FORMULA Version 3.4 Reference Manual

David P. Anderson Ron Kuivila
Computer Science Division Music Department
University of California Wesleyan University
Berkeley, CA 94720 Middletown, CT 06457
May 29, 1991
ABSTRACT

FORMULA is a Forth-based programming environment for computer music,
and can be used for algorithmic composition, interactive systems, or pro-
grammed score interpretation. It provides a programming model in which
separate lightweight processes are used to generate musical parameters such as
pitch, thythm, volume, articulation, and tempo. FORMULA runs on personal
computers (Macintosh and Atari ST) and is typically used to control MIDI syn-
thesizers. This manual describes the features of FORMULA and briefly
discusses its implementation.

1. INTRODUCTION ..
1.1 Getting Started .
2. BASIC FEATURES
2.1 Playing Notes ...

TABLE OF CONTENTS

...
...
..

...

2.2 Defining New WOTSccoceiiieninrirertsirsenessses sttt crnesnssissnsnssesneanes

2.3 Processes

...

2.4 Non-Standard NUmber FOIMALSccoecveererrecrsrserneressssssssnnessseessosssssnnnens

3. MORE FEATURES
3.1 Process Groups .
3.2 Process Naming

..

...

...

3.3 Process Display and CONIOLocoeeevererereenninnnrscsencncnisssicnssensneessnnsnnes
3.4 Per-Process SIOTAZEc.ccccevevvniiriiimirinnsnsrssissaeissscesetesesnsss s ssresssnassssssassas
3.5 Specifying Rational Time INtEIValScceenmmmiiiieriiniinitieeeiesseennnns

3.6 Vocabularies
4. $-WORDS: A HIGH
4.1 Simple $-Words
4.2 Sustain Pedal

-LEVEL NOTE-PLAYING FACILITYccccoeureneee

...

4.3 Synthesizer Output Paradigmscccoccceiinnnnnmienniininesssensnens
4.4 Pquans Used by the $-WOrdScceeiemeimmmnmieinecnrcscs s
4.5 Compound $-WOTScovvivrrerinimimeeiiintnrnnst s cesensss s essssseaes

5. AUXILIARY PROC
5.1 Introduction

ESSES ..ot s ssssens

...

5.2 Using Processes to Define Functions of Timecccooeeieiiiiiiiiinnenn,

5.3 Volume Control

...

5.4 Tempo and Rubato Control using Time Deformationsccoovcvueuennne.
5.5 Articulation CONLIOLcoveervieiiirninectreresineniieeiseesersasessesnnssnessasensesssss
5.6 Timing Sequence GENETAIOTSccererimienireseseesennicsisinessnssesnsssssnsaannanas
6. PITCH SPECIFICATION ...ttt sns s sssssassn st sstss s sanes

6.1 Pitch Values and

PitCh INAICES .ceeoviieeeeeceieiecinnnrrenrrnr e e nesessereossssssnsasassanes

6.2 Symbolic Pitch NAMESccovvmrmiieieiinneentnesscs s

6.3 Tuning Systems
6.4 Pitch Sets

...

...

7. SYNTHESIZER OQUTPUTccooinmiiiirriiinnnrccnien et sstsa s

7.1 Output Paradigm

S titrieneereeranreeienretestatisaeetastarsrrasranantentuatansesstesasisarstirasttensrases

7.2 Synthesizer CONIGUIALONcccooiiieirreennrnenese st
7.3 DireCt MIDI QUIPULoovevimvenceieneniiiiiiecsmeessresstssssnsnasss e st escsssssesssaesscunnes
7.4 The Dumb Synthesizer Managerccooovmenenenicinnieniiniineee
7.5 The Synthesizer MaNAGeTccoovvrmrieeinieetntnneiecsnisisnnit st s vses
7.6 The MIDI Output DIIVETcooviiiiiiierimniente et
7.7 How to Write a Synthesizer DIIVEToovviveniniiinniiiiinicincneecnens

8. INPUT HANDLING

00 00 =] ~] ~J O\ B W W W = e

DWW W NRNMNMNNNRNNNNR = —
BURRREENERREENEN R E s 0o om0 =O

8.1 MIDI Input HaNAlNEccoovevnmeniirenneierennenessstnesssesesssstssssessessssnssnaas
8.2 Mouse Input Handlingcoviemrmninieinnenininnienestniscst st sncssnnas
8.3 Function Key Handlingccocoviiiimniniininnnneneecncsecnsicicnitesns s
9. STILL MORE FEATUREScoirntiitinire st cassansens
9.1 Random NUMDET GENETALOTSccoveiriirimsrireseinerisssstseessessessssessusssssasensane
9.2 Time Control SIUCIUTEScceecceeeieeerinsiiirieisiessiessaressnsarsasssessossssssesnes ereesbons
9.3 Memory ALOCALIONoevirrerereerrinineseeesenseesssacsstsisninnn st essn s ssssas s ssneses
10. EVENT BUFFERING AND PROCESS SCHEDULINGcccccoviieeennnnn.
10.1 Event SChedUlINgcccccoviviinieiiimnieneeteneeetstetseisnetis s snecenes
10.2 SYNChIOMZAtONcvurveverimrercrnrensssecsessece sttt st sness
10.3 Process Scheduling Parameterscooveriereenenniesesesieismnsssensesasssanancs
10.4 Background PTOCESSEScceerrersinmreiniasmsesnseenscsesssssismsnsssssssissssssssssssssesssns
11. FORMULA IMPLEMENTATIONcccoiiiirninrnsinsesccins s
11.1 Scheduling and Event PerfOrmanceccooveenecnniiinnsinineniniieieeens
11.2 The Accuracy and Range of Time Specificationcoevviicrivnninnnnanns
APPENDIX A: DISTRIBUTION AND COPYING ...
APPENDIX B: FORTH AND FORTHMACS ...t

...

...

APPENDIX C: THE MIDI STANDARD ...
APPENDIX D: FORMULA SOURCE FILESccoomiiiniiniiinnenns
APPENDIX E: DEBUGGING FORMULA PROGRAMS ...,

1. Crash Analysis ...

..

2. Recompiling FORMULA ...ttt st saes
APPENDIX F: FORMULA GLOSSARYocoovnnecr i
APPENDIX G: DIFFERENCES BETWEEN VERSION 3.4 AND PREVI-

OUS VERSIONS

...

33

35
36
36
36
37
38
38
39
40
41
42
42
43

45
45
45
47
48
50
50
50
52

61

1. INTRODUCTION

FORMULA (Forth Music Language) is a programming environment for computer music. It
runs on the Atari ST and is based on Forthmacs, a Forth system developed by Mitch Bradley.
Distribution and copying policies for FORMULA and Forthmacs are given in Appendix A. A
brief summary of Forth and Forthmacs is given in Appendix B.

FORMULA is intended for musicians who are also programmers. It emphasizes algorithms
rather than static scores. FORMULA is not a sequencer or score editor, and currently has no
graphical interface. However, using FORMULA you can write programs that:

° represent and perform *‘interpretations’’ of existing music;
e compose complex music using deterministic or random rules, and play it as they compose;
° interact with a human performer.

FORMULA programs produce sound by controlling an extemnal synthesizer. Normally the
connection to the synthesizer is made through MIDI (Musical Instrument Digital Interface;
described in Appendix C). Programs can respond to input from various devices. On the Atari
ST, these include the typewriter keyboard, the mouse, the joystick, and MIDI keyboards con-
nected to the Atari’s MIDI input port, as shown below.

Macintosh
input devices or Atari ST output devices
user
MIDI
O 7 | keyboard y| MIDI
FORMULA synthesizer
terminal
> keyboard Forthmacs
native OS CRT
N display
mouse

disk

1.1. Getting Started

The FORMULA Version 3.4 release is one double-sided 3.5" disk. The disk contains the
source code for FORMULA (in the directory formula.dir), for synthesizer-specific configuration
words (in synths.dir), and for various FORMULA programs (in pieces.dir). It also contains
binaries for Forthmacs (forth.tos) and Emacs (emacs.tos), and a quick reference for Emacs
(emacs.ref). Make a backup copy of the disk.

1.1.1. Compiling and Saving FORMULA

The FORMULA binary is not relocatable, so you must compile and save it on your own
““‘working’’ disk (this disk must have at least 200K bytes free). To do this, first boot from the
working disk. Then insert the FORMULA release disk, and run Forthmacs by double-clicking on
forth.tos. When you get Forth’s OK prompt, type

cd formula.dir
fload load

FORMULA takes about two minutes to compile. When it’s done, type

cd ..\synths.dir
fload config.gen

This loads a synthesizer configuration file (§7.2); config.gen is for a *‘generic’” MIDI syn-
thesizer with 8 voices on MIDI channel one. This can be customized to your own synthesizer
configuration; see §7.

Now insert your working disk and type

cd ..
1ls
""" formula.tos save-rel

This saves the FORMULA binary on disk as formula.tos.! Henceforth you can load FORMULA
directly from the working disk by double-clicking on formula.tos. You may also want to copy
emacs.tos and the pieces.dir directory to the working disk.

1.1.2. Running FORMULA
Once FORMULA is loaded, you can start and stop it using

formula (--- ; start FORMULA)
restore (--— ; stop FORMULA)

Make sure your MIDI synthesizer is connected, and configure it to receive on MIDI channel one.
You can now play a note by typing
50 $
If this doesn’t work, something is wrong. Jiggle the cables, reboot, and try again.
The directory pieces.dir contains various FORMULA programs. Type

cd pieces.dir
fload demo
rnd-notes
and you will hear a stream of random notes. When you get tired of this, type

kill-all

to stop it2. The other files in the pieces.dir directory contain FORMULA programs in a variety of
musical styles. Try compiling and running some of these (for fun, try running several at once).
To hear a lengthy FORMULA sampler, type

fload concert \ this will take a while

concert

1.1.3. Panic Buttons

If things go wrong and you lose control of the computer, press the undo key to abort FOR-
MULA, and type formula again to continue. If this fails, press the Atari’s reset button and
start over.

1 For obscure reasons, Emacs must not be loaded when you save FORMULA. Also, you can make an auto-booting
version of FORMULA as follows: 1) create a directory named auto; 2) copy forth.tos into auto, renaming it aufo.prg;
3) reboot from this disk; 4) load FORMULA and save it as auto.prg within auto.

2 If notes continue to sound indefinitely after kill-all, it is because one of the programs had a *‘sustain pedal”’
down. Type pedoff torelease it.

2. BASIC FEATURES

2.1. Playing Notes
Commands can be sent from the Atari’s MIDI output port using the following words?:

mku (velocity key-no channel --- ; key-up command)

mkd ({ velocity key-no channel --- ; key-down command)
mpp { pressure key-no channel ---; polyphonic pressure)
mcc { value control-no channel --- ; controller change)
mpc (patch-no channel --- ; patch change)

mat (aftertouch channel --- ; aftertouch)

mpb (bendhi bendlo channel --- ; pitchbend)

Type
127 60 0 mkd
to play a middle C (key number 60) on MIDI channel one*, with a velocity of 127. To release the

key, type
0 60 0 mkd

(a velocity of zero means *‘release the key’’).
Let’s play a note that lasts exactly 2 second. The word
time-advance (delay --- ;)
pauses for the specified delay. The argument to time-advance is in units called system vir-
tual time (SVT) whose default length is one millisecond’. Type the following on a single line:
127 60 0 mkd 500 time-advance 0 60 0 mkd
When you hit carriage return, you will hear a middle C sound for 500 milliseconds (%4 second).

FORMULA also provides $-words, a more compact notation for playing notes. For exam-
ple, try
c $

The word ¢ pushes the number 60, and the word $ plays (and releases) a note of the given
pitch. In general, the $-words should be used in preference to the MIDI primitives given above.

2.2. Defining New Words
You can define note-playing words in FORMULA as follows:

3 A “‘word’’ is the Forth equivalent of a function or program. If you are not familiar with Forth, see Appendix B.
4 The number 0-15 are used to represent MIDI channels 1-16.
5 The length of an SVT unit can be changed using

usecs-per—SVT (n -—- set the length of an SVT unit to n microseconds).
For example,
500 usecs—-per-SVT

sets the SVT unit to 500 microseconds (* millisecond), halving all durations and doubling the tempo. However, there
are usually better ways to change tempo; alternatives are discussed in §3.5 and §5.4.

:ap word-name
definition
;ap
Definitions can be typed in directly or loaded from a disk file (see Appendix B). :apand ;ap
are exactly like : and ; except that they make an additional *‘vocabulary’’ visible within the
definition (§11.1). The ‘‘ap’’ stands for active process, explained below.

For example, type the following:
:ap devil
c $ £+ §
;ap
You have defined a word named devil that plays a ‘‘devil’s interval”’, C to F#. Type devil
to hear it.
Once you have defined a word, you can use it in other words. For example:
:ap devils
5 0 do devil loop
;ap
produces five devils in a row. This ability to define new words out of previously defined
words can be used to build phrases out of motives, sections out of phrases, and so on.

Like all Forth words, note-playing words can be passed arguments on the stack. Suppose
you would like to hear 7 devils in a row, transposed by the notes in a whole tone scale (i.e., C,
D, E, F#, G#, A#, C). This can be done most easily by defining a transposed-devil that
takes a transposition argument:
:ap transposed-devil (transposition --- ;)
dup ¢ + $
f+ + §
;ap
We then call transposed-devil at each transposition desired:
:ap whole-devil
12 0 do
i transposed-devil
2 +loop
;ap

2.3. Processes

While trying the above examples, you might notice that there is no response to terminal
keyboard input while music is playing. To remove this limitation, FORMULA lets you execute
multiple processes at the same time. This is done using a software technique called multipro-
gramming in which the CPU switches rapidly between processes to provide the illusion of simul-
taneous execution.

A process is a sequential *‘thread of control’’. Don’t confuse processes and words; several
processes can be executing within a single word (perhaps at different points within it) at once.
FORMULA uses processes for various purposes (see Figure 1):

e Note-playing (or active) processes generate streams of notes. You can have several running
at once, and you can type Forth commands or edit files with emacs while they run.

e Auxiliary processes can be used by note-playing processes to generate rhythms, volume
changes, tempo changes, and articulation (§5).

input handling processes ffu_x_’l_’{"_')[processes
,/// N /,/' volume control ‘\\\\
4 \ // . .
/ Forth interpreter \ ,/ volume control .
: v O tempo control
‘ o =')
'\ MIDI input handler,’ ', - U
" ~ o , // T ' 4
1, ’ O O O :,
e O =
QO =process active (note-playing)
processes

Figure 1: Multiple Process Types.

° Input-handling processes deal with input devices such as the terminal keyboard, the mouse,
and MIDI keyboards (§8). The process that handles keyboard input is called the Forth
interpreter.

The following word is like whole-devil, but runs as a separate process:
:ap holy-devil
::ap whole-devil ;;ap
;ap
::ap and ;;ap bracket the code to be executed by the new process. In this case the process
will execute whole-devil, thenexit.

Type holy-devil, and you will hear music. You can continue to type while it is play-

ing. By running holy-devil a few times,® you can get several copies of holy-devil to
run simultaneously.

This construct works as follows: the parent process (the Forth interpreter, in this case) exe-
cutes : :ap, which creates a new process (the child process) and skips to just past ;;ap. The
child process begins executing the code after ::ap. When it reaches ; ;ap, it exits and goes
away.

Every process has its own data stack for parameter passing and remrn stack for retum
addresses. Since a parent process and its child have separate stacks, parameters cannot be passed
between them in the same way that parameters are passed between words. Instead, the number of

Use <control>p or the T key to do this with minimal typing; see Appendix B.

parameters to be transferred to a new process must be declared within the child process using:
[n params]
where n is the number of parameters needed. This instructs : :ap to copy n words from the
parent’s stack to the child’s stack. For example, the word:
:ap tardy-devil (delay ---)
::ap
[1 params]
time-advance whole-devil
;;ap
;ap
will create a process that waits a while before playing.

2.4. Non-Standard Number Formats

Since the Atari ST can’t do floating-point arithmetic efficiently, FORMULA uses other
representations for fractional quantities, and provides the following notations for these forms:

e Expressions of the form A.B are converted to their equivalent 8-bit fixed-point values. For
example, 1.0 is converted to 256 and 0.5 is converted to 128. This is used to specify
fractional pitch values (§6.1) and tempos (§5.4).

' Expressions of the form A|B and A (B represent rational numbers (§3.5) that are used to
specify time intervals.

These can be used in both interactive commands and word definitions.

3. MORE FEATURES

3.1. Process Groups

Note-playing processes can be collected into groups. A group can be controlled
(suspended, resumed, or killed) as a single unit (§3.3). You can also control the tempo or volume
of the notes played by the processes within a group (§5.3 and §5.4). Groups may also contain
other groups as elements. .

A group is created using the following construct:

::gp

\ ... code for the group’s initial process

;9P

\ the original process resumes here when group processes exit
This can be used only within an active process definition. It works as follows: when a process P
executes : :gp, it becomes a group. A new process Q is created, executing the code following
the ::gp, and becomes the sole member of the new group. Q may create additional processes
in the group using ::ap. When all the processes in the group have exited, P becomes a process
again and resumes execution after the ; ; gp.

For example:

:ap (trio
1:gp \ create a group
::ap soprano ;;ap \ create more processes within the group
::ap alto ;rap
bass
;9P
;ap

:ap trio \ non-blocking version of (trio
::ap (trio ;;ap

;ap
The word (trio makes the calling process into a group containing three processes (two of
these are created by ::ap to run soprano and alto; the third, created by ::gp, runs
bass). The calling process resumes only when all three processes have finished. Therefore if
you call (trio from the Forth interpreter, keyboard input will be ignored until the piece is
over. trio is a non-blocking version of (trio. If called from the interpreter, it creates a
new top-level process in which (trio is executed.

The ::gp construct also provides a convenient way to wait for a process to finish.
Namely, the process that calls : : gp waits for the processes created within the group to finish
(there is no easy way to do this using ::ap). In concert, for example, this is used to play a
sequence of pieces.

3.2. Process Naming

Each process has a corresponding data structure called a context block (CB), which contains
its stacks and other private data. Internal to FORMULA, a process is identified by the address of
its CB. However, since CB addresses are typically 6-digit numbers, this is not convenient at the
user-interface level. Instead, a process can have a small integer identifier (ID). These ID’s are
used by words that are interactive (i.e., intended to be typed by the user) to refer to processes. By
default, a process has no ID; it can request one using

assign-proc-ID { --- ; assign an ID to this process)

In addition, processes can be given symbolic names:
proc-name" <string>" (--- ; assign a name to the calling process)

These symbolic names are not used directly to refer to processes, but are printed by .all (see
below) to let you associate ID’s and processes.

Many FORMULA programs begin by making themselves into a group with a name and ID,
as follows:
:ap toccata
::ap
assign-proc-ID
proc-name" toccata"
. :gp

make a new process
give it an ID

and a name

make it into a group

P

\ create more processes, play music, etc.

;9P
;sap
;ap
By making itself into a separate group, the program is “‘insulated’’ from other concurrent activi-
ties.

3.3. Process Display and Control
The word
.all (-=—-— ; list all processes that have ID’Ss)

shows a summary of the existing processes that have been assigned ID’s; other processes are not
shown. The following words can then be used to obtain more information about a particular pro-
cess:

.gp (ID --- ; list all descendants of a process group)

.cb (ID -—- ; print the contents of a process’s context block)

.aux (ID --- ; list a process’ auxiliary processes)

id->cb (ID --- CB ; convert an ID to the corresponding CB)

(.gp (CB --~ ; list all members of a process group and its descendants)
(.cb (CB --- ; print the contents of a process’s context block)

(.aux (CB --- ; print a process’ auxiliary processes)

The following words manipulate note-playing processes and groups. They can be applied
only to *‘top-level’’ objects, not to elements of groups.

suspend (ID --- ; suspend a process Or group)

resume ({ ID --- ; resume a suspended process or group)
(suspend (CB --- ; suspend a process or group)

(resume (CB --- ; resume a suspended process)

kill-all (--- ; kill all processes and groups)

kill { ID --- ; kill a process or group)

(kill { CB -—-- ; kill a process or group)

immortal (--- ; make the calling process immune to kill-all)

3.4. Per-Process Storage
FORMULA provides a quan construct for defining named variables:

quan (

(
to (
addr (
For example:

name
name
name
name

quan counter
11 to counter

counter .

’

~-- ; define a quan)

--- n ; a quan returns its value)
n --- ; store to a quan)

--- address ; find address of quan)

\ declare a quan named "counter"
\ store a value in it
\ get and print the current value

A per-process variable has a different copy for each process (a quan has only one copy,
shared by all processes). Since each process has its own stack, data stored on the stack is
automatically per-process. However, it is not always convenient to refer to stack locations, espe-
cially when they belong to other processes.

FORMULA supports per-process quans, or pquans.

pquan (name ;

pallot (

n ——-

peffset (name ;

The to and addr operations for pquans are the same as those for quans; they refer to the cal-
ling process’s copy of the pquan. Likewise, a pquan name by itself returns the value of the cal-
ling process’s copy of the pquan. Other words are provided for accessing other process’s copies

of pquans (see below).
For example:

pquan offset

:ap shifty-

:ap

devil

[1 params]
to offset

3 0 do

’

--- ; define a pquan)
allocate n additional bytes to the last defined pquan)
--- n ; find CB offset of pquan)

\ declare a pquan

(transposition --- ;)

\ store the transposition in the pquan

offset transposed-devil

loop
;,ap
;ap

If several processes execute shifty-devil at once, each will have a separate copy of
offset, and will therefore have an independent transposition.

The following words manipulate the pquans of other processes:

pget (
ipget (
pto (
ipto {
paddr (
ipaddr (

name
name
name
name
name
name

’
.
’
’
’
.
’

’

CB --- n ; get the value of another process’s pquan)

ID --- n ; get the value of another process’s pquan)

n CB --- ; store into another process’s pquan)

n ID --- ; store into another process’s pquan)

CB --- address ; find address of another process’s pquan)
ID --- address ; find address of another process’s pquan)

For example, if 3 is the ID of a process executing shifty-devil, the command
7 3 ipto offset
will change its offset to 7.

The pquans used internally by FORMULA are initialized at process creation; in most cases
they are inherited from the parent process. User-defined pquans, however, are not automatically
initialized in new processes.

10

3.5. Specifying Rational Time Intervals

Most musical time intervals can be expressed as a rational number (i.e., ratio of integers) of
whole notes. For example, a quarter note is 1/4 of a whole note, and a half note triplet is 1/3.
FORMULA lets you specify time intervals as rational numbers. The word r>i converts from
rational form to integer (SVT) form. For example:

:ap quarter-C

127 60 0 mkd \ key down
1 4 r>i time-advance \ wait a quarter note
0 60 0 mkd \ key up

;ap

FORMULA converts expressions of the form A|Bto A B r>i. Hence the above example
could be written

:ap quarter-C

127 60 0 mkd \ key down
1|4 time-advance \ wait a quarter note
0 60 0 mkd \ key up

;ap

The conversion performed by r>i involves an integer computation of the form

(num*rscale)/denom

where rscale is a pquan representing the SVT duration of a whole note. The default value of
rscale is 2000, giving a quarter note the duration

(1 *2000) /4 =500 SVT units.
With the default SVT unit of one millisecond, this would be .5 second (i.e., 120 beats per
minute).
Modifying rscale can be used for per-process tempo control for processes that use
rational time specification. It can be done by a statement of the form

1500 to rscale
in the note-playing word, or by an interactive command of the form
1500 3 ipto rscale
where 3 is the ID of an existing note-playing process. Alternatively, the word
beats~per-minute (n --- ; set rscale to give n beats per minute)

sets rscale to the value that, at the default SVT unit of 1 millisecond, will produce n quarter-
note beats per minute.

3.5.1. Round-off Accumulation

r>i accumulates round-off’ on a per-process basis. If round-off were ignored, timing
errors could occur after repeated rational-to-integer conversions. For example, a sequence of
three 1/3-note triplets would be converted to

(2000*1) /3 = 666
(2000*1) /3 = 666
(2000*1) /3 = 666

yielding a total time advance of 1998 instead of 2000. With round-off accumulation, each divi-
sion produces a fractional remainder of 2/3, yielding the sequence (666, 667, 667).

7 “*Truncation”’ is a more accurate term, since r>i rounds downwards.

11

Round-off accumulation is appropriate when the rational numbers represent a sequence of
concatenated time intervals (e.g., time advances). In some cases, however, a process may want to
do conversions that do not represent time advances, and whose round-off should not be accumu-
lated (§5.4 and §5.5). In such cases, the following should be used:

(r>1i (nd ---1;

rational conversion with no error accumulation)

A(B (--- ; equivalent to A B (r>i)

3.6. Vocabularies

FORMULA uses multiple vocabularies to hide words that are of interest only in certain
contexts. These vocabularies are:

words not intended for direct user access)
per-file compilation words -- used for recompile)

internals
loaded
ap-defs
sh-defs
td-defs
sg-defs

words
words
words
words

relevant to
relevant to
relevant to
relevant to

note-playing process definitions)
shape definitions)

time deformation definitions)
sequence generator definitions)

Forthmacs maintains a search list of vocabularies to be scanned during word lookup.
Words such as : ap add the relevant vocabulary to the search list. The following

only forth also definitions

restores the search list to its default state (forth is Forthmac’s main vocabulary). This is often
done at the start of source files, and it’s often necessary to do it manually after a compilation

crror.

Beware of the following mistake: if you redefine a word defined in, say, ap-defs, and
mistakenly put the definition in the forth vocabulary, subsequently definitions using :ap see
the old definition of the word since ap-defs precedes forth in the search list.

12

4. $-WORDS: A HIGH-LEVEL NOTE-PLAYING FACILITY

As described in §2.1, notes can be played using MIDI primitives and time-advance, or
using a higher-level interface called the $-words. The latter facility has several advantages:

. A single word plays a note or group of notes. The word arranges for the note-start com-
mand, the time-advance, and the note-end command.

e The specification of volume, tempo and articulation is *‘factored out’” of the note-playing
process. Note parameters are obtained from a combination of pquans (see below) and auxi-
liary processes (§5).

e The $-words indirectly call lower-level words to start and end notes. Because of this
indirection, programs using the $-words can be synthesizer-independent.

As a preview of the $-words, try running the following:

:ap cadence
grarbr 6§
c e g tc $4

;ap

4.1. Simple $-Words
A note-playing process can play notes and rests using

$ (pitch --- ; play a note)

rest (--- ; play a rest)

z$ (pitch --- ; play a note but don’t time-advance)

c$ (pitch --- ; play an attenuated note, no time-advance)
$$ { pitch --- ; play a note and its octave)

fe$ (pitch delay --- ; play a note in the future)

fa$ (pitch delay -~-- ; play a note in the future)

$ playsanote. Pitch can be specified in a variety of ways (§6). By default, it is a MIDI pitch
number (60 = middle C). If pitch is zero a rest occurs; rest is definedas 0 $. The dura-
tion of the note or rest is obtained from an auxiliary process called a timing sequence generator
(TSG). $doesa time-advance by this amount.

z$ is like $, but the process does not advance in time. Thus a process can play a chord by
calling z$ several times, followed by $. c$ islike z$, but the volume is attenuated (§4.4).
$$ is like $, but plays the lower octave as well.

fe$ arranges for a note to be played delay time in the future, using the parameters
(volume, etc.) in effect now. fa$ arranges for a note to be played delay time in the future,
using the parameters in effect then.

4.2. Sustain Pedal

Notes can be controlled by a sustain pedal. If a note is released while its sustain pedal is
down, it continues to sound until the pedal is released. The following words manipulate sustain

pedals:

pedon (--- ; lower sustain pedal)
pedoff (--- ; raise sustain pedal)
ped (--- ; instantaneously raise and lower sustain pedal)
pedon$ (--- ; lower sustain pedal and time-advance)
pedoff$ (--- ; raise sustain pedal and time-advance)
(;

ped$ raise and lower sustain pedal, then time-advance)

13

4.3. Synthesizer Output Paradigms

To produce synthesizer output, the $-words indirectly call lower-level output paradigm rou-

tines. Different output paradigms can be selected. There are currently three paradigms:

The synthesizer manager (SM) allocates synthesizer voices based on user-specified note
priorities, and uses synthesizer drivers for device independence. Non-standard MIDI (and
non-MIDI) synthesizers can be accommodated this way.

The dumb synthesizer manager (DSM) also uses synthesizer drivers, but does no voice allo-
cation.

Direct MIDI output (DMO) can be used only for standard MIDI synthesizers.
These paradigms are discussed in more detail in §7.

4.4. Pquans Used by the $-Words

The $-words use several quans and pquans to obtain note parameters. In some cases, their

meanings depend on which output paradigm is used. The pquans are all inherited on process
creation.

$gtranspose (quan) is added to all pitches. Itis in 1/256-semitone units. For example,
to transpose all processes by an octave, type:

12.0 to Sgtranspose

$transpose (pquan) is added to the pitches of notes played by this process. It is in
1/256-semitone units.

