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This tutorial describes parametric Bemnstein/Bézier curves and parametric tensor-product
Bemstein/Bézier surfaces. The parametric representation is described, the Bézier curve representation is
explained, and the mathematics are presented. The key properties of Bézier curves are discussed.

The single Bézier curve is extended to a composite Bézier curve using parametric continuity. Then
the more general geometric continuity is defined, first for order two (G2), and then for arbitrary order n
(G*). Composite Bézier curves are stitched together with G! and G? continuity using constraints on the
control vertices and using geometric constructions.

The subdivision of Bézier curves is then derived along with a discussion of the associated geometric
construction, the deCasteljau Algorithm, and flatness testing.

Then, the Bézier curve is generalized to a tensor-product surface. Finally, the rational Bézier curve
and rational tensor-product surface are discussed.

1 Supported in part by & National Science Foundation Presidential Young Investigator Award (number CCR-8451997).
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1. Parametric Representation

The traditional explicit functional form (such as y = f (x)) has various drawbacks. For instance, the
representation of a multiple-valued curve (such as a circle) requires splitting the curve into various seg-
ments. And this splitting of the curve might have to be recomputed if the curve were rotated. Further-
more, infinite values would arise in the representation of vertical tangents. Some of these problems could
be addressed using implicit functions (having the form f (x y) = 0). However, this has shortcomings in the
evaluation of a particular point, the calculation of derivatives, and the specification of a portion of a shape
(such as a semi-circle).

To address these problems, our piecewise polynomials will be formulated using a parametric
representation. In this form, each coordinate is represented by its own separate, independent function.
Continuing with the example of a circle, this could be easily represented as (rcos, rsin6). However, the
parametric representation is not a panacea; although it addresses the problems outlined above, it does
introduce an additional level of complexity. For example, derivatives cease to be scalar-valued, but
become vector-valued. That is to say that the n*derivative is a vector whose components are the nt
derivative of each coordinate with respect to the parameter. This means that the derivative information
now includes direction in addition to magnitude. This can introduce subtleties even in simple situations.
For example, a curve could have a continuous unit tangent vector or slope and yet lack a continuous first
derivative due to a jump in the magnitude of the first derivative. This simple idea shows the distinction
between parametric continuity and geometric continuity;-47.8.9.10.11.22,23,29,30,32, 34,35 this is
covered in more detail in Section 5.

Intuitively, the parametrization can be thought of as a description in terms of time. The vector-
valued representation provides the position at a given instant in time. As time passes, the path is traced
out. Using this metaphor, it is easy to imagine different parametrizations that trace out the same path.
The identical path can be traced out with different velocities. Whether a particle moves with uniform
speed or alternatively accelerates and decelerates, the very same path can be traversed. This illustrates
that many parametrizations can specify the same curve. Thus, one should distinguish between a
parametrization and a curve. Consequently, the very same curve can be reparametrized such that the
parametrization changes but the shape of the final curve does not. These ideas are at the heart of the
study of geometric continuity. Another complexity introduced by the parametric representation is that
there are now two separate spaces with which to deal. The curve or surface itself exists in a geometric
space. However, there is also a parameter space which is one-dimensional for a curve and two-
dimensional for a surface. Another way to interpret this parametric representation is that we are defining
a mapping which distorts the parameter space into the corresponding shape in geometric space. Imagine
taking an infinitely-stretchable rectangular sheet of rubber (which is the parameter space) and bending
and twisting it to form a surface in three-space.

More precisely, a parametric function defines a mapping from a domain parameter space, into
geometric or Euclidean space. The definition of a curve involves functions of a single parameter,
whereas for a surface it uses functions of a pair of parameters. Specifically, in the case of curves, the
parametric function defines a mapping from u into Euclidean two-space as Q(u) = [x(), y(u)] or into
Euclidean three-space as Q(u) = [x(u), y(#), z(x)]. This function can be used to define a curve by letting
u range over some interval [u,u,] of the u axis. For a surface, the parametric function is a mapping from
u.v into three-space as Q(u,v) = [x(u,v),y(.v),z(uv)]l. A surface is then defined using this function by
letting u and v range over some rectangle [uq.1;1x [vo,v;] in the u v plane. Note that the use of boldface is
to demonstrate that the function is vector-valued.

