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ABSTRACT

As more computer systems turn to multiprocessing for improved perfor-
mance, additional research is needed to evaluate and improve the performance
of cache consistency protocols. In this study, we use trace-driven simulation to
examine the performance of several consistency protocols, including some new
adaptive protocols which have not been examined in prior research. This study
uses a wider variety of traces than huve been previously anulyzed, including
some production applications from a vector mini-supercomputer system, and
presents a wider variety of analyses than have been previously presented for a
given workload.

We find that the sharing characteristics of application programs have a
large bearing on the relative performance of the different protocols. Update-
based protocols outperform invalidaie-bused protocols when accesses to shared
data are highly interleaved among different processors (fine-grain sharing),
while invalidate-based protocols ure superior if one processor performs all
accesses 1o shared duta over long periods of time (coarse-grain shuring). Adap-
tive protocols provide the best overall performuance ucross all applications; we
present a new protocol called Update-Once, which yields the highest average
performance. In even the best cases, however, estimated processor utilizations
are unacceptably low due to the overheud to maintain consistent caches. To
extract good performance from multiprocessor systems, existing application pro-
grams must be recoded to reduce sharing between processors.
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1. Introduction

This study uses trace-driven simulation to evaluate and compare the performance of a large
selection of cache consistency protocols. Our purpose is to determine, given the workloads avail-
able to us, (a) which existing protocols perform well on these worklouds, (b) which protocol
features most improve performance, and (¢) what new features cun be added to further improve
existing protocols. This study goes beyond previous reseurch, as is explained below, by using a
larger and more varied trace set, including production upplications from a mini-vector-
supercomputer system, and by presenting a wider variety of results than have been available pre-
viously for a given group of traces.

Cache consistency protocols generally full into one of two categories: (1) snooping-cache
protocols [Arch&8, Good&3, Karl&86, Katz&5, McCr&4, Pupus4, Segu®4, Stew®7, Thac87], which
broadcast transactions affecting the consistency of shared duata to all other processors via a
shared bus, and (2) directory-based protocols [Arch83, BrooY(), Cens78, Chai91, Gupt90,
Leno90, Tang76, Okra90], which use point-to-point messuge passing mechanisms across arbi-
trary interconnection networks to maintain consistency. Systems bused on snooping-cache proto-
cols can only contain a limited number of processors, since the shared bus quickly becomes
saturated. Directory-based protocols circumvent this problem by using an interconnection net-
work of sufficient bandwidth. Typically in directory protocols, messages are sent to only those
processors with copies of the data; that information is kept in a shured directory.

Snooping and directory-bused protocols also differ in the manner by which state is main-
tained. In snooping protocols, protocol state is distributed aumong the individual processor
caches, whereas for directory protocols some or most state is located in a centralized directory
memory. Both types of protocols, however, are free to use the same set of cache states and state
transitions (i.e. algorithms) to manage duta. We simulate protocols at the algorithmic level, and
later attribute appropriate costs to various transuctions to evaluate performance in both

directory-based and snooping-based environments.

In the remainder of this paper, we present results from simulating a wide selection of proto-
cols using a large number of multiprocessor address traces drawn from real workloads. Efficient
stack algorithms [Thom&7] were used throughout to evuluate a much larger design space than
was possible in prior studies. Our results are compared with earlier work which analyzed the
reference and sharing behavior within these sume multiprocessor traces |Gee93], and with work
which analyzed uniprocessor versions of some of these same applications [Gee92]. This
remainder of this paper is organized as follows. Section 2 summurizes previous work in this

field. Section 3 describes the address traces and the multiprocessor cache simulator. Section 4
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describes the cache consistency protocols that we simulated. The body of our work is contained
in Section 5, which discusses and analyzes results from our simulations. Section 6 summarizes
and concludes the paper. The results in this paper huve been edited to present only the essen-
tials; additional material also appears in |GeeY3b].

2. Background

2.1. Previous Work

A number of studies have previously addressed the performunce of cache-consistency pro-
tocols; in this section we discuss the better known of those studies. One early effort [Arch86]
used synthetic multiprocessor traces to meusure processor utilization for the snooping-based
Write-Once, Synapse, Berkeley, Illinois, Firefly, and Dragon protocols. That study found that
the update-based Dragon and Firefly protocols outperformed the invalidate-bused Berkeley, 1lli-
nois, and Write-Once protocols. Their results should be interpreted with some caution, however,
as the nature of the model used to synthesize the truces led to many aspects of the results.

Later studies have utilized real address traces gathered from executing parallel applications
on real multiprocessors. Most recently, Vashaw |Vash93] used a hardware monitor to record
large trace samples containing both supervisor and user accesses on an &-processor Encore Mul-
timax. These traces were used to quantify some aspects of data sharing und cache performance,
although a thorough examination of consistency protocol performance was beyond the scope of
that research.

Agarwal and Gupta [Agar®&8a| provided one of the tirst studies of protocol performance
using address traces. The traces were of CAD applications running on a 4-processor VAX 8350,
and were used to measure snooping bus trunsactions made by (1) @ Write-Through Invalidate
protocol, (2) the Write-Once invalidate-based protocol. und (3) the Dragon update-based proto-
col. Write-Through with Invalidate was the lowest performing of the three protocols, since each
write bypasses the local cache and proceeds onto the heavily utilized global bus and main
memory. Some of the results in that paper showed the presence of fulse sharing, which occurs
when several processors reference separate duta items resident in the sume cache block.

Three studies by Eggers and Kutz [Egge8&, Egpe89u, Egge89bl ulso used trace-driven
simulation to examine snooping-cache protocol performance. In the first of these studies, four
multiprocessor CAD traces taken from Sequent and ELXS! machines were used to simulate the
SPUR [Hill86] multiprocessor. Bus transactions and bus cycles for the Berkeley and Firefly pro-
tocols were measured, with Berkeley performing better on two traces and Firefly performing
better on the other two.
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The second study [Egge89a] used the sume truces to meusure miss ratios and bus utilization
for write-invalidate protocols. Miss ratios did not decrease very rupidly with increasing cache
size, since invalidations prevent large caches from being fully utilized. Miss ratios did increase
with increasing block size in some instances, due to the effects of false sharing. Overall, miss
ratios and bus utilization were found to be fur higher thun in uniprocessor systems due to the

overhead to maintain cache consistency.

The last study [Egge89b] evaluated extensions to improve the performance of invalidate
and update-based snooping protocols. The read-broadcast extension | Sega®4] allows any cache
to receive fresh data from the bus if that cache currently hus an invalid copy of the data. The
competitive snooping extension |Karl86] enubles u protocol to switch from updating data to
invalidating data after some number of updates (two in this case) have been performed without
the data being used by another processor. This puts an upper limit on consistency overhead when
processors are no longer using shared data in their cuches. This study found that neither of the
two extensions improved performance significantly.

In addition to snooping protocols, directory-based protocols have also been extensively stu-
died in the literature. Tang |Tang76] proposed u scheme where the central directory is essen-
tially a copy of all the individual cache tags. Censier and Feautrier [Cens78] described a more
compact central directory containing one presence bit for each individual cache and a single
dirty bit if the data is modified (in which case only one of the presence bits would be set). Direc-
tory storage can be reduced still further if only u subset of all presence bits, or no presence bits at
all, are maintained in the central directory | Arch83, Agur&8b).

In terms of performance, |Agar88b| found that directory-bused schemes are competitive
with snooping-based schemes in terms of average cycles per transaction, and concluded that
directories should be attractive in systems 100 large to implement snooping protocols. Research
has also found that schemes with a limited number of presence bits can perform nearly as well as
fully-mapped directories [Broo90, Okra90)].

2.2. Trace Characterization

In [GeeY3a], we characterized in some detuil the sharing behavior within the same mul-
tiprocessor address traces used in this work. The traces, described briefly in the following sec-
tion, and in far more detail in [GeeY3ul, are from three different workloads: (1) 4-processor vec-
tor scientific traces that we collected on Ardent Titun multiprocessors, (2) 16-processor scalar
CAD traces gathered at Stanford on a VAX multiprocessor using trap-bit (T-bit) tracing, and (3)
64-processor scalar scientific traces used at MIT and collected from IBM and Encore multipro-
CESSOTS.
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Our earlier study analyzed the processor locality, temporal locality, and contention within
these traces over a range of block sizes, and found that the amount and type of sharing present in
the traces depend heavily on workload. A much larger fruction of Ardent references were found
to be to shared data, relative to the MIT and Stanford workloads. In addition, processor locality,
the sharing behavior where only one processor uses shured duta over long periods of time, is

very strong in the Ardent vector workload but much less evident in the two scalar workloads.

Figure 1 (from |[GeeY3a]) illustrates the processor loculity within a set of applications. The
figure shows average wrire run lengths for three truce worklouds ucross block sizes ranging from
8 to 64 bytes. A write run |[Egge88] is a string of successive writes to a data block by one pro-
cessor, which may also contain reads to that block by thut sume processor but no references by
other processors. The figure clearly shows that the Ardent workload contains more processor

locality than the other two worklouds for lurge block sizes.
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Figure 1: Average write run lengths

In [Gee93a] we analyzed the temporal characteristics of shared data references. Consecu-
tive references to shared data by the sume processor tend to occur at short time intervals, while
time intervals between references to data by different processors are somewhat longer. For some
applications, a data write followed by u reud from a different processor is serialized by locks. We

also encountered applications which do not serialize such accesses to shared data. Sequentially
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consistent protocols, which require thut all processors have u consistent view of memory, will
remain necessary for this latter class of application.

Based on the reference characteristics thut we observed, we had speculated that adaptive
protocols may provide consistently good performance across the wide range of sharing behavior
observed in our traces. We proposed a protocol which updates data once, and invalidates the
data on the next write if the tirst update had not been used by other processors. The idea behind
this protocol stems from Figure 1, as write run lengths tend to full into one of two extremes:
short in the scalar workloads, or very long in the vector workloud with lurge block sizes. The
adaptive protocol supports short write runs by initiully updating data, and supports long write
runs by invalidating data if earlier updates are not used by other processors.

3. Methodology

3.1. The Multiprocessor Cache Simulator

We use efficient simulation algorithms [ Thom87| which enable the evaluation of more pro-
tocols over a larger design space thun wus possible in previous studies; the Thomson work
extends stack algorithms [Matt70] to multiprocessor system simulations.  Using these algo-
rithms, we can measure miss ratios and bus transuctions for all cuche sizes in one pass through
an address trace. The key to these algorithms is the principle of inclusion. Blocks that are valid,
dirty, or shared in one cache size are also valid. dirty, or shared in uny larger cache size.

The simulator operates by maintaining two importunt data structures. The first is a set of
LRU stacks representing the current contents of euch processor cache. The position of a cache
block in an LRU stack determines the smallest cache size in which u cache hit occurs. The
second data structure is a global directory which contains sharing and dirty levels for every
block resident in a processor cache. The sharing level represents the smallest cache size where a
block is thought to be shared and must be updated or invaliduted on a data write. The dirty level
represents the smallest cache size where a block is dirty. At cache sizes greater than the dirty
level, a block request must be satistied by a cache rather than by main memory.