$volume (pquan) is added to the volume of notes played by this process (volumes are in
the range -127 to 128). Its intended use is to compensate for the particular patch being
used, and to balance the volume of different processes.

$cvolume (pquan) is added to the volume of ‘‘chord’’ notes played by this process.

$channel (pquan) is used to decide which synthesizer channel(s) are used for notes
played by this process. With DMO, it contains a MIDI channel number (0-15). With DSM,
it points to a channel descriptor (§7.2). With SM, it points to a synthesizer descriptor
(§7.2).

$patch (pquan) determines the patch (instrument sound) of notes played by this process.
It is used only with SM and DSM, and its meaning depends on the synthesizer type being
used. Processes that use DMO must change patches explicitly using $DMO-change-
patch (§7.3).

$location (pquan) determines the spatial location of notes played by this process. Itis
used only with SM and DSM, and its meaning is synthesizer-dependent. By convention, 0
= left, 64 = center, and 127 = right.

$priority (pquan) is the priority of notes played by this process. It is used only with
SM (§7.5). This priority determines which notes to preempt when all voices are used.
$pedal (pquan) selects a logical sustain pedals 1o be used for notes played by this pro-
cess. It is used only with SM (§7.5).

4.5. Compound $-Words

To simplify notation, FORMULA allows pitches indices to be grouped together into lists

(sequences) and groups (chords) that can then be played with the following compound $-words:

14

m$ (pitch-list x --- ; play a sequence of x notes)

$n (pitch-group x --- ; play a chord with x notes)

m$n (pitch-group-list x y --- ; play a sequence of x y-note chords)
m$$ (pitch-list n --- ; play n notes with lower octaves)

In each case, the process does a time-advance by the TSG amount after each chord or note is
played. For example,

ceg+c 4 m$ (plays a C major arpeggio)
ceg+c 4 5n (plays a C major chord)
ceg+c fa+c +f ceg +c 3 4 mSn (plays a C-F-C chord sequence)

The $-words $, m$, $n and m$n have ‘‘iterator’’ versions formed by appending *k to the
word, and supplying the iteration count as the final argument. For example,

ceg+c fa+c +f c e g +c 3 4 5 m¥n*k

plays the C-F-C sequence 5 times. This is equivalent to enclosing the whole thing in a do loop,
except that pitches are computed just once.

It is convenient to define special versions of the compound $-words with built-in constants.
$4isdefinedas 4 S$n, 8$as 8 m$,and 4$3*6as 4 3 6 mSn*k. 4$3*6, forexample
plays a sequence of 4 3-note chords 6 times. Many commonly-occurring abbreviations of this
sort are available (see the files notation and notate2), and others can be defined as needed.

Rolled chords can be played using

$nroll (pitch-group dt n --- ; play n notes spread over time dt)

This advances the process by TSG amount, NOT by dt. Hence the notes in the rolled chord can
overlap with the subsequent notes generated by the process.

15

5. AUXILIARY PROCESSES

5.1. Introduction

The $-words take only pitch arguments. Other parameters (such as volume and duration)
are obtained from pquans (§4.4) and from awxiliary processes. Auxiliary processes can also be
used to change the tempo of note-playing process. An auxiliary process can be artached to either
a process or a group. In the latter case, it affects all processes in group and its descendants. Aux-
iliary processes allow you to separate musical *‘interpretation’’ from the musical ‘‘score’’.

Auxiliary processes can be created using embedded process definitions. Here is an exam-
ple, taken from the file pieces/demo:

:ap (demo
1:gp
92 beats-per-minute
::gshl \ volume control process
begin p £ 314 oseg f p 1|1 oseg again
;:sh
::gtdl \ tempo control process
begin 0.8 1.2 111 seg 1116 lpause 1.2 0.8 5|4 seg again
;std
::ap \ first note-playing process
begin
/16 20 irnd S0 + \ play a random note a random number of times
brnd 1+ 4 * 0 do dup $ loop drop
/1 rest
again
;sap
i:tsg \ rhythm generator for 2nd process
begin /8+ /4-3 again
;:8g
0 begin \ second note-playing process
20 irnd swap \ uses random/cyclic algorithm
20 0 do
over + 40 mod dup 40 + $
loop
drop
again
;/gp
;ap

:ap demo
::ap
assign-proc-ID proc-name" demo™
(demo
;;ap
;ap
Aucxiliary processes can also be created from the interpreter and attached to existing note-playing
processes or groups.

5.1.1. Embedded Auxiliary Process Definitions

A note-playing process has local and global contexts, each of which is either the process
itself or a group that contains it. By default, a process’s local context is itself, and its global con-
text is the top-level group containing it (or, if the process is top-level, the process itself). The fol-
lowing words can be used to change the contexts:

16

raise-local-context (--- ; move local context up one level)

lower~-global-context

(-

Each object contains slots for auxiliary processes. A slot is a pquan that is either zero or
points to the CB of an auxiliary process. A note-playing word can contain embedded auxiliary
process definitions that create new processes in its slots or those of its local or global contexts.
For example:

:ap foo
::shl \ install new volume shape in local context
p £ d/1 oseg \ code of volume shape process
;:8h
cedf 43 \ play some notes
;ap

The semantics are as follows: when a note-playing process reaches the start of the definition
(: : shl in this case) the auxiliary process currently in the shl slot of its local context is killed. A
new process is created executing the embedded code, and is installed in the skl slot of its local
context. If desired, parameters can be passed to the new process using [n params].

The constructs for embedded auxiliary process definitions are:

; note global context down one level)

syntax location purpose process type
::tsg ;:8g self note duration sequence generator
::shl ;:sh local context volume control shape

::sh2 ;:sh local context volume control shape

::gshl ;;sh global context volume control shape

::gsh2 ;;sh global context volume control shape

::ash ;:sh local context articulation shape

::tdl pstd local context tempo control time deformation
::td2 ;:td local context tempo control time deformation
::gtdl ;:;td global context tempo control time deformation
1 :gtd2 ;;td global context tempo control time deformation

§.1.2. External Creation and Deletion of Auxiliary Processes

An auxiliary process can be attached to an existing object using

ishl ({ name ; ID --- ;)
ish2 (name ; ID --- ;)
itdl (name ; ID =--- ;)
itd2 (name ; ID --- ;)
itsg (name ; ID --- ;)
iash (name ; ID --- ;)
For example
3 ishl foo

creates a volume shape executing foo and installs it in the sh/ slot of the object with ID 3 (it is
attached to the object itself, not to its local or global context). If name is noop then the slot is
cleared. Parameters cannot be passed to the shape.

The auxiliary processes attached to a process can be removed using

(ID -== ;)
(CB -—- ;)

clear-aux
({clear-aux

17

5.2. Using Processes to Define Functions of Time

Shapes and time deformations define functions of time. Instead of defining functions in the
usual way (by taking a time argument and returning a value) they use procedural concatenation.
In this style of definition, a function is generated by a process. The process invokes a series of
primitives (procedures representing a function defined on an interval) and thereby defines a func-
tion that is the concatenation of the primitives. The process may take parameters, and may exe-
cute arbitrary code between invocations of primitives.

As an example of procedural concatenation, suppose
oseg (vl y2 dt --—- ;)

is a primitive representing a linear function varying from y1l to y2 over a time span of dt.
The following function could then be defined:

: sawtooth (n --- ; sawtooth with n skewed teeth)
0 do
0 3 10 oseg
3 0 5 oseg
loop

.
’

The word sawtooth invoked at time zero with argument 2 defines the function shown below:

...... X

10 20 30

5.3. Volume Control

Shapes are functions, defined by procedural concatenation, used to control volume and arti-
culation. Their definitions are delimited by :sh and ;sh. The following primitives are
currently available:

oseg (y1 y2 dt --- ; linear segment open on right)
cseg (vyl y2 dt --- ; linear segment closed on right)
ocon { y dt --- ; constant segment open on right)
ccon (y dt --- ; constant segment closed on right)
inf-con (y --- ; infinite constant-valued segment)

The closure is relevant for discontinuous functions; it determines the function value at the points
of discontinuity. A primitive’s closure on the left is determined by the right closure of the
preceding primitive.

The volume of a note is represented by a number in the range -128 to 127. The volume of
notes played using $-words is the sum of several components:
e Upto two local volume shapes.

e Upto two global volume shapes.

18

e The contents of a per-process variable $volume.
e If the note is played with c$, the contents of a per-process variable $cvolume.

To avoid overflow, it is useful to limit the contribution that each component can make. The
convention is that the sum of all four shapes must lie between -96 and 95, $volume must lie
between 0 and 32, and $cvolume must lie between -32 and 0.

Shape definitions may use the words ppp, pp, p, mp, mf, f, ff, and fff. Because
the corresponding values are synthesizer-dependent, these words are defined in a synthesizer-
specific configuration file (§7.2).

As an example, a shape definition such as:

:sh ramp (l-measure crescendo)
p £ 111 oseg
;sh
could be used in another shape definition:

:sh 10ramps
10 0 do ramp loop
; sh
or attached to a running note-playing process (process 2 in this example):
2 ishl ramp

or invoked from a note-playing process
:ap foo (n --- ; play 100 notes with n crescendi)
::shl
[1 params]
0 do ramp loop
;:sh
100 0 do ¢ $ loop
;ap
The last example could also be written as:

:ap foo (n --- ; play 100 notes with n crescendi)
::shl
[1 params]
0 do
p £ 111 oseg
loop
;:sh
100 0 do ¢ $ loop
;ap

5.4. Tempo and Rubato Control using Time Deformations

Continuous tempo fluctuations (e.g., for rubato) are done using time deformations (TD’s).
A TD defines a tempo function8 by procedural concatenation. A TD is applied to a time interval
by integrating the tempo function over the interval, starting from its current time position. For
example, if the tempo varies linearly from 1 to 2 over an interval of duration 1, the interval is
mapped by the TD to a duration of 1.5 (see Figure 2).

& “‘Inverse tempo functions’’ might be a better term, since a larger value means a slower tempo.

19

3 0 do
@ 0.5 1.5 1|1 seg
loop

20
®) 1.0
0.0
0.0 1.0 2.0
undeformed time deformed time
© 15— ™ 1375

Figure 2: A time deformation (TD) viewed as (a) a procedural definition, (b) a
tempo function that is integrated over its domain, and (c) a process that de-
forms time intervals.

The following TD primitives exist:

seg (rl1 r2 dt --- ; linear tempo change from rl to r2 over time dt)
con { r dt --- ; constant tempo of r over time dt)

inf-con (r --— ; infinite constant segment)

lpause (t --- ; pause of t before events)

rpause (t --- ; pause of t after events)

con.outer (r dt --- ; like con, but dt is in deformed units)

seg.outer (rl r2 dt --- ; like seg, but dt is in deformed units)

seg and con represent linear and constant tempo functions. lpause and rpause insert a
“‘pause’’ in the tempo function. Events scheduled for this instant occur after the pause with
lpause, before it with rpause. FORMULA represents tempi using fixed-point numbers with
an 8-bit fractional part; 256 is unity tempo. This allows A.B notation to be used (§2.4).

For example, the following TD does an accelerando over each 4-beat measure, and inserts a
slight pause before the start of the next measure:

:td foo
begin
1.3 .9 111 seg
1|32 lpause
again
;td

It can then be attached to the note-playing process with ID 2:

20

2 itdl foo
or written as an embedded definition:
:ap blah
::tdl
begin
1.7 .9 111 seg
1|32 lpause
again
;itd
100 0 do ¢ $§ loop
;ap
If two TD’s are attached to the same object, their effects are multiplied. If TD’s are attached to
an object and its parent, they are combined in series: the output of one becomes the input of the
other.

5.5. Articulation Control

In general the ‘‘delay until release’” of a note (denoted D(r)) can differ from its *‘delay until
next note”’ (denoted D(n)). D(r) may be longer (causing note overlap or legato) or shorter (por-
tamento or staccato) than D(n). This timing relationship will be called articulation. In FOR-
MULA, the articulation for each note-playing process is controlled by an articulation shape that
determines D(r) as a function of D(n).

Articulation shapes define both a numeric value and a mode: absolute, relative, or ratio.
The mode and the value X determine D(r) as a function of D(n), as follows:

absolute: D(r)=X
relative: D(r) = max(0, D(n) + X)
ratio: D(r) = (D(n) * X)/256
In other words, the value of an articulation gives either the release time of notes, the release time

relative to the start of the next note, or the release time as a multiple (with 8-bit fractional part) of
the time until the next note, depending on the mode.

Articulation shapes use the shape primitives (§5.3) to define their numeric value, and the
words absolute, relative and ratio to set their mode. For example, the following
articulation shape varies continuously from staccato to legato every 4 beats:

:sh art-shape
ratio
begin
.1 1.2 111 oseg
again
;sh
It can be attached to a running process:
2 art-shape iash

or written as an embedded process:

21

:ap blah
::ash
ratio
begin
.1 1.2 1|1 oseg

100 0 do ¢ $§ loop
;ap

5.6. Timing Sequence Generators

A timing sequence generator (TSG) is a process that generates a sequence of note durations
for a note-playing process. The $-words get note durations from TSG's.

TSG word definitions are delimited by :sgand ;sg. Embedded definitions are delimited
by ::sgand ;;sg. ATSG generates a single sequence element using
& (n --- ; return a sequence element)
The value returned by & may be generated using any of the time specifications described in the

previous section. A set of commonly occurring rhythmic patterns are defined using the following
naming conventions:

name definition meaning

/1 111 & whole note

/4. 318 & dotted quarter

/4.. 7116 & double dotted quarter
/4,, 5|16 & quarter plus a 16th
/4,,, 9132 & quarter plus a 32nd
/8. etc.

2/8 /8 /8 two eighths

16/32 etc.

/4.8 /4. /8 dotted quarter and eighth
/2.4 etc.

/2-3 /2/3 /2/3 /2/3 triplet half

/4-3 etc.

/8+ /8 /16 /16 eighth and two 16ths
/ 4+ etc.

