of the SDSC Paragon on global memory and global communica-
tion, see appendix A,
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FIGURE 26. Scaled speedup of radix sort.

TABLE 3. Scaled speedup of radix sort. (Times in seconds,)

4 16 64
CMAM 21 16 762
CMAML | 26 17 977
NX (1.2) 32 17 1663

Implementing an Efficient Portable Glebal Memory Layer on Distributed Memory Multiprocessors 39



7.0 Conclusion

The experience of porting Libsplit-C to a different platforms has helped us determine how
portable are global memory, bulk transfer, global communication, the global heap, and
atomic procedures. It has also demonstrated that Libsplit-C can be implemented on a vari-
ety of architectures with little overhead to the message layer. Finally, Split-C can be used
to write programs that are portable across distributed memory machines.

Global memory and atomic procedures were implemented easily on top of active mes-
sages. The main issue was to use the calling convention of the processor so that Libsplit-C
always passes arguments in registers instead of passing them through memory. The easiest
way to implement global memory on message passing was to build active messages on
message passing.

For bulk transfer, a network that is both unordered and has a small maximum packet size
forces the implementation to have segments. Segments cost a round trip latency for a store
or a put. A network with a large maximum packet size, or an ordered and reliable network,
does not need segments. In order to achieve maximum bandwidth on message passing, an
additional send is required to post a receive in advance on the remote node.

For global communication functions, if the hardware doesn’t provide support for them, the
functions must be built from point to point messages. Implementations that are built using
messages must control flow. Architectures that support barrier in hardware can contro}
flow using barriers. Architectures that must build barrier from messages can use tech-
niques from static dataflow. In architectures that do not provide support for a fast barrier,
using static dataflow instead of barriers increases performance by 2 to 3.5 times.

Architectural support for a global heap is not required. All_spread_malloc can be imple-
mented on multiple platforms using sbrk. However, spread_malloc is much more difficult
to implement because it requires autonomous global communication.

On the CM35, Libsplit-C adds less than 25% overhead and latency to active messages. On
the HPs, it adds less than 25%. On the Paragon, it adds less than 6% to the active message
layer. The active message layer adds 13 to 35% overhead to the message passing layer.

The experience with matrix multiply and radix has shown us that an application that is
written in Split-C can be run efficiently on multiple machines with a minimum of tuning.
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Appendix A: Performance of SDSC Paragon

Figure 27 shows the overhead and latency of NX, NXAM, and the five global memory
operations on the SDSC Paragon running OSF 1.2. The methods used to gather these num-
bers are the same as those described in section 5.1.

TR Py & 3B_3% E I ¥ =3 B 8
< £0 <] o 28 o a =
c P §H O = U g T g & & ] =
@t & o ©» X ¥ ¥ < @ Y] =
X% x% ZEE5E 5 2=
=22 3¢ D2 D3 %

%8 Bo 3 z

FIGURE 27. Overhead and latency of NX, NXAM, and global memory on Paragon running OSF
1.2,

Figure 28 shows the bandwidth of NX, NXAM, and the five bulk transfer operations. The
methods used to gather these numbers are the same as those described in section 5.2.
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Appendix B: Performance of IBM SP-1

After this thesis was written, Libsplit-C was ported to the IBM SP-1. This implementation
of Libsplit-C was built on the message passing layer, MPLp, and is almost identical to the
implementation on NX. This port took about one day.

Here are the performance numbers for overhead and latency, bandwidth, global communi-
cation, and the applications. Latency and overhead are shown for the message passing
library, MPLp, the active message layer that is built on the message library, and the five
Libsplit-C global memory operations. The overhead and latency is about twice the over-
head and latency for the HPs.
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FIGURE 29. Overhead and latency on the §P-1.

Bandwidth is shown for the message library, the active message layer, and the five Lib-

split-C bulk transfer operations. Two graphs are shown. The first one shows message sizes
of up to 4KB. The second shows message sizes of up to 16KB. The maximum bandwidth

1s slightly less than the peak bandwidth achieved on the CM5.
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FIGURE 31. Bandwidth for message sizes up to 16KB,

Figure 32 shows the performance of global communication.

barrier boost reduce scon

FIGURE 32. Performance of global communication,
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Figures 33 and 34 show the performance of matrix multiply and radix sort for different
problem sizes. For radix sort, a 16 bit radix was used. Because only an eight node SP-1
was available, speedup curves could not be generated for the SP-1.
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FIGURE 33. Performance of matrix multiply for different problem sizes.
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FIGURE 34. Performance of radix sort for different problem sizes.
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Appendix C: Charts in Numerical Form

This appendix has tables with the numerical values of the graphs that appear in this paper.