In the case of curves, if the domain parameter is thought of as time, the parametric function is used
to locate the position of the particle in space at a given instant. As time passes, the particle sweeps out a
path, thereby tracing the curve. A parametric function therefore defines more than just a path; there is
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" also information about the direction and speed of the particle as it moves along the path.

2. Explanation of Bézier Curves

Bézier curves and surfaces,2: 11.12.13,14,15,16,18,26,28 named for Pierre Bézier, form the nucleus of
Systéeme Unisurf at Renault. The Bézier curve is specified by a set of points, called control wertices,
which are connected in a sequence to form an open or closed control polygon (Figure 1). The resulting
curve begins at the first control vertex and ends at the last control vertex but does not necessarily interpo-
late any of the interior vertices. The curve is tangent to the first and last polygon edge. The shape of the
resulting curve mimics that of the control polygon, but in a smoother fashion.

Vi

v,

V0
Figure 1: Bézier curve and its control polygon.

The Bézier curve can be expressed mathematically as a weighted average of these control vertices.
A particular point on the curve corresponds to a specific set of weights applied to these control vertices.
As the values of these weights are varied, the curve is then traced out. Each weighting factor is a function
of a parameter. Thus, the connection between the value of the parameter and a point on a curve is esta-
blished by evaluating each of these weighting functions at the particular value of the parameter and then
computing the corresponding weighted average. Curves of different shapes can be generated by using
different positions of the control vertices. This weighted average can also be regarded as a linear combi-
nation where the control vertices are the combination coefficients. In this interpretation, the weighting
factors play the role of basis vectors. For this reason, these weighting factors are usually referred to as
basis functions. Like weights, these basis functions are nonnegative and sum to one. The idea, then, is
that as the value of the parameter is varied, the basis functions attain various values that alter the weight-
ing of the control vertices thereby producing a set of points to form the final curve.

Consider a control polygon [V, - - -,V,, - ,V,]. Consequently, a Bézier curve of degree d, denoted
by Q,(u) where u € [0,1], is defined by:

d
Qi) = EOV.'B.'.J("). ue [0,1] M

where B; 4(u) is the i* Bernstein polynomial of degree d

B; 4(u) = [‘l’] ¥(1-uw), i=0,--,d. )
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In the case of d=3, the cubic basis functions are:
Boaw) = (1-u)® = -u3+3u2-3u+1
Bsu) = 3u(l-u)? = 3u3-612 +3u
Baa(u) = 3u(1-u) = -3u+3u?
Bis(u) =

The Bemstein polynomials, B; 4(u), u€ [0,1], are plotted ford = 1,..., 6in Figure 2.

Bernstein a1t Bernstein a2
1 |
8.1 .2
LUK > !
0 U t 0 ]
Bernstein o:3 Bernatein a: ¢

' 1

Bernatein o:§ Bernstein ntd
1 |

Figure 2: The Bernstein polynomials for degree 1 through 6.

3.1
(3.2)
(3.3)
34

These Bemstein polynomials are the polynomials that are seen in the binomial distribution as well
as in the proof of the Weierstrass Theorem. For this reason, Bézier curves are sometimes referred to as
Bernstein-Bézier curves. Because of the interpretation of these basis functions as the binomial
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distribution, there are some interesting probabilistic interpretations of readily apparent.
The equations for a Bézier curve can be recast in matrix notation. From equation (1), the curve can
be expressed as

Vo
\£

Q (u) = [Bog(u)B14(u)- - Bgau)l : @
\Z
From equation (2), the polynomials can be written as: |
[Boa()B1a(u) + Byg)]l = [u® w*™-- - 1](B] )

where [B] is the matrix of coefficients of the Bemnstein polynomials. Substituting equation (S) into equa-
tion (4), the curve can be rewritten in the following matrix form:

Vo

v,

Q) = [u? ¥ - 1][B] ) 6)

\Z

In the case of d=3, this is the cubic Bézier curve, where the matrix of coefficients is given by

1 03 301
3 3

B=| 3 3 0 o0 ™
I 0 0 0

3. Properties of Bézier Curves
The relationships between the parametric derivatives at 4=0 and u=1 and the control vertices are
simply expressed; specifically,
() Position: Q (u) interpolates V, at u=0, and V, at u=1:
Qs(0) =V, 6.1
Q4(1)=V,. (8.2)

(ii) First Derivatives: The initial first derivative vector is in the direction of the vector from V, to
V,, and the final first derivative vector is in the direction of the vector from V,_, to V,. More pre-
cisely, the initial and final first derivative vectors are:

QM 0) = d(V;-Vy) ©.1)
Q) =d(V4-Vay). .2)

(iii) Second Derivatives: The initial second derivative vector depends only on Vg, V,, and V,, and
the final second derivative vector depends only on V,_,, V4., and V,; specifically,

QP(0) = d(d-1)(Vo-2V, + Vo) (10.1)
QP(1) =d(d-1XVaz-2V4y + Va). (10.2)

The degree of a Bézier curve is equal to the number of edges in the control polygon, that is, one less
than the number of control vertices. In this manner, the curve is a single polynomial of this degree. Note
that this is not a piecewise representation. Since this is simply a polynomial, it is C* continuous.
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Furthermore, this approach has global, not local, control. A curve representation with local control has
the effect of a control vertex restricted to a small predetermined region of the curve or surface.

It is frequently desirable to decouple the number of control vertices from the degree of the curve,
and to have local control as well. In the Bézier formulation, it is easy to raise the degree of the curve, by
creating a new control polygon that generates the exact same curve with a (degenerate) polynomial of
higher order (Figure 3). If we have the control polygon [Vo, - *,Vi,"*,Vals the following formula gives
the control polygon [Wy, - - ,\W,, - Wyl

i i .
W, _(d+l Wi +(1- a1 Wi i =0--,d+1 (11)

Figure 3: Raising the degree of a Bézier curve from cubic to quartic.

Bézier curves have the variation-diminishing property.:”:‘-41 Intuitively, a curve satisfying this pro-
perty wiggles less than the underlying data. To be more precise, consider an ordered sequence of straight
line segments connecting the data points. A curve is said to be variation diminishing if there does not
exist any line that can be drawn that would intersect the curve more often than it would intersect the line
segments connecting the data points. Although this property fails for interpolation schemes, it is
achieved for approximation schemes such as the Bézier, B-spline, and Beta-spline representations. It is
interesting to note that there is no analogous variation-diminishing property for surfaces.

Another important property is the convex hull property which provides a region in which the curve
or surface must lie. Intuitively, the convex hull of a set of points is the region that would be enclosed by
an infinitely stretchable rubber material wrapped around the points and pulled taut. In two dimensions,
this could be thought of as an elastic rubber band enclosing an area. In three dimensions, the convex hull
of a control graph is obtained by imagining a rubber membrane stretched taut around the graph; the
volume within the membrane is the convex hull. The Bézier surface will lie inside the convex hull of its
control graph.

The convex hull property can be exploited in many ways. It allows bounding regions for the curve
or surface to be easily calculated, a fact that greatly increases the efficiency of many algorithms. This
property can also be used in conjunction with subdivision to develop a fast occlusion algorithm. If two
control polygons or graphs do not occlude one another, neither can the curves or surfaces they define. If
they do interfere, subdivision can be used as a means of resolving the interference.

4. Composite Bézier Curves Using Parametric Continuity

Although the form for the single Bézier curve described in Section 1 is simple and C~ continuous,
the lack of local control and the connection of the degree to the number of control vertices are prob-
lematic. These impediments can be circumvented through the use of a piecewise version of the Bézier
curve, although this is at the expense of a reduction in the level of continuity achieved. The composite
(or piecewise) Bézier curve strings together a sequence of Bézier curves, each with its own control
polygon, thereby reducing the degree and establishing local control. However, to achieve a given level of
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continuity requires the application of constraints to the positions of the control vertices. This represents a
departure from the idea that the control vertices could be placed in any position desired.

The simplest continuity constraint is positional continuity which would require that the: Iast vertex
of one control polygon be in the same position as the first vertex of the succeeding control polygon. In
this case, moving any interior control vertex of a control polygon would affect just that one Bézier curve
while moving this common control vertex would result in the modification of two Bézier curve segments.
If first order parametric continuity (C') is required in addition, then the last edge of the previous control
polygon must be collinear with the first edge of the next one and these two edges must also be of equal
length (Figure 4). Parametric second derivative vector continuity (C?) at a joint involves constraints on
the common control vertex and on the two control vertices on either side of the joint. Consequently, for
cubics, maintenance of C2 continuity when moving one control vertex requires repositioning some control
vertices associated with several neighbouring segments. Note that it is sufficient to maintain €2 con-
tinuity by modifying control vertices on only one adjacent segment if higher degree curve segments were
used. Since C? continuity at a joint affects the common control vertex and the two control vertices on
either side of the joint, this continuity could be ensured by defining each curve segment with six control
vertices, that is, by using fifth degree curve segments.