The above words are in the sg-defs vocabulary since they are called only from TSG definitions.
The names /1, /2, /4, /8, /16, /32, /4.8, /2.4, /2+, /4+, /8+,
/4-3, and /8-3 are also used in the ap-defs vocabulary for words that install a TSG that gen-
erates an infinite sequence of the given durations. This allows the following convenient notation
in note-playing processes:

:ap foo

/4 ¢c de 3% \ play some quarter notes

/8 £ g a 3% \ now play some eighth notes
;ap :

An example of a TSG definition:

22

:8g funky
2/4 /4+ \ three quarters and two eighths
5 0 do 8/8 /2-3 loop \ eight eighths and a triplet half,
\ repeated five times
;sg
funky could be used in another TSG definition:
:sg blah
funky 4/8 funky
;8g

This defines a sequence composed of 2 copies of the funky sequence with 4 eighths interposed.
funky could be used in a note-playing process:

:ap player
::tsg funky ;:;sg \ start out in funky rhythm
8 0doc ds loop \ play some notes
/16
8 0 do ¢ $ loop \ switch to sixteenths and play more notes
;ap
This example could be rewritten as an embedded TSG definition:
:ap player
t:tsg \ define funky rhythm
2/4 /4+
5 0 do 8/8 /2-3 loop
;89
8 0doc d loop \ play some notes using funky rhythm
/16
8 0 do c $ loop \ switch to sixteenths and play more notes

;ap

6. PITCH SPECIFICATION

6.1. Pitch Values and Pitch Indices

FORMULA provides several ways of specifying pitches. Two numeric representations are
used:

e A pitch value is a fixed-point number with 8 fractional bits, representing a number of semi-
tones’. 57.0 (represented as 57*256) is 440 Hz. '
e A pitch index is an integer used to represent an element of a discrete scale.

The $-words normally take a pitch index as an argument. FORMULA provides two high-
level mechanisms for specifying pitch indices: symbolic pitch names (a, b, ...) and pitch sets for
specifying scales or chords. Both are described later in this section.

A pquan $pitch-convert points to a word, called automatically by the $-words, that
converts from pitch index to pitch value. FORMULA supplies several alternative conversion
words:

° shift-convert multiplies its argument by 256. Pitch indices then refer to the 12-tone
equal tempered scale (this is the default.)
° null-convert is ano-op; this lets you pass pitch values directly to the $-words.

) tuning-convert maps the pitch index into an element of a scale defined by the tuning
system facility described below.

For example:
 null-convert to $pitch-convert \ play a quartertone above middle C
60.5 $
* shift-convert to S$pitch-convert \ back to equal temperament
60 $ \ play middle C

6.2. Symbolic Pitch Names

The words a, b, ..., g push a pitch index on the stack. The octave is not explicitly given
with the pitch name. Instead, each process has a current octave, and a, b, ..., g refer to the
note instance in this octave. Octaves range from C flat up to B sharp. Middle C is in octave 3,
which is the initial octave of all processes. The current octave can be changed using

oct { n --- ; set current octave to n)
+oct (-—- ; increment current octave)
-oct (--- ; decrement current octave)

Sharps and flats are denoted by appending + or - suffix (£+, b- etc.). Prependinga +
or - to selects a pitch one octave above or below normal. A number (zero) representing a rest is
pushed by the word r.

6.3. Tuning Systems

FORMULA includes a facility for defining and using nonstandard tuning systems (just-
intoned scales, stretched tunings, etc). The facility is set up to be used with the $-words and the
synthesizer manager; with a little work it could also be used independently. When used, each
key-down command that the SM dispatches to a synthesizer driver includes a pitch value
expressed as a multiple of 1/256 of a semitone. Synthesizer drivers use the fractional part if they

9 Of course, the fractional bits are relevant only for synthesizers with microtonal capabilities.

can'?,

An example of a tuning system definition:
\ make an array of pitch value offsets

create (just 70 p, 182 p, 275 p, 386 p, 498 p, 569 p,
702 p, 773 p, 884 p, 996 p, 1088 p,

\ declare a scale named "just" using these offsets

scale: just
12 , 1206 p, (Jjust ,

The first part creates a list named (just of fractional pitch offsets. The word p, converts an
offset expressed in cents (1/100 of a semitone) into an offset in 1/256 of a semitone!!. The

second part defines a tuning system named just. It repeats every 12 pitches, and it ascends an
octave plus 6 cents every period.

The word just is called with a pitch index n as an argument. This causes the scale to be
used in the calling process. The ‘‘origin’’ of the scale is n: the pitch index n is mapped to its
equal-tempered pitch value, and other pitch indices are mapped according to the tuning system.
For example,

¢ just
causes the calling process to play in a just-intoned scale starting at C. Other processes can use
different tuning systems.

The following tuning systems are predefined (see the file scales)'%:

stretch

just

pent

pelog-barang
stretch is 12-tone equal temperament with each octave stretched by 8 cents. just is a 12-
tone just-intoned scale. pent is a just-intoned pentatonic scale. It has been defined as a 12-
note scale where groups of 2 and 3 indices map to the same pitch. pelog-barangisa 5-note
Gamelan scale.

6.4. Pitch Sets

FORMULA provides a pitch set facility for defining scales, chords, and other arbitrary
ordered groups of pitch indices. As shown below, this facility maps a pitch set index (i.e., scale
degree) into a pitch index, which may then be mapped to a pitch value by the tuning-system
mechanism described earlier.

10 The facility is geared towards synthesizers that can be sent an independent pitch per note (such as the Yamaha FB-
01) rather than those that require tunings to be downloaded into the synthesizer (such as the Yamaha DX7-II and
TX81Z).

1 The pitch offset in cents corresponding to a frequence ratio of n/m is 1200*log(n/m)/log(2). This formula can be
used to enter a scale defined in terms of rational intervals.

12 The manual for the ‘“Tune Up’’ program (written by Tim Perkis, published by Antelope Engineering, 1048 Neilson
St., Albany, CA 94706) is a rich source of data for nonstandard scales.

25

pitch set pitch pitch
index - index - value
pitch set tuning system |y
mapping mapping

A pitch set may consist of separate ascending and descending sets of pitch indices. Each of
these has an associated pitch offset table, a list of pitch-index offsets of the elements of the set.
Each set is invariant under translation by a pitch set period (usually 12). A pitch set is described
by a pitch set template and an origin. A pitch set template has four items:

The number of entires in each pitch offset table.

The pitch set period.

A pointer to the pitch offset table for the ascending group.
A pointer to the pitch offset table for the descending group.

Elements of the (ascending) pitch set consist of the origin, plus an element of the (ascending)
pitch offset table, plus an integral multiple of the pitch set period.

The file pitchset contains definitions of several popular chords and scales. For example,
here is the definition and use of a melodic minor scale:

\ first define pitch offset tables
create ascmin 0 , 2,3, 5,7, 9%, 11,
create descmin 0 , 2 , 3,5, 7, 8, 10,

\ now define pitch set template
create minorscale 7 , 12 , ascmin , descmin ,

:ap foo \ play ascending and descending minor scales
g minorscale set-ps
20 0 do +ps $ loop
20 0 do -ps $ loop

;ap

For each process, the current PS and position within PS are maintained. The following
words initialize pitch set use and convert pitch set indices to pitch indices.

set-ps (origin template-addr --- ; switch to new PS with the given)

(origin and template)

+ps (--- pitch ; next note up in ascending PS)
-ps (--- pitch ; next note down in descending PS)
+nps (n -—— pitch ; n steps up in ascending PS)
-nps (n --- pitch ; n steps down in descending PS)
aps (n --- pitch ; nth element of ascending PS relative to origin)
dps (n --- pitch ; nth element of descending PS relative to origin)
psind (--- n ; a pquan that stores last PS index used)
(

pslast --- pitch ; a pquan that stores last pitch returned)

26

7. SYNTHESIZER OUTPUT

7.1. Output Paradigms

The capabilities of the synthesizers FORMULA controls will vary from user to user. For
example, some synthesizers can play several notes at once, but are controlled using a single MIDI
channel; we call these I-channel synthesizers. Others can receive commands on multiple MIDI
channels simultaneously, and can play at most one note on a channel at once; we call these n-
channel synthesizers (they are also called multitimbral because each channel can produce a dif-
ferent instrument sound). A user may have several synthesizers of different types, or may have
synthesizers with non-MIDI interfaces (e.g., using the Atari’s parallel port). A synthesizer
configuration is the complete set of synthesizers being controlled by FORMULA.

After a $-word obtains a note’s pitch, volume, and other parameters, how does it actually
play the note? The answer is supplied by an output paradigm, a software layer interposed

between $-words and synthesizers'>. FORMULA provides three output paradigms:

e Direct MIDI output (DMO) directly generates MIDI commands. The program must specify
which MIDI channel(s) to use.

e The dwnb synthesizer manager (DSM) provides synthesizer independence. Instead of gen-
erating output directly, it calls synthesizer drivers to do the actual output (these drivers are
supplied as part of the description of the configuration). This lets you use non-standard
features of MIDI synthesizers (and non-MIDI synthesizers) with no program modifications.
Programs still must specify the ‘‘channel”” (not necessarily a MIDI channel) to be used.

e The synthesizer manager (SM) provides device independence and also does synthesizer
voice allocation. Programs don’t tell it which channel to use. Instead, the SM allocates
channels (and voices within channels) dynamically, based on note priorities supplied by the
program. For example, this can be used to ensure that melody notes are not preempted by
the accompaniment.

The following diagram shows the various software components involved with synthesizer
output:

13 Processes may also access output paradigms directly, without using $-words. This interface is not described here,
but can be found in the source code.

27

dumb synthesizer| Hdirect MIDI RN _
manager (DSM)| butput (DMO) | output paradigms

7.2. Synthesizer Configuration

Both the SM and the DSM need to be told about your synthesizer configuration: how many
channels of each synthesizer type, and how many voices per channel. This is done using
declare-synth (--- synth-desc ; declare a synthesizer type)

declare-channel (channel-no synth-desc driver-addr nvoices
--- channel-desc ; declare a synthesizer channel)

declare-synth retums a synthesizer descriptor that identifies a synthesizer type'*. The argu-
ments to declare-channel are as follows. synth-desc is the synthesizer type of the
channel, and driver-addr is the address of a synthesizer driver routine (see below). When
the driver is called, channel-no is passed to identify the channel; for MID], this is the MIDI
channel number. nvoices is the number of voices (i.e., maximum number of simultaneous
notes) on the channel.

For example, here’s a configuration routine for two MIDI synthesizers, a Yamaha with 1
voice each on MIDI channels 1-8, and a Roland with 16 voices on channel 10.

4 A “‘synthesizer type’ is really just the set of channels of that type.

28

quan yamaha-sd \ points to synthesizer descriptor for Yamaha
quan roland-sd \ points to synthesizer descriptor for Roland

my-synth-config
declare-synth to yamaha-sd \ create a synthesizer descriptor for Yamaha
declare-synth to roland-sd \ create a synthesizer descriptor for Roland

\ declare the 8 Yamaha channels

8 0 do

i yamaha-sd (‘] generic-MIDI-driver 1 declare-channel

drop \ the SM doesn’t need the channel descriptor, so drop it
loop

\ declare the one Roland channel
9 roland-sd [’] generic-MIDI-driver 16 declare-channel

drop

In this example, generic-MIDI-driver is a synthesizer driver routine that generates stan-
dard MIDI commands'>.

7.2.1. Selecting an Output Paradigm

A process *‘selects’’ an output paradigm by setting a pair of pquans ($note-routine
and $pedal-routine) to point to routines provided by the paradigm. The words $SM,
$DSM and $DMO set up these pquans for the paradigms described above. Because pquans are
used, different processes may use different output paradigms“s. A process inherits these pquans
from its parent, as well as the other pquans used by the $-words ($channel, $patch,
Spriority,etc.).

For example, the following routine selects the SM output paradigm and arranges to use the
Yamaha synthesizer (as declared above) with patch zero.

: my-select-paradigm

S$SM

yamaha-sd to $channel

0 to Spatch \ initial patch (Brass?)

64 to S$location \ initial stereo location (center)

\ other pquans ($priority, $pedal, etc.) are initially zero

’

7.2.2. Initialization
The initialization word formula calls two deferred words:
° set-synth-config declares your synthesizer configuration to the SM.

) select-paradigm connects the $-words to an output paradigm. This involves initializ-
ing the pquans $note-routine and $pedal-routine and initializing other pquans
(such as $channel) used by the paradigm.

You can redefine these; for example,

15 FORMULA also includes a driver £bOl-driver for the Yamaha FB-01 that supports microtonality using the
FB-01's system exclusive messages.

16 However, unexpected results may occur if a particular synthesizer is accessed via two different paradigms.

29

* my-synth-config is set-synth-config

* my-select-paradigm is select-paradigm
causes formula to select the SM and declare the synthesizer configuration given above. If this
is done in a configuration file that is loaded prior to saving formula.tos, then this will be done
automatically each time you run formula.

The default version of select-paradigm selects DMO, and the default version of
set-synth-config is a no-op. C

7.3. Direct MIDI Output

When direct MIDI output (DMO) is used, notes played with the $-words are translated
directly into standard MIDI commands. There is no voice allocation, and no synthesizer drivers.

A configuration file for using DMO looks like this:

select-DMO
$DMO \ initialize $note-routine, $pedal-routine
0 to Schannel ; \ use MIDI channel zero

.

select-DMO is select-paradigm

DMO uses the $channel pquan to hold a MIDI channel number, which is included in all com-
mands sent. DMO does not use the $patch pquan to select a patch. Instead, note-playing
processes must use an explicit command:

DMO-change-patch (new-patch --- ;)
Therefore an instrument definition word for DMO might look like
:ap piano

4 DMO-change-patch
10 to $volume
12.0 to S$transpose

;ap

7.4. The Dumb Synthesizer Manager

The DSM provides synthesizer independence. The pquan $channel must be sct to the
channel descriptor of the synthesizer channel to be used. Therefore configuration routines must
put channel descriptors in well-known places (e.g., quans). For example, the following
configuration file is for a Yamaha FB-01 set up as 8 voices on channel 0, to be accessed via the
DSM:

quan fb0l-sd \ synth descriptor for FB-01 _
quan fb0l-cd \ channel descriptor for FB-0l1’s channel zero

: fb0l-config-synth
declare-synth to fb0l-sd
0 fb0l-sd [’] fb0l-driver 8 declare-channel to fb0l-~-cd ;

fb0l-select-DSM
$DSM

fb0l-cd to $channel
0 to Spatch

64 to S$location ;

fb0l-config-synth is config-synth
* fb0l-select-DSM is select-paradigm

30

A process that uses DSM does not schedule an event to change instruments; it merely
changesits $patchand $location pquans (unlike DMO, no explicit call is needed). Hence
one might define words like

:ap piano

th 304 to $patch

10 to $volume \ compensate for soft patch

12.0 to S$transpose \ compensate for low patch (units are 1/256 semitone)
;ap

:ap Scenter
64 to Slocation
;ap
When invoked from a process, piano will cause subsequent notes to be played using those
parameters. The contents of $patch depend on the synthesizer type; they are interpreted by the
synthesizer driver. In this case (for the FB-01) they include a bank number (3) and a patch
number in that bank (4).

