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ABSTRACT

This is a report on the sixth offering of a special graduate course on
geometric modeling and computer graphics, CS 285: “Procedural Genera-
tion of Geometrical Objects”. This document is a collection of the student’s
course projects with a brief introduction. The projects described include:
demonstrations such as a constant-velocity universal joint, a 3-ball juggler,
or the muscles and bones associated with a human elbow; interactive
objects such as jitterbug mechanisms or a 3-dimensional maze; generator
programs for patterning a stone wall or for growing evolving plant models;
and utilities such as an efficient convex hull generator or an interactive dis-
play program for 4-dimensional objects. Most projects have been devel-
oped on SGI personal IRIS workstations, and the geometric descriptions of
the objects use the Berkeley UniGrafix language.
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CS 285, COURSE OVERVIEW

This is the sixth offering of a special graduate course concerning the procedural gen-
eration of computer graphics models. The course has evolved considerabl?' since its first
offering in the Fall of 1983 under the title “Creative Geometric Modeling™*. At that time,
the students developed some new generator and modifier programs in the UniGrafix
framework? and used them to create artistic displays.

In the second half of the 1980’s, the emphasis of the course shifted towards algorithms
from the field of computational geometry that are useful in the generation of geometric
objects such as might be encountered in CAD/CAM applications by a mechanical engi-
neer or an architect’. The students were exposed to a few important algorithms such as
offset surface generation or polygon intersections, and they learned about relevant data
structures and coding techniques through actual implementation of these algorithms and
by testing them on a range of ever “nastier” test examples.

In the 1990’s, after our graphics class laboratory was modernized through a donation
of Personal Iris workstations from Silicon Graphics Corporation, the emphasis of the
course shifted to more interactive techniques and the use of visual feedback during pro-
gram dcvelopment4. This instantaneous graphical feedback evokes an extra level of enthu-
siasm and motivation, and the results achieved by the students are correspondingly high.

In 1992, this interactive aspect was stressed even more, primarily because many of the
assignments and final projects involved time-varying interactive objects. As in the past,
the course had more formal homeworks during the first half of the term and concentrated
on individual course projects during the second half.

The class was larger than ever! Thirty students handed in the first homework assign-
ments. To moderate the load on the graphics lab — which was shared with another class —,
to reduce the programming chores for the students, and to make supervision and mentor-
ing of the projects somewhat easier during the final weeks of the course, most assignments
were done in teams of two or sometimes even three students. A prescribed rotation in the
composition of these teams guaranteed that every student met almost every other student
in the class as a partner on one of the weekly assignments.

To cater to individual tastes as much as possible, the final project could be done in
teams of two or individually, and the scope of the project could be chosen to extend over 5
weeks or only over three weeks; in the latter case those students were given two additional
formal weekly assignments.

I would like to thank all the participants for their energy and for their enthusiasm
which made this course a particularly intense and enjoyable experience.

Corte (¢ %V/W,

1. C. H. Séquin, “Creative Geometric Modeling with UNIGRAFIX,” T.R. UCB/CSD 83/162, Dec. 1983.

2. C. H. Séquin and K. P. Smith, “Introduction to the Berkeley UNIGRAFIX Tools, Version 3.0,” T.R. UCB/
CSD 90/606, Nov. 1990,

3. C. H. Séquin, “Procedural Generation of Geometric Objects,” T.R. UCB/CSD 89/518, June 1989.
4. C. H. Séquin, “Interactive Procedural Model Generation,” T.R. UCB/CSD 91/637, June 1991.
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1 Introduction

Mechedit is an interactive graphical tool for exploring the kinematics of planar mechanisms (bar linkages). It
provides an environment in which a user can construct mechanisms with links and joints and then animate
them. Although the kinematics must be planar, the mechanism is displayed three-dimensionally, with the
links shown as polygonal plates. Animation is accomplished by selecting one link to drive and moving it with
the mouse. The entire mechanism then moves according to the kinematics defined by its joints and links.

Mechedir depends heavily on the work of Eric Enderton in his master’s thesis [1]. The technique of solving
bar linkages in closed form by graph contraction is taken directly from this. As such, this report doesn’t
belabor the topics that are so thoroughly covered there.

Program use is described in the attached man page. This report documents the technical aspects of the program.

2 The Editor

The editor is based on intuitve point-and-click operations with the mouse. All ediung is done from a 3-Dimensional
perspective, though the mechanism’s planar 2-D nature eliminates any possible positoning ambiguity. Mechanisms
can be quickly assembled, edited, and reconfigured, by dragging links to the appropriate posinons on the 2-D plane.
If alink is dragged by one of its s#zes and comes close to another site, it will snap ento this site forming a joint between
the two links. Joints also have sites that act as consrols. A ground joint has a small crank that can be grabbed to animate
the mechanism it is attached to. A prismatic joint has arrows that can be grabbed and repositioned to change its angle
and range of operation. The editor has no modes. At any point, one can grab a control and animate the mechanism
attached w it. Alink can then be grabbed and repositioned as desired. Several unconnected mechanisms can lie
about, ready to be animated. In this sense, there is an underlying intuitiveness that is not unlike a video erector set.
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2.1 Data Structures

The links and joints package is built on top of a linked list class. The interfacing between links and joints is
accomplished through the notion of sifes which correspond to the widgess which are selectable on the screen.
These are used to do the polygonal links and the joints with their controls. These could be extended to other
joint types without much difficulty.

3 Animation

Animation is divided into two major steps: plan time and move time. From the users point of view, plan time
occurs invisibly and instantaneously whenever a cran# is grabbed via the mouse. Move time occurs
continuously for as long as the crank is dragged, and the animation is displayed graphically on the screen.

During move time, the positions of the links and joints must be continuously recomputed as the user drags
the driven link to various positions. The purpose of plan time is to construct a plan for how these positions
will be computed during move time. The order of computation is important so that when each unknown is
solved for, enough information has already been computed. No simultaneous equations are solved during
move time. Sequential, deterministic calculations are made in the order specified by the plan. In addition,
there are many variables which remain constant during move time and only change if the mechanism is
edited. These values are computed once at plan time and stored in the plan.

3.1 The Planner .

The primary responsibility of the planner is to determine the order in which the positions of the joints an
links can be solved for during move time. The approach is to identify portions of the mechanism for which
positions can be calculated given the information available initally (i.e. the position of ground joints, the
position of the driven link, and the structure of the mechanism). Then, assuming that those positions have
been found, the planner looks for the next portion of the mechanism for which positions can be calculated
based on this new set of known values. The planner repeats this process until it has identified the proper
order for computing all the joint and link positions in the mechanism.

A key fact is that the planner can identify solvable portions of the mechanism based only on its topology and
does not require geometric information (see [1]). The planner makes use of the mechanism’s graph, where
links are represented by nodes of the graph, and joints are represented by edges. As each step in the plan is
constructed, one of the nodes of the graph represents the #nown information at this point. If there exists a
three-cycle through this node, then that represents a portion of the mechanism for which a solution can be
computed based on the known information. The planner inserts pointers to that portion of the mechanism
into the current plan step, then proceeds to determine the next step. To do this, the graph needs to be
modified to reflect that more information is now known. This is done by contracting the three-cycle of nodes
into a single node by calling the Contract () function described below.

When the planner has completed its task, it will have constructed a plan, which is a linked list of small
structures that contain the above-mentioned pointers into the mechanism.

3.1.1 Graph Package

The graph package is written in C++ and, is based on the doubly-linked list class in the GNU C++ library.

We use the adjacency list representation of a graph rather than the adjacency matrix. This allows for multiple
edges between nodes. In the mechanism this would correspond to a rigid submechanism. The graph package
is abstract and has no knowledge of mechanisms, links, or joints. The graph data structure is composed of a
doubly linked list of nodes and a list of edges. Each node has a list of pointers to edges. Each edge has two
pointers to nodes. In addition, each node and each edge has space for one piece of data. This space is used
by Mechedit to store a pointer. A node contains a pointer to a link and an edge contains a pointer to a joint.
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3.2 The Animator

During move fime the animator is in charge. The animator is simply a loop that repeatedly executes the plan.
Before each execution, the animator gets the current angle of the driven joint from the user interface. It
computes a transformation based on this angle and applies that to the driven link. Then the steps of the plan
are executed in sequence to solve for the transformations of the rest of the mechanism. Finally, the
mechanism is rendered using the computed transformations. Our approach to rendering is to not bodily move
the links to their animating positions, but to just send their transformations to the graphics hardware so that
they get rendered in the proper place on the screen. This takes advantage of the speed of the graphics
hardware, as well as ensuring only rigid-body transformations are used to animate the mechanism.

4 Discussion

It is important to discuss the lessons that were learned during the implementation of this project. We now
have a rich understanding of the nature of the mechanism problem and approaches to its solution. There are
many issues that were not explored because of the limited time available, but several original ideas were
implemented in our final version of Mechedit.

4.1 Putting off the problem

In Eric Enderron’s masters thesis, attention is given to the problem of detecting rigid submechanisms. His
stated solution is exponental. The detection of these rigid submechanisms is useful since Grubler’s formula
fails in the presence of overconstrained rigid submechanisms. Our solution, was to ignore rigid submechanisms.
Instead we rely on the animation to show rigid mechanisms. As a result, during the contraction phase, we run
into overconstrained portions, which correspond to two-cycles in the graph contraction phase. It becomes
possible to write a “two-solver” thus solving the problem of overconstrainment and non-genericism in a
pragmatic and effective way (see figure 1). This method was robust enough to animate overconstrained
mechanisms and non-generic mechanisms correctly without doing complicated analysis beforé animation.

v/

Figure 1: Grubler’s formula fails for this simple mechanism due to its non-generic geometry (the
three links are exactly the same). Although Grubler’s formula indicates the above
mechanism is rigid, it has I DOF. The diagram to the right shows the “two-solver” step and
1ts associated subgraph.

4.2 The Duplex Mechanism (or answering the question “where is the

‘bad’ part of the mechanism?”’)
In studying how to best find rigid submechanisms, we attempted to come up with a method that was better than
exponential. The idea was that there may be “bad” subgraphs of the graph of any mechanism. These bad
subgraphs were either rigid or overconstrained, and had to be identified and culled away in a preprocessing step.
The problem was that certain types of mechanisms were rigid because of what we termed “non-local” interaction.
A “local” interaction would be a triangle, which is rigid and easy to detect. In the graph, this corresponds to a 3-
cycle. Ifa subgraph had cycles that weren’t of size 3, but had a connectivity that made it rigid, it wouldn’t be as
» easy to detect. In fact, such a mechanism would not be solvable using our method of contracting 3-cycles, since
3
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no 3-cycles exist, although the mechanism has 1 DOF! The simplest of these mechanisms, we christened the
“Duplex Mechanism” since it looks like two houses connected together by a bridge of sorts (see figure 2).

It doesn’t seem likely that the duplex mechanism can be solved in a sequential manner. It must be solved all
at once, perhaps using numerical methods. While it may be possible to write a particular solver for this
mechanism, this would have little value beyond showing the movement of this particular mechanism. Perhaps
there is some extension to Enderton’s technique, that uses simultaneous equations and is simple enough to
provide interacuive speed for reasonably large mechanisms. There are currently many numerical techniques
which converge on solutions for a mechanism after a few iterations. It seems possible, however, that there is
some simple extension that would avoid using these numerical techniques in favor of a faster method that is
more geometrical in nature.

Figure 2: Grubler’s formula for the Duplex Mechanism shows that it has 1 degree of freedom:
3 (12 Links - 1) - 16 Joints * 2 = 33 - 32 = 1 DOF. To construct the mechanism’s graph to the
night, links map to nodes and joints map to edges. The smallest cycle consists of 5 nodes.

4.3 Extension to Three Dimensional Mechanisms

We have thought a bit about the extension of this technique to three dimensions because many of the
interesting real physical mechanisms have non-planar kinematics. All of the same considerations exist as they
do for the planar simulator, but the problems become more involved. For example, in a planar system with
only rotary and prismatic joints, there are (after symmetry) six possible three-cycle cases for which solvers
must be written. However, in the general 3-D case, the simplest, general 1-DOF cycle is a 6-cycle requiring
32 separate solvers for rotary and prismatic joint combinations.

We also feel that solvers for degenerate (non-generic) cases become more important in the 3-D system.
These solvers operate on submechanisms whose topology would indicate that they are overconstrained, but
whose geometry allows them to move anyway. Almost any real physical 3-D mechanism one can think of has
these degeneracies, often in the form of intersecting rotary axes (e.g. a universal joint). For the planar system
the degenerate solvers operate on two-cycles, but for the 3-D system there must be degenerate solvers for
everything from five-cycles on down.

4.4 Interfacing C, C++, Suns and Iris’s
Since the Graph Package was written in C++, and the remainder of the program was written in C, it became
necessary to write an interface module so that the main program could call routines in the graph library.
Nominally this is a trivial task because the proper magic words are provided in C++. Things became more
complicated when we found that the C++ code that had been written and compiled with the GNU gcc
compiler on a Sun Workstation, would not compile properly with gecc on the SGI workstation on which we
were working (enterprise) due to a problem with the gcc installation there. We were able to compile the C++
4



on other SGI workstations (torus cluster), but found that the C code wouldn’t compile there because of the
way the ANSI compiler was configured. ‘We tried putting the C++ objects into a library, but the librarian on
one SGI (enterprise) didn’t like libraries that were made on the other SGI (torus). The solution was to do all
C++ compilation on one of the torus machines, then rcp all the object files to enterprise. There the C files
would be compiled and everything linked together to produce the executable. Surprisingly, we were able to
automate this entire process through creative use of make. A shell script running in an infinite loop on a torus
machine would watch for files to be rcped and then compile them.

This generalizes to a larger lesson about constructing software, and that is, to make the interface between
code sections as small as possible — to make a code “bottleneck”. Since, the majority of software bugs occur
in these code interfaces, making the interface as small as possible makes sense. This corresponds to having as
few routines to call in this interface as is practical. In graphics, this is a good precaution as well. One
particularly successful example of this strategy is the Macintosh computer’s graphics subroutines (Toolbox).
All drawing to the screen is eventually accomplished through successive calls to one routine, a bit blitter
called, appropriately Copy_Bits () (now Copy_PixMap () for color). Doing all drawing through this
primitive creates consistency.

References

(1] E. Enderton, “Interactive type synthesis of mechanisms,” Master’s thesis, University of California at
Berkeley, 1990.




mechedit(1) . USER COMMANDS mechedit(1)

NAME

mechedit - An interactive mechanism editor and animator

DESCRIPTION

mechedit is an interactive tool for building and simulating planar mechanisms (linkages).

SECTION 1: OVERVIEW

A few of mechedit’s features are:

» Interactive construction of links and joints using the mouse. A mechanism is assembled by connecting
links together at their joints .

« Two joint types: rotary and prismatic.

* Three-dimensional display with mouse-moveable eyepoint.

» Interactive animation of the mechanism using the mouse to drive a joint.

* Schematic rendering of the mechanism. The kinematics of the mechanism must be planar, but it is
rendered in 3-D (the shape of the plates is derived from the 2-D convex hull of its joints).

SECTION 2: CREATING A MECHANISM

The first step in using mechedit is the creation of a mechanism (bar linkage). Using the mouse, the user constructs the
links that will become parts of the mechanism. Each link contains a number of sites where the link can be joined to
other links. Links are then dragged with the mouse to join them together to form the mechanism.

SECTION 2.1: CREATING LINKS AND JOINTS

The editor allows quick, easy, assembly of mechanisms through simple point, click, drag operations with the mouse.

Each link is defined by several sites, displayed as light blue pyramids. The link body is a polygonal plate whose shape
is defined by the two-dimensional convex hull of its sites. Thus the shape of the plate continuously stretches as sites
are edited with the mouse. To create a link, choose New Link from the menu. A new link with three sites will appear
at the center of the screen. Alternatively, an existing link can be copied, as described below. This new link can now
be dragged around with the mouse, edited, and joined to other links.

A link is edited by editing its sifes. Sites can be added to a link, moved around on the link, and deleted from the link.
During editing, the mouse keys are assigned as follows: the left mouse button moves things, the right mouse button adds
things, and the middle mouse button deletes things. With no keyboard keys held down, these actions apply to whole
links. With the shift key held down, individual sites are edited. To copy a link, drag it with the right mouse button.

SECTION 2.2: ASSEMBLING THE MECHANISM

To assemble a complete mechanism, links must be connected together by joints. It is these connections that will
ultimately define the dynamic behavior of the mechanism. A joint is formed whenever a site of one link is dragged
close 1o a site of another link. The sites will snap together and form the joint. As stated above, with no keyboard keys
held down, dragging a site with the left mouse button moves the entire link. If the dragged site comes close to a site
on another link, the sites will snap together to form a joint. When the shift key is held down, dragging a site with the
left mouse button moves only that site; the link stretches to accommodate the motion. If this site comes close to a
site on another link, it will snap to it to form a joint.

When a joint is formed, it will be of the current joint type. The current joint type is selected from the menu to be either
rotary or prismatic. Existing joints can be changed from one type to the other by holding down the shift key and
clicking on them with the right mouse button. Additionally, prismatic joints have a length and an orientation. A
prismatic joint, can be rotated and enlarged by grabbing either of the “sizing arrows”. Dragging an arrow will change
both the direction of the prismatic joint, and the size of the adjacent links it joints.

Finally, for a mechanism to operate, it must have some joints 1o ground. The ground link is an implicit link that never
moves, and is not shown except that it has sites. These sites can be edited just the same as the sites on other links.
They can be added, moved and deleted. A ground joint can be formed by dragging a site on a link close to a ground



site, or by dragging a ground site close to a site on the link. Ground joints are always rotary.

SECTION 3: ANIMATING THE MECHANISM
The second step in using mechedit is animating the mechanism. The mouse is used to drive one of the ground joints, and
mechedit properly animates the mechanism according to the kinematics defined by the links and joints. Ground joints are
the only joints that can be driven. They are displayed with cranks which can be dragged with the left mouse button.

SECTION 4: MENU COMMANDS
Several menu commands are alluded to above. In addition, there are commands for file manipulation, lighting, and
something. This section describes each command in detail.

Save Saves the current mechanism to a file. If the current mechanism has not been saved previously, the user is
presented with the Save File dialog box.

Load  Loads a previously saved mechanism from a file.

View > Perspective
Renders the mechanism with perspective.

View > Orthogonal
Renders the mechanism without perspective.

View > Reset View
Resets eye-point to program startup position.

AUTHORS
Steve Burgett - burgett@robotics.berkeley.edu
Roger Bush - rbush@miro.berkeley.edu







285 Final Project

A Machine for Mr. Goldberg:
Integrating Mechanisms

Mark Brunkhart
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Universal Joint. Planetary Gear. and Bellows

Figure 1: The constant velocity double universal joint is connected to the interior gear of
the planetary gear. The output shaft of the planetary gear is connected through a revolute
joint to a shaft which forces the action of the bellows.

1 Motivation

Much in the manner that VLSI design has moved from an environment in which tired
designers push around rectangular pieces of laminate to an environment in which designers
use point-and-click graphical environments to construct and test hierarchical circuits, so
too does it seem reasonable to believe that engineers in the future will construct machines
by snapping together mechanisms, viewing the motions that result, and re-evaluating their
original designs. The design process. from initial design to ultimate testing, which currently
can take months, should be reduced to a few hours. The value of working in a computer
environment, as opposed to a physical environment, is obvious. Erroneous designs can be
caught on the fly, more time can be spent considering the value of different designs, and the
tedium of diagraming. calculating, and then realizing one’s errors only too late to change
them can be minimized.



Wine Rack Mechanism

Figure 2: The wine rack mechanism has one input fired and the other forced by the motion
of the toy boat at the top of the figure. The mechanism is a collection of revolute joints
terminating in two sliders attached to which is a model hand.

2 Animation and CAD

The ability to display moving and interacting parts on screen is a frequently sought after
goal derived from two primary objectives. Engineers use computer aided design to simplify
the process of constructing mechanisms. For these users, animation is a visualization of
the kinematic relationships between the various parts in their mechanisms. CAD tools
currently provide substantial capacity for describing objects. analyzing the methods which
can be used to machine and assemble these objects, and analyzing the result of applying
various forces to these objects. Animation of such mechanisms may be difficult as they are
described by the user in terms of shape. boundaries, and locations or as features such as

slots and holes. To derive the degrees of freedom and interaction of such parts is difficult

because the mechanical role of the different parts is lost in the description of the object as
a collection of points. edges, and faces.