More generally, since C* continuity at a joint affects n+1 control vertices per segment including the
common control vertex on either side of the joint, this continuity could be ensured by defining each curve
segment with 2(n+1) control vertices, that is, by using degree 22 +1 curve segments. However, it is possi-
ble to maintain C” continuity with a composite Bézier curve of degree n+1 by adjusting the control ver-
tices of only n+2 segments.

To see why this is the case, first recall that degree n+1 B-spline curves have this local control pro-
perty. Then note that it must be possible to represent a composite Bézier curve of degree n+1 as a single
knot degree n+1 B-spline curve since these curves are both C* piecewise polynomial curves. The effect
of moving a control vertex along with the neighbouring vertices that would need to be adjusted in the
Bézier representation so as to maintain C* continuity can be achieved by moving a B-spline control ver-
tex. Finally, the resulting B-spline curve can be converted back to a Bézier representation using knot
insertion.1!

Figure 4: A composite cubic Bézier curve.

5. Geometric Continuity

As was mentioned in Section 1, there are many subtleties involved in establishing continuity con-
straints for parametric splines. Traditionally, the continuity constraints that have been used have been the
same as for nonparametric splines, except simply transposed into a parametric form. In other words, it
has been the derivatives that have been constrained to be continuous. For the parametric representation,
the derivatives in question are parametric derivative vectors, where each component is the derivative of a
coordinate with respect to the parameter. Because this form of derivative is fundamentally different than
the scalar-valued functional derivatives to which we are accustomed, our intuition regarding the
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associated geometry often fails. As an example, it is possible to parametrize a piecewise representation of
a circle to have a discontinuity in the second derivative vector, although the curvature (and curvature vec-
tor) would be continuous. This leads to the idea that it would be of interest to constrain the unit tangent
and curvature vectors to be continuous rather than the first and second derivative vectors. We have named
this form of continuity as geometric continuity. In the case of constraining the unit tangent and curvature
vectors to be continuous, we refer to this as G2 continuity. We call the traditional method of maintaining
continuous parametric derivative vectors as parametric continuity to distinguish this from the geometric
continuity approach. 11

In addition to being a more appropriate measure of continuity for parametric curves, geometric con-
tinuity has the advantage that it is a more relaxed form of continuity. The continuity constraints that it
generates are generalizations of the continuity constraints for parametric continuity. These more general
geometric continuity constraints liberate some degrees of freedom, which are called shape parameters,
that can be captured to provide further control of shape.

Having defined geometric continuity of order two (G 2), it is of interest to investigate generalizing to
higher order. How can we define geometric continuity of order », for an arbitrary n? The key to our
answer to this is the observation, which was made in Section 1, that many different parametrizations can
describe the same curve.ll Two regulart C* parametrizations are said to be equivalent if there exists a
regular C* function that is regular and onto and that when composed with one of the parametrizations
yields the other one. Intuitively, equivalent parametrizations trace out the same set of points in the same
order. Thus, it is possible to alter the parametrization of a curve without changing its shape; this is
referred to as reparametrization.

From this observation, we are now ready to define geometric continuity for arbitrary order n. Two
regular C* parametrizations, denoted q(x) and r(1), meet with n* order geometric continuity, denoted G*,
if it is possible to reparametrize one of the parametrizations such that it would meet the other parametri-
zation with C* continuity. Although this does provide a definition of geometric continuity of arbitrary
order, it is not very practical because it still leaves open the question of how to determine whether or not
such a reparametrization exists. Based on this definition of geometric continuity of arbitrary order » and
using the idea of composition for the equivalent parametrizations yields equations for the first n deriva-
tives in terms of two different parameters. Performing the prescribed differentiation requires invoking the
chain rule at each level of differentiation. The resulting equations involve the first n derivatives of one
parameter with respect to the other. Denoting the j % such derivative at the joint by B; yields the so-called
Beta-constraints. These B’s are the same B’s that appear as shape parameters in the Beta-spline. The
Beta-constraints provide a set of necessary and sufficient conditions that two parametrizations meet with
G* continuity; specifically, two parametrizations meet with G* continuity if and only if there exist

