String Layout in Redundant Disk Arrays

Lee Newberg* and David Wolfe
University of California, Berkeley

Abstract

It has become economically advantageous to use arrays of inexpensive disks in
place of fewer large disks. Some care must be taken to maintain high reliability
in these new systems; adding extra disks to store redundant information achieves a
system which is able to withstand some disk failures. The problem is exacerbated,
however, when a controller or power line fails, and a string of disks go down simul-
taneously. We discuss how the strings should be laid out to maximize reliability of
the system.

1 Introduction

Improvements of CPU performance have far exceeded the speedups achieved in I/0. CPU’s
can handle much higher bandwidths than can be provided by a small number of disks.
[PGK] suggest using a redundant array of inexpensive disks or RAID to ‘boost I/0 band-
width and reduce disk latency times. Small disks can spin faster, providing faster seek
times and data transfers. An array of disks operating in parallel increases bandwidth
when accesses are made to separate disks.

Unless we take special care, these advantages are at the expense of reliability. The
likelihood of a single disk failure does not change significantly with the size of a disk.
Thus if the number of disks is increased tenfold, the likelihood that a disk will be out also
increases tenfold. RAID uses extra disks to store redundant information, so that data lost
after disk failures is recoverable.

The implementation suggested in [GHKKP] is to use a square array of data disks, with
an additional check disk in every row and column: A row (or column) check disk keeps
the parity of all the data disks in its row (or column). Now each update to the disk array
consists of updating three disks - a data disk and two check disks. (GHKKP] argue that
the loss of any two disks is still recoverable, and furthermore this arrangement is nearly

*Supported by a National Science Foundation Graduate Fellowship

1

optimal among those that update only three disks. This implies high reliability if disk
failures are uncorrelated.

However, some disks failures are correlated. Typically, several disks are connected to
the same power supply and are controlled by the same controller. Several disks on such
a string can all fail simultaneously. We discuss how these strings should be laid out to
maintain high reliability of the system.

2 Model and Definitions

2.1 2d-Parity*

We consider two layouts of disks. The first is called 2d-parity. Data is stored, unaltered,
in an m X m square array of data disks. In addition there are 2m check disks which are
used to store parity information. Each row and each column has its own check disk. A
row check disk is placed at the right end of its row and a column check disk is placed at
the bottom of its column. See Figure 1.

Figure 1: The 2d-party layout of disks

The check disks store parity information for their row or column. Each bit on the check
disk for a given row (or column) is computed from the corresponding bit from each disk
in that row (or column). The bit on the check disk is the parity (i.e. exclusive-or) of the
corresponding bits on the data disks.

Disk reads from this array are straight forward. The required data is available unen-
coded from a single disk. Writes are a little more complicated. Parity information must
be updated as well as the data information. Each write will therefore involve three disks
— one data disk, one row check disk, and one column check disk.

*A glossary of terins is located in Appendix B. Also, theorems and claims referenced in the paper are
presented in Appendix A.

o)

The check disks enable the system to retrieve data even when some of the data disks
have failed. 1If a single disk in a row has failed its contents can be computed from the
remaining data disks on the row and the row’s check disk. The exclusive-or of the bytes
on these disks gives the bytes desired.

Sometimes when a collection of disks fails data can be reconstructed and sometimes it
cannot. [GHKKP] give an algorithm that determines how to retrieve data if it is possible.
They show that if any two disks fail all information can be retrieved. There are some
combinations of three disks failing that will result in loss of data but they are not common.
The only triplets that cause problems are those consisting of a data disk, its row check
disk, and its column check disk.

2.2 Complete 2d-Parity

By adding more redundancy a system can guarantee the availability of data when any three
disks have failed. One such system involves adding one more check disk which stores the
parity of all the data disks. This total parity check disk is placed in the lower righthand
corner of the array, below the row check disks and to the right of the column check disks.
We call this model Complete 2d-parity. See Figure 2.

Figure 2: The complete 2d-parity layout of disks

Complete 2d-parity is reliable enough to survive the failure of any three disks. A
combination of four disks will result in the loss of data only when the four disks comprise
the four corners of a square. This is true of any square whether the four disks are all data
disks or some are check disks. Figure 3 shows a bad square.