A simpler task is that of the animator who simply wishes to construct the sequence of
pictures which represent a mechanism in motion. As the animation is the end goal and the
basic interaction of the parts is understood in advance, the artist can use a data represen-
tation which reveals the kinematic interaction of the parts. For example, a hinge may be
described as two plates connected at an edge with one rotational degree of freedom through
a limited range. By describing an object as a hinge, the animator reveals substantjal infor-
mation about the kinematics of the object, information which is difficult to extract from a
boundary representation of its various parts.

In many ways, this problem is similar to that of extracting features in computer-aided
manufacture from a boundary representation. If the computer is presented with an object
, to be constructed in a representation which reveals the primary information needed to

13



Gear Shell

Figure 3: This mesh of gears represents one of the most compler interacting devices in
the entire machine despite the fact that its input and output shafts turn at the same rate.
This is a clear example of the value of hiding complezity through hierarchy when determing
motion equations.

machine that object, the problem of creating an efficient machining path is substantially
simplified. Constructive solid geometry (CSG) is one such representation. In CSG, an
object might be described as a block with a one inch cylinder cut through it and a two inch
slot along its base as opposed to a set of points and faces. As the computer.understands how
to construct a slot or a hole in a block. its task is substantially simplified when determining
how to machine this object in a shop. Consider, in contrast, the task of identifying a
construction path beginning only with a collection of points and faces.

The task of animating mechanisms requires a data structure which reveals the kinematic
structure of an object simply and concisely. Much of the work performed for this project
was nothing more than a verification of this need for an efficient language for describing
mechanisms and their interactions. As a test case which identifies the difficulty of convert-
ing points and faces into interacting mechanisms which can be animated, I attempted to
construct a Rube Goldberg machine using the tools currently available at the University
of California at Berkeley for describing animations.



3 Work Performed

A Rube Goldberg device is a mechanism of substantial complexity designed to perform
the simplest of tasks. By its very definition. a Rube Goldberg machine requires numerous
machines to interact in a variety of convoluted ways. By integrating many of the various
weekly projects constructed by students in the class throughout this semester, I was able
to gain an understanding of the difficulties in the design process and more importantly to
gain a feeling for the type of tool which must be built to simplify the task of constructing
and integrating mechanisms for animation.

The device constructed is displaved in the figures throughout this document. All of the
mechanisms move with a single variable representing time which may be controlled by the
viewer. The convoluted task performed is described in Table 1 for the reader’s interest and
entertainment.

The structure was created using UGmovie. a rendering tool which permits the mathematical
specification of points and faces based on one or more variables controlled by the user. By
hierarchically constructing the various items in the view beginning with vertex and face
locations and developing each of the various mechanisms in the design separately, the
primary task becomes simply integrating these items into a single mechanism. Since many
of the mechanisms in the device had already been constructed by students, integration
became the primary difficulty.

4 Limitations of the Tool

UGmovie is controlled from a text environment. The user is forced to specify every pa-
rameter of the drawing from vertex locations to mechanism motion by editing text files.
Needless to say, such an environment does not lend itself to the integration of various
objects into a single machine. A number of difficulties hinder the construction process.

4.1 Lack of a 3-dimensional Editor

The specification of 3-dimensional locations in text form requires the user to perform men-
tally a transformation which could easily be performed by the computer. The tendency
to invert the direction of translations and rotations, the inability to juxtapose two objects
without performing calculations, and the general frustration of being forced to switch be-
tween editing a text file and editing a picture lead to a fairly difficult and time consuming
process. If a user were able to quickly locate where a mechanism was to be placed, identify
faces which are to touch, and expand, move, and otherwise transform objects on the screen,
construction time of complex, animated mechanisms would be substantially reduced.

15
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A Machine for Academic Extraction and Doctoral Deployment

Table 1: This machine offers the university professor and the community at large a method
of recovering the wayward eternal student from his perpetual wanderings of the hallowed
ivy-covered halls of academia.

1. A student enters a professor’s office. hands his PhD dissertation final draft to the professor,
and seals himself in the chair.

o

The professor absent-mindedly drops the paper in the trash can which

3. weighs down the trash can. lowering it, cranking the gear, which in turn cranks the gear
mesh.

The gear mesh rotates. spinning the constant velocity, double universal joint, which
rotates the inner wheel of the planetary gear.

The outer gear and pin assembly drives the piston causing

the bellows to pump in and out which

causes wind from the bellows to push the toy boat.

N S T R

The toy boat ezpands the wine rack which is connected to
10. a toy hand.

11. The toy hand unlatches the 1 ton weight which falls on
12. the seesaw quickly raising the chair on the opposite end.

13. Student idly dozing in the chair is launched through a nearby window achieving the necessary
escape velocity to ezit academia and enter the real world. '

4.2 Lack of Well-Defined Interfaces

Each of the individual mechanisms has certain obvious physical interfaces. A gear can
be accessed at the shaft or at the teeth. A universal joint is accessed at one of the two
exterior shafts. At these interfaces. rotational and translational speeds are well defined and
could easily be passed from one mechanism to the next if a simple interface for connecting
them were defined. Under the current textual environment, the user is forced to extract
these values from the text of the driving mechanism and insert such values in the text of
the driven mechanism. Mathematical complexities in the text tend to propagate from one
mechanism to the next, and when the user finally describes his last mechanism, he is forced
to interpret some absurdly complex expressions. This is obviously not an ideal environment
for mechanism construction.



4.3 Snappable Parts

A mechanism is almost invariably a collection of sub-mechanisms. A mechanism editor
should recognize this and permit the user to interactively construct mechanisms from
smaller mechanisms. Ideally. this process should be easy when using a graphical inter-
face. A user should simply be able to identify two sub-mechanisms from a library of such
mechanisms and connect these mechanisms at the appropriate interfaces, and all location
and motion calculations should be calculated for him. Essentially the user should be able
to snap together the various parts of a mechanism identifying only those values which af-
fect the kinematic relationships between this mechanism and other mechanisms (radius of
a gear, length of a shaft, etc.).

4.4 Mechanical Hierarchy

Finally, a user should have access to a mechanical hierarchy which hides the underlying
complexity of submechanisms. If a user wishes to connect a combustion engine to a drive
shaft, he should not be forced to access or operate on the complex workings of the combus-
tion engine. The interface to the larger mechanism should be clearly defined making the

task the simple one of snapping together parts.

5 Conclusion

Ultimately. this project was a study in handling complexity. As complex mechanisms begin
to interact, complexity grows exponentially with the number of mechanisms. This trait
makes the construction of complex mechanisms extremely difficult in a textual environment.’
Modern computer graphics appears to hold a solution to this problem: however. much work
remains to be done to create an environment which truly supports mechanism construction
and animation. This work can benefit substantially from previous work in two- and three-
dimensional graphics and object editing but will certainly require further insight to handle
the added dimension of motion and object interaction.
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Universal Joint & Constant Velocity Joint
Museum Piece

Brian Mirtich
Saba Rofchaei
CS 285
11 December 1992

1 Overview

The goal of our mini-project was to produce a “museum piece” graphical object
that demonstrates the operation of both the universal joint and the related
constant velocity joint. The final product is a set of Unigrafiz files that combine
to produce a dynamic structure which may be viewed with the ugmovie program.

Figure 1 below shows the basic design of our museum piece. Specifically,
the structure contains four universal joints and two constant velocity joints
arranged in a hexagonal configuration, with six connecting shafts. Because of
the placement of the joints and the choice of angles between the shafts, the
entire assembly is able to turn without “locking up.” That is, each of the six
shaft turns around its axis, as the joints also turn.

Figure 1: A museum piece demonstrating universal and constant velocily joints.

2 Technical Discussion

A large portion of this project was deriving the kinematic equations governing
the various moving parts of universal and constant velocity joints.
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2.1 Universal Joint Kinematics

A universal joint comprises three moving parts: input and output forks, and a
rotating cross piece connecting them. The input and output forks are connected
to corresponding input and output shafts. Figure 2 shows a universal joint along
with a convenient coordinate system. For clarity, the cross piece is not shown
in this diagram. It may assume many different shapes, and its function is to
enforce a perpendicularity condition between line segments pr’ and q¢’. The
angular positions of the input and output shafts are denoted by o and 3, and
9 specifies the bend angle that the output shaft makes with the extended input
shaft. The dotted curves in the figure show the paths of the points p, p/, ¢, and
¢’ through space.

output
shaft

Figure 2: A universal joint model used to derive kinematic equations.

Our derivation begins with relating the input and output shaft angles, o and
3. Assume the configuration in figure 2 is the zero configuration, i.e. o« = 8 = 0.
Let R.(a) denote the 3 x 3 rotation matrix which transforms points in 3-space by
rotating them an angle a about the z-axis, and use analogous notation for other
rotation matrices. The coordinates of p can then be described as a function of
a:

0
Pla) = Ry (a)p(0) = | cosa
sin o
Point ¢ is dependent on both £ and 6:
—sinf@sin 8
q(8,0) = R,(0)R:(8)§(0,0) = | cosfsinf

—cosf3

Now we simply express the perpendicularity constraint imposed by the cross
piece to obtain a relation between a and £.

-

p-{=—cosfcosasinf +sinacos 3 =0.



We can solve this nonlinear equation explicitly for 3, obtaining
B =tan"!(sec ftana).

If & = 0 the relation condenses to # = «, but in general, the relation is nontrivial.
For non-zero §, # will sometimes lead « and sometimes lag o.. However, for any
values of #, 8 = « at multiples of 7/2. We therefore see that while constant
angular speed is not preserved across a universal joint, the input and output
shafts always have the same average revolutions per minute.

In remains to determine the kinematics of the cross piece. We already know
how the cross piece endpoints p, p/, ¢, and ¢’ move, but for the Unigrafiz de-
scription we must express the cross piece orientation by beginning with some
initial orientation and then applying a sequence of rotations about the coordi-
nate axes. Figure 3 shows how we may always obtain a properly oriented cross
piece by beginning with the initial position, then applying a rotation by angle
¢ about the y-axis, followed by a rotation by a about the z-axis. We need only

y Y

Figure 3: Obtaining proper cross piece orientation through two rotations about
coordinate ares.

determine the unknown ¢, which can be obtained by solving the equation

Rz(a)Ry(¢)(0,0) = (8, 6).
Solving this equation for ¢ yields
¢ = sin~(sin #sin B),

and we are able to specify the cross piece orientation through a sequence of two
rotations as required.

2.2 Constant Velocity Joint

While universal joints provide a way to transfer a rotational motion around a
bend, their inability to preserve instantaneous angular velocity from input shaft
to output shaft may sometimes be a disadvantage. Constant velocity joints
solve this problem. They are closely related to universal joints, and indeed one
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Figure 4: Obtaining a constant velocity joint with two untversal jotnts.

can visualize a constant velocity joint by beginning with two universal joints
as shown in figure 4. Note the in the universal joint between the middle shaft
M and the output shaft O, the cross piece has been replaced with a (square)
ring. The ring serves an identical function to that of the cross, insuring the
perpendicularity of the segments between the fork endpoints, and the behavior
of the ring universal joint is identical to the cross universal joint. Assuming the
input shaft I turns at a constant velocity, shaft M’s velocity will in general be
nonconstant but periodic. However, shaft M is the input shaft to the second
universal joint, and this joint will exactly “undo” the velocity transformation
accomplished by the first joint, as long as the bend angles §; and 8, are equal.
The result is that shaft O turns at a constant velocity, identical to that of shaft
L

We now wish to somehow reduce this double universal joint configuration
to a single joint. Imagine shrinking the length of shaft M, bringing the two
universal joints closer and closer. This does not affect the constant velocity
relation between shafts I and O. We can reduce the length of shaft M to zero,
essentially eliminating the shaft altogether, and connecting points a; and b;
directly to a, and b, respectively. This is the reason we began with one cross
universal joint and one ring universal joint; it allows us to bring the two joints
together without self intersection. There is still a degree of freedom at these
connections; the cross is free to rotate about axis a;b; while connected to the
ring. The result is a single joint which transfers a constant velocity around a
bend from the input shaft to the output shaft. Furthermore, the kinematics of
this joint are trivial once one has the kinematics of a standard universal joint.
The shafts turn at identical constant speeds, and the orientations of the cross
and ring are the same as they are for the two separate universal joints.

3 Results

Figure 5 shows a snapshot of our museum piece displayed with the ugmovie
program. The piece is composed of six shafts with forks on each end, four
universal joints, and two constant velocity joints. The star-shaped clusters on
the shafts are present to aid perception of the rotational speeds of the shafts.



Figure 5: A snapshot of the museum piece.

4 Conclusion

This mini-project provided us with excellent experience in deriving the kine-
matics of mechanisms.

If we had another chance to complete this project, one enhancement we
would make would be the ability to vary the shape of the overall system. Cur-
rently, the system is in the shape of a regular hexagon, however it would be
interesting to experiment with the bend angles of the shafts. One could specify
the bend angle at the constant velocity joints with a UGmovie variable slider,
and the other bend angles and shaft lengths would be adjusted accordingly.
For example, to magnify the velocity disparity of the two non-constant velocity
shafts, one could reduce the bend angles at the constant velocity joints thereby
increasing the bend angles at the universal joints.

Another idea we would try would be to create more complex kinematic
chains. The current museum piece is a single closed loop, but perhaps there
are ways to build multi-loop structures from shafts, joints, and gears which are
still able to turn. Furthermore our current museum piece has a single degree of
freedom; we would consider designing structures with higher degrees of freedom.
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Muscle and Bone Animation

John Boreczky
Johnb@cs.berkeley.edu
CS 285 - Fall 1992

1. Introduction

There have been a number of attempts to use knowledge of human anatomy to
produce more realistic models of the motion of the human body. Chadwick, et.al
(1989) determine the approximate shape of a limb based on the position of the bones.
They model the shape that layers of deformable material (muscle and skin) would
take given the types of joints and muscles involved. Their emphasis is on generating
exaggerated motion animation. Chen and Zeltzer (1992) realistically model the
forces applied by and to muscles. They use this force information to determine the
position of the muscles and bones and the position of the bones. This is very com-
putationally expensive.

I wanted to create a simple animation of a human arm that was reasonably real-
istic but not so computationally complicated that the animation was prohibitively
slow. Since the bones do not deform, it makes sense to do animation by moving the
bones and having the attached muscles deform to keep the connections consistent.
The big advantage to this is the relatively low computational complexity. Rather
than trying to deform the muscles by following physical laws, I simply followed the
idea that a muscle should expand in width as it contracts and it should narrow as it
lengthens.

2. Mathematical Model

For ease in explaining the mathematical model, assume that we are modeling the
positions of the humerus, radius, and biceps of the human arm. Figure 1 shows the
interesting angles and measures used for determining the position of the bones and
muscles in the two dimensional case.

Given that the biceps muscle is placed at a distance d1 from the end of the ulna,
the x and y coordinates of the bottom point of the muscle are given by cos(B+y) and
sin(3+y). Since we know d1, d2 and , the triangle formed by the two bones and the
muscle is uniquely determined, and we can specify the transformations needed to
place the muscle and scale it properly.

In three dimensions, the mathematics are very similar. We need to rotate the
muscle into the third dimension (around the y axis) in order to have the muscle attach
to the ulna and not to the empty space between the radius and the ulna.
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humerus

. biceps
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Figure 1

3. Implementation

The arm bone and muscle animation is implemented as an Extended Unigrafix
(ugx) file. This file format is readable by the ugmovie program available on the Sil-
icon Graphics Personal Irises. Ugmovie allows the graphical display of a set of
objects to change as a function of one or more user controllable variables (e.g.,
time). The value of each variable can be manually set with a slider or tied to some
function of the other variables. Ugx files specify the objects of interest (either by ref-
erencing other files or specifing the geometry of the objects explicitly) and how they
should be transformed as a function of the variables.

Each of the three main arm bones (humerus, radius, and ulna) and the sholder
blade (scapula) is described as a separate object. This allows each of the bones to be
modified to more closely resemble the real human bone. The humerus and scapula
remain fixed, while the radius and ulna don’t move relative to each other, but
together rotate around the elbow joint. My early attempts at creating very realistic
looking bones were failures. Not only was it taking too much time, but the results
were not very good. The current bones are simple cylinders with appropriate knobs
and sockets.

The muscles are transformed copies of a single muscle. The current model
contains the biceps, the brachialis and the brachioradialis. Adding the triceps made
the model look too cluttered. Each muscle is scaled to the correct length and width
and placed in the correct position. My early attempts at creating muscles that had the



normal curvature and flattening into tendons at the ends proved too complicated to
quickly deform. The current muscles are radially symmetric, allowing the narrowing
and widening to be done with a simple scale operation. The width is scaled by the
inverse square root of the amount the length is changed. This is quick to calculate
and produces a realistic looking effect. Work is ongoing to create static tendon
clusters that sit between the bones and the muscles in order to provide a more
realistic look while keeping the computations simple.

It should be noted that the muscles are attached farther out from the elbow joint
in this model than in a real human. The simple reason is that although it isn’t
technically correct, it looks better.

Figures 2 and 3 are screen dumps of the Extended Unigrafix file arm.ugx,
showing the arm with two different angles of the elbow joint.
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Figure 3

4. Conclusions

The most important thing I learned in this project was that it is very important to
keep things simple. Even ignoring the obvious benefits such as reduced implemen-
tation time, simplicity is a big win. A detailed, but not quite right model doesn’t look
right to people. A simple, not quite right model allows people to use their imagina-
tion and in the process, overlook the flaws. I wasted quite a bit of time (due to my
poor artistic skills) trying to come with realistic bones and muscles that I didn’t use.
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Appendix - Running the Model

The arm description and the various object definitions are located in the directory

~Cc285-ap/proj

In order to view the model, execute the ugmovie program from the above direc-
tory and load the file “arm.ugx”. The single variable ‘t’ controls the bend angle at
the elbow joint.
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CS 285 PAUL DEBEVEC
PROF. CARLO SEQUIN DECEMBER 11, 1992

Mini-Project Report
Modeling a Three-Ball Juggler

1. Overview

For my CS285 mini-project, | modeled the motions of the balls and hands while juggling
three balls in the standard pattern. To show the mathematical model in action, [ wrote a
GL program to animate the juggler with 3D graphics. I also implemented the equations
in a UniGrafix Movie file. This report describes how I modeled the motions using
parabolas and Hermite Polynomials to satisfy the physics and dynamics of the juggler.

2. The Modeling Process

a. Figuring out the pattern

The reason that juggling is interesting to watch is that it is not obvious what is going on.
To begin modeling the motions, I first had to determine exactly what motions I was
modeling. By watching a videotape of a juggler, I decomposed the juggling process into

six time intervals, with all of the catches and throws occurring at the interval boundaries.
The pattern, showing the balls only, is as follows:

The juggling pattern at the beginning of each of the six time intervals

All of the objects remain in the same plane. Note that the white ball is exactly two time
intervals behind the black ball, and the gray ball is exactly two time intervals behind the
white ball. Also, it takes two time intervals for a ball to fly from one hand to the other,
but only one interval for it to be thrown after it is caught.

b. Choosing coordinates
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Next I chose a system of coordinates for the juggling space. 1 placed the origin at the
point where the left hand releases the balls that it has thrown. I chose to refer to the width
of an arc as w, the height of an arc as h, and the offset between the two arcs as d.

c. Modeling the ball motion

Since the acceleration due to gravity is constant, the balls must move in parabolic arcs as
they fly from one hand to the other. Since the arc height h is specified and the flight must
take two time units, g is constrained to be 2h. These parameters quickly lead to a
quadratic expression for the ball's position along either of its arcs. During the time that a
ball is not flying from one hand to the other, it is being held by one of the hands and
consequently has the same motion. Thus all that remained to do was to model the hand
motion.

d. Modeling the hand motion

The hand motion is more complicated to model since the various forces a juggler exerts
on his or her hands are difficult to gauge. However, [ knew that the hands have certain
goals to accomplish, and from these goals I placed constraints on the hand motion and
then chose a mathematical model to meet these constraints. The goals of a hand are as
follows:

e There is one time interval between catching a ball and throwing it. There is also
one time interval between throwing a ball and catching the next one.

e At the time of a catch, the hand must be positioned under the ball. Also, the
hand's vertical velocity must be more positive than the ball's.

e At the time of a throw, the hand must also be positioned under the ball.
Moreover, the hand's velocity must be such that the thrown ball will land in the
other hand in two time units. Also, the hand must have decreasing vertical
velocity just after the throw in order for the ball to leave the hand.