numbers B;, - - - ,B, that satisfy the Beta-constraintsi.
As an example of the form of the Beta-constraints, the constraints for G* continuity are
r(0) = B1g®x(1) az.n
r®(0) = Br’q®(1) + B2qV(1) (12.2)
r®(0) = B1’q®(1) + 3p1B2q™(1) + B3g(1) (12.3)
r9(0) = Briq(1) + 6817B2q™)(1) + (4183 + 382)qP(1) + BagX1). (12.4)

where B2, B3, and B4 are arbitrary, but B1 is constrained to be positive. The Beta-constraints can be used to

t A parametrization is regular if its first derivative vector never vanishes.
+ To maintain the orientation preserving property, B, is constrained to be positive.
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form a composite Bézier curve that is smooth, as is discussed in the following section.

6. Geometric Continuity for Composite Bézier Curves

Consider the goal of stitching Bézier curves together with G! and G? continuity.8:9 The problem we
now wish to address is to maintain some geometric continuity at the joints; specifically,

Given: The shape parameters B and B2, and the control polygon [Vo,- - -,V;,- -, V4] defining the

parametrization
d
Qi)=Y VB, s(u), uel01], (13)
i=
find: constraints on the control polygon Wy, - - - W, defining the parametrization
d
Ry (1)=3W,B,; 4(t), t€[0]1] (14)
j=0
such that: Q, and R, meet with G (or G?) continuity at Q,(1) with respect to B1 (and B2) (see Fig-
ure 5).
W,
v‘ = wo ’-‘,—q\
”’-—— \\
\\
Voi ‘b w,

Figure 5: Situation for stitching two Bézier curves Q, and R, together with G™ continuity.

Since a Bézier curve interpolates its first and last control vertices, we can guarantee C° (and hence
G continuity by setting W, = V4, as shown in Figure 5. To achieve G' continuity for a given p1>0, we
can find W, by recalling Equation (12.1) and using Equation (9) to yield

d(W,-Wo) =dB1(Vy-Vay), B1>0. as)
Simplification and rearrangement yields
W, = Wo+B1(Vy-Va), B1>0, (16)
and since W, = V,,
W, =V, +B1(Vs-Vgg), B1>0. an

Geometrically, Equation (17) states that W, must lie on the ray starting at V, ( = W), extending in the
direction of the vector from V,_, to V,. The length of the segment W,W, relative to the length of V,_,V,
is given by the parameter B1. Thus, given V4, V4 and B1>0, the control vertices W, and W, can be deter-
mined geometrically as shown in Figure 6, or algorithmically using the following construction:

DW=V, (18.1)
QW <= Wo+B1(Vy-Vyy) (18.2)
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Vs

Figure 6: The construction of W, and W, to achieve G' continuity for a given B1.

Once W, and W, have been constrained subject to G' continuity, the control vertex W, can be con-
strained to guarantee G2 continuity for a given B2 by recalling Equation (12.2) and using Equation (10) to
yield

d(d-1)(Wy-2W; + W,) = B12d(d-1)(Vg2-2V4 1+ V) +B2d (V4 - V). (19)
Solving for W, yields
W, = 2W,-Wo +B13(Vy 5-2V, + V) + &l;_'—l‘i'fﬁ 20)
Substituting V, for W, and Equation (17) for W,, and rearranging yields
W, = B12V, _,- (2B1%2+ 2B1 + -(-%)V‘,,.1 +(B12+2p1 + 2% + 1)V, (¥2))

Rather than the algebraic approach given above for the determination of W, a more geometric
approach was developed by Farin?# and later improved upon by Boehm.!7 For our purposes, it is most
convenient to think of the approach of Farin and Boehm as a convenient factorization of Equation (21),
each term of which has a well-defined geometric interpretation.

The Farin-Boehm construction takes as input the control polygon [V4_5,V4.;,V4] and the shape
parameters B1>0 and B2, and produces as output the control vertices Wo, Wy, and W, such that the curves
meet with G? continuity with respect to 1 and B2. The construction may be stated as:

Wye 5 f(fs:(ljgll;?;iﬁl) @2.1)
@) Wo< V, (222)

B)W <= Wo+B1(Vy-Vua) (22.3)
@ Te Vo +B12¥(Vay- Vo) (22.4)
(5) Wae Wi+ (W, -T) (22.5)

The geometric interpretation of this construction is shown in Figure 7.

