SYNCHRONIZATION POLICIES AND MECHANISMS
IN A CONTINUOUS MEDIA I/O SERVER

David P. Anderson
George Homsy

Report No. UCB/CSD 91/617
February 1991

Computer Science Division (EECS)
University of California
Berkeley, California 94720

SYNCHRONIZATION POLICIES AND MECHANISMS
IN A CONTINUOUS MEDIA I/0 SERVER

David P. Anderson
George Homsy

Computer Science Division, EECS Department
University of California at Berkeley
Berkeley, CA 94720

February 1, 1991

ABSTRACT

We are developing ACME, a server for input and output of continuous media
(digital audio and video) at the user interface. ACME supports a range of appli-
cations, including telephony, production, and browsing. The server runs as a
multithreaded user-level process on a UNIX system. It is controlled via an ex-
tended window server (X11/NeWS) and communicates continuous media data
on standard network connections. In this environment there are many sources
of possible timing and synchronization error: 1) nonuniform startup times of 1/O
devices and network connections; 2) rate mismatch among I/O devices; 3) star-
vation of output streams; 4) buffer overrun on input streams.

ACME provides an abstraction called a logical time system (LTS) that allows
clients to express their synchronization requirements. Multiple CM data
streams can be grouped into an LTS. Within an LTS, data with the same
“timestamp” is displayed (for output) or collected (for input) at approximately
the same real time. The skew tolerance, and the policy for recovering from er-
rors, are client-specified. An LTS can be paused and resumed, and discrete 1/O
events (e.g.. movie subtities) can be scheduled within an LTS. The LTS
mechanism is sufficient to express the synchronization requirements of a wide
range of applications.

1. INTRODUCTION

Audio and video are perceived as changing continuously over time. To distinguish them
from other /O media, we therefore call them continuous media (CM). Continuous media dom-
inate mass-market information systems (television, telephone, music recording, etc.). and, with
advances in conversion and compression hardware, are becoming viable as computer /0O media

as well.

CM and computer systems do not coexist easily. In many cases, computer hardware (pro-
cessors, buses, networks) cannot handle the data rates involved; even if the hardware is able, the
software may be incapable of providing the needed real-time performance characteristics. For
these reasons, many CM-related projects have adopted solutions in which CM data is handled in

separate systems, either analog or digital in nature, that operate under computer control.

On the long run, however, it is likely that the above hardware and software problems can be
solved, and that CM data can be handled by application programs in general-purposes computer

systems. This approach, which we call integrated digital CM (IDCM), has the following properties:

. Workstations are equipped with CM I/O devices (cameras, microphones, speakers) and with

hardware for conversion and compression of CM data to and from main memory.

. User-level processes, running in protected virtual address spaces, can read and write multi-

ple streams of CM data.

° Communication networks and protocols allow processes on different hosts to communicate
CM datain real time.

. File servers can store CM data together with other data, and their clients can read and write
itin real time.
A typical application in an IDCM system is the audio playback program shown in Figure 1.

This program reads audio (or audio/video) data from a file and plays it through a CM I/O server.

The goal of IDCM presents research and engineering problems at every level of software
and hardware design. One such level is that of CM I/O server. Such a server offers network-

transparent access to CM I/O hardware, and mediates between concurrent clients. It is analogous

workstation
application ACME
I/O server
R T 4 \ K
user
kernel > mouselkeyboard
A ¥ ‘L A A 4
{___control, events \ e
N DAC, volume
CM data &speaker balance

IAN AN Lﬁj

display

Figure 1: Audio playback is a basic integrated CM application. The application reads CM data
from a file and sends it to the ACME server (CM data flow is shown as a bold line). The applica-
tion provides a graphical interface for making selections and controlling the playback parameters.

to (and may in fact be combined with) a window system that provides access to, and contention

resolution for, discrete /0 devices such as graphics display, keyboard, and mouse.

Applications that use CM often have synchronization requirements. They may require that
input or output of multiple CM data streams start at given relative times and proceed in “lockstep”,
or that discrete events occur at given times relative to the input or output of a CM data stream.
These conditions should hold in the face of clock rate mismatch, butfer overrun or starvation, and
other anomalies. A CM 1/O server should allow clients to express their synchronization require-

ments, so that the mechanisms used (which may be expensive) are applied only when needed.

This paper describes ACME, a CM I/O server under development at UC Berkeley [1].
ACME provides the abstraction of “logical CM I/O devices” that produce or consume data via net-
work connections, and that can be grouped together. These basic features are described in Sec-

tion 2. Section 3 describes ACME’s synchronization mechanism, the logical time system (LTS).

Section 4 gives a discussion of a prototype implementation of LTSs. Section § discusses other

work in the area.

2. BASIC FEATURES OF ACME

2.1. Basic Abstractions

A physical device (PDev) represents a CM I/O device. Each PDev has a direction (input or
output), a medium (audio or video) and a spatial parameter (workstation-mounted, headset, etc.).
A stereo audio device is viewed as a single PDev. A PDev may consume or produce data in any
of a variety of formats, or strand types. A strand type includes the data representation (compres-
sion scheme, bits per sample) and sampling rate or spatial resolution. Clients may query the

server for the set of PDevs, their attributes, and the strand types they support.

A logical device (LDev) represents a “virtual” microphone, speaker, camera, or video win-
dow. Each LDev is associated with a fixed PDev and has a fixed strand type. An LDev may have
type-dependent attributes. For example, audio output LDevs have a 2x2 “volume control matrix”,
while a video output LDev has a position and size on the display. Several LDevs can be associ-
ated with a single PDev. For an input PDev, data from the PDev is replicated to each LDev. For
an output PDev, data from the LDevs is mixed together (overiaid or summed) and output to the
PDev. LDevs may be mapped or unmapped. While an output LDev is unmapped, data arriving at

the LDev is discarded; while an input LDev is unmapped, no data is produced from the LDev.

Multiple strands may be combined into an interleaved rope format (for exampie, the DVI
AVSS file format). A compound logical device (CLDev) is a set of LDevs that source or sink a

rope. A CM connectionis a network connection that conveys a rope.

Finally, each CLDev is associated with a logical time system (LTS). An LTS may include

several CLDevs. The semantics of LTSs are discussed in Section 3.

2.2. Basic Implementation

ACME video output LDevs are intended to appear as “windows” on a display shared with a

window server such as X11 or NeWS. An ACME server must therefore communicate with the

local window server to obtain location and visibility information. In addition, it is convenient for

ACME to use the window server for event distribution, and control interfaces (see Figure 2).

We have developed a prototype version of ACME. It runs on the Sun Sparcstation, and is
integrated with Sun's Openwindows window system. We have extended Openwindows so that
both X11 and NeWS clients can issue ACME control operations and receive events. The ACME
prototype provides access to the Sparcstation's 8-bit, 8 KHz audio I/O hardware, and provides
compressed and uncompressed video output.

The ACME prototype is written in C++, and uses a set of basic classes that provide preemp-
tive real-time lightweight processes and LWP-synchronous I/O. Execution in ACME is structured

as a set of LWPs (see Figure 3). The process types are as follows.

Openwindows server

X11 control
connections (TCP) | | 4 X11 NeWsS
L
. WSE| * ¥ |WSE
X1l ClleM — L— , discrete media
O datrol 110 devices
O visibility
Q changes
requests,
events replies
CM data

connections (TCF) continuous media

> [/0 devices

ACME server

Figure 2: The prototype ACME server is controlled through a modified version of Sun’s Openwin-
dows server. The NeWS and X11 interpreters have extensions (labeled WSE) for ACME com-
mands and events. The graphics portion of the server (Cscript) informs ACME of video window
movement and visibility changes. CM data is not handled by Openwindows; it goes directly
between clients and ACME.

«—— non-realtime ' realtime ______

CM connections

|
|
|
|
|
'
1 A
1 |
|
. |
replies, events
P S : P network 110
| processes
i
1
A
, strand buffers
requests |
: device 1/10
................ ' processes
CM connection |
arrivals |
| v
| audio video audio
| output output input
|

Figure 3: The ACME server is structured as a set of LWPs. Network and device /O processes
handle CM data (bold lines), while non-realtime processes handle control operations and event re-
porting (dotted lines).

. Device I/0 processes perform I/O to and from CM devices. They are awakened on each
110 completion. A device output process gathers data from the strand buffers of the associ-
ated LDevs, perhaps combines them (e.g., by summing audio samples) and writes them to
the device. A device input process reads data from the device and writes a copy to the

strand butfer of each associated LDev.

° Network /O processes perform I/O to and from CM connections. A network output pro-
cess reads a block of data from its associated CM connection, splits it into strands, and
writes each subblock to the strand buffer of the associated LDev. Before writing the data it
may process it in some way; for example, in the ACME prototype it converts 8-bit mu-law

audio samples to word-aligned 16-bit linear samples, scaled by a volume parameter.

. Discrete event processes handle control operations and events. The ACME prototype has
three such processes. The accepter process accepts new CM connections, and the reader
process reads request messages from the window server. Neither process directly takes
action; instead they send a message to a main process that carries out the appropriate
action, perhaps sending a request or event message to the window server. Network and
device I/0 processes may also send messages to the main process to signal an event to be

reported to the client.

3. LOGICAL TIME SYSTEMS: SEMANTICS AND EXAMPLES

A typical ACME client inputs and/or outputs streams of digital audio/video data, and imposes
some requirements on the timing, rate, ordering, and loss characteristics of this I/O. We collec-
tively call these synchronization requirements. For example, an application that displays a movie
might demand that the temporal “skew” between the audio and video output not exceed, say, 100
milliseconds. It might demand that locally-generated “subtities” be displayed during particular
intervals of the movie. These requirements may involve input as well as output: for example, an

audio/video dubbing application would need to limit the skew between input and output.

In the ACME environment, several factors can contribute to violations of synchronization
requirements. CM I/O devices may run at slightly different rates. Some devices may have a
“pipeline” structure that delays input or output. Data on different network connections may not
start simultaneously, and may be subject to jitter. Finally, contention for system resources (net-
work bandwidth, CPU time, etc.) may cause an ACME server to starve on output, or suffer bufter

overrun on input.

ACME'’s logical time system (LTS) abstraction allows clients to give the ACME server
“instructions” for how to synchronize input and output, and how to deal with error conditions. in

this section we describe the semantics of LTSs and give examples of their use.