These constraints neatly characterized the motion of the hands in two C2-continuous
segments of one time interval each: from the throw to the catch and vice-versa. For each
segment, the position at the beginning and end of the interval is known. Also, the
velocity at the time of the throw can be calculated from the parabolic arcs. The velocity
of the hand, before and after the catch, remained to be specified.

Since the ball actually strikes the hand as it is caught, there is an inelastic collision at the
time of each catch. Thus the hand velocity will change as the ball is caught, according to
the law of conservation of momentum. The velocity of the hand before the ball is caught
is largely at the discretion of the juggler—the hand only needs to be below the ball. The
velocity of the hand and ball together after the catch depends on the relative masses of the
hand and ball:
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The inelatic collision between the ball and the hand

After a little experimentation, I decided that it was most reasonable for the hand to have
zero velocity at the time of a catch. Thus the hand moves to the catch point and waits for
the ball to land in it.

With the inelastic collision modeled, the hand motion was constrained to two unit time
interval paths, with each path having its starting and ending positions and velocities
known. I chose the Hermite form of the cubic polynomial to create paths that met these
constraints. The resulting motion is both fluid and realistic.

(x0.yO) (X1, y1)
‘-—/ ‘\\\
A\
(X0, y(0) \
(=, Y1)
X(1) = (28 = 31% + )x(0) + (P = 2£* + )2 (0) + (=28 +32%)x(1) + (£ - 12)x' (1)
W) = 28 =312 + DYO0) + (£ =21 + 1)y (0) + (=2 +32)y(1) + (22 - 12)y' (1)

The Hermite form of the cubic polynomial

3. The GL Program
a. Man Page

jug(6D) jug(6D)

Name jug - animate the juggling of three balls

Syntax
jug [-w width] [-h height] [-d distance] [-m massratio]
[-s timestep]

Description

jug is a GL program that animates two hands (shown as
green cups) juggling three balls. The effects of gravity
and the collisions between the hands and balls are mod-
elled correctly according to physics. The program itself
is not interactive, but all of the physical dimensions may
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Options

Author

be specified as command-line arguments.

-w width Specifies the width of the juggling arcs. The
default is 2.0.

-h height Specifies the height of the Jjuggling arcs.
The default is 2.0.

-d distance Specifies the distance between the throwing
point and the catching point of the hands. In
effect, this is the offset between the two
juggling arcs. The default is 1.2.

-m massratio
Specifies the ratio of the mass of a ball to
the mass of a hand. This is used to correctly
model the inelastic collision that occurs when
a hand catches a ball. The default is 1.0,
i.e., the ball and hands have the same mass.

-5 timestep Specifies the time interval between frames of
the animation. Larger numbers give faster,
coarser animation. The default is 0.05. The
number of frames actually plotted per second
is dependent on the machine -- 3jug plots
frames as fast as possible.

User Interaction

After receiving sufficient enjoyment fram the jug program,
press escape to exit.

Paul E. Debevec (debevec@cs.berkeley.edu) Fall 1992

b. Sample Screen




4. The UG Movie

The UG Movie produces similar output to that of the GL program, but the parameters can
not be adjusted. It relies on the (cond)?(exp1):(exp0) construct to implement the six time
intervals of the juggling pattern. In order to make use of macro expansion, the movie
uses the #define C compiler directive. Thus the movie needs to be "compiled” by the C
preprocessor in order to run. The unprocessed movie is called jug.cpp and the processed
movie is called jug.ugx. The command "make jug.ugx" will perform the preprocessing.

4. Conclusion

The animated output of the GL program looks very smooth and believable, but after a
minute or so it can get boring since it is repetitive. The same can be said of a live juggler.
To make things more interesting, the program should do what real jugglers do: tricks.
The best way to implement tricks would be to define a language that can describe all of
the tricks the juggler should be able to do. Then the juggling program could interpret and
animate a script of tricks. It would also be worthwhile to model the juggler as some sort
of being with a body, arms, and fingers, rather than the two disembodied cups that currently
represent its physique.
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AN N-DIMENSIONAL MAZE GENERATOR
AND 3D MAZE GAME

by

Mitchell Deoudes
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I. OVERVIEW

This project provides two distinct utilities. The first is a maze generator capable of producing
n-dimensional mazes and (n-1)-dimensional projections of those mazes simultaneously and in
quite a bit of generality. This is intended as a self-contained subpackage for inclusion in
other software applications. The second utility is a viewer/manipulator for playing a 3D maze
game. This portion of the project may be viewed as a sample of the type of application the
generator code might included in. The maze game is written for three dimensions and is not
a fully general viewer utility.

ILi AN N-DIMENSIONAL MAZE GENERATOR

The basis of the maze generator is a recursive "tree-growing" algorithm which considers the
volume to be filled by the maze as an n-dimensional array of cells. Given a starting cell, the
algorithm chooses some permutation of the possible directions to exit that cell. Then, it
attempts to "jump" from the cell along each direction in turn. A legal jump is defined as one
which does not introduce a cycle into the resulting graph (i.e. one that does not return to any
previously visited cell). Recursion occurs upon successfully jumping to a new cell.

Note that if jumps are defined to be of length 2, the walls of the maze can be generated "for
free". This is accomplished by adding both the new cell (old+2) and the cell directly between
the new and old cells (old+1) to the path:

* < * < *
v

* > * > *

v

2 1 0

To this basis a further constraint is added. The generator must maintain connectivity not only
in the n-dimensional maze, but also in the (n-1)-dimensional orthogonal projections of the
maze. In three dimensions, the significance of this is more clear: a maze is produced which
can be physically manufactured as a hollow cube with the projected paths cut into its faces.
(For more on this topic, see Section III.)

In order to satisfy this constraint, the definition of a legal jump must be changed. A jump
may now be made if it does not introduce cycles in either the nD maze or any of the (n-1)D
projections (note that there are n of these). This definition may be simplified by recognizing

1



that any cycle in the nD path will be projected as a cycle in at least one of the (n-1)D paths.
Thus, only (n-1)D cycles need be checked for.

The check for (n-1)D cycles is not as simple as the nD check, however. There are several
cases:

1) The new cell (old+2) is not yet on the path for any face (projected maze) -
the jump is legal.

2) Both the new cell (0ld+2) and the new intermediate cell (old+1) are on the
path for all faces. This indicates that the new cell is actually the cell most
recently exited - the jump is obviously not legal.

3) For some face, cell 0ld+2 is on the path but cell old+1 is not on the path.
This indicates the introduction of a (n-1)D cycle into that face - the jump is not
legal.

4) At least one face falls into each of categories #1 and #2, but no face falls
into category #3. This indicates that a legal path extension is being "cut” into
some faces, while in the other faces the "current cutting position" is merely
sliding back along a previously cut section - the jump is legal.

Surprisingly, the legality test can be made quite simple by careful consideration of the four
cases. Case #2 is eliminated by never attempting to jump back along the direction most
recently jumped from. Now only case #3 need be checked for - any jump passing the test for
case #3 for all N faces is legal.

This scheme will produce mazes that completely cover each face for most small to medium
size volume specifications. However, due to the projective connectivity constraint just
discussed, it is not guaranteed that in general an nD maze will be generated such that each
(n-1)D face is completely filled with path area. (Once again, this becomes clearer in the
context of the 3D game.) Thus, it may be necessary to generate "bogus" path areas on the
(n-1)D faces. This is handled quite nicely by running the same generator on each face, while
constraining the case #3 checking to that face alone. This allows "sliding" forward along the
paths already cut, prevents cycles, and allows all unvisited areas to be filled with bogus path.

Solution path generation is also elegantly handled by the same routine. Upon determining
that the cell just added is a target cell (by comparison with a list of desired targets), the
recursive function simply adds that cell to the solution path, and returns this information to
the next level "up". In turn, the "parent” level adds its cell, and returns up one level. This
continues all the way up the recursion tree.
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ILii GENERATOR CODE
The maze generator code is contained in the following files:

globals.h maze data structure & defining specs
cube.c init, data manipulation & main() routine
perms.c .h  jump direction permutation routines

carve.c .h generator routines

The generator has been coded for n-dimensional generality. All data structures, manipulation
routines, and procedure control flow schemes are defined based on the named dimensions
specified in the top line of the "globals.h" file.

By passing the desired dimensions to the package, mazes can be generated to fill arbitrary
volumes (i.e. the cube is a special case of the general box shape of the maze volume).

Only the three orthogonal projections are actually stored in memory, reducing memory
requirements from O(n*D) to O(n*(D-1)), where D is the number of dimensions.

Also, cell content types are user-definable. The main generator routine will "carve" a path
made up of any cell type, and will process (n-1)D faces to produce bogus paths that are
distinguishable from actual paths.

HLi A 3D MAZE GAME

This portion of the project is a simulation of a 3D "Cross-and-Cube” game. A hollow cube
with maze-carved wall is displayed. Within the cube is a 3D cursor in the form of a set of
three mutually perpendicular bars, which extend through the path areas on the walls. The
game is played by sliding the cross along the three principle directions and attempting to
manipulate it into specified target positions (initially the corners of the cube).

The basic structure of the control routine is a simple event loop that detects user requests for
menu actions (printing, displaying solutions, restart, etc.) and viewing manipulation mouse
inputs. Within this loop are routines to detect game events (reaching the target cell, bumping
into a wall), and display routines.

Unlike the generator, the algorithms involved in this section are not as interesting as the code
structure.



IIli GAME CODE

The routines for displaying the maze based on the n-dimensional constructs defined in the
generator section, but are optimized for 3D and are thus not intended for use with higher
order mazes. For instance, the cube drawing function has only one internal loop that handles
all faces in a general manner.

Files are as follows:

cube.c main() routine

light.c .h lighting routines (low level)

draw.c .h display routines (intermediate level)
play.c .h special game routines (high level)

The most notable point from a technical standpoint is that the display routines key off the
generalized organization of the maze data structure. User-defined cell contents types can be
displayed as arbitrary objects, and are reconfigurable on-the-fly. This makes switching
between display modes (normal, solution, target, etc.) trivial, and also allows for rapid
customization of display aesthetics. In a similar vein, the special graphical sequences for
various game events are implemented as generic function calls and are thus subject to user
customization.

Also of note are the following speed optimizations. First, since the maze is stored
sequentially in memory, a pointer may be quickly stepped along the data structure in an
incremental fashion without performing address arithmetic at each step. This method is used
in the maze display routines. The result is that these functions are made 3D specific, but also
afforded a visible speedup. Additionally, only three planes of the cube and three sides of
each cell need be displayed, since the viewing angle is constrained to a single octant of space.
This reduces display time by approximately 75%.

IV. CONCLUSION

The major change that occurred during the design process was in the decision to store data
and perform manipulations in (n-1)D instead of nD. Given the project to do over again, this
is the area that I would devote more consideration to prior to starting in on the code. A more
careful analysis of which operations are suited to which data structure might have been in
order. Surprisingly enough, the remainder of the project went relatively according to plan.

Future work might include writing various higher-dimensional applications. Also, aesthetic

improvements to the maze game interface, as well as the addition of various bells and
whistles are directions that may be explored almost ad infinitum.
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NEATOREEN (1) Mitch Deoudes NEATOKEEN (1)

NAME
NeatOKeen N-Dimensional Maze Generator Demo and Game Thingy

SYNOPSIS
nok xy z s

X, ¥, and z are small integers indicating the
dimensions of the maze. These values generally fall in
the range 3-9. s is an integer to be used as a random
seed.

DESCRIPTION
nok is a 3D maze game suitable for killing time waiting
for compiles, or as a stress-relieving study break.
nok currently runs only on the Silicon Graphics
platform.

The player is presented with a 3D maze in the form of a
hollow cube with maze-carved walls. The current
position is determined by a "cross", or set of three
intersecting axial-aligned bars which extend through
the paths on the cube walls. The player must
manipulate the cross from the starting position at the
center of the maze to as many of the corners as
possible in order to complete the game. nok will
tabulate the total number of mistakes made while
traversing the maze, and the total number of corner
goals attained. From these two numbers, an integer
score is calculated and printed out.

The cube maze is displayed in the major subdivision of
the window. Auxiliary 2D views of the individual walls
may be enabled, and will display in the lower portion
of the screen. A small set of arrowhead coordinate
axes are shown in order to facilitate interaction.

The user interface is intended to be self-explanatory
to a great extent. However, the following is a summary
of interaction procedures:

Keys - the arrow keys control cursor movement in the
horizontal plane (the plane seen as a horizon in
respect to the screen). Holding down the spacebar
while using the up & down arrows controls movement in
the vertical direction. When the user attempts a
physically legal move, the cross will shift position
accordingly. An attempt to move through a wall is
indicated by a red flash. Reaching a target position
is also indicated by a special graphical sequence.

Mouse - the mouse is used for manipulating the view of
the main maze. The middle button performs rotations,



while the left button performs a zooming operation.
The right button calls an options popup menu.

Menu - the popup menu contains choices for all special
functions. 1Included are: displaying 2D & 3D solution
paths, producing hardcopy, etc.

Note that within the nok package is an n-dimensional
general maze generator. For information on integrating
the generator code into other applications, see the
detailed nok code synopsis forthcoming.
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Icosahedron Transformation by Rotation-Translation Operation

Nobuko Nathan

Computer Science Division, EECS Department
University of California
Berkeley, CA 94720

Abstract

A collection of UNIGRAFIX files which demonstrate interesting transformations of an icosa-
hedron are available. Hinge mechanisms are shown in each file to demonstrate how we can

construct a real object. These files can be viewed by the ugmovie program.

1 Introduction

In his book, The Geometrical Foundation of Natural Structure, Robert Williams explains that all
of the regular and eleven of the thirteen semi-regular polyhedra can be generated by rotation-
translation operations from either an icosahedron, a snubcube, or a snubdodecahedron. I chose the
icosahedron as a starting object and modeled its transformation to an icosidodecahedron and to a

truncated dodecahedron.

s B e

icosahedron

icosidodecahedron truncated dodecahedron

Figure 1: Two transformations from an icosahedron

2 Usage of the files

We begin by starting the ugmovie program. With the file/open menu, we load icosabugl.ugx file or
icosabug2.ugx file. When we open the view parameter window, there are 5 variables which control

the object.
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thickness This controls the thickness of each triangle. The scale is in proportion to the distance of

each face from the center of the icosahedron. Please note that when the thickness is zero, we
cannot see the hinges which connect the triangles.

width For a better view, each triangle face can have a triangular hole in the middle. When the
width is 1, there is no hole. When the width is zero, only the rim of the triangle is left.

phase This controls the transformation phase of the icosahedron. When the phase is 0 and 2, the
icosahedron is closed. When the phase is 1, triangles form an icosidodecahedron with pentag-
onal faces missing if the file is icosabugl.ugx, or a truncated dodecahedron with decahedral
faces missing if the file is icosabug2.ugx. In the latter case, the edges between missing faces
will be provided by bars with hinges.

zyz For visual aid, the xy, yz, and xz planes can be placed in the scene. The chosen parameter
controls the size of these three planes. When it is zero, these planes are invisible.

cone Each triangle moves in a pyramid-shaped space enclosed by three planes. By making this
variable large, we can place one such pyramid in the scene. This is probably more useful for
viewing the icosabugl.ugx file.

3 Mechanism of Transformation

3.1 Transformation to Icosidodecahedron
3.1.1 Rotation of Faces

To model the transformation between regular and semi-regular polyhedra, it is important to realize
that the objects have a great deal of symmetry. Especially for the regular solids, all faces, edges,
and vertices are equivalent. All the axes which go through the center of the faces of an icosahedron
intersect one another at the same point. The distance from this point (I will call it the origin from
now on) to all faces is the same.

During the rotation-translation transformation, each face rotates around one of these axes and
also moves along this axis, maintaining the face perpendicular to it. The degree to which it rotates,
as well as the distance it moves, should be the same among all the faces. For the object to be a
real jitter-bug, some connection between faces must be maintained throughout the transformation
in addition to the two conditions above. First, let us assume that we will maintain the connection
at the corners of the triangles in an icosahedron. (This is modeled in the icosabugl.ugx file.)

When it comes to the direction of rotation, the symmetry becomes less clear with an icosahe-
dron. I explain why and how to assign the rotation to each face in the following section.

The main goal of this project is to construct a model which we can actually build. By this, I
mean that each face should maintain enough connection to other faces, and with the help of hinge
mechanisms, there is only one degree of freedom left for the object. If we compare icosahedron and
icosidodecahedron, it is clear that each triangle face in the icosahedron should maintain connection
to three other triangles which border the triangle on its edges. Also, each face should rotate 60
degrees, (not 180) while moving outward for some distance. Unlike an octahedron, however, it is
impossible to maintain all three connections for a face in the icosahedron because there is an odd
number of faces coming together at one vertex. Figure 2 illustrates this.
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Figure 2: Rotation of trianzles around a vertex in an icosahedron

As you can see, if two adjacent triangles rotate in the same direction, they will not mzintain
connection between them. The hinges are at the corners of triangles. Each edge corresponds to
one hinge with the next face. Figure 2 suggests that at least one out of five edges would not have
hinges and the connection which corresponds to the hinge will break during the transformation.

The remaining question is how to assign rotation to each face so that 1) Each triangle has at
least two connections and 2) each ring of five triangles in an icosidodecahedron has at most one
breaking point. These conditions came directly from the requirement that the object must have
only one degree of freedom. (It naturally follows that the object must be connected and cannot have
a floating triangle during the transformation.) We also want to maintain the maximum number of
connections, if it is more than enough, and make the object as symmetrical (or regular) as we can.

Under these conditions, exactly one out of five edges breaks loose. If a vertex is an end-point
of one of these edges, it should not be an end-point of another; otherwise, this ring will have more
than one breakpoint. The assignment of rotation is equivalent to choosing edges in a graph so that
they compose the minimal dominating set; all the vertices must be covered, but we want to avoid
having edges that share an end point in the set. Figure 3 shows when we are ready to choose the
second edge.

The triangles next to the dark edge do not maintain connection.
The five triangles around an end point of such edges already have
one breakpoint.

The first edge determins the rotation of eight triangles.

The next edge can be one of pa, pb, and pc.

Figure 3: Assignment of rotations to triangles

A scheme to assign such rotations to all icosahedron faces are described in Figure 4.
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(A) (B) (B) from different angle

Figure 4: Choosing Edges

Note that both (A) and (B) are acceptable solutions, but (B) is more regular. Please note that
all the breaking edges are perpendicular to each other in (B). The left-rotating faces will have all
three connections while right-rotating faces maintain only two. The number of faces rotating in
one direction, however, is different from the number of faces rotating in the other direction in this
scheme.

3.1.2 Translation of Faces

In order to maintain the connection between two triangles during the transformation, the rotation
and translation must be related to each other by some function. The relationship is obtained by
solving the equations that express our constraints. Since all the faces are symmetric to each other
we can choose one triangle in which it is easy to figure out its coordinates. In Figure 5, we have
one of the center triangles in the drawing labeled (B) from different angle in Figure 4.

zA\
R The coordinate of comer P is computed by

adding vector D and vector U.
D is always perpendicular to the triangle and has
the length of the distance between the triangle and origin.
U has a constant length and rotates around D.
By decomposing D and P into X, y, z, directions,
we can express the coordinate of P in terms of
distance and rotation.

Figure 5: Movement of a triangle

Let the length of D = d,
the length of U = u,
the half of the dihedral angle of icosahedron = H,
and a = the rotation angle measured clockwise around D.



(In this figure, a = -60)
D = (0, d*sin(H), dxcos(H))
U = (-u*sin(a), u*cos(a)*cos(H), -u*xcos(a)*sin(H))
Thus, the coordinate of P is
P = (-u*sin(a), d*sin(H)+u*cos(a)*cos(H), d*cos(H)-u*cos(a)*sin(H)) --(1)

While the triangle moves, P remains on the xy plane. That is, z = 0:

d*xcos(H)-u*cos(a)*sin(H) = 0
d = uxtan(H)*cos(a) --(2)

Q moves on a plane defined by the origin and the initial locations of Q and R. The triangle is
symmetrical, however, and solving the constraints on P will suffice.

