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Abstract

We consider the following model for a weak random source: the source is asked only once
for R bits, and the source outputs an R-bit string such that no string has probability more than
2-%R of being output, for some fixed § > 0. We show that under the Generalized Paley Graph
Conjecture, there is a pseudo-random generator that simulates RP using as a seed a string from
such a source for any § > 0. For § > 1/2, we can simplify our generator considerably and prove
its correctness without relying on any unproven assumption. Cohen and Wigderson [CW] have
also solved the case § > 1/2 using different techniques. Finally, we prove that for any 6 > 0 and
for all but an exponential fraction of §-sources, an even simpler generator can simulate RP.

1 Introduction

Randomness plays a vital role in almost all areas of computer science, both in theory and in practice.
Randomized algorithms are often faster or simpler than the deterministic algorithms for the same
problem (see e.g. [Rab]).

To produce “random” bits, a computer might consult a physical source of randomness, such
as a Zener diode, or use the last digits of a real time clock. In either case, it is not clear how
random these “random” bits will be. It is therefore of interest to see if weak, or imperfect, sources
of randomness can be used in randomized algorithms.

Blum [Blu]initiated the study of weak random sources and gave algorithms to convert the output
of a Markovian source into truly random sequences. Then Santha and Vazirani [SV] introduced
the model of é semi-random sources, where the probability of a given bit being a specific value,
conditional on the value of previous bits, is not too large. In this model, they proved that it
is impossible to extract even a single random bit (so they had to use several independent such
sources).

Yet this does not imply that such sources cannot be used to simulate RP or BPP algorithms.
Indeed, [VV] and [Vaz] exhibit pseudo-random generators (prg’s) which simulate RP and BPP
with one 8 semi-random source. Chor and Goldreich [CG] generalized this by presenting a prg that
simulates BPP even if no sequence of O(log R) bits has too high a probability of being a particular
sequence, (here R denotes the total number of random bits used).

Various authors have also considered models where an adversary chooses the values of certain
bits, but the others are random (see [CGH*], [BL], [LLS], [CW]).

Our sources, called §-sources, generalize all of these models, making no structural assumptions
about dependencies. Namely, a é-source is asked only once for R bits, and the source outputs an
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R-bit string such that no string has probability more than 2-8R of being output, for some fixed

6 > 0. Compare this with the Chor-Goldreich model, where the source is asked R/! times for /-bit
strings, and no I-bit string has probability more than 26l of being output; their simulation only
works for [ = O(log R).

In some sense, the idea of imposing an upper bound on the probability of any string is the
most general model worth considering. If we tried instead the more general notion of imposing a
lower bound on the entropy, we could never get an exponential fall-off in the error probability of
RP algorithms. This is because a given “bad” string could occur with constant probability. The
smallest upper bound that could possibly suffice is 2-R’,

Our main result is that under the Generalized Paley Graph Conjecture, there is an efficient
simulation of RP for all § > 0. Our algorithm exploits the “independence” of the additive and
multiplicative groups modulo a prime. For example, our proof relies on the fact that if A and B are
large enough sets, then the discrete logs of A + B are well distributed in a certain technical sense.
The Generalized Paley Graph Conjecture essentially asserts that the above is true for smaller A
and B than can be proven.

For § > 1/2, we can simplify our generator considerably and prove its correctness without
relying on any unproven assumption. Indeed, the previously mentioned algorithm can be regarded
as a bootstrap of this algorithm. Moreover, a lemma of Mansour, Nisan, and Tiwari [MNT] implies
that this prg can be based on any family of universal hash functions.

Cohen and Wigderson [CW] also have a prg that simulates RP with é-sources when § > 1/2
and BPP when § > 3/4. Yet their algorithms are based on random walks on expanders, and as
such can do no better than § = 1/2, if the degree is small enough. This is because a §-source with
§ = 1/2 can ensure that a random walk never escapes the neighborhood of a single vertex. The
d-source simply has every other step in the random walk be purely random, while the next step is
a function of the previous step and the initial vertex, which sends the random walk back over the
edge it just came.