3.1. Basic LTS Semantics

A CM data strand consists of “units” (video frames, audio samples). Each unit U has an

associated nonnegative “timestamp”. Timestamps can be implicit. For example, in an audio

encoding with a uniform sampling rate, the timestamp of a given sample is determined by its sam-
ple number.

Recall from Section 2.1 that a CLDev is a group of one or more logical devices that receive
from or send to a single network connection, and that each CLDev is associated with an LTS.
ACME provides operations for creating LTSs, associating a CLDev with an LTS, and starting and
stopping an LTS. Each CLDev C in an LTS has a nonnegative offset Tc. The logical time ot a
data unit is its timestamp plus T¢.

Very roughly, the ideal semantics of an LTS are as follows: /f two data units in the same LTS
have the same logical time, they are displayed or collected at approximately the same real time.
In other words, data streams in an LTS are synchronized with each other (but not necessarily with
the streams of other LTSs). An LTS can be viewed as a coordinate system for an intervai of real

time (see Figure 4); LTS time does not necessarily advance at the same rate as real time.
ACME provides the following primitives for discrete interactions with LTSs:

. A client can read the current value of an LTS.

timestamped data units

0 1 3 7 5 > CM connection 1
e e 3 §f;%§§ CM connection 2
0 i 2 3 4
l , , logical time system
S U A R S S 8 »
; l l \ l . > real time
0 1 2 3 4 5 6 7

Figure 4: CM data streams to/from several network connections can be mapped, with different
offsets, onto a logical time system (LTS), and are then synchronized relative to each other, but not
necessarily relative to real time. In this example, an LTS includes two CM connections, one
comprised of two strands. The LTS as a whole runs slightly slower than real time.

° A client can request that the ACME server send an event when an LTS reaches a centain
point.
. A client can submit ACME or window system requests for deferred execution when a given

value of an LTS is reached.

Finally, ACME allows an LTS to be paused (stopping the LTS and suspending I/O on its

LDevs) and later resumed.

3.2. LTS Parameters

In order to enforce LTS semantics, ACME performs three types of synchronization: startup
synchronization, rate matching, and starvation/overrun recovery. ACME provides client-specified
parameters that determine how each type of synchronization is accomplished. We now discuss

each type of synchronization in detail.

3.2.1. Startup Synchronization

To start an LTS correctly, or to add a new CLDev to a running LTS, two problems must be

addressed:
(1) Output PDevs may have different latencies due to butfering or pipelining.

(2) Data for output CLDevs may begin arriving at different times, and may arrive with variable
delay (“jitter”). To avoid the possibility of starvation in the future, the server must wait for

sufficient data to arrive on all the CM connections.

Problem 1) is addressed by requiring all PDevs associated with an LTS to be ready to
display, before starting the LTS. To address problem 2), each output CM connection C has a
“start count” Ng. N bytes of data must be received on C before the associated LTS is started.
If the network supports connections with bounded jitter, an appropriate value for N¢ can be calcu-

lated from the jitter bound of the connection.

10

3.2.2. Rate Matching

Rate mismatch can occur when two PDevs in an LTS have different clocks. For instance,

assume that a video output PDev has a nominal frame rate of 60 frames per second, an audio

output PDev has a nominal sample rate of 8000 samples per second, and that the actual rates at

which each PDevs displays data are determined by separate quarz crystal oscillators. If the ratio

of the oscillator frequencies is not exactly 8000 / 60, then audio and video output will not stay in

synchrony. To restore synchrony, several approaches are possible:

(1)
(2)

(3)

Vary the display rate of one or more of the devices.

Resample data to adjust the effective display rate. This approach has the advantage that,
in the case where a PDev handles streams from different LTSs, the rate of each stream

can be adjusted separately.

For an output LDev, skip small portions of data (to catch up to a faster running LDev), or
pause output for small lengths of time (to be caught up to by a siower running LDev).
Input LDevs can skip data to speed up, and can write “null” data to their stream to slow

down.

In the presence of nonuniform PDev rates, there are several possible ways to determine the

rate of advance of an LTS. The LTS advance can be driven by:

(1)

The rate of a specified LDeV, Dpager- N this case, Dmasier always displays at its natural

rate, while other LDevs in the LTS may require rate adjustment, skipping, or pausing.

The rate of the slowest LDev. If the skip/pause approach is used, only pausing will occur

in this case.

The rate of the fastest LDev, If the skip/pause approach is used, only skipping will occur in

this case.

The rate of data arrival on a CM connection. In this case, output is sped up if a backlog of

data builds up in the server, and is slowed down if starvation occurs repeatedly.

An external timing source, such as a clock. Rate control in either direction may be needed

for all LDevs inthe LTS.

11

Our ACME prototype supports only skip/pause rate control, and supports only option (1) for
LTS advance. However, a full-featured /O server might provide a wider range of methods as a

client-selectable option.

3.2.3. Starvation and Buffer Overrun

If data is consumed by an output PDev faster than it arrives on a CM connection, the
corresponding strand buffer may become empty. We say the LDev starves in this case. The
corresponding situation for input LDevs is when a strand buffer becomes full because the CM con-
nection cannot transfer data as fast as the PDev collects data. This is called buffer overrun. The
following discussion is phrased in terms of output only, but applies equally to LTSs that include a

mixture of input and output LDevs.

If a CM connection is starved, a decision must be made whether to continue displaying data
from connections that are not starved. If display is continued, then skew increases. Here, skew is
defined as the maximum over all LDevs of the ditference of the LDev’s logical time and the current

LTS value.

On the other hand, if a connection is starved and display is stopped immediately, then the
entire LTS will suffer from “hiccups”, simply because one connection is not performing as well as
it should. Some applications require smoothness of display, whereas others require low skew;

thus neither of these options is acceptable for all applications.

ACME allows the client to select either extreme, or an intermediate policy, as follows. Each
LTS has a maximum allowable skew parameter, Spay. If ONe connection starves, the LTS contin-
ues advancing and display of the other connections’ data continues, until the skew exceeds Smax.
This gives the offending connection a chance to “catch up”. Thatis, if a burst of data arrives, the
server can either drop data or display data rapidly until it encounters a timestamp comparable to
the LTS value, thus avoiding hiccups in the display of the other connections’ data. On the other
hand, if no burst of data arrives and the skew exceeds the Spa, the LTS is paused. In this case,
all display pauses until the offending connection has caught up, at which point the LTS is restarted

and synchronized display resumes.

12

Display can be continued without regard to synchronization by setting Smay to infinity. In this
case, display is synchronized only in the absence of starvation. If starvation does occur, skew can
get arbitrarily large. On the other hand, if Spm,, is zero, the LTS will pause immediately whenever

any connection starves, thus keeping all display tightly synchronized, but possibly causing hiccup-

ing.

3.3. Examples of LTS Usage

To summarize Section 3.2, an LTS has several client-selectable parameters: the start count
N for each connection, the method of LTS advance, and the skew bound S, We now give
descriptions of some example ACME applications, with suggestions for the likely settings of these

parameters.

Audio/Video Playback. This application reads audio/video material from a file server,
sends it on a single CM connection, and displays it on the user's ACME server. Smoothness of
display is important here, but latency is not. N should therefore be set to a large value to reduce
the chance of starvation. It is likely that smoothness of audio display if more important than
smoothness of video display. Therefore, the advance of the LTS shouid be governed by the audio
PDev. Video frames will be repeated or dropped as needed to maintain a smooth flow of audio

output.

Audio Overdubbing. This application allows the user to dub an audio track onto an exist-
ing video track; this could be used, for instance, to “lip synch” music videos. The input and output
CM connections should be placed in a single LTS. A moderately low value of Sm,, should be
used to ensure synchronization; for example, if video output starves then audio input should be
suspended soon thereafter. Also, the quality of the recorded audio data is presumably more
important than the quality of video output. Skipping input data or pausing input will produce

glitches in the recorded data. The audio input device should therefore control the rate of the LTS.

Multitrack Audio/Video Editing. Consider an all-digital A’V postproduction studio. This
could be implemented as an ACME application that stores audio and video segments on one or

more file servers. When previewing a multitrack segment, the application combines the output

13

CM connections into a single LTS. There are two main requirements. First, the time comrespon-
dence between video frames in different tracks, and between video and audio, must be preserved.
Hence Snax Should be small. Second, all data should be displayed without skipping, so that no
video frame is omitted during preview. Hence the LTS advance should be determined by the

slowest PDev.

SMPTE Synchronized Dubbing. Suppose that a multitrack analog recording exists, with
SMPTE time code on one of its tracks, and that the SMPTE code can provide a source of
hardware interrupts to the ACME server. Now suppose we want to dub an audio track being out-
put by the ACME server onto this analog recording. The method of LTS advance in this case
should be external synchronization slaved to the SMPTE time code, so that the ACME server out-
put is synchronized with the analog recording.

Telephony. In its simplest form, this application conveys audio and perhaps video data
between two workstations. One or two CM connections may be used in each direction. Low
end-to-end delay is the main concern. The CM connections can be placed in separate LTSs.
Start counts of zero should be used, and the LTSs should be driven by arrival rate (so that no
buffer buildup occurs if the rate of a microphone at one end exceeds that of the speaker at the

other end).

4. LTS IMPLEMENTATION

We now discuss the implementation of LTSs in the prototype ACME server. Several simpli-
fying assumptions are made:
. Periodic /O-completion interrupts are generated by all PDevs. For example, in the ACME

prototype, a UNIX signal is generated for every 256 samples displayed by the audio output

hardware, and for every 1024 samples collected by the audio input hardware.

. The delay in interrupt delivery (due, e.g., to other running processes), and the time to ser-

vice an interrupt, are negligible.

. Interrupts do not carry real-time “timestamps”, and a precise real time clock is not available.

Therefore, PDev rate mismatch can be detected only by the order of interrupts.

14

In the ACME implementation, each entity (LTS, LDev, CM connection) is represented by a
C++ object. Each of these objects includes a state field. The possible states are shown in Figure

5.

4.1. Startup Synchronization

Some output PDevs impose a delay between the arrival of the first data in a stream and the
first display. For example, a video decompression system may require that several frames be “in
the pipeline” before display can start. The PDevs in an ACME server may have different laten-
cies, and ACME must defer I/O on LTS startup until all PDevs are ready. /O must also be

deferred untit each CM connection C has received N¢ bytes of data {see Section 3.2.1).