Using DSM with the generic MIDI driver is similar to using DMO, but there is one major
difference. Suppose two processes use the same MIDI channel and change patches periodically.
With DMO, each process will (perhaps unwantedly) be affected by the change-patch commands
generated by the other. With DSM, change-patch commands are automatically generated for
each note, as needed; all notes will be played with the correct patch.

7.5. The Synthesizer Manager

When using the SM, the pquan $channel must point to the descriptor for the synthesizer
type to be used!”. The $priority pquan specifies a priority for notes played by the process.
The SM chooses the ‘‘best’’ channel to use for each note, and decides which existing note(s) to
preempt. The SM uses the channel for which the priority of preempted notes is lowest. Processes
that are playing crucial parts (e.g., melodies) should store a high value in $priority.

In addition, each note is assigned a pedal group, numbered O through 15, using the
$pedal pquan. These ‘‘logical sustain pedals’’ can be manipulated independently; the pedal-
manipulation words (§4.2) affect only the pedal specified by $pedal. When a logical sustain
pedal is raised or lowered, all the notes using that pedal are affected. These notes may be distri-
buted over several channels, and even over different synthesizer types.

As with the DSM, instrument parameters are controlled by changing the $patch and
$location pquans.

7.6. The MIDI Output Driver

FORMULA's MIDI output driver is a collection of words, assembly language macros, and
interrupt handlers. To improve performance, the driver eliminates redundant command bytes. It
remembers the current ‘‘MIDI state’’, i.e., the last command byte output on the MIDI line. If the
next command has the same command byte, the command byte is suppressed and only the data
bytes are sent. For robustness, this mechanism is overridden (i.e., the command byte is sent
regardless of the MIDI state) if no command byte has been sent in the last 1/2 second.

This concept is extended further to accommodate synthesizers with a system-exclusive event

7 The $channel pquan is slightly overloaded; it points to a synthesizer descriptor in this case, not a channel
descriptor.

31

state'®. Such states are entered by a multi-byte system exclusive command, and exited by a £7
byte. FORMULA's MIDI output driver represents each system-exclusive state by an index into
an array sysexcl-table. Each element of this array points to a MIDI string (starting with a
32-bit length field) used to enter the corresponding state. A synthesizer driver that uses system-
exclusive states must allocate an entry in this array at compile time (using next-sysexcl-
index) and must pass the index to the MIDI output driver as the ‘‘command byte’" of com-
mands in its system-exclusive state.

MIDI channel states are encoded as follows: values from 128 to 257 represent standard
MIDI command states, and values from 1 to 127 represent system-exclusive states corresponding
to the entries in sysexcl-table. 0 represents no state (i.e., the state initially or immediately
after a system-exclusive command).

The MIDI output driver can be accessed in several ways:

Dn ... D2 command n --- ; output a MIDI command)
Dn ... D1 n --- ; output raw MIDI bytes)
machine-code event routine version of MIDI-command)
machine-code event routine version of MIDI-output)
assembler macro version of MIDI-command)

assembler macro version of MIDI-output)

MIDI-command
MIDI-output
MIDI-command-event
MIDI-output-event
(MIDI-command)
(MIDI-output)

MIDI-command and MIDI-output are high-level words, and may be called only within
.:evand ;:ev!®. Both words take an argument count n and a sequence of n bytes (unpacked,
1 per 32-bit stack entry). MIDI-command interprets the bottom byte as a MIDI command
state, as described above, and suppresses it if possible. MIDI-output simply outputs the
bytes without interpretation.

MIDI-command-event and MIDI-output-event are machine-code event routines
with the same arguments, to be scheduled using event or future-event. (MIDI-
command) and (MIDI-output) are assembly-language macros, to be used in synthesizer
driver routines. They expect a pointer to an event record (§10.1) in A1. The nargs and args
field of the event record contain the MIDI command. They do not free the event record; hence
synthesizer drivers can use a statically-allocated record.

7.7. How to Write a Synthesizer Driver

A synthesizer driver is a machine-code word for controlling a particular type of synthesizer.
The driver is passed detailed information about notes: stereo location, microtonality, and so on.
It uses as much of the information as it can, given the capabilities of the synthesizer.

A synthesizer driver is called by jsr from the SM or DSM, and must return by rts. Its
arguments are passed in registers:

d0: command code (see below)

a4: pointer to a channel descriptor (all commands)

a3: pointer to a note descriptor (key up/down command only)
d3: additional argument (all commands except key up/down)

The routine is allowed to change only d0-d2 and a0-a2. The command codes are:

0 = key up/down (the note and channel descriptors contain the pitch, volume, channel
number, etc.).

18 For example, the Yamaha FB-01 has a system-exclusive state in which key-down commands specify fractional
pitches.

19 MIDI-command and MIDI-output don’t mask interrupts, so there are potential synchronization problems if
you call them directly. Event performance, however, is automatically sequential.

32

1 = change patch (the new patch number is passed in d3).

2 = sustain pedal (an up/down flag is passed in d3; pedal down if nonzero).

3 = parameter change (the index of the parameter is passed in the high word of d3, and its
value is passed in the low word of d3). Parameter indices are synthesizer-dependent, except
that 256 (for aftertouch) and 257 (for pitch bend) are reserved values.

Data is passed to synthesizer drivers in channel and note descriptors. The following offsets
are used to extract this data.
\ offsets into channel descriptors
15 constant cd-channel \ channel number (8 bits)
16 constant cd-patch \ current physical patch (low 16 bits)
\ and location (high 16 bits)

\ offsets into note descriptors
28 constant nd-pitch \ 16-bit pitch (8 fractional bits)
32 constant nd-volume N0 .. 127

The following is a fragment of the generic MIDI synthesizer driver. The complete code is
in sm-drvr0.

create drvrO-buf \ static event record for (MIDI-command)
action-rec-size 24 + allot

code generic-MIDI-driver
drvrO-buf 1l# al move

nargs-offset al d) a0 lea \ a0 points to buffer

1 d0 subg

0< wif handle key up/down command
3 d0 moveq it’s a 3-byte MIDI command

fill in nargs field
build MIDI command byte

d0 a0)+ move

th 90 d0 moveq

cd-channel a4 d) d0 byte or long
d0 a0)+ move

nd-pitch 2 + a3 d) d0 bmove

th 7f # 40 byte and long

d0 a0)+ move

Pl

and fill it in
use integer part of pitch only

o~

nd-volume a3 d) a0)+ move \ volume
/! (MIDI-command 1#) jmp \ invoke MIDI output driver
wthen
\ ... handle change-patch and other command codes

\ omitted here for brevity

end-code

33

8. INPUT HANDLING

FORMULA provides interfaces to mouse, keyboard and MIDI input. There is a single
handler process for each type of input. Keyboard input is handled by the FORTH interpreter pro-
cess. For the other input sources, you can write your own handler process or use a FORMULA
default handler. Handlers are created by deferred words called from formula. You can
redefine these words to install your own handlers.

A handler process executes an infinite loop, reading and handling input. Whenever there is
no input it sleeps, to be later awakened by the corresponding input interrupt routine. If the
response to an input event is instantaneous, it can be done by the handler process itself. Other-
wise, the input handler should create a separate process to generate the response, thereby freeing
itself to handle further input.

8.1. MIDI Input Handling
A MIDI input handler process calls

get-MIDI-command (-~- datal data0 command time | data0 command time ;)

to get the next MIDI command (if necessary, the process will sleep until the complete command
has been received). The SVT time at which the command arrived is also retumned; normally the
handler stores this in its time-position.

The deferred word create-MIDI-handler creates the MIDI handler. A MIDI handler
can be installed as follows (this must be loaded before running formula):
:ap my-MIDI-handler
z:ap
assign-proc-ID proc-name”" MIDI handler"
immortal
begin
get-MIDI-command
to time-position
(... handle the command)
again
;;ap
;ap

* my-MIDI-handler is create-MIDI-handler

FORMULA's default MIDI handler maintains a table of handler routines, one for each type
of MIDI command. When a MIDI command is received, the corresponding word is executed.
The following table shows which entry corresponds to which MIDI control byte:

index meaning data bytes

0 keyup velocity, key-number

1 keydown velocity, key-number

2 polyphonic pressure pressure, key-number

3 control change value, control-number

4 patch change patch-number

5 mono pressure pressure

6 pitch bend bend-lo, bend-hi

7 system command none; this command is ignored

34

The MIDI action word is passed the one or two data bytes associated with the MIDI com-
mand each time it is executed. You can write your own MIDI action words and store them in this
table. MIDI action words may create note-playing processes, but they themselves should not
generate time advances as this will interfere with response to subsequent MIDI commands.

As an example, the following program provides a ‘‘MIDI delay line’” with user specifiable
decay rate, repetition speed, and number of repetitions:

quan repno 2 to repno \ number of times to repeat each note
quan reprate 400 to reprate \ SVT delay between repetitions
:ap rnote (vel keynumber --- ; repeat note with decay)

::ap

[2 params]
repno 0 do

2dup mkd \ play the note
swap \ s: key-no vel
2 3 x/ \ decay velocity a little
swap \ s: vel key-no
reprate time-advance \ wait for delay time
loop
2drop
;:;ap
;ap
 rnote 1 MIDI-action ! \ install handler for key down

FORMULA also provides routines that allow MIDI channel patch commands to automati-
cally reconfigure the MIDI-action table. For each of the system non-system MIDI com-
mands, a table of CFA pointers, indexed by patch number, is maintained. When a command to
change to channel-patch N is received, default-cp examines the Nth entry in each of these
arrays and, if it is non-zero, stores it in the appropriate entry of the MIDI-action table. The
syntax for assigning an action to a MIDI channel patch number is:

key up action for patch N)

key down action for patch N)

polyphonic pressure action for patch N)
continuous controller action for patch N)
channel patch action when CP N is received)
aftertouch action for patch N)

pitch bend action for patch N)

n ku-action: <name>
kd-action: <name>
pp-action: <name>
cc-action: <name>
cp-action: <name>
at-action: <name>
n pb-action: <name>

o s Bt e R« R«

For this system to work, every cp-action mustcall default-cp.

8.2. Mouse Input Handling

FORMULA'’s mouse interrupt handler is installed by calling +mouse. After this is done,
the mouse position and the state of the left and right mouse buttons is maintained in the following
quans:

mouse-x \ mouse x coordinate

mouse-y \ mouse y coordinate

left-button \ left button down

right-button \ right button down
mouse-x and mouse-y can be set to any initial value; mouse motions are handled by making
incremental changes to them.

These quans can be ‘‘polled’’ by any process. You may instead want to have a process that
sleeps until there is mouse input. FORMULA provides a default mouse handler process is started

35

by calling mouse-hnd (which in tum calls +mouse). Whenever a mouse event occurs, this
process calls the deferred word mouse-routine, which you can define to do whatever you
want. In the following example, a pair of notes is played on each mouse event, with pitches
corresponding to the x and y positions of the mouse.
:ap foo
::ap
mouse-x 8 / 50 + z$
mouse-y 8 / 50 + §
;;ap
; ap

* foo is mouse-routine
mouse-hnd

8.3. Function Key Handling

The Atari’s function keys and shifted function keys can be assigned FORMULA words to
be executed when the key is pressed. Indices from O to 9 select function keys 1 to 10 while
indices from 10 to 19 select shifted function keys.

FK-table (name ; --- ; create a function key action table)
FK-action: (name ; n --- ; insert entry in a function key action table)
default-FK-table (predefined default function key action table)

FK-table defines a function key action table (initially all entries are noop). Invoking name
activates the table. FK-action: makes name the nth entry of the currently active table.
For example:

default-FK-table

11 FK-action: foo
will activate the default function key table and cause foo to be executed whenever you press the
shift key and function key 2 simultaneously.

36

9. STILL MORE FEATURES

9.1. Random Number Generators
FORMULA provides the following words for generating random numbers:

rnd (=-—— n)

irnd (m=---n)

brnd (--- flag)

rndinit (n ===

grnd (m ---n)

frnd2 {m---n)
frnd2-init (---)

frnd3 (old n --- new)
trand (table-addr --- n)

rnd returns a 32-bit random integer from the uniform distribution. irnd returns a random
integer from the uniform distribution from 0 to n-/. brnd retums a random O or 1 (it’s faster
than 2 irnd). rndinit initializes, based on the seed n, the table used by used by rnd,
irnd and brnd. grnd retums a random number from the Gaussian distribution with mean
zero and standard deviation m, rounded to the nearest integer. £rnd2 retuns a number from an
integer sequence on (0, ..., m-1) with (roughly) 1/f frequency content. The underlying distribution
is uniform. The sequence’s ‘‘state’’ is per-process; frnd2-init must be called to initialize
this state by each process using frnd2. frnd3 is another //f random number generator, its
state consists simply of its previous value, which is passed as the o/d argument. trand
returns a random number from a distribution on (0, ..., n-1) described by a table whose first entry
is the sum of weights, and whose remaining n entries are weights on each integer in (0, ..., n-1).

9.2. Time Control Structures
FORMULA has three time control structures:

maxtime (n ---)
maxend
mintime (n ---)

minend

mintime (n ---)
minloop
maxtime ... maxend specifies that the enclosed code is to consume at most n units of

time (in the process’s units). If this limit is exceeded, control is transferred to the statement fol-
lowing maxend and the stacks are restored to their level at maxtime. For example,
:ap foo
::tsg begin 1/4 irnd & again
8|1 maxtime
begin ¢ $ again

maxend
;ap
plays a sequence of random-length notes lasting exactly 8 measures.
mintime (n) ... minend specifies that the code block is to be extended by a

t ime-advance, if necessary, so that it consumes at least n units of virtual time.

37

mintime(n) ... minloop specifies that the code block is to be iterated, if neces-
sary, so that it consumes at least n time units.

These structures can be nested; outermost structures have priority. Future actions scheduled
within a maxtime construct will be performed even if they lie outside the bound. In the exam-
ple given above, this means that the end times of the notes generated by foo may lie beyond the
8-beat limit.

9.3. Memory Allocation
Most of FORMULA's internal data structures are dynamically allocated. The memory allo-
cation facility may be useful to user programmers as well.
malloc (n --- addr ; allocate a block of n bytes)
free (addr --- ; free an allocated block)

Memory is allocated from an area that starts at default-free-mem and grows downwards as
needed. If FORMULA runs out of memory, it panics (i.e., process scheduling is disabled and
interrupt vectors are restored to their original state).