The algorithms which maintain data structures and count events are particularly complex,
and we refer the reader to [ Thom87]| for a complete und detailed description. We extended the
algorithms to differentiate between block requests serviced by memory and requests serviced by
other caches. This distinction is necessary to anulyze time performance (i.e. bus cycles and pro-
cessor utilization), as requests serviced by other cuches muy complete more quickly than
requests serviced by the slower main memory.
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3.2. The Multiprocessor Traces

The input to the simulator consists of three sets of multiprocessor address traces identical to
those used in our earlier trace characterization effort |Gee93|. The first set of traces were col-
lected from production applications running on 4-processor Ardent Titan vector machines, and
were generated by using an object code profiler to instrument compiled programs. As the instru-
mented object code executes, all four Titan processors deposit reference addresses to a single,
shared trace file. This file is protected by locks to allow only one process access to this file at any
time, and this locking guarantees a (not "the") valid trace. The Ardent traces are based on a 64-
bit memory interface. Data references can be either 32-bit or 64-bit quantities, whereas instruc-
tions are always 32-bit quantities.

At Stanford, 16-processor traces were gathered using the trap-bit tracing method on VAX-
series computers [Webe&Y]. Setting the trap bit on a VAX interrupts a process after each instruc-
tion, allowing a trap handler to examine the instruction und generate a trace record of its memory
references. To generate multiprocessor traces, u masier process controls the execution of a
number of slave processes, which represent the execution of individual processors. After a slave
process executes an instruction, it traps back to the master which records its memory references,
saves the slave process state, and schedules a different sluve process to run, usually in a round-
robin fashion.

The 64-processor traces ff164, weatherod, and speechod were used at MIT to evaluate the
performance of various directory-bused protocols [ChuiV0]. The ff164 and weather64 traces
were generated from IBM uniprocessor truces using a posumortem scheduling technique. Paral-
lel programs are first executed on a uniprocessor to generate traces containing rasks (indivisible
units of work assigned to a processor) and synchronization information. These traces were then
postprocessed into parallel traces by scheduling these tusks on « number of processors. The
speech64 trace was generated using compiler-uided techniques to insert trucing code into the
instruction stream. This technique is similar 1o the method used to generute the Ardent traces,
but operates at compile time rather than after link time. The compiler-bused scheme executes on
an Encore Multimax under a moditied Mul-T (a variant of Multilisp) programming environment.

Table 2 lists the fraction of instruction, synchronization, private-read, private-write,
shared-read, and shared-write references in each set of truces (results for individual traces are in
the attached Appendix and in [Gee93b]). Like |Agur8&u], we consider a reference to be a shared
reference if it accesses data used by more thun one processor during the trace. In contrast,
[Egge88] considers references to be shuared references if they access memory addresses statically
allocated to shared data, and [Egge&8] identifies shared references by postprocessing the traces
using information from object code header files. Each memory reference in our traces, whether

a 4-byte single-precision or an &-byte double-precision quantity, is counted once in Table 2.
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Since our simulations cover block sizes of eight bytes and larger, no special processing is

required for double-precision references.

Application Summary

Program Machine Language Description
arc3d Ardent Titan Fortran 3D Nuid dynamics
bmk] Ardent Titun Fortran monte carlo simulation
bmklla Ardent Titan Fortran particle in acell
flog2 Ardent Titan Fortran transonic flow past dirfoil
lapack Ardent Titan Fortran lincar cquations (BLAS level 3)
simple Ardent Titan Fortran 2D hydrodynamic/thermal fluid behavior
wake Ardent Titun Fortran free wike of rotor (vortex box panel)
mp3d VAX T-bit C 3-d particle simubiator for rurefied flow
p-thor VAX T-bit C paradlel Togic simulutor
locus route VAX T-bil C alobul router for VLSI standard cells
{1164 IBM 370 Fortran radix-2 fast fouricr transform
weather64 IBM 370 Fortran finite difference weather analysis
specch64 Encore Multimux Mul-T lexical decoding of spoken language

Table 1: Trace upplication summury
Reference Characteristics
Avg Refs st Locks | Data Private  Private | Shared  Shared

Trace Per ‘ ‘ o Read Write Reuad Write

Set Trace

(millions) (fraction of all references)

Ardent 20.0 0.654 | 0.002 | 0.344 0.007 0.046 0.167 0.064
T-bit 7.3 0.538 0.000 | 0.462 0.303 (0.085 0.061 0.013
MIT 19.4 0.42% 0.064 0.508 0.382 (.05 0.028 0.013

Table 2: Workloud Reference characteristics
This table hsts the average number of references for programs in cach set ol traces. along with the
average fraction of mstruction. synchromzation. private-read, proivate-wiite. shared-read, and
shared-write references. A reference s a shared relerence il 1t accesses data used by more than one
processor during the trace. Averages Tor the MIT workload do notinclude speech6d. as speech64
lacks instruction references due to hmitations in the Mul-T tracing environment.

Shared references account for nearly 70 percent of all datu references in the Ardent traces,
but only about 20 percent for the T-bit and MIT traces. Prior studies |Agar88a, Egge88] have
found shared data references to be roughly one-third of all dutu references, in agreement with the
T-bit and MIT trace results. The Ardent vector applicutions behave differently due to the fact

that they make extensive use of large. shured data structures that ure operated on by all
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processors in parallel. The other applications, captured trom scalar worklouads, share lesser

amounts of data on a finer granularity.

Address Space Breakdown
Percent (%) of Data Bytes

Trace Total Inst Datu
Set Kbytes | Kbytes | Kbytes || Private  Private | Shared  Shared
Read Wrile Read Wrile
Geometric Averiages
Ardent 437.3 15.0 385.2 0.0 17.0 0.0 64.5
VAX T-bit 324.6 4.3 318.5 35.4 41.0 6.6 9.2
MIT 543.0 0.0 539.1 2.9 19.7 0.0 0.0
Arithmetic Averages
Ardent 1036.3 333 1003.0 0.1 27.4 1.0 71.5
VAX T-bit 353.1 4.6 8.5 42.2 9.9 8.3 9.6
MIT 1043.5 Lo 1 10419 19.6 59.5 15.1 5.8

Table 3: Address spuce breakdown in kilobytes
This table lists geometric and anthmetic means for mstruction. data. and total address space in kilo-
bytes. Data space 1s also broken down (percentages) into Private Read, Private Write, Shared
Read, and Shared Write categories. Write datais defined as data witten during the trace. Values in
the upper half of the table are geometnie means; thus columns for that data do not sum 1o 100 per-
cent.

Table 3 provides both geometric and linear averages of the address space size referenced by
our traces. On average our traces are quite lurge. The average Ardent and MIT trace references
over one megabyte of data, with much of the duta being shared in an Ardent trace. By com-
parison, the applications used in [Agur8&u]| reference less than 100 kilobytes of shared data. The
programs in [Egge8&] appear larger, as shared data regions range from 20 kilobytes to over 25
megabytes. These regions, however, represent statically-allocated shured data, and not the

amount of data referenced in the truces.

4. The Cache Consistency Protocols

The efficient algorithms used in this reseurch were designed to evaluate u class of compati-
ble snooping-cache protocols known as the MOES! protocols |Swea86]. These protocols are
compatible with the control lines and signals on the IEEE Futurebus+ [P896.1a, P8Y6.1b], in the
sense that any cache in a multiprocessor system can dynamically perform any action permitted
by any of the protocols (in that state, and for that input) without violating cache consistency
[Swea86]. The complete MOESI protocol, a superset of all compuatible protocols, incorporates
alternative actions in various situations, giving designers the flexibility to choose between ease

of implementation or potentially higher performunce. Among existing protocols, Berkeley
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[Katz85], Hllinois [Papa&4], Dragon [McCr84]|. Firefly [Stew&7|, and Write-Once [Good83] can
all be supported on Futurebus+, either as defined or with slight modifications. All of the above
protocols utilize a subset of the five MOES! states described below:

M:  Dirty blocks present only in this cache.
O:  Dirty blocks that ure potentially shared, i.e. cached by more than one processor.
Data can only be in state O in one cuche, while other caches would hold the data in

state S.

E:  Clean data present only in this cache.
Datua that is potentially shared with other cuches und is considered clean in this
cache. The same data may be present in other caches in either shared clean (S) or
shared dirty (O) states.

I: Invalid data that is currently not in this cuche.

To support the operation of the various snooping-cache protocols, the IEEE Futurebus+
provides signal lines for the bus master to indicate its intentions, and signal lines for bus slaves
to respond to these transactions if necessary: see [Sweu®6| for a detailed explanation. The bus
master asserts the Cache Consistency (CC) signal to broudcast its intent to retuin a copy of the
referenced data (a caching vs. non-caching bus master). A slave cache which contains an
exclusive copy of data observes the asserted CC signal and changes the state of its data to a
shared state. The bus muster also asserts the Intent to Modify (IM) signal if it intends to write
the referenced data, as well as the Broudcust (BC) signul if that write will be broadcast to other
caches to allow them to update their copies. Invalidute-bused protocols do not assert BC, fore-
ing all other caches to discard their copies of the data when they observe un asserted IM signal.

Slave response signuls include the Cache Status (CS) line. which is asserted to notify the
master processor that a slave cache ulso intends to retain u copy of the data. Also known as the
shared line, this signal is monitored by the bus master 1o determine whether the data that it has
referenced should be cached in an exclusive state (M.E) or in a shared state (O,S). The Select
(SL) signal is also asserted by slave caches which update their copies of shared data when the
bus master asserts the IM and BC signals. The Data Intervention (DI) signal is asserted by a bus
slave when the slave has the latest copy of the duta and will supply it data in place of main
memory. Finally, the Data Acknowledge DK signal, when asserted, states that memory is not to
be updated when one cache is supplying data to unother cache. If DK is not asserted, the data is
dirty and is written back to memory at the same time it is being transferred to the requesting

master) cache. This process, known as reflection, is used in protocols which disallow the
p !
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sharing of dirty data.

Tables 4 through & contain state diagrams for vurious MOESI-compuatible protocols. These
diagrams are in the form of transition matrices showing cuche block result states and actions
taken given a current state for the cache block and some local or external event which triggers a
transition from that initial state. Figure 2 presents somie sumple tuble entries and describes how
these entries should be interpreted. In addition to the bus muster and bus slave signals shown in
the tables, operations R and W represent reads and writes pluced on the bus by the bus master.
As we mentioned earlier, these protocols can be implemented in both snooping or directory-
based environments. In a snooping environment, each cuche muintains the state of its own data
(M,0.E,S,or 1) and broadcasts consistency transuctions to all processors. In a directory-based
system, a processor reads the complete set of cuche states from the cenurul directory and sends
messages to those processors which must take action.

All of these MOESI-compatible protocols are a subset of the complete MOESI protocol
shown in Table 11. The complete protocol incorporates various alternative actions in certain
situations, giving designers a large degree of tlexibility in implementing a cache-consistency
protocol. Unlike the more specific protocols outlined in Tables 4 through &, the complete
MOESI protocol utilizes all five MOESI states and allows for cache-to-cache transfers of data
whenever possible. These extra features may be useful in a high-performance system, while a
modest system would likely include only those feutures needed to muintuin consistency. Tables
9 and 10 show update-based und invalidate-based fluvors of the complete MOESI protocol. Both
versions use all ive MOESI states, disallow reflection, und allow direct cache-to-cache transfers
of data whenever possible.

