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Abstract

The design of a distributed video-on-demand system that is suitable for large video libraries is described. The system is
designed to store 1000s of hours of video material on tertiary storage devices. A video that a user wants to view is loaded onto
a video file server close to the users desktop from where it can be played. The system manages the distributed cache of videos
on the file servers and schedules load requests to the tertiary storage devices. The system also includes a metadata database,
described in a companion paper, that the user can query to locate video material of interest. This paper describes the software
architecture, storage organization, application protocols for locating and loading videos, and distributed cache management
algorithm used by the system.

1.0 Introduction

The high speed of the newest generation of workstation and network technology makes possible the integration of high-quality
full-motion video as a standard data type in many user environments. One application of this new technology will allow
networked users to view video material on their workstation screens on-demand.

Video-on-demand (VOD) applications will initially be divided into two major categories: video rental and video library. Video
rental applications will offer users very simple interfaces to select from a small number of currently popular movies and
television programming. Time Warner and Silicon Graphics, for instance, will be testing a system in Orlando Florida that
provides cable TV viewers with on-demand access to 250 popular titles [19]. Video library applications, on the other hand,
will support sophisticated queries against a large database of video material. A video library might include course lectures and
seminars, corporate training material, product and project demonstrations, video material for hypermedia courseware,
documentaries and programs broadcast on public and private TV channels, and feature films. We also expect this system will
store personal material such as video email and personal notes.

Network users are already accustomed to being able to search large document databases and retrieve text for viewing on their
workstation screens [2]. The goal of the Berkeley Distributed VOD System described in this paper is to provide a similar
service for continuous media data. By continuous media we mean data types with dynamically changing real-time
presentations such as audio, video, and animation. Our system has five central goals

1) Provide on-line access to a large library of video material (e.g., over 1000 hours).
2) Support both local and wide-area (Internet) access to the library.
3) Scale gracefully using the existing network infrastructure

4) Support ad hoc queries to allow users to find video material based on bibliographic, content
information, and structural information.

5) Handle a wide variety of multimedia document types.

Providing networked access to a large video library presents several challenges. First, the size of digitized video and the high
bandwidth requirements of video playback require both the capacity of tertiary storage (€.g., tape jukeboxes) and the speed of
secondary storage (e.g., magnetic disks). Second, while the economies of scale in massive storage devices motivate the use
large central repositories, limited internetwork bandwidth and the desire for low latency access suggest the use of distributed
stores.



This paper describes the design and implementation of a distributed hierarchical storage manager for multimedia data called
the VOD Storage Manager (VDSM). VDSM addresses the challenges of local and wide-area video-on-demand service with a
hierarchical storage architecture in which archive servers (AS) use tertiary storage devices to act as central repositories for
video data and metadata indexes, and video file servers (VES) that are “close” to clients cache video on magnetic disk for real-
time playback. The system scales by allowing many VFSs on a client LAN to support video playback and improves VFS cache
effectiveness by taking advantage of user-supplied caching directives in making cache replacement decisions and scheduling
movie prefetching. Finally, the system supports a compound object model that allows the storage manager to support a wide
range of multimedia formats.

The remainder of this paper is organized as follows. Section 2 motivates the distributed hierarchical storage architecture
employed by VDSM. Section 3 describes the architecture of the Berkeley Distributed VOD System, and section 4 describes
our initial implementation.

2.0 Distributed Hierarchical Storage Management

At its barest level, video-on-demand can be viewed as a distributed file system problem. As in a conventional network file
system, users of a VOD system have two basic needs: locate relevant material and retrieve it for viewing on their local
workstations. However, providing widely distributed clients access to very large video databases poses several challenges that
are inadequately addressed by conventional network file systems. First, video data is both difficult to store and difficult to
deliver. Delivery for video playback requires stringent real-time scheduling and significant network bandwidth (e.g., 0.5 to 4
Mbysec for VHS quality video), while conventional wide area networks offer neither. Second, cost effective storage requires
the use of tertiary storage devices, which provide access times too slow for interactive response. Typical devices also support
few concurrent users (e.g., a typical jukebox might have only four readers). Although recent work has been done to develop
real-time file systems for delivery of video over high speed local area networks, very little has been done to address the need of
cost effectively storing large video libraries or on delivering that media over heterogeneous wide area networks.