This is not the only way to express constraints. Interestingly enough, the functions I obtained
by solving different sets of equations look very different from each other. Nonetheless, they are
equivalent and all satisfy the requirements.

3.1.3 Hinge Mechanism

Two faces are connected to each other by a non-elastic hinge. Each hinge has two rotation axes
which are held by a rigid triangular panel. The two axes are perpendicular to the face of an
icosahedron they belong to, as is the triangular piece between the two faces. The triangular piece
is originally perpendicular to the edge of the icosahedron face and it rotates 60 degrees in respect
to the icosahedron face while the object transforms into an icosidodecahedron. The degrees of
rotation of hinges are in proportion to the degrees of rotation of the faces of the icosahedron.

. axis
' L
150 deg.
90 deg. .
R
“axis

Figure 6: Movement of triangular hinges

Please note that when a movement of an object is defined in respect to another object which
also moves, we can define the movement of the first object in respect to the second in a ugfile,
then define the second object so that it will include an instance of the first, and finally rotate and
translate the whole object by the movement that the second object is defined with.

If we choose (B) in Figure 4, we can cover all the hinges by assigning three hinges to eight
left-rotating triangles. This is another reason why I say that (B) is more regular than (A).
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3.2 Transformation to Truncated Dodecahedron
3.2.1 Rotation and Translation of Faces

The transformation from an icosahedron to a truncated dodecahedron is achieved by maintaining
the same distance between two triangles. This transformation is more regular than the other trans-
formation we saw earlier; all twenty triangles of our icosahedron move in exactly the same manner
including the direction of rotation. As for the other transformation, each face will rotate 60 degrees
while it moves outward. Obviously, the distance it moves is larger than the first transformation.
The constraints are expressed by the equations below. Thus, we can obtain the function from the
amount of rotation of each face relative to the distance it moves. We can use the same expression
(1) for the coordinate. Only the constraints are different.

R
Triangle A and triangle B are symmetrical around y axis.
Thus, P and P’ have the same y coordinates and
Q their x and y coordinates have opposite signs.
P
xy plane
P’ yPp
QY
R’

Figure 7: Movement of triangles with a bar and hinges

The distance between P and P’ is maintained the same as the length of PQ (=u*sqrt(3))

sqr(u*sin(a)*2) + sqr{(d*cos(H) - u*sin(H)*cos(a))*2} = sqr{u*sqrt(3)}

When we solve this equation in regards to d, we obtain
d = uxtan(H)*cos(a) [+|-] u/cos(H)*sqrt[3/4 - sqr{sin(a)}] -=(3)
To move the face outward, the sign in the middle of this equation must be plus.

3.2.2 Hinges with Bar

The two faces of an icosahedron are connected by a bar with hinges in this transformation. The
connector has four rotation axes. Each triangular piece is equal to half of the hinge part explained
earlier in this paper and it rotates 60 degrees during the transformation in respect to the icosahedron
face with the speed proportional to the rotation of faces.

The rotation of the center piece is NOT linear to the rotation of the faces, since the distance
the face moves affects the angle it will make with the face. It needs to be computed from the same
constraints we used to figure out the relationship between the rotation and translation of the faces.
The bar can be expressed by the rotation around the axis which goes through the middle of the
bar and the translation from the origin.



Figure 8: Movement of triangles with a bar and hinges
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The bar rotates around the center while
it moves forward along the y axis.

O
~7

Figure 9: Movement of triangles with a bar and hinges

From the value of x and z coordinate for corner P as in (1)
tan(b) = P.z/P.x = {d*cos(H)-u*sin(H)*cos(a)}/-u*sin(a)
By substituting d with the value in (3) and we get:
tan(b) = {-sqrt[3/4-sqr{sin(a)}]/sin(a)}
Thus, b is expressed in terms of a by
b = atan{-sqrt[3/4-sqr{sin(a)}]/sin(a)} when a is not O
b = pi/2 when a = 0

The translation is the same as the y coordinate of the triangle corner.
translation = P.y = d*sin(H)+u*cos(a)*cos(H)

By substituting d in (1) with the value in (3) we get:
translation = u/cos(H)*cos(a) + u/cos(H)*sin(H)*sqrt[3/4-sqr{sin(a)}]

4 Conclusion

These two types of transformation and mechanism are the basis for all polyhedra transformations.
For different regular solids, the value of dihedral angles are different, but the principle of analysis
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is the same. Transformation from the dodecahedron is an easy modification of these two. I would
have liked to produce a series of transformations starting from other solids.

While I worked on this project, some problems with ugfiles became clear to me. The lack of
global variables and definition of constants makes the file hard to read and the execution probably
inefficient. Also, there is no easy way to refer to a part of an instance. For example, if we have a
triangle defined as an object, we cannot use a vertex in its instance to make a new face. Solving
these problems will make it much easier to use UNIGRAFIX files.
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From Soccer Balls to Bucky Balls:
Polyhedra Transformations
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1.0 INTRODUCTION

Platonic and Archimedean solids are fascinating for their mathematical properties and their simple sym-
metric beauty. We chose to explore a unifying link between different family members - the transformation
from one polyhedron to another by rotation and translation in three dimensions [1]. We achieved the trans-
formations between solids by rotating about and translating along the same axis, while maintaining one
connection between two faces. The connection can be either a vertex or a new edge.

There are three major paths transformations in our project and they all go through the same intermediate
stage: the 3%.4 solid. The paths are labeled in Figure 1. The user can view the transformations by manipu-
lating a hexslider. It is a perspective viewing environment with Goraud shading. The user can change the
viewpoint by using the left mouse and right mouse for object rotation and zooming respectively. We will
next discuss how each path is calculated. All calculations follow two basic concepts:

+ explore symmetry.
* identify constraint.

It will become clear why these two principles enable us to calculate our solutions systematically.
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TECHNICAL DESCRIPTION

2.0 TECHNICAL DESCRIPTION

Path 1.

In this path the connection between faces are maintained by a new edge, AD. Let’s follow our two guide-
lines:

1) symmetry: All the square faces are rotated images of each other. Therefore, we only have to find the
rotation angle 6 about the z-axis and the translation R along the z-axis of the top square. Likewise, the
wire (edges) are all rotated images of each other. Therefore, we need only consider the wire that pierce
through the yz plane, and is in the +z and +y quadrant of the space (see figure below). This wire rotates
about (0,1,1) with angle 6w, and translates along (0,1,1) by Rw. z

2) constraint: AD has to maintain length one.

Solve: by representing the x,y,z value of point A and point D, we
can solve for R(0):

lIA-Dll = 1; substitute A and D and we can get:

R(0) = (cosB+sinB)/2 + sqrt(sinf*cos0)

Note the wire is rotating about the axis(0,1,1);
Rw is the distance of origin to the mid point of AD, and Ow is
the angle between AD and (1,0,0) vector:

Rw(0) = sqrt((R+sin(45+0))*2)/sqrt(2);
Ow(0) = acos(dot(A-D,(1,0,0)) = cos(45+0)/sqrt(2);

A: X = cos(45+0)/sqrt(2);

y = sin(45+0)/sqrt(2); /
zZ= R; \
x 6

D: x = -cos(45+8)/sqrt(2);
y=R;
z= sin(45+0)/sqrt(2);

From Soccer Balis to Bucky Balls: Polyhedra Transformations



TECHNICAT BESCRIPTION

Path 2:

In the path, again the connection between faces are maintained by a new edge: TS.

1) symmerry: All triangular faces are rotated images of each other. We only have to find the rotation angle
0 about axis: (1,1,1) and the translation R along this axis of the triangle in positive x,y,z quadrant. The
wires are also rotational images of each other. We only need to calculate Rw and 8w of one wire. We
choose the wire that pierce through the positive x and z plane. It is rotation about axis (1,0,1);

2) constraint. The new edge TS has to have length one always.
Solve: by representing the x,y,z value of point T and point S we can solve for R(6).

It is a little trickier to find the x,y,z value of T and S. We have 1o note that:

a. T is on the plane A: x+y+z=R*sqn(3);
b. the plane A hit z axis at Pz: (0,0,R*sqrt(3);
c. The center of the triangle T is

Pc: (R/sqrt(3),R/sqrt(3),R/sqri(3));
Let Vz be the unit vector from Pc to Pz, and Vt be the unit vector
from Pc to T (xt,yt,zt). The three equations we have to solve is:

a. cross(Vz, Vo= sin(0)/sqrt(3)* (1,1,1);
(two independent equations)
b. dot(Vz,Vt)=cos(0);

We can therefore find:

xt = (2*sqrt(3)*R - sqrt(2)*cos(8) + sqrt(6)*sin(0))/6;
yt = (2*sqrt(3)*R - sqrt(2)*cos(0) - sqrt(6)*sin(0))/6;
zt = (sqrt(3)*R = sqrt(2)*cos(0))/3;

similarly:
xs = (sqri(3)*R = sqrt(2)*cos(8))/3; Pc
ys = (-2*sqrt(3)*R + sqrt(2)*cos(6) + sqrt(6)*sin(0))/6;

zs = (2*sqrt(3)*R - sqrt(2)*cos(8) + sqrt(6)*sin(0))/6; >
Ow

finally: IIT-Sli=1 and solve for R(6).

R(0) = (sqrt(2)*sin(0) + sqrt(2/3)*cos(0)+ sqrt(2*sin(0)*2 + 6*sin(8)*cos(8)/sqrt(3))/2

Again, the Rw is the distance from origin to the midpoint of TS and 8w is the angle between TS and
(0,0,1); .

Rw = sqrt(24*R"2 + 1 + 2*sin(B)"2 + 4*sqrt(6)*cos(B)*R + 4*sqrt(18)*R*sin(0)+

2*sqrt(3)*sin(0)*cos(0))/6;
8w = acos(cos(0)-0.577*sin(B);

From Soccer Balls to Bucky Balls: Polyhedra Transformations
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TECHNICAL DESCRIPTION

Path 3:

This path is a little different. The two adjacent faces are connected by common vertices.

1) symmetry: we can use symmetry to isolate our calculation to only concentrate on the top square and
the side triangle;

2) constraints: Ct = Cs.

Thanks to the calculation of the last paths, we can readily obtain Ct and Cs:

xt = (2*sqrt(3)*Rt - sqrt(2)*cos(0t-60) + sqrt(6)*sin(6t-60))/6;
yt = (2*sqrt(3)*Rt - sqrt(2)*cos(6t-60) d- sqrt(6)*sin(6t-60)/6;
zt = (sqrt(3)*Rt = sqrt(2)*cos(0))/3;

(there is a 60 degree difference in the starting angle of the triangle)
Cs = (sin(Bs)/sqrt(2), xy = cos(0s)/sqrt(2), xz = Rs);

Note that we now need Rt(0t), Rs(6t) and Bs(6t). Fortunately, with 6t given, we have three equations and
three unknowns.

Solution:

R1(6t) = cos(0t-60)/sqrt(3) + sqri(2*cos(6t-60)"2 + 1)/2;
Rs(6t) = Rt/sgrt(3) + sqrt(2)*cos(0t-60)/3;

8s(0t) = acos(2*Rt/sqrt(6) - cos(t-60)/3 - sqrt(12)*sin(1)/6;

From Soccer Balls to Bucky Balls: Polyhedra Transformations



CONCLUSIONS

3.0 CONCLUSIONS

It was immensely satisfying to be able to visualize all 6 polyhedra continuously deform from one to
another using our program, vindicating the math framework outlined here. Things that we would do differ-
ently the second time around: we calculated the rotational motion along each of the 3 paths independently
of each other. We should have realized that a constraint ties all three paths together: at the center position
(the position of the snub cube), all three paths share the same object, namely the snub cube, with one com-
mon rotational orientation. Hence, it would have made sense to fix the object orientation at mid-time to be
the same for all three paths.

An interesting extension of this project would be to investigate the transformation between 4-D
Archimedean and Platonic solids (if it exists!) and how to visualize it by using 3-D and 2-D projections.
But this is a question best left to the next CS285 class.
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UGMORPH: A Polyhedral Morphing Tool

Raph Levien and Daniel Rice

December 15, 1992

1 The UGMORPH Tool

UGMORPH is a Unigrafix-based tool which takes two star-shaped polyhedral objects, each annotated
with the coordinates of a point known to be within its kernel, and produces an object whose
topology is a merger of that of the input objects. This object’s vertices may be interpolated from
positions on the first object to positions on the second, resulting in a smooth transition between
the objects. The output is written in .ugx format so as to allow animations by means of ugmovie.
An example of a morphing sequence is shown in Figure 1.

2 The Importance of the Kernel

Recall that a star-shaped object is one for which the entire interior is visible from at least one
point. The kernel of an arbitrary polyhedral object is given in general by the intersection of the
inner halfspaces of each of the faces, which may of course be empty. UGMORPH provides a companion
tool, UGKERNEL, which interactively displays slices of the kernel and allows a kernel point to be
chosen by means of the mouse. It also allows the user to visualize the consequences of his or her
center selection by showing the object’s spherical projection.

Since there exists a simple halfspace test to determine whether a point lies inside the kernel, it
does not appear worthwhile to explicitly construct the kernel polytope. Rather, the chosen central

Figure 1: Three Stages of a Morphing Sequence
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Figure 2: The Kernel Selection Interface Figure 3: The Interactive Sweep-Plane Display

point is displayed in green whenever it is found to be within the kernel, and red when is passes
outside.

As a further aid to selecting a kernel point, the user interface performs a graphical (image-
space) construction of the intersection of the kernel with a user-selected plane. The plane itself is
displayed as a rectangle large enough to contain the bounding box of the object. Each face of the
object is considered in turn, and the intersection of its outer halfspace with the rectangle is drawn
as a semi-transparent polygon. The union of the outer halfspaces, by DeMorgan’s law, is exactly
the complement of the intersection of the inner halfspaces, i.e., the complement of the kernel. The
intersection of the rectangle with a halfspace is drawn by considering the vertices and edges of the
rectangle in counterclockwise order, and emitting a vertex whenever we encounter either a vertex
within the halfspace, or an edge which crosses the halfspace. In the latter case, the intersection of
the edge with the halfspace is computed and emitted. One must take care in this process not to
emit an empty polygon, which wreaks havoc with some versions of the Silicon Graphics pipeline.

Once a kernel point has been identified, the objects are conceptually projected onto the surface
of a sphere centered at that point. Since the object is star-shaped, points on the sphere will
correspond to points on the object’s surface in a one-to-one manner. The new spherical polyhedron
will have vertices, edges, and faces corresponding to those of the original object. The user interface
contains various bells and whistles to help users visualize this spherical polyhedron. An example

is shown in Figure 2.

Consider projecting both objects onto a common sphere. This sphere will now have vertices at
the locations of all of the vertices of the two original objects as well as at the points where edges
from the objects cross. The faces of the merged projection are the intersections of pairs of faces,
one from each object. The main challenge of UGMORPH is to identify the new vertices and faces in

an efficient manner.



3 The Morphing Algorithm

Numerous algorithms are possible for constructing the merged morphing topology, ranging from
pure brute-force, with a running time of O(nm), where n and m are the number of edges in the
respective input objects, to more sophisticated approaches with running times on the order of
O(nlogn). The fundamental observation is that the projected edges of each object will tend to be
distributed around the sphere more or less evenly. Accordingly, it should be possible to reject most
of the edges of one object as incapable of having any intersection with a given edge of the other

object without any computation.

3.1 Kent, Carlson, and Parent’s Algorithm

The technique described in [1] requires that the input objects be triangulated, and identifies which
faces of one object are intersected by a given edge of the other by a process of “walking triangles.”
Topological information about the adjacency of triangles is thus used to disambiguate the processing
of coincidences and near- coincidences. Although this technique appears to work, and does not seem
too hard to implement, we chose to use a different technique based on sweeping a plane through
the projection sphere. Our technique does not require triangulation.

3.2 The Sweep-Plane Algorithm

Conceptually, our sweep-plane algorithm is simple. We wish to identify which edges intersect other
edges without performing a brute-force O(n?) search. By maintaining an active edge list containing
exactly those edges which cross the sweep-plane, we can limit our intersection tests to members
of the list. Initially, we place all of the projected vertices of the original objects onto a priority
queue, sorted by maximum z value. As we remove a vertex from the queue, any downward edges
emanating from that vertex are added to the active list; edges emanating from the vertex which
point upwards are removed from the active list. Each new edge is compared with the other active
edges for potential intersection, and the points where such intersections are found are installed as
new vertices, and placed into the queue for later processing. In the absence of coincidences and
numerical uncertainty, this algorithm would suffice to determine all edge-edge intersections.

An advantage of a sweep method is that it allows topological information to be maintained
incrementally, rather than having to be reconstructed en masse at the end of the algorithm. In
particular, face information is maintained by ordering the edges of the active list by the longitudes
of their sweep-plane crossings. As new edges are added to the active list, they are placed in their
proper place immediately, and as they are removed, faces of the merged object are constructed and

output.

3.2.1 Spherical Geometry

The morphing algorithm makes very heavy use of spherical geometry or, more precisely, the geom-
etry of vertices, edges, and faces on the surface of the sphere. A large part of the code is devoted
to standard geometrical and topological algorithms that have been adapted to the surface of the

sphere.
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There are essentially two ways of performing geometry on the surface of a sphere. The first is by
halfspaces, the second is by the longitude/z-coordinate pair. Both methods have their advantages.
Halfspaces are simple, efficient, and numerically fairly robust. On the other hand, many operations
of interest are limited to the sweep plane itself, which has a constant z coordinate. Thus, the
longitude/z-coordinate method reduces the problem to a single dimension. We use both techniques
where appropriate.

The code which performs intersection tests is based on several key observations. The most
important is the fact that we are performing a projection from the center of a sphere, so the
projected edges are just segments of great circles, which have many nice geometrical properties. A
great circle can be represented by the normal vector of the unique plane which passes through it,
and points on the sphere may be classified as lying above or below the great circle by a simple dot-
product test. The standard algorithm for determining whether line segments in the plane intersect
does not carry over into the great-circle world without modification: two arcs of great circles such
that the endpoints of each lie on opposite sides of the other may not intersect. In order to make the
test strictly correct, some longitude comparison must be added. There is also a robustness problem
on the sphere which is not present in the planar case. We discuss this further in Section 3.3.

Maintaining the so-called “cut ring,” which stores the coordinates of the crossings between
active edges and the sweep plane in sorted order proved to be tricky. We maintain sorted order
to facilitate face reconstruction. The basic algorithm to place new edges into the cut ring is to
consider neighboring pairs of edge crossings and to test whether the new crossing lies in between.
The major source of difficulty lies in introducing a crossing which lies exactly 180° apart (within
the limits of floating-point precision) from an existing one, as we shall discuss later. Since there
can be only a single instance of this configuration within any given cut ring, we treat it as a special
case. All of the other pairs are considered first, and only if all of these test fail do we insert the
edge between the obtuse pair.

An interesting case occurs when an edge projects onto a “bowed” great circle segment — that
is, one whose maximum z value does not occur at an endpoint. For such edges, we compute their
maximum z value and introduce a new vertex at that point. This behavior is somewhat undesirable,
since it introduces an artifact of the particular orientation of the inputs into the output. A better
approach is to introduce a “virtual” vertex to ensure that the edge is brought into the active list at
the appropriate time, but to maintain the edge as a single entity. This complicates the maintenance
of the ring of crossings, since a single edge may now cross the sweep plane more than once.

3.2.2 Internals

The morphing algorithm maintains five important data structures:

o The vertex, edge, and face topology, in similar fashion to Unigrafix
o The vertex schedule (queues events for the sweep plane)

o The list of active edges

¢ The cut ring of active edges, sorted in counterclockwise order

¢ The contours of the result faces, as they are being constructed



The cut ring is similar to the active edge list, but differs in two important respects. First, it is
sorted. Second, a single edge can correspond with two cuts, as in the case of a bowed edge.