The blurring of the distinction between data disks and check disks is what makes
complete 2d-parity interesting from a theoretical standpoint. All the disks have exactly
the same recovery properties regardless of whether they are data disks or check disks.
This strong symmetry property makes it possible to prove many theorems about complete
2d-parity. These, in turn, can be used to describe the normal 2d-parity array.

3

Unfortunately, although complete 2d-parity is useful for theoretical purposes, it is not
so useful in application because a write involves four disks. As DRAM prices drop it may
become feasible to place the total parity information in memory. In this case data writes
are reduced to just three disks which is as efficient as normal 2d-parity.

2.3 Data Planes

The main advantage of an array of disks is the increase in [/O bandwidth that it provides.
Reads or Writes to different disks can occur simultaneously. An array of m x m data disks
can support up to m? reads at a time,

Three disks are involved in writes to a 2d-parity array because a data disk and two
check disks must be written. Writes to separate data disks may occur simultaneously only
if they are not in the same row and not in the same column. If two data disks are in the
same row (or column) they share the same row (or column) check disk and therefore one
write must wait for the other.

To prevent this write bottleneck different data planes are introduced. Conceptually the
disk arrangement is similar to the arrangement for complete 2d-parity. An extra row and
column is added to the m x m array of data disks giving an n x n array of disks where
n = m + 1. Each disk is partitioned into sections in an identical fashion. A section of one
disk along with the corresponding section from each of the other disks form a data plane.

Each data plane can use a different set of disks for check disks. This has the advantage
that two writes to disks on the same row will not contend for the same check disk unless
both writes are to the same data plane. Each data plane has exactly one pivot disk’ which
uniquely determines the location of the check disks on that plane. The row check disks are
those disks in the same column as the pivot disk. The column check disks are those disks
are in the same row as the pivot disk. The pivot disk itself is unused in the data plane.
The remaining disks are for storing unencoded data. See Figure 4.

4

Figure 4: The location of the check disks is uniquely determined by the location of the pivot
disk.

The 2d-parity arrangement we present later in the paper will have pivot disks along
the main diagonal. Figure 5 shows where the pivot disks will be placed.

Figure 5: Pivot disks are used to distribute parity information among all the disks in the
array. Each row and column should have a pivot disk so that every disk (which is not a
prvot disk) has the chance to be a check disk. The placement of pivot disks along the main
diagonal of the array achieves this goal.

3 Bad Squares

Both the design and the evaluation of a reliable string layout require an understanding of
what combinations of disk outages are irrecoverable. For this we introduce the concept of
a bad square.

A bad square or bad cycle is a minimal collection of disks whose failure will result in the
loss of data in the 2d-parity arrangement. In this sense, minimal means that if any of the
disks is magically repaired then it becomes possible to reconstruct the data. Minimality
also implies that every collection of disks that causes a loss of data must contain a bad
square.

In Theorem 1 we show that bad squares can only take on a very specific form. A bad
k-square is a bad square consisting of 2k disks. Each of & columns and each of k rows has
exactly two bad disks. It is possible to walk from disk to disk visiting each disk once in a
cycle. Starting with one disk there is another disk in its row, which has another disk in its
column, which in turn has another disk in its row, etc. Eventually the first disk is revisited
as the walk comes from the disk in its column.

An example of the simplest bad square is the bad 2-square shown in Figure 3. In this
case the walk is trivial. Starting with the upper left disk, the disks are visited in clockwise
order. More complicated examples are shown in Figure 6. '

Figure 6: Bad k-squares for k£ = 4. On the left is a bad square, and on the right is the
same bad square after a permutation on the rows and columns.

We now have a handle on what patterns of disk failures cause loss of data. If a subset
of the disks that have failed contain a bad square then there is data loss; otherwise, there

isn’t. This will help with the design of string layout, since we know what patterns to avoid,
and with calculating the mean time to failure of a RAID array.

4 String Layouts

We now consider the string and pivot disk layouts for a 2d-parity arrangement. We would
like a layout which

1. Withstands failures: Naturally, we want to minimize the chance of data loss.

6

2. Uses few strings: Since controllers and power supplies can be costly, we want to use
as few as possible. Furthermore, if we use too few strings (so that too many disks
are on each string), we can divide the strings, and still maintain a good layout.