2.1 Real-time Playback

A fundamental challenge in delivering on-demand video is meeting the real-time data delivery requirements of video
playback. Unlike conventional computer applications, continuous media playback requires that data be delivered at a steady
rate without significant variations {1]. High-quality, full-motion video, for instance, requires that data be delivered at
approximately 2 Mb/sec. If data is not delivered on time then audio output may be disrupted or video frames may be dropped,
resulting in an unpleasant jerkiness in the presentation.

Conventional network file systems, such as NFS [16] and AFS [6], are not designed to accommodate real-time file service.
Consequently, they may fail to deliver data on time, which will result in unacceptable playback quality. Real-time file servers,
on the other hand, address the problem of real-time delivery over local area networks by carefully scheduling /O operations to
meet the consumption constraints of their clients [14, 25, 22, 5, 24, 10].

Unfortunately, real-time delivery over wide-area networks presents a new set of problems. In a wide-area network, packets of
data sent by a real-time file server to remote clients must cross through network bridges, routers, and hubs, any of which could
drop or delay packets, resulting in poor playback quality. Although work has been done on protocols for real-time delivery
over WANS [3, 18], these protocols require that all networks along the path run special networking software. Many years are
likely to pass before all nodes in the Internet are updated to run such software. Some observers predict that there will be a large
number of notes that are public and that will implement first-come, first-serve protocols for a long time [7]. Thus, systems
developed to deliver video-on-demand to widely distributed clients cannot expect real-time guarantees from the network.

2.2 High Bandwidth Requirements

Another problem in delivering video-on-demand is the high bandwidth required when several videos are played
simultaneously. A conventional ethernet LAN has a peak bandwidth of 10 Mbs, with observed performance typically being 6-
8 Mbs. Thus, a LAN could support at most 4-5 viewers before reaching saturation.

Newer network technologies, such as FDDI and ATM, hold greater promise. FDDI networks, for instance, offer a peak shared
bandwidth of 100 Mbs, which can support 25 or more simultaneous users. ATM networks, on the other hand, offer between 25
and 250 Mbs on each link, with even higher aggregate bandwidth. Thus, a fast ATM switch could support simultaneous video
transmission to every host on a local area network.
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Wide area networks, however, present a far bleaker picture. The peak bandwidth out of a server to all of its clients cannot
exceed the bandwidth of all intervening networks and hubs. Recent measurements of TCP bandwidth on the Internet between
hosts in Berkeley and machines separated by between one and fifteen routers indicate an available bandwidth of only 10-
100KB/sec [11]. However, performance is highly variable because we have played video stored at UCSD on clients at
Berkeley using the Internet, and we have observed up to 2Mb/sec bandwidth.

Even with fast networks, playback can bottleneck on the I/O system of the file server. A single SCSI disk can support a
sustained read transfer rate of about 2 MB/sec, or enough for 6-8 playbacks. Stripping data across a disk array can vastly
improve the transfer rate but output is ultimately limited by the bandwidth of the file server backplane. For example, one
commercial VFS with a disk array with four disks achieves a peak bandwidth of 25Mbs [23].

2.3 Video Databases

Probably the greatest challenge in supporting on-line access to video libraries results from the size of the objects themselves. A
single hour of compressed VHS quality video consumes 1 gigabyte of storage, and real-world video libraries will require many
hours of video. Take, for instance, an archive for course lectures and related material for a typical university department like
the UC Berkeley Computer Science Division. Each semester the department offers 17 undergraduate courses and 13 graduate
courses, each running for 15 weeks per semester with three hours of lectures each week. The total amount of video required for
a year of lectures is substantial:

3 hours per week * 15 weeks/semester = 45 hours/course * 30 courses / semester = 1350 hours / semester

Thus, many video libraries will require terabytes of storage. In 1993 prices, magnetic disk storage costs approximately $1000
per gigabyte, or $1 million for one thousand hours of video. A more cost effective solution is offered by tertiary storage, which
uses robotic arms to serve a large number of removable tapes or disks to a small number of reading devices. As illustrated in
Table 1 below, tertiary storage offers a substantial reduction in price per megabyte, but at the expense of increased access
times.