The sweep plane algorithm works by processing all the vertices in order of increasing z coordinate
(south to north). We use a priority queue to represent the vertex schedule. To process a vertex,
we delete edges incident on the vertex that are below the sweep plane, and insert edges incident on
the vertex that are above the sweep plane. To insert an edge, we insert it into the active list, insert
the cut or cuts into the cut ring, and calculate intersections with other edges already in the active
list. If there are any such intersections, the new intersection vertices are created and placed in the
vertex schedule, and the edge and vertex topologies are merged. The last stage in processing a
vertex is linking the contours of the result faces. If any such contours become circular, the contour
represents a complete face, which is then recorded in the appropriate data structure.

Other important geometric algorithms include:

e Find the two adjacent cuts in the cut ring which enclose a given vertex (used to identify
opposite face for back projection)

e Find the two adjacent cuts in the cut ring which enclose a given cut (used to insert new cuts
into the cut ring)

e Identify bowed edges, and generate extremal vertices

e Link partial face contours

Back projection is the final step in the morphing algorithm. Each vertex must be assigned a
starting and ending position such that it starts on the surface of object A and ends up on the surface
of object B. To accomplish this, we determine which face the vertex lies within using topological
information, and project it onto the plane of that face.

Although each face of the merged object begins and ends as planar (since it lies on the surface
of the input objects), interpolating the vertices linearly between the starting and ending positions
does not necessarily maintain planarity. Accordingly, we see two options: triangulate the faces, or
assign nonlinear trajectories to the vertices such that planarity is maintained. The Iris GL seems
to handle nearly planar faces well enough in practice that we have not had to implement either of
these techniques.

3.3 Edge Intersection Testing

The edge intersection test illustrates the problems of working in spherical geometry. At first it would
seem that two edges can be tested for intersection by simply testing whether the endpoints cross
each other’s great circles, in analogy to the planar case. However, this test might falsely report
the intersection of two edges on opposite sides of the sphere. When we consider the additional
insight that no pair of edges can intersect unless their longitude/z bounding boxes overlap, we
can accurately classify all pairs of edges as intersecting or not. The z coordinate portion of the
bounding box test is implicit, as no two edges can be in the active list at the same time unless
they both cross the sweep plane. The longitude comparison is performed explicitly. Only when the
longitude ranges of two edges overlap are the endpoints checked for crossing the halfspaces. In this
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particular case, the hybrid approach also increases the efficiency, because most edge pairs can be
rejected immediately as the result of two longitude comparisons.

The edge intersection test also illustrates a robustness problem with spherical geometry algo-
rithms: the case when a cut is to be inserted between other cuts separated by exactly 180°. In
this case, neither the half-space nor the longitude gives an unambiguous answer. It is important to
treat this case very carefully.

4 What We Would Do Differently

Although the model of projecting objects onto a sphere is conceptually simple, it requires that all
geometrical computation take into account a number of quirks of spherical trigonometry, which are
often somewhat unintuitive. It might have been simpler to “paint” the faces of one object directly
onto those of the other, using an approach more like that of [1].

At the moment, the kernel selection process and the morph tool itself are separate programs
which duplicate each other’s code significantly. We hope to integrate the two into a single tool,
which will allow users to see the effect of their center point selection on the final morphed object
rapidly.

The spherical geometry algorithms gave us a lot of problems. It probably would have been
a good idea to work out, carefully and thoughfully, which algorithms we would need and how
they could be implemented robustly and efficiently. We delayed these design decisions because we
were not familiar enough with the sweep-plane algorithm and the spherical geometry. Most of the
remaining robustness problems stem from the “180° coincidence,” as we have termed it.

One of the early design decisions was to implement the sweep plane algorithm rather than the
one presented in [1]. Our approach has some advantages, most notably that it eliminates the need
to triangulate the objects prior to morphing them. In any case, we had more problems with the
basic spherical geometry than the sweep plane itself, which we would also have needed for Kent’s
algorithm. It is plausible that our algorithm was not significantly more difficult to implement than
theirs.

We maintained an interactive 3D display throughout the development of our program. This
helped us a great deal. For example, we had a small typo in the priority queue code. We discovered
the problem almost immediately when we saw the sweep plane moving backwards. Without the
large amount of information provided by this display, these types of problems would have been much
harder to track down. A screen image of the interactive display in action is shown in Figure 3.

References

[1] Kent, James R., Carlson, Wayne E., and Parent, Richard E. Shape Transformations for Poly-
hedral Objects. Computer Graphics (Proc. SIGGRAPH ’92), 26, 2 (July 1992), 47-54.



Stone Wall Generator
A mini project for CS 285 --- Fall 1992
By
Luis 0. Porcelli
Thurman A. Brown

The stone wall generator is an interactive tool used to create interesting stone wall patterns. The
program has a simple user-interface, which allows the user to create a realistic stone wall pattern.
There are various parameters which can be adjusted to change the resulting outcome of the gener-
ator. The program renders the stone wall in a GL window. The user can create a UNIGRAFIX file
of the final pattern by selecting the UGout option or take a shap snot to generate a texture file.

RUNNING THE PROGRAM

To start the program the user enters:

stone_wall <wall_width> <wall_length> <stone_width> <stone_length> <stone_width_vari-
ance> <stone_length_variance> <+d> <+s>

All of the options in the stone generator have reasonable defaults, so the program can be run with-
out any parameter. If desired, most of the parameters can be set from the command line. Wall_-
width and wall_height determine the width and length of the stone wall to be generated.
Stone_width and stone_length, determine the average width and length of the stone to be created.
The user is constrained not to make the stone_width and stone_length greater than the wall_width
and wall_length respectively. Stone_width_variance and stone_length_variance specify the vari-
ance of the width and length of the stone respectively. The variance value is a percentage of the
average stone_width and stone_length. So a width_variance of 0.5 would allow stones to vary in
width size anywhere from 1/2 the average stone size up to 1.5 times the average stone size. Spec-
ifying the +d option causes the program to displace the initial wall pattern before it is displayed.
Specifying the +s options causes the program to shrink the initial stone pattern before it is dis-
played. After starting the program, a risizeable GL window will appear in which the stone wall
pattern will be displayed. A user-interface window also appears which allows the user to set the
program options and perform the various operations.

USER INTERFACE

There are two interaction windows for the stone wall generator program. The first window is a GL
window. The stone wall pattern is displayed in this window. The user uses the left mouse button to
scale the object, the middle mouse button to rotate the object and the right mouse button to trans-
late the object. This interface uses the same conventions as UGIRIS. The other interaction win-
dow is the user interface. The user interface is divided up into four sections: the stone options, the
wall options, special values and the buttons.
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STONE OPTIONS

The stone options are located at the top of the window. To the left are three input fields that allow
the user to input the width, length and height of the wall respectively. To the right of each input

field is a slider. The sliders range from zero to one, and allow the user to change the variance for
the width, length and height values. For example, to set a new average width of 8 units and to set
the stone width variance to 0, the user would locace the stone width field at the top of the window,
change the value in this field to 8.0 and then slide the slider to the right of the stone width field to
zero, thus setting the stone width variance to zero. Note, the change in the stone options, the wall
options and the special features options do not get implemented into the stone wall until the restart
button is pressed. This button generates a new stone wall pattern based on the new input values.

WALL OPTIONS

The wall options are below and to the left of the stone options. In the wall options section there
are two input fields, stone width and stone length. These fields let the user change the overall
width and length of the wall pattern.

SPECIAL VALUES

To the right of the wall options are located the special features options. This section consists of
three input fields: seed value, epsilon and roughness value. The seed value input field allows the
user to specify the seed that is used to generate random numbers used to displace the original node
diagram and to generate the stone height. The epsilon value is used to set the size of the smallest
allowable stone width and stone length in the initial wall pattern. This value defaults to one tenth
of the minimum of the average stone length and width. The user can change this value to prevent
small narrow stones from appearing; all stones that would be generated smaller than epsilon are
merged with their neighboring polygons. The roughness value is used in generating the fractalized
triangles that approximate the surface of the stone. The roughness value can range from 1.0 to 2.0.
A value a 1.0 generates a smooth stone with small variations in the surface whereas a value of 2.0
generates a much more irregular stone surface.

BUTTONS

The final section of the user interface contains the buttons to perform the various stone generating
operations. There are eight buttons and they are primarily arranged in the order in which they
should be used. The buttons are named, starting at the top and going down the left and then the
right column: Restart, Displace, Shrink, Subdivide, Edges, Stone Color, UG out and Quit.

RESTART BUTTON

Restart is used to create a new stone pattern. If the user does not like the current pattern that has
been created then restart is used to create a new pattern. If the user changes some of the generator
variables, then the restart button must be pressed in order to begin a new pattern using the new
variable values.



DISPLACE BUTTON

The displace button is used to create a stone pattern of displaced (non-rectangular) rocks. The
displace button distorts rectangular stones into convex (or nearly convex) polygons. If the dis-
place button is not used, then the initial pattern will consist solely of rectangular stones. Note that
the displace button can be used only once on a particular stone pattern. If the user does not like the
pattern created, he must press the restart button and then press the displace button to get a new
pattern.

SHRINK BUTTON

The shrink function is used to introduce spacing between the stones in the pattern. The shrink can
be used any number of times on a particular pattern. With each use of the shrink operation, the
stones will get smaller and the spacing between the stones will get larger. Note that once the
shrink or the subdivide button is pressed, the displace button can no longer be used on the present
wall pattern. The user must press the restart button in order to use the displace feature once again.

SUBDIVIDE BUTTON

The subdivide button is used to perform another step of “triangular fractalization” on each of the
triangular faces of the stone polytope. The first time this button is pressed after a stone space pat-
tern has been obtained, a stone primitive (or “fractalized triangulation seed”) is created for each
stone space. As this function is repeatedly invoked, increasingly smaller triangular faces are gen-
erated yielding greater detail in the stone surface. The subdivide operation can be performed as
often as desired although this should be used sparingly since the number of faces in the stone
polytope grows exponentially.

EDGES

The edges button is used to recursively distort the straight edges defining the base of the stone
polytope. The usage of this button creates the distorted edges which are common in a stone wall
at the interface between a stone and the cement joining the stones.

UG OUT BUTTON

The UG_OUT button is used to create a UNIGRAFIX file of the current wall pattern. This button
can be pressed at any time to write the current wall pattern to a unigrafix file.

QUIT BUTTON

The last button is the quit button. This button closes the window and exits the user from the pro-
gram.
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MAKING A STONE WALL PATTERN

This section will discuss a typical session with the stone wall generator. For this exercise the user
will generate a displaced (non-rectangular) wall pattern. The size of the pattern will be 50 x 50
and the average stone size will be 5 x 5.

The first step is to start the program. We will initialize the wall size from the command line and
then set the stone size with the user interface.

% stone_wall 50 50 <ret>

After the windows are opened, the user clicks the mouse in the stone width input field. The user
changes the value in this field to 5 and presses return. The same operation is performed on the
stone length input field. To generate a new stone pattern with the correct stone width and length
value, the user presses restart. Pressing displace generates the initial stone wall pattern with the
displaced stones. The user then presses the shrink key to generate spacing between the stones. The
user desires more spacing between the stones, so he presses the shrink button twice more. Next,
the subdivide button is pressed twice in order to generate a stone polytope with the desired level
of detail. The edges button is pressed to distort the base edges. Finally, the UG out button is
pressed to generate the UNIGRAFIX output file. Quit is pressed to exit the program. UGIRIS can
be used to view the output file.



TECHNICAL DESCRIPTION
GENERATING THE RECTILINEAR NODE GRAPH

The stone wall generator begins by tiling a rectangular wall with non-overlapping rectangles. The
length and width of each rectangle is obtained by using the average length and width of each rect-
angle distorted by a noise function so that the set of lenghts and widths has the desired variance.
The node graph is generated by creating layers of rectangular stones until the entire wall

has been tiled. Each layer is generated by creating stones of random length and width and placing
them from left to right until the length of the wall has been exhausted. When a new stone is
placed, it is placed at a height corresponding to the maximum height within the corresponding left
to right interval on the previous layer. Then for each height in the corresponding interval in the
previous layer, a horizontal line is drawn to the left and right as far as is necessary so that

only rectangular areas exist below the newly placed stone. If necessary, an edge is dropped from
the bottom right of the new stone down to the previous layer. The process of creating layers is
discontinued as soon as every left to right interval of a layer hits the top of the wall. The epsilon
parameter requires all rectangles in the initial tiling to be wider and longer than epsilon. The node
data structure used for this tiling step contains four pointers -- left, right, up and down -- which
point to the adjacent nodes as well as the x and y position of the node.

DISPLACING THE NODE DIAGRAM

Each rectangle is then distorted into a convex polygon when the displace function is invoked.
Each polygonal area is defined by nodes. Since adjacent stones have nodes in common, a
displacement of a node will result in a corresponding displacement of all the incident edges,
resulting in a new tiling which is also non-overlapping. If the nodes are displaced following cer-
tain heuristics, the resulting tiling will consist solely of convex polygons. Convexity is desirable
since the forces of erosion tend to make an object more convex; as a consequence, stones are
more likely to be convex. Once the node graph is obtained, a procedure called check_consistency
is called which makes sure that the pointers of the node graph are self-consistent. For example, if
node 1 points up to node 2, then node 2 should point down to node 1. Once self-consistency is
ascertained, each node is displaced by a recursive procedure which traverses the node graph. Only
nodes at a T-junction are allowed to be displaced. If the angle of displacement at either side of a T-
junction does not exceed 45 degrees on either side, then the displacement will not introduce con-
cavity. Edges with multiple T-junctions are not displaced as a simplifying measure. A more com-
plicated displacement procedure would displace these intelligently, based on the displacement of
neighboring nodes.

EXTRACTING FACES FROM THE NODE DIAGRAM

The faces defined by each polygon in the tiling must be extracted into a polytope data structure
which initially contains just the polygonal stone space. The faces are cut out by a recursive pro-
gram which traverses the node graph and cuts out each face. Each node data structure contains
fields indicating whether the left_lower, left_upper, right_lower, and ri ght_upper faces have been
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extracted.

As each node is visited, if one of its face indicators is not set then, that face is cut out. The
rules for traversing the node graph are as follows: taking a down link follow the first right link,
taking a right link follow the first up link, taking an up link follow the first left link, and finally
taking a left link follow the first down link. While doing this, we keep track of edges belonging to
the current face. Once we return to the original node, a face is created. As each intermediary
node is visited, the corresponding indicator flags are set to reflect the current face being cut out.
Subsequently, each polytope data structure is created and initialized.

SHRINKING THE STONE SPACES

Shrinking the stones is performed in order to introduce spacing between the stones of the wall pat-
tern. This spacing represents the cement between stones in a real wall. This operation is per-
formed by moving all the points defining the polygonal space towards the center of mass. If the
stone is too small, some of the points cannot be moved. If epsilon is set appropiately, this problem
will not occur. The method specified for shrinking, outlined in the paper by Miyata, is suitable for
use on polygons with rounded corners, but may introduce concavity into rectangular polygons.
The parameterized method that we implemented is more suitable for rectangular polygons.

DISTORTING THE BASE EDGES

The base edges are distorted to simulate the jagged edges that are characteristic of the interface
between stones and cement. The distortion is performed by a recursive procedure which randomly
displaces the midpoint of each edge. The distance of the distortion is based on the length of the
edge.

FRACTAL TRIANGULATION OF STONE FACES

The fractal triangulation technique is frequently utilized to model natural phenomena including
landscapes. This technique proves useful in simulating stone surfaces. Initially a stone primitive is
constructed in each polytope data structure. This primitive is used as a starting seed for the fracta-
lization of the stone surface. The height of this primitive must be chosen intelligently to avoid the
creation of odd spikes. The fractal triangles are generated by displacing the midpoint of each edge
in a direction which is the average of the normals of the two adjacent faces. This point must be
shared by contiguous faces and the newly created incident edges must be shared in order to pre-
vent the introduction of drastic discontinuity (cracks) into the stone pattern. The offset distance of
this point is a function of the length of the edge, the subdivision level, the roughness factor, and a
random normal variable.



GENERATING THE UNIGRAFIX FILE

A UNIGRAFIX representation of the stone wall can be optionally generated. This is done by tra-
versing the polytope data structures, creating the necessary vertex and face statements.

DATA STRUCTURES

Many data structure were created in order to implement this system. The node data structure is
used to create the node graph. The polytope data structure is used to hold each polytope approxi-
mation of a stone. In addition, a subset of the ug3 data structures had to be created. These include
an edge list, vertex list and face list.

CONCLUSION

The stone wall generator was inspired by the article “A Method of Generating Stone Wall Pat-
terns”, by Kazunori Miyata. At first glance the algorithms seemed very straight forward. How-
ever, many details were omitted from the article and occasionally there were errors in the
formulas. Furthermore, slight changes in the implementation yielded drastic changes in the out-
put. As a consequence, a great deal of time was spent adjusting these parameters to get realistic
results. For instance, the triangulation seed plays a very critical role in the resulting stone poly-
tope.

The code to generate the standard normals was obtained from the programmer’s bible -- “The Art
of Programming.” Additional insight into stochastic models was gained from the article “Com-
puter Rendering of Stochastic Models” by Alain Fournier.
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Example of a stone wall generated with the stone

wall generator. This wall was generated without using
the displacement function, so all stones have a
rectangular base. The shrink function was used in order

to produce the spacing between the stones.

Stone wall generated with the use of the displace
option. The displace option produces the non rectangular
stones shapes. The shrink options was again used
on this figure.




User Interface)
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Mini-Project:
GROW - An Ivy Generator
An Example of Environment Based Plant Growth

Paul-Henri F. Arnaud
UC Berkeley
Fall 1992
CS 285
Prof. Carlo H. Sequin

Overview:

The goal of this mini-project was to model environment based plant growth.
Due to the time constraints of a mini-project, this study focuses on the particular case
of modeling ivy growth. The motivation behind this project is that realistic plant growth
requires more than just growing a plant in uniform, empty 3-d space. Constraints such
as other objects and the availability of space and light affect growth in important ways'.
This paper will describe one such method to model these effects.

Method:

In this project, the world in which the plant grows in is available to the growth
algorithm; a 3-d array, a voxel space, contains information about the world contents.
Similar to the way in which pixels divide 2-d space, voxels divide 3-d space. Voxels
may be empty, free for plants to grow in or solid, filled by an impenetrable space. At
any point in time, for example right before placing a new branch, the program may
check to see if the branch intersects with any other objects by enumerating which
voxels the branch is contained in, then simply doing an array lookup to see whether
those particular voxels are empty or filled.

More Detailed Implementation Notes:

Data Structure:
One key simplification of this program is the data structure. Rather than keep a

"Refer to Ned Greene's paper “Modeling with Stochastic Growth Processes in Voxel Space” [ACM
Computer Graphics, Vol. 23, Number 3, July 1989] for original research and more detailed information.

75



76

PHFArnaud lvyGrower - CS285 - UCB Fall 1992 Prof. Séquin

true tree structure of the entire plant grown so far (admittedly a more powerful
construct, and a likely improvement given more time) the program keeps a doubly
linked list of all outermost buds.

Main Loop:

First, initial “seed” buds are inserted into the active bud list. At every iteration,
each bud has random chances of dying, branching or sleeping. If it dies, the bud is
removed from the active bud list. If it sleeps, nothing happens and the next bud is
dealt with. If it branches, a random number of branches to branch from that bud is
selected. For each branch, several attempts are made to place it. First relatively long
branches are placed. These branches have a length 2-3 times the width of a voxel.
This help ensure that the branches making up the vines travel relatively straight and
smoothly along the surface of the object. Short branches might have a tendency to
zig-zag about in tangles if they had the chance to. However shorter branches are
needed to help “navigate” sharp corners. The geometry may not allow long branches
to be placed without any intersections around the corner of an object. The other factor
that helps with corners is increasing the spread of possible random angles that the
new branch exits with. These values for the three sets of tries with different branch
lengths is user-specifiable in the inputparams? file. If a branch cannot be placed, the
bud dies and does not continue growing; there is no place for it to grow. Usually, a
branch can be placed. In this case, the branch is written with the proper rotations and
translations to the UG output file. Then a few leaves are placed in the proper
positions, with slight random perturbations.  Finally a new active bud at the end of the
branch is placed into the active list, and the bud at the base of the active list is deleted.