In addition to the MOESI protocols, we present two aduptive protocols which technically
do not fall into the MOESI classification, since both require additional states beyond the five
MOEST states. Nevertheless, these protocols are MOESI-computible in the sense that (a) they
use the same signals, and (b) a processor-cache combination could implement one of these adap-
tive protocols and operate in conjunction with other MOESI-compuatible protocols without
violating cache consistency. These aduptive protocols update data to maintain consistency, but
allow slave processors to discard their copies if they believe that they ure currently not using the
data. By monitoring the shared (CS) line, the processor writing the duata can detect when all
slave processors have relinquished their copies, and from that point can cache data in an
exclusive state.
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Berkeley Protocol
Current Local I'vent External fvent
State Read Write CC CCIM
M M M O.CSDLDK | LDLDK
(6] O M.CCIM O.CSDLDK | EDILDK
S S M, CCIM S.OS |
I SCCR | MCCIMR | |

Table 4: State diagram for the Berkeley invalidate-hased protocol

Dragon Protocol

Current Local Exent External Event
State Read Wiite CC CC.IM,BC

M M M 0.CS.DILDK —

O O CS:0/M 0.CS.DLDK S.SL.CS
CCIMBCW

3 I M S.CS —

S S CS:0/M S.CS S,SL.CS
CCIMBCW

1 CS:S/1E Read>Write [ 1

CCR

Table 7: Stae diagram for the Dragon update-based protocol

iretly Protocol

Current Local Ivent External Event
State Ruoad Wiite CC CCIM.BC
M M M S.CS.DI —
B B M S.CS.DEDK —
N N CS:N/L S.OS.DIEDK SSL.CS
CCIMBCW
1 SIS/ Reud>Write I I
CCR

Table 8 State diagram for the Firelly update-based protocol

Table §: State diagram for the Hlinois invahdate-based protocol

Write-Once Protocol
Current Local Event External Event
State Read Write CC CCIM
M M M S.OSDE | LDEDK
E E M S.OS |
S S ECCIMW S.OS I
1 S.CCR | MCCIMR | 1

Table 6: State diagram for the Write-Onee mvalidate-based protocol

Full MOLSI Update Protocol
Current Local Fvent External Event
Ilinois Protocol State Rewd Write cC CCIM.BC
Current Local Event External Event M M M O.CSDLDK —
State Read Write €S CCIM O ) CS:0/M 0.CS.DH1LDK SSLCS
M M M S.CS8.DI 1LDLDK CCIMBCW
E E M S.CS.DLDK ] B I M S.CS.DEDK —
S S M.CC.IM S.OSDILDK | N S CN:0/M S.CS.DEDK S.SL.CS
i CS:S/E | MCCIMR ! ! COIMBCW
CCR l O/ Read>Write I I
1 CeR

Table 9 State digram for the full MOEST update protocol

Full MOEST Invalidate Protocol
Current Local veni External Event
Stule Read Wit CC CC.IM
\1 \M hY| 0.08.DI1 1.DI
O O M.CCIM 0O,08.D1 1.DI
I I M S.CS.DI 1
S S M.CCIM S.CS.DI 1
| CNS/E | MLCCIMR I 1
CCR

‘Table 10 State dingram for the full MOENST invalidate protocol



Complete MOLESE l’r«—;lnml
Current Local Event
State Read Write Pass Flush
M M M ECCBC'W | 1.BC?.W
0] 0] CS:0O/M CS:S/E 1.BC?. W
CC.IMBC.W CC.BC? W
or
M.CC.IM
E E M — ]
S S CS:0/M
CCIMBCW — I
or
M.CC.IM
or
SIM.BC W#
or
SIMW#*
] CS:S/E M.CC.IM.R
CCR or — _
or Read>Write
SCC.R* or i
or LIM BC W # ‘
[ R#** or !
LINLWH 8
or
Read>Write %
Complete MOESI Protocol
Current External Event
State CC CC.IM BC? CCIM.BC IM IM.BC
M O.CS.DI.DK | I.DI.DK | M.DI.DK.CS? — M.DI.DK.CS? M.SL.CS?
or or
S.CS.DI 1.DI
O O.CS.DI.DK | I.DI.DK CS:0O/M S.SL.CS O 0O.DI.DK.CS?
or DI.DK or
S.CS.DI |
E S.CS 1 E.CS? — 1 E.SL.CS?
or or
S.CS.DI.DK 1
S S.CS 1 S.CS SSL.CS ] S.SL.CS
or or or
S.CS.DI.DK | 1
1 I ] | ] ] 1

Table 11: State diagram for the complete MOEST protocol




Archibald Adaptive Protocol
Current Local Event External Event
Stale Reud Wrile cC CC.IM,BC
M M M 0.CS.DI.DK —
0 0 CS:O/M 0.CS.DI.DK RWI1.SL,CS
CC,IM BC.W
E E M S.CS.DI.DK —
S S CS:O/M S.CS.DI.DK RWI.SL.CS
CC.IMBC,\W
RWI S CS:O/M RWI1.CS.DI.DK RW2SL.CS
CC.IMBC.W
RW2 S CS:O/M RW2.CS.DLL.DK | il CS: RW2,SL
CC.IM.BC.W clse: 1
I CS:S/E Read>Write | ]
CCR

Table 12: State diagram for the Archibuld auduptive protocol

The Archibald adaptive protocol [Arch&88], which we describe first. contains two additional
states beyond the five original MOESI states. The first exuru state, RW/, represents data that has
been updated once by an external processor without being used locully since the external update.
The second extra state, RW2, represents duta thut hus been updated two or more times without
being used by the local processor. Duta in stutes RW1 and RW2 will make transitions back to
one of the MOESI states once the local processor reterences the duta. The Archibald protocol
specifies that a local processor invalidate blocks in state RW2 when that processor observes yet
another external update to that block, unless the shared line shows that a third processor is also
retaining a copy of the block.

We also evaluate a second aduptive protocol which is very similar to the Archibald proto-
col, except that invalidates are allowed to occur after the duta has reached state RW/. We pro-
posed this protocol, which we cull the Update Once (UpOnce) protocol, in |Gee93] after exa-
mining the results from that trace characterization effort. In most of those programs, data was
written by one processor either (1) many times in succession, or (b) only once. Given case (a),
the Update Once protocol performs only one extra update before muking the correct decision and
invalidating the data. In case (b), the Update Once protocol always makes the correct decision
by broadcasting the write to all sluve processors. The state diagram for the Update Once proto-
col is given in Table 13. Asin Archibald, the state of the shured line is monitored before a cache
invalidates data it holds.
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Update Once Protocol ]
Current Local Event External Event
State Read Wrilc cC CC.IM,BC
M M M 0.CS.DILDK —
O 0] CS:0/M 0.CS.DI.DK RWI.SL.CS
CC.IM.BC,W
E E M S.CS.DEDK —
S S CS:O/M S.CS.DI.DK RWI1.,SL.CS
CC.IM.BC.W
RWI S CS:0/M RWI.CS.DILDK | if CS: RWI,SL
CC.IM.BC.W clse: 1
1 CS:S/E Read>Write | ]
CC.R

Table 13: State diagram for the Updute Once protocol

Both of the adaptive protocols evaluated here ure similar to un adaptive protocol described
by Karlin, et al [Karl&6]. That protocol, however, left it 10 a writing processor to track the
number of consecutive updates that it has performed. and to then invalidate data after some
threshold number of updates has been reached. Our protocols are slave-bused, but like the Kar-
lin protocol require N consecutive writes by u single muster processor 10 cause slaves to be
invalidated. The Karlin proposal originully specified u threshold level where the cost of N
updates is equal to the cost of an invalidation cache miss. This limits cache consistency over-
head to no more than twice that of an optimal protocol which always mukes the correct decision.
Eggers and Katz [Egge8Yb| simulated the Kurlin protocol where N was set to two updates.
Since slave-based and master-bused adaptive protocols behave similarly, we would expect the

protocol simulated in [Egge89b| und the Archibald protocol to perform compurably.

5. Simulation Results

This section contains results of simulating each of the protocols described in the previous
section using the traces described in Section 3. For each simulation run, the following events
were counted:

(1) Cache misses resulting in a block transfer from memory. The data requested by a processor
is not present in its own cache, and is either (i) not present in uny other cache or is (b) clean

in other caches and the protocol disullows cache-to-cache trunsfers of cleun data.
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(2) Cache misses resulting in a block transfer from another cache. The data requested by a
processor is either (a) dirty in another cache or is (b) cleun in other cuches and the underly-
ing protocol does support cache-to-cache transfers of cleun duta.

(3) Write updates to shared data. A processor writes a cached item of data that it believes to
be shared, and broadcasts the write to all other caches so that they muy update their copies.

4) Write invalidates to shared data. A processor writes a cached item of data that it believes
to be shared, and notifies all other caches to invalidate their copies.

(5) Write backs of dirty blocks. A cuche miss wiggers a replucement of a dirty block, which is

then written back to muin memory.

These event counts are then translated into cache misy ratios, data bytes transferred per
reference, bus cycles, and processor wiilization. The first two metrics are time-independent
measures which have been used extensively to anulyze cache performance in uniprocessor sys-
tems. These two metrics are also independent of whether the protocol uses snooping or direc-
tories to maintain consistency. In uniprocessor systems, the cache miss ratio accurately indi-
cates the performance loss due to cache misses. For multiprocessor systems, however, the first
two metrics are not sufficient becuuse the former does not uccount for consistency traffic (other
than misses) and the latter does not reflect non-lineur queueing delays, which are additionally a
function of bus idle cycles. Bus cycles and processor utilization are direct measures of parame-
ters of interest.

We decided to simulate only data references, becuuse (a) all of the various consistency pro-
tocols behave identically for read-only instruction references, (b) some modern computer sys-
tems utilize split instruction and data caches to increase memory bandwidth, which minimizes
the effect of instructions on protocol performance, und (¢) a great deal of simulation time was
saved by eliminating instruction references, which represent over hulf of ull memory references.
However, omitting instruction references does eliminate network and memory system load due
to instruction cache misses, and will muke our results for bus taffic and processor utilization
somewhat optimistic.

In all simulations, the number of processors simulated conforms to the number of proces-
sors in each trace: 4 processors for the Ardent traces, 16 processors for the T-bit traces, and 64
processors for the MIT traces. All traces were simulated over block sizes ranging from 8 to 64
bytes, and for caches up to 1 Mbyte in size. We simulated the Ardent traces under the assump-
tion that cache and memory interfaces are 64-bits wide, equivalent to the bus width in most vec-
tor machines. The T-bit and MIT traces were simulated under the ussumption that datapaths are

32-bits wide, a figure more typical of general purpose machines. We divided our traces into two
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workloads, to reduce the number of data points and simplify the anulysis: (1) a vector workload
consisting of the six Ardent traces, and (2) a scalar workload consisting of the six T-bit and MIT
traces. Measurements were actually muade for each individual trace, and some specific figures
appear in [Gee934a,93b]; here we present workload averages only.

5.1. Cache Miss Ratios

The cache miss ratio is the fraction of memory references not satistied by the cache of the
referencing processor. It is calculated by dividing the total number of block transfers by the total
number of memory references. Figures 3 und 4 show cuche miss rutios for the vector (Ardent)
and scalar (T-bit and MIT) workloads, respectively. Miss rutios for the Hlinois, Write-Once, and
full-MOESI invalidate protocols are not shown, as they ure identical to miss rates for the Berke-
ley protocol. Similarly, miss ratios for the Firefly and full-MOESI update protocols are not
shown, since they are identicul to miss ratios for the Dragon protocol. Please note, us mentioned
above, that miss ratios for multiprocessor systems do not directly measure performance, since
they do not include consistency traffic.