In other words, only W, can be freely chosen if we insist on G2 geometric continuity once p1 and B2
are chosen. The crucial point is that the relaxation of the continuity constraints gives us two more
degrees of freedom. In particular, we can adjust Bt and B2 to be able to ensure G2 on both sides of the
span.
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Figure 7: The Farin-Boehm construction.

7. Subdivision of Bézier Curves

One of the most important attributes of the Bézier curve is the ease with which it can be subdivided.
By introducing new control vertices, subdivision splits the curve into two pieces, each of which has its
own defining control polygon. In specific cases, the positions of the new control vertices can be deter-
mined explicitly from the positions of the original control vertices. More generally, a set of intermediate
control vertices is introduced.

To be more precise, a Bézier curve Q,(u) of degree d can be rewritten as:3

Q) = TI-i + WVolBi i) @3)
Equation (23) can be rewritten as
Q) = VI8, 4e0) @4)
where
Vi) = (1-u)V; + uV,y. (25)
Repeating this process recursively k times yields
Q) = TVIWE 4a(w) @6)
where
v Fi) = {(H)v!*'”(x;)i WV, get, ,d} an
In the case of k=d, equation (26) becomes
Qu(u) = V) u)Boo(u) (28)
which is
Qi) = V). (29)
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Thus, for a given parametric value *, the point on the curve at u” is V§#"), as defined in equation
(27). This yields another way to compute a point on the curve; simply recursively compute this vertex
using a ratio equal to the parametric value of the desired point. This idea can be used to geometrically
construct a Bézier curve. To compute the point Q4 (u"), each edge of the control polygon is divided in the
ratio «* :1-u". For example, for midpoint subdivision each edge is simply divided at its parametric mid-
point. Then, these new vertices are connected in succession. This forms a sequence of edges where the
number of edges here is one less than in the original polygon (that is, d—1 edges). Each of these new
edges is then subdivided in the same ratio and these new points are connected again. At each stage of this
process, there is one less edge than there was at the preceding stage. This process is continued, and after
d-1 iterations, a single edge results. Then, in the d® iteration, this edge is subdivided again in the same
ratio. This point is then the common vertex of the two new Bézier curves. The remaining vertices of
each of the two new Bézier curves are a subset of those found in this development. Figure 8 illustrates the
computation of a point on a cubic Bézier curve. This same process can be performed for various values
of the parameter u, and then these points can be connected to generate a piecewise linear approximation
to the curve.

In addition, V {#)") is the common vertex between two subdivided curves, each with its own con-
trol polygon. This is illustrated in Figure 8 for degree d=3.

V%)= v, vihu®) V)=V,
vi¥w®)

A

[1,,*
Vo '(u) Vésl(u.)tQ(u.)

VOw®) =V, Vi) =V,

Figure 8: V§(u") is the common vertex between the two subdivided curves. for degree d=3.

Because Bézier curves interpolate their endpoints, this new point just found will lie on the Bézier
curve. For this reason, this geometric construction is often given as a method to compute a point on the
Bézier curve. This approach is sometimes referred to as the deCasteljau Algorithm 19:20

Other points on the curve can be found in one of two ways. One possibility is simply to rerun this
subdivision at a different value of the parameter x. Thus, subdividing for a sequence of different values
of the parameter u will generate a sequence of points on the curve. The other possibility is to then treat
each one of the new Bézier curves as a starting point for subdivision and simply recursively subdivide on
each side. This latter approach is frequently referred to as recursive subdivision. Associated with recur-
sive subdivision is some criterion for termination. One such criterion is flatness. In this approach, subdi-
vision of a particular Bézier curve segment stops when that segment is deemed "flat." At that point, the
curve segment can be approximated either by its control polygon or by the straight line segment connect-
ing the first and last control vertex for that curve segment.

