Sublinear Expected Time Approximate String
Matching and Biological Applications !

William I. Chang *? Eugene L. Lawler °

Abstract

The k differences approzimate string matching problem specifies a text
string of length n, a pattern string of length m, the number k of differences
(substitutions, insertions, deletions) allowed in a match, and asks for all loca-
tions in the text where a match occurs. We treat k not as a constant but as a
fraction of m (not necessarily constant-fraction). Previous algorithms require
at least O(kn) time (or else exponential space). We are interested in much
faster algorithms for restricted cases of the problem, such as when the text
string is random and the allowable error rate is not too high (log-fraction).
We have devised an algorithm that is sublinear time O(n/m)k log, m) on the
average, when k is bounded by the threshold m/(log, m + 0O(1)). In particu-
lar, when k = o(m/log, m) the expected running time is o(n). In the worst
case, our algorithm is O(kn), but still an improvement in that it is practical
and uses O(m) space compared to O(n) or O(m?). We define three problems
inspired by molecular biology and describe efficient algorithms based on our
techniques: (1) approzimate substring matching; (2) approzimate-overlap de-
tection; and (3) approzimate codon transcription. Respectively, applications
to genetics are local similarity search; sequence assembly; and DNA-protein
matching.
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1 Introduction

1.1 Motivation

Pattern matching is one of the classical problems of computer science, and
for exact matching many fast algorithms are known. However, in many ap-
plications a non-exact, or approzimate match is still meaningful. In the field
of molecular biology, for example, a genomic data base is likely to contain
DNA or protein sequences of many individuals; therefore, matching a piece
of DNA against the database must allow a small but significant error due to
polymorphism (differences in DNA among individuals of the same species).
Furthermore, current DNA sequencing techniques are not perfect, and ex-
perimental error can sometimes contribute as much as 5-10% inaccuracies.
This problem persists even when two copies of the same DNA are compared.
The degree to which two sequences match, and the plausibility of a particular
alignment between them, have recently received some statistical analysis of
significance (see {29, 54]). The interpretation of the DNA distance metric as
evolutionary distance between species has also been proposed. This is relevant
to the construction of evolutionary trees and models. The proposed sequence
tagged sites (STS) genomic map database of the Human Genome Project [41],
as well as several gene mapping strategies, require the approximate matching
of DNA sequences.

We have focussed on the following model of approximate matching: Given
a pattern of length m and a text of length n, consisting of letters from
an alphabet of size b, and an integer parameter k; find all occurrences of
the pattern in the text, allowing in a (partial) match at most k differences
(substitutions, insertions, or deletions). We treat k not as a constant but as
some fraction of m (not necessarily constant-fraction). The text is assumed
to be given on-line and to be scanned sequentially; the space requirement
should be linear in the length of the pattern. We note that this simple model
has a rich history and interesting combinatorics, and is a natural starting
point before more complex, parametric cost functions are to be considered
(e.g. Gusfield, et al. [20, 21]).



1.2 Exact Matching

The problem of locating the first occurrence or all occurrences of a pattern
word P in a long text string T has its roots in the implementation of text
editors and information retrieval systems in the 1960s to early 1970s. Par-
ticularly noteworthy are efficient algorithms of Knuth, Morris, Pratt (KXMP)
[32]; Boyer, Moore (BM) (also see [32]); and Karp, Rabin [31]. Each of these
algorithms preprocesses the pattern and then scans the text string on-line.
Slightly earlier Weiner [55] solved the complementary problem where the long
text string T is fixed and one must locate within it keywords which are given
on-line, in time proportional to the length of each keyword. Specifically, he
constructed a linear size finite state automaton to report the first occurrences
of all substrings of the given text string. An auxiliary data structure used by
Weiner, called the position tree, soon became widely used and a particular
variant of it, the suffiz tree of McCreight [38], is most widely known for its
role in fast implementations of the Lempel-Ziv data compression algorithm
(see for example [14, 46]). Recent applications of suffix trees include meth-
ods for finding biologically significant motif patterns in DNA [18] and elegant
linear time algorithms for computing (1) the longest substrings common to
k out of m strings, for all k [26]; (2) the pairwise maximum exact overlaps
of m strings [22].

It is interesting to note, however, that no one seemed to know how to use
suffix trees to solve the basic string matching problem in a simple way, using
O(n) time and O(m) space, where n,m are respectively the lengths of text
T and pattern P (the same time and space constraints as in KMP, assuming
a fixed, finite alphabet). Such results have been reported for directed acyclic
word graphs (DAWG) [10] and for suffiz automata [12]. We have observed
that a linear time algorithm can be derived from the incremental suffix tree
construction given in [38]. (This observation was made simultaneously and
independently by Ukkonen [52].) This is pedagogically satisfying and-unifies
several previous results, for example one-pass multiple-keyword search [1].
Furthermore, it allows us to simplify the current best approximate matching
methods (see below). Our technique uses in a crucial way a set of pointérs,
called suffiz links, originally used by McCreight [38] in suffix tree construc-
tion. Subsequent papers paid no attention to these pointers. After building
a suffix tree of the pattern, we can compute for each position z of the text
the longest substring that begins at position ¢ and app€ars somewhere in the



pattern. We call this information matching stalistics and have used it to
solve the following longest common substring query problem: Preprocess T
and P in linear time and space, in order to answer qucries of the type “Given
indices ¢ and j, output longest common substring(s) between T(i,...,7} and
P” in time linear in the size of the output string.

We can compute matching statistics in a single linear scan of the text. In
2.1 (section 1 of chapter 2) we give an abstract definition of the suffix tree (as
opposed to definition by construction [38]), which simplifies the description
and analysis of the matching statistics algorithm (2.2). For completeness
we include in 2.3 a sublinear exact matching algorithm similar to BM but
superior when the alphabet is small or m is large. On average it examines
only O((n/m)log, m) letters of the text (where b is alphabet size). Such a
result was first stated by Knuth, Morris, Pratt [32], but their version has the
drawback that in the worst case it must resort to the basic KMP algorithm in
order to maintain linearity. Our variant uses a suffix tree of the pattern plus
matching statistics and is inherently linear. Recently Park [43] has found yet
another way to achieve the same expected running time, using a suffix tree
of the reverse of the pattern and facts from string combinatorics.

1.3 Approximate Matching

Beginning in the mid 1980’s, genetics and DNA sequence analysis research
provided the impetus for advances in non-exact string matching. The k
differences approzimate string matching problem specifies, in addition to T
and P, the parameter k of differences (insertions, deletions, substitutions)
allowed in a match. The problem is to find all locations in the text where
a match ends. (So the output is of linear size. This is equivalent to finding
where matches begin, by reversing the strings.) The minimum number of
indels (insertions and deletions) and substitutions needed to transform one
string to another is called edit distance or Levenshtein distance [36].

The classical dynamic programming algorithm [49] computes (column by
column) an m+1 by n+1 table whose entry D(j, 1) is the minimum number
of edit operations (substitutions, insertions, deletions) necessary to transform
the length j prefiz of the pattern into some text fragment ending at the :-th
letter. (Boundary conditions are D(3,0) = j and D(0,1) = 0. There is a
match ending at text position i if and only if entry )(m,1) is at most k.)
There is a simple recursive formula giving each entry in terms of the three
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adjacent entries above and to the left:
D(j,i) =min { 1 + D(j — 1,3), 1 + D(5,i = 1), [;; + D(j — 1,i—1) }

where I;; = 0 if P[j] = T[i]; I; = 1 if P[j] # T[i]. The three expressions in
the min correspond respectively to deleting P{j] from the pattern; inserting
T[i] into the pattern; and substituting T'[¢] for P[j]. It can be seen from the
recurrence that (1) adjacent entries along rows and columns differ by at most
one; and (2) forward diagonals () are non-decreasing and adjacent entries
differ by at most one. More recent methods by Ukkonen, et al. [51, 53, 27];
Landau, Vishkin [33, 34] (survey and refinements by [15]); and Galil, Park
[16] take advantage of these geometric properties in order to compute O(kn)
instead of mn entries.

The locations of the first k+ 1 transitions (z to z + 1) along each forward
diagonal are sufficient to characterize the solution, by the (non-decreasing)
diagonal monotonicity property. Landau, Vishkin (kn.lv) [33, 34] computes
each transition in constant time. Two bottlenecks kept this O(kn) algorithm
impractical: (1) Computing the lowest common ancestor (LCA) of two nodes
of the suffix tree of P in constant time required a complicated algorithm [24].
Schieber, Vishkin [48] found a new LCA algorithm, which we implemented
efficiently [5]. (2) It was not known how to compute matching statistics using
only the suffix tree of P; we now have a simple solution. The overall space
requirement of kn.lv in addition to input/output is O(m). It now appears to
be the best among O(kn) worst case algorithms.

When k is a constant-fraction of m, faster dynamic programming methods
represent no theoretical improvement over the classical O(mn) algorithm.
In this paper we take a different approach. When the error tolerance k is
not too large relative to m, O(n) ezpected time or even faster algorithms
are possible. The threshold on k for linear expected time is log-fraction:
k < k* = m/(log,m + ¢;) — c; (for suitable constants ¢;). The main tool
is matching statistics, which is a a summary of all exact matches between
fragments of the text and pattern. Computed in a single left-to-right scan
of the text, this information is used to infer the non-existence of matches,
and to eliminate most text locations from consideration. Only rarely does
the algorithm resort to a dynamic programming subroutine, so the average
running time is linear in the length of the text sequence (3.1; let.cl). An
algorithm similar to let.cl (discovered independently, but without analysis of



threshold) was recently implemented by Jokinen, Tarhio, and Ukkonen [27],
and was the fastest for small k¥ among algorithms they tested.

For k < k*/2 — 3, portions of the text can even be skipped (3.2: set.cl);
this is sublinear in the sense of Boyer-Moore. When k = o(m/log, m) the
expected running time is o(n), truly-sublinear. Indeed, for random text
approximate matches to k* differences or fewer are so infrequent that running
time is dominated by the effort needed to verify for almost all positions
that there is no match. Our algorithms do so in linear expected time or
even sublinear expected time. In practice, for m in the hundreds the error
thresholds k* in terms of percentage of m are 35 (b = 64); 25 (b = 16); 15
(b= 4); and 7 (b = 2) percent. For the purpose of comparison, the smallest
k in terms of percentage of m for which there is a match (using n = 100m)
are about 85 (b= 64); 72 (b= 16); 45 (b= 4); and 25 (b = 2) percent.

The gaps and the mystery of these percentages were motivations for the
work described in a companion paper Chang, Lampe (7], where it is conjec-
tured that, the minimum value of row m of the dynamic programming table
(i.e. best match) is (1—1/\/5+o(1/\/3))-(m—@(10g,, n)) asm,n — oo,n < b™
(Conjecture 3 of [7]). In 3.3 we describe an extension based on this con-
jecture to constant-fraction error, using space polynomial in m, length of
pattern, and linear or sublinear expected time. Very briefly, this is done by
extending the notion of matching statistics to mon-ezact matches, and by
bootstrapping: treat the pattern as test, and short text fragments as pat-
tern. In contrast, another algorithm by Ukkonen [51] runs in linear time but
requires exponential space.

We would like to point out a difference between our approach and several
algorithms used by biologists which also consist of a scanning phase and a
checking phase. Typically in the biology literature a program is described—
but the nature of the output is not clearly specified. These programs are
certainly useful in practice, but are not algorithms in the strict sense of
mathematics and computer science. These heuristics are not guaranteed
to find every match—which often is left undefined. A control is sometimes
missing: a data set with comprehensive matching information produced by
an ezhaustive method should be included for comparison, or as definition
of match. We on the other hand are primarily interested in fast, practical
algorithms that can be rigorously analyzed with respect to correctness and
efficiency. While “tweaks” are necessary in practice, the basic algorithm
should be sound.



1.4 Biological Applications

In 4.1-4.3 we apply our techniques to several problems inspired by biology.
We feel the problem formulations we have chosen are faithful to the original
tasks, and hope our algorithms will become useful to biologists.

(k,l) Approximate Substring Matching Problem. Given T of length
n, P of length m, and parameters [ and k, compute the union ofm-1+1
applications of k differences approximate string matching, one for each length
| substring of P. That is, find all 7 such that some substring of T ending at
i matches a length ! substring of P.

This is a general method for finding local similarities. (We should mention
that matching statistics is already a useful local similarity measure (cf. (2, 37,
44, 56]); a natural extension would be to assign weights to matched words.)

p Approximate-Overlap Detection Problem. Given T of length n and
P of length m, find all ! such that the length ! suffix of P matches a prefix
of T to within pl differences.

Sequence assembly is the task of matching pieces of DNA that are known to
be overlapping fragments of a single long DNA sequence. In this application,
approximate-overlap is done for every pair of fragments and accounts for
most of the computing time (Myers [40]; 98% according to Peltola, Séderlund,
Ukkonen [45]). In this application, experimental sequencing error contributes
about 5% differences to overlapped regions. This is few enough errors (p =
0.05) for our algorithm to be sublinear on the average.

Approximate t-Codon Transcription Problem. T € £* and P € II* are
from different alphabets. The transcription map tr: &' — II via t-tuples is
not necessarily one-to-one (i.e. different codons may transcribe to the same
letter). A string o over T transcribes to a string m over I if tr(oy02:--0¢) =
1; tr(0e4q -+ - F2t) = Ta; etc. Find all locations ¢ such that some T[,...,1]
is within edit distance k of a string that transcribes to P. -

The difficulty comes from having both multiple encodings and framing errors
caused by insertions and deletions. In DNA-protein matching, each codon 1s
a 3-tuple of nucleotides (A, C, G, or T), and is transcribed into one of twenty
amino acids. We describe an efficient algorithm based on our methods.



2 Data Structures

2.1 Suflix Trees

Let P[1,...,m]$ be a string over a fixed finite alphabet L U {8} = ¥’ where
$ is a special end-marker that occurs nowhere else. The following is a precise
characterization of the suffix tree of a string P, denoted S(P$).

Substrings of P$ are called words; a word w is branching if there are
different letters z,y such that wz and wy are words. Let w be a word;
floor(w) denotes the longest prefix of w that is a branching word; ceiling(w)
denotes the shortest extension of w that is either a suffix of P$ or a branching
word. The following are evident: floor and ceiling are well-defined; if w is
branching, then floor(w) = ceiling(w) = w; and the empty string, denoted
A, is a branching word.

If string u is a prefix of string v, u™'v denotes the suffix of v which if
appended to u gives v. If string v is not empty string, v, denotes the first
letter of v.

Let us define S(P$). There is a one-to-one correspondence between nodes
of S(P$) and a set of words:

root «— A
{ internal nodes } «— { branching words }
{ leaves } «—— { suffixes }

The relation is prefiz of defines a natural partial order on the above set of
words that is a tree; this in turn defines the edges of S(P$). That is, node u
is the parent of node v iff (branching word) u is a proper prefix of (branching
word or suffix) v, and there is no branching word w that is a proper extension
of u and a proper prefix of v. This directed edge from u to v is labelled with
a triple (z,1,7) chosen such that P[l] = z and u™'v = P[l,...,r] (choice of
I,r may not be unique). We will write son(u,z) = v, first(u,z) = [, and
len(u,z) = r — I + 1, as well as refer to nodes by their corresponding words.

In addition define the function shift: {internal nodes other than the root}
— {internal nodes} given by shift(w) = wi'w (w # A). McCreight (38]
constructs the suffix tree S(P$) and the shift function (“suffix links”) in O(m)
time, using an algorithm very similar to the matching statistics algorithm
given below.



2.2 Matching Statistics

Define the matching statistics of text T[l,...,n] with respect to pattern
P[1,...,m] to be an integer vector M(T, P) together with a vector M'(T, P)
of pointers to the nodes of suffix tree S(P$), where M(T,P); = I if 11is
the length of the longest word (substring of P$) matching exactly a prefix
of T[i,...,n]; and M'(T, P); points to the node ceiling(T[s,...,71 + { — 1]).
The goal is to compute M and M’ in O(n + m) time and as little additional
storage as possible. In most applications M and M’ are not stored all at
once. Landau and Vishkin [35] reduced this problem to constructing the
suffix tree of P$T, but that required either O(n + m) additional space or
computing everything twice (by building overlapping O(m)-size suffix trees).
The vector M(T, P) is called “Best-Fit” in their paper. Galil and Giancarlo
[15] gave an automata-based algorithm which scans the text one way and then
in reverse; for it to run in O(m) space the text must be scanned four times
(again, by working on overlapping 2m-size blocks of text). Although there
exist satisfactory automata-based solutions [12, 10], since the approximate
matching algorithm given in [15] already uses the suffix tree S(P$) in a
different part of the algorithm, it makes sense to try to compute matching
statistics directly, using only S(P$). The following is a very simple linear
time algorithm that computes M(T, P); and M'(T, P); in order of increasing
i, in a single left-to-right scan of the text. Very briefly, the longest match
starting at the first position is found by walking down the tree, matching
Jetter-at-a-time. Subsequent longest matches are found by following suffix
links and cleverly going down the tree (see comments).

Matching Statistics Algorithm.

1 construct suffix tree S(P$) by McCreight’s algorithm [38]
2 letveroot;je—1l;ke1
3 fori—1tondo
3.1 while (j < k) and (j+len(v, T[j]) < k) do
v,J « SOIl(‘U,T[j]),j+1€!1(‘U,T[j])
end while
3.2 if(j=k) then
while son(v, T[j]) exists and
(T[k] = Plfirst(v, T[4]) + k — j]) do
k—k+1
if (j+len(v, T[j]) = k) then



v — son(v,T[j]); j — k end if
end while
end if
33  M(T,P)i—k—i
if (j =k) M (T,P)i —v
otherwise M'(T, P); « son(v,T(j])
3.4 if vis root and (j = k) then
je—j+1l;k—k+1lendif
if v is root and (j < k) then
je—j+1lendif
if v is not root then v « shift(v) end if

Comments. Variables 7, j, k are indices into the text string; the 1-th iteration
of step 3 computes M(T, P); and M'(T, P);; position k of text had just been
scanned, and j is some position between ¢ and k. At all times the following
invariant is maintained:

(i) Tli,. ..,k — 1] is a word; T[i,...,j — 1] is a branching word.
After step 3.1 the following becomes true:

(ii) T[4, ..,j — 1] = floor(T[i,.. .,k — 1]) and corresponds to the node v.
After step 3.2 the following becomes true as well:

(iii) T'[¢,.. ., k] is not a word.
Together invariants (i), (iii) imply M(T, P); = k — 1. Step 3.4 uses the suffix
link to go from v to shift(v) if v is not the root. Note that (i) is maintained.
The key observation is that if j < k after step 3.1 then T'fs,..., k- 1] cannot
be a branching word, so neither can T[i —1,...,k— 1]; indeed they have the
same unique single letter word extension. We know from iteration 1 —1 that
this letter is not T'[k], so the match cannot be extended.

