A Simpler Analysis of the Karp-Zhang
Parallel Branch-and-Bound Method

Abhiram Ranade

Computer Science Division

University of California
Berkeley, CA 94720

Abstract

Karp and Zhang presented a general method for deriving random-
ized parallel branch-and-bound algorithms from sequential ones. They
showed that with high probability the resulting algorithms attained
optimal speedup to within a constant factor, for large enough prob-
lems. We present an alternate analysis of their method. Our analysis
is considerably simpler, and gives good bounds even for small problem
sizes.

1 Introduction

Branch-and-bound algorithms are the most frequently used method in prac-
tice for solving combinatorial optimization problems [1,4]. Because of the
importance of combinatorial optimization problems in operations research
and computer science, and also because these problems are typically very
compute intensive, they are a natural candidate for parallel computation.
Karp and Zhang [2] presented a general method for deriving randomized
parallel branch-and-bound algorithms from sequential ones. They showed
that the resulting algorithms behaved well with high probability on all suf-
ficiently large problem instances (as compared to the number of processors
in the parallel computer, defined formally later). In particular, they showed

that the execution time of their algorithms was overwhelmingly unlikely to
exceed a certain inherent lower bound by more than a constant factor.

In this paper we present an alternate analysis of Karp and Zhang’s
method. Our analysis is considerably simpler, and gives good bounds also
for substantially smaller problem sizes.

In the next section we present the model. In section 3 we state the
main result and the algorithm. Section 4 presents the analysis. Section 5
concludes with some remarks and open problems.

2 Model

Karp and Zhang model a generic branch-and-bound optimization problem
as a rooted tree H and cost function c over the nodes in H. The goal is to
find the leaf of least cost in H, given that the cost function is monotonic,
i.e. ¢(parent(v)) < c(v), for all nodes v except the root. We shall assume
for convenience, as Karp and Zhang do, that no two nodes have the same
cost. The input to the algorithm is the root of H, and the other nodes in H
are generated as required during execution using a procedure called node
ezpansion. When this procedure is applied to a node v it either determines
that v is a leaf, or generates the children of v and evaluates their costs.
A node can be expanded only if it is the root, or if it has been generated
previously during the expansion of its parent.

The computational model consists of p processors numbered 1 through
p, each with a local memory, and connected together by a complete net-
work. There is no shared memory, and processors can exchange information
only by communicating through the network. There is no global control,
but the processors operate synchronously in steps, each of which consists
of a computation substep followed by a communication substep. In a com-
putation substep a single processor can perform one node expansion, and
an unlimited number of operations of other types. In a communication
substep a processor can send out a constant number of messages to other
processors. A processor can receive an arbitrary number of messages 1n a
single communication substep. Each message is long enough to accomodate
the cost of a node and other information required to subsequently process
that node.

The computational model thus charges only for node expansions, and

communication. Other operations, e.g. those required for queueing mes-
sages are provided for free. This is based on the assumption that in real
applications the cost of communication and node expansion would domi-
nate.

3 Main Result

Our main result is that the “local best-first” algorithm of Karp and Zhang [2]
described below gives good speedup:

Theorem 1 Let H denote the set of nodes in a branch-and-bound tree
having cost less than the cost of the least cost leaf, with ‘HI =n. Leth

denote the length of the longest path from the root to any node in H. Then
for any constant k; there ezists a constant ky independent of H and the
number of processors p such that with probability 1 —n~% the local best-first
parallel algorithm completes ezecution in time kg(% + h +logn +logp).

Note that the time required must be at least max(n/p, h) = Q(n/p+h).
This is because (1) any parallel algorithm must expand all the n nodes in
H, requiring n/p time using p processors, and (2) the h nodes on the path
from the root to the farthest node in H can only be expanded sequentially.

The lower bound is attained whenever the problem size n = Q(plogp).
The earlier analysis by Karp and Zhang required n = Q(p?) for attaining
the lower bound.

The theorem is proved in section 4. Our proof of the theorem is also
substantially simpler than the corresponding proof by Karp and Zhang.

3.1 Local Best-First Algorithm

Karp and Zhang’s algorithm is based on the “best-first” heuristic used in se-
quential branch-and-bound algorithms. The sequential best-first algorithm
maintains a priority queue of unexpanded nodes, ordered by their cost. At
each step, the node with the least cost is expanded, and the resulting chil-
dren, if any, are put back into the queue. The algorithm terminates when a
leaf is encountered. In the natural parallel extension, named “global best-
first”, p least cost nodes are expanded at each step rather than just one.