38

10. EVENT BUFFERING AND PROCESS SCHEDULING

10.1. Event Scheduling

The computation of a note (i.e., its pitch, volume etc.) can be distinguished from its perfor-
mance (sending the MIDI commands to start and stop the note). FORMULA exploits this dis-
tinction to increase timing accuracy by using a technique called event buffering. An event is an
output action whose computation can be separated from its performance. Processes are allowed
to compute events slightly ahead of time. Event descriptors are kept in an event buffer, and per-
formed when their time arrives. Each descriptor contains the address of a performance routine
and a set of parameters to pass to that routine.

The use of event buffering requires that a process wanting to generaic an output (e.g., to
start a note) does not do it directly, but rather schedules an event to do it. For example, the word
mkd (§2.1) does not directly generate MIDI output; it schedules an event that will generate the
output. Most FORMULA programmers will never have to schedule events directly, since it is
done for them by higher-level words such as mkd and $. This section explains the event-
scheduling interface, for those who are interested.

Event performance routines may be either high-level Forth, or (for efficiency) machine-
code routines?’. The following constructs are used to schedule Forth events:
iev
(Forth code for event routine)
;iev

n ::fev
(Forth code for event routine)
;iev
The first construct schedules an event for the current time position of the process; the second
schedules an event for n units later. In both cases, [n params] can be used to pass
parameters to the event routine. For example, the following program prints O through 9, one
number per second:

rap
10 0 do
i
r:ev
[1 params]
iiev
1000 time-advance
loop cr
;ap
The following words are used to schedule machine-code events:
event (args nargs CFA --- ; schedule an event)
event-rec (args nargs CFA --- rec ; schedule an event)
future-event (args nargs CFA delay --- ; schedule event after delay)

CFA is the address of a machine-code event performance routine. args is a set of parameters
to be passed to that routine. The routine will be called with a pointer to an ‘‘event record’’ in the
Al register; it may modify AO-A2 and DO-D3. An event descriptor has several fields; the ones
relevant to event performance routines are the number of arguments and the argument block. The

2 Event routines are executed at interrupt level and they cannot call TOS routines (e.g., terminal and disk [/O).

39

offsets of these fields are stored in the constants nargs-offset and args-offset respec-
tively. The order of arguments is the same as their stack order. The word must return with an rts
instruction. In addition, it normally must free the event record using the (free) macro, which
expects the record pointer to still be in Al.

event-rec is like event but retums a pointer to the event record’’. future-
event is like event, but causes the event to be scheduled delay units in the future.

As an example, mkd is defined as

:ap mkd
th 90 or 3 ' MIDI-command event
;ap

where MIDI-command is a machine-code routine, written according to the above rules, that
outputs a MIDI command.

10.2. Synchronization

Processes may be interrupted by /O and clock interrupts. In addition, a process may
preempt another process. Hence any data structures that are shared between a process and an
interrupt handler, or between two processes, need a synchronization mechanism. FORMULA
provides several synchronization mechanisms.

10.2.1. Mutual Exclusion Between Processes

Mutual exclusion is needed for ‘‘critical sections’’ of code in which at most one process can
be allowed to execute at once. Since process preemption is done using a *‘software interrupt’’
mechanism (§11.1.3), mutual exclusion between processes can be achieved by masking software
interrupts:

mask-softint (-~- ; raise software interrupt mask level)

unmask-softint (--- ; lower software interrupt mask level)
These must always occur in matched pairs, which can be nested. This method should be used
only for fairly short critical sections.

For potentially time-consuming critical sections, real-time semaphores should be used. A
process holding a semaphore can be preempted (in contrast with software interrupt masking,
which disables preemption). If a process A tries to acquire a semaphore held by a preempted pro-
cess B, B is temporarily ‘‘promoted’’ to the deadline of A, allowing it to run until it releases the
semaphore. The operations are:

semaphore: (name ; --- ; declare a semaphore)

init-sema (semaphore-addr --- ; initialize a semaphore)
P { semaphore-addr --- ; acquire the lock)

v (semaphore-addr --- ; release the lock)

semaphore: creates a named semaphore. The resulting word, when invoked, returns the sema-
phore address. The semaphore must be initialized (at runtime) before it is used.

10.2.2. Synchronizing with Input Sources

The above mechanisms cannot be used to synchronize with interrupt handlers. The follow-
ing words provide a synchronization mechanism for interrupt-driven input with a single handler
process (these are used in the FORMULA implementation of keyboard, MIDI and mouse input,

2 This is used by the SM, for which the argument to the note-end event is a pointer to the event record for the note-
start event.

and can be used for other I/O devices):

input-handler (name ; --- ; declare an input handler structure)
wait-for-input (handler-structure --- ;)
(wake-input-handler) (assembly language macro)

input-handler allocates a handler structure that maintains a pointer to the handler process
and a counter for the amount of data available. wait-for-input is called from the handler
process; if no input is available, the process sleeps. (wake-input-handler) is-used in the
input interrupt handler whenever new input has been received. It wakes up the handler process if
necessary.

10.2.3. Interrupt Masking
The synchronization mechanism of last resort is to mask hardware interrupts:

set-mask (--- old-mask ; mask interrupts)
(set-mask) { assembly language macro version)
restore-mask (old-mask --- ; restore old mask)
(restore-mask) (assembly language macro version)

Interrupts (and therefore preemptions) cannot occur between set-mask and restore-
mask. Interrupt-masking should be used only for short critical sections (100 instructions or less)
because of the possibility of lost interrupts, especially from MIDI input.

10.3. Process Scheduling Parameters

Each top-level process has several ‘‘scheduling parameters’’, stored in the following pquans
(all times are in SVT units):
° time-position is the time for which the process is currently computing events.

® deadline determines the order of process execution: the executing process is that with
the earliest deadline (§11.3.2).

e maxdel determines how far ahead of the current SVT the process is allowed to compute.
If the process advances to a time position such that

time-position > (current SVT) + maxdel

then the process is suspended, and remains dormant until the condition no longer holds.
maxdel must be nonnegative.

e mindel determines the process’s deadline as a function of its time position:
deadline = time-position - mindel
A process’s mindel must be strictly less than its maxdel, and can be negative.
Aquan system-mindel stores the maximum amount by which processes are allowed to

fall “‘behind schedule’’ before the advance of system virtual time is stopped to allow them to
catch up. Specifically, SVT is not advanced if

earliest deadline + system-mindel < current SVT

The maxdel and mindel parameters of top-level processes can be adjusted to obtain a
“‘scheduling policy’’ that is optimized for your particular application. (A process belonging to a
group is govemned by the parameters of its top-level ancestor group.)

e The relative values of mindel can be used to ‘‘prioritize’’ input-handling processes. Sup-
pose response to MIDI input is more time-critical than response to mouse input. By giving
the MIDI input handler process a larger (more positive) mindel than the mouse handler,
the MIDI handler will have an earlier deadline (and will therefore run first) whenever MIDI
and mouse events occur at about the same time.

41

e The value of maxdel is a tradeoff between timing accuracy and response latency. If
maxdel is small, the process will respond quickly to input but may experience event tim-
ing errors if system load is heavy or its own computations are long. If maxdel is large,
the process will be more immune to timing errors, at the expense of increased input
response time.

By changing system-mindel you can determine what happens when the system falls
behind schedule. If system-mindel is nonnegative, then SVT stops advancing whenever the
system falls behind schedule (i.e., when SVT exceeds the earliest process deadline). All subse-
quent events are uniformly shifted in time, but the system loses synchronization with external
timing sources. If you need such synchronization, system-mindel should be given a large
negative value. This may cause short-term compression of events if lateness occurs.

maxdel and mindel can be changed at any time. For example, the maxdel of a pro-
cess can be temporarily reduced during a period of frequent user interaction with the process. A
process must call

0 time-advance

to have these changes take effect (that is, to change its deadline and perhaps become dor-
mant).

10.4. Background Processes

FORMULA's deadline scheduling mechanism is designed for processes that schedule out-
put events for specific times, using relatively small amounts of CPU time to compute the events.
Unfortunately, not all processes conform to this model. For example, the Forth interpreter pro-
cess, while it is executing words (which prints the contents of a vocabulary) uses large amounts
of CPU time and has no particular output timing requirements.

Such processes can be accommodated by making them into background processes.

background (--- ; make caller into a background process)
foreground (--- ; make caller into a foreground process)

The deadline of a background process is always ‘‘infinite’’; the range Ox7fffff 00 to
Ox7£EEEEEE is reserved for background processes. The time position of a background process
is initially less than current SVT. When a background process does something of a real-time
nature (scheduling an event, calling time-advance, Or creating a group) its time position is
set to the maximum of its current value and the current SVT. This arrangement allows back-
ground processes to generate real-time output; e.g., you can play music in the Forth interpreter.
The computation of the music, however, is done with an infinite deadline so it may potentially be
‘“‘starved’’ by other processcs.

42

11. FORMULA IMPLEMENTATION

11.1. Scheduling and Event Performance

This section briefly describes FORMULA's implementation of process and event schedul-
ing. Three ‘‘global’’ time systems are used:

Real time (or *“wall clock’’ time) is maintained by a 200 Hz periodic clock interrupt.

System time (ST) normally advances at the same rate as real time. However, when a process
has fallen behind schedule (that is, when the current ST exceeds the *‘deadline’’ of the pro-
cess), ST stops advancing to allow the process to catch up.

System virtual time (SVT) advances with ST, but with a scaling factor tempo (units of
SVT per unit of ST). tempo provides a high-resolution global tempo control. It can be
set directly (it is a quan) or using usecs-per-SVT (§2.1).

11.1.1. Data Structures

FORMULA uses the following record types. The pquan mechanism (§3.4) is used to access
the fields of these records.

e Context blocks: each stores the state of a process, including its stacks and pquans.

e Event records: each describes a pending event, including its parameters and a pointer to its
performance routine.

These records are organized in the following structures:

e The execution queue is a list of context blocks of executable processes, sorted by increasing
value of deadline. The executing process (the execution queue head) is always that
with the earliest deadline.

e The wakeup buffer stores event records and context blocks of dormant processes. It is
implemented as an array of lists of entries. Each entry has a wakeup-time field storing
the SVT when the event is to be performed or the process is to be made executable. The
array position of an entry is given by the low order bits of its wakeup time.

11.1.2. Time-Advance and Event Scheduling

FORMULA'’s time-related primitives are implemented as follows. First, time-advance
stores its argument in the delay pquan, applies the caller’s TD’s to delay and adds the result
to its time-position. If the caller is in a group, the delay until the new earliest member of
the group is propagated to the group's context block; this recurses up the tree. At the top level,
the assignments

deadline = time-position - mindel;

wakeup-time = time-position - maxdel;
are done. If wakeup-time is greater than the current SVT, the object is moved to the wakeup
buffer; otherwise the object is reinserted in the execution queue. In either case, a context switch
is done to the new execution queue head.

event allocates an event record and moves its arguments to the record. The wakeup time
of the event record is set to the maximum of the caller’s time position and the current SVT. The
event record is then inserted in the wakeup buffer.

11.1.3. Event Performance and Preemption

The FORMULA scheduler executes processes in order of increasing deadline, and a process
is preempted if one with an earlier deadline becomes runnable. Action performance and process

43

preemption are done jointly by the clock interrupt handler and the software interrupt handler*.
On each clock interrupt, the handler sees if the current SVT is less than the earliest process dead-
line. If so, it adds tempo to the current SVT, and checks if any entries in the wakeup buffer
array for times between the previous and current SVT’s are non-empty, and requests a software
interrupt if so.

The software interrupt handler processes lists of records from the wakeup buffer. It moves
dormant processes to the execution queue and executes event performance routines. The software
interrupt routine continues to process lists from successive entries of the wakeup buffer until its
index exceeds the current SVT. If, on completion of the software interrupt handler, there is a new
execution queue head, then the old execution queue head is preempted and a context switch is
done.

When a process is awakened by an interrupt routine, it is moved to the wakeup buffer rather
than directly to the execution queue. Its wakeup time is assigned so that it will be awakened on
the next clock tick.

kill and suspend set flags in the context block. These flags are checked, and the
appropriate action taken, the next time the object is removed from the wakeup buffer.

11.2. The Accuracy and Range of Time Specification
The timing accuracy of events is limited by the 5 millisecond resolution of the Atari’s inter-

rupt clock. Forthmacs uses 32-bit integers, producing the following limitations:

e Time positions are integers, so SVT wraps around (producing indeterminate results) every
232 SV'T units, roughly 1000 hours if SVT unit = 1 ms.

) In rational conversion by r>i, the term numerator*rscale must fit in 32 bits, and the
denominator must fit in 16 bits.

e Time deformations use 8-bit fixed-point multipliers. Therefore time intervals passed
through TD’s must fit in about 23 bits (depending on the magnitude of the tempo func-
tions).

The following table shows representative time interval representations for rscale = 2000
and SVT unit = 1000 microseconds (the defaults).

whole note 64th note
rational 11 1i64
SVT 2000 “31
real-time 2 sec. ~.03 sec.

With these parameters, the largest usable interval is about 4000 whole notes if time deformations
are used (because of the 23-bit limitation).

There are several sources of round-off error in FORMULA:

e The round-off accumulated by r>i is 16 bits, leaving uncompensated error up to 26 of an
SVT unit.

e TD’s accumulate only 8 bits of error. This is a problem only when multiple processes use
different TD’s that should synchronize periodically.

2 A software interrupt is requested in software, and has lower priority than any hardware interrupt. On the Atari ST,
this is done using the horizontal retrace interrupt, which is normally not used, has lower priority than any other inter-
rupt, and is triggered at a very high rate.

APPENDIX A: DISTRIBUTION AND COPYING

The current release of FORMULA is available from the authors. The copying policies for
FORMULA and Forthmacs are described in the file copying.txt. Both packages are copyrighted,
but the respective authors have granted permission for the release disks to be freely used, copied,
and given away. However, they may not be sold.

45

APPENDIX B: FORTH AND FORTHMACS

1. Forth

FORMULA is an extension of the programming language Forth. You can use FORMULA
without knowing Forth, but you will be somewhat limited. A good introductory book on Forth is
Mastering FORTH by Anita Anderson and Martin Tracy, published by Prentice Hall.

Forth is a very simple programming language. Forth’s program unit is the word. Words
communicate using a data stack; most words take their arguments from the stack and leave their
result on the stack. Return addresses are kept on a separate return stack.

The documentation of a word often includes a 1-line summary:

name ({ old --- new ; comments)
0Old and new represent the stack contents before and after executing the word. For example, the
summary of the words +and over are:
+ (nm--- sum ; replace top 2 stack elements by their sum)
over (nm---nmn ; duplicate 2nd-to-top stack element)
Some words take a text argument (usually the name of a word or a file) that follows them in the
command or source file. For example, the word array is used as follows:
10 array foo (declare an array of 10 words)

The 1-line summary of array is:

array (name ; nwords --- ; declare an array)

Forth systems are interactive, and include an interpreter that processes your keyboard input.
The interpreter lets you invoke a word simply by typing its name. It also lets you enter word
definitions via the keyboard. Most Forth systems also include built-in words that let you create
and edit disk files, and load word definitions from disk files.

2. Forthmacs B

Forthmacs is an implementation of the Forth-83 standard with many enhancements, and
includes a version of the Emacs text editor. Forthmacs has many features that set it apart from
other Forth implementations:

e File system interface
Forthmacs uses named files instead of disk blocks, and provides the following file com-

mands:
fload (file-name ; --- ; load (interpret) a file)
ed (--- ; invoke the Emacs text editor)?*
more (file-name ; --- ; view a file w/ pagination)
cd (directory-name ; --- ; enter a subdirectory)
rm (file-name ; —--- ; delete a file)
mv (oldname newname ; --- ; rename a file)
1s { --- ; list directory contents)

You can use absolute and relative pathnames as in UNIX, except that \ rather than /
separates components.

B This section is to help you get started with Forthmacs; you should buy the complete documentation if you plan on us-
ing FORMULA alot.

2% Emacs documentation is included in the Forthmacs documentation.

Command completion

If you type the start of a word name, <control><space> will extend it to a complete name if
possible. This saves typing when using long names. <control>? prints the names that
extend the current word fragment.

Command history

<control>p and <control>n cycle back and forth through a list of recent command lines;
this can be used to avoid retyping long commands.

Command-line editing

Command lines (including those resurrected by <control>p) may be edited with intra-line
Emacs commands; <return> causes the entire line to be executed, regardless of cursor posi-
tion.

Decompilation and On-Line Documentation
The following words facilitate on-line source code browsing:

see { name ; --- ; decompile a word)
.calls (CFA —-- ;)
whatis (name ; =--- ; print l-line summary)

See can, in most cases, completely reconstruct a word’s definition from its compiled form.
This allows you to conveniently peruse the source code of Forthmacs and FORMULA.
.calls lists all words that call a given word. whatis prints a 1-line summary of a
word (this uses the files whatis.doc and whatis.ind on the release disk; it does not work for
FORMULA words).

Deferred Words

Forthmacs allows a form of forward reference using deferred words. Such a word is
declared by

defer foo
It may then be used in other word definitions. It must later be bound to an actual definition
(say blah) using

° blah is foo

Structured 68000 Assembler

Forthmacs provides a 68000 assembler that uses Forth-like control structures for generating
conditional branches. The assembler uses 8-bit branch offsets. This is inadequate for con-
trol structures in large words, so FORMULA provides a set of structures using 16-bit
offsets; see the file lbranch.

47

APPENDIX C: THE MIDI STANDARD

MIDI (Musical Instrament Digital Interface) is an industry standard for connecting devices
such as synthesizers, keyboards and computers. Connecting the MIDI out socket of one device to
the MIDI in socket of another establishes a MIDI connection. Additional instruments can be
*daisy-chained’’ by connecting the MIDI thru socket of one to the MIDI in socket of the next.

Information is transmitted between devices in the form of MIDI commands. Each com-
mand is a sequence of 8-bit bytes. MIDI provides 16 distinct channels that allow commands to
be directed to specific synthesizers in a chain. Commands consist of an ID for the type of com-
mand being delivered, a MIDI channel number, and whatever parameters are required to describe
the command. For example, a MIDI *‘key down’’ command contains the command ID, the MIDI
channel number, the pitch to be played, and the ‘“‘velocity”’ with which it should be played (this
normally determines the volume of the note).

Each MIDI command is encoded by a command byte (always with the high-order bit set,
and therefore in the range 128-255) followed by some data bytes (always in the range 0-127).
The following table shows the format of standard MIDI commands. The low-order 4 bits of a
command byte are the number of the channel to which the command applies.

command byte meaning data bytes

(x = channel number)

8x keyup velocity, key-number
9x keydown velocity, key-number
ax polyphonic pressure pressure, key-number
bx control change value, control-number
cx patch change patch-number

dx mono pressure pressure

ex pitch bend bend-lo, bend-hi

fx system command varies

In the MIDI numbering scheme, 60 is middle C.

48

APPENDIX D: FORMULA SOURCE FILES

The directory formula.dir contains the following files:

patches
features
lbranch
while
pquan
decls
interupt
panic
malloc
flags
proc-cb
stack
process
queue
aux
tempo
execute
wakeup
schedint
rt-sched
backgrnd
event
gp-sched
gp-creat
procuser
jobcntrl
define
faq
fevent
timebnd
handler
midi-in
midioutl
midiout2
6850-int
midi~hnd
semaphor
tty-out
tty-in
func-key
airshaft
mouse
rational
fraction
ptchname
slots

bug fixes for Forthmacs

words of general (non-FORMULA-specific) utility
assembler words to use 1l6-bit branch offsets
multi-exit ‘‘while’’ statements

quans and pgquans

declarations of deferred and aliased words
interrupt masking, etc.

handler for undo key, out-of-memory panic, etc.
memory allocation
declarations of compile-time flags

basic context block format

words to copy between stacks and memory blocks
context-switching primitives

manipulation of various types of queues
definitions of auxiliary-process pquans
SVT-related stuff

execution queue

wakeup buffer

scheduling interrupt handlers
basic process scheduling
background processes

event scheduling and ::ev
group scheduling

group creation

process/group naming, ID’s, pquan manipulation, listing
suspend, resume, kill

:ap, ::ap and params

future action queue

::fev

time control structures

synchronization primitives for input handlers
low-level MIDI input

MIDI output driver

interfaces to MIDI output driver (events, macros etc.)
6850 interrupt handler

high-level MIDI input

real-time semaphores

terminal output with semaphore protection

terminal input handling

function key handling

crude windowing facility

mouse handling

rational to SVT conversion

AlB, A(B, A.B notation

symbolic pitch names

auxiliary process stuff

{(clock, software interrupt)

sg
sg-set
shape
sh-set
td
td-set
dlr-quan
dollar
dlr-dmo
notation
sm-data
sm-drvr0
sm-event
dlr-sm
generic
tuning
scales
pitchset
debug
decomp
random
formula
init-def

49

sequence generators

install sequence generators
shapes

install shapes

time deformations

install time deformations

quans and pquans used by $-words
the $-words

interface of $-words to DMO

more $-words

SM data structures and configuration words
generic MIDI synthesizer driver
SM event routines

interface of $-words to SM and DSM
default SM initialization words
tuning systems

definitions of some tuning systems
pitch-set words

debugging words

decompiler ("see") extensions
random number generators

system initialization

context block initialization

50

APPENDIX E: DEBUGGING FORMULA PROGRAMS

1. Crash Analysis

Debugging FORMULA programs can be difficult because of multiple processes, asyn-
chrony, and preemption. With experience, it’s not much harder than debugging single-process
programs. The following is a brief list of suggestions.

e Many bugs result in stack overflow or underflow. This can often be detected using .cb
(§3.3), or by printing the stack pointer values (returned by sp@ and rp@) within a pro-
cess.

° If the computer **goes dead’’ (i.e., stops responding to input) but the cursor is still blinking,
the likely causes are 1) an infinite loop in a process or an event routine, and 2) a mask-
softint without a corresponding unmask-softint. The undo key should work in
this case.

o If the undo key fails, the likely causes are 1) an infinite loop in an interrupt handler or ina
section of code that masks interrupts, and 2) a set-mask without a corresponding
restore-mask. In this case all you can do is reboot.

e The quan who points to the currently executing process, and the quan execution-
queue-head points to the top-level object containing this process (perhaps the process
itself). It is often helpful to examine these context blocks after an exception.

Many bugs result in hardware exceptions (bus error, illegal instruction). Forthmacs handles
these exceptions and saves the machine state, allowing it to be examined later (even after a
reboot25) using

showcrash (--- ; print hex dump of 68000 state at last exception)

This shows the values of the 68000 registers and stacks at the time of the exception. The regis-
ters of greatest interest are the program counter (PC), and Forth’s “‘virtual PC™’ (the A5 register).
These PC points into the code word being executed at time of the crash, and A5 points into the
high-level Forth word from which it was called. The easiest way to figure out the words involved
is to use
dump (start-addr nbytes --- ; print hex/ASCII memory dump)

to survey the relevant areas of memory, looking for dictionary headers (which contain the ASCII
word names). You'll want to use hex to switch to hexadecimal mode. Once you’ve found out

exactly where your program was when it crashed, and you’ve examined the contents of the regis-
ters and stacks at that point, it’s usually easy to figure out what went wrong.

During debugging it is helpful to know the internals of Forthmacs (i.e., the structure of its
dictionary and its register usage). This information is in the Forthmacs manual (see Appendix
A).

2. Recompiling FORMULA

The FORMULA source is divided into many files (sce Appendix D). Each file foo begins
by creating a symbol _foo inthe loaded vocabulary. Typing

recompile _foo

will forget back to that point in the dictionary, and will recompile that part of FORMULA. It
also calls restore, so youmust run formula again after recompiling.

5 Stack dumps may be meaningless after a reboot, because memory has been zeroed.

51

You can generate stripped-down versions of FORMULA by editing the file flags. This file
contains compile flags whose presence enables the compilation of a particular feature. For exam-
ple, the $-words are compiled only if _DOLLAR_ is defined.

Compile errors may leave the Forth interpreter with an undesired vocabulary search list
(§3.6). You can examine the search list using order. You can restore it to the standard state
by typing

only forth also definitions

52

APPENDIX F: FORMULA GLOSSARY

The following is a list of the words defined by FORMULA. Each word name is followed
by the name of the source file in which it is defined.

5 dollar ((pentl scales
$$ dollar ((pent2 scales
$*k dollar ({stretch scales
52 notation (.aux slots

$5 notation (.cb procuser
$8 notation {.cb-summary procuser
$DMO dlr-dmo (.def-class patches
$DSM dlr-sm (.exec-class patches
5SM dlr-sm (.gp procuser
Schannel dlr-quan (::-docol define
$cvolume dollar (::ap define
Sgtranspose dlr-quan (::ev event
$location dlr-quan (::fev fevent
$n dollar (::9p define
$n*k dollar (::sh sh-set
$note-routine dlr-quan (::td td-set
$nroll dollar (::tsg decomp
Spatch dlr-quan (::tsg sg-set
Spedal dlr-quan (DSM~-config generic
Spedal-routine dlr-quan (DSM-paradigm generic
$pitch-convert dlr-sm {M-command) midioutl
Spriority dlr-quan (M-out) midioutl
Stranspose dlr-quan (MIDI-command midioutl
$volume dlr-quan (MIDI-output midioutl
& sg (P semaphor
(#keys—-in-buffer) tty-in (RT-active-exit rt-sched
(#newkeys-in-buffer) tty-in (SM-config generic
($n dollar {(SM-paradigm generic
((.gp* procuser (v semaphor
((::38h decomp ([patches
((::sh sh-set (] patches
((::td decomp (add-empty-multi) sm-event
((::td td-set (add-multi) sm-event
(([patches (add-single) sm-event
((] patches (adr pquan

((bye formula (arouse-process) wakeup
({cr patches (ascmin pitchset
((cursor-off patches {assign-ID procuser
((cursor-on patches (at patches
((esc patches (blues pitchset
({init-active initdef (clear-aux slots
((just scales (create-MIDI-handler midi-hnd
({(justl scales (def-class patches
((1f patches (descmin pitchset
((pelog-barang scales (dispose) sm-event
((pent scales (do-scan patches

(exec—-class
(fifo-append)
(fifo-get)
(fin-active
(forth-context)
(frac-literal?
(free)

(f£rnd2

(iadr
(init-active
(init-passive
(init-process)
(insert-deadline)
(insert-time-position)
(invmajsc

(ito

(key-down)
(key-up)

(kill
(link-multi)
(major

(majsc
{make-action-rec)
(malloc)
(mask-softint)
{mask-sysclock)
(maxtime

(minend

(minloop

(minor

(mintime

(next

(null

(paddr

(panic

(pget

(pn™)

(poffset

{pto

(r>1

(r>1)

(rec=->XQ*)
(rec->wakeup)
(recompute-prior)
(record->stack)
(restore
(restore-forth-state¥*)

(restore-machine-state¥*)

(restore-mask)
(resume
(rts

patches
queue
queue
initdef
panic
fraction
malloc
random
pquan
initdef
initdef
initdef
queue
queue
pitchset
pquan
sm-event
sm-event
jobcntrl
sm-event
pitchset
pitchset
stack
malloc
interupt
interupt
timebnd
timebnd
timebnd
pitchset
timebnd
jobcntrl
pitchset
pquan
panic
pquan
procuser
pquan

pquan
rational

rational
execute
wakeup
sm-event
stack
formula
process
process
interupt
jobcntrl
event

53

(save-forth-state*)
(scale
(set-all-mask)
(set-complex-state)
(set-default-mask)
(set-mask)
(set-state)
(stack->record)
(suspend
(switch-to-XQ*
(switch-to-XQ¥*)
(switch-within-tree)
{switch-within-tree*
(to

(unlink-multi)
(unlink-single)
(unmask-softint)
(unmask-sysclock)
(update-SVT)
(update-cur-offset)
(wake-input-handler)
(wake-process)
(wakeup-call)
(wakeup-check)
+MIDI

+PVemit

+a-

+b-

+c-

+clock

+d-

+e-

+£-

+fraction

+g-

+mouse

+n

+nps

+oct

+perf

+ps

+semaphore

+shaft

+tty

-MIDI

-PVemit

process
random
interupt
midioutl
interupt
interupt
midiautl
stack
jobcntrl
execute
execute
process
process
pquan
sm-event
sm-event
interupt
interupt
tempo
wakeup
handlex
wakeup
wakeup
wakeup
6850-int
airshaft
ptchname
ptchname
ptchname
schedint
ptchname
ptchname
ptchname
fraction
ptchname
mouse
ptchname
pitchset
ptchname
schedint
pitchset
semaphor
airshaft
func-key
interupt
airshaft
ptchname
ptchname
ptchname
interupt
ptchname

—e-
f
-fraction
-g-
-mouse

-n

-nps

-oct
-perf

-ps

-semaphore

-shaft
-ttty

.::ap
rev
::gp
.::8h
.::8h
.1:td
.iitd
.1:tsg
.t:tsg
.;;ap
.;;ev
./ /9P
.7:s8h
.22td
.;itsg
.adr

.all

.aux

.cb

.eq

.iadr
.ito
.padr
.pget
.poffset
.pquan
.ps
.pto
.quan
.stack
.to
.Wg

/1

/1
/1II
/16
/16.

ptchname
ptchname
fraction
ptchname
mouse
ptchname
pitchset
ptchname
interupt
pitchset
semaphor
airshaft
tty-in
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
decomp
procuser
slots
procuser
debug
procuser
decomp
decomp
decomp
decomp
decomp
decomp
pitchset
decomp
decomp
procuser
decomp
debug
notation
notation
notation
notation
notation

54

/2
/2+
/2+
/ZIII
/2.
/2.4
/32
/4
/4+
/4-3
/4-3
/4..
/4.8
/4.8
/64
/8

/8
/8+
/8-3
/8-3
10/16
118
12/16
16/32
16/8
28
2/16
2/2
2/32
2/4
2/8
32/16
4/32
4/4
58
5/8
6/16
6850-handler
7/8
8%
8/16
8<<
8>>
:-)
r:ap
::ap-init-active
::ash
iiev
::fev
1:gpP
::gp-init-active

notation
notation
notation
notation
notation
notation

. notation

notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
notation
6850-int
notation
notation
notation
features
features
features
define
define
sh-set
event
fevent
define
define

::gshl

::g3h2

::gtdl

r:gtd2

::8h

::shl

::8h2

:tdl

:td2

::tsqg

:ap

:s8g

:sh

:td
;;ap
;rev
;9P

;i8g

;:s8h
;. td
;ap

;sg
;sh
std
BP-deadline
DMO-change-patch
DMO-note
DMO-note-prep
DMO-pedal
DSM-$note-routine
DSM-$pedal-routine
DSM-note-end
DSM—-note-prep
DSM-note-start
DSM-pedal-event
FAQ-active-exit
FAQ-future-event
FAQ-time~advance
FK-action:
FK-routine
FK-table
MIDI-command
MIDI-command-event
MIDI-handler
MIDI-inbuf
MIDI-input
MIDI-outbuf
MIDI-output
MIDI-output-event
MIDI-time-tag
MIDI-transmit

sh-set
sh-set
td-set
td-set
sh-set
sh-set
sh-set
td-set
td-set
sg-set
define

8g

shape

td

define
event
define
sg-set
sh-set
td-set
define

sg

shape

td
backgrnd
dlr-dmo
dlr-dmo
dlr-dmo
dlr-dmo
dlr-sm
dlr-sm
sm-event
dlr-sm
sm-event
sm-event
faq

fag

faqg
func-key
func-key
func-key
midiout2
midiout2
midi-hnd
midi-in
midi-in
midioutl
midiout2
midiout2
midi-hnd
midioutl

55

P

PV#line

PV#out

PV (emit

PV (esc

PVat

Pemit
RT-active-exit
RT-awaken
RT-sleep
RT-time-advance
SM-$note-routine
SM-$pedal-routine
SM-note-end
SM-note-prep
SM-note-start
SM-param-change
SM-pedal-down
SM-pedal-up

v

Vemit

a-

absolute
active-FK-table
active-create
active-exit
addr

adr

aps

arg0

argl

arg2

args

array

ash-setup

ashcb
assign-proc-ID
awaken

b_

background
beats-per-minute
bitmask
bitprob
block-key?
blues
branch-addr
brnd

c$

c-

carray

cbsize

semaphor
airshaft
airshaft
airshaft
tty-out
airshaft
tty-out
rt-sched
rt-sched
rt-sched
rt-sched
dlr-sm
dlr-sm
sm-event
dlr-sm
sm-event
sm—-event
sm-event
sm-event
semaphor
tty-out
ptchname
shape
func-key
rt-sched
decls

pquan

pquan
pitchset

proc-cb
proc-cb
proc-cb
proc-cb
features
sh-set
slots
procuser
decls
ptchname
backgrnd
rational
random
random
tty-in
pitchset
timebnd
random
dollar
ptchname
features

pquan

ccon
check-stacks
child

clear-aux
clear-flag
compact-search-order
compile-frax

con

con.outer
copy-action-rec
create-MIDI-handler
create-tsg

cseg

cstate

cur-SVT
cur~-SVT-frac
cur-offset
current-generation#
d_

deadline
declare-channel
declare-synth
default-FK-routine
default-kh

delay

dimscale
disable-userclock
do-TDslots
do-action

do-aux

done

dps

drvr(0-buf
ds-level

dstack

e-
enable-userclock
end-time

equal

error

event

event-rec
execution-queue
external-time

f..

fa$

faq

fe$

fer$

ferc$

fgetline

shape
stack
proc-cb
slots
proc-cb
patches
fraction
td
td
stack
midi-hnd
sg
shape
decls
tempo
tempo
wakeup
jobcntrl
ptchname
proc-cb
sm-data
sm-data
func-key
schedint
proc-cb
pitchset
interupt
td
faq
aux
aux
pitchset
sm-drvr0
timebnd
proc-cb
ptchname
interupt
timebnd
tuning
rational
event
event
execute
proc-cb
ptchname
dollar
faq
dollar
dollar
dollar
patches

56

fifo~append
fifo-count
fifo-get
fin-active
find-pgq

first-cd
first-descendant
first-offset
fkey

flags

for-now
foreground
forget

fork

formula
forth-context
frac-literal?
frac(

frac]

free

free-id
free-timebnd-stacks
frnd2
frnd2-init
frnd2-tab
frnd2-val

frnd3

fromd

fromr
future-event
future-routine
g-

generation#
generic-MIDI-driver
generic-channel
generic-sd
genocide
get-MIDI-command
get-a34
get-filename+
get-seq
getparams
global-ptr
gp-active-exit
gp-awaken
gp-time-advance
grnd
gshl-setup
gsh2-setup
gtdl-setup
gtd2-setup

queue
queue

queue
decls
decomp
sm-data
proc-cb
wakeup
func-key
proc-cb
wakeup
backgrnd
pquan
define
formula
panic
fraction
fraction
fraction
malloc
procuser
timebnd
random
random
random
random
random
stack
stack
decls
fag
ptchname
jobentrl
sm~drvrl
generic
generic
jobentrl
midi-hnd
panic
patches
dlr-sm
dollar
aux
gp-creat
gp-sched
gp-sched
random
sh-set
sh-set
td-set
td-set

iadr

id

id->cb
idle-process
immortal
inf-con

inf-con

init-$
init-MIDI-input
init-MIDI-output
init-SM
init-active
init-globals
init-ids
init-main-process
init-mem-alloc
init-mouse
init-passive
init-sema
init-wakeup
input
input-handler
insert-deadline

insert-time-position

interpret-frax
invmajsc
ip-save
ipget

ipto

irnd

itdl

itd2

ito

itsg
key-handler
kill
kill-all
latest-ap
left-button
lex-level
limit
limited-line-feed
local-ptr
lpause

m$

m$$

m$*k

m$n

m$n*k
main-process
major

pquan
procuser

procuser
formula
jobentrl
shape

td
dlr-quan
midi-in
midioutl
sm-data
decls
formula
procuser
formula
malloc
mouse
decls
semaphor
wakeup
aux
handler
queue
queue
fraction
pitchset
proc-cb
procuser
procuser
random
td-set
td-set
pquan
sg-set
schedint
jobentrl
jobcntrl
rt-sched
mouse
timebnd
random
airshaft
aux

td
dollar
dollar
dollar
dollar
dollar
decls
pitchset

57

majorscale
make-XQ-head*
make-action-rec
malloc
mask-softint
mask-sysclock
mask-userclock
mat

max-stack
maxdel

maxend
maxtime

mcc

mcount

mhead
min-stack
mindel

minend
minloop

minor
minorscale
mintime

mkd

mku
mouse-active
mouse-handler
mouse-hnd
mouse-in-process
mouse-routine
mpb

mpc

mpp

mtail

mouse-x
mouse-y
my-#line
my-#out
my-bot

my—-top

n#

n>ps

nada

name

nargs

ndup
needparams
nest-level
new-.inline
next-proc
next-sysexcl-index
not-now

pitchset
semaphor
stack
malloc
interupt
interupt
interupt
midiout2
timebnd
proc-cb
timebnd
timebnd
midiout2
midioutl
midioutl
timebnd
proc-cb
timebnd
timebnd
pitchset
pitchset
timebnd
midiout2
midiout?2
mouse
mouse
mouse
mouse
mouse
midiout2
midiout2
midiout2
midioutl
mouse
mouse
airshaft
airshaft
airshaft
airshaft
ptchname
pitchset
decls
procuser
proc-cb
stack
dollar
timebnd
decomp
proc-cb
midioutl
wakeup

notguan

nps

num-type
ocon

oct
octave-offset
oseg

our- (esc
our-at
our-skey

Py

paddr

pallot

panic

params
params-0K?
params-addr
parent
patch-emacs
patch-erase
patch-iftrue
pcall

ped

ped$

pedals
pedoff
pedoff$
pedon

pedon$
perform-all
pget

poffset
pquan

pquan0
pquanl
pquan2
pquan3
pquané
pquan5
pquan?
pquanlist
pgquans
preempted-CB
pret
proc-name"
process-XQH-delay*
process-delay
propagate-delay
psbase
psdown

psget

pquan
pitchset

fraction
shape
ptchname
ptchname
shape
patches
patches
patches
tuning
pquan
pquan
panic
define
decls
decls
proc-cb
patches
patches
patches
aux
dollar
dollar
sm-data
dollar
dollar
dollar
dollar
faq
pquan
pquan
pquan
proc-cb
proc-cb
proc-cb
proc-cb
proc-cb
proc-cb
pquan
pquan
pquan
proc-cb
aux
procuser
rt-sched
gp-sched
gp-sched
pitchset
pitchset
pitchset

58

psind

pslast

psmod

psptr

pssize

psup

pto

pvalue

quan

quan?

quick-key?

r

b]

r>i

ratio
raw-future-event
right-button
realias
rec->wakeup
recompile
record->cbstack
record->stack
relative

relmous

repeat

repeat

rest

restore
restore-TOS-intvecs
restore~-kbd-routines
restore-main-cursor
restore-mask
resume

retadr

reverse
revive-group

rnd

rndind

rndinit

rp-save

rpause

rs-level

rscale
rscale-ptr
rstack
save-TOS-intvecs
save-main-cursor
savel

scale:

scan-::ap
scan-::ev

pitchset
pitchset
pitchset
pitchset
pitchset
pitchset
pquan
aux
pquan
pquan
tty-in
ptchname
dollar
rational
shape
fevent
mouse
features
wakeup
decls
stack
stack
shape
mouse
while
while
dollar
decls
interupt
interupt
airshaft
interupt
jobentrl
aux
stack
gp-creat
random
random
random
proc-cb
td
timebnd
rational
rational
proc-cb
interupt
airshaft
sm-event
tuning
decomp
decomp

scan-: :gp
scan-::sh
scan-::sh
scan-::td
scan-::td
scan-::tsg
scan-::tsg

seqg

seg.outer
select-paradigm
semaphore:
seqgno>prior
set-deadlinex*
set-default-mask
set-flag
set-mask

set-ps
set-shaft
set-synth-config
set-userclock-freq
setup

sg-fin

sg-value
sh-create

sh-fin

sh-setup
sh-value
shl-setup

shlcb

sh2-setup

sh2cb

shaft (emit
shemit
shift-convert
shuffle-down
sleep
softint-handler
softint-mask-level
softint-request
sp-save
stack->cbstack
start-group
startup

suicide

suspend
switch-to-XQ*
sysclock-handler
sysexcl-index
system-mindel
tbase

tcall

decomp
decomp
decomp
decomp
decomp
decomp
decomp
td
td
dlr-quan
semaphor
dlr-sm
execute
interupt
proc-cb
interupt
pitchset
airshaft
sm-data
interupt
timebnd
sg
sg
shape
shape
sh-set
shape
sh-set
slots
sh-set
slots
airshaft
tty-out
dlr-sm
patches
decls
schedint
interupt
interupt
proc-cb
stack
gp-creat
decls
jobcntrl
jobecntrl
execute
schedint
midioutl
schedint
tuning
aux

59

tcenter
td-create

td-fin

td-init
td-return
td-value
tdl-setup

tdlcb

td2-setup

td2cb
temp-stack
tempo

test-flag
time-advance
time-position
timebnd-time-advance
to

tod

tor

trand

transpose

tsgchb

tsptr

tto
tuning-convert
unalias
undo-handler
unlink-non-singleton
unmask-softint
unmask-sysclock
unmask-userclock
usec-per-SVT
value

value2

vol

wagain
wait-for-input

wakeup-immortal-process

wakeup-process
wakeup-routine
wakeup-time
wbegin

wbrif

welse

while

while

who

wholetone

wif

woffset
wrepeat

tuning
td

td
td
td
td
td-set
slots
td-set
slots
panic
tempo

proc-cb
decls
proc-cb
timebnd
pquan
stack
stack
random
stack
slots
tuning
pquan
tuning
features
tty-in
gp-creat
interupt
interupt
interupt
tempo
aux
aux
dollar
lbranch
handler
jobecntrl
jobentrl
proc-cb
proc-cb
lbranch
lbranch
lbranch
while
while
pquan
pitchset
lbranch
lbranch
lbranch

wrepeat
wthen
wuntil
wwhile
wwhile
z$

while
lbranch
lbranch
1lbranch
while
dollar

60

61

APPENDIX G: DIFFERENCES BETWEEN VERSION 3.4 AND PREVIOUS VERSIONS

If you have written programs under an earlier version of FORMULA you will have to

change them somewhat for version 3.4. The following are some of the major differences:

o))

@
3

@
&)

©)
)
®)

€))
(10)
an

12)

All process creation is done using : : constructs. Executing a :ap word from the inter-
preter no longer causes it to run as a separate process. [n params] is relevant
only withina : : construct. _

The shl foo notation for installing auxiliary processes no longer exists. You must use
: :shl,etc.

A TSG word cannot be directly called within an active process definitions. It can be
called only within ::tsg ... ;;sgor :sg ... /Sg.

create-group no longerexists. Use ::gp.

Timing sequence generators no longer have an implicit infinite loop around them. Ifa
TSG reach the end of its definition, it exits and quarter-note durations are used.

A volume shape or TD disappears (and ceases 10 have an effect) when the end of its
definition is reached.

Symbolic pitch names no long refer to the ‘‘closest instance’’ of the named pitch; they
now refer to the instance within the current octave.

Instead of directly assigning to rscale and tempo, you should use beats-per-
minute and usecs-per-SVT.

Words like d/8 no longer exist. Use 118 instead.
Use 1|8insteadof 1 8 r>i.

Many words relating to $ have been renamed; for example, volume becomes
$volume, patch becomes $patch, etc.

+double and —-double went away; use $$ instead.

