An Open Architecture
for Improving VLSI Circuit Performance

By
Fred W. Obermeier
B.S. (University of Cincinnati) 1983
M.S. (University of California) 1985
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved:

kkkkkkkkkkkkkkkkkrkkr Rk kkkkkkkkkkE

An Open Architecture for
Improving VLSI Circuit Performance

Copyright © 1989
by
Fred W. Obermeier

All rights reserved.

(Reduced version of the Ph.D. thesis.)

An Open Architecture for
Improving VLSI Circuit Performance

Fred W. Obermeier

ABSTRACT

Electrical performance and area improvement are important parts of the overall
integrated circuit design task. However, few design tools allow easy exploration of
the design space (area, delay, and power) or offer designers different performance
alternatives. Given designer specified constraints on area, delay, and power,
EPOXY will size a circuit’s transistors and will attempt small circuit changes to
help meet the constraints. The system provides an open flexible framework for
developing and evaluating the effects of different area and electrical models, optimi-
zation algorithms, and circuit modifications.

EPOXY takes a physical and electrical description of the circuit and produces
a series of symbolic equations that model its performance. This results in circuit
performance evaluation 5 times faster than Crystal and 56 times faster when these
equations are subsequently compiled. EPOXY employs a virtual-grid area model
since the sum of transistor area is a better measure of dynamic power than cell
area. Optimization of a CMOS eight-stage inverter chain illustrates this difference;
a typical minimum power implementation is 32% larger than the one for minimum
area.

Next EPOXY attempts to find a parameter assignment for the input variables
of these equations, transistor widths, to meet the constraints while minimizing the
user defined objective function. Previous transistor sizing systems are limited to
fixed electrical models and only consider time and power tradeoffs. After evaluat-
ing two non-linear optimization techniques, the TILOS-style heuristic and aug-
mented Lagrangian algorithm, a combination of the two was found to produce qual-
ity results rapidly.

If the performance constraints cannot be met by transistor sizing, EPOXY con-
siders inserting buffers stages, rearranging transistors within a pull-down or pull-up
tree, and splitting large transistors so that cell height and width can be traded off.
This level handles the discrete decisions of proposing circuit alternatives while the
two lower levels determine the best possible implementation for this alternative.
From an implementation viewpoint, EPOXY’s underlying equation abstraction of
circuit performance automatically provides critical path information and allows rapid
modification of the circuit structure. A typical speed improvement of 23% for
several CMOS circuits was achieved over transistor sizing alone while satisfying
difficult height (pitch) constraints.

Acknowledgements

First, I like to express my deep appreciation for Randy Katz for his patience,
support, and encouragement. He often provided need inspiration during those
difficult times. I'd also like to thank my research committee; Randy Katz, Richard
Newton, and Andrew Shogan, for suggesting improvements to this dissertation.

My early association with the members of the Magic team; John Ousterhout,
Michael Amold, Gordon Hamachi, Robert Mayo, Walter Scott, and George Taylor,
provided valuable exposure to research in computer aided design (CAD) for
integrated circuits. Their work showed that a powerful and useful design system
could be constructed cleanly from good basic ideas.

I particularly value the stimulating conversations with my fellow officemates;
Gaetano Borriello, David Wood, David Gedye, and Ellis Chang. Despite our
cramped quarters, the close interaction has enriched my graduate experience by
exposure to a broader scope of research. I like to thank Bill Lin and Gino Cheng
for their comments and suggestions. In addition, I would also like to express my
deep appreciation to Thuan Nguyen for his personal support and encouragement.

David Marple provided a copy of his transistor sizing program, COP. His
work served as a model for implementing the augmented Lagrangian optimization
algorithm.

Throughout my college experience I have had the pleasure of working with
many talented people. My assignment at the IBM T.J. Watson Research Center
introduced me to a wonderful research setting. In particular, Ed Adams and Rolf-
Dieter Fiebrich encouraged my work towards a Ph.D. degree. As an undergradu-
ate, Thomas Ridgway provided an enjoyable and rewarding setting to develop
hardware and software PC systems. His projects have stimulated my creative
efforts and have provided invaluable knowledge of microprocessor-based systems
and assembly language development.

This research was supported in part by an American Electronics Association
Faculty Development Fellowship and a NSF grant MIP-83-52227. My first year at
Berkeley was funded by a California, Microelectronics Fellowship (MICRO).

1.

1.1.
1.2.
1.3.
14.

2.

2.1.
2.2.
2.3.
24.
2.5.

3.

3.1
3.2.
33.
3.4.
3.5.
3.6.
3.7.

4.

4.1.
4.2.
4.3.
44.
4.5.
4.6.

S.

5.1.
5.2.
5.3.

Table of Contents

INtroduction ... ssesnes 1
Comparison of Performance Improvement SyStemscccoceveecveeneerveenunens 4
Unique Aspects of EPOXY ...coccoiiiiiniiniiiiiiertecintcnrcnrccreetaessennesns 5
Goals of this Research ..o, 6
Organization of this DISSErtationccccceeevvernierriecsemrricnseeeneereeeceeeseesseennees 7
Modeling Circuit Performance ..o, 9
TIITIE ettt ettt rte st st sttt e e se e se e et e nas st e et e st e sbasnaesees

POWET oottt et crte st ee st et e e e sene s s nesossassnas 15
ATCA ..ottt stee s s s ae e st ae s s e bees s anas s ubeassnneaennn 15
NOISE MATZINS ...ooviiiiiiiiiinieicitierteetenee st ettesteesee s st e seesaeesetesatessnesaaesnensean 19
CONCIUSIONS ..ceviiiiiiieeceeeeeire ettt et stecatesttesstesees st te st aesnaesssessaeestessasssaensesseas 19
Optimization and Heuristic Techniques ... 21
Performance ENVEIOPEcccoovivviriirnieiecieneinrtrreesