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ABSTRACT

This report describes the Session Reservation Protocol (SRP). SRP is defined in the DARPA
Internet family of protocols. It allows communicating peer entities to reserve the resources, such
as CPU and network bandwidth, necessary to achieve given performance objectives (delay and
throughput). The immediate goal of SRP is to support ‘‘continuous media’’ (digital audio and
video) in IP-based distributed systems. However, it is applicable to any application that requires
guaranteed-performance network communication.

The design goals of SRP include 1) independence from transport protocols (SRP can be used with
standard protocols such as TCP or with new real-time protocols); 2) compatibility with IP (data
packets are not modified); 3) a host implementing SRP can benefit from its use even when com-
municating with hosts not supporting SRP.

SRP is based on a workload and scheduling model called the DASH resource model. This model
defines a parameterization of client workload, an abstract interface for hardware resources, and an
end-to-end algorithm for negotiated resource reservation based on cost minimization. SRP
implements this end-to-end algorithm, handling those resources related to network communica-
tion.

This work was sponsored in part by the California MICRO program, AT&T Bell Laboratories, the Digital
Equipment Corporation, Olivetti S.p.A., and the Hitachi Corporation.






1. INTRODUCTION

Audio and video (or continuous media) can greatly increase the effectiveness and range of a user
interface. It will soon be possible to equip average workstations with the hardware to handle
digital continuous media [1] and to connect these workstations by high-speed wide-area networks
capable of handling continuous-media data [2]. This hardware base can support distributed
continuous-media applications like video conferencing systems and the real-time display of video
data stored on a remote file server [3].

Such applications transmit continuous data streams between hosts, and impose performance con-
straints (delay and throughput) on this transmission. The performance of current hardware, such
as CPUs, networks, and disks, is generally sufficient for continuous-media data. However, the
scheduling policies used in hosts and gateways are designed primarily for faimess and simplicity.
Therefore, especially during periods of heavy system load, the performance of a given connection
may fail to meet the application’s requirements.

To remedy this situation, a new approach to resource scheduling with the following properties is
needed:

e Resources (CPU, network, disk, etc.) that can potentially become bottlenecks must be
scheduled in a way that allows *‘reservations’’ (associated with performance guarantees) to be
made to individual clients.

e In making a reservation, clients must specify their workload. This is only possible if the
workload is known when the reservation is made, i.e., if the software generating the workload
operates in a deterministic, time-invariant fashion.

e Since data may traverse resources on several hosts, a protocol for distributed resource reserva-
tion is needed. This protocol in tum requires a uniform interface to the various resources
involved.

In this report we describe a resource reservation protocol called SRP (Session Reservation Proto-
col) that allows performance guarantees to be made for communication based on IP [4]. SRP can
be viewed as a ‘‘network management protocol’’ operating at the internetwork (IP) layer as
shown in Figure 1. SRP is directly responsible for reserving only network resources. However, it
is designed to function as part of a larger framework in which other computer resources (disks,
DSP chips, etc.) are reserved and scheduled together with network resources. The design goals of
SRP also include the following:

e Independence from transport protocols (SRP can be used with standard protocols such as TCP
or with new real-time protocols).

o Compatibility with IP. Header fields of IP packets are not added or modified. On hosts that
implement SRP, however, IP is modified so that the relative priority of incoming packets can
be established.

o A host implementing SRP can benefit from its use even when communicating with hosts not
supporting SRP.

The DARPA Internet framework provides both advantages and disadvantages for real-time com-
munication. The datagram abstraction of the IP layer is compatible with continuous-media appli-
cations, which often do not require reliability and could not, in fact, tolerate the delays caused by
retransmissions in reliable link-layer protocols. IP also has the advantage of widespread use.
However, the dynamic routing generally used by IP implementations poses problems for real-
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Figure 1: SRP as a management protocol in the Intemet protocol hierarchy.

time communication.

TCP [5], the dominant stream transport protocol in IP networks, is not especially well-suited to
continuous media applications. For continuous-media data, regular delivery is at least as impor-
tant as reliable delivery, and sometimes more important. It is possible to use TCP for
continuous-media data; however, its main features (flow control and error recovery) are not useful
in this context. They may actually interfere with timing, and increase workload, in ways that are
detrimental to real-time performance. We do not concem ourselves here with the design of tran-
sport protocols to be used in conjunction with SRP.

The remainder of this paper is organized as follows. Section 2 deals with the workload and
scheduling model on which SRP is based. A generic interface to resources is presented in Section
3. Section 4 specifies the actual SRP protocol. The interaction between I[P and SRP is described
in Section 5. Section 6 describes an extension of SRP that accommodates hosts in the communi-
cation path that do not implement SRP.

2. THE DASH RESOURCE MODEL

To formalize the reservation of resource capacity, a model for expressing workload and process-
ing is needed. The model used in SRP is called the DASH resource model [6]. In this model, the
set of system components that handle continuous-media data is decomposed into a set of
resources. In general, a resource corresponds to a schedulable hardware device and its accom-
panying software driver. For example, a CPU and its scheduler might comprise a resource.
Resources may also be more complex: a local area network (which includes multiple interface
devices, concurrent operation, and multiple scheduling mechanisms) might be treated as a single
resource.
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The DASH resource model assumes that work is assigned to resources in discrete units called
messages, typically representing a segment of continuous-media data. Each message has a well-
defined arrival time at which it is available for handling by a resource and completion time at
which the handling is finished.

The flow of continuous-media data is considered to consist of linear simplex streams of messages
that pass through one or more resources. Data is generated by a source resource (a disk, digitizer,
or compression unit), is then processed by a sequence of handler resources (networks, CPUs,
etc.) and finally is consumed by a sink resource (disk, decompression unit, etc.). A message’s
completion time in one resource is its arrival time at the next resource. Many of these simplex
data streams may exist concurrently, even within a single application. Therefore this scheme
encompasses many continuous-media applications: playback of continuous media from disk,
storage on disk, live conversations between human users, and others.