3. Distributes traffic: Check disks are a bottleneck for writes: Every write to a disk
In a row writes to the same row check disk. So we want to distribute the parity
information evenly.

First we discuss the limits on the reliability any disk layout can attain, and then we
propose a layout that meets these limits.

4.1 Theoretical limits

Since we would like to distribute the parity, it is natural to make every disk in the disk
array be a pivot for some plane - then every disk’s role is totally symmetric. If disk writes
are evenly distributed then so is the traflic. Unfortunately, as we show in Claim 1, no
matter what the string layout, there always exists a pair of strings whose failure leads to
data loss. We must, therefore, abandon the possibility of making every disk a pivot disk
because of reliability concerns.

However, our objective is merely to distribute the check disks (and therefore, the traffic),
so 1t 1s sufficient to place the pivot disks in such a way that there is one in each row and
column. This way most disks have the opporfunity to be a check disk for some plane. The
placement of pivot disks along the main diagonal (See Figure 3) leads to an optimal layout.

Claim 2 shows that even in complete 2d-parity, there are always three strings whose
loss is fatal. So our goal is to arrange the strings in 2d-parity so as to withstand all possible
failures of 2 strings. To attain this goal the arrangement must must be constrained as in
Claim 4, and therefore approximately 2n strings are required {Claim 5).

4.2 String layout

In Figure 7 we show a string layout which comes within two strings of the limits mentioned
above. All the disks on the main diagonal (the pivot disks) belong to one of two strings.
These two strings could be merged but we have chosen not to merge them so that the
number of disks per string remains close to uniform.

The disks not on the main diagonal are laid out on strings which are diagonals perpen-
dicular to the main diagonal. Each diagonal is drawn in a wrapped fashion. Starting with
a disk in the bottom row, a line is drawn traveling in the northeast (up and to the right)
direction. When it hits the right side of the array it wraps around to the left side. The
disk immediately after the disk in the rightmost column is the disk in the leftmost column
one row higher. From this disk the line continues along to the northeast until it terminates
in the top row.

-3

Figure 7: An optimal string layout having all strings of the same length

From a line we define two strings. All those disks on the line that are below the main
diagonal are on one string and those that are above the main diagonal are on the other
string. One of the disks on the line will be on the main diagonal. This disk belongs to one
of the two strings running along the main diagonal.

If the pivot disks are placed on the main diagonal this layout is nearly optimal. It
survives all pairs of string failures and it uses 2n + 2 strings which is only 2 more than the
2n absolute minimum. It has the advantages that there are separate strings containing
just pivot disks, and all of the strings but one are of the same length. One could choose to
pack the n virtual parity disks on n — 1 actual disks, and have all strings the same length.

If the uniformity of the string length is not important, distributing the pivots among
the other strings yields a layout which achieves the absolute minimum of 2n strings for
n odd. This new layout (Figure 8) is the same as the one just described except that the
two strings on the main diagonal are not used. The lines of disks described previously are
divided into two strings in much the same way as they were before. One string is all the
disks on the line that are above the main diagonal and the other string is all the disks on
the line that are below or on the main diagonal. This layout uses 2n strings — half are of
length (n — 1)/2 and half are of length (n + 1)/2. If n is even, the same arrangement can
be used, and strings below the diagonal will have two parity disks.

Either of these two layouts is theoretically optimal in many ways. Their use in RAID
will make it more reliable.

Figure 8: An optimal siring layout using the absolute minimum number of strings

5 Calculating Reliability

The reliability of a particular RAID layout can be hard to evaluate. In the past researchers
have relied on computer simulations to calculate reliability. However, the classification of
bad squares characterizes those sets of disk failures that cause data loss. This, along with
a simple model of disk repair times, allows us to calculate the reliability of a RAID layout
to high precision without the use of a computer simulation.

To calculate the chance that, for instance, & disks have failed, we introduce a repair
strategy which we call scheduled repairs. Here we assume that the entire disk array is
repaired at regularly scheduled intervals. This is convenient for calculations, since now if
disk failures are exponentially distributed, the probability of failure of a given disk on one
interval is independent of any other interval. Furthermore, the probability of failure of the
disk array in a given interval is exactly the probability that there is a bad arrangement of
failed disks just before the repairs occur.