TABLE 1.

Media Cost/GB  Throughput Seek Time Total Storage
Hard disk $1000 2.0 MB/sec 10 ms 2GB

Optical jukebox $500 0.5 MB/sec 60 ms - 20 sec 100 GB

Tape jukebox $100 1.2 MB/sec 30 sec - 1.5 min 10TB

Because of these long seek and media swap times, tertiary storage devices (especially tape jukeboxes) are poor at performing
random access within movies. Moreover, they can support only a single playback at a time on each reader. A jukebox typically
has between one and four readers. Thus, tertiary storage devices are inappropriate for direct video playback.

2.4 Distributed Hierarchical Storage Management

The high-bandwidth and real-time delivery constraints of video playback are best addressed by LAN-based file servers located
close to playback clients, while the cost effectiveness of large tertiary storage devices and the desire to share video widely
motivate the use of a central repository. What is needed is a way to preserve the cost effectiveness of centralized storage while
maintaining the high performance and scalability of distributed servers. The solution is to design a distributed hierarchical
storage management system.

A hierarchical storage manager applies the concept of caching to tertiary storage, using fast magnetic disks to cache frequently
accessed data from large tertiary storage devices [8, 9]. Distributed hierarchical storage management extends this idea by
allowing multiple caches to be distributed across a network. If a high percentage of client accesses are to data stored in a local
cache, the perceived performance is very high and WAN traffic is limited. If, however, user accesses are unpredictable or have
poor reference locality, or if cache write conflicts are common, most accesses will require an access to the tertiary storage
device and performance and scalability will suffer.

Fortunately, the access characteristics of video-on-demand applications make them especially good candidates for distributed
hierarchical storage management. First, user accesses are likely to demonstrate a high locality of reference. A small set of
movies, and television programs are likely to be popular at a given time, while older or more obscure programming will be
seldom accessed. Furthermore, for a large class of applications, users or programming providers may know well ahead of time
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what videos are likely to be accessed in the near future. For example, an instructor knows ahead of time that recent class
lectures and other footage related to topics currently being covered in class are likely to be viewed by his or her students.
Similarly, users may decide hours ahead of time that they want to watch a particular movie for evening entertainment. If this
sort of predictive information can be fed to the storage manager, it can prefeich data into caches so that it will be there when
users request it. Finally, distributed cache consistency problems are unlikely to occur in video-on-demand applications because
they are essentially read-only.

3.0 Distributed VOD System Design

The Berkeley Distributed VOD System uses distributed hierarchical storage management to provide widely distributed clients
on-demand access (0 a large continuous media library. Figure 1 depicts the architecture of the system. Archive servers (AS) act
as central repositories for published objects, typically employing tertiary storage. Each AS has an accompanying catalog, or
metadata database that stores information about the videos available on the archive. This information, which can range from
simple bibliographical descriptions to sophisticated content indexes, can be queried by users using an ad hoc query interface,
called a video database browser (VDB), to locate movies for playback. Real-time playback is provided by one or more video
file servers (VFS) located on the client’s LAN. When a client sclects a video for viewing, the browser checks if it is already
cached on one of the local VESs. If so, no access to the archive is necessary, and playback can begin immediately. Otherwise,
the client may request that the video be loaded from the archive.

Figure 2 depicts the basic communication for video playback. The components of a Distributed VOD System play comparable
roles to those in a conventional movie rental scenario. The archive server plays the role of the video rental store, holding a
large collection of movies for users to check out. The metadata database acts as the boxes on the rental store shelves,
describing available movies. The video file server plays the role of the VCR, providing real-time playback to the user’s screen.
The primary difference between a VFS and a VCR is that the VFS can play video to many clients at once, and can eliminate
costly trips to the video store by saving copies of previously watched material for repeat viewing. In fact, the VOD system
extends this model by allowing the user to shop at many video stores (multiple archive sites), to have many VCR’s (server
arrays), and to avoid suffering through many trips to the video store by scheduling to the delivery of videos to his VFS before
they are needed (i.e. prefetching).

The rest of this section describes the VOD storage manager, including the media object model, the naming and distribution
policies of the archive server, the VFS intelligent cache management system, and support for VFS arrays.