Results for both workloads ure compured against design target |Smit87], SPEC [Gee91],
and uniprocessor versions of those sume workloads. The design rarger miss ratios represent the
expected cache performance of multiprogrammed worklouds running on uniprocessor systems,
while the SPEC miss ratios are measurements of u well-known benchmurk suite running on
RISC-based workstations. Uniprocessor results for the vector workloud were generated in a
separate study [Gee92|, while uniprocessor results for the scalar workloud were generated by
using the same traces (minus synchronization references) in u single-processor simulation. Miss
ratios are fairly consistent across both worklouds. Write-invulidate protocols such as Berkeley,
Ilinois, and Write-Once have the largest miss ratios, as these protocols purge data from other
caches to enforce consistency. Miss rutios for write-update protocols such as Dragon and Firefly
are lowest, since these protocols maintain shared data in as many caches as possible, thereby
decreasing the likelihood of a cache miss. Miss ratios for the Archibuld and UpOnce adaptive
protocols fall between miss ratios for the invalidute and update-based protocols. Of the two
adaptive protocols, Archibald hus lower miss ratios, becuuse it allows an additional update to be
performed before it switches to invalidating datu.

Multiprocessor miss ratios are significantly lurger than design target, SPEC, and
corresponding uniprocessor miss ratios. This is especiully true for larger cache sizes, which do
not reduce multiprocessor miss ratios by the factors observed in uniprocessor workloads. This
effect is most noticeable for Berkeley and other invalidute-bused protocols, because invalida-
tions prevent larger caches from being flled to capacity. Increasing cache block size does sub-

stantially decrease miss ratios for the multiprocessor vector workload, but yields only minor
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reductions for the multiprocessor scalar workloud.

For comparison, [Egge89a] measured miss ratios for write-invalidute protocols as a func-
tion of cache size and block size. That study found multiprocessor miss rates to be much higher
than uniprocessor miss rates, and also noted the limited improvement in miss rate with larger
cache and block sizes. For caches larger thun 64 Kbytes combined with a 32-byte block size,
[Egge&9a] measured miss rates ranging from 0.4 to 1.5 percent, much lower thun the 7 to 8 per-
cent that we measured in our programs.

Two factors contribute to the larger miss ratios observed in this study: (4) our traces are
larger, referencing several times as much duta, and (b) some of our workloads contain many

more processors (up to 64 vs. a maximum of 12 in [Egge8Yul).

5.2. Data Bytes Transferred per Reference

We also measured the average number of duta bytes trunsterred per memory reference.
Data traffic arises from: (a) block transfers due to cache misses, (b) write backs of dirty blocks
when they are replaced, and (¢) write updates. Data wraftic is a better measure of performance
than miss ratio, since it includes items (b) und (¢), but it still does not accurately reflect perfor-
mance since it does not measure address cycles or bus idle cycles.

In general, the average number of bytes transferred per reference must be well below the
bus width to realize any improvement over a non-cuching implementation. Data traffic for the
vector and scalar workloads are shown in Figures 5 und 6, while Figure 7 shows data traffic
numbers for both worklouds as u function of cache block size. Al protocols described in Section
4 are represented except for full-MOESI updute and tull-MOESI invalidate, since their results
are identical to results for the Dragon und Berkeley protocols, respectively. All figures also con-
tain results from the design target, SPEC, und uniprocessor versions of the respective vector and
scalar workloads.

As expected, data traffic decreases with increasing cuche size, due to fewer cuche misses.
Large caches also reduce data traftic by reducing block replucements und the number of block
write-backs. Data traffic does increase with block size, for two reasons: (a) not all of the data
fetched in large blocks is used, and (b) large blocks increase consistency overhead due to false
sharing. The large increase in traffic vs. block size is most noticeuble within the various
invalidate-based protocols (Illinois, Berkeley, WriteOnce) in Figure 7. since write-sharing forces
entire blocks to be repeatedly invalidated and Luer read buack.

Like miss ratios, data traffic is far higher in multiprocessor worklouds relative to uniproces-
sor workloads. This is easily seen by compuring duta traflic for the two multiprocessor work-

loads against traffic for uniprocessor versions of the same worklouds. Of even more interest is
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the fact that data traffic in multiprocessor systems remains high, even uat very large cache sizes,
due to cache consistency overhead.

359 UpOnee 5.01
WriteOncee 154 Berkeley
B Berkeley B (sohid line)
y 3.0 2 y 4.0 4 o
| S [ e A7 Archibald l . / mlmjls
€ g . - - € ) WriteOnce " Archibye
S 254 —---- ‘ Firefly N 30 (dotted Tine) &
P | p 25
© 204 7 ¢ 2.0
r e r
SPEC 157
R N R
€ 1.51 T € 109
f s R i - unproc
/s uniproc .51
o7 cache sive = 64 Kbytes cache size = 64 Kbytes
1.0 T ' T Y T T ] 0.0 Y Y ]
8 16 24 32 40 48 56 o4 X 16 32 64
Block Size (bytes) Block Size (bytes)

Figure 7: Data traffic vs. block size for vector (lefl) and scalar (right) workloads.

5.3. Bus Cycles

A more direct and useful meusure of protocol performunce thun data traffic is the average
number of bus cycles generated by each memory reference. This takes into account address
cycles and bus idle cycles (the time between the address cycle and the data transfer). A given
processor is idle during the bus cycles it generates, and other processors are prevented from
using the bus during that time as well.

The bus transactions meusured by our simulator consist of (1) memory-to-cache block
transfers, (2) cache-to-cache block trunsfers, (3) write invalidates, (4) write updates, and (5)
write backs of dirty blocks. Severul of our protocols also update memory when dirty data is
placed on the bus, a process known as reflecrion. Both Hlinois and Firefly reflect cache-to-cache
block transfers of dirty data, and Firefly also reflects write updates. We assume that write
buffers are present to hide the memory latency for reflected transfers, but we also approximately
factor in some delays for when write buffers become full.
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Table 14 provides costs for these trunsactions from real implementations and also those
assumed in two research studies. Of these implementations, the Berkeley SPUR (Berkeley pro-
tocol) and the DEC Firefly (Firefly protocol) are research machines, while the other machines
are commercial products. Among commercial machines, the SGI 4D/240 implements the 1li-
nois write-back protocol, the Sequent Bulunce and Ardent Titan implement Write-Through with
Invalidate, and the Intergraph CLIPPER implements Write-Through with Invalidate for shared
pages and write-back for private puges. All numbers in Tuble 14 ure for snooping-based imple-
mentations.

The timing for block transactions consists of three components: (1) un address cycle, which
may take considerable time in snooping environments where sluve processors must perform
lookups in their local caches before acknowledging receipt of the address (as in Futurebus+), (2)
latency cycles before the first item of duta arrives, und (3) datu transfer cycles proportional to the
length of the cache block. Cycle counts for block trunsfers are thus of the form 70+B * T1,
where T0 cycles are due to address and vansfer lutency and 8 # 11 cycles is the transfer time for
the cache block. The timing for trunsuctions not involving entire cache blocks, such as write
invalidates and updates, are independent of block size. Our design parameters are shown in
Table 15 for both snooping and directory based implementations, and are based on the following
assumptions:

e Split-transaction protocols are not used, forcing the processor initiating the transaction to be

delayed for the duration of the transuction.

e Our directory implementation is based on u crossbar interconnection network, allowing mes-
sage transactions to be sent to all processors simultuneously if needed. Directory lookups
require 3 cycles, and must complete before any cache-to-cache transactions can be initiated.
These lookups can proceed in puarallel with memory-to-cache block transfers, adding no
additional cycles to these transactions.

e Snooping write invalidates require 3 cycles: one for the master cache to broadcast the write
address on the bus, another for slave processors to receive the address and perform local
cache lookups, and a third cycle for all sluves to acknowledge receipt of the broadcast tran-
saction. Directory invalidates require 5 cycles: three for the directory lookup, one cycle to
send outgoing invalidation messages to the proper processors, and one c¢ycle to receive
incoming acknowledgements.

e Write updates require one cycle more thun a write invalidate for both snooping and directory

protocols since a data cycle is needed after the address cycle.
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Snooping cuache-to-cache block trunsfers tuke 3 + B cycles: one for the master cache to
broadcast the requested block address, one cycle for sluve processors to perform local cache
lookups, a third cycle for slaves to acknowledge receipt of the address and cancel the main
memory request, and B cycles for the slave to transfer the cache block. Directory cache-to-
cache block transfers tuke 5 + B cycles: three for the directory lookup, one to send the mes-
sage to the slave processor holding the duta, one cycle cache latency for the slave, and B
cycles for the slave to transfer the block.

Memory-to-cache block trunsfers in both implementations take 8 + B cycles: one for the
master to send the address, seven cycles for main memory latency, and B cycles for memory
to transfer the block. We selected these purameters to correspond roughly to the memory
latency on an Ardent Titan. As this latency is becoming somewhut low relative to current
and future machines, we will also discuss results for a 30 cycle memory latency.

Write updates and cache-to-cache block transfers reflected to memory nominally execute as
fast as unreflected transfers, since we assume the existence of write buffering. To account for
occasional buffer stalls, we estimuate that buffers will overtlow roughly 25% of the time (see
[Smit79] for some relevant results). Euch overflow stalls the muchine for four cycles, as we
would expect a buffer to become free within half the total memory latency. The frequency
of stalls, multiplied by the delay per stull, udds un additional cycle to each reflected transfer.
Write bucks of dirty blocks require 1 + B cycles. one cycle for uddress trunsfer and B cycles
for data transfer.

Table 15 also lists bus-busy cycles for uncached reads and writes. Completing a data read

from memory takes nine cycles, one for address transfer, seven for memory latency, and one for

data transfer. For data writes, we assume that write buffers will be provided to hide memory

latency, reducing the cost per uncached write 1o two cycles for address und data transfer. Even

with write buffers, however, the nine cycle memory latency will create buffer stalls and increase

the average time to perform a write | Smit79].

To simplify the analysis, we ignore the effect of queueing delays on the number of cycles

per transaction. As the bus and main memory ure expected to be heavily louded, these queueing

delays could be quite large, and could signiticantly increase the number of cycles per transac-

tion. For an M/M/1 queue, the mean number of requests awuaiting service is #/(/-r), where r is

the load measured by dividing the mean arrival rate by the mean service rate.



Cycles Per Transaction g
Study Memory | Cache Cuache
or ) o 1o Inv. | Update | Update*
Machine Cache Cache Cuache®
[Arch&6] 3+B B 3+B ] | 4
[Agar88b] 3+B 2+B 2+B | 2 2
Berkeley SPUR [Wood87| 10+ B 10+ B - 12 - -
DEC Firefly [Thac87] 3+B 3+B 3I+B - - 4
SGI14D/240 [Lenovo| 6+B 6+ B 6+B 1-2 -
Scquent Balance {Thak 88| 6+B - - 2 - -
Ardent Titan [Dicd8%] 3+B - - 1 - -
Intergraph CLIPPER [Cho&6] 4+B - - 4 - -

Table 14: Timing parameters taken from various studies and implementations.
For block transfers, B is the block size in words. Asterisks denote transactions
reflected to main memory.