2.1. Linear Bounded Arrival Processes

Each data stream flowing across an interface defines an arrival process into the downstream
resource. To describe the message arrival, the DASH resource model uses linear bounded arrival
processes (LBAPS), an abstraction introduced by Cruz [7]. An LBAP has the following parame-
ters:

maximum message size S (bytes)

maximum message rate R ..  (messages/second)

maximum burst size Ba.x  (messages)

In any time interval of length ¢, the number of messages arriving at the interface may not exceed
B ax Tt Rmax

The long-term data rate of the LBAP is

R

S max “ " max

bytes per second. The burst parameter B ,, allows short-term violations of this rate constraint,
modeling programs and devices that generate ‘‘bursts’” of messages that would otherwise exceed
the rate constraint.

We define a function b(m) representing the logical backlog of the arrival process. This is the
number of messages by which the arrival process is ‘‘ahead of schedule’” (relative to its long-
term rate) when message m arrives. The logical backlog is not necessarily the number of queued
messages since a resource may process messages upon their actual arrival if it is fast enough.
b(m) is defined by
b (m 0) =0
b(m;) =max (0, b(m;_1) = (& —ti)) Rpax + 1)

where ¢; is the arrival time of message m; .

Using b(m), we define the logical arrival time, [(m), of a message m as
b(m;)

Lim;)=1¢ +
max .
Intuitively, {(m) is the time m would have arrived if the LBAP strictly obeyed its maximum mes-
sage rate.



2.2. Sessions

The use of a resource by a particular data stream is called a session. A session represents a reser-
vation of part of the capacity of the resource. Clients must request sessions with all of the
resources they need (using a scheme defined below) prior to sending messages. As part of the
reservation, the client must specify its workload; in return, the resource provides a bound on the
delay it will impose. The client can then decide if this delay is sufficient for its purpose.

Each session has associated sets of LBAP parameters for its input and/or output interfaces. A
handler resource accepts LBAPs, producing output LBAPs. The client of the resource must
enforce the input LBAP parameters; the scheduler of the resource must enforce the output param-
eters. We assume that handlers do not modify the message stream, i.e., that they do not lose mes-
sages, change the size of messages, speed up or slow down the message stream. Therefore, the
incoming and outgoing LBAP for handler resources must have the same values for S,, and
R ... On the other hand, incoming and outgoing LBAP may have different burst sizes, depend-
ing on the overall workload and scheduling policy of the resource.

In addition to their LBAP specifications, handler sessions also have the following parameters:
maximum logical delay L pax

minimum actual delay A
maximum buffered delay ~ M .«

The actual delay of a message m in a handler resource is the time interval between its arrival at
the input interface and its arrival at the output interface. The logical delay of m is the interval
between the m’s logical arrival time and its logical arrival time at the output interface. Logical
delay, rather than actual delay, determines end-to-end delay bounds. The buffered delay is the
portion of actual delay during which the message is not stored in host memory. In resources such
as wide-area networks, M ,,, will be smaller than L ,,, due to message propagation time. Ay,
and M ., are used to calculate buffer space needs.

Two classes of sessions are distinguished, guaranteed and best-¢ffort. For guaranteed sessions, a
resource reservation is made, and the delay parameters hold unless a failure occurs. For best-
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Figure 2: A handler resource with two sessions.
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effort sessions, no reservation is made. The workload parameters are ‘‘hints’’ to the resource, the
delay parameters are hints to the client. If the resource becomes loaded messages may be
dropped and delays may be exceeded.

When data traverses a sequence of resources, the basic sessions within the resources are said to
form an end-to-end session. An end-to-end session represents a unidirectional point-to-point
communication path that traverses several resources, either within a single host or across a net-
work. The output interface of each resource in an end-to-end session is the input interface of the
next resource. Each resource must be prepared to handle the burst size generated by the previous
resource. The end-to-end logical delay of a message is the interval between its logical arrival
time at the source output and its logical arrival time at the sink input. The maximum logical
delay of an end-to-end session is the sum of the maximum logical delays of its handler resources.

2.3. An Economic Approach to Delay Allocation

It may be possible for a resource to guarantee a maximum delay anywhere within a certain range.
The shorter the delay is, the more costly it is because the resource has less freedom to schedule
other service requests — and the fewer additional sessions it can support. To divide the delay
between resources in an end-to-end session the DASH resource model takes an approach based
on economics. This approach has also been used for problems such as routing and load-balancing

[8]).

When a client reserves a session with a resource, the resource makes reservations for the smallest
possible maximum delay. In addition, the resource provides a cost function indicating, for each
larger maximum delay, the associated cost to the client. The client may relax the maximum
resource reservation to minimize cost.

Cost can either be real money, to be later billed to the client, or some metric reflecting the
resource’s current load. The cost function may be a function of the workload of a resource or of
parameters like the time of day or the identity of the user (e.g., so that frequent users pay less).

For tractability, the DASH resource model requires that every cost function be 1) continuous and
piecewise linear; 2) strictly monotonic decreasing, and 3) convex. In other words, for each vertex
(d;, c¢;) and its surrounding elements we have

Ci-1 — € > Ci —Ciyl

di—di.y  din—d;

di1 <d; <diy1, €1 > € > Cinp

The first value for which a cost is given is the smallest achievable maximum delay. We assume
that at some point more delay will not lead to lower costs because the cost of buffering messages
over the delay period will exceed the cost saved by the larger delay.

The cost of an end-to-end-session is the sum of the costs of its component sessions. Since we
have defined cost functions to be convex piecewise linear functions, they can be combined by the
following procedure: The segments of the functions are sorted in order of decreasing (more nega-
tive) slope. They are placed end-to-end, starting at the point which is the sum of the initial end-
points of the functions. This procedure is illustrated in Figure 3.
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Figure 3: Combining cost functions; C is the combination of C'; and C.

2.4. Buffer Reservation

The DASH resource model is designed to prevent message loss due to buffer overflow. For a
given resource, this requires reserving enough buffer space to accommodate the input burst size
plus messages being processed in the host. In bytes, this amount of buffer space is given by the
expression

When several sessions on a given host are part of an end-to-end session, a formula similar to the
above gives a tighter bound on the number of buffers needed for the entire chain of sessions:

S max (B max *+ R max M max)

The input burst size B, is that of the first session in the chain, and the maximum buffered delay
M . is summed over the basic sessions.

A second need for buffer space arises when the receiving end of an application must deliver mes-
sages at a constant rate to the output device (e.g., audio or video converters). Suppose the first
message of a stream arrives with minimum delay. If the application outputs the first message
immediately, and the second arrives with maximum delay, there will be an unacceptable pause in
the output between the two. The application must therefore buffer messages to ensure that there
is no ‘‘jitter’’ in the output.