TABLE 4. Overhead and latency of Libsplit-C on CMS and HPs.

CMAM CMAML | HPAM
AM send 1.6 2.1 3.2
overhead
store 2.1 2.7 34
AM send 34 4.3 16.5
+ recy
overhead
get 44 5.2 16.9
put 4.1 6.8 16.9
AM 131 145 35.2
latency
read 14.0 17.8 359
write 134 4.9 355

TABLE 5. Overhead and latency of Libsplit-C on Paragon.

w/ msg, w/o msg,
proc. proc.
NX seand 35 61
overhead
NXAM 52 84
send over-
head
store 53 87
NX send 91 182
+ recv
overhead
NXAM 107 292
send +
recy over-
head
get 114 286
put 109 290
NX 164 321
latency
NXAM 189 458
latency
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TABLE 5. Overhead and latency of Libsplit-C on Paragon,

w/ msg. w/o msg.

proc. proc.
read 198 460
write 198 464

TABLE 6. Overhead and latency on the SP-1.

Op. Time (us)
MPLp 23
send over-

head

AM send 337
overhead

store 345
MPLp 448
send +

TECY OVEr-

head

AM send 54.6
+ recv

overhead

get 57.5
put 57
MPLp 68.3
latency

AM 88.6
latency

read 89.6
write 89.2

TABLE 7. Overhead of Libsplit-C pointer operations.

CMS5 HPs Paragon
sptr(i] 1.24 0.15 0.41
for_my_1d 0.13 0.03 0.12
for_my_2D 2.27 0.82 1.65
sptr++ 0.38 0.10 0.19
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TABLE 8. Performance of global communication for four nodes on CM5 and HPs.

CMAM CMAML | HPAM
barrier 34 3.6 61.3
broadcast | 25.2 12.5 79.5
reduce 223 10.5 81.1
scan 481 121 102.4

TABLE 9. Performance of global communication on 64 nodes of CMS5,

CMAM CMAML
barrier 3.2 4.4
broadcast | 68.3 13.0
reduce 65.3 10.4
scan 134.1 12,2

TABLE 10. Performance of global communication on eight nodes of Paragon.

dataflow | barrier
barrier 705 705
broadcast | 4533 1597
reduce 486 951
scan 661 2039

TABLE 11. Performance of global communication on eight nodes of SP-1,

Op. Time (us)
barrier 314
broadcast | 187
reduce 221
scan 329
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Appendix D: Instructions for Porting Libsplit-C to a New
Message Layer

There are two steps to implementing Libsplit-C on a new message layer. First, you must
determine how to implement the different components of Libsplit-C efficiently on the new
message layer. Then, you must add a directory, and add and change certain files in Lib-
split-C. The details of what files to change and add are described in the file PORTING.

For global memory, an active message layer is the most portable interface. The one thing
to consider when implementing a new message layer on the active message interface is
that this interface should match the calling convention of the processor. Floats should be
passed in registers instead of going through memory. If you are implementing Libsplit-C
on message passing, there is an active message layer, nxam, for the Paragon that is builton
message passing. Another one, splam, exists for the SP-1.

For bulk transfer, you may or may not have to set up a segment before you send a mes-
sage. If packet sizes are large, or if the network is ordered and reliable, the message layer
will not need segments. Code from the CMAM implementation can be used as a starting
point if segments are needed. Code from the HPAM implementation can be used as a start-
ing point if segments are not needed. If you are implementing Libsplit-C on message pass-
ing, you will want to send a message to the remote node which posts a receive before
doing a put or a store. This will save the message layer a copy. See the implementation on
the Paragon or on the SP1 for an example.

For global communication, you should use hardware implementations if they exist. If bar-
rier is the only function that exists, the others must be constructed using point to point
messages. But, the barrier can be used for flow control. See the CMAM implementation
for an example. If barrier is not supported in hardware, all global communication func-
tions must be constructed using point to point links, and flow cantrol must be down using
techniques from static dataflow. See the implementation on HPAM for an example.

The global heap should be portable to any implementation that supports the Unix system
call sbrk (). However, a problem will arise if the message layer calls malloc (0. AL1_-
spread malloc () performs a reduction across the processors in order to determine the
maximum heap value across the processors. If the message layer calls malloc while this
reduction is in progress, one of the nodes may call sbrk () in which case the value for the
top of the heap may be incorrect. The implementation that is built on PVM fixes this prob-
lem by ensuring that the free pool will always have enough extra space just in case malloc
is called from within a11_spread_malloc ().

Atomic procedures are supported easily once an active message interface exists. Because
the easiest way to implement global memory is to use active messages, atomic procedures
should come for free.
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