LDevs and CM conns ready

LTS states [Nor_RUNNING| | RUNNING

starvation or overrun

starvation
PDev ready LTS ready “overrun
LDev states rSYNCHING ¥ syncuED [’ RUNNINGﬁ RESYNCHINGJ
caught up
space in strand buffer
N¢ data starvation enough data to catch up
True overrun caught up

C]Wt ctonnection rSYNCHING ’l RUNNING " RESYNCH1 » RESYNCH2 |
siates % T

N data
N¢ space in strand buffer

Figure 5: Each LTS, LDev, and CM connection exists in one of a finite set of states. The possible
states and transitions are shown. Where two reasons for a transition are shown separated by a
horizontal line, the upper condition applies to output LDevs or connections, and the lower condi-
tion applies to input LDevs or connections.

15

An LTS is initially NoT_RUNNING and its LDevs and CM connections are SYNCHING. AnLTS
object maintains a count of how many LDevs and CM connections are not yet ready, and exports
a ready () operation to be called when one of these entities becomes ready. A network output
thread begins reading data from its network connection; when N¢ bytes of data have arrived it
calls ready () and sets the connection to RUNNING. A network input thread immediately calls

ready () and sets the connectionto RUNNING.

A device /O thread determines when its PDev is ready to display data for an LDev. When
the condition is met, the device I/0 thread performs a ready () operation on the LTS and changes

the LDev state t0 SYNCHED.

When the LTS not-ready count goes to zero the LTS becomes RUNNING and all LDevs are
set to the RUNNING state. These state changes are all performed by whatever thread performs
the final ready () operation onthe LTS. The device threads do not display data for an LDev until
it is RUNNING. Thus, when the LTS starts and all LDevs are RUNNING, output commences on all
LDevs during the next interrupt cycle for each PDev. Skew on startup is therefore bounded by the

longest PDev interrupt period.

4.2. Rate Matching

The rate of the LDevs associated with a given LTS must be matched to the rate of the LTS
(as determined by one of the methods discussed in Section 3.2.2). To illustrate algorithms for rate
matching and starvation synchronization, we introduce the “stairstep diagram” (see Figure 6).
Such a diagram shows the relation between real time and the timestamp of an LDev data stream
being displayed. Figure 6a shows an example in which there is no rate adjustment. Ideally, the
slope of the display time function is one. In general, it differs slightly from one. For example, sup-
pose an audio output PDev has a nominal rate of 8192 samples per second, but that it takes only
.99 seconds to output a block of 8192 samples. In this case, the horizontal edges of the boxes
occur at 1, 2, 3 etc., but the vertical edges of the boxes occur at .99, 1.98, 2.97, etc. The slope of

the display time function is 1/.99.

16

timestamp

FS 'S 4

l « skip

r;eal time
a) b) c)

v

v

Figure 6: Stairstep diagrams show the relation between real time and the timestamp of an LDev
data stream being displayed. Each box represents the display of one block of data. The left and
right sides of a box show the real times at which PDev interrupts are received, and the bottom and
top show the start and end timestamps of the data. The dotted line is the displ/ay time function.

Figure 6b shows the progress of an LDev with a pause occurring on one block; in Figure 6c,
a skip occurs on one block. In both cases, the display time function is indicated by the dotted line.
The skew between two LDevs at time t is defined as the difference between their display time

functions at ¢.

4.2.1. The DDSP Algorithm for Rate Matching

We now describe and discuss an algorithm for rate matching, the Device-Driven Skip/Pause
(DDSP) algorithm. The DDSP algorithm uses the following simplifying assumptions in addition to
those stated earlier:

. LTS advance is driven by a particular LDev Dyagrer -
. LDev rate adjustment is done by the skip/pause method.
. The algorithm must be “stateless” in the sense that the only information used to determine

whether to display, skip, or pause is the timestamps of the start and end of the current data

block for each LDev, and the current value of the LTS.

The stairstep diagram for Dp,aser has no skips or pauses, and the current value of the LTSis

defined to be the bottom edge of the diagram. On each interrupt of another LDev in the LTS (call

17

it Dyave) the algorithm must decide whether to 1) display the next block of data for Dgye, 2) skip
one or more blocks and display some subsequent block, or 3) pause, not displaying any subse-
quent block. In the case of an input LDev, the decision is whether to 1) move the next block of
data into the strand butfer, 2) pad the strand buffer with some “dummy’ data in order to rapidly
advance the timestamps of the outgoing data stream (analogous to skipping), or 3) not move any
data into the strand buffer in order to delay the timestamps of the outgoing stream (analogous to
pausing).