These branches and leaves have different levels of detail. These levels of
detail allow less complex objects, with fewer vertices and faces, to be used when the
object is small and the extra complexity of the shape wouldn’t be seen or appreciated.
Which instance of the object is used depends on two factors - the user’s input and the
age/size of the branch or leaf. The user may force all objects to be the simplest
possible; in this case the program has no choice. If the user selects a higher level of
detail, the program will automatically substitute simpler instances of objects for the
youngest generations. These generations are smaller and less visible than older,
larger leaves and branches. The end result looks approximately the same as if fully

2 See GROW man pages.
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detailed objects were used for all generations. However the number of faces that
need to be rendered is significantly less, thus decreasing rendering time. Additional
age-dependent behavior is a color shift for the newest leaves. Just as in real ivy, the
youngest leaves are brighter, lighter green than older leaves.

Voxel Space Tools:

Several sets of routines are needed to use voxel space. The first is the ability to
define the voxel space. The voxel world space can be defined in two ways; one way
is in hard-coded symmetrical objects; these are easily and compactly define using
simple loops and have predetermined seed placement. This is useful for
demonstration purposes, but not particularly flexible. The second way uses a
worldfile format® that allows users to specify any object and seed placement; a
UniGrafixs program that turned UGobjects into voxels or 3-d bitmap could be useful in
this case.

The second key tool is the function that checks for intersections between a
branch (essentially a 3-d line) and world voxel space. It is an incremental, scan line
based algorithm, an extension of the 2-d algorithm that converts a line into pixels* . It
is a robust algorithm, calculating and scanning across the dominant plane, but not
particularly efficient.

Conclusion:

This concept of environment based plant growth deserves much more treatment
than the time that a mini-projects allows. Given another chance | would do this again
as a normal project with a partner. These increased resources of time and people
would allow us to fully exploit the power of such a realistic and physically based
model. Several improvements might include storing a full tree structure of the plant,
allowing GL interactive viewing of the growth process and modeling of more complex
phenomena. Additionally a less random, more efficient plant growth algorithm would
add to the program. Even with these shortcomings, this report shows the usefulness
and feasibility of such an environment, voxel-based approach.

* See GROW man pages.
* Foley, van Dam, Feiner, Hughes, Computer Graphics: Principles and Practice, pg. 73
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Ivy About Column



GROW(1)

NAME
grow - grow ivy

SYNOPSIS

USER COMMANDS GROW(1)

grow [-f worldfile] < inputparams > outputfile
grow [-w] < inputparams > outputfile

DESCRIPTION

grow simulates the growth of ivy around objects. It must take as
standard input various parameters describing the growth characteristics
of the plant. This is most easily done by using the standard
inputparams file or by modifying the included file. Output is to
stdout, in UniGraphics format. Without any options, growth is simulated

around a column.

OPTIONS
-f worldfile

-w

FILE FORMATS
inputparams -

worldfile -

PHFAraud Release 1.0

Command line options may be -f or -w but not both.

Instead of simulating growth around a default object,
the user may choose to define the object and seed
locations in a worldfile.

Select default object to be wall instead of column.

20

245

.1 .8 .1

.7 .25 .05 0
.4 .4 .5

.4 .8 1.4

2

this example file specifies 20 growth cycles, a random
seed of 245, 10% chance of a bud dying, 80% that it
grows and 10% that is sleeps. It has a 70% chance of
having a single branch at each growth cycle, 25% of
two branches, 5% of 3 branches and 0% of 4 branches.
These branches randomly vary with a spread of .4, .4,
and .5 radians about centers of .4, .8 and 1.4 radians
from the parent bud. The last 2 specifies the highest
level of object detail. 1 is medium and 0 the lowest.
2 looks the best but has the most vertices and
polygons.

XSIZE 5

YSIZE 3

ZSIZE 3

GROWTH 0

N W
N
[ SRS

CS285 - UCB Fall 1992 Prof. Séquin
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GROW(1)

SEE ALSO

USER COMMANDS GROW(1)

N
[ S )

[ \N]
V]
\S]
N
NN

222

222

222

---2

This file is a very simple one that builds the
following world: it is a 5x3x3 array, GROWTH = 0
tells the computer not to automatically add empty
growth space around solid objects (1 would tell it to
do so) and it has 2 seeds at location (1, 1, 1) and
(3, 1, 1). (Note, seed location ranges from 0 to
(?SIZE-1), not 1 to ?SIZE.) The world is defined in
X-y cross-sections beginning with z = 0, divided by
any string for easy reading. 2’s represent solid
space, not penetrable by plants, 0‘s empty space, 3's
empty non-growth space, and 1l’s plant occupied space.
This world describes a very small, rectangular box in
which the seeds must grow. In most usage 2's and 0's
are all that are necessary.

UC Berkeley, Fall 1992, C€S285 Tech Report on Grow - Ivy Generator by
Paul-Henri F. Arnaud

WARNINGS

Beware of running too many iterations or having too many branchings -
growth can be exponential.

PHFArnaud Release 1.0

CS285 - UCB Fall 1992 Prof. Séquin



The Genetic Plant Visualizer

Oliver Crow and Peter Lorenzen
CS285 Fall 1992
Professor Carlo H. Sequin

1.0 Introduction

We have taken ideas from the domains of genetic algorithms and recursive graphical tree modeling to
produce a tool for visualizing and automatically generating three dimensional rendered trees. The tool
allows users to view the trees and interactively edit them. The trees are represented by ‘gene strings’,
which define the tree characteristics.

Automatic tree generation is performed by selecting and mating parent trees to create new trees. Since the
characteristics of the offspring are close to (or between) those of the parents, the user may follow trends in
the population by iteratively removing undesirable trees from the current population and generating new
ones by using the genetic generator to simulate the growth of the offspring.

The idea, inspired by the work of Richard Dawkins [1], is extended in our project to include populations
of genes rather than of a single gene per stage in his Evolution program. Moreover, full 3D rendering is
used in place of simple line drawings.

2.0 What this tool does

The genetic visualizer allows users to view ger{etica.lly described plants, to edit the plant genes and to
generate new plants based of the current population of genes.

3.0 Gene based plant description

Each of the plants generated by the visualizer is specified by a gene string. All of the information stored
in the gene strings is displayed and can be edited by the user in the gene editor window.

The gene representation stores information about the plant as a whole, and also information describing a
“number of branch types.

The plant header is the part of the plant gene that describes attributes of the entire plant, rather than
those which pertain to a particular part of the tree structure. These include the types of the leaves and
the size and granularity of the leaves. Leaves are drawn at the tips of the terminal branches (id est, those
branches lacking children.) There are four leaf types implemented, including a null leaf.

The number of branch types is variable - more complex tree structures require genes with more branch
types. Stored in the gene are a number of attributes for each branch type, plus up to six children for that
branch type.

The trunk of the tree is always a branch of the first type in the gene. The children of a branch specify
which of the branch types in the gene are to grow out of a given branch. This definition is recursive, so
that each of the child types of the trunk specify branches to grow out of the end of the trunk, and the
children of these branches are grown from them, and so on. The recursion is limited by the branching
depth, which is one of the parameters specified for each branch type. If drawing a given branch would
exceed the depth of any of the ancestor branches in the tree, the recursion is halted and that branch is
not drawn.
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Thus, by having three branch types we ay specify a tree with a branching factor of three, as shown in

B

figure 1.

Frgoe

1]

s

The structure of the gene that generates this plant is displayed in figure 2

Gene string
L1 EEENREREZERNEEER
Figure 2 type type type

4.0 The Visualizer

In the visualizer interface the user may control a population of genes through their tree representation.
There are three parts to the interface: Viewing control from the mouse and keyboard, tree/gene/light/model
control, and the gene editor control panel. In addition, there is a help buttor. which invokes a help window.

Presently one can not complete a full 360-degree turn, rather the A key allows the user to turn up to 180
degrees to the left and, similarly, the D allows tlie users to turn up to 180 degrees to the right. Moreover,
we have implemented a crystal ball interface whereby allowing the user to rotate the entire scene with the
mouse while holding the left mouse button down.

4.1 The Visualizer Control

The visualizer control interfaces (see Figure 3) is a combination of Forms panels and associated call-backs
that control various and sundry commands, such as those governing tree placement, gene selection, lighting
control and model type. For the latter, we have implemented four model types: THIN, where all branches
are represented as line segments, WIRE-FRAME, where all branches and leaves are represented with sim-
ple wire-frames, FLAT shading, where all the branches and leaves are rendered with straight forward flat
shading, and GOURAUD shading, where the branches are rendered with the GL Gouraud shading model
and the leaves with the flat shading model. We elected to employ the Gouraud model for the branches
alone because the normals were easy to calculate and more meaningful for the cylindrical branches and
not for the rather awkward and non-manifold leaves and flowers. We decided to include the three inferior,
(id est, non Gouraud) models to allow for greater real time viewing. Initially the user may begin with the
Gouraud model activated and as plants are added may wish to switch to a lower model in the hierarchy
Yo atiain a speedup in the rendering of the plants,



4.2 The Gene Editor

The gene editor panel (see Figure 4) allows the user to edit the genes in the gene pool by altering their
attributes with various slider, counters and dials. At any one time the editor panel displays the current
gene and current branch type within that gene. These may both by altered simply by choosing the re-
quired selection from their respective browser panels. The editor simply changes the gene description in
memory which may include the extension of the gene to allow for additional user-defined branch types.
The associated tree is automatically redrawn as the edit panel settings are updated.

+ 5.0 Automatic plant generation

The primary aim of using the gene-based tree description was to allow the automatic generation of new
trees based on an existing population of trees. When the user selects the Generate command, the program
randomly selects memembers of the current gene population, and generates new genes by a random chro-
mosome inheritance mechanism.

Our algorithm for this was inspired by classical genetics and work on genetic algorithms. The use of strict
cross-over within the gene string, an approach, which is sometimes used for genetic algorithms, is inap-
propriate in this case. The reason for this is that randomly cutting the gene string destroys some of the
information structurally represented in it, specifically the branch type structure is not kept. The result of
this would be that trees generated by cross-over of two parent genes would not necessarily resemble either
of the parents.

We instead produce new trees by treating each characteristic in the tree gene as a chromosome. Generation
consists of randomly selecting which of the parent chromosomes are to be put into the new gene. The new
gene structure is created, and the associated tree is rendered. In a rough simulation of tree growth, we
place the new trees near (randomly offset from) one of their parents.

6.0 Conclusion
6.1 Extensions

Whilst we had hoped to extend the idea of plant regeneration to natural selection of plants based on speci-
fied criteria, rather than having the user select which plants are best at each stage, we recognized that this
would probably lie outside the bounds of this project. The reason that this is difficult to implement is that
in order to select only those genes that generate trees that look tree like, one would have to model a num-
ber of complex environmental factors, such as sunshine, water uptake, tree mass and support, and so forth.

One of the problems with the strictly chromosome based approach is that all the characteristics of gener-
ated plants are directly inherited, and so without user intervention characteristics not represented in the
original population will not be generated. One extension to alleviate this would be to include automatic
and random gene mutation. Currently this is effected by the user.

The Genetic Plant Visualizer can be further expanded in the following ways: new leaf types may be added,
resolve branch intersections by not allowing polygonal intersections (id est, non-manifold trees) at great
cost to speed, cache the leaf objects into a table of GL objects as is done with the trees. The tradeoff, in
the latter action, lies in the increased speed gained from the actual caching verses the overhead induced
by the changing of the context with respect to editing the attributes of a gene.

6.2 What did we learn?
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As is the case in almost any thing related to computer science there is the size/speed tradeoff. Plants
growth is exponential with respect to level of generation, O(x to the n) where x is the number of children
branches and n is the level of recursion. Moreover, a high constant factor is usually induced by both
increased branch facet definition and number of trees as one generates a forest. The size, number, and
definition of the trees are the main factors considered in this tradeoff as it is the rendering time, which we
were attempting to optimize. We also learned from this ambitious endeavor to model real genetics that
there are many complicated issues that need to be addressed. For example, in the real world biological life
is cellularly based (something which was trivially rejected as being to difficult to handle in the four week
period of this assignment.) Moreover, gene cross over is a tricky business and that gene inheritance is a
much simpler task in which to achieve reasonable results (an application of the KISS or Keep It Simple
Stupid approach to designing or implementing a project.) Nevertheless, our gene representation is vastly
superior to that of real genes with respect to efficient use of space. In nature, large portions of DNA appear
to be unsed, whereas with our gene description all the gene space is used. In some degenerate cases there
will be branches with zero length, or overlapping branches and our genes display a similar, but to much
less of an extent, redundancy to that observed in natural gene DNA.

6.3 Acknowledgements

The authors would like to thank Gavin Bell and Andrew Choi for the crystal/track ball interface code,
and for the sundry bits of advice from the students and Professor Carlo H. Séquin of CS285.

Plant Figures

Plant Figure 1.
The first is a sample tree with the structure given in figure 1.

Plant Figure 2.
The following figure is a tree with a slightly more complex branching structure. Note that some of its
branches split four ways. This tree was created with the gene editor.

Plant Figure 3.
The final figure is an example forest with some automatically generated trees.
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11 December 1992 PLANT (1)

NAME
plant - Genetic Plant Visualizer

SYNOPSIS
plant [ no command-line options implemented ]

WARNING
This manual page is an extract of the documentation of the Genetic
Plant Visualizer. Please consult thg technical documentation
associated with professor Carlo H. Sequin‘’s Fall 1992 Computer
Science 285 class for further details.

DESCRIPTION

The Genetic Plant Visualizer allows the user to interactively view a
set of trees/plants defined by genes. 1Initial gene descriptions

are stored in *.gene files in the current working directory. The
user may also interactively modify individual genes as well as the
gene pool itself. The visualizer runs as fully interactive tool
using GL to graphically view trees defined by genes.

SIDE EFFECTS
This program generates a temporary file with the name "_genes_"
in the current working directory. 1If you have a file with this
name in your current working directory we recommend that you move
it elsewhere as the ensuing results may be unpredictable.

INTERFACE
Tree Control:
- Position
Moving the cursor in the forms positioner box moves a
red square wire-frame box to a *current* position where
the user may plant a tree.

- Tree Number
Moves the cursor to the *current* tree.

- Init Seed

Loads in the initial population of genes defined by all
the files in the current directory with the .gene
suffix.

- Fine

This allows the a fine adjustment to the movement of the
cursor with respect to the grid. When the Fine button
is depressed the tree cursor is moved 0.01 times the
distance of the grid spacing per step, where as when the
Fine button is de-selected, the tree cursor moves the
distance of the grid spacing per step.

Gene Control:
- Load Gene
Loads a gene from the gene pool into the *current* gene.
Not to be confused with the Init Seed button which loads in
information from files on disk in the current working
directory.

- Save

Saves the *current* gene to a text-based gene description
file. Writes a file with the name in Gene Name. See Gene
Name.

- Gene Name
Sets the name of the current gene. The text in this box

87



is only considered when the *return* button is pressed.
Gene Name is used in conjunction with Save. See Save.

- Edit
Invokes the gene editor panel. Selecting this button
again hides the editor panel.

- Copy ,
Copies the *current* gene and grows a tree, with this
gene, in the location specified by the tree cursor.

- Herbicide
Deletes the current gene and corresponding tree.

- Genocide
Deletes the lowest order generation of genes in their

entirety.

- Generate
Creates a new set of genes based on the current set of genes.

Light Control:
There are eight light sources whose RGB values are controlled

by three sliders. These lights are arranged in a cubic
formation around the scene.

View Control:
- Display Mode
- Thin
Simple bone-headed model where all branches are
represented by line segments.

- Wire
Branches and leaves rendered with wire frames.

- Flat
Branches and leaves rendered with flat shading.

- Gouraud
Branches rendered with Gouraud shading and leaves

with flat shading.

- Center
Places the user directly in front of the desired tree. This

saves the user from manually *flying* to that tree.

- God View
Places the user in a position to view the tree world from

a point well above the trees.

Visualizer Control:
- Quit
Exits the program.

- Grid
Allows the user to view the plants with a grid. This is
useful for placing objects.

- Help
Invokes a help window.

- World
Allows the user to view the plants in a scene that includes
green grass, blue sky, and a hazy yellow sun.

- Alien



Gene Edi

FILES
: Makefile
cb.c
control.
draw.c
event.c
gene.c

Toggles the appearance of a space alien. The alien follows
the tree cursor. This is useful in comparing the relative
sizes of trees that are not in the immediate vicinity of
each other.

tor:

- Leaf Type

This menu allows the user to select between the different
hard-coded leaf/flower types.

- Leaf Color
These sliders control the RGB values of the leaves in the
manner described in the lighting interface.

- Leaf Granularity/Definition

This counter controls the *definition* of a leaf. This
is only applicable for certain leaf types. For the
plumaria it controls the number of petals, for the
cardioid leaves it controls the smoothness of the
cardioid curves, et cetera.

The following controls specify and display the branch
type attributes. These all, with the exception of cclor,
are specified relative to the parent branch.

- Branch Type

This menu controls the current branch type being edited.
Also, the user may select the *new branch* option to
create a new branch. This new branch will be initialized
to nothing so the user will have to define its
characteristics.

- Branch Children

These six slots hold the *branching* information. Where a
slot is not empty a child branch will bud from the current
branch.

- Branch Color
Performs the operation as Leaf Color save for branches
this time.

- Branch Length
This slider controls the length of the current branch being
edited.

- Branch Width
This slider controls the width of the current branch being
edited.

- Branch Azimuthal Angle

This dial controls the relative azimuthal angle between the
current branch (as seen in the view up position) and its
children.

- Branch Longitudinal Angle

Like the Branch Azimuthal Angle dial, this dial allows the
user to modify the relative longitudinal angle between

the children branches.

- Controls compilation
- Crystal/Track ball interface
c - Initiates program control
- Rendering module (GL primitives)
- Event handler module
- Gene module

-
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grow.c - Tree growth module

interface.c - Forms interface call-backs
light.c - Lighting interface
main.c - Program initialization and entry
matrix.c - Basic mathematics module
normal.c - Addendum to the mathematics module
panel. fd - Forms description of the user interface
generates panel.h and panel.c
perpara.c - Perspective control
random. c - Simpler random number generator
trackball.c - Crystal/Track ball control
tree.c - Tree control module
vect.c - Addendum to the mathematics module
window.c - Window control module
LIBRARIES
-lc_s - Shared C
-1lforms - Forms
-1fm_s - Forms
-1gl_s - Shared IRIS Graphics Library
-1lm - Mathematics
SEE ALSO
Nothing.
BUGS
Bugs have not been modeled for our trees as of yet.
COPYING
Copyright (c¢) 1992 Free Bogus Software, Inc. Permission is
granted to make, modify, and distribute verbatim copies of this
manual, source code, support files, and executable at will.
AUTHORS

Oliver Crow and Peter Lorenzen (lorenzen@cory.berkeley.edu)



Plant Maker Report

Maryann Simmons and Steven Yen
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syen@postgres.cs.berkeley.edu

Introduction

The PlantMaker is an interactive Tcl/Tk + GL + UG based tool for creating and displaying three
dimensional models of plants. These models can be saved in PlantMaker model file format and/or in UNIGRAFX
file format. PlantMaker uses grammars to describe plants, utilizes caching and compacting to optimize sentence
handling, and includes a simple constraint based growth system.

Using Grammars to Describe Plants:

By incorporating the use of plant grammars with simple aging equations, the PlantMaker provides
a method for describing plant models and their growth which is very simple, but very powerful in its generality.
It is possible to describe the developmental growth of many plants through a grammar (a set of production rules)
and aging equations. This idea utilizes the formalism of L-system grammars as presented by Prusinkiewicz and
Lindenmayer in their book, The Algorithmic Beauty of Plants. L-systems are formal grammars in which the pro-
duction rules are applied in parallel. The PlantMaker incorporates these grammars in its plant description lan-
guage, which is described below. Tcl/Tk is used to parse this language.

Productions:
The following are two example productions rules, as specified in the plant description language.

production i S(ejL) (ekL)S
production p ir(p)de(dL)i(cL)l(p)cp

If the initial (generation 1) sentence is “p”, the next two generation sentences produced would be...