We also present an even simpler prg that simulates RP for all but an exponential fraction of
b-sources, for any 6 > 0.

We must mention that except for this last, simplest prg, we work modulo a prime p. This gives
rise to the technicality that we have to compute such a prime; if we do not have a good source
of randomness, this is difficult. Cohen and Wigderson [CW] avoid this problem. Yet this prime
only has to be computed once for a given size of the random tape. Using methods in [PSS], one
can even expect to generate an r-bit prime with a certificate. Our basic algorithm needs only one
prime; however, our bootstrapped algorithm uses a constant number of primes, where the constant
depends on 4.

Finally, we remark that there is a close link between prg’s for é-sources and prg’s used to amplify
the success probability of RP algorithms. Namely, in both cases one needs the fact that few R-bit
strings are “bad” for the prg. More specifically, suppose we have an RP algorithm which needs r
random bits to achieve an error probability of a constant. Then our prg (the one used for § > 1/2)
needs O(rlogr) bits to reduce the error to 2= (in fact 2-71°87). In [CW] and [IZ] it is shown how
only O(r) bits are needed to reduce the error to 27", even for BPP.

2 Preliminaries

RP is the set of languages L C {0,1}* such that there is a deterministic polynomial time Turing
machine My (a,z) for which
a € L= Pri[Mp(a,z)=1]>1/2 (1)



a¢ L= Pr[Mp(a,z)=1]=0

where the probabilities are for an z picked uniformly in {0,1}#(al) for some polynomial p. If
M(a,z) = 1, we say M accepts a using random tape z. If we run M, on independent random
tapes, we can change the probability in (1) to 1 — ¢ for any constant ¢ > 0. In our analysis it will
help to take ¢ = 1/128; let r be the size of the random tape needed to achieve this c.

We wish to simulate RP with a weak random source; say we wish to test whether a given
element a is in L. Suppose a € L; then we wish to find with high probability a witness to this fact.
Let W be the set of witnesses, i.e. W = {z|M(a,z) = 1}, and N be the set of non-witnesses, i.e.
the complement of W.

A pseudo-random generator (prg) asks the source for R = poly(r) bits, and constructs some

r-bit strings, one of which hopefully will lie in W with high probability. We first observe, as in
[CG] (although in our case it is much easier):
Observation: The worst case §-source is a flat source, i.e. one which places prob~nility 2R on
26R R.bit strings. To see this, fix a prg. Note that some R-bit strings produce witnesses, and
others do not. The source may as well put as much probability as it can on the strings that do not.
Throughout the rest of this paper, we assume all our sources are flat.

Our prg’s divide the R-bit string into r-bit strings and combine these strings in various ways.
We therefore will need the following lemma, which basically says that with high probability, enough
of the r-bit strings have small probability of occurring:

Lemma 1 Fiz a > 0, §' < §, and an integer k > 0. Let k' be an integer > k_l_,&_,r*_'a = O(k), and
set R = k'r. View the R-bit string X given by the source as k' r-bit strings z1,z2,...,2%, and
define X; as the initial string z,2,...,z;. ForY an R-bit string, define y; and Y; similarly, and
let

pi(Y) = Prlz; = 4| Xi_1 = Y1),

where X is the random string output by the source. Then
Pr{for > k values of i, p;(X) < 297> 1 - 27",

where again X s the random string output by the source.
Proof. Construct a tree corresponding to the outputs X of the source as follows: let the nodes
be all possible initial sequences X; for each i, 0 < ¢ < k', and let the parent of X; be X,_;.
Define p;(X;) = pi(X) for any continuation X of X, and define an edge (X;_1,X;) to be “good”
if pi(Xi) < 2-8'r and “bad” otherwise. We wish to show that few of the 26R leaves have root-leaf
paths with less than k good edges.

To bound this number, first note that each parent has at most 28 children connected by bad
edges, and at most 27 children. Thus, the total number of root-leaf paths with k’ — k specified bad
edges (e.g. the edges at distances 2,3,6,7 from the root must be bad) is at most

2kr2(lc'—k)6’r

so the total number of root-leaf paths with at least £’ — k bad edges is

M\ s
ro(k'—k)é'r
(k)z 2 .

Using (’:) < 2 and substituting the definition of & in the above formula, we bound the number
by 2-2r26R a5 required. n



The algorithms we consider have the property that a “bad” r-bit string from the source will
not hurt it, i.e. a string z, that comes from an X with p;(X) large. Therefore, the above result
implies that we can view our source as giving us r-bit strings such that the conditional probability
of the string given previous strings is at most 2%, where we’ve redefined § as the é’ we get from
the lemma above.

3 First PRG

We now present a prg which, for any é > 0, will simulate RP for almost all é-sources. Our result is
really only interesting because we consider arbitrary witness sets, so there is a doubly exponential
number of them. To simulate RP, there are only an exponential number of witness sets, and a simple
counting argument shows that for large enough k' it suffices to use z,,..., 24 as the pseudo-random
strings.

This prg is a simple modification of the prg used in [VV] to simulate RP with § semi-random
sources: the only change is that we work modulo 27 instead of the vector space of dimension r over
F,.

We view our r-bit strings as integers modulo ¢ = 2". Our prg asks the source for k’r bits
and forms the r-bit numbers z1,z3,...,24. For each I C {1,2,...,k'} it then forms the sum
ar =Y ;e1 Ti, and runs the RP algorithm on a;. Since it will suffice to take k" = O(logr), this prg
takes polynomial time. Lemma 1 implies that for the purposes of analysis, we may assume we use
k “good” strings ty,t2,...,tx. The worst case (at least as far as analysis goes) is when ¢, is chosen
randomly from a set T; of size 26", where T; depends on t,,...,t;_;. The reason this is the worst
case is again that the t; can be ordered according to how good they are for our algorithm, so the
source may as well place as much probability as possible on the worst ;.

It is not hard to find RP algorithms and é-sources for which the above prg does not work. An
example is the RP algorithm with witness set of all numbers > 271, and a source which only
outputs numbers < 297, Nevertheless, we show that all but an exponentially small fraction of
sources are good for all witness sets.

To analyze the above algorithm, we follow [VV] and define the effective set of non-witnesses S;

w.r.t. t1,...t; as follows: Sg is the set of non-witnesses IV, and
Si={s€ ZJ(VIC{1,...,i}) s+ > _ti € S}
el

Then S; = Si_; N (Si-1 — ti), where A op b denotes {a op bla € A}. We wish to ensure that the
S;’s decrease in size rapidly, so that with high probability S = 0. Therefore we investigate the
number of solutions to sy, = sy — t, where 51,5, € S;_; and t; € T;.

To do this, we outline the following work appearing in [ABH*]. Let w = €27/4, a primitive gth
root of unity, and for A C Z4, j =0,1,...,9 — 1 define

ba(j) = Y W',
a€EA

and

Py = lsl?gji_l{wfx(j)l}-

Lemma 2 [ABH*] The number of solutions to a + b = ¢, where we restricta € A, b € B, and

c € C, is at most

Al|B||C
B ”q” L+ a,4/iBIICI.



Proof. (Sketch) The number of solutions is exactly

q—1
3 S 64(i)é8()de(~7).

7=0
Using
> 16a(i)? = ql4]
7=0

and Cauchy-Schwartz gives the result. [ |

We can use this lemma to show that if enough of the &1, are small, then the source will be
good for this prg:

Lemma 3 If &7, < Tis/“, then
[Sic1l? | 1Sial
. < .
E[lSi|] < . + o

Proof. (Sketch) Follows from Lemma 2, |T;| = ¢, and because |S;| equals 1/|T;| times the number
of solutions to sy = s — t, where s1,s, € S;_; and t; € T;. [ |

Lemma 4 If for alli &7, < |T;]3/4, then with probability at least 1/2, Sy = O for k = O(logr +
1/6).