Cycles Per Bus Transaction
Event Cycles (snooping) | Cycles (directory)
write invalidate 3 5
write update 4 6
write update (reflected) 5 7
cache/cache transfer 3+B 5+B
cache/cache transfer (reflected) 4+B 6+B
memory/cache transfer ¥+ B 8+B
write back I+ B 1+B
uncached reud 9 9
uncached write 2 2

Table 15. Costs per bus transuction (B = block size in words)

From the timing parameters in Table 15, we generuted bus cycles for each combination of
workload and cache-consistency protocol. These cycle counts, divided by the number of refer-
ences simulated, yield the average number of bus cycles per reference. Figures 8 and 9 present
results for snooping-based implementations of euch protocol; corresponding figures for
directory-based implementations are left to the Appendix. Figures 8 and 9 also contain design
target memory delays from | Smit&7], adjusted for the seven cycle memory latency in our model.
The design targets represent the average delay per memory reference in general-purpose unipro-

cessor systems. In Table 16 below, we list bus cycles per reference for various multiprocessor
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caching implementations, and compare them to the sume worklouds running on (a) multiproces-
sor implementations without duta caching and (b) uniprocessor implementations with data cach-
ing.

Our results in the figures and in Table 16 clearly show the need for private caches in
shared-memory multiprocessor systems. The average number of bus cycles per memory refer-
ence is roughly seven cycles without caches, but only ubout one cycle with lurge coherent
caches. However, the average number of bus cycles per reference remuins far higher than levels
observed in uniprocessor systems, because of the overheud to maintain cache consistency. This
sharing overhead must somehow be reduced in order 10 extruct satisfuctory performance from

multiprocessor systems.

Average Bus Cycles Per Reference
Cuche Block Cycles per Reference
Protocol , ,
Size Size Vector Wkid | Scalar Wikd

mp without caching - - 6.70 7.50
Berkeley (snooping) 16KB 32 0.96 0.9%
Berkeley (directory) 16KB 32 1.06 1.11
Dragon (snooping) 16KB 32 116 0.78
Dragon (directory) 16KB 32 1.3% 0.93
uniprocessor 16KB 32 0.62 0.79
Berkeley (snooping) 128KB 32 0.00 0.92
Berkeley (directory) 128KB 32 0.74 1.07
Dragon (snooping) 128KB 32 0.92 0.67
Dragon (directory) 128KB 32 1.26 (.82
uniprocessor 128K1 32 0.28 0.20
Berkeley (snooping) IMB 32 0.54 0.92
Berkeley (directory) IMB 32 0.09 1.06
Dragon (snooping) IMB 32 (.82 0.65
Dragon (directory) IMB 32 118 0.79
uniprocessor IMB 32 0.10 0.14

Table 16. Average bus cycles per memory reference for worklouds on multipro-
cessor implementations with and without caching and in uniprocessor implemen-
tations with caching (8 cycle memory latency).
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Based on our results, no one consistency protocol outperforms all other protocols across all
workloads, as has been noted in previous studies. In the vector workloud, the full-MOESI invali-
date protocol minimizes bus cycles, followed closely by {llinois und Berkeley, the two other
invalidate-based protocols. UpOunce und Archibuld are also effective, while the update-based
Jull-MOESI update, Dragon, and Firefly protocols are least effective. Results for the scalar
workload are quite the opposite, as the full-MOES! update protocol minimizes bus cycles, fol-
lowed closely by Firefly, Dragon, UpOnce, und Archibald. The three invalidate-based protocols
are least effective in the scalar workload us they ure unsuited to the fine granularity of sharing in
these programs.

We also measured bus cycles for u memory lutency of 30 cycles, 1o reflect the next genera-
tion of faster processors; results are shown in the Appendix. The lurger memory latency
increases the average number of cycles per reference by 10 to 30 percent, yet the relative perfor-
mance of the various protocols is largely unchanged compured to the first set of results. There
are, however, two new results of signiticance: (1) protocols supporting cache-to-cache transfers
of clean data suffer the leust dropoff in performunce, while (2) protocols supporting reflection
are most severely impuacted, due to the increased write buck delay when write buffers become
full. As processors become faster and memory lutencies increase, protocols which avoid

memory transactions when possible perform much better relutive to other protocols.

In Figure 10, we plot the minimum number of bus cycles generated by any of the protocols.
Results pertain only to snooping protocols, at cache sizes of 16, 128, and 512 Kbytes, and for a
memory latency of 8 cycles. For compurison, we also include results for the uniprocessor ver-
sion of the vector workload using the sume memory system parameters. (Results for the unipro-
cessor version of the scalar workloud are similur to results for the uniprocessor vector workload,
and are omitted from the figure to improve clarity). It can be seen in Figure 10 that minimum
cycles for both uniprocessor and multiprocessor vector workloads decreuse with increasing block
size across the entire parameter range. In the multiprocessor scalar workload, cycle counts
increase for every increase in block size, due to the much higher presence of false sharing. More
importantly, we observe that uniprocessor cycle counts are not only much lower thun multipro-
cessor cycle counts, but also decrease much more rapidly with increasing cache size. Bigger
caches do not improve multiprocessor performance by the same large fuctors because of the bus
traffic overhead to keep multiprocessor caches consistent. This overhead must be reduced,
which can only be accomplished by recoding existing applications 1o minimize sharing. Unless
this recoding effort takes place, our results strongly suggest that even the best cache consistency
protocols will not provide adequate performance.

Due to space limitations, the duta for directory-bused versions of these protocols is left to

the attached Appendix. Due to longer latencies for most trunsuctions, directory-based protocols



typically generate 10 to 30 percent more bus cycles than their snooping-bused counterparts.
However, directory-based protocols do not depend on the shared bus needed for snooping proto-

cols. Thus directory transactions may require more time to complete, but need not contend or

224 -

wait for a single, shared resource, und thus should scale much better.

Prior studies have shown generally similur results, although for smaller trace sets and fewer
cases. Unlike prior studies, however, we have avuiluble u large number of traces from a wide
variety of workloads, rather than only a limited number of highly similar traces. We were able
to observe a strong correlation between the type of workloud running on u multiprocessor system
and the best choice of protocol for that worklouad. Muchines running coarse-grain, scientific pro-
grams on a limited number of processors operate best with invalidate-bused protocols paired
with large block sizes. No prior study had analyzed vectorized traces such as these. We also
noticed that machines running fine-grain, scalar applications across many processors should be
paired with update-based protocols and smull block sizes. Finally, adaptive protocols, although

never optimal for a given application, provide consistently good performance across all pro-

grams.

70 )

- S

0 X

1.54
- ovedtor
- scalar
--------- VeCtOr (URIProCessor)
\ ~ -
\ ~ A2KB
1.04 © N 2K
VN 128KB e
AN N ¥ 5
A N _.—7 128KB
\\‘\ \“5 ,’/, ‘4”“
)\ ST L T
AN Pl T T - o
KB~ T —TTeT TN
SI2KB ~ _ . et SI2KB
e
05 777 R,
2 KB
...... 12XKB
"""""" SI2KB
0.0 ' i .
x l() 3D ()4

Block Size (bytes)

Figure 10: Minimum bus cycles observed in both workloads



It is also instructive to examine protocol performance on individual traces as well as on
complete workloads. Due to the large number of truces used in this study, we provide only one
data point, as shown in Table 17. For euch truce, bus cycles per reference were computed for all
protocols assuming a snooping implementation, with a cache size of 128 Kbytes and a block size
of 32 bytes. These results were then normalized by dividing bus cycles by the minimum number
of bus cycles generated by any of the protocols on that truce. The last rows in Table 17 contain

geometric means of these ratios for the vector workloud, scalur workloud, and both workloads

combined.
Snooping Protocol Performance on Individual Traces
(ratio ol bus cycles o minimun bus cycles for that truce)
T Invalidate Protocols Updte Protocols Adaptive Protocols
race

MOE.i Il Berk | MOEu  Drag  Fire | UpOnce Arch
arc3d 1.00 1.00  1.05 1.39 142 154 1.08 1.14
bmk]1 1.00 1.00 1.00 1.00 1.00 1.50 1.50 1.50
bmk11a 1.00 1.OO 104 1.6% 172 186 1.34 1.50
flo82 1.00 LO4  1.00 1.61 Lol 2.00 1.09 i.11
lapack 1.08 10O 1.08 1.35 1.35 1.3 1.20 1.29
simple 1.00 LOS 102 13N 140 1.65 1.22 1.32
wake 1.00 1.03 1.00 2.16 223 2.61 1.32 1.55
desiml16 1.14 14 123 .04 107 1.O0 1.00 1.00
Irlé 1.00 1.00 113 1.00 113 1.00 1.00 1.00
mp3d16 1.65 174 180 1.00 14 106 1.03 1.00
ff164 2.65 2.65 271 1.00 1.06 110 1.02 1.02
spch64 1.37 143 141 1.00 .05 1.20 [.52 1.61
wthr64 1.23 123 135 1.05 16 1.00 1.05 1.05

Geomerric Averages

vector 1.01 .02 1.03 1.47 49 175 1.24 1.33
scalar 1.43 1.45 1.54 1.02 1O 106 1.09 1.10
all 1.19 120 1.24 1.24 130 1.39 1.17 1.22

Table 17: For each protocol and trace, tuble entries correspond to the number of
bus cycles generated by that protocol, divided by the fewest number of bus cycles
observed for that trace (1.00 = best). Cuache size is 128 Kbytes. Block size is 32
bytes. Memory latency is 8 cycles.

In six of the seven vector truces, the full-MOESI invalidate protocol generates the fewest
number of bus cycles, while the full-MOESI updute protocol generates the fewest bus cycles for

four of six scalar traces. There are cases where multiple protocols perform equally well. One
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observation of note is that protocols which are purely invalidate-bused or update-based perform
poorly on at least a few traces. In contrast, the aduptive UpOnce protocol performs strongly in
all traces, and in many instances performs nearly as well as the best protocol for that trace. This
consistent level of performance is clearly evident in the geometric means of the ratios, where

UpOnce narrowly edges out MOESI-invaulidate us the best performing protocol over all traces.

5.4. Processor Utilization

In this last section, we estimate processor wiilizarion, the fraction of program execution
time during which processors ure performing useful work. Processor time, as noted above, is
lost due to memory access delays, time for consistency transactions, and queueing delays to
access the memory.

We compute processor utilization by taking the ratio of CPU busy cycles to the number of
cycles needed to execute an application. To estimute CPU busy cycles, we first determine the
number of instructions in each trace (1), divide this number by the number of processors in the
trace (P), and then multiply the result by the number of execution cycles per instruction (CPI).
The formula for CPU busy cycles is thus ( 1/ £ )= CPI.

The number of cycles needed to execute an upplication is much more difficult to estimate,
and 1s dependent heavily upon the multiprocessor architecture. We are further limited by the out-
put of our simulator, which only measures the frequency of various consistency events. In our
approximation, we assume that the number of cycles needed to exccute un application is no less
than the sum of (a) CPU busy cycles per processor und (b) bus cycles which stall a given proces-
sor. To calculate bus cycles which stall a processor, we assume that each processor waits on 1/P
of all block transfers, sends 1/P of ull cuche-to-cache block transfers, receives 1/P of all invali-
dates (only one processor is invalidated per invalidution), and receives all updates (updates can
presumably affect all processors).