-7

Assuming that the source resource generates messages fast enough to maintain a nonzero back-
log, jitter can be avoided as follows. The receiver waits until

R mmax (L max = Armin)
messages have been received (where I:max and A min are the sums of L., and A, over all ses-
sions in the end-to-end session), and then waits until the logical arrival time of the last of these

messages. If O, is the output burst size of the last session, the number of bytes needed for
buffering is

S ax (O max + R max (Lmax = A min)

2.5. End-to-End Session Establishment

The DASH resource model defines an establishment protocol for end-to-end sessions. Using this
protocol, the application’s allowable end-to-end delay is divided between the resources, and burst
sizes are established. The establishment protocol is carried out by host resource managers
(HRMs).

Initially, the HRM at the source host is given a client request that specifies the resources
involved, the message size and rate, and the end-to-end delay requirements. These requirements
are given by a target and maximum value, denoted E,ger and E_,,. We do not specify how
clients learn about their delay requirements. They could negotiate them immediately prior (0
establishing the session. If we assume that the decision factor for the suitability of a session is
the delay rather than the costs associated with it, it is possible to cancel the session establishment
even before contacting the receiving client, should it become clear that not even E nax €an be
achieved. E,p makes a ““fast’’ session establishment possible: the receiving client does not
need to be contacted before a session is established, yet the sending client can specify its prefer-
ences using E jger-

The protocol has two phases:

(1) The first phase traverses the hosts from the source to the sink. A request message is
exchanged between HRMs. The request message contains the data message size and ratce,
the client delays E,p,, and Eq,,, the burst size from the previous host, the cumulative
sums of L, and A, and the cumulative cost functions. Maximum reservations arc
made for each resource, and corresponding buffer space is reserved.

(2) The second phase proceeds in the reverse direction. The receiving client evaluates the
end-to-end session parameters and decides on a delay for the session. A reply message
containing the remaining excess delay (see below) and the burst size into the next host is
passed back towards the source. For each resource, the session parameters are relaxed
appropriately. The delay may be increased and additional buffers may be reserved both
for this purpose and to accommodate larger input bursts. Delays are relaxed only up to
the amount of buffer space available.

The protocol can fail for a number of reasons: The communication between the HRMs may not
be successful, a resource reservation may fail, the delay of the end-to-end session may be unac-
ceptable for the receiving client or there may not be enough buffer space available. In these
cases, a failure message is propagated back to the sending client and reservations which have
already been made are cleared. Note, that the relaxing of a delay in the second phase may make
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more buffers necessary — and these buffers may not be available. Instead of considering the ses-
sion establishment to have failed (and sending a failure message to both clients), we assume that
the delays are relaxed only up to the amount of buffer space available. The resource then pro-
vides a better service at no extra cost.

Let E ., be the actual end-to-end logical delay obtained in the first phase of the session estab-
lishment. If this delay is less than E .., some excess delay E qcess defined as

E excess — E target — E actual

can be distributed among the resources. This should be done as economically as possible, i.e., in
a way which saves the largest amount of money.

In the second phase of the protocol, each HRM hands the remaining excess delay to the previous
one. Each HRM knows the outgoing accumulated cost function and the cost functions of all local
resources. It shifts the outgoing cost function to the left, so that the first cost value is given for 0.
From this cost function the segments from 0 to E ... are examined. If any of these correspond
to segments of local cost functions, the corresponding resources are relaxed by the time-extent of
the segment, provided there is enough buffer space available. If E g lies in the middle of a
segment, the amount of the relaxation is the part of the segment that lies to the left of E ..
Any excess delay that is not returned to local resources is passed back to the previous host.

3. RESOURCE MANAGEMENT

In order to establish end-to-end sessions, basic sessions with resources have to be established
first. For this purpose, every resource needs to have a session manager through which sessions
can be established and deleted. In this section we present a model interface for session manage-
ment in terms of C++ function prototypes and briefly consider how decisions about the establish-
ment of new sessions are made.

3.1. Session Manager Interface

The session manager interface provides three functions: reserve(), relax(), and
free(). reserve() is used to establish sessions, delivering the best achievable perfor-
mance guarantees and a cost function as described in Section 2. This reservation can be adjusted
using relax (). Finally, free () deletes a session.

The reserve () function delivers the smallest possible minimum and maximum delays for a
specified workload. These delay guarantees are based on the workload specification, on the
already existing workload of the resource and on its scheduling algorithm. It also delivers an out-
put burst size which is calculated by the session manager from the input burst size and the
scheduling algorithm. A cost function is provided by the session manager to inform the reserving
entity about cost savings if it relaxes its reservation to allow a larger delay.



int Session_manager::reserve {

// INPUT

Size size, // maximum message size
Rate rate, // rate

Burst in_burst, // input burst limit
Class class, // guaranteed or best-effort
// OUTPUT

B session¥* bsid, // basic session ID

Time¥* max_log delay, // maximum logical delay
Time* min_act_delay, // minimum actual delay
Time* max_buf_delay, // maximum buffered delay
Burst* out_burst, // output burst limit
Delaycost* delaycost // cost function

)

The ellipsis indicates that particular resources may have additional arguments to their
reserve () functions. These parameters are needed to determine the delay values. For exam-
ple, the time for which a single work item of a session occupies a resource has to be given expli-
citly for a CPU resource because the process execution time cannot be deduced from any other
parameter. For a network resource, on the other hand, it can be deduced from the message size,
In case of a network resource the destination address of the connection needs to be known to
determine the propagation time of a message.