The positive integers i, j, and k never decrease and are bounded by n. For
every constant amount of work in step 3, at least one of 1,7,k is increased
in value. The running time is therefore O(m) for steps 1 and 2 and O(n) for
step 3. Since m iterations of step 3. take O(m) time, this computation can
be made real-time by buffering m letters of the input text.

As a corollary we get an on-line exact matching algorithm based on suffix
trees, that uses O(m) space and preprocessing: there is an exact match
ending at position k — 1 iff k takes on the value i + m during step 3.2.
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Vectors M and M’ are the main ingredients needed to speed up approxi-
mate string matching. (“Jumps” J(j,7) =der length of longest common prefix
between P[j,...,m]and T[i,...,n] are computed using the identity J(j,1) =
min(M;, length of word corresponding to LCA(M],suffix P[j,. .. ,m]$)).) In
their papers Landau and Vishkin stated O(n + m) as the space required by
their algorithm; Galil and Giancarlo [15] made the same remark concerning
Landau and Vishkin’s algorithm, and in recent papers Galil and Park [16],
Ukkonen and Wood [53] gave O(m?) space “practical” algorithms. With a
little care Landau and Vishkin’s algorithm can now be implemented very ef-
ficiently in O(m) space, using the matching statistics subroutine given above
and Shieber and Vishkin’s very fast LCA computation [48]. For a fixed, fi-
nite alphabet this appears to be the first practical algorithm to run in O(m)
space and O(nk) time in the worst case.

2.3 Exact Matching in Linear Worst Case and Sub-
linear Expected Time

Let b denote alphabet size. Let T{1,...,n] and P{l,...,m] denote the text
and pattern respectively. For s = m,2m,3m,..., let R, denote the list of
indices j such that the string T'[s + 1,..., ] is a suffix of P (by convention,
assume s € R,); let L, denote the list of indices ¢ such that 1 + m < max R,
and the string T[i + 1,...,s] is a prefix of P. The following is evident:
Claim. There is a match ending at position j iff for some s, j —m € L, and
j € R,.

Algorithm. After building suffix tree S(P$), list R, and then list L, can
be efficiently computed using a tree-walk similar to that used to compute
matching statistics. (Each prefix of P corresponds to a position in S(P3)
above the leaf P[l,...,m]|$; each suffix of P corresponds to a node with an
out-edge labelled $.) Then lists L, and R, can be “merged” to produce all
pairs i,j s.t. 1 =3 —m.

For random text, Pr{ T[s + 1,...,s + 2log, m] is not a substring of P ]
> 1 —m™1; if this is the situation, then max R, < s + 2log, m. This implies
L, can usually be found by looking only at T[s—m+1,...,s—m+4log, m],
because Pr[ T[s —m + 2log,m + 1,...,3 — m + 4log, m] is not a substring
of P]>1—m™!. Average case running time is O((n/m)log, m), and worst
case running time is O(n).
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3 Linear and Sublinear Algorithms

3.1 Log-Fraction Error in Linear Expected Time

We now describe an algorithm for approximate matching that runs in O(n)
expected time when (1) T is a uniformly random string of length n over a
finite alphabet of size b, and (2) the number k of differences allowed in a
match is less than the threshold k* = m/(logy,m + ¢1) — ¢z (c1 and c; are
constants to be specified later; m denotes pattern length). The pattern P
does not have to be random.

Recall that M(T, P); denotes the length of the longest substring of P to
be found beginning at position ¢ of text T', and that it is easily computed
using the suffix tree S(P$).

Linear Expected Time Algorithm (let.cl). Set 5, = 1 and for j 21
compute Sj31 = S;+ M(T, P)s; + 1. (The (j +1)* start position is obtained
by taking the “maximum jump” at the jt* start position plus one more
letter.) For j = 1,2,..., if Sjtk4a — Sj = m — k apply the Landau-Vishkin
algorithm (kn.lv) to T[S;,...,Sj+k+2 — 1] (call this “work at start position
S;”). All that is required to keep the worst case running time bounded by
O(kn) is for kn.lv to remember the last column it computed, so it can resume
computation from that point if S; is to the left of that position.

Claim. This correctly solves k differences approximate matching.

Proof. If Tp,...,p+ d — 1] matches P and S; < p < Sj1, then this string
car. be written in the form w;z w,Z2- - - Wr41Tk+1 Where each z; is a letter
and each wy is a substring of P. It can then be shown by induction that for
every 0 < < k+1 we have Sj4i141 > p+length(wyzy--- w;z;). In particular
S;+k+2 2 p+ d which implies Sjyk42 — S; > d > m — k. Therefore the above
algorithm will perform work at start position S; and thereby detect there is
a match ending at position p+d —1. Q.E.D.

Next we show the probability of having to perform work at S, is small.
Since the event Siy3 — Sy > m — k implies Sgey3 — 51 2 m — k%, it suffices
to prove the following lemma. )
Main Lemma. For suitably chosen constants ¢; and ¢;, and k* = m/(log, m+
¢1) — ¢z, Pr[Skeqa — S1 2 m —k*] < 1/m3. _

Proof. For ease of presentation let us assume (1) b= 2 (b > 2 gives slightly
smaller ¢;’s) and (2) k* and lgm are integers (lg denotes log to the base 2).
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Let X; be the random variable Sj41—S;. First note that the X,’s are 1.i.d.
since each position S;41 is beyond the last letter looked at in order to compute
the maximum jump at S;. Also note Sk.43 — 51 = X1 + Xo+ -+ Xgeya-

Since there are at most m different words of length lgm + d out of m2¢
different strings of that length, we have

for all integer d > 0, Pr{X; =lgm+d] < 274, (*)

In particular E[X;] < lgm + 2. Let us consider the probability that X; +
Xp+4 -+ Xpepo > m—k*. Let Y; = Xi — (m — k*)/(k” + 2). Choose c; > 2
so m/(k* +2) > m/(k* + c2) = lgm + ¢;. Then
Yi < Xi—-m/(E"+2)+1
< Xi—(lgm+ac)+1
< X;- lgm -2

provided we choose ¢; > 3. This implies E[Y;] < 0, so we can apply the
Chernoff bound technique (see [30]) to get:

PI'[X1 +--+ Xk-+2 _>_ m — k-]
=PrlYi+- + Yiey2 2 0]
S E[et}’;]k‘+2

for any t > 0. Inequality (*) is equivalent to
for all integer d > 0, Pr[V; = lgm +d— (m —k")/(F" +2)] < 274,
Therefore for any ¢ > 0

E[et“] < i etlgm+td-t(m—k‘)/(k‘+2) . 2-d
=0

where the first term of the summation (d = 0) bounds E[e™|Y; < lgm —
(m — k*)/(k* + 2)] and the remaining terms bound Elet*|Y; > lgm — (m —
k*)/(k* +2)] - Pr[Ys > lgm — (m —k*)/(k* +2)]. Choose t = (log. 2)/2. Then

E[em] < \/ilsm—(m—k‘)/(k‘n) ) 2\/5 —-d

d=0

13



which gives E[e!"1] < V2 lem=(m-AT)/ (A48, 56 raising to the power (k*+2)
yields

. k*4+2)lgm—(m—k*)+3.6(k"+2
E[em]k 2 \/5( ‘+)s (m—k") ( )

< V2 (4.6—c1)(k*+2)—(c2~2)(c1 +lgm)

after some algebra. This is less than 1/m® if ¢; = 4.6 and ¢; = 8. Q.E.D.

From this we deduce that the expected work at start position S; is O(1).
This is true for any start position S; because the event Sjyxi2 —S; 2 m—k
implies the event Sjyxe42 — S; = m — k*, which occurs with probability less
than 1/m>. There is no conditioning because the theorem of total expectation
implies E[E[work at start position S; given any conditioning]] = E[work at
start position S;]. Hence the expected total work is O(n).

This type of analysis can be applied to more general settings, such as a
biased alphabet, if certain assumptions are made about the pattern as well
as about the text. In fact the following is clear from the above proof:

Theorem. Suppose for all i the random variable Z; = (length of longest
exact match at position i of the text T with some substring of the pattern
P[1,...,m])is independent from T'(1,...,i—1] and has the same distribution
as Z;, and suppose Pr{Z; > E[Z,] + d- StdDev(Z,)] decreases exponentially in
d. Then there exist constants ¢; and ¢; such that for k < k* = m/(E[Z]4¢c1
StdDev(Z;)) — ¢z, k differences approximate matching takes linear expected
time.

Remark. This algorithm can be viewed as practically linear approximate
string matching via data compression (cf. [46}).

3.2 Sublinear Expected Time

As before let k* = m/(logym + ¢&1) — ¢z {c1 = 4.6, c; = 8). Approximate
matching in sublinear expected time can be achieved when k < k%2 —3
(set.cl). Partition the text into regions of length (m — k)/2. Any substring
of T that matches P must contain the whole of at least one region. Starting
from the left end of each region R, compute k + 1 “maximum jumps,” say
ending at some position p. If position p is within R, there can be no match
containing the whole of R. If p is beyond R, apply: the Landau-Vishkin
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algorithm (kn.lv) to a stretch of text beginning (m + 3k)/2 letters to the left
of region R and ending at position p.

It can be shown by a trivial variation of the lemma that Prlp is be-
yond R] < 1/m® (essentially, divide expressions (m — k*) and (k* + 2) by
2 everywhere in the proof), so kn.lv is seldom applied. Therefore, the ex-
pected running time of this algorithm is sublinear. On the average only
L = (k+1)(logy m 4+ O(1)) letters are examined from each region, for a total
of 2nL/(m — k).

Remark. A variation of this algorithm examines only nL/(m—k— L) letters
of text, on the average.

A combination of the linear (for k > k*/2 — 3) and sublinear algorithms
runs in O((n/m)klogm) expected time, for any k < k*.

3.3 Extension to Constant-Fraction Error

In let.cl and set.cl the total work of the subroutine (kn.lv or any other DP
algorithm) is at most what it would cost to apply the subroutine to the entire
text all at once. It therefore does not hurt to apply our algorithms, even for
k slightly greater than k* or k*/2—3. Nevertheless, it is desirable to improve
the error threshold k*.

One approach to improving the error threshold k* is to divide the pat-
tern into 2* fragments each of length m’ = m/2*, and match each fragment
against the text, allowing k" = m'/(log, m' + ¢;) — c; errors. Next, apply a
“doubling trick” [40]. If a block matches the text, try to double the length
of the match, allowing twice as many errors as before, by applying an edit
distance computation to the left and right of the matched portions of the
text and pattern. Repeat the doubling step for any remaining matches. One
is guaranteed to find all matches to k = k*m/m’ differences because either
the left or right half of P will have at most k/2 errors; then either the left
or right half of that piece will have at most k/4 errors, and so on. This is
a gain if k*m/m’ > k*. (Because of the subtractive c; in the formula for
error threshold, this is not always the case.) For example, over a four-letter
alphabet k* = 139 for m = 1000. By dividing P into four pieces each of
length m' = 250, we get k™ = 38 so 4k™ = 152, a small improvement on k*.

Alternatively, let us define A differences matching statistics M k)T, P); =
(1, X) where X = the set of substrings of P that are at riost h differences from
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T[i,...,i4{~ 1], such that X is non-empty and ! is maximized. Computing
generalized matching statistics efficiently appears to be a hard problem, even
for h = 1. In principle, one can enumerate all strings that are at most h
differences from some family of substrings of P, and use a modified digital
trie to compute “maximum jumps.” By using M®)(T, P) instead of M(T, P),
the error threshold of our algorithms can be improved substantially, but at a
possibly prohibitive cost in space requirement. Recall from the introduction
(1.3) the following conjecture of Chang, Lampe [7]: The minimum value of
row m of the dynamic programming table D (i.e. best match) is (1—1/ Vb+
o(1/V/?)) - (m — ©(log, n)) as m,n — oo,n < b™ (Conjecture 3 of [7]). This
conjecture gives an indication of what can be expected if & is such that the
data structure for computing M) is of size polynomial in m.

Let | = alog,m. For each string z of length I, match the pattern P
against z, treating P as text and z as pattern. Conjecture 3 of [7] implies
that for some constant 3, the closest match is about (1—1/v/b)-(I—Blog, m))
differences from z; let & be this value. Then an algorithm based on 4 dif-
ferences matching statistics will find A errors per block of length I, a rate of
(1—1/v/8)- (1 - B/c). This is a constant fraction provided a > . The data
structure for M® will be of size O(m?®). There is a time-space-error thresh-
old tradeoff. If £ > (1 -1/ \/5) -m then k differences approximate matching
will likely find matches nearly everywhere. The linear expected time method
we described will therefore come within a factor of 1 — 8/a of this natural
error threshold. The sublinear expected time method will allow half as many
errors.

4 Biological Applications

4.1 Substring Matching (Local Similarity)

(k,1) Approximate Substring Matching Problem. Given T of length
n, P of length m, and parameters ! and k, compute the union of m — I+1
applications of k differences approximate string matching, one for each length
| substring of P. That is, find all 7 such that some substring of T' ending at
¢ matches a length [ substring of P.

For k < k* = I/(log,m + ¢;) — ¢, (same constants as in 3.1), the linear
and sublinear expected time algorithms from 3.1 and 3.2 carry over nearly
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verbatim. The only changes are: [ — k appears instead of m — k, and the
dynamic programming checking phase is more expensive. The Main Lemma
and its proof remain correct when (m — k*) is replaced by (I — k™), which
implies Pr[length of k + 2 maximum jumps > [ — k] < 1/m?. (For the
sublinear version, Pr[length of k + | maximum jumps > (I — k)/2] < 1/m3.)
When dynamic programming is invoked, let @ denote the block of text to
be matched against all length [ substrings of P, and let ¢ be the length of
Q. The naive method requires m — ! + 1 applications of O(kq) dynamic
programming. In practice the following is likely to be an improvement.

Instead of matching Q against substrings of P, consider the reciprocal
problem of matching P (as text) against Q. If we bootstrap and compute
the matching statistics of P against @, we can further reduce the problem
size. Finally, dynamic programming is applied, matching @ against those
substrings of P that are not yet eliminated.

This is a general method for finding local similarities (cf. [2, 37, 44, 56]).

4.2 Approximate-Overlap (Sequence Assembly)

p Approximate-Overlap Detection Problem. Given T of length n and
P of length m, find all [ such that the length [ suffix of P matches a prefix
of T to within p! differences.