The above formula should provide u reusonable. albeit optimistic, estimate of processor
utilization for directory-bused protocols. The directory-bused results could be less optimistic
had we chosen to factor in the effect of queueing delays. We cunnot ignore queueing for snoop-
ing protocols, however, as processors wishing to initiate consistency transactions will often wait
for the shared bus to become available. Under such conditions, the first formula does not hold.
What we can do is calculate the total number of bus cycles generated by a// processors in a
snooping implementation. Since we know thut no application cun complete in less time than that
number of cycles, processor utilization for snooping protocols becomes the lesser of (1) the
directory-based estimate:
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(1) (CPU Busy Cycles) / (CPU Busy Cycles + per CPU Bus Cycles)
or (2) a snooping-bused estimate which ussumes bus saturation:

(2) (CPU Busy Cycles) / (Total Bus Cycles)

The only unknown purameter is CPI, which depends upon the type of muchine used to gen-
erate each trace. For the vector traces, we use a fuirly low CPl of 1.6 cycles, as the Ardent Titan
is a RISC-based machine with a quoted performance of 10 MIPS at a 16 MHz clock rate
[Died88]. The scalar traces were collected on CISC processors, which generally have a much
larger CPI than RISC processors. Clark |Clar®8] unulyzes the CPI for « VAX 8800 in detail, and
quotes an average of 6.8 execution (non-memory) cycles per VAX 8800 instruction. We use this
figure for the scalar traces.

We now have sufficient informution to estimute processor utilization. As mentioned
beforehand, our results will be somewhat optimistic because we omit instruction references from
the simulations and only approximate queueing. Figure 11 displays the average processor utili-
zation across all traces in the scalur and vector worklouds. Results are shown for snooping-
based and directory-bused implementations of the Update Once protocol, und we also provide
results for uniprocessor versions of both worklouds.

For the scalar workloud, processor utilization is ulways higher in u directory-based environ-
ment, and is often double the utilization observed in u snooping environment. The scalar traces
contain references from 16 to 64 processors, which is sufticient to suturate any shared-bus imple-
mentation. For the vector workload, directory protocols outperform snooping protocols at small
cache sizes, because the increased frequency of misses at these sizes saturates the shared snoop-
ing bus. Snooping protocols eventually outperform directory protocols for larger cache sizes, as
one would expect from a workload tuned to a small-scule, shured bus multiprocessor. Even so,
the performance improvement from snooping protocols is modest. on the order of 25 percent.

As expected, processor utilization is highest for the vector workload for u 64-byte block
size, and for the scalar workload at an 8-byte block size. Cuache size hus un interesting effect on
the results, as there are instances where utilizations actually decrease slightly with increasing
cache size. Large caches increase the amount of nominal sharing. and by doing so force addi-
tional broadcast updates.
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Figure 11: Processor utilizations (%) for the UpOnce protocol. Results are provided for both
workloads in snooping and directory environments, and for uniprocessor versions of both work-
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A final observation is that processor utilization in multiprocessor systems barely reaches or
exceeds 60 percent for either workload, und these ure for optimistic estimates with instruction
references omitted. Corresponding utilizations for uniprocessor versions of both workloads
approach 90 percent. Furthermore, increasing memory latency from 8 cycles to 30 ¢ycles results
in as much as a 50 percent drop in processor utilization (see Appendix). This drop occurs despite
the fact that the Update Once protocol is quite efficient and avoids memory and bus transactions
whenever possible. These results confirm our eurlier tinding thut shured-memory multiproces-

sors are of dubious utility unless chunges are made to reduce shuring in current applications.

6. Conclusions

We have examined in detail the performunce of u lurge number of cache consistency proto-
cols, four of which (MOESI invalidate, MOESI updute, Upduate Once, Archibald) have not been
examined in previous simulation studies. We huve focused on identifying the best-performing
protocols and the protocol features most useful to high performance. Efficient simulation algo-
rithms [Thom&7] were employed to fucilitate the exploration of u lurge design space. The input
to the multiprocessor simulator consisted of a wide selection of multiprocessor address traces,
representing one production vector workload und one scalur workload. The thirteen traces that
we used for our trace driven simulations are fur more in number und variety than traces used in
any previous simulation study.

We analyzed performunce in terms of (u) cauche miss ratios. (b) duta traffic, (¢) bus cycles
per memory reference, and (d) processor utilization. Bus cycles and processor utilization were
measured in both snooping and directory-bused environments, providing results applicable to a
wide range of multiprocessor architectures.

Although update-based protocols minimize miss ratios und usually minimize data traffic, no
protocol clearly outperforms all others in terms of bus cycles und processor utilization. Proto-
cols which invalidate data provide the best performunce for our vectorized workload, while
update-based protocols provide the best performance for our scalur workloud. One interesting
result is that adaptive protocols, while never optimal for u given workloud, perform best on the
average. When ranking individual protocols, the best protocol umong invulidate-based protocols
is MOESI Invalidate, the best among update-based protocols is MOES! Update, and the best
among adaptive protocols is Update Once.

All three of these protocols utilize the full suite of MOESI states, and also include perfor-
mance enhancing features such as allowing cache-to-cache trunsfers of clean data and the shar-
ing of dirty data (no reflection). These features minimize the number of transactions involving
shared memory, which is the slow path in any system. As processors become faster and memory

latencies continue to increase, these features will become even more desirable. For an
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snooping-based multiprocessor with an & cycle memory lutency, allowing dirty data to be shared
reduces average consistency cycles by 1 percent for invalidute-bused protocols (Table 17,
MOEST invalidate vs. Hlinois) and by 11 percent for updute-bused protocols (Table 17, Firefly
vs. MOESI update). Allowing cuche-to-cache transfers of clean duta decreases bus cycles by 5
percent for both invalidate and update-bused protocols (Table 17, Dragon vs. MOESI update,
Berkeley vs. MOESI invalidate).

Although we have focused on identifying the highest performing protocols, a major conclu-
sion of our work is that even the best protocols generaie much larger niiss ratios, data traffic,
and memory access delays than results observed on uniprocessor systens. Large caches and/or
larger block sizes alleviate the problem somewhuat, but the overhead to maintain cache con-
sistency continues to consume large numbers of cycles. Processor utilization barely exceeds 60
percent in even the best circumstances, and actually cun decrease slightly as cache size (and thus
sharing) increases. Corresponding utilizations for uniprocessor systems approach 90 percent. To
extract good performance out of shared-memory multiprocessor systems, programs and algo-
rithms must be redone to avoid interprocessor sharing and conumunication as much as possible.
Only then will performunce reach acceptable levels. und we would then expect a pure
invalidate-based protocol such us MOESI invalidute 10 provide the best performance among all
protocols.

Bibliograph)

[Agar88a] A. Agarwal and A. Gupla. “*Memory State.”™ Proc. 1990 Conf. on Parallel Processing,
Reference Characteristics of Multiprocessor Applica- August, 1990, St Charles. 1L, pp. 1-553 10 1-554.

tions under Mach. P";)‘“ f,,CM Sigmetrics, May. [Cens7s] L. Censier and P. Feautrier, ©"A New Solu-
1988, Santa Fe. NM. pp. 215-225. tion o Coherence Problems in Multicache Systems.””

[Agar88b] A. Agarwal, R. Simoni, J. Hennessy, and
M. Horowitz, **An Evaluation of Directory Schemes
for Cache Coherence.” Proc. 15th Annual Ini' 1 Sy,
Comp. Arch.. May, 1988, Honolulu. HL, pp. 280-28Y.

[Arch85] J. Archibald and J. L. Bacer. “"An Economi-
cal Solution to the Cache Coherence Problem.™ Proc.

12th Inv’l Symp. Comp. Arch., Junc, 1985, Boston.

MA. pp. 355-362.
[Arch86] J. Archibald and J. L. Buer, “Cache Coher-

ence Protocols: Evaluation Using a Multiprocessor
Simulation Model.”” ACM Trans. on Comp. Svs..

November, 1986, pp. 273-29%.

[Arch88] J. Archibald. “A Cache Coherence
Approach For Large Multiprocessor Systems.”” Proc.
1988 Int’l Conf. Supercomputing. July. 1988, St.
Malo, France, pp. 337-345.

[Broo90] E.D. Brooks and J.E. Houg. A Scalable
Coherent Cache System with Incomplete Directory

TEEE Trans on Comp.. C27, 12, December, 1978, pp.
FHI2-T118.

[Cliv0] D, Chaiken, C. Fields. K. Kurihara, and A.
Agarwal, " Directory-Based  Cache  Coherence  in
Large Scale Multiprocessors,” 1EEE Computer, June,
1990, pp. 49-3X.

[Chaivl] D. Chuaiken, J. Kubiatowicz, and A.
Agurwal, "LimitLESS Directories: A Scalable Cache
Coherence Scheme™™ Proe. ASPLOS-1V, April, 1991,
Santa Clara, CA L pp. 224-234,

[ChoXGE ). Cho. AJ. Smith, and H. Sachs, **The
Mcemory Architecture and the Cache and Memory
Management Unit for the Fairchild CLLPPER Proces-
sor,”” U.C. Berkeley Technical Report No. UCB/CSD
8O/239 . April, 19X0.

[CLusS] D.W. Clark, PJ. Bannon. J.B. Keller,
Measuring VAX 8300 Performance with a Histo-
gram Hardware Monitor™ Proc. 15th ISCA, May,



- 31 -

1988, Honolulu, Hawaii, pp. 176-185.

[Died88] T. Dicde. C. Hagenmaier, G. Miranker, J.
Rubinstein, and W. Worley, “"The Titan Graphics
Supercomputer Architecture.”” Computer, Scpiember
1988, pp. 13-30.

[Egge88] S. Eggers and R. Katz, A Characterization
of Sharing in Paralle] Programs and Its Application o
Coherency Protocol Evaluation,” Proc. 15th ISCA.
May, 1988, Honolulu. Hawaii, pp. 373-3%2,
[Egge®9al S. Eggers and R. Katz, “The Effects of
Sharing on the Cache and Bus Performance ol Paral-
lel Programs.”” Proc. ASPLOS 111 Conference. April,
1989, Boston. Mass.. pp. 257-270.

[Egge89b] S. Eggers and R. Katz, “Evaluating the
Performance of Four Snooping Cache Coherency Pro-
tocols,”” Proc. 16t ISCA. June. 1989, Jerusalem,
Isracl. pp. 2-15.

[Egge90] S. Eggers and T. Jeremiassen, “Eliminating
False Sharing.”” University ol Washington, Scattle.
Technical Report No. 90-12-01.

[Gee9l1] J. Gee, M.D. Hill. D. Pnevmatikatos, and
A.J. Smith, “*Cache Performance of the SPEC Bench-
mark Suite,” U.C. Berkeley Tech. Report No.
UCB/CSD 91/648 and University  of - Wisconsin
Madison Tech. Report No. 149, September 1991
[Gee92] J. Gee and AJ. Smith. “*Vector Processor
Caches,”™ U.C. Berkeley Tech. Report No, UCB/CSD
927707, October. 1992.

[Gee93a] J. Gee and AJ. Smith, “*Analysis of Mul-
tiprocessor Memory Reference Behavior.™ paper in
preparation, 1993,

[Gee93b] J. Gee, “"Analysis of Cachie Performance in
Vector Processors  and  Multiprocessors™, Ph.D.
dissertation,  University  of - California.  Berkeley.
April, 1993.

[Ghar91] K. Gharachorloo. A. Gupta. and J. Hen-
nessy, “‘Performance Evaluation of Memory Con-
sistency Models for Shared-Memory Multiproces-
sors.”” Proc. ASPLOS-IVR, April, 1991, Saniu Clara.
CA, pp. 245-257.

[Good83] J. Goodman, “*Using Cache Memory 1o
Reduce Processor- Mcemory Traffic.,”™ Proc. 10'1h
ISCA, and Sigarch Newsletter, 11, 3, Junc. 1983, pp.
124-131.