(generation 2)
ir(p)de(dL)i(cL)1l(p)cp

{generation 3)
S(ejL) (ekl)Sr(ir(p)de(dL)i (cL)l (p)cp)de(dL)S (ejL) (ekL)S(cL)1l (ir(p)de(dL)i (c
L)1l (p)cp)cir(p)de (dL) i (cL)1l(p)cp
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Interpretations:

The above generated sentences of characters are interpreted as a sequence of turtle walking actions and plant parts.

Table 1: Interpretations

Character Interpretation

rotate Y -60.00
rotate Z 90.00
rotate X -30.00
rotate X 30.00
1 rotate Y -30.00
rotate Y 30.00

_c— rotate‘Y 60.00
d
e

-

part O

part 1

push

pop

Actions:

The interpretation command can associate any turtie walking action with any character. For exam-
ple,“interpretation c rotate 2z -60" associates with the character c the action of rotat-
ing around the Z axis by -60 degrees (i.e., turtle turn left by 60 degrees). Any of the standard
transformations (rotate, scale, translate) as well as push (save) turtle state and pop (recall) turtle
state can be specified with the interpretation command.

Parts:

The interpretation command can also associate any UG object with any character. These are the
lowest level renderable parts of the plant model. For example, “interpretation L part 0”
associates part 0 with the character L. Part 0 is further specified in the following manner “part 0
leaf.ug {{-rx 90.0} {-sa 8.0*Sa}}”. This indicates that part 0 shouid be the UG
model specified in the file “leaf . ug” with the indicated age equation.

Aging Equations:

Each terminal character in the generated sentences has an associated ‘age’. This age is initially zero
and gets incremented with each generation. The user can specify equations as a function of this age
as illustrated above. If the terminal character L has age 2, for example, then the interpretation of L
would be the “leaf . ug” model prescaled by 8.0*2 and prerotated by 90.0 degrees. This age factor
can be used to determine attributes of parts, for example size and shape, as the plant grows over
time.

Caching and Compaction:

Because of the nature of the grammar rewrite rules, sentences can grow exponentially larger with
, higher generations. To prevent these large sentences from crippling the interactive speed of PlantMaker, caching



and compaction schemes are applied to these sentences.

After productions are loaded, each sentence from generation 0 to N is precomputed and cached.
This allows users to move easily between generations, as opposed to computing each generation from scratch when
needed. However, the large size of the sentences necessitates a sentence compaction scheme.

PlantMaker includes a simple compaction scheme. All characters without mterpretations  and
degenerate cases (e.,g., “()") are stripped from the sentence, which can sometimes reduce sentence size and render-
ing time by half,

Barriers:

With PlantMaker the user can impose constraints on the growth of plants by specifying barriers.
These barriers are triangles and quadrilaterals which the plant limbs should not pass through. If a plant limb
encounters a barrier, the PlantMaker turns the limb away from the barrier and alows growth to continue. Basically,
as each part encountered while processing a generated sentence, a line segment that passes through the part is com-
pared in turtie-walking space to every barrier for intersection. If an intersection point is detected, then the part is
first rotated 90 degrees left or right away from the intersection point, depending on the orientation of the barrier to
the line segment. Then growth can continue from that new turtle walking position. This very simple barrier con-
straint implementation gives the user more control in the plant modeling process.

Conclusion:

The PlantMaker is based on the use of grammars to describe plants and their growth. As an imple-
mentation of such a production rule based system, it is very general. In fact, PlantMaker can be used to create any
type of model that could be described with L-systems, given the appropriate input. However, the PlantMaker could
be improved as a tool for generating plant models by making it less general. If the PlantMaker could incorporate
randomness into the sentence generating process, it counld produce more realistic, less symmetric plants. Also, the
tool could know more specifically about plant elements such as flowers, leaves, stems, pots, etc., instead of treating
all parts generically.
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PlantMaker (1) USER COMMANDS PlantMaker (1)

NAME

PlantMaker ~ GUI editor of grammar based plant models

SYNOPSIS

PlantMaker [modelfile]

DESCRIPTION

PiantMaker uses simple grammars to concisely describe plant models, which users can interactively view
and edit in 3D. The final output of a PlantMaker session should be a UniGrafix format file which describes
the plant model. PlantMaker runs on Silicon Graphics machines only.

COMMAND LINE ARGUMENTS

The model specified by the optional modelfile argument is automatically opened and loaded by PlantMaker.

WINDOWS

Two main windows are created by PlantMaker. One window contains pull-down menus of various com-
mands provided by PlantMaker. These commands are described later.

The second main window contains 2 three dimensional view of the current model. Across the top of this
3D view window is a label which shows the path and current generation (in parentheses) of the current
model. If there were unsaved changes or unsaved modifications to the current model, the tag "(modified)"
is aiso displayed along the top in this label.

MOUSE COMMANDS

You can use the mouse to rotate, scale, and translate the three dimensional view of current model. The
interface is similar to the virtual-crystal-sphere metaphor used by the UniGrafix Animator application.

To rotate the current model, drag with the middle mouse button pressed down. To scale the model,
control-drag with the middle mouse button pressed down (Le., bold down the "Control” key}. To tanslate
the model, drag with the right mouse button pressed down.

MENU COMMANDS

PlantMaker has the pull-down menus of File, Edit, View, Barriers, and Help. These mepus are activated
with the left mouse button. You can "tear-off" any menu using the middle mouse button.

The File menu has the following commands:
New

This command replaces the current model with a new, blank model, named "unnamed.model”.
PlantMaker asks for confirmation first if the current model has unsaved modifications.

Open... This command gives you a modal file browser where you may choose another model to be the
current model. This file browser also can give you access to a library of prebuilt models which

you might use as templates.

Save
This command saves the current modal.

Save As...
This command gives you a dialog box where You may enter a new path for the current model
before saving.

Save UG...
This command gives you a dialog box where you may save the cument model as a UniGrafix for-
mat file.

Sun Release 3.4 Last change: 1
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PlantMaker (1) USER COMMANDS PlantMaker (1)

Quir
This command exits PlantMaker, but ask for confirmation if the current model has unsaved
modificatons.

The Edi: menu has the foHowing commands:

Grammar...
This command brings up an editor for modifying the grammar of the current model. PlantMaker
uses this grammar to compute the generation N+1 sentence from the generation N sentence. The
initial sentence (generation 0 sentence) can be modified in this editor.

Interpreations...

Characters in the generated sentences are interpreted as turtle-walking instructions. This com-
mand brings up an editor allowing users to edit the urtle-walking instructions associated with the
characters (i.e., bow characters are interpreted). Characters are mterpreted as either rotatations
(e.g., tum left 30 degrees, mrn right 30 degrees), translations (e.g.. move forward 5, move sidways
10), or as pants (e.g., part 0, part 4). The characters "(" and ™)" are always interpreted as save
(push) wrtie walking state and recal} (pop) turtle walking state. The mrtle walking coordinate sys-
temhas-Zasforwa:d,+Xasright,and+Yasup.

Parts... This command brings up an editor for modifying the current Parts Library. You can swap dif-
ferent Pants Libraries to be the current Parts Library through this editor. Every part {e.g. part G,
part 1} has an associated UniGrafix format file. For example, part 0 might be "leafug”, part 1
might be "stem.ug”, and part 3 might be "strawberry.ug”. Each part may be pretransformed by a
set of transformations, specified in a list of format “{xform expr} {xform expr} ...". For example,
the transformations "{-rx 50} {-rz 44.0+1.2) {-sa 1.0-0.2}" will scale the part by 0.8, rotate the
part around the Z axis by 45.2 degrees, and rotate the part around the X axis by 50 degrees. The
xform may be one of -x, -1y, -1z, -s%, -8Y, -8z, -sa, -walk (respectively, for rotating around an axis,
for scaling along an axis, for scaling along all axis, and for wrtie walking a distance). The expr
may be any simple expression (including nested parentheses) but with no internal whitespace.
The expr may also access the age of the character which is referencing the part. Use variable "$a"
for this. For example, if part 0 has the transformations of "{-sz $a*8.0} {-ry ($a/10.0)+90.0}"
then part § will be scaled and rotated by a factor of the age of the characters which use part Q.

Generation

This is a cascading menu that allows you to display either an older generation sentence ( Up)ora
younger generation sentence {(Down). You can aiso change the current generation displayed with
the up and down arrow keys.

The View menu has the following commands:

Reset

This command resets the view of the current model.
Spin

This command spins the view of the current model around the Z axis,
Cache

This checkbox item tells PlantMaker whether to compute and cache information about the current
model (which might take some time) in order for faster rendering of the model.

Sun Release 3.4 Last change: 2



PlantMaker(1) USER COMMANDS PlantMaker (1)

The Barriers menu has various commands relating to the barriers feature of PlantMaker. Barriers are trian-
gles or quadrilaterals which the model can not "grow" through. Model parts are transformed away from
barrier faces if a barrier intersection occurs.

Load... This command gives you a dialog box where you may enter the path of a UniGrafix format file,
which is interpreted by PlantMaker as a set of barrier faces.

Show Barriers

This checkbox item flags whether to display the current barriers.

Show Intersections

This checkbox item flags whether to display the intersection points between the current barriers
and the current model.

Apply
This command applies the current barriers against the current model.

The Help menu lists various topics about which on-line help is available.

SEE ALSO

See the Plant Maker Report for more information about PlantMaker.

See the A. R. Smith paper "Plants, Fractals and Formal Languages," SIGGRAPH 84, for more information
about using grammars to model plants.

UniGrafix, ug, Silicon Graphics, Tcl/Tk

AUTHORS

Steve Yen (syen@postgres.berkeley.edu)
Maryann Simmons (simmons@miro.berkeley.edu)

Sun Release 3.4 Last change: 3
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Gen: An Interactive Tool For Rendering of L-Systems

Christopher Fuselier and Amin Vahdat

December 13, 1992

1 Introduction

It has been demonstrated that simple rewriting rules called L-systems can be used to represent a
wide variety of three dimensional objects. Recently, much work has been done in using L-systems to
represent different types of plants and trees. Inspired by the generality and power of L-systems, we
set about designing an interactive tool for specifying these productions and rendering the resulting
graphical interpretations on a graphics workstation. While general, our project focuses on the use
of L-systems for the rendering of plant-like structures.

The project can be roughly split up into two parts: the interpreter and the user interface. In the
next section, we present a brief overview of L-systems. In section three, we outline some internals
of the interpreter and describe our data format. Section four describes the user interface. Section
five concludes the paper and presents some directions for future work.

2 An Overview of L-Systems

A large part of the elegance of L-systems comes from their very simplicity. In this section we present
a brief overview of L-systems. Readers who are further interested in this topic are encouraged to
refer to [PL90].

To specify a three dimensional object, one simply provides one or more rewriting rules and an
initial value. These production rules may be parametric as well as probabilistic. For example, the

input:
Seed: A(1)

Rule 1: A(w) : (w = 1) -> A(w+1) rotateZ(45) draw(2)
Rule 2: A(w) : (w > 1) =-> draw(1) rotateZ(45) A(w+1)

will produce the following resulting string after three generations:

Generation 0: A(1)

Generation 1: A(2) rotateZ(45) draw(2)

Generation 2: draw(1) rotateZ(45) A(2) rotateZ(45) draw(2)

Generation 3: draw(l) rotateZ(45) draw(1l) rotateZ(45) A(3) rotateZ(45) draw(2)
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Elements of the string could then be assigned graphical meanings used to render the resulting
string in turtle walk fashion. Some statements would then move the turtle, while others would vary
its orientation. In the simple example above, draw(n) might mean draw a cylinder of length » and
move n units in the turtle’s current orientation, and rotateZ(deg) means rotate the orientation of
the turtle by deg degrees around the local coordinate system’s z-axis.

3 The Interpreter
The interpreter consists of the following components:

e A module to read specifications for L-systems and parse them into internal data structures.

¢ A module to expand the initial string based on rewriting rules for a given number of genera-
tioms.

¢ A module to interpret resulting systems graphically and render them in a GL window.

e A module to read a unigrafix file and translate it into the specification for a GL object which
can then be used as a terminal in the rewriting rules.

e A module to handle memory management and caching.

In this section we describe the supported syntax for our L-systems and detail some of the memory
management techniques used to improve the performance of our system.

3.1 Production Syntax

The production rules for our grammar may be modified interactively through an editor window
or specified within a file. The syntax can be split up into productions, terms, and parameters. A
simple BNF grammar for our language might be:

start -> initial ’;’ prod-list

initial -> term-list

prod-list -> production prod-list
| empty;

production -> term prod-param ’-’ ’>’ term-list ’;’
term-list -> term term-list
| empty
term => string opt-params
prod-param -> ’:’ parameter
opt-params -> parameter opt-params
parameter -> ’(’ expr ’)’

expr -> literal
literal ’+’ literal

literal ’*’ literal

|
| literal ’-’ literal
|
| literal ’/’ literal



| literal ’'>’ literal

| literal ’<’ literal

| literal ’'=’ literal
literal -> string

| floating-point-number

In short, an input file consists of a number of terms which make up the initial-value or seed for
the system. This seed is followed by a number of production rules (which may be parametric or
boolean) that specify the rewriting rules. Terminals in the grammar are members of the set (’+’,
L ks s s om0 90 30 string, floating-point-number). Certain semantic checks are also
made; for example, parameters to the left hand side of a production can only be of type string.
Also parameters in a prod-param can only be one of the three boolean operators.

The following terms have special graphical interpretations when rendering an expanded string:

e F(len)- Draw a cylinder of length len from the turtle’s current position at an angle specified
by the current heading.

!(width)- Set the thickness of subsequent drawn cylinders to be width.

[- Push the current position, heading, and cylinder thickness onto a stack.

[- Restore current position, heading, and cylinder thickness from the top of the stack (and
pop the stack).

/(deg), €(deg), +(deg)- Totate by deg degrees around the x, y, or, z axis respectively. This
production modifies the turtles current heading.

leaf(optional scaling), flower(optional scaling)- specifies the drawing of the GL object corre-
sponding to a leaf or flower. The optional parameter specifies a scaling factor for the object
(default is 1).

3.2 Memory Management

The strings which we produce for our system can grow exponentially with the number of generations,
often exceeding the size of available physical memory. To improve system performance we use the
following techniques:

e Customized malloc routines- The default malloc routine is very small when used to allocate
numerous small chunks of memory. We ask for a large chunk of memory at the beginning of
the program and then perform our own memory allocation.

e Caching of intermediate ezpansions- Thus when going from n to n+1 generations, much of
the work of expansion has already been done. When going from n to n-1 generations, no work
needs to be done in expansion.

e Storing GL ezpansions of strings into objects- Storing rendered forms into internal GL objects
greatly improves redraw time since there is no need to iterate over the string on every redraw.
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4 The User Interface

The user interface allows for the run-time editing of images that have been produced by the program.
The following list describes some of the functionality provided by the user interface:

o Production rules may be saved, loaded and edited.

e Colors may be specified (in terms of red, green, and blue components) for branches, leaves,
flowers, and the light source.

o A “seed” to use in the first generation may be loaded and saved along with the production
rules and may be changed by the user.

¢ The number of generations for which to apply the grammar may be set to any integer value
between 0 and 20.

e Drawing styles to apply to the resulting image may be turned on and off. These options
include Gouraud Shading/No Shading and Solid Style/Line Style.

e Images displayed on screen may be rotated, scaled and translated.
¢ Objects described in Berkeley UNIGRAFIX format may be loaded for use as leaves and flowers.

e Images may be saved to disk in UNIGRAFIX-format files. This and the previous feature
allow users to integrate the rule-based image generation capabilities of gen with a wide range
of three-dimensional viewing and manipulation tools available for images described in UG
format.

Upon startup, an output window and editor window are shown. The output window is used
to display the images produced by gen as they are generated. Mouse movements in this window
rotate, scale, and translate the images.

The editor window handles most of the user interaction. Six production rules at a time are
displayed in the editor window, although the user may scroll among a maximum of twenty such
rules. Each production rule consists of three editable text fields: the axiom, an optional boolean
test, and the consequent. Rules are applied in the expected way. Given a word in the grammar,
each term in that word is replaced by the consequent of the corresponding production rule, if
appropriate. If not, the term remains unchanged. When a boolean test is included in a rule, the
consequent replaces the particular term only if the test evaluates to true.

The editor allows the user to specify a seed (initial word) and the number of rules for which to
apply the grammar to that seed. Menu choices are available for loading and saving files, displaying
additional graphics options, and viewing on-line help.

5 Future Work and Conclusions

Currently the system allows for the specification of only a single leaf type and flower. It would be
interesting to extend the system to allow for a number of trees and flowers to be present in the
same object. Furthermore, since L-systems are so general, this would allow for arbitrary objects to



be rendered in our system. Such an extension should be fairly simple to implement since we it can
currently read in files in UG format.

Certain modifications of the basic rewriting rules must be made for different applications. For
example, with plants certain effects such as tropism and randomness in growth are difficult with
rewriting rules. A system allowing the user to specify such considerations for different applications
would be a powerful extension of our system.

We used the forms library to design our user interface. While very useful for rapidly prototyping
a user interface, the system is inflexible and thus not appropriate for serious user interface design.
In the future we would use a system such as Tcl/Tk for Ul design.

In conclusion, L-systems are a very powerful mechanism for the specification of arbitrary three
dimensional objects demonstrating regular growth patterns. They are especially useful for the
rendering of very realistic plant-like objects. An interactive tool for specification of these systems
can assist users in quickly modeling these objects. Examples of a number of objects generated by
our project can be found in attached figures.

6 Acknowledgements

We modified code originally written by Seth Teller to rotate and scale our rendered images. The
code was very well written and its incorporation into our system was quite straightforward. We
would further like to thank Carlo Sequin for his feedback and comments on this project.

References

[PL90] Przmyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants.
Springer Verlag, New York, 1990.
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gen(l)

NAME
gen - generate 3D models of plants and trees

SYNTAX
gen [filename] [generations]

DESCRIPTION

gen is an interactive program for producing three-dimensional models
of plants, trees and other objects. The models are generated through
repeated application of production rules, which may be specified by
the user. After n such applications, the resulting "word" of the
grammar is given a graphical interpretation which is displayed

in a GL output window.

User interaction takes place largely in three windows. The Editor

is the primary application window. Users may input the production
rules for a language, a symbolic "seed", and the number of times to
apply the rules, beginning with the seed. Grammars may be loaded and
saved from the Editor window. A menu option allows output to be
dumped to a static Unigrafix file, and Unigrafix-format

leaves and flowers may be loaded. On-line help may be invoked

from within the Editor window.

The Options window allows users to modify the drawing parameters
that are used when displaying images on screen. Colors may

be specified for branches, leaves, flowers, and the light source.
Gouraud shading may be turned on and off. The draw style

may be set to solid drawing or line drawing. Users may

show and hide the Options window via menu commands in the

Editor window.

The Output window displays the graphical interpretation of a word
in the grammar once the rules have been specified and applied for
a given number of generations. Clicks and drags with the

various buttons of the mouse can be used to rotate, scale, and
translate the image.

OPTIONS
[filename] Read in a grammar from filename and initialize
the Editor to contain the rules for this grammar.

[generations]) Initially display in the Output window the result
of apply the given grammar for this (integer)
number of generations. Invalid when used
without the [filename] option.

NOTES
Developed by Christopher Fuselier and Amin Vahdat, the
University of California, Berkeley, with Professor Carlo Sequin.
Refer to the on-line help accompanying the program for information
concerning valid syntax and reserved words for production rules.

SEE ALSO
GL(1), ug(l)

#

11 December 1992
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UGGH:

(UniGrafix General Hysteria)

The System for Making a Mess!

Dan Wallach <dwallach@cs.berkeley.edu>
Adam Sah <asah@cs.berkeley.edu>

CS 285, Fall 1992
Carlo H. Sequin
December 17, 1992

UGGH was motivated by the lack of realistic keep piles together.

clutter and mess in most computer—generated

scenes. Books and papers stack up straight on By varying the sliders corresponding to these
desks. Clearly, this just isn’t right — it’s too parameters, radically different messes can be

neat. Our project attempts to model some of the described.

ways real people generate a real mess.
We start with a scene having a number of

The Placement Algorithm surfaces, but with no piles on them. Then, for
Our goal is to make potentially messy stacks of each object we’re trying to add, we will make
objects on top of surfaces. The messiness is three attempts to add it to the scene.

modulated by a number of parameters:
1) First, we try to put it on top of a pile. If we’re

Anal Retentiveness — how rigidly boxes are completely anal retentive, we’ll exactly center
aligned against each other. the new box on the top of the pile. As we get
Pile Height — how high piles can go. more relaxed, we’ll deviate from the center. It’s

Pile Spaciness — how much space should be entirely possible for the placement to fail
between piles. because of collisions with neighboring piles, or
Pile Groupiness — how hard we should try to the center of the box being off the pile (it would

Fig. 1: UGGH User Interface.