While this is sufficient to find the least cost leaf with minimum number of
node expansions, implementing the shared priority queue is hard, as Karp
and Zhang point out.

Karp and Zhang instead partition the set of unexpanded nodes among
the local memories of the processors, with each processor repeatedly ex-
panding the least cost node from its local partition. They key innovation
is that each child resulting from an expansion is sent to the partition of a
randomly chosen processor. For simplicity, in this paper we give a slightly
modified synchronous version of their algorithm, although the result is also
valid for their original algorithm.

Specifically, processor ¢ maintains two data structures in its local mem-
ory, a priority queue g(¢), and a bound b(¢) that is known to be the cost
of some leaf. Initially all queues are empty, except for one that contains
the root, and all bounds are initialized to co. The algorithm consists of
repeated execution of a loop, each iteration of which consists of log p invo-
cations of a node ezpansion phase followed by a single termination detection
phase:

1. Node expansion phase: Processor i picks the node with the least cost
from its queue g(¢) and expands it. If the node turns out to be a leaf,
the bound b(7) is updated if necessary. Else, for each child, a random
number j is chosen independently and uniformly from [1, p], and the
child is sent to processor j. The nodes received by each processor are
stored in its queue. Each node expansion phase executes in a single
step.

2. Termination detection phase: The processors first determine the cost
of the least cost leaf generated till then by any processor. Then this
cost is broadcast to all processors. Each processor then determines
if it has any unexpanded nodes with lower cost. If no processor has
nodes with a lower cost, then the processors terminate execution.
Each termination detection phase can easily be seen to execute in
O(log p) steps.

For the analysis we shall only consider the node expansion phases, and
completely ignore the termination detection phases. This is justified be-
cause in every iteration of the loop only a constant fraction of the time is
spent in termination detection.

4 Analysis

The only use of randomness in the algorithm is in the choice of queues for
the nodes. The probability space consists of p" equally likely elementary
outcomes, one for each possible queue assignment. The key insight in the
proof is in defining events in the probability space called delay sequences
that must occur whenever execution takes a long time. Once this corre-
spondence is established, Theorem 1 can be proved by counting all possible
delay sequences and estimating their probability.

Let ancestors(v) to denote the set of nodes on the path from the root to
a node v, both endpoints included. Let, h(v) = |ancestors(v)|. Note that
max g h(v) = h. Let ancestor(v,) denote the ith node on the path, with
ancestor(v, 1) = root and ancestor(v, h(v)) = v.

Definition 1 An (s,Q,t,T) delay-sequence consists of 4 components:

1. A tree node s € H.

2. A sequence Q of queues qi, ..., qn(s)-

8. A time interval [1,1].

4. A sequence T of disjoint time intervals numbered T,. .., Ty from
the earliest to the latest such that [1,t] = Uiz h(’)T.

The delay sequence is said to occur during a perticular ezecution iff each
ancestor(s, 1) 1s processed in ¢;, and there exists V C H such that:

1. V and ancestors(s) are disjoint.
2. Each node in V arrives into q; during the interval T; for some 1.
8. |[V|>t—h—logp.

Lemma 1 Suppose the ezecution time is t. Then some (s,Q,t,T) delay
sequence occurs.

Proof: We shall construct the required sequences.

As s we choose any of the nodes in H that get expanded in the last
iteration of the loop described in the previous section. Clearly, some such
node must exist since the last iteration was necessary. The sequence @ is
constructed by setting g; to be the queue in which ancestor(s, ¢) is expanded.

5

Let ¢; be the time at which ancestor(s, i) is expanded in ¢;. Let ¢5 =1,
and for i > 0 define ¢, such that T! = [t{,1;] is the longest interval at
each instant of which ¢; contained some node from H. Because of the
monotonicity of the cost function, we know that ancestor(s,7) € H. Since
ancestor(s,7) stays in ¢; during [t;_1 + 1,;], we know that #; < ¢;_y. Thus
the intervals T cover the interval [1,%5(,)]. Define

T, =T — UL, T
By construction, the intervals 7} are disjoint, and cover the interval [1,ths)-

Let V be the set of all nodes expanded in ¢; during T; for any ¢, excluding
ancestors(s). We know that ¢; contains some node from H at each instant
in T;. Thus the nodes expanded at each instant in 7; must also belong to H,
since the nodes not in H have higher cost. Since ¢; is known not to contain
nodes from H before the beginning of T}, these nodes must also have arrived
into ¢; during 7;. The total number of arnvals is at least 3 |Ti| > tp(s), of
which at most h can belong to ancestors(s). We know that t,(,) > t—log P,
since s was expanded in the last loop iteration.! Thus |V| >t — h — logp.