[Gupt90] A. Gupta. W. Weber, and T. Mowry,
“*Reducing Memory and Traffic Requirements for
Scalable  Dircctory-Based  Cache  Coherence
Schemes,™ Proc. 1990 Ini'l Conf. on Purallel Iro-
cessing, August, 1990, St. Charles, IL. pp. 1-312 10 1-
321.

[HePa90] Hennessy, J.L.. and Patterson, D.A.. Com-
puter Architecture: A Qualitative Approuch. Morgan
Kaulman, 1990.

[Hill86] M. Hill, S. Eggers, Larus, Taylor. Adams.
Bose, Gibson, Hensen, Keller. Kong. Lee. Pendleton,

Ritwchic. Woodo Zorn, Hiltinger,  Hodges, Katz,
Ousterhout, Patierson, " Design Decisions in SPUR,™
1L Compurer. November, 1986, pp. 8-22,

[Karls6] AR, Karlin, MLS. Manasse, L. Rudolph, and
D.D. Slewor. Competitive - Snoopy  Caching,”
Proceedings of the 27th Annnal Symposium on Foun-
dations  of  Compuier Science, Toronto, Canada,
October, 1986, pp. 244-254,

[Katr®5] R, Katz, S. Eggers. D, Wood. C.L. Perkins,
and R.G. Sheldon. Implementing 2 Cache Con-
sistency Protocol.™™ Proce. 12ih Ini’l Symp. Comp.
Arcli. June TYRS, Boston, MA pp. 276-283.

[Lenovat D, Lenoski, J. Laudon, K. Gharachorloo, A.
Gupta. and J. Hennessy, “"The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor.””
Proc 17t ind't Symp. Comp. Arch., May, 1990, Seat-
e, WA pp. 143159,

R.L. Mattson. J. Geeser, DR, Slutz, and L.L. Traiger,
“Evaduaton Techniques for Storage Hierarchies,”
IBM Systems Jowrnal, 2. 1970, pp. 78-117.

[McCra4] E. MceCreight, " The Dragon Computer
Systenic An Early Overview.”” Xerox PARC Techni-
cal ReportcJune. 1984,

[Okrav0] B. O Kratka and A, Newton. *An Empiri-
cal Evaluwion of Two Memory-Efficient Directory
Methods.™™ Proc. 17t Dne' D Symp. Comp. Arch., May,
1990, Scattle, WA pp. 138-147,

[PRYGLal Futurebns P8Y6.1: A Backplane Bus
Specification for Multiprocessor Architectures (Draft
750y IEEE.New York, June, 1987,

[PRYGAD] Funrebus+  P8%6.1:  Logical  Layer
Specifications (Dralt 8.2) [EEE. New York, January,
1990,

[Papaxd | M. Papanarcos and J. Patel, A Low Over-
head Coherence Solution for Multiprocessing with
Private Cache Memories™™ Proe. 11th In’l Symp.
Comp. Arcli. June, 19340 Ann Arbor, Michigan,
Stgarch Newslewer, 12,3, June, 1984, pp. 348-354.
[Scea84] Z. Segail and L. Rudolph, **Dynamic
Decentralized Cache Schemes for an MIMD Parallel
Processor.™ Proe. i et Svmp. Comp. Arch.,
Junc. 1984, pp. 340-347.

[Smi79] AJ. Smith, "Churacterizing the Storage
Process und Its Effect on the Update of Main Memory
by Write Through.™ Journul of the ACM., vol. 26, no.
I Junuary. 1979, pp. 6-27.

[SmiR2] AJ. Smith, "Cache Memories.”” ACM Com-
puing Surveys. vol. 14, no. 30 September, 1982, pp.
474-329.

[Smu&7] AJ. Snuth. “"Line (Block) Size Sclection in
CPU Cuache Memories.”" [EEE Trans. Comp., C-36,9,
September, T9R7, pp. 1063-1075.

[StewX7] L. Stewart, “Firefly, A Small VAX Mul-

tiprocessor.”” presentation shides. 1987,



230

[Stun91] C. Stunkel, B. Janssens. and W.K. Fuchs.
“Address Tracing for Parallel Machines. 1EEL
Computer, January, 1991, pp. 31-38.

[Swea86] P. Sweazey and AJ. Smith, A Class of
Compatible Cache Consistency Protocols and Their
Support by the IEEE Futurcbus.”” Proc. 13th Int'l
Symp. Comp. Arch., Tokyo. Japan, Junc, 1986, pp.
414423,

[Tang76] C.K. Tang. “*Cache Design in the Tightly
Coupled Multiprocessor System,™ AFLPS Conference
Proc., Nat'l Comp. Conf.. June, 1976, New York, NY,
pp. 749-753.

[Thac®7} C. Thacker. and L. Stewart, “Firefly: A
Multiprocessor Workstation,”” Proc. 2'nd ASPPLOS.
October, 1987, Palo Alto, CA. pp. 164-172.

[Thak88] S. Thakkar, P. Giftord, and G. Ficllund..
“*“The Balance Multiprocessor  System.”™  JEEL
MICRO, February, 1988, pp. 57-6Y.

[Thom&7] J. Thompson, “Eflicient Analysis of Cach-
ing Systems,”” Technical Report UCB/CSD 87/374.
October, 1987. Computer Science Division. UC
Berkeley.

[Tore90] J. Torellas and J. Hennessy, “Estimating (he
Performance Advantages of Relaxing Consistency in
a Sharcd-Mcemory Multiprocessor.”™ Proc. 1990 [ni'l
Conf. on Parallel Processing. August. 1990, St.
Charles, IL, pp. I: 26-34,

[Vash93] Bart Vashaw. “Address Trace Collection
and Trace Driven Simulation of Bus Bascd, Shared
Memory Multiprocessors™, Carnegic Mclon Univer-
sity Dept. of Electrical and Computer Engincering
Research Report CMUCDS-93-4, Murch, 1993.
[Webeg9] W. Weber and A, Gupta. ““Analysis of
Cache Invalidation Patterns in Multiprocessors,”
Proc. ASPLOS-111. Boston. MA . April 1989, pp. 243-
256.

[Wood87] D.A. Wood. S.J. Eggers, and G.A. Gibson.
“*SPUR Memory System Architecture,”  Technical
Report No. UCB/CSD &7/394. University of Calilor-
nia, Berkeley. December, 1987,



Juawuonaud Juiden [-[n 2y
Ul SUONBJTWI] 0] 2NP S3OUIRJDI UOTIDNIISUL OU SUTRIUOD H9Uadads Se *porydaads apndul Jou op peopiom [ [JA 241 10] sadesday -doen ay) Sur
-Inp 108s2001d 3U0 UBY} 10U AQ PIS LIEP SISSIIVE 11 JI SOUSIDJAL PAIDIS © SI BOUDIDJAI Y/ "SIOUDIDJOI DJLIM-PIRYS PUR "PEII-PIIRYS *IJLIM
-ajeatid ‘peas-djealid UCTIRZIUOIYOUAS “UOLONIISUL JO UOHDRI] aY) it SUO[E D2RA] OB UL SIOUNIDJDI JO I1QUINU [RI0} AU SISI] D[GRY SIYL

SOUSLIJORIRYD DUIIY [~V dqRL

c10°0 00 SRO0 8¢°0 8OS0 | P00 | 80 ¥ol LIN
oo 19070 S80°0 PO 0 Ot 0 | 0000 | 850 L HYy-L XVA
OO0 L91°0 9100 L9070 Pre0 | 000 | 590 (y0c oply
SOBRIOAY DU ILY
91070 [0 oco che0 1 0007l 0000 | 0000 8L PO
0000 61070 VLD SOL0 Lov'o | 6L0°0 | 00 Pt FOLOLIEOM
8900 900 8110 e LSO | OO0 | ucto FL PO
OO0 [e00 8110 9te) 9RO 0000 TIs0 L'L AINOL SN0|
9000 I80°0 L0110 Pl L0S0 | 0000 | L6ET0 'L doyp-d
£t00 £L00 62070 850 cOT( | 0000 | LOYO 0L prd
850°0 98170 8LO0 L0 6670 1000 00v 0 00¢ oNEM
990°0 o e 800 8PL0 | L0000 | 690 0oc opduus
700 0s00 9¢00 90170 6£C0 1000 | 09L°0 0°0¢ youde
LLOO L1CO SEO0 00 0LE°0 | POO0O | 9T90 0°0C 80y
orio Yoco v1i00 6200 Lyy0 | €000 | 0550 00C eIy
10070 ¢s0°0 680°0 611°0 | 09T0 | 0000 | O¥LO 0°0¢ [jug
LSOO L8170 ¢s00 1S0°0 9pe0 | 000 | TS0 00¢ pyore
(SA2U42Jo ||V JO u0NID.Lf)
(Suoru)
AU pedy JlLAN peoy N PELL
: ’ eleg | SYoo1 suj SJoY

poreys  paeyS | dleald  djeAud
SOIISLIRDRIBY) 3DUILJIY

xipuaddy
129




'$214q  JO 2215 j00[q & Sulsn paInseaw sem doeds SSIIPPE SY ], "90eN 3Y1 SULIND USNLIM BIEP SE PAULDP SI BIEP J]LIAY ORI} BYI JO 3SIN0D
3y utmp 10ss3001d 2u0 UBY) 2I0W Aq PIOUDIAJAI BIEP SB PAULIP SI BIEP PITRyS "SILI030JE0 SJLIN PAIRYS PUB ‘PEIY PAIRYS ‘IILIp SIRALL]
‘peay deall] oyt (sadeuaoiad) umop uayoiq osfe st aoeds ele "sAAQo[rY ut douds SSIIpPE EIEP PUE ‘UOHONIISUT ‘[E10) SISI] B[qe) SIY]

$91AQO[1Y Ul uMmopyeaIq 0eds SSAUPPY :Z-V 3qe,

8¢S 'Sl S'6S 961 6’1701 9'1 SepOl LIW
96 £’ 6'6¢ ey (473 9y ['gse Hy-L XVA
SIL 01 VL o 0001 Let 1'9¢01 Py
SOBRIDAY DI Y
00 00 L6l 6°C ['6Ls 00 0ers LINW
6 99 0ty oL SRiY 14 9vie Y- XVA
StY 00 LI 00 98¢ 061 CLEY uoply
SOTRAIIAY DLIDWOIN
00 811 Y 6'ec 6'616¢ ¢'c ['RISC POLOLIEON
Sl 89 ror €T 66LY 00 66LY FOUIdIS
1'L6 00 ¢ S0 861 L'C sl FOlLll
'8 L] Les 8 0C LY 'L 1Ll AINOE SNDO]
911 0l S'LC 6’87 1Lt L't Soey toqi-d
['8 ¥l o Ley 09ry It "6t pgdw
ST 1’ £e 10 0691 €8l Cesl Nem
68 7S 6t £ OLLI LIS L'8CC oduus
'L 00 6'6C 00 Syivy 80 celtvy yordey
€9 1383 00 e LLSI LT8 1Abi7e 80y
1'88 00 611 00 0'eSt vl ¥ ¥9¢ elyuy
6'1¢C 00 SLL 90 7901 8¢ COrl1 [y
19 PC 1'9¢ 1’0 6'LYY1 ¥ eCILL pgaie
JILIM peoYy LM peoy _
: N SOUAQY | SIMAQY | SAAQY
paleyS  paieyS | QJeAL  dleAlld -
$21Kg vID( JO (%) JUdV.L2 4 tred wul P10L
umopyeaayq adedg ssaippy