To any resource, a basic session is identified by a session ID that is unique (for the life of the ses-
sion) to that particular resource.

typedef int B_session; // locally unique session IDs

enum Session_class
{ BEST_EFFORT, GUARANTEED };

typedef int Size; // bytes = octets
typedef float Time; // seconds

typedef float Rate; // messages/second
typedef int Burst; // messages

The piecewise linear cost function is defined by the endpoints of its linear segments. If the func-
tion has only one element, only one delay is possible.

typedef int Cost; // cost units

struct Point { // point of cost function
Time max_delay; // maximum delay
Cost cost; // cost of this delay

}:
struct Delaycost {
Point point; // this point
Delaycost* next; // next point
}:

reserve () retumns one of the following values:

SUCCESS 0  reservation ok

FAIL USAGE -1  bad parameters

FAIL PERM -2  permanent rejection
FAIL TEMP -3 temporary rejection

A reserving entity may increase the maximum delay for a resource and the output burst size by

U
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means of relax (). Depending on the scheduling algorithm, a larger output burst may allow a
larger input burst. It is always possible to relax a delay. The relaxing entity must ensure before-
hand that sufficient buffer capacity is available. Since the scheduling algorithm may not generate
output bursts as large as specified in the function parameters, relax () retums the actual max-
imum output burst.

int Session_manager::relax (

// INPUT

B_session bsid, // basic session ID

Time new_max_log_delay, // requested logical delay
Burst new_out_burst, // requested output burst limit
// OUTPUT

Burst* out_burst, // actual output burst limit
Burst* in_burst // new input burst limit

)i
The function returns FAIL USAGE instead of SUCCESS if the session has not been established

before, or if the specified maximum delay or output burst limits are smaller than those previously
returned by reserve ().

free () deletes a session.

int Session_manager::free (

// INPUT

B_session bsid // basic session ID
)

The function retuns FAIL USAGE if the session does not exist, SUCCESS otherwise.

3.2. Session Establishment Decision Algorithms

When establishing a new session, the session manager has to ensure that the workload of this ses-
sion does not lead to a violation of previously given guarantees. How this ‘‘non-interference’’
can be determined is highly resource-specific, but any policy for which an upper bound on delay
can be derived from given input LBAP parameters can be used. For example, round-robin,
FIFO, rate-monotonic and earliest-deadline-first scheduling all have this bounded-delay property
and the resource interface can be successfully implemented on top of them.

Many existing results in real-time scheduling can be applied [9], especially if we restrict our
attention to resources that consist of a single hardware device (e.g., a CPU). For example, if
guaranteed delay can always equal the interarrival time of messages on a session, a simple test for
preemptive rate-monotonic scheduling of a singular resource would be
1
T Ronax() Trnax($) S 1E1 (251 = 1)
seE
where E is the set of all established sessions (including the new one) and T ,,, is the maximum
service time for each message. Under the same conditions,
3 R pax(8) Trax(8) £ 1
seE
is a sufficient non-interference condition for preemptive earliest-deadline-first scheduling [10].
Worst-case simulation provides a more general decision procedure [11].
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For resources that encapsulate more than a single device, the management procedures are more
complicated. For example, the sources of delay in an FDDI network (viewed as a single
resource) include queuing, media access, and propagation, and many scheduling policies are pos-
sible. Establishing a session in such a resource may involve using network management proto-
cols to reserve network bandwidth in ‘‘synchronous’’ or ‘‘isochronous’’ channels. The question
of how to support sessions in such a resource is a subject of ongoing investigation.

4. THE SESSION RESERVATION PROTOCOL

SRP is a mechanism to achieve performance guarantees for communication in the Internet. It is
used in the process of establishing an end-to-end session with resources involved in an IP-based
communication between a sending and a receiving client. This end-to-end session is associated
with a connection of a particular [P-based protocol (for example, a TCP connection). The perfor-
mance guarantees of the end-to-end session apply to the data traffic from the sending to the
receiving client on the associated connection.

SRP is responsible for reserving (and relaxing) the following resources :

e On the sending host, SRP reserves the network resource through which messages leave the
host. .

e On a gateway, SRP reserves the CPU resource needed for protocol operation and the network
resource through which messages leave the gateway.

e On the receiving host, SRP makes no reservations, and simply conveys the session request to
the receiving client. (The incoming network resource was reserved by the previous host in the
path.)

The clients of SRP are responsible for reserving all other resources that handle the stream of
continuous-media messages (for example, the reservation of an input or output device). Thus, on
the sending and receiving hosts the HRM function is divided between the sending client and SRP.
We assume that the set of resources involved in a connection is always fixed, i.e., that the connec-
tion is based on a static route through the network. How this can be achieved for IP-based com-
munication will be described in Section 5.

Every resource reservation by SRP includes a corresponding reservation of buffer space. SRP
reserves no buffer space to avoid jitter in the output, but it provides the receiving client with
information about the delay so that the client can implement jitter avoidance.

4.1. Operation of SRP

A typical scenario for establishing and end-to-end session using SRP is the following (illustrated
in Figure 4):

(1) The sending and receiving clients set up a transport-level connection. The performance
goals for the connection are determined, and a globally unique end-to-end session ID is
obtained.

(2) The sending client reserves all resources related to the data source (disk, camera, VCR,
etc.) and the CPU resource. The service times of the CPU reservation must include the
requirements of all software modules used by the application, i.e., not only the applica-
tion itself, but also the file service, the network protocols, ezc. The client can learn about
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Figure 4: Scenario illustrating the operation of SRP.
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these requirements, e.g., by calling a corresponding function of the protocol module it
uses (which in tum can call a function of the protocol it uses, and so on). The sending
client then calls the local SRP module.

The SRP module on the sending host examines the address of the receiving client and
consults the IP routing table to determine the network a message on the associated con-
nection is sent on and the next node within the connection. This node may either be the
receiving client itself or a gateway. The SRP module then reserves the appropriate net-
work resource and the necessary buffer space, and forwards the end-to-end session
request to the next hop.

On a gateway, the SRP module reserves both CPU and network resources and the
corresponding buffer space. To make a CPU reservation, it first determines the maximum
service time of the gateway software, which depends on the incoming and outgoing net-
work of a connection. It then makes a reservation for the outgoing network just as
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described in the previous paragraph.

(5) The SRP module at the receiving host notifies the receiving client, which reserves the
CPU resource and the remaining resources related to the data sink (conversion hardware,
etc.).

(6) The receiving client compares its own requirements and those of the sending client with
the obtained smallest possible maximum delay. If the obtained guarantees exceed the
requirements, the receiving client relaxes the reservations of local resources, and returns
the remaining excess delay to the SRP module.

(7)  SRP completes the backward pass of the end-to-end session establishment algorithm
through the gateways, relaxing reservations according to cost functions and remaining
excess delay. It also adjusts burst sizes.

(8) The SRP module on the sending host relaxes the network resource, then retumns to the
sending client. The client relaxes its local resource reservations, completing the session
establishment. ’

An SRP session establishment can fail due to communication failures or inadequate resources, in
which case all reservations which have already been made for this session are canceled, and a
failure indication is returned to the sending client. It is then up to the sending client to inform the
receiving client that the performance guarantees for their connection cannot be achieved.