Such a termination criterion requires some kind of flatness test. The flaess test should be some
computation performed on the vertices themselves so as to avoid a calculation of a point on the curve.
Many different tests are possible. However, it is a challenge to develop a test that is both computationally
efficient and provides a correct conclusion over a wide range of cases. Given a particular test, it is
interesting to construct counter-examples for which the test would yield a misleading answer. This can-
not be solved simply by developing more elaborate tests, since it would defeat the purpose of subdivision
if the amount of computation required to perform the flatness test equaled or exceeded that required to

Page 12 May 1990



Parametric Bernstein/Bézier Curves and Tensor Product Surfaces

perform another level of subdivision.

8. Tensor Product Bézier Surfaces
A tensor-product Bézier surface, denoted by Q. (,v), is a generalization of a Bézier curve, and can
be defined as

d e
Qi ,(my) = 3 ¥ VB ;(u)B; . (v) (30)

i=0 j=0
The B, 4(u) and B;,(v) are the Bemstein basis functions, defined in the u and v parametric directions,
respectively, and have degree d in the u direction and e in the v direction. The V;; (x;;, y;;,z;) are the
three-dimensional control vertices organized in a two-dimensional m+1 by n+1 control graph with a rec-
tangular topology as shown in Figure 9. Note that the connectivity of the graph is implicitly determined
by considering the graph as a two-dimensional array of vertices. Two vertices share an edge if and only if
they are adjacent in the array.

Figure 9: A control graph for surface specification.

Given the control graph [Veo, Vo1, * - - Va ], @ point on the surface is a weighted average of these con-
trol vertices:

d e
Qi,(myv) =Y 3 VB gu)B;, (v) @31
in0 j=0
or, in matrix form
BO.c(v)
By.(v)
Qi.(uv)=[Bog(u)Ba(u): ' Bygqam)V] : (32)
B,,()
where
Voo Vo
V= S I (33)
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Figure 10 shows a Bézier surface where d=e=6.

Figure 10: The bivariate sixth degree Bézier surface defined by the control graph in Figure 9.

9. Rational Bézier Curves and Surfaces

The rational form has the advantage that it can represent conic?!:31.40 curves and quadric sur-
faces3! as well as free-form curves and surfaces. Examples of conic curves include circles, ellipses, para-
bolas and hyperbolas while examples of quadric surfaces include spheres, ellipsoids, cylinders, cones,
paraboloids, hyperboloids, and hyperbolic paraboloids.

A further advantage is that a rational formulation is invariant under projective transformation (in
addition to affine transformation, as is the case for the integral counterpart). Since perspective is a projec-
tion, this property can be exploited to generate a perspective projection of a rational curve or surface
without resorting to applying this projection for every point to be displayed, as is the case for the integral
version. Additionally, there are weights which can be used to control shape in a manner similar to shape
parameters.

A rational Bézier curve? can be viewed as an integral Bézier curve in a vector space whose dimen-
sion is one higher than that of the space of the rational Bézier curve. This ‘‘next higher’’ dimensional
space is referred to as the homogeneous coordinate space. For details on homogeneous coordinates, the
reader is referred to.27.36.37.38,39

Denoting the dimension of the space of the rational spline by N, then in this scheme, the *‘extra’
coordinate is used as a denominator for the first N coordinates. When each coordinate is a polynomial,
the N +1 coordinates taken together can be interpreted as N rational polynomial coordinates each sharing
the same denominator. A rational spline in RY is then the projection of an integral spline in the
corresponding homogeneous coordinate space, R¥*! .

For illustrative purposes, consider a rational curve in the plane, that is, N=2. This rational curve in
two dimensions is defined in a three-dimensional space represented by homogeneous coordinates. The
third coordinate is the weight and is assumed to be positive. There is a distinct weight associated with
each \Slegex. The three-dimensional curve can be projected to two dimensions yielding a rational
curve.”
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An illustration of how a rational curve is the projection of an integral curve from a vector space of
one higher dimension is provided in Figure 11. The solid curve in R? is the projection of the dashed
curve in R3,

Figure 11: Rational curve is the projection of an integral curve.