Q,T and V defined above satisfy all the requirements of a delay se-
quence, except that the intervals in T may not cover the entire interval
[1,#]. This is fixed by suitably extending Tj(,). B

Figure 1 illustrates the construction. Suppose h(s) = 5, and suppose
that ancestors(s) are expanded at times 1, 2, 6, 9, 10 and 11. If corre-
sponding t/s are respectively 1, 2, 3, 5, 8 and 7, then the intervals T; are
respectively are [1,1], [2,2], [3,4], [5,6], [] and [7,11].

Lemma 2 Any fized delay sequence (s,Q,t,T) occurs with probability at
ne)t—h—logp

—h(s
most p) (p(t—h-losp)

Proof: In order for the delay sequence to occur ancestor(s,i) must be
placed in the ith element g; of Q. This occurs with probability p~ ") since
there are p choices for each of the ancestors. In addition we require an
appropriate sequence V.

1Remember that we are assuming for the purpose of the analysis that the termination
detection phases do not exist.

Time Queue Activity Interval Extents
@2 Bt % TTLTLT,T,.T TIT,T3T,TsTs

1 ® X I I

2 ¢ X I I

3 o)

4 o X |
5 o o

6 e O X |
7 o X o

8 o 0o o

9 e O O

10 e ©

11 .

e Expansion of s;
o Queue holds node from H

x Queue does not hold node from H

Figure 1: Construction of a delay sequence

For each node v let z, denote the random variable taking value 1 if node
v arrives into a queue ¢; during the interval T; for some 7, and 0 otherwise.

Define
X = E T,

v€H —ancestors(s)

An appropriate V exists iff X > ¢ — h — logp. All the n — h(s) variables
z, are independent and identically distributed, and take a value 1 with
probability 1/p. Thus X >t — h — log p with probability at most

n— h(s) l t—h-logp - ne t—h-logp
t—h—-logp/ \p ~ \p(t — h —logp)

using (""r'") < (") < (%)r Since this is independent of where the ancestors

of s are placed, the lemma follows by multiplying the two probabilities. |

Proof of Theorem 1: We count the possible (s, Q,t,T) delay sequences
for a fixed ¢t and s such that h(s) = i. Let n; denote the number of possible
choices for s. The i queues in Q can be chosen in p* ways. The partition T
can be chosen in fewer than (t'i.") < 2ttt < 2tk ways. The total number of
delay sequences with h(s) = i is thus n;p'2!*".

Noting that ¥;n; = n, and using lemma 2, the net probability that
some delay sequences occurs 1s at most:
Znipizwhp_‘ (ne/p >t h—logp < (ez% Tl/p)t h-logp

; t—h— t—h—logp

For arbitrary ki, this can be made smaller than n=* by choosing t =
kg(% + h +log p + log n) for some k; independent of n and p. B

We get fairly small constants when n/p is large. For example, for any
fixed € > 0, the probability that £ > (2e¢ + €)n/p can be made as small as
necessary by choosing n/p sufficiently larger than h + logp + logn.

5 Remarks

In the algorithm we have given above processors need to operate syn-
chronously for the purpose of termination detection. The original algorithm

8

of Karp and Zhang [2] uses a randomized termination detection technique,
which enables processors to operate asynchronously. Our analysis is also
applicable to their algorithm with little modification. Karp and Zhang also
show how their algorithm and its analysis can be adapted for a PRAM.
The analysis presented here holds for the adapted PRAM algorithm with
minor modifications and with similar results.

The processor model used in this paper consists of a complete network.
It would be interesting to extend these results to a sparse network of pro-
cessors, e.g. a butterfly network possibly using dynamic tree embedding
techniques of [3].

Acknowledgements
I am very grateful to Sandeep Bhatt, Dick Karp and Yanjun Zhang for
many discussions.

References

(1] E. Balas. Branch and bound methods. In E.L. Lawler et al, editor, The
Traveling Salesman Problem. John Wiley and Sons, 1985.

[2] Richard Karp and Yanjun Zhang. A randomized parallel branch-and-
bound procedure. In Proceedings of the ACM Annual Symposium on
Theory of Computing, pages 290-300, 1988.

[3] Tom Leighton, Mark Newman, Abhiram Ranade, and Eric Schwabe.
Dynamic Tree Embeddings on Butterflies and Hypercubes. In Proceed-
ings of the ACM Symposium on Parallel Algorithms and Architectures,
pages 224-234, June 1989.

[4] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complezity. Prentice-Hall, 1982.