Once a session has been established, the sending client can begin sending data. As IP datagrams
arrive at each host (gateways and receiver) the IP modules at these host associate these datagrams
with the corresponding end-to-end session, and pass this information to the schedulers of the
resources involved (CPU, network, etc.). Thus the end-to-end performance guarantees are
achieved.

A session can be deleted by the client that has established it. The sending client contacts its local
SRP module, which deletes its session with the network and notifies the SRP module on the next
host. For this purpose, every SRP module has to keep information about the sessions it has
already established and the next SRP module to be contacted. On a gateway, SRP deletes the
basic sessions with both the CPU and the network and forwards the request. The last SRP
module on the receiving host sends back an acknowledgement through the chain of SRP modules.
Upon sending the acknowledgement, SRP modules can discard all information which has been
stored for the purpose of end-to-end session administration. The receiving client is not informed
by its SRP module when the session is deleted; this is the duty of the sending client.

4.2. Protocol Elements of SRP

SRP modules communicate using the Sun RPC protocol [12]. This protocol makes use of either
the UDP or TCP protocols. Sun RPC offers reliable communication and has a convenient pro-
gramming interface. It provides authentication mechanisms which could be used to prevent
unauthorized users from reserving resources.

Each SRP module implements an RPC program with three procedures: a call to establish ses-
sions, another to delete them, and a mandatory null call taking no parameters and retuming no
results (for determining round-trip time). The SRP module itself gets an identification number
(which has to be assigned by a network authority in order to make it unique). In the Sun RPC
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interface specification language, the SRP program is as follows:

program SRP {
version Original {

void null_function (void) = 0;
E_rep data session_establish (E_req_data) = 1;
void session_delete (E_session) = 2;
}o=1; // first protocol version
b= 2; // to be assigned

The data types of this specification are to be defined in the XDR External Data Representation
Standard [13]. The XDR language is similar to C and C++, so that some definitions resemble our
previous type specifications. In order to avoid undue repetition, we refer to the definitions from
Section 3. However, host-independent data representation is now associated with each definition.

The message formats of a session establishment RPC may vary slightly: In the request message
the format depends on the amount of data needed to associate an end-to-end session with a net-
work connection and the size of the cost function. The format of the reply message depends on
whether the reply is positive or negative. .

The format of a request message is the following, where he cost function is given by a variable-
length array rather than a linked list because XDR contains no pointers:

struct E_req_data {

E_session esid; // end-to-end session ID
Address destination; // receiving host

Address net; // incoming network

Connection connection<>; // associated connection

Rate rate; // rate

Burst in_burst; // input burst limit

Size size; // message size

Time tgt_ete delay; // target end-to-end delay
Time max_ete_delay; // maximum end-to-end delay
Time acc_max_delay; // maximum logical delay so far
Time acc_min_delay; // minimum actual delay so far
Point acc_cost<>; // cost function so far

bi
End-to-end session identifiers contain the Intemet address of the sending host to make them glo-
bally unique (for the life of the session).

typedef long Address;

struct E_session {

Address source; // sending host
int id; // unique number

}:
The net parameter is needed to identify the incoming network if nodes are connected through
more than one network.

Each end-to-end session is associated with an upper-level connection. These connections can be
defined at any layer in the protocol hierarchy, at the transport level or above. Each connection is
therefore identified by a set of data items (connection numbers, addresses, €tc.), one per protocol
layer. Each IP datagram sent on the connection contains these data items in its various headers.
The length of the items, and their position within the IP datagram, depend on the upper-level pro-
tocols.
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The sending client obtains this protocol-specific ‘‘association data’ from the protocol layers it
uses and passes it to SRP as part of the session establishment request.
enum Protocol

{ UDP, TCP, RPC, NFS, ...};
union Connection switch (Protocol proto) {

case UDP:

UDP_data udp_data; // UDP datagram ID
case TCP:

TCP_data tcp_data; // TCP connection ID

}e

UDP_data, TCP_data, etc. are used to identify packets of the associated connection within
the respective protocol. How this information is used is explained in Section 5.

Reply messages have the following format:

enum Rep_code
{ ESTABLISHED, NOT_ESTABLISHED };
struct E_rep data ({
E_session esid; // end-to-end session id
union Reply switch (Rep code rep_code) {
case ESTABLISHED:

struct |
Time excess_delay; // remaining excess delay
Burst  out_burst; // acceptable burst

} pos_info;

case NOT_ ESTABLISHED:

struct {
int failure; // failure code
Address culprit; // host where failure occurred
char msg<>; // name of failing resource

} neg_info;

}:
}s

A failure can either be due to SRP or to an RPC failure further down the chain. The failure code
can have the following values (chosen according to corresponding values in the RPC protocol):

FAIL USAGE -1  bad parameters

FAIL PERM -2  permanent rejection

FAIL TEMP -3 temporary rejection

FAIL_BUFF -4  buffers exceeded

FAIL DELAY -5  delay exceeded

FAIL SRP_NO -11  remote host does not implement SRP
FAIL_SRP_VERS -12  remote host does not implement this SRP version
FAIL SRP_PROC -13  remote host does not implement this SRP procedure
FAIL RPC -100 remote host does not implement this RPC version

FATIL AUTH BADCRED -101  authentication error: bad credentials

FAIL AUTH RJTCRED -102  authentication error: expired credentials

FAIL AUTH BADVERF -103  authentication error: bad verifiers

FAIL AUTH RJTVERF -104  authentication error: expired verifiers

FAIL AUTH TOOWEAK -105 authentication error: rejected for security reasons

In addition, the address of the host signaling the failure and a failure message (perhaps the name
of the failing resource) are given.
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4.3. Application Interface

The application interface of SRP is node-dependent; the following C++ function prototypes
merely define a model interface to the SRP service. In a real implementation these functions
could be system calls, or they might be in a library.