Proof. We assume that our RP algorithm is incorrect with probability at most 1/128, and that
q > (64/6)%/% i.e. choose r > (8/6)(6 —log,6). In the beginning, the dominant term bounding
FE||Si]] in Lemma 3 will be |S$;|?/q. First we show that when this is the dominant term, the S;’s
shrink rapidly, and then we show the same for the other term.

While |S;| > ¢'~%/4, we show inductively that with probability at least 3/4 + 1/2%+2, |S;| <
q/2¥+1+5. 1t is true for i = 0, and suppose it is true for i. Then using |S;| > ¢'=%/¢, E[|S;;1]] <
2|5:|%/q. Then, using Markov, if

1Sl < q/22 5, (

then with probability at least 1 — 1/2'+3,

o
~—

|Sit1] < 245,12 /q < g/2%FHS, (3)

Using the induction assumption on the probability of (2), we get that (3) holds with probability at
least 3/4 + 1/2'*3, and the induction is complete. Therefore, this phase (when |S;| > ¢'~%/4) can
only last log, r rounds.

Now we view the phase where |S;| < ¢1~¢/4. Now E[|S;;1|] < 2/5:]/¢%/4. Using Markov again,
with probability at least 1 — 2/¢%/8, |S;41 < |S:]/q%/3. If these decreases in the S;’s continue, then
this phase can only last (1 —-6/4)/(6/8) < 8/6 rounds. The probability that the decreases continue
is therefore bounded from below by 1 — (8/6)2/¢%/8. Using 6¢°/8 > 64, we see that this probability
is at least 3/4.

Thus, the probability that both phases end as hoped is at least 1/2, and we are done. |

We can view a source as having “good” sets T;, which depend on the previous 1, ...,t;_; output
by the source. We can ignore the exponentially small probability that there are not enough “good”
Ty’s. We now show that most sources have &1, < |T;|3/* for all .



Lemma 5 If the sets T\, ..., T are picked uniformly at random from all sets of size ¢, then the
probability that all &7, < |Ti|3/* is 1 - 20(¢%/?)

Proof. ¢7,(j)is the sum of random complex numbers of magnitude 1, so using the Martingale Tale
Inequality (Spe] on the real and imaginary parts, we conclude Pr{|¢r.()| > |Til3/4] = O(e~ITH'?),
The probability that there exists an i,j with |¢r,(j)| > |T:|*/* is at most gk times this quantity,
from which the lemma follows. |

Putting these lemmas together, we conclude

Theorem 1 For all but an ezxponential fraction of flat sources, the prg given above will simulate
RP.

Observe that we can make the probability of error exponentially small by repeating our algo-
rithm many times.

4 Second PRG

One problem with getting the previous algorithm to work for all §-sources is that, for example,
the source can output powers of 2 and the witness set could include only odd numbers. We get
around these parity problems by working modulo an r-bit prime p. A more serious problem is that,
for example, the source can output small numbers and the witness set could be large numbers.
In order to get around this type of problem, we exploit the “independence” of the additive and
multiplicative groups mod p.

We must be careful, however, because we can have a source that outputs small numbers relative
to both the additive and multiplicative groups (by small relative to the multiplicative group we
mean a small discrete log base some fixed generator), and a witness set that is large relative to the
additive and multiplicative groups. What we will take advantage of is that the distribution of the
discrete log of A + B, where 4 and B are large enough sets, is relatively smooth.