We can calculate the chance of data loss during a repair interval by calculating the
chance that the set of disks which go bad during that interval include a bad square. An
example of this calculation, estimating the mean time to data loss considering only disk
failures, is outlined in Claim 6: We give an exact formula for the number of combinations
of 3 failed disks and the pivot disk that include a bad square. We do the same for 4, 5,
and 6 failed disks. We multiply the values generated by these formulas by the chance that
a particular 3, 4, 5, or 6 disks fail and add the terms together. This gives a very good
approximation of the probability that there is data loss. Table 1 gives some results.

9

data | repair MTTDL
disks | interval (years)
3116 daily 5,220,000
weekly 106,000
9|64 daily 1,300,000
weekly 25,600

Table 1: Mean time to data loss of 2d-parity arrangement with one pivot. Mean time to
failure of a single disk is 75K hours.

The incorporation of information about string failures in the computation is compli-
cated by the interactions between string failures and disk failures. Although the combi-
natorics is more complicated, the results are still reasonably precise. An outline of the
calculations is given in Claim 7 and the results are given in Table 2.

MTTDL MTTDL
data | repatir min max
disks | interval (years) {years)

5116 hourly | 297,000,000 { 313,000,000
daily 517,000 547.000
weekly 10,700 11,500
9164 hourly 41,400,000 | 43,000,000
dally 72,300 75,600
weelkly 1,410 1,690

Table 2: Upper and lower bounds on mean time to data loss of 2d-parity arrangement with
string failures. Mean time to failure of a single disk is 75K hours, and of a string is 250K
hours.

6 Conclusions

The 2d-parity arrangement of check disks removes bottlenecks but maintains high reliability
of a disk array. The suggested string layout for the arrangement can withstand the failure of
any two strings, the highest resiliance possible. Further, the layout uses the fewest strings
possible, minimizing the expense for separate power supplies and disk controllers. If shorter
strings are desired, they can be subdivided without weakening the layout significantly.
Mean time to data loss can be estimated explicitly by {1) classifying those collections
of disks whose failure results in data loss, and (2) assuming a simple repair strategy. These

10

techniques give precise estimates by formula which were previously obtainable only by
simulation. _

These results leave open the issue of designing rectangular (rather than square) disk
arrays. Furthermore, in application, it is desirable to have the strings be of a fixed size
independent of the size of the disk array, for uniform design of controllers and power
supplies. It is hoped the results in this paper could be generalized to these situations.

A Theorems and Claims

Figure 9: Bad k-squares for k = 4. On the left is a bad square, and on the right is the
same bad square after a permutation on the rows and columns.

Theorem 1 A set of failed disks, S = { Dy, ,,}, is a bad square for the complete 2d-parity
arrangement if and only if it is some permutation of the rows and columns in

SIZ U {Dl,th.lr}-lmodk}

0<i<k

for some k, 2 < k <n (see Figure §).

Proof:

Failure of a bad square is fatal since each row and column of the bad square has exactly
two failed disks: Toggling all of the bits in the failed disks would not affect any of the
other disks in the array. Hence we cannot distinguish these two possible states of data to
recover.

We will show by construction that every minimal set of failed disks, S, is a bad square.
Choose a failed disk Dy, ,, from S. Since S is minimal, we must not be able to reconstruct
this disk, and there exists another failed disk, D, ,, in the same row as D,, , . Similarly

11

there exists a failed disk D,, ,, in the same column as D, ,,. Continuing in this fashion,
eventually we will repeat a column or a row; ie. for j < ¢ we will reach a disk D,,_, ,. with
Yi = Yj, or a disk Dy, . with z; = z;. In the former case,

{ij-yjﬁ DIj!yJ+1 » DZJ+1 Wit s Dl’:’-l,yi}
form a bad square. In the latter,
{Dx31§1+1 ¥ Dw;+1,y3+1‘« Dr]+lﬂyj+2’ e Dr”y‘}

do. In fact, since S is minimal, the first case occurs, 7 = 1, and the z;’s and y;’s form the
inverse of the permutation in the theorem. =

Corollary 1 The number of bad k-squares is (n)?/2k.