Given the above restrictions, this decision must be based solely on the top and bottom
edges of the current block of Dpaqe,- The bottom edge is given by the current value of the LTS,
and the top edge is the sum of the blocksize (expressed in units of time) of Dmaser and the LTS
value. Hence an algorithm satisfying these restrictions defines a partition of the plane of the stair-
step diagram into regions Rgispiay» Asip aNd Apause Within which the algorithm displays, skips and
pauses respectively. These regions are rectilinear, and their vertical edges occur only at interrupt

times for Dpaster -

The DDSP algorithm is as follows. Let the difference in initial timestamps of successive
blocks of Dy, data (the height of the Dy, blocks) be denoted by Pgaye, and that of Dyasre, DY
Praster- L€t Tgave and Trase, denote the interrupt periods of Dgjaye and Dpyage respectively. Let

P P _
(=222 /(=222 and let X denote an a

X denote the rate of Dg,e relative to Dyasrer, I.€.,
Tslave Tmasler

priori upper bound on max(X, 1?), as determined by hardware tolerances. Let H = Ps,ave)—(.

Extend each block of Dpaser Dy H/2 in both the upward and downward directions, and define

Reispiay» Rpause @Nd Askip as shown in Figure 7.

4.2.2. Properties of the DDSP Algorithm

We now prove three properties of the DDSP algorithm, under the assumption that no bufter
overrun or starvation occurs, and that PDev rates are constant. We say that the operating point of
Dqave at time t is <R, T> if the most recent interrupt was at real time A, and Dy, began display-

ing a data segment with timestamp T at that time.

18

RanSG
timestamp
A
Rrsuse Voo
HAR r
- Rdi;play H [
L | 2|
J....._..f?.disnlan e
____________ RSkiP Rskip
—> [>
real time
H<Prmagter H>Praster

Figure 7: the plane partition representing the DDSP algorithm for a given slave LDev. The dotted
lines are the stairstep diagram of the master LDev Dpyaser. The shaded regions represent situa-
tions in which Dy, must skip or pause.

Property 1: Skips and pauses are not interspersed for any LDev. That is, if both skips and

pauses occur, one strictly precedes the other.

The proof consists of two cases. In each case, we will construct a set of LDev “states”, and
enumerate the possible state transitions. It will be shown that each state diagram has no paths

containing interspersed skips and pauses.

Case 1: H < Py, Consider the five regions separated by dashed lines in Figure 8a. At
least one Dy interrupt occurs within the horizontal projection of each shaded triangle. In partic-
ular, an interrupt occurs within the horizontal projection of the first shaded triangle after the current
operating point of Dgye. If the operating point of Dyaye is in A when this interrupt occurs, it is
either above a grey triangle (in which case Dy, Will pause) or Dy,,e has drifted into B. There-
fore if Dgjaye is in A it will pause or drift into B within Tpaee,. Similarly, if Dgaye is in E, it will skip or

drift into D within T pagter -

19

timestamp A .B pause
A Ea _
FEE.O6
v\/skipv

pause, drift drift
ofojcjcjoRN

skip

pause
x EEO. O ®
real time drift skip, drift
a) b)

Figure 8: When H < P, the only transitions between the regions (A, B, C, D, E) shown in a)
are those indicated in b). Thus skips and pauses are not interspersed.

If Dgave is in B it will either display or pause, and in D it will either display or skip. In region
C, it will always display. The possible transitions between these regions due to pausing or skip-
ping are shown in the top diagram of Figure 8b. Region A cannot pause to C because the width of
region B is at least Tg4.. Similarly, region E cannot pause to C because the height of region D is
at least Py.... Region B cannot pause to D because the width of C is at least Tgye, and region D

cannot skip to B because the height of C is at least Pg,,,. C never skips or pauses.

The only other way the operating point of Dy, can change regions is by “drifting”. If X <1,
the transitions A—B—-C—>D—E can all take place, even when no skipping or pausing occurs
(see the middle diagram of Figure 8b). Similarly, if X > 1, the transitions A«-B«C«D«E can
all take place (see the bottom diagram of Figure 8b). Since no drift occurs when X =1, the top
diagram of Figure 8b suffices to illustrate this case. Clearly, in each of these three diagrams,

there is no path which intersperses skips and pauses.

Case 2: H > Poaser. The regions A, B, C, D, and E are defined as shown in Figure 9a. If
Dyave is operating in A, it will immediately pause into B or C. B will either display or pause into C,

C will always display, D will either display or skip into C, and E will immediately skip into C or D.

20

timestamp A L B
4 P m

7 C @ ® © @ X=1
s J peeeeens -
’ s : D K~
s 7 ‘ 4
USSR SO
7 // : /, /’
7 H
// VR B Vi //
/, s ' s , E
/s s H 4 /’
----------------- F—4
7 ,/ , ,
Ve
7 Ve
........ i, ’
7 ’
// 4
y) ,
L »
/ L
real time . .
skip, drift
a) b)

Figure 9: When H > Pp,.4e the only transitions between the regions (A, B, C, D, E) shown in a)
are those indicated in b). Thus skips and pauses are not interspersed.

The possible drift transitions for X < 1 are A>B—»C—>D—E and A»C—E, since B and D
are narrower than Pg.,.. The possible drift transitions for X > 1 are A—B«Ce«D«E and
A« CeE. These transitions are shown in Figure 9b. Again, inspection of the diagrams shows

that skips and pauses cannot be interspersed.

Property 2: The skew between Dy, and Dpmaser IS bounded by

3H o
_2— + (X_1)max(Pmasler: Pslave)-

X is typically very close to one, so this bound is close to % Again, the proof has two cases.

Case 1: H < Ppager. First assume X =1. If Dgpay,e is operating in A, it will soon pause into
B, since it must pause at least once every Ppage,- f Dsaye is operating in E, it will soon skip into
D. Therefore, Dqye Will enter regions B, C, and D and not leave. The skew will not exceed 3HZ2,

since the display time function of Dpmasre is @ line bisecting region C along its symmetry axis.

Next assume X < 1. If Dgaye is Operating in A, it will soon pause into B. It will also either

pause or drift into C within finite time, since it would drift into C even if no pauses ever occurred.

21

Thus, Dgayve Will eventually operate within C, D, and E. E is a semi infinite region, which might
cause problems for bounded skew. However, Dy, e cannot penetrate far into E, since it can only
drift into E, and it must return to D within P Dy Skipping. The maximum possible drift into E,
measured by timestamp, is (1-X)Pnaster- The skew in this case is therefore in the range

[3H/2 = (1=X) Prmaster» H/2).

A similar argument applies if X >1. The skew eventually remains within

[-HR,3H/2 + (X=1)Praster]-

Case 2: H > Pmasier. The arguments are similar to Case 1. If X =1, Dgaye will eventually
operate within regions B, C, and D, and the skew is bounded by H/2 + Ppage,- It X <1, Dgayve
will eventually operate within regions C, D, and E. Dgaye €an only enter region E by drifting.
Since it must immediately skip back to D or C on the next Dy, interrupt, the maximum drift into
E, measured by timestamp, is (1-X)Pgae, S0 the skew is in the range
[~H/2 = Ppaster — (1-X)Pgave, H/2). Finally, if X > 1 then the skew eventually remains within

[FH/2, H/2 + Pmaster + (1=X)Psjave]-

Property 3: if X < 1 then the fraction of skipped blocks of D, approaches (1-X)/X. If

X > 1 then the fraction of skipped interrupt periods approaches (X-1)/X.

Suppose X < 1. Then, from Property 1, there is some time T, such that Dgaye does not
pause after T,. Let T, > T, and let N denote the number of blocks skipped between T, and 7.

If Dyave denotes the change in skew between T, and Ty, | Dgave | < 3H by Property 2, so we have
3H 2 |Ds/ave i

p P
= | B (T~ T) = =22 (Ty=To) — NPyjaye |

master 7-slave

P slave Tmasrer N Tmaster
T1_T0) - P slave |

=101-

Ts/ave P, master P, master

NT,
= |(1_X)(T1"T0) - ﬂpslave‘

P master

Pyave T,
= |(1-X)(T1=To) = NTgave slave ! master

slave P, master

22

= [(1-X)(T1-To) - NTsiave X |
Dividing by X(T4—T,) gives

1-X _ NTgave < 3H
X Ti-To — X(T1~To)
NT

T—;‘.’—e is precisely the fraction of skipped blocks, and this evidently approaches
1= 10

The quantity

1—;(—X as T,—T, becomes large. The proof for X < 1 is similar.

4.3. Buffer Over/Underrun

During normal operation of an LTS, it and all its LDevs and CM connections are in the RUN-
NING state. If an LDev drops behind the LTS due to buffer starvation or overrun, but the skew
does not exceed S, display or collection proceeds according to the DDSP algorithm. LDevs
can catch up to the LTS if the starvation/overrun condition is alleviated before Sma, is exceeded,

as shown in Figure 10a.

timestamp
A

2 A
max LTS LTS
\k ‘ pause restart

|

«— skipping

AN

’
¢— skipping
A N¢ data received

LTS ,:'K"'”' , 7/
/
starvation/overrun S max data received
#LDey” R starvation
real time
a) b)

Figure 10: Two scenarios of starvation caused by late arrival of data on a CM connection. in a),
more data arrives on the connection before it reaches the skew bound of the LTS; this data is
displayed or skipped, and the CM connection catches up to the LTS. In b), the skew bound Spax
is exceeded, and the LTS is stopped. It is restarted only when enough data is received for the of-
fending LDev to catch up, plus N¢ additionai data bytes.

23

If the skew of an LDev exceeds Smax. this condition is detected by the device thread for the
PDev of that LDev. In this case, the LTS state is set to NOT_RUNNING, the offending LDev state is
set to RESYNCHING, and the state of the connection associated with the offending LDev is set to
RESYNCH1 (see Figure 10b). As long as the LTS is NOT_RUNNING, its current value is not updated.

Hence any other LDevs associated with this LTS effectively pause, waiting for the LTS to restart.

While the LTS is not running, the CM connection counts data until it has received or sent
enough to bring the offending LDev up to the current value of the LTS. At this point, the connec-
tion is set to REsYNCH2, the LDev is set back to RUNNING, and display on the offending LDev
recommences, approaching the current value of the LTS. In the output case, once the connection
has counted the above mentioned amount of data, it resets its start counter and starts counting
data again. Once it has received N¢ bytes of additional data (satisfying the guard condition
against future starvation) it sets its state to RUNNING, and starts the LTS. In the input case,
instead of resetting the start counter, the connection simply waits until at least N¢ bytes of free

space exist in the buffer, sets its state to RUNNING, and restarts the LTS.

After the LTS is restarted, the state of all resources is RUNNING. If the offending LDev has
not yet caught up to the LTS, it skips immediately to bring itself back into synchronization, and

display continues normally.

4.4. Discrete Event Synchronization

To implement LTS value requests, alarm clock events, and deferred requests, each LTS
maintains a current value field. This value is updated by the master PDev of the LTS. Requests
for the current LTS value simply return the value of this field. A time-sorted list of typed discrete
event descriptors is kept with the LTS. Each time the LTS value is updated, the new value is com-
pared with the time field of the earliest discrete event descriptor. If the event time has been met or
exceeded, the descriptor is processed appropriately: alarm clock events are delivered to the win-

dow server, and deferred requests are inserted in the ACME request queue.

24

5. RELATED WORK

Atthough several projects have pursued the general goal of adding continuous media to a
computer system, their assumptions and approaches differ from those of ACME. Some systems
use analog storage and communication of CM data, with computer control of the analog devices.
An example is Galatea [6], in which *“visual workstations” are connected to a videodisc server by
an analog network. The system provides user access to continuous media display functions ina
distributed computing environment. In this case, however, the continuous media data is stored

and transported in analog form over a separate network.

Several systems provide a server-based architecture for controlling “connections” between
CM devices. Examples include the VOX Audio System [2], Pandora [7], IMAL [5], and VEX [3].
These connections may be digital, but in any case data is handled in an external framework, and
cannot be accessed in real time by clients. Some of these systems also do not fully address
issues of sharing and concurrent access to CM 1/0 devices, and synchronization of CM streams

with discrete media.

Intel's Digital Video Interactive (DVI) [8] is a combination of 1) hardware for capture and
display of digital audio and compressed video, and 2) an MS-DOS software environment for this
hardware. While DVI hardware is very flexible, the DVI software environment is limited. It pro-
vides a platform for standalone, CD-ROM based interactive multimedia applications. Concurrent
applications, network communication of CM data, and application-independent management func-

tions are not supported directly.

Much of the work addressing synchronization of continuous media is at a higher level than
that addressed by ACME. For example, Little and Ghafoor [4] describe a formalism based on
Petri nets for describing concurrency and ordering requirements among sets of media streams.
Steinmetz [9] describes a set of programming constructs for expressing requirements on bounds
between “events” such as the start and end of media streams. ACME’s LTS mechanism could be

used to implement some of these higher-level specifications.

25

6. CONCLUSION

We have described ACME, a set of abstractions for continuous media I/0O. The ACME inter-
face parallels the interface offered by a network-transparent window system such as NeWS or
X11, and can be implemented as an extension to such a window system. ACME offers its clients
“virtual” microphones, speakers, video cameras and displays, which are multiplexed onto physical

I/0 devices. Clients communicate digital CM data through network connections.

ACME offers a synchronization mechanism called the logical time system (LTS) that allows
clients to specify their synchronization requirements and preferences. Such a mechanism is
needed for a variety of reasons: device rate mismatch, device pipelining, network connection

throughput and delay variation, and indeterminacy of control operation timing.

We have sketched an implementation of LTSs, describing the techniques used to provide
startup synchronization, rate matching, and handling of starvation and overrun conditions. OQur
prototype implementation provides only a particular type of LTS: that in which timing is determined
by a single “master” device, and in which rate control is accomplished by skipping or pausing. It
also makes some pessimistic assumptions: e.g., that interrupts are not timestamped. Consider-
able future work remains to be done in exploring the implementation of other variants of LTSs, and

in evaluating the utility of the LTS mechanism for real-world continuous media applications.

REFERENCES

1. D. P. Anderson, R. Govindan and G. Homsy, “Abstractions for Continuous Media in a
Network Window System”, International Conference on Multimedia Information Systems,
Singapore, Jan 1991.

2. B. Arons, C. Binding, K. Lantz and C. Schmandt, “The VOX Audio Server”, Multimedia ' 89:
2nd IEEE COMSOC International Multimedia Communications Workshop, Ottawa, Ontario, April
20-23, 1989.

3. T. Brunhoff, VEX: Video Extension to X, Version 5.5, Tektronix, Inc., 1989.

4. T. D. C. Little and A. Ghafoor, “Synchronization and Storage Models for Multimedia
Objects”, IEEE Journal on Selected Areas in Communications 8, 3 (Apr. 1990), 41 3-427.

5. L. F. Ludwig and D. F. Dunn, “Laboratory for Emulation and Study of Integrated and
Coordinated Media Communication”, Proc. of ACM SIGCOMM 87, Stowe, Vermont, Aug.
1987, 283-291.

6. W. E. Mackay and G. Davenport, “Virtual Video Editing in Interactive Multimedia
Applications”, Comm. of the ACM 32, 7 (July 1989), 802-810. n. Example: video editor w/

26

time-line. Upcall draws time line, checks drift, and changes QOS if needed. Also
proposes “synch variables”

C. Nicolau, “An Architecture for Real-Time Communication Systems”, IEEE JSAC on
Multimedia Communications, 1990.

G. D. Ripley, “DVI - A Digital Multimedia Technology”, Comm. of the ACM 32, 7 (July 1989),
811-822.

R. Steinmetz, “Synchronization Properties in Multimedia Systems”, IEEE Journal on Selected
Areas in Communications 8, 3 (Apr. 1990), 401-412.