Our pseudo-random generator will roughly consist of taking all sums and products of subsets,
for example ((z1 + 4 + 26)Ts + 11)Z142Z15. More formally, the prg computes a set P as follows:

P« {1}
Fori=1to k' do
P~ PU(P+z,))U(Pz;)

Again, for the purposes of analysis, we can assume we have 2k “good” z;’s. It will be easier to
rename them as ¢t; = —z2,.; and t} = 1/z9;, where t; and t; are picked uniformly at random from
large sets T; and T}, respectively. It suffices to analyze the following subset of strings produced:

P«—{l}
Fori=1tok do
P~ PU(P/t-1t)

To analyze this algorithm, we define the effective set of non-witnesses w.r.t. (¢1,¢)),...,(t:,t})
analogously to the definition for the first algorithm, which leads to the recursive definition:

Si=Si.1N(Si1 + t,‘)t:. (4)



We summarize some basic results about multiplicative characters from e.g. [Hua]. A multi-
plicative character x is a homomorphism from Z; to the complex numbers, i.e. x(ab) = x(a)x(b)
and x(1) = 1. We also define x(0) = 0. There are p — 1 multiplicative characters. Also, for a # 1,

Y x(a) =0,
X
and if x is not the trivial character xo which sends everything in Z; to 1, then
> x(a)=0.
a€Zp

We now make some definitions for multiplicative characters analogous to those in the previous
section. For A C Z;, x a multiplicative character, define

= E X(a)’

a€A

and

Uy= ggyg{lm(x)l}-

Then
Yo 1Al = (p = DA

Then the number of solutions to ab = ¢, where we restrict a € A, b€ B,and c€ C, 4,B,C C Z,
is

—-Z#m JB(X)¥e(x™), (5)
which is at most

AIBI , 5, /iBlCl. (6)

Dropping the subscripts from the sets in equation 4, we wish to analyze the expected number
of solutions to
81 = (32 + t)t', 81,82 € 5, t'e T,, (7) .

where the expectation is over t picked uniformly from T, and T’ can depend on the element ¢ picked
from T. ;From the bound (6), it would seem like a good idea to bound the expectation of ¥ g ;.
We can’t do this, but we can use a lemma that comes close:

Lemma 6 (J.H. Lindsey, see e.g. [CG] or [ES]) For any non-trivial character x,

Ellys+()I*] < pISI/ITI.

Proof. (Sketch) First we observe that for s; # s9,

Yox(si+tx s+ t)= Y x(1+(s1 - s2)/u) = —x(1) = -1

teZp u€Z}

Therefore,
3 Y x(si + tx sz + 1) < pIS|

81,82€StE€EZp



The lemma follows, because the expectation is at most 1/|T| times this sum. |
Unfortunately, this lemma does not give us a bound on the expected value of the maximum of

the |1s4¢(x)|- However, we do not need this bound, as the following lemma illustrates:

Lemma 7 E[|Si{] < [Sio1[*/(p - 1) +|Siza|p'/?~.
Proof. All expectations will be for t picked uniformly at random from T'. Let e denote the expected
number of solutions to (7). Using (5) and Cauchy-Schwartz,

e — liiﬂfl:‘ = pi 1E{X§0 ws(x_1)¢s+t(x)¢T'(X)]
< ;f—lE[\/( S s RBs0R) (3 [er00l)]
XFXo0 X#X0

< \/E[ > 1ws(eIwss 0] (0 - DIT)

X#Xo0
But Lemma 6 implies that if 37, ., Ay <1, and Ay > 0, then

E[ S Mlwss 0] < pISI/ITI.
X#Xo
In particular, taking A, = |¢¥s(x~1)|?/(p - 1)|S| and substituting in,
ST
- < |S|v/p.
e S < IslvF
Using E[|S;|] = ¢/|T"| yields the lemma. [

This lemma plus the techniques of Lemma 4 allow us to conclude:

Theorem 2 For all § > 1/2 the above prg simulates RP.

We remark that a lemma in [MNT] yields a result like Lemma 7. This implies that for § > 1/2
we can base our prg on any universal family of hash functions, and not only linear congruential
generators.

5 Bootstrapping to Handle all 6 >0

The reason our proof did not go through for all § > 0 is because Lemma 6 is not strong enough.
There is, however, a conjectured improvement of something very similar to Lemma 6. We therefore
conjecture an improvement to Lemma 6, and show how to bootstrap our algorithm so that it works
forall 6 > 0.