(Kouare] K1owau 3194 ()¢ *sayoeo-Fuidoous)

$2[240 Sy PEOYIOM 1R|edS 7-V a4ndLy|

(smAqy) 221§ ayoe)

oot [LEN [\l

oOBd & X
O Ba+e X D
O X+e OXx

© Dlid &

OC+X AP BO® O HA+e X

SR

2R

24

A
1)y
"
a
SNy 1y = 2215 Yoy u'r
(so184Y) dz1§ ayor)
53Ut ol ol 1
= - - 00
mmwmmmmm Lo
L LK) ® m
°
o a o7
2udn e
PlEATPIY @
s @ o
Ayany A a +
FISION v
NISHOW o€
uodesy H -
Aaanidg o
18 udisp g o
$314q 9 = 2715 Y019
L0’y

St

v

O>»o—ov v

ol

(s2184Y) az1§ oo

ool ol

(RY]

X X X
iliiiing !
)
o 0o o o * + m m
[o]
(oI . ] o N
o
a 4+ Pl
R 4
° |
a8
\poug A a 4
AR
n \ x 2183
<l
< ;z,: w. ®
IV UShOp O o
SN Iy = A2s Yoy
A3
(smdqy) azig oyoe)
ool wl ol 1
s 4 = ()
PR, [
LI B
® a
L
a PO'T
FISTON ¥ X9
wISHOW S0t
:oqu._ﬂ o
LETENIET I
181m udisap
$314q g = 3215 ¥20[q
0't

(-

x

X Ve

[o TSR

O>0o— 0w

{Kauare] Krowswi 2j94d ()¢ *soyoea-Sutdoous)

"$2[040 SNy PROPYIOM 10100 A [~V 3403

(sa18gy) az1§ ayoe)

il Il vl

v - Yo
111 )
1y ]
A A & A a a m P
N Py
A
R}
w L o
»
®
o N
a8
a + R
v B
X ST
o K
o 9)
SM8Y 1y = 270 Yoy
Loy
(sm&qy) dz1g dyoe)y
[S38]] [931} Ol 1
Vi @
A a a m @
a OC
a 3 m A
a o
3 § 1
x o b
R T
u(ydi) @ ]
pleynpry ﬂ S
swourj] @
Ayang A . 2
FISTON ¥ 2 I
VISTOW x ® Loy,
uodesq 4 ~
Aapwidg o K
13318y udisap g o)
$214Q 9| = 2215 Y0[q
_ 0’8

(s214qY) 271§ dyoe)

(il 31 ol
N a

RN

(3XY]

m o
A A a §o
a
a % m m bl
o
1 bor
» ?
o
]
A
a _
X w:...
+
o
a
SANY T§ = 225 Youly
SV
(sa8qY) az1§ dyor)
Kl o0l ol !
. b e (1)
B ]
8 @ “ v Loc
& A A B o <
+
A v
M o
3 v o Pos
e ]
»ucrdy @ )
preqiyary © N o

stoujj @

Ayang A s e
FISHION v L09
MISHOWN x w

uode(] +
L3019 o ']

193 WBisp g 0
$214q g = 3715 Y20} Loy

V-

x

- oY @~

cov

O»o—ow



(Kouaie] Ktowow 2245 g *uoneiudwaiduit £1030211p)

"$3[2A2 AOURISISUOD PROPYIOM 18[edg “$-V aundL]

(sMmAqy) az15 2yoe)

[LEVl wli o1 1
. . a cu
o
X X x o bl
¥ ¥ .
o s 0 o a B
$ e, oy d
3 8 3 3
5 38 3 |
a eyl 0
d
3
X 1 L
a R
1A B Q
v m 203 —
x d
+ -
° ] A
N uEsp g POy D
EE AR SERZER YN
-t
(sa18qY) 221§ ayoe)
ol o [} [
— N A K0
J
H >
o 0o 0 o “ n m _ L0y
Pl
o B
.Cc._n—
20Uy b4
PRAMPIY
swonj) @ a S
Ryany a s 2
TISFOIN v o ° I
TISFON x x pSCly
uodeig + A
L3429 o K
1 udisp g + D
$3l4q 9 = 2715 }20[q o
=051

9¢

(sm&qy) aztg ayoe)

tani wl 0l

o

L
L R 3 4
- @
as &
CElil o9

O bimw

D+ XdabBow
+ O

1281 U3 o

S8y Ty = 24 Yooy

(sMmAqy) aztg ayoe)

oot ol ul

b |

ARRNE

[ g% ]
»o@
o

L

X X X x

X
x
X
x

2u0dp
Preqryy
stounj
Aygan g
UISJON
MISFON
uodei(]
Kopayiag
198 udisop

O+ XA bBOS

$314q g = 2715 350[q

S

LA

Bo1

Y~ VD

O >xo— 0w

(Kouare] Ksowaui 31245 g ‘uonejuawajdw K1ojoo1ip)

'$21040 SN PrO[jIOM I01DAA -V 34Nl

(smAqy) dz1§ ayoe)

ool [ ul

b A S
s 8 s a
$333y y
m m <
= mx R oy %
a £ ;
A A a & x X w
¥ 25
STERNN
3 o lic
s i
v +
x
+ J9
o
o
SOAY Yy = A4 POy “
L0y
(s?1dqy) az1§ oyoe)
ool [$30) [\ 1
— i o ¢o
a
LI '} o Pu 1
£ R 9 s a
N e o ]
48 %, ] a |.
22
A ¥ »
A o
UL I
sudi) & %
pleqdIy O m L
swou] @ [} ¢
Syang A
VISHON v ﬂ
MISTON x
uodei] i
zo_ufomu st
13¥1e udisop gy
$214q 9| = 2z1s YO[q ot

o V-

[=SES R

O»o—ow

(sm14qy) 221§ ayor)

ol il ol

o]
2 s,
A R N ’ 4 a
o o o * E 24
I N
x x x >+ 3 ?
X X 3
A A & X
A A& A W ¥ w
a 24
3
P
a
v +
X b C
+
o
ja)
SN Ty = s Yoy .
$C
(smiqy) 2215 dyoe)
[ il ol I
— . . ol
s)
M M H [
o b
i3 i
*g
¢ 20
2 8
M ]
2
udy) @ & o
PlRyipIy @ P Yo
stounj a * 8
Agang A
FISHON ¥ m ]
WISHOW x ]
wodeiq 4 [ ] L0'E
LN o
13 udisyp g @
$314q g = 371s ¥o0[q "
331

(-

x



(Kouae] Atowow 3}942 ()¢ ‘uonejuawajdwt £101031p)

'$9[0A0 sNQ PRO[YIOA IR[EDS "9-V 3ANTL]

(smAqy) azig ayoe)

ool ol ot 1
. - <o
o
X X %X o'l

x
s 00 4, x8
* “ “ 25
vV VvV ¢ v *
83 3 a & § 3 g
© ©0 0 o L.
o o o @
\ N o 23
. i
A
. v A b 1)y
x
+
° ? .
a m =
iy ty = d2s Yy a
UC.W
(s184Y) az1§ oyoe)
ool wl ol 1
S - - S0
fiditen,
ry
w . m a . B
¢ s o't
*
.
»u0dn e o x
pleqpry © a
sweury @
Lyang A x4
CISSOW W o
ISHON x o
uodesy o +
£3pniag o b0'€
Wi udisp g
n m
St

$14q 9 = 3718 Yo01q

Le

[ A

[=9-5)

(sMAQY) az1§ dyoeD

o (L1} ol I
. . . v
X X X
o o 0 3 x 8 Lot
ERENEEEE
© 00 o * + g T 2 b1
© 0 o o %
o ® o
+
L 4
o “ 2
a8 o
a a
v TN
x
+
° ? 1.
a a [
SN Ty = 3715 Yoy
) T
(sP1AQY) 271§ aYor)
ol il ol 1
L LR ] 1 s vt
s 004,708
A
? a
X X X X M ? ? s Pl
X x A ]
x .9 .
x ¢ 2
a
i) @
Plrquyay © ~
swou) @
Lyany A
VISHON »
WISTON x
uodes(] | 1
LETESTER I o X
131y udisp oy £
s214q g = 3718 Y201q Lo¢

o V-

U -

(Aouaye] A1owsw 21942 ()¢ ‘uonejusudidun A10)09mp)

*SA[OAD SNq PrOINIOM 101997 "S-V 2.4n31]

(sMmAqY) aztg ayoreD)

VIl it ul [
. . A co
888y o
- A
LI T B j§ o
¥ ¥ | ol
x4
A A A A& A , M -
P
L d by
b4 '
a
a
4
x o it
In .
° L
o Q 25
S8y ty = 201 Yoy
Lig
(sa18qY) 221§ oyoRD)
Qoul 00t ol I
| S— a . i
i8d8z o
A A a t m o e
a
+ w o
a i m Ik
X m a ot
»updi) @ "
prunpPIY & PUs
stouj| B b
Agany A ¥
VISHOW v I
wISFON x
uodesq
LEIESTEN P
13¥1mudisop g oL
$214q 91 = 3715 Yo0|q
'8

U -

x

o v

[=S

O>»o—ovw

(s214gY) 221§ dyoe)

[y307 ool ol 1
b 4. - S0
8
> m m m o 1
o o N 3
* x x m
ﬂ o 2
x 3
a A A x 3 5 2
a + 8
a x
a5 M -
I3 a o
;o
a8 3 'Y
a
v
‘X =
+
°
a b T
saly Iy = 27 oy
-5
(s914qY) a2t ayoe)
ok Gl 0l {
A A N ot
i3 ot
8 @ m v o ¢
4 A a m
Lo'E
a v o
+ o POV
A v
@ O'S
oundn & 4
Plequary O
stownq 8 m 09
Agon4 A w
UISHON ¢
wISAON -
uodeiq H 8 o't
Kayiog o w
123rey Wdisop g Lo's
$314q g = 3215 Y5019
=0'6

v -

Q>0 v v

o Ve

SV -

O>o—~ovw



8¢

'$9[942 ¢

st Kouaje| Alowspy “suawuoliaua K1015a1p pue uidoous ut speojiom Yioq 10j pa

-praoad are synsay -joootoad soudn ay 10j () suotiezinn 108520014 £~V 34081

(sMAQY) 221§ ayor)

[$300) ol ol

s i

SN 1y = 2205 Yoy

(s0184Y) 221§ ayoe)

oot uul ol

- UT

al

AtV

(3undoits ) proppos repeds
propy [ -
/ —

—_—— —

(AI020p) PeO[yIem Te[eds

(£1012anp) peopyIom K)334

(3udoouis) peoppom 101331

$314q 9 = 2715 YoO[q

00

A= UNNO = D N ® = C O

(s21AQY) 221§ Yo

il ol ol f
. A )
tSutdoning peopyion wpos _— 1
110
-l
(s pr
./ 2
CStindontnsy proppos 1omas
o i
NN Ty = 2L YW
(e ™M m
(3013qY) 271§ ayoe)
G0 ot ol I
- . )
(Sindeous) peoppos s 4
Yy =
ey It
A (Ksopanp) peoppiom 10132
......... A
—_— l.l.l-llﬂl.l\..l\ 294
/.»b....uvﬁ: PROPHOM Te[eds
(3undoous) peoppaoms 013
(05
-08
s24q g = 2715 Y209
=001

N T o -

R

T -

= vvry

QOO UUN B0 De e NG & S