The term “‘rational’’ refers to the ratio which characterizes this approach. More specifically, let w;,
fori =0, --,d, be the d+1 weights corresponding to the control vertices V;. Then, a rational Bézier
curve of degree d is given by:

i w; V; Bi.d(u)
QW = SF—— (34)
> wr B, 4(0)
r=0

The rational Bézier curve defined in equation (34) can be rewritten in a more familiar form, that is,
as a linear combination of basis functions which are now rational basis functions. Rearranging equation
(34) yields

d w; B 4(w)
QW =3V, | —— (35)
i=0 E W, Br.d(u)
r=0
Denoting the term in brackets by R; 4(u),

Rigt) = i 2i4® (36)
2 w, Br,d(u)
r=0

and replacing this in equation (35) results in
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d
Qi) = XV, R ;) 37N
i=0

Rewriting the rational Bézier curve in the form given by equation (37) reveals a curve formulation
that is indistinguishable from the integral form except that the basis functions are themselves rational.
This immediately implies that virtually all the results for integral curves will carry over to the correspond-
ing rational curve provided that the rational basis functions satisfy the same properties as their integral
brethren. In addition, note that the integral Bézier curve is always available as a special case by easily
arranging that the denominator be unity.

The rational Bézier curve can be generalized to a tensor-product surface. For degree d in the u
parametric direction and degree e in the v parametric direction, the tensor-product rational Bézier surface,
denoted by Q, . (x,v) where € [0,1] and ve [0,1], can be defined as:

d

) i wij Vii B; 4(0) Bj ., (V)
i=0 j=0

Q. () = —5— (38)
Z 2 Wre Brd(u) B,,(V)

r=0 =0

Analogous to the case for curves, each three-dimensional control vertex is represented as the homogene-
ous control vertex VY (wi;x;;, wi;yi;, wijzi;) in four-dimensional space and is associated with a weight w;;,
fori =0,---dand j=0,---.e.

Following a similar derivation to that presented for the curve case, the above expression (38) for the
rational Beta-spline surface can be rearranged as follows

Qu. () = f: é vl = “"i/ Bia(u) B;,(v) .
= z Z W B’.d(u)B:.c(v)
r=0 s=0

and the term in brackets could be denoted by R; 4.; , (4.v)
w;; B; 4(u) B; ,(v)

RigjeWwy) = 4 (40)
Z Z Wz Brd(u) Bx,t(v)
r=0 s=0
and replacing this in equation (39) yields
d e
Qi ,wv) =Y Y ViRig,.(uy) @1
i=0 j=0

Analogous to the curve case, the expression (41) yields a surface formulation that resembles the
integral form with the exception that the bivariate basis functions R, 4,; . (u,v) are rational. These rational
bivariate basis functions possess properties similar to those of the analogous univariate versions.

In summary, the rational Bézier form provides a unified representation for free-form curves and sur-
faces along with conic sections and quadric surfaces, is invariant under projective transformation, and
possesses weights which can be used to control shape in a manner similar to shape parameters.

10. Conclusion

Parametric Bernstein/Bézier curves and parametric tensor-product Bemstein/Bézier surfaces have
been described. This curve and surface representation uses Bemstein polynomials as basis functions.
The parametric form represents each coordinate by its own separate, independent function. The Bézier
curve representation was explained, and the mathematics presented.
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The key properties of Bézier curves were discussed, including the relationships between the
parametric derivatives at each end of the curve and the control vertices, degree-raising, the local control
property, the variation-diminishing property, and the convex hull property.

The single Bézier curve was extended to a composite Bézier curve using parametric continuity. A
discussion of the more general geometric continuity then ensued. Geometric continuity of order two (G?)
constrains the unit tangent and curvature vectors to be continuous. We then generalized geometric con-
tinuity to higher order, providing a reparametrization definition of geometric continuity of order n,
denoted G*, for an arbitrary n. From this, equations which are called the Beta-constraints were derived;
these provide a set of necessary and sufficient conditions that two parametrizations meet with G* con-
tinuity. The Beta-constraints were used to form a composite Bézier curve that is geometrically continu-
ous. Constraints on the control vertices were derived such that two Bézier parametrizations would meet
with geometric continuity and the construction for geometrically continuous Bézier curves was provided.

The subdivision of Bézier curves was then derived. A recursive expression was derived for the con-
trol vertices that define each of the two new pieces. This expression was interpreted as a geometric con-
struction for a Bézier curve, and reference was made to the deCasteljau Algorithm. The determination of
a set of points on the curve using recursive subdivision with an associated flatness test was also discussed.

Then, the Bézier curve was generalized to a tensor-product surface, and both a summation and
matrix formulation for a point on the surface was given. Finally, the rational form was presented. The
rational Bézier curve and rational tensor-product surface were discussed and mathematical expressions
for both were provided.
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