There is a widely-believed conjecture that the elements of a large rectangle in a specific matrix
have small sum:

Paley Graph Conjecture: Let x; be the quadratic character x2(a) = (;‘—,) Then for any 6 > 0,
there exists an € > 0 such that for large primes p, if |S|,|T| > p?, then

> als+1)| < ISITI/p

s€SteT



We generalize this to
Generalized Paley Graph Conjecture: The Paley Graph Conjecture is true if x, is replaced
by any non-trivial character Y.

There are good reasons for believing that this more general conjecture is true if the Paley Graph
Conjecture is true. First, techniques used to evaluate character sums involving x, work for any
non-trivial character; for example, both the Paley Graph Conjecture and its general version are
proved using the same methods for § > 1/2. Second, as pointed out by Lenstra [Len], the case with
X2 is probably the worst case, since x3(a) has a 1/2 “probability” of being a specific value, so it
should be easier to find a counter-example in this case.

We now mold the Generalized Paley Graph Conjecture into a more suitable form.

Lemma 8 Suppose the Paley Graph Conjecture is true. Then for any § > 0, there erists an e > 0
such that for large primes p, if |S|,|T| > p®, then

> losee0OL < ISITI /Pt

teT

Proof. (Sketch) Let z, = 9¥s544(X), and set z; = a; + bet, ay, by real. Let C = 3,7 |2|. It suffices
to find a W C T such that |W| > |T|/2 and 3, ew |2w| > C/6.

Now either ) ,cr|a] > C/2 or Y ,er|be] > C/2; wlo.g. suppose 3 ;crla] > C/2. Let
Ty = {t € Tla, > 0}, and T = T \ T}. Then either |T3| > |T|/2 or |T2| > |T|/2; say it is Ty. If
| Ster, 2t] 2 C/6, then we can take W = Ty, If not, | 3yer, 2] > Yyer, a0 > C/2 - C/6 = C/3.
Then, by the triangle inequality, ;.7 2; > C/3 - C/6 = C/6, so we can take W = T. |

Corollary 1 Suppose the Generalized Paley Graph Conjecture is true. Then for any § > 0, there
ezists an € > 0 such that for large primes p, if |S|,|T| > p®, then

D s+ ()I? < ST/ pe.

teT
Proof. Follows from Lemma 8 and |s4:(x)| < |S]. |

Corollary 2 Suppose the Generalized Paley Graph Conjecture is true, and fir 6 > 0 and the e > 0
implied by the above corollary. Then for any large enough prime p, if the second prq is used, then

E[S) < 1Sic1*/(p = 1) + ISicaly/ISial /I Tilpe.

Proof. (Sketch.) Follows by substituting the result from Corollary 1 instead of Lemma 6 into the
framework of Lemma 7. |

We can see that Corollary 2 will help us only if |T;| >> |S;_1|/p¢. We therefore bootstrap so
that our effective non-witness set is small.

Theorem 3 If the Generalized Paley Graph Conjecture holds, then we can bootstrap the previous
prg to simulate RP for any § > 0.

Proof. (Sketch.) Suppose our §-source has § = 8. Find the € corresponding to § = &y in the
Generalized Paley Graph Conjecture. Let h be the least integer such that §g + he/2 > 1/2. We



claim inductively that if there is a prg P which simulates RP for é§ = o + ke/2, then there is a prg
for § = 8¢ + (k — 1)¢/2, for k > 0. Theorem 2 implies the claim for k = h.

Suppose the claim is true for a given k. The key observation is that another way of viewing the
inductive claim is that the size of the set of non-witnesses of the R-bit strings is much less than

208o+ke/2)R or if pp is an R-bit prime, much less than p%ﬁkcﬂ. Namely, an R-bit string X is a
witness if one of the r-bit strings that the prg maps X to is a witness.
Thus, using that we effectively have |S;_;| < p%ﬁkc/z, Corollary 2, and the techniques of

Lemma 4, we see that there is a prg which simulates RP for é = §o + (k — 1)e/2.
|
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