The interface of the sending client consists of one function which issues the request to establish a
session and delivers a reply. It blocks the client until a reply is available. The function to create
a session is similar to the session establishment RPC.

int SRP::establish_session (

// INPUT

E_session esid, // end-to-end session ID
Address destination, // receiving host

Address net, // network used

Association* assoc_data, // data to identify connection
Rate rate, // rate

Burst in_burst, // input burst limit

Size size, // message size

Time tgt_ete_delay, // target end-to-end delay

Time max_ete_delay, // maximum end-to-end delay
Time acc_max_delay, // maximum logical delay so far
Time acc_min_delay, // minimum actual delay so far
‘Delaycost*  acc_cost, // cost function so far

// OUTPUT

Time* excess_delay, // remaining excess delay
Burst* out burst, // acceptable output burst limit
Address* culprit, // host where failure occurred
char* msg // name of failing resource

)i
Note, that the client, since it has already reserved local resources, may specify accumulated
delays and a cost function. The excess_delay and out_burst parameters are undefined
if a failure occurred; culprit and msg are undefined if the session establishment was suc-
cessful. The return code can have the same values as in the corresponding RPC message.
SUCCESS is returned if no failure occurred.

The following types have not been declared before since the corresponding XDR data structure
was defined as a discriminant union which is not provided by C++:

union Connect_id {
UDP_data udp_data; // UDP datagram ID
TCP_data tcp_data: // TCP connection ID

i

struct Association_data {
Protocol protocol; // protocol number
Connect_id  connect_id; // connection ID

bi

struct Association ({
Association_data assoc_data; // this connection
Association* next; // higher-layer connection

};
The interface of the receiving client consists of three functions, one to accept an indication for
session establishment (blocking the client until an establishment request is received), one (o
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deliver a positive acknowledgement and one to issue a negative reply.

int SRP::establish_session_ind (

// INPUT

E_session esid, // end-to-end session ID

// OUTPUT

Ratex* rate, // rate

Burst* in_burst, // input burst limit

Sizex size, // message size

Time* tgt_ete delay, // target end-to-end delay
Time* max_ete_delay, // maximum end-to-end delay
Time* acc_max_delay, // maximum logical delay so far
Time* acc_min_delay, // minimum actual delay so far
Delaycost*  acc_cost // cost function so far

);

int SRP::establish_session_ack (

// INPUT

E_session _ esid, // end-to-end session ID

Time excess_delay, // remaining excess delay

Burst out burst // acceptable output burst limit

) ;

int SRP::establish_session_nack (

// INPUT

E_session esid, // end-to-end session ID
int failure, // failure code

char* msg // name of failing resource

)
The indication function retums FAIL_ USAGE if the session already exists, otherwise it retums
SUCCESS. Both reply functions return FAIL USAGE if the session does not exist, SUCCESS
otherwise. The failure code returned as a parameter of the negative reply function is one of
FAIL PERM, FAIL TEMP, FAIL BUFF or FAIL_DELAY.

Sessions can be deleted at any time by the sending client. It is up to this client to inform its peer.

int SRP::delete_session (
// INPUT
E_session esid // end-to-end session ID

)i
The function returns FAIL USAGE if the session does not exist, one of the RPC failure codes
should an RPC error occur, and SUCCESS otherwise.

5. SESSION ASSOCIATION IN IP

We want to achieve performance guarantees for conventional IP-based communication without
changing the communication protocols involved. This means that data messages cannot contain
an explicit identification of the session to which they belong. To correctly schedule guaranteed
messages, hosts need to be able to distinguish them from other network traffic and know the
parameters of the parent session. This section describes how the IP modules on these hosts can
be modified to accomplish this.
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5.1. Session Registration

To be able to identify the sessions of incoming IP packets, the IP module at a node must be
informed of sessions through the node. Therefore, IP contains a registration procedure that is
called by SRP when a session is established; it is passed the session ID and the association data
obtained from the sending client. To achieve static routing for each same session, the registration
call specifies the next machine to which all IP messages of the respective session will be sent, and
the network to be used.

void IP::register (

// INPUT

E_session esid, // end-to-end session ID
Association* assoc_data, // data to identify connection
Address out_net, // outgoing network

Address next_node // next node in this session

)i
SRP calls register () on hosts to which incoming packets will arrive (gateways and the
receiving host). On the receiving host, the out_net and next_node parameters are not
used.

In practice, register () would add new entries to per-protocol ‘‘lookup tables’” (hash tables
keyed by protocol-specific ID fields) for each of the protocols in its association-data array. Each
entry in a lookup table corresponds to a connection of the corresponding protocol. Its value is
either a session ID (if the protocol is the last element of the association-data array) or identifies
the next protocol up in the sequence.

If a session is deleted by the clients its registration is canceled.

void IP::unregister (

// INPUT

E_session esid // end-to-end session ID
)2

5.2. Session Identification

When an [P packet arrives at a host, the IP module must find what session (if any) the packet is
associated with. While various implementation approaches are possible, the following organiza-
tion is suggested. For every upper-level protocol (UDP, TCP, RPC, NFS, erc.), there is an
identification procedure that, given an incoming packet of that protocol, identifies the SRP ses-
sion, if any, to which the packet belongs. These procedures have the following interface:

int IP::UDP_identify (

// INPUT

IP_packet*  packet, // 1P packet to be identified
// QUTPUT

E_session* esid // end-to-end session ID

)
SUCCESS is returned if a session is found, in which case esid contains the session ID.
NO_SESSION (-1)is returned otherwise, and esid is undefined.

These procedures encapsulate the ‘‘lookup tables’” maintained for each protocol (see above).
They work as follows: The protocol-specific identifiers are extracted from the IP packet and used
to hash into the lookup table. If no entry is found, NO_SESSION is returned. If the entry
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contains a session ID, SUCCESS is retumed. Otherwise the number of the next-higher protocol
is obtained from the packet, the identification procedure for that protocol is called, and its value is
returned.

For each incoming packet, then, IP extracts the protocol field from the IP header and calls the
corresponding identification routine. This is normally done at the interrupt level. If a session ID
is found, the scheduling of subsequent handling of the packet (e.g., the deadline of the process
that handles it) is based on the logical arrival time of the packet and the session delay. Otherwise
scheduling can be done by conventional means, e.g., FIFO.

Outgoing packets on the sending host or on a gateway leave the node through the network
resource. They are handled by IP in the following way: We assume that the SRP session ID is
known. On the sending host, it can be passed down from the client using an additional parameter
of the send function; on gateways, it was obtained as above. Again, the session ID is used to
calculate the logical arrival time of the message into the network resource, which in tum is used
to determine the queuing order of the packet and perhaps the manner in which it is transmitted on
the medium.