Proof: (n)? is the number of ways to pick the ordered k£ rows and & columns. But this
counts each permutation exactly 2k times, one for each possible start disk. =

Claim 1 If every disk is a pivot on some plane, then there exists a string and disk combi-
nation whose fatlure is fatal, no maiter what the layout of strings.

Proof: Take a string, S, which contains any two disks [y and ;. There exists a bad
2-square containing Dy and D,. A third disk in this 2-square will be the pivot for some
plane, and failure of the fourth disk and the string S leads to data loss on this plane. |

Claim 2 In complete 2d-parity, there exist a string and two disks whose fatlure is fatal,
no matter what the layout of strings.

Proof: Take a string, 5, which contains two disks, and a bad 2-square containing these
two disks. Failure of 5 and the other two disks in the bad square is fatal. u

Claim 3 Complete 2d-parity requires n + 1 strings to protect against all possible failures
of two strings.

Proof: If any two strings contain 2n disks, then the failure of these disks is fatal: There
are fewer disks remaining than there were data disks to start. Hence, the average length
of a string must be strictly less than n, and there must be more than n strings. [

Claim 4 If a string in ¢ 2d — parity arrangement with pivot disks on the main diagonal
contains a disk Dy;, then it cannot contain another disk in rows 1 or J, nor in columns i
or g,

Proof: Suppose a failing string contains two disks in the same row, D;; and D). Either
t# j or 1 # k, so without loss of generality assume ¢ # j. Then on the plane where D;; is
a parity disk, failure of the string containing D, leads to data loss.

Suppose, instead, a string containing disks D;; and Dy, fails, and the disks are not in
the same row, ie. & +£ 7. Then on the plane where Dy; is a pivot, failure of the string
containing Dy; leads to data loss. =

Claim 5 2d-parity with pivot disks on the main diagonal requires at least 2n — 1 strings to
protect against all possible failures of two strings. In particular, if n is odd, 2n strings are
required; if, in addition, all the disks on the diagonal are to be on one string, then 2n + 1
strings are required.

Proof: If we think of the weight of a disk, D;, as two if ¢ # jand oneif § = §, then Claim 4
implies a string cannot have weight exceeding n: Each disk D;; in the string excludes other
disks in the string from being in rows and columns 3 and j. A case analysis using this fact
implies the claim. |

Theorem 2 Failure of two strings in the layouts in Figures 7 and 8 in not fatal.

Lemma 2.1 [f a complete 2d-parity disk array can be separated into two regions (A and
B) by a monotonically non-decreasing or non-increasing line, such that no two disks have
failed in the same row in region A and no two disks have failed in the same column in
region B, then the outage is not fatal.

Proof: Consider the trace of a bad square (given by Theorem 1) beginning at disk D,,,,
in region A. Disk D, . in the same row must lie in region B, since no two disks have
failed in the same row in region A. Similarly, disk D,,,. must lie in region A, etc.: The
trace must alternately cross the dividing line of regions A and B by row and then by
column (Figure 10) Since the dividing line is monotonic, the successive Crossing points
monotonically increase (or decrease), and the bad square cannot close.]

Lemma 2.2 Failure of two strings in the layouts in Figures 7 and 8 is not fatal in a
complete 2d-parity arrangement.

13

7

B

leyl

/

Figure 10: A trace of ¢ bad square {gray) with a dividing line (solid) as given by the lemma
cannot exist.

Proof: If the two strings (call them A and B) are not both on the same side of the main
diagonal, then the previous lemma can be used directly since the main diagonal separates
A from B. So assume the two strings are on the same side of the main diagonal. Each
string is in two pieces A, Az and By, B, as in Figure 11 (Either 4; or B; may be empty.)
We consider two cases, and show a bad square cannot exist.

Aq By

Figure 11: Two sirings below the main diagonal.

Suppose a horizontal (or, by symmetry, vertical) line separates A; and By from A,
and B,. Notice that any bad square must alternate between A and B. Without loss of
generality assume that we are traversing the bad square in the direction in which column
moves take us to A and row moves take us to B.

By Lemma 2.1 the bad square cannot lie entirely above or below the separating line.
Hence, the bad square must cross the separating line between By and Aj since A, and B;
have no column in common. This transition must be possible in both directions if the bad

14

square is to close. However, since the transition is only possible by column we know that
it can never take go from Az to By,

If no horizontal or vertical lipe separates A, and B, from A, and B, then the construc-
tion guarantees that A1 has no rows in common with B,. Therefore A1 (and similarly B,)
can be reconstructed, and Lemma 2.1 can be applied on the remaining down disks. =

Proof: (of Theorem 2) Call the two strings A and B. If one of the bad strings contains
only parity disks, then the proof of the last lemma stil] goes through even if we assume

Claim 6 Let s(k) = (n}i/2k be the number of bad k-squares in an n x n disk array.
(This is the equation gwen by Corollary 1.) For q 2d-parity layout with one pivot with
independent disk failures of probability p in q reparr cycle, the mean time to data loss s
given by

repair-interval
L= b(d)p(1 — pjri~d
where b(d) is the number of bad arrangements of d disk failures and is given by

b(0) = b(1)=52) =0
H3) = = [s(2)

MTTDL =

b(4) =

b(5) = ~ [3(3) + (n2;4)5(2) ~4(§) (:;H
)

b6) = — [3(2)

b(d)

I/

e -
S
_____/

Proof: {omitted) u

13

Claim 7 For the 2d-parity layout in Figure 5 with indepenedent disk failures of probability
p and string failures of probability q in a repair cycle, the mean time to data loss is given
by

repair-interval
RS Tia B(s, d)pH(1 —)P -dge(1 - g)rii-s

where B(s,d) is the number of bad arrangements of d disk failures and s string failures
given by

MTTDL =

It

B(0,0) = B(0,1) = B(0,2) = B(1,0)
= B(L,1)=B(2,00=0
B(0,3) = n(n—1)
B(0,4) = 4n® —7n* — 14n° 4+ 33n? — 16n
13n% —29n% + 17n — 1

B(1,2) = - ,n odd
1373 — 29n? + 18n

= , b EVET

4

2n + 2\ /n?
oo = (2

Proof: (omitted) m

B Glossary

2d-parity Fundamentally, a 2d-parity arrangement is a disk with m x m data disks, plus
one check disk for each row and each column. We consider the array to be n x n
(where n = m + 1) , where the extra disk is a place marker for the pivot. Where
data planes are involved, this pivot disk can be anywhere on the main diagonal. (See
Figure 5.)

Complete 2d-parity A 2d-parity arrangement with one extra check disk containing the
parity of all the data disks.

Bad Cycle The trace of a bad square given by Theorem 1. (See Figure 6).

Bad Square A minimal set of out disks causing data loss in a complete 2d-parity arrange-
ment. A bad k-square is a bad square with failed disks in k& columns and % rows.
Notice minimality implies no data disks in a bad square can be recovered and that
every set of fatal outages contains a bad square.

16

Data Plane Each disk is partitioned the same way into blocks. Corresponding blocks on
all disks form a data plane. Each data plane is distinguished by its pivot disk.

Dxy The disk located in row t, column y in a disk array.

Fatal A set of disk and string failures is fatal if all data cannot be recovered from the
remaining disks.

m’ The number of data disks in each row and colummn.
n =m + 1. This is the number of disks in a row including the check disk.
)y =nm=1)(n—2)-(n—k+ 1) =nl/(n - k.

Pivot Disk The disk that defines where the check disks are. All disks in the same row
(resp. column) as the pivot disk are column (resp. row) check disks. {See Figure 4}

Scheduled Repairs A repair strategy where the entire disk array is repaired at scheduled
intervals, such as once a day at 4p.m.

String A group of disks whose failure is highly correlated, either because they have the
same power supply, or the same controller.

Acknowledgements

We'd like to thank those who helped us with our research. Ethan Miller and David Pat-
terson answered our hardware questions about RAID. They were able to guide us in our
determination of what characteristics made a string layout good. We owe extra special
thanks to Garth Gibson who was our sounding board. He listened to our ideas and gave
good advice,

References

[PGK] Patterson, Gibson, Katz, A Case for Redundant Arrays of Inexpensive Disks
(RAID).

(GHKKP] Gibson, Hellerstein, Karp, Katz, Patterson, Coding Techniques for Handling
Failures in Large Disk Arrays, U.C. Berkeley Report No UCB/CSD 88/477,
December, 1988.

17