Previous algorithms [45] are O(pmn). (The DP algorithm for approximate
string matching can be used to solve this problem: match the reverse of T
against the reverse of P; look for entries in the last column that are less than
or equal to p times row number.) Our method builds a suffix tree of P and
computes matching statistics of T' against P. For each j = 1,2,...,pm + 1,
if the length of j; maximum jumps starting at T[1] is at least (j —1)/p, then
apply the DP method to the prefix of T covered by those jumps. There
is a constant ¢ such that p < 1/(log, m + c) implies Pr[DP is invoked for
j] < 1/m3. The expected running time is O(pm log, m).

In applications such as sequence assembly, experimental sequencing error
contributes about 5% differences to overlapped regions. This is few enough
errors (p = 0.05) for our algorithm to be sublinear on average.
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4.3 Codon Transcription (DNA-Protein Matching)

Approximate ¢t-Codon Transcription Problem. T € X~ and P € II" are
from different alphabets. The transcription map tr: £' — I via t-tuples is
not necessarily one-to-one (i.e. different codons may transcribe to the same
letter). A string o over ¥ transcribes to a string 7 over I if tr(o10 - - o) =
my; tr(ogn - - 02e) = m2; etc. Find all locations ¢ such that some T[7,. ..,
is within edit distance k of a string that transcribes to P.

If there were no indels (insertions or deletions) of single letters from T,
matching could be performed after transcription, i.e. tr(T'(1,... JNte(Tt +
1,...,2t])--- against P. If the transcription is one-to-one, one can reverse
transcribe, i.e. match T against tr=*(P[1])tr~*(P[2])---. The difficulty is in
having both types, multiple encodings and framing errors caused by indels.

The scanning phase of our algorithm computes a modified matching
statistics M; = max [ s.t. T[4,...,i + [ — 1] transcribes to a substring of
P. The suffix tree used is that of P over alphabet II; ¢ separate passes
over the text string 7' combine to produce the matching statistics (for every
possible framing). The jump that starts at S; (as in let.cl in 3.1) is the far-
thest jump considering all possible framings; the next start position Sj41 1s
one letter beyond: Sj4; = max S;j+ i+ Ms4i+1(0< <t~ 1). Note
that this gives a conservative estimate of the error. If k + 2 jumps span at
least tm — k letters of the text (i.e. Sjyk42 — S; > tm — k), resort to the
checking phase; otherwise there can be no match. It follows from a simple
variation of the Main Lemma in 3.1 that if ¥ < m/(log,m + O(1)) then
Pr[S,-.,.H,g -S5;2>2tm— k] < 1/m3.

The checking phase requires a dynamic programming algorithm for ap-
proximate t-codon transcription. Let ed'(u,v) be the natural generalization
of edit distance to this domain where u € I* and v € II*: find the mini-
mum z such that u is within z differences of a string that transcribes to v.
Let C(j,i) = ming ed'(T[#,...,i], P[1,...,5]), analogous to the DP formu-
lation of approximate string matching (table D). Boundary conditions are
C(0,i) = 0 and C(j,0) = tj. The recurrence is C(j,1) = min {X,Y} where

X =C(,i~1)+1 (deletion of Ti])
Y =mingo C(j —1,i — 1) +Y; (substitution)

and Y, = ed'(T[i = 1+1,...,1], P[j]) is the cost of an optimal substitution of
the length ! block T[i —I+1,...,1] for the one letter P[j]. The term Yo =t is
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the cost of inserting a codon for P[j]. The substitution cost is complicated
because a codon for P[j] may be a (non-contiguous) subsequence of the block
T[i —1+1,...,1) against which P(;] is matched.

This may appear complicated, but the following observation makes it easy
to compute C. -

Observation. Y = min, Dy(t,i) (w € {codons for P[j]}) where D, is a
(t + 1) x (n + 1) DP table matching T against w but with a twist: same
recurrence as D, but Dy(s,0) = C(j — 1,0) + s and Dy (0,7) = C(j — 1,1).

Hence the work to compute row j of table C is O(tn-number of codons
for P[j]). The total work of approximate t-codon transcription is therefore
only a factor (t- average multiplicity) worse than classical O(mn) approxi-
mate string matching. Furthermore, C(j,7) 2 C(j —1,i~1) by the following
argument. First note that row-wise adjacent entries of C differ by at most
one. Next consider D'(s,i) = miny,Dy(s,%). Table D' (which is never com-
puted) satisfies diagonal monotonicity; D(0,i —t) = C(j — 1,2 — ) and
D'(t,i) = Y implies Y > C(j — 1,7 — t). Finally, induction on i shows
C(j,1) = min{X,Y} > C(j — 1,i — t). Hence the “cut-off” method of 3.2
can be used to speed up computation, although we have not analyzed its
performance.

An immediate application is that of matching a DNA sequence against a
protein (amino acid) sequence.
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