UGGH: Making a Mess

CS285: Fall, 1992

otherwise fall down). If we fail, we just pick
another pile and try again. We’ll try more piles
if Groupiness is higher. If we succeed, we're
done, otherwise...

2) Second, we try to make a new pile, near a
current pile. If we’re completely anal retentive,
we’ll line up exactly on a fake grid, with
Spaciness as specified. As we get more
relaxed, we’ll randomly deviate from the exact
positions (this is more obvious to see in Fig. 2
and Fig. 3). This can clearly fail, especially
when there are more objects cluttering up the
ground. We’ll try to be near more piles if
Groupiness is higher. If we succeed, we’ll make
a new pile and call ourselves done, otherwise...

3) Third, we’ll pick random coordinates on one of
the available surfaces and try to start another
pile. Eventually, this can fail, too. If we’re
completely incapable of placing the box, we
generate an error. Generally, when over 100
boxes are scattered in messy piles covering an
entire surface, one in ten attempts may fail.
This tumns out not to be a big deal.

Other Fun and Excitement

Usually, people do more than just bring stuff into
their office. We model these behaviors with
special-case code. A Temper Tantrum will
pick up a random pile and redistribute all its
members around the office. An Earthquake will
knock over tall piles, and increase randomness.

Fig. 2: High Anal Retentiveness.

A Janitor will throw things out, and maybe
straighten things up. Although we didn’t have
the time to implement these features, they
wouldn’t be very hard to do.

Implementation

We designed and wrote a system for maintaining
clutter objects in C++. Clutter objects support
numerous things like stacking (parent/child
relationships), collision detection (via bounding
boxes), and rendering (GL and UniGrafix). In
our current system, the only clutter object type is
the Box. It would be fairly simple to add an
arbitrary object type, as long as it had a bounding
box. It would also be straightforward to add
other collision detection algorithms.

A Tcl/Tk interface is provided to the system.
This turned out to be a big win in terms of testing
and compile-time - we could test more of our
objects features, and we didn’t have to recompile
nearly as often: about 1/4 of all the code we wrote
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UGGH: Making a Mess CS285: Fall, 1992

was Tecl, which is interpreted and easy to
change.

Limitations

Placing objects is fairly slow, usually between 1/4
and 1/2 second per box. This is mainly due to use
of linked lists, internally. We also can’t really
deal with bookshelves, where objects stack both
ways, as well as at an angle. We don’t support a
real notion of gravity; some of the stacks that we
generate would never stand up in the real world.

Overall

The system solved its main design goals —
creating a scene with a big mess of objects.
Subjectively, our messes look like real messes.
UGGH!

Fig. 3: Low Anal Retentiveness.
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Ughull - A 3D Convex Hull Utility for the UniGrafix System
Robert H. Wang

1. INTRODUCTION

Ughull generates a convex hull of a set of points in three dimensions. If the point set is ran-
domized, ughull exhibits linear CPU time behavior. Ughull is compatible with other UniGrafix
tools such as ugshrink and ughole. Figure la-c show the convex hulls of 10, 100, and 1,000
points which are randomly generated inside a 2x2x2 bounding box centered at (0,0,0). Figure 1d
plots the performance of ughull for 1,000, 5,000, and 10,000 points running on the Silicon Graph-
ics Personal Iris and IBM RS/6000 Model 530 workstations. The faces of the convex hulls have
been shrunken using ugshrink to demonstrate compatibility with other UG tools and highlight the
tessellated hull surfaces.

2. TECHNICAL DESCRIPTION

Ughull is a three-dimensional extension of Ken Clarkson’s algorithm [1] in that it incre-
mentally builds an approximate tetrahedralization of the point set and creates the convex hull
from exposed vertices and triangles. As Figure 2 illustrates, once the initial triangle is found, the
two-dimensional Clarkson algorithm ignores collinear degeneracies which may arise during ver-
tex addition, and avoids the unnecessary and undesirable task of splitting existing triangles. This
fact greatly simplifies the three-dimensional implementation and eliminates the difficulty typi-
cally found in gift-wrapping algorithms of adapting two-dimensional convex hull algorithms to
handle coplanar points.

Therefore, extending the Clarkson algorithm to three dimensions mostly reduces to replac-
ing two-dimensional operations with appropriate, more expensive three-dimensional operations.
For instance, initializing the tetrahedralization involves handling coplanar as well as collinear
degeneracies. Point-triangle visibility is used rather than point-edge visibility, where a triangle
on the plane Ax + By + Cz + D = 0 is visible to point P at (Px,Py,Pz) if A (Px) + B (Py) + C (Pz)
+ D is strictly greater than O plus some tolerance. Hidden triangles must be detected instead of
hidden edges, and it is slightly more expensive to check for identical triangles. Figure 3 illus-
trates some of these operations by showing a three-dimensional analog of the example in Figure
2. As the tetrahedralization extends beyond an exposed tetrahedron, the exposure state of the
tetrahedron and its component triangles are appropriately toggled. Incrementally updating the
exposure states saves processing time by enabling the program to ignore hidden tetrahedra and
triangles during each vertex addition, and makes extracting hull vertices and triangles a straight-
forward task.

Ughull uses a light-weight extension of the basic vertex-triangle-tetrahedron list data struc-
ture which is customized for efficient point-triangle visibility computation and rapid
identification of exposed vertices, triangles, and tetrahedra. In addition to basic connectivity
information, each vertex, triangle, and tetrahedron contains flags indicating their exposure and
visibility states. The plane equation for each triangle is cached for visibility calculations and is
computed during triangle creation by taking the cross product of the direction vectors of its edges.

3. CONCLUSION

A three-dimensional convex hull utility, ughull, is available for the UniGrafix system. By
decomposing the convex hull problem into a sequence of hull vertex additions rather than hull
face additions removes collinear and coplanar degeneracies and makes ughull fundamentally
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robust. Ughull is easy to maintain and efficient because its data structures and routines are self-
contained, portable, and customized for point-triangle visibility calculations and hidden-triangle
removal.

An interesting extension to this work is to build a companion tool to refine the hull surface
tessellation. One of the original goals of the project was to generate tessellated convex hulls suit-
able for numerical simulation. However, randomly generated point sets tend to result in slivers
and large facets which form meshes that are unsuitable for applications such as simulation of sur-
face diffusion.

REFERENCES

[1] Seth Teller (seth@miro.berkeley.edu), private communications.
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The Clarkson algorithm naturally removes degeneracies such as the one involving v3.
This fact greatly simplifies a 3D implementation.

Figure 2. Illustration of Ken Clarkson’s algorithm
in two dimensions.
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Figure 3. Illustration of Ken Clarkson’s algorithm
in three dimensions.




UGHULL(UG) (UNIGRAFIX User’s Manual) UGHULL(UG)

NAME

ughull — construct 3D convex hull of a set of vertices stored in UG format

SYNOPSIS

ughull [ —i input_file ] [ —0 output_file 1 [ —tolerance tolerance value ]

DESCRIPTION

Ughull takes a set of vertices and generates its convex hull in the form of a tessellated polytope using a
three-dimensional extension of Ken Clarkson’s algorithm {1]. Unless otherwise specified, the UG input file
is read from standard input. Internally, the ughull parser ignores all UG statements except the vertex state-
ment and the convex hull is extracted from a tetrahedralization. Unless otherwise specified, the vertices
and triangular faces of the convex hull in UG format are written out to standard output. Ughull also gen-
erates a log file and an UG file for viewing the tetrahedralization.

OPTIONS
—i Read vertices from an user specified file. Default is standard input.
-0 Write convex hull to an user specified file. Default is standard output.
—tolerance Set tolerance value for incidence calculations. Negative values are ignored. Default is
1.0e-08.
DIAGNOSTICS

BUGS

tetrahedralize: Fewer than four vertices
Exits because user specifies fewer than four vertices.

get_first_tetrahedron: Fewer than three non-collinear vertices
Exits because the program can’t find at least three non-collinear vertices to initialize a first triangle
for the tetrahedralization. This error message will always be followed by the next message.

tetrahedralize: Fewer than four non-coplanar vertices
Exits because the program can’t find at least four non-coplanar vertices to initialize the
tetrahedralization.

Probably should handle the cases of fewer than four non-coplanar vertices more elegantly.

For large input, the log file and additional plot files will consume substantial disk space. For instance, run-
ning ughull with 10,000 points generates a log file and plot files totaling 3 MB.

EXAMPLE

ughull -i foo.ug -o bar.ug -tolerance 1.0e-12

Generates the convex hull of the vertices stored in foo.ug and writes to bar.ug. Use a tolerance value of
1.0e-12.
generator 100 | ughull } ugshrink -f 0.80 | ugiris

Generates 100 points within or on the bounding box of (-1,-1,-1) and (1,1,1) and create a convex hull
around those points. Shrinks the facets in the convex hull so that the tessellation can be viewed using
ugiris.

REFERENCES

Page 1

[1] Seth Teller (seth@miro.berkeley.edu), private communications.

December 10, 1992
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CS 285 Final Project Report
Ug4view — An Interactive Viewer with Graphical User
Interface for 4-Dimensional UniGrafix Objects

Allan Christian Long, Jr. (allanl@cs.berkeley. edu)
December 11, 1992

1 Introduction

Ugdview isa program thatallows interactive
viewing of 4-dimensional objects. It is essen-
tially an enhanced version of ugiris4d (which
itself is based on ugiris). Ugiris4d used key-
board commands and mouse dragging on the
image window itself as the only means of in-
teraction. Ug4view addsa GUI control panel
for controlling the interaction as well as ani-
mation.

2 Howto Uselt

Ugaview uses two different windows, the
window in which the object is displayed (the
“object window”) and the control panel. Each
has its own interaction techniques associated
with it.

2.1 Object Window

To maintain compatibility, the user may inter-
act in this window as if it were the ugiris4d
window. These interactions are summarized
below. An example object window is shown

in Figure 1.

Figure 1: Example object window
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211 Zooming

Dragging with the left mouse button zooms
the image. Left-to-right drags move the view-
point closer, right-to-left farther away.

212 Scaling

Dragging with the middle mouse button and
the shift key pressed scales the image. Left-to-
right scales up, and right-to-left scales down.
The eye point and the object position are un-
changed.

2.1.3 Rotation

Ug4view allows the user to rotate the object
through 4-space, or to rotate the projection of
the object in 3-space as if it were a normal
3-dimensional object. The way the object is
rotated is determined by the Dimension radio
buttons on the Control Panel (see Figure 2 and
Section 2.2.3).

In 4D mode, the user may rotate the ob-
ject in any of the six principle coordinate
planes by dragging the middle mouse but-
ton in combination with keyboard modifier
keys. With no keys pressed, left/right move-
ment causes rotation in the x-z plane and
up/down in the y-z plane. With the left shift
key pressed, left/right rotates in the x-y plane
and up/down in the z-w plane. With the right
shift key pressed, left/right rotates in the x-w
plane and up/down in the y-w plane. (This
is the same as in ugirisad.)

In 3D mode, the user may rotate the projec-
tion of the object about the three principal axes
by dragging the middle mouse button in com-
bination with keyboard modifier keys. With
no keys pressed, left/right rotates the pro-
jection about the y-axis and up/down about
the x-axis. With the left shift key pressed,
left/right dragging rotates about the z-axis.
(This is the same as in ugiris.)

2.1.4 Translation

In 4D mode, dragging the right mouse button
translates the object. With no keys pressed,
left/right motion translates along the x-axis
and up/down along the y-axis. Pressing the
left shift key causes left/right motion to trans-
late along the z-axis and up/down along the
w-axis.

In 3D mode, the right mouse button trans-
lates the object. The controls for this are
identical to those for translation while in
4D mode(see above), except that translation
along the w-axis no longer occurs.

2.2 Control Panel

The Control Panel is the major advantage of
ug4view over ugirisd4d. It provides the
user with a more intuitive interface to many
options affecting the display of the four di-
mensional object. It is written using the Sim-
ple User Interface Toolkit (SUIT), developed
at the University of Virginia.

The use of SUIT enables ugdview ‘s inter-
face to be easily modified while the program
is running. Knowledge of SUIT is not at all
necessary to use the interface, only a familiar-
ity with common mouse-style interaction. A
full explanation of SUIT is beyond the scope
of this paper. Interested users are encouraged
to look at the SUIT tutorial®. If the control and
shift keys are held down, the left mouse but-
ton and certain keys interact with the interface
instead of the application. The left mouse but-
ton moves widgets when dragged and selects
them when clicked. If a widget is selected, it
may be resized by dragging the handles that
appeared when it was selected. Use SUIT-M
(i.e. hold down the control and shift keys and

ITutorial.ps is installed on the torus cluster in
/usr/local/suit/doc. Itis only ten pages long un-
like the reference manual, which is about 160.



press “M”) to bring up the SUIT menu for
other SUIT commands?.

2.2.1 Wireframe Selectors

This collection of widgets enables the user

u g 4V| ew to toggle the display of the wireframe and

the thickness of the wireframe. (See also the
Show Faces option of the Display Menu (sec-
Dimension:| tion2.2.4 and Figure 3).)

Display Options

Animation Speed

O 3D 2.2.2 Animation Selectors

\\\\\UH “”U’/// These widgets allow the user to animate the

\\\\ /’,} ‘ 4D object, either in three or four dimensions. The
< Z animation mode is controlled by the Dimen-
= E sion radio buttons. The user may select the

plane in which or the axis about which to ro-
[] wireframe tate the object. The user may also turn ani-
. : . mation on and off and change the animation
Animation about/in Wire Thickness speed.

]

< xyplane

O yx plane [j 22,3 Dimension Selector

< xwplane This widget selects between 4D mode and 3D

{ yzplane mode, the two basicmodes in which ugdview

& yw plane operates. This widget determines the planes

O ] through which and the axes about or along
ZW p an¢ which the object may be animated, rotated, or

i ; translated. See sections 2.2.2,2.1.3,2.14.
I [] Animation I Edit Eye Point

224 Display Options

Done Abort This menu contains check boxes to toggle
infrequently-used display options. (See Fig-
ure 3.) The Display Options menu contains the
following toggles:

Figure 2: Control Panel Transparency Toggles on transparency on

machines that support it. Also toggles the
z-buffer on when transparency is off, and

2For more information about SUIT, anonymous ftp to
uvacs.cs.virginia.eduand look in /pub/suit, or
send email to suit@virginia.edu.
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Display Optionsl

[] Transparency

[ ] Depth Cue

[ ] Gouraud Shading

[ ] Backfaces

[X] shaded Background
[X] Show Faces

Figure 3: Display Option Menu

off when transparency is on. If the ma-
chine doesn’t have alpha bitplanes, only
the z-buffering is affected.

Depth Cue Whenon, varies the shade of each
part of the object depending on its dis-
tance from the viewpoint. '

Gouraud Shading When on, varies the shade
of each part of the object depending on its
w-coordinate.

Backfaces Toggles the hardware backface ca-
pability. When on, the back faces of poly-
gons are drawn. When off, polygon back
faces are not drawn.

Shaded Background Toggles between the
shaded gray background and a solid
white background. It is intended to be
used primarily for screen dumps, for
which a white background is preferred.

Show Faces Toggles the display of polygon
faces. See also section 2.2.1. Note that

if both the Show Faces and Wireframe
check boxes are off, nothing will be dis-
played.

225 Screen Dump

This button outputs the current 3D projection
as a UniGrafix file. A dialog box is used to
allow the user to pick a file name.

226 Edit Eye Point

This button invokes a dialog box in which the
user may manually set the eyepoint to any-
where in 4-space.

2.2.7 Done

This button quits the application and saves
the state of the user interface (writes the
ug4view.sui file). If it cannot write the
hints file, it will print an error message and
quit anyway. For information about how to
modify the interface itself, see section 2.2.

228 Abort

This button exits the application without sav-
ing the user interface.

3 Implementation Details

Ug4view is not a great deal more complex
than ugiris4d. The kernel of the program
is essentially the same. The input and out-
put routines have been slightly modified to
integrate with the SUIT control panel. De-
tails about the “back-end” can be found in the
ugirisdd documentation.

The program has been converted from K&R
C style into ANSI C style with the help of
GNU's protoize utility. This should help in
both readibility and enable greater type and
other checking by the compiler.



The most invasive modifications
to ugiris4ad were made to its input loop to
accomodate the use of SUIT, which is based
on external control®. I anticipated great diffi-
culties in obtaining input with raw GL code
(as in the object view window) and with an X
window (the SUIT control panel) simultane-
ously.

My first strategy was for the code to keep
track of which window had focus and only
allow that window to attempt to get input.
However, that did not work becuase the pro-
gram was sometimes wrong about which win-
dow had focus, especially at startup. After
spending considerable effort trying to debug
that method, I discovered that the simplest so-
lution worked. The solution that I found was
to call the GL input loop until no more events
remained and then to call the SUIT input rou-
tine so it could handle any events that had
occurred. This works flawlessly, except that
occassionaly the object view window will not
repaint itself when it should. This is not a
major problem, as any subsequent interaction
causes a refresh anyway.

The major additions to ugiris4d are in
the file ug.suit.c, which are prototyped in
ug_suit.h. Routines in this file create the
SUIT widgets with which ug4view interacts
and manage events from them. I would rec-
ommend that anyone who wants to modify
this code first do the SUIT tutorial, as the pur-
pose of the SUIT functions may not be imme-
diately obvious to the completely uninitiated.
For serious modifications oradditions, the ref-
erence manual (or at least portions of it) may
be needed.

The only really new feature that was added
was animation. This is accomplished by
checking to see if animation is on each time
through the input loop. If it is, the object is

3For a good introduction to external control and an
example thereof, see the appendix in the SUIT tutorial.

rotated about the specified axis or through the
specified plane (depending on the Dimension
radio buttons and the axis or plane selected)
by the specified number of degrees (from the
speedometer). (See also section 2.2.2.) There
are currently two problems with animation:
3D mode is much slower than 4D mode and
the user cannot animate in an arbitrary direc-
tion by dragging the mouse (as in many SGI
demos).

A great deal of the implementation time
was spent interactively customizing the ap-
pearance of the interface. For SUIT programs,
the . sui file (the one that contains the infor-
mataion about the interface, also called the
“hints” file) is almost as important as the .c
files. The . sui should be guarded as if it were
source code. (See also sections 2.2.7 and 2.2.8.)

4 File Format

Ug4view uses a slightly extended form of
UniGrafix files. It is completely compatible
with standard UG files, except for the vertex
statement. The extended syntax is:

vidxy z w;

Lighting at the vertex level is ignored.

5 Future Work

While I think that ug4view is a distinct im-
provement over ugiris4d, there is room for
improvement. Unfortunately, I did not have
time to user-test the user interface, so I prob-
ably do not even know of all the improve-
ments that could be made. Here is a list of
some things that I think would enhance the

program:
e Optimize the program for efficiency.
(glprof and/or prof would probably
be very helpful.)
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e Allow animation in arbitrary directions

(as in SGI demos).

¢ Add motion blurring. (I saw a demo of

motion blurring at UIST ’92 and am con-
vinced that it can greatly improve vir-
tually any computer animation. Ideally,
this would use transparency, but I think it
could be done without alpha bitplanes.)

Allow a new file to be loaded without
quitting and restarting.

Add a slider that controls the rotational
position of the object in a plane. This
would let the user find the exact points
where significant changes in the object’s
projection occur.

Remember the position of the eyepoint
from one run to the next (using the SUIT
“hints” file). This would be useful for
going back to the same object again and
again, as I did many times. Or better yet,
store the viewpoint in the UG file (as a
comment, I suppose).

User test the interface. I think both users
who have experience with 4-dimensional
visualization and those who have no such
experience would provide useful feed-
back (it would of course be up to the Ul
designer how to weight their feedback).