If higher-layer packets are fragmented, an IP packet may not contain association data. In this
case session identification works as follows: Because of static routing all fragments arrive in
order. The first fragment has the more fragments field set. We assume that this fragment con-
tains the ID of the associated connection (a reasonable assumption since 1) IP packets are
sufficiently large, and 2) in all Internet protocols the address field is contained in the packet
header). IP calls the appropriate identification procedure for this packet and stores the obtained
session ID together with the packet ID of the IP packet. Future fragments can be identified by
having the same packet ID. Once the last fragment arrives (without the more fragments field set),
IP can delete the fragment identification information.

In order not to have to call the identification procedure for every incoming IP packet, we request
that all IP packets belonging to SRP sessions are sent with the low delay field set. This field is a
hint to IP that a packet may have performance guarantees associated with it.

6. INTERACTING WITH NODES THAT DO NOT IMPLEMENT SRP

If one of the nodes in the route of an IP-based connection does not implement SRP, the end-to-
end establishment will fail and a FAIL SRP_NO retumn code will be delivered to the sending
client. In some cases, a partial session among nodes supporting SRP is a useful alternative to no
session at all. Of course, it is impossible to guarantee a bounded delay for a partial session, but if
the performance bottlenecks are within the sites involved in the partial session, or non-SRP sys-
tems are sufficiently fast, a partial session may be adequate for a given application. We cannot
ignore the fact that quite a few continuous-media system prototypes are available which function
surprisingly well without resource reservations (though usually only under light system load or
on a single-tasking system).

In this section we extend the SRP protocol presented in Section 4 to establish partial sessions.
We keep the messages and client functions used for this purpose separate from the previously
presented ones because they express significantly different client requirements: A request for a
partial session may be granted with a complete session; the converse is never true. Also, partial
session establishment involves additional parameters and algorithms which are not needed for the
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establishment of complete sessions. In addition, support for partial sessions is an extension of
SRP that some systems may choose not to implement.

6.1. Partial Session Establishment

To establish a partial session, at least one of the client nodes must have an SRP module. We call
this module the anchor module. The establishment of a partial session proceeds from the sending
end towards the receiving end, similar to that of a complete session, Therefore, if both sending
and receiving clients support SRP, the SRP module on the sending host is the anchor module.
Only if the sending host does not implement SRP, will the anchor module be located on the
receiving host.

Let us assume the anchor module is located on the sending host and the complete route of the ses-
sion is known. In this case, after making local reservations, the anchor module sends RPCs to
other SRP modules, starting with the second node in the route, until the call is successful. The
session parameters and the remaining route are forwarded in this RPC. The contacted SRP
module tries to continue the session establishment by contacting the next node of the route which
implements SRP.

The accumulation of delay parameters and cost functions takes place just as in the establishment
of complete sessions. Burst parameters and used network specifications, however, may not be
valid if a previous node did not participate in the session establishment. The values of these
parameters are merely hints, and worst-case assumptions for buffer space and service time have
to be made. On the way back, output burst relaxations should only be made if the resource offer-
ing to accept a larger burst is the immediate successor in the session. If not all immediate succes-
sors of a node implement SRP, the low delay field can no longer be used as a hint that a packet
may belong to an SRP session.

The major problem in the establishment of partial sessions is to determine the nodes involved in
this session. There are different solutions for this problem:

(1) The most convenient situation for partial session establishment is if the route is available
beforehand, i.e., if the sending client can specify the route a message will take through
the network.

(2)  Should the route information not be available, the sending client can send an IP datagram
with the record route option set. Once the datagram reaches the receiving host, every
host in between has added its Intemnet address to the packet. This solution requires that
the sending and receiving client have direct access to IP.

(3)  If neither of the previous solutions is feasible, SRP modules have to cooperate to deter-
mine the route — just as in the establishment of complete sessions. Once an SRP module
cannot determine a route beyond a node which does not implement SRP, no more reser-
vations can be made, even if SRP modules exist further down the route. If SRP modules
succeed in determining the complete route, this method is precarious because a node
which does not implement SRP may choose to route messages past those nodes on which
reservations have been made. To avoid this, IP messages have to be sent with the loose
source routing option set. This option is used to specify a desired target address for the
message (the address of the host with the next SRP module of the session), but allows
multiple network hops in between (for those nodes which do not implement SRP). If the
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Figure 5: Two examples of partial session establishment.

C))

sending host does not implement SRP and this method is chosen, the path from the send-
ing client to the first SRP module has to be singular and invariant.

If the anchor module is located on the receiving host and the route is unknown, an addi-
tional protocol phase becomes necessary to determine the session route. Under the
assumption that a communication path is reversible, the SRP modules try to find a route
from the receiving to the sending client. The anchor module issues an RPC to its adjacent
node on a route towards the sender. If the node implements SRP it will forward the
request to its own predecessor. If not, the anchor module has to find the next SRP node
further down the route. Again, this process comes to an end once a module is unable to
determine the route beyond a node which has no SRP module. On the way back gach
SRP module adds the address of its host to the output parameter of the RPC. The anchor
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module then contacts the first SRP module in the route obtained, which then initiates the
reservation procedure.

The establishment protocol for complete sessions requires the receiving client to be contacted
after the first phase of the protocol. In partial sessions, however, the receiving client may have no
access to SRP. The sending client will then play the role of the receiving client in deciding about
the final delay parameters. If the last SRP module on the route is not located on the receiving
host, it calls back the anchor module on the sending site where an indication is delivered to the
sending client. To enable the client to accept the session establishment indication, a non-
blocking session establishment primitive is needed. Such a function is also used by the receiving
client if this client initiates the session establishment.

6.2. Protocol Elements of Extended SRP

The protocol elements to handle partial sessions form the extended version of the SRP protocol.
If a node that implements SRP but not the partial session extension is asked to participate in a
partial session, a FAIL SRP_VERS failure code is returned.

program SRP {
version Original ({

b= 1;
version Extended {
void null function (void) = 0:
E_rep_data session_establish (E_req data) = 1;
void session_delete (E_session) = 2;
Address<> p_session_route (Address) = 3;
E_rep data p_session_establish (PE_req_data) = 4;
b= 25
b= 2 // to be assigned
Two additional RPCs exist in the extended protocol version. p_session_route () is pro-
vided to determine a session route. It is used to start the session establishment procedure from
the receiving host. It takes as its single argument the address of the sending host and returns a
route from the sending to the receiving host. The other RPC, p_session_establish(),is
used to establish partial sessions. No special RPC is needed to delete partial sessions, though the
client that established the session must be the one to delete it.