3.1 Compound Media Object Model

Two goals of the Berkeley Distributed VOD System is to support sharing of a wide variety of multimedia document types in a
variety of representations and encodings and to support sophisticated queries on those documents. The proliferation of
multimedia formats and video compression standards means that the VOD system must allow users to publish movies in
multiple formats (e.g., QuickTime, AVI, OMF, or our own CM Script [15]), in a variety of encodings (e.g., MPEG, DVI],
Motion JPEG, etc.), and in a wide range of fidelities (i.e. various image sizes, frame rates, color depths, and sound resolutions).
The system should also efficiently support publishing of media with added or altered streams (e.g., close captioned, sub-titles,
sound tracks in different languages, etc.) and support the extraction of small segments of a large movie for playback or
incorporation into other documents. The VOD system provides this flexibility through the Compound Media Object (CMO)
abstraction, which provides a uniform, media independent access layer through which the VOD storage manager deals with all
published material.

Each CMO has a globally unique object identifier (OID), a type name, one or more named bitstreams (files) and, optionally, a
list of external references to other CMOs. Rather than defining ridged object semantics, the CMO provides a generic container
facility upon which clients can define their own document structures and semantics. In this regard, the CMO abstraction
resembles the Unix file system or the Bento file format [5]. The key difference is that the CMO exports a list of external object
references to the storage manager, thereby allowing the construction of compound objects.

The ability to construct compound objects allows a movie to be composed of many subobjects, which may in tum be shared
with other movies. For example, the audio and video streams of a movie may be segmented into several CMOs (clips) of types
“AudioClip” and “VideoClip.” Another CMO of type “Movie” may then reference these clips and describe how they are
ardered for playback. The storage manager itself need not understand the structure or semantics of these typed objects. It need
only know the object dependencies to support storage and migration. Decomposition of media into shared subobjects offers
several advantages: 1) storage space is saved for multiple representations of a single movie or for movies that share scenes, 2)
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subobjects can be striped across different VFSs for server parallelism, and 3) queries can return a small range of video for
playback rather than entire movies.

In order to support playback on a wide variety of hardware configurations, digital movies are likely to be stored in several
representations. For instance, some machines have MPEG decompression hardware or very fast processors that can play back
large screen images at full frame rates, while others can only handle small images with perhaps a lower frame rate, or may
support a different compression standard, such as DVI. Similarly, some machines may support high quality stereo sound, while
others have only low fidelity monaural sound. Shared sub-object support increases storage efficiency for multiple
representations of a single movie by allowing common streams to be shared rather than duplicated. For example, Figure3
shows two representations of a movie sharing a common audio channel.

Support for shared subobjects is also important in authoring multimedia documents that contain excerpts from other video
material. A news show, for instance, often contains many small highlights from longer stories. By breaking source footage up
into many small pieces, a news show can share the excerpted video rather than duplicate it. This capability is similarly
important in supporting user queries that return a small segment of a film. For example, if a user wanted to see all of the skits
from “Saturday Night Live” where Chevy Chase played Gerald Ford, the system could load only those objects that include the
few minutes of interest from each episode, instead of downloading and storing each 90 minute program in its entirety. This
filtering can mean the difference between minutes and hours of migration time, and savings of gigabytes of storage.

A final advantage of a compound media representation is in supporting striping of data across arrays of file servers. If a movie
is split into many small pieces, the pieces can be distributed across all servers in an array, thereby equally distributing playback
load and storage demands and improving scalability.

3.2 The Archive Server

VDSM supports the wide-spread sharing of a large library of CMOs. The Archive Server (AS) plays the central role of a
continuous media publishing house. It handles the naming, storage, and distribution of movies.
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3.2.1 Naming

An object first becomes accessible in the VOD system when it is published at an AS. Objects are immutable, and they are
assigned a globally unique object ID (OID) composed of the name of the publishing archive and a sequence number unique to
the archive. The archive where an object is published, called its home archive, is guaranteed to have a copy of the object or to
know of another server that does. Thus, given an OID, the system can always locate the corresponding object by contacting its
home archive and following any forward references. The use of immutable objects is natural for video-on-demand applications
since movie data is seldom modified, and immutability greatly simplifies distributed cache coherency [17]. In addition, the use
of a hierarchical naming scheme provides for decentralized naming while guaranteeing global uniqueness for identifiers.

Of course, users of the VOD system do not want to deal with OIDs to play movies. Instead, users find objects by querying the
metadata database associated with the archive. This database contains information that maps document attributes (.g., names,
keywords, and content indices) to OIDs that the storage manager can manipulate. For example, a user who wants to watch
“Star Wars” can use a browser 10 query the metadata database for all of the available representations of the movie (each has a
distinct OID). When the user selects a version to play, the browser retrieves the associated OID for use when requesting
service from the video file servers and the archive.

3.2.2 Storage and Distribution

Given an OID for playback, the system first searches the user’s local VFS caches to determine if the data is already available.
If so, playback begins immediately. If, however, the data is not available locally, the home archive for the object can be
contacted to download the object to a VFS. Although this download process may at first seem like a conventional “ftp”
problem where objects are transmitted on-demand in a first-come, first-serve order, the size of video objects and the
characteristic of tertiary storage devices motivate a different solution.

Cost effective storage of large amounts of multimedia data mandate the use of tertiary storage devices such as a tape jukebox.
While the transfer rate for these devices is quite high (1.2 - 2.0 MB/sec for a Metrum tape drive), the time to seck between non-
contiguous objects can range from 30 secs (if the target object is on a currently mounted tape) to nearly two minutes (if a tape
swap must be performed). Thus, achieving high performance from a tertiary device requires intelligent scheduling to avoid
unnecessary tape swaps and seeks. The key to this scheduling is knowing as much information as possible about future access
patterns of a client. For example, suppose objects are stored on a tape in the order 1,2, 3, 4. If client A asked for object 4 and
then for object 3, a rewind would be required. If, however, the client told the archive in advance all objects that it needed (3
and 4), the archive could retrieve and send them in an order that minimized seeks. This scheme can be even more
advantageous when globally optimizing requests from many clients. For example, if a second client, B, requested object 5
from another tape and object 2, the archive could sweep the first tape to retrieve objects 2, 3, and 4 sequentially before
swapping tapes and reading object 5.

The AS interface optimizes device access with a two stage transfer protocol, where clients enqueue requests, along with a
priority and a delivery deadline, and the archive calls back the client when the data is ready. For each requested object, the
archive calculates a current effective priority, based on its static priority and the proximity to its deadline, and an access cost
that reflects the time it will take to retrieve the object given the current state of the jukebox readers. The archive then attempts
to minimize cost while servicing the highest priority requests.

AS performance can be further increased by using “closely-coupled” video file servers as intermediate layers in the storage
hierarchy. Figure 4 depicts an archive server with three closely-coupled VFSs acting as intermediate caches. In this case, an
AS can avoid access to the tertiary storage device altogether by passing client requests to closely coupled servers that have
cached the requested data.

Even with efficient device scheduling and closely-coupled VFSs, loading a movie from an archive can take a long time. For
example, to swap a tape and load a half-hour video over a high speed connection can take 30 minutes. If the client VFS and
archive are separated by a slower wide-area link, or if many high priority requests are already enqueued, the times can be
much longer. Needless to say, users want to know when their request is likely to be ready so they can schedule their time
accordingly. The AS satisfies this need by calculating time estimates based on the user’s position in the queue and the size of
the preceding requests and communicates this estimate to the user.

3.3 Intelligent Cache Management

No matter how clever the schemes for improving AS efficiency, the performance and scalability of the VOD system depend on
the effectiveness of the VESs at absorbing user requests. The success of any caching scheme depends on the ability of the



system to anticipate future access patterns and keep frequently accessed data available in high speed storage. In the VOD
systent. the cost of making a poor cache management decision is especially high because removing the wrong movie from the
cache could require an hour to reload it from an archive.

Fortunately, while the cost of making a poor decision is high, the system also has opportunities to improve the quality of these
decisions. In lower level applications such as processor page caches and disk main memory caches, the speed of the cache
replacement algorithm is of paramount importance. As a result, these systems employ simple cache replacement policies, such
as least recently used (LRU) or random replacement. The VDSM, on the other hand, manages comparatively few objects and
replacements are relatively infrequent, thus offering considerable time for cache replacement decisions. Our system takes
advantage of this time by using detailed access statistics and user caching directives to improve cache performance. We call
this intelligent cache management.

3.3.1 User Caching Directives

Cache replacement algorithms attempt to guess what objects users will access in the future based on what they have accessed
in the past. Better guesses are possible when users are given the opportunity to tell the system what they think they will access.
The system can then use these directives both to decide what not to throw away and to fewch things before users actually need
them. For a library of movies, some possible directives include:

e I want to watch “E.T.” tonight around 8:00.

¢ Keep all class lectures available for two weeks after they are recorded.

e Make all videos discussing “pipelining” available during the fourth and fifth weeks of the semester.
e Keep all movies that have been watched by more than three different people in the last week.

Note that some of these directives refer to specific objects (“E.T.”) while others refer to sets of movies that might be returned
by a query against the metadata database (“videos discussing pipelining™). Still others refer to access statistics (“watched by
more than three different people™) or refer to ranges of time during which the directive should apply (“during the fourth and
fifth weeks of the semester™).

Each VFS keeps a database of user caching directives as well as a database of past access statistics. By computing a priority
for each object referenced by the directives, the system can decide which objects should be purged and which should be
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FIGURE 4. Archive Server with Closely-Coupled VFSs




prefetched from an archive during times of low server utilization. If user caching directives are good, VFS caching can be
extremely effective and lengthy archive download times need be suffered only when unanticipated requests are made or when
requests exceed local storage capacity.

3.4 Server Arrays

The final challenge for VDSM is to provide adequate resources to meet local real-time playback needs. While most such
systems have relied on powerful single servers, perhaps employing a disk array, we believe that high scalability ultimately
requires server-level parallelism, which applies multiple servers to the task of video delivery. An obvious design for such a
system would place N independent servers on a network and allow clients to play movies from any one of them. While such a
system does improve peak aggregate bandwidth, it can suffer load balancing problems if many people simultaneously decide
to watch a movie that is stored on only one of the servers. In this case, one server is overloaded while the others sit idle. A
possible solution to this problem is to replicate popular movies across several servers, but this approach results in poor storage
utilization and requires that the system choose the right material to replicate.

A better approach to server parallelism is to stripe movies across servers, to form what we call a software RAID. Such systems
have proven inappropriate for conventional distributed file systems because of: 1) the high coordination overhead between the
distributed servers, 2) the increased likelihood of independent failures, and 3) the difficulties in achieving distributed
consistency. For read-only caches, however, a software array does not suffer these problems. Because data on a VFS is read-
only and is already backed up at an archive server, issues of distributed consistency and independent failure do not arise. In
addition, the predictable delivery characteristics of continuous media permit very low-overhead cooperation between servers.

The VDSM supports object-wise striping of compound media objects across an array of video file servers. To support sharing,
movies are already split into smaller subobjects of perhaps a few megabytes in length (5-20 seconds). When playing back from
a server array, the system determines the location of all component objects and distributes a schedule to each VFS that
indicates when it should begin transmitting its objects. The only coordination necessary is the distribution of the logical time
system between the client and each of the servers participating in the playback.

4.0 Implementation

This section describes the prototype Distributed VOD System that we have implemented at Berkeley. The system provides
video-on-demand service to networks of Unix clients running the X window system.

4.1 Distributed Programming Infrastructure

Most components are written in Tcl, an embedded scripting language [12], that supports rapid prototyping and testing and
offers seamless access to tools in the Unix environment. The Tk windowing toolkit [13] supports the development of Tcl
applications with Motif-style user interfaces and served as the basis for our graphical movie browser.

Tcl-DP is a distributed programming library that is used for all interprocess communication. Tcl-DP supports blocking and
non-blocking RPC between processes as well as TCP and UDP communication [20]. Using Tcl-DP, we built a simple name
server that provides a local registry for services running on the network. The name server can spawn remote servers on-
demand, and it provides automatic failure recovery in the event of a server crash or a stale network connection.

The POSTGRES post-relational database management system is used to store the metadata database and control access to
tertiary storage [21].

Lastly, the CMPlayer is used for video playback [15]. The CMPlayer uses a network video source (CMSource) to send video,
in the form of UDP packets, over a local area network to the CMX process running on the client workstation, which
synchronizes the playing of audio and video packets. The CMPlayer provides a Tk graphical interface with full-function VCR
controls. The system currently supports playback of both MPEG and motion-JPEG movies.

4.2 Process Architecture

Figure 5 depicts the process architecture of the system. Users normally find videos by having the video browser connect to a
remote archive (via a POSTGRES connection to its metadata database) and issue queries against the catalog. When the user
locates a movie to play, the browser performs an RPC to the server array manager (SAM) for the local video file servers to
determine if the object is already available. If so, the browser asks the SAM for the machine and path names for all of the
component objects for the video and launches the CMPlayer to play them. The CMPlayer opens a video window and contacts
the CMX process on the user’s machine to play the video list. The CMX process then contacts the CMSources on each of the
machines participating in the playback and gives them a play list. Playback then begins.
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If, however, the desired video is not cached on a local VFS, the browser enqueues a fetch request with the SAM, which will in
turn contact the appropriate archive server to download it. When the video download is complete, the SAM multicasts a
notification of the new arrival to all running browsers registered with the name server, which will then update their displays.

4.3 Implementation of the Server Array Manager

The SAM performs prioritized cache management for one or more VFSs. The system associates a priority with every object
that indicates how important it is that the object be given space in a cache. Given a world full of prioritized objects, the job of
the cache manager is make sure that the cache contains the most valuable subset of the objects that will fit. Thus, the job of the
cache manager can be divided into two parts: determining object priorities and managing the cache based on them.

4.3.1 Computing Object Priorities

Data migration and caching policy must take into account several factors including: 1) previous access patterns, 2) explicit
user fetch requests, and 3) general user-supplied caching directives. Our implementation unifies these factors by using a user-
defined expression written in the Tcl to compute priarities for a set of objects. Thus, each caching directive has a target list
specifier that indicates the objects affected by the directive and a priority function that computes a priority for the objects.

For example, the directive, “I want to watch E.T. as soon as possible,” can be translated into a directive that specifies the CMO
for E.T. and all component objects as the target list, and an expression that returns the maximum priority from the present until
it has been watched:

Target OID456@UCB WithPriority MAX_PRIORITY * NotWatchedSince(NOW)

When the video is watched, the function “NotWatchedSince(NOW)” will return zero and the priority of the object will drop.
The directive “I want to watch E.T. at 8:00PM” will use a function that escalates toward maximum priority as 8:00 approaches:
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. Target OID456@UCB WithPriority EscalateUntil(8:00PM, $time)

Here, the priority expression calls a simple function, “EscalateUntil” that returns a gradually increasing value as its second
argument (“time”) approaches a target (8:00 PM). The current time is one of many “environment variables” that can be
referenced in priority expressions. This paradigm can support more sophisticated directives as well. “Keep all movies on
‘pipelining’ available for the 4th and 5th weck of class™ becomes:

Target “Query archive ‘UCB’ for subject = ‘pipelining’” WithPriority PeakRange(*9/20/93", “10/1/93” $date)

Note here that the set of objects referenced by the directive is a dynamic set represented by a query against the archive, rather
than a static list. Thus, as new movies on “pipelining” are added to the archive, they will automatically become part of this
query and receive an appropriate priority. The same idea can be used to represent the directive “Keep available all instructional
videos for two weeks after they are released.” In this case the set is defined by a query to the server for all instructional videos
that are less that two weeks old.

Finally, directives can dictate general cache replacement based on past access patterns. For example, the directive, “Keep
around the most popular videos of the week” has all cached videos in its target set, and computes a priority based on access
statistics kept by the video server.

Of course, a single movie may be referenced by many directives. A user may have explicitly requested a movie for immediate
viewing (thereby giving it one priority) while the same movie may be scheduled for viewing by another user later that night, as
well as being covered by a directive such as “keep around the most popular videos.” In such cases, the priority used for the
object is the maximum computed priority. Similarly, compound objects may reference many subobjects and each subobject
may have many parent objects. Subobjects inherit the priority of their highest priority parent object.

4.3.2 Scheduling Priority Evaluation

Given a large body of priority functions, the question becomes when to evaluate them to update values. Maintaining perfect
accuracy requires that we reevaluate each function whenever any dependency changes. Unfortunately, the “time” dependency
changes constantly, and new objects that may be referenced by directives are added to the archive without notifying the VFSs.
Thus, a more workable approach is to reevaluate priorities periodically. A single fixed interval for reevaluation is not
appropriate, however. Some functions, such as “I want to watch the video at 8:00PM,” should be evaluated with greater
frequency than slowly changing functions such as “I want to watch the video next week.” To accommodate a wide range of
reevaluation intervals we allow the user to specify an evaluation interval function that computes the next time a given directive
should be reevaluated.

4.3.3 Scheduling Object Loading

At any given time, the system has a list of objects that are in the cache and a list of objects that are reference by a directive, but
are not cached. The system is said to be in equilibrium when the cache is full and contains all of the highest priority objects. If,
however, a requested object has higher priority than the lowest priority objects in the cache, the system is out of equilibrium
and the cache contents are non-optimal. Typical causes of disequilibrium include:

e A user has requested a new video for immediate loading (highest priority) and some objects in the cache are
not presently being used (lower priority).

e A user finished watching a video, thereby downgrading its priority and making room for other requested
material.

o The gradual escalation in priority of a movie scheduled for viewing some time in the future has made it more
valuable than other data in the cache.

Figure 6 depicts the state of a cache that is out of equilibrium. The black bars indicate the priority of objects that are currently
in the cache. Objects that are currently being played are “locked” and have the maximum priority of 1.0. Objects that are
seldom used have smaller priorities. The gray bars show the priority of objects that have been requested but are not cached.
These bars are sorted in reverse order from the black bars to illustrate where high priority uncached objects are of higher
priority than some of the lower priority objects in the cache. Where the gray bars are taller than the black, an object load is
desirable.
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Equilibrium in the cache can be restored by replacing low priority objects with higher priority objects. Immediate correction of
a slight disequilibrium, however, may be counterproductive since it places load on both the VFS and AS and generates large
amounts of network traffic. Thus, the decision on whether to perform a load from the archive should reflect several factors:

e The priority of the object being fetched. A movie schedule for viewing several hours in the future may not
warrant immediate action, while a request for immediate viewing might.

e The current load on the VFS. If the VFS is busy servicing video playbacks it may not have sufficient resources
to receive and store a new move.

¢ The load on the archive server.

* Time of day. Heavy network usage is less likely to affect other users if performed late at night rather than early
in the morning.

To allow these factors to influence the scheduling of object downloading, the cache manager allows administrators to specify a
Joad threshold function that specifies the minimum priority that a requested object must have before it is loaded. Like functions
for determining object priority, this threshold function can incorporate external variables and can be periodically reevaluated,
thereby allowing download criteria to change dynamically based on the time of day or the current VFS load.

The object priority values are also useful in performing scheduling at the archive server. Each VFS will log archive requests
for all objects that meet its cache replacement criteria (not just the highest priority object) and include in the request the current
object priority and deadline. By logging a large number of prioritized requests, the VFSs allow the archive to perform global
optimization in picking a retrieval order that is most efficient for the tertiary storage device while still taking into account the
relative priorities of the requested objects.

4.4 Implementation Status

We have implemented a primitive version of a Distributed VOD System that supports multiple archive sites and multiple

VESs, but does not support intelligent cache management, tertiary storage device scheduling, or object striping for server
parallelism. The system is composed of 1600 lines of Tcl code and 1900 lines of C for the archive server, VFS, and CMO
abstractions, plus another 1000 lines of Tcl code for the name server. The code for the CMPlayer, and the video database

browser application are not included in these totals.

Several problems still need to be explored. First, appropriate security and access control mechanisms need to be added to the
system. Second, we want to support dynamic conversion of object formats, either as objects are being transmitted from the
archive or as they are being played from the VFS. Third, we want to provide interfaces to allow the system to be searched by
existing WAN information systems such as WAIS and WWW. Finally, we need to deploy a large scale Distributed VOD
System with several archives at different sites and closely- and loosely-coupled VFSs and measure the effectiveness of the
hierarchical architecture and intelligent cache management mechanisms.

Cache Replacement

Value v.s. Space
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Locked
(In Usa)
Good
Enough
Current
Download
Threshold

FIGURE 6. A Cache in Disequilibrium
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