Only the parameters for a partial session establishment request are different from the original
RPC. The return values are identical.

struct PE_req_data ({

E_session esid; // end-to-end session id
Node node<>; // (partial) route

Address net; // incoming network (hint)
Connectiocn connection; // associated connection
Rate rate; // rate

Burst in_burst; // input burst limit (hint)

Size size; // message size
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Time tgt_ete_delay; // target end-to-end delay

Time max_ete_delay; // maximum end-to-end delay
Time acc_max_delay; // maximum logical delay so far
Time acc_min_delay; // minimum actual delay so far
Point acc_cost<>; // cost function so far

i
In this request message, a route of nodes can be specified as a variable-length array. A single ele-
ment of this array has the following format:
enum Node_state
{ NOT_CONTACTED, SRP, NO_SRP };
struct Node {

Address addr; // address of this node
Node state  state; // status of this node

}:
In the beginning, the route contains only the addresses of the sending and receiving hosts. For
every node up to the current node, it has already been determined if the node implements SRP or
not. All future nodes are labeled NOT CONTACTED. Depending on its own routing informa-
tion, each SRP module can extend or modify the future route.

6.3. Application Interface

Just as in previous sections we also specify an application interface for partial session establish-
ment. Since only one client may be involved in the establishment process, two different session
request functions, one blocking and one non-blocking, are provided. The blocking function is
almost identical to the one used for complete session establishment.

int SRP::establish p session (

// INPUT

E_session esid, // end-to-end session id

Route* route, // (partial) route

Address net, // used network (hint)
Association* assoc_data, // data to identify connection
Rate rate, // rate

Burst in_burst, // input burst limit (hint)
Size size, // message size

Time tgt_ete_delay, // target end-to-end delay

Time max_ete_delay, // maximum end-to-end delay
Time acc_max_delay, // maximum logical delay so far
Time acc_min_delay, // minimum actual delay so far
Delaycost*  acc_cost, // cost function so far

// OUTPUT

Time* excess_delay, // remaining excess delay
Burst* out_burst, // accept. output burst limit (hint)
Address* culprit, // host where failure occurred
char* msg // name of failing resource

)
The only difference to the original function is the specification of the route as a linked list.

struct Route {
Node node; // this node
Route* next; // next node
3

The non-blocking function is used if only one client machine has an SRP module. If a client uses
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int SRP::establish p session_req (

// INPUT

E_session esid, //
Route* route, [/
Address net, /7
Association* assoc_data, //
Rate rate, /7
Burst in_burst, /7
Size size, //
Time tgt_ete delay, //
Time max_ete_delay, //
Time acc_max_delay, //
Time acc_min_delay, //
Delaycost*  acc_cost //

)

int SRP::establish p session_con (

// INPUT

E_session esid, //
// OUTPUT

Time* excess_delay, //
Burst* out_burst, //
Address* culprit, //
char* msg //

)

performance bottlenecks.

int SRP::establish p session_ind (
// INPUT
E_session esid, //
// OUTPUT
Route* route, //
Address* net, //
Rate* rate, //
Burst* in_burst, //
Size* size, //
Time* tgt_ete delay, //
Time* max_ete_delay, //
Time* acc_max_delay, //
Time* acc_min_delay, //
Delaycost*  acc_cost //

)

this function, it will obtain the session establishment indication itself. Some parameters of the
request (for example, an accumulated cost function) may not be available if the reservation starts
on the receiving side. The outcome of the establishment request is indicated by a separate
confirmation primitive which blocks the client until the result becomes available.

end-to-end session id
(partial) route

used network (hint)

data to identify connection
rate

input burst limit
message size
target end-to-end delay
maximum end-to-end delay
maximum logical delay so far
minimum actual delay so far
cost function so far

(hint)

end-to-end session id

remaining excess delay

accept. output burst limit (hint)
host where failure occurred

name of failing resource

The establishment indication gives the route for which the partial session is available. The client
can use this information in its decision about the suitability of the performance parameters. For
example, it may reject a session that does not provide guarantees for nodes which are well-known

end-to-end session id

route
(hint)

(partial)
used network
rate

input burst limit
message size
target end-to-end delay
maximum end-to-end delay
maximum logical delay so far
minimum actual delay so far
cost function so far

(hint)

The acknowledgement and delete functions are the same as for complete sessions.
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7. CONCLUSION

We have presented a scheme to achieve guaranteed-performance communication in the frame-
work of an existing and widely used protocol architecture. The mechanisms described in this
paper, though implemented for IP-based network communication, are by no means restricted to
that framework. This choice, however, enables a large number of systems to participate in
guaranteed-performance communication, requiring a minimum degree of modification to existing
systems.

The most fundamental decision in the design of SRP was the use of the DASH resource model
and the model of data traffic associated with it. A variety of other models, both statistical and
deterministic, could have been used instead, probably offering the possibility to describe a
broader range of traffic properties (for example, average message loss). The model we chose has
the advantage of being simple and useful for deriving performance guarantees for a variety of
scheduling disciplines. The primary application area of SRP, continuous media, is well sup-
ported by our model. Some potential drawbacks are:

e During the establishment of an end-to-end session other establishment requests may be
rejected needlessly because maximum reservations are made for each resource. This problem
can be avoided easily by implementing a lock for each HRM, blocking each new request until
pending requests are completed.

¢ SRP only establishes and deletes end-to-end sessions. No means to relax the requirements on
such sessions are provided. However, should the requirements on a connection change (rare
for continuous-media applications), a new end-to-end session can be associated with it.

e The algorithms we have presented are conservative. Optimistic approaches (similar to those
in transaction processing) may be suitable for the real-time application domain, especially in
regard to bandwidth reservation.

Finally, the protocol in its present form (just like the established Internet protocols) deals with
one-to-one communication only. Since continuous-media systems will be used to a large extent
for groupware applications like conferencing, multi-point connections are an important issue.
Our future work will address this problem, extending the model of end-to-end sessions to be com-
patible with IP multicasting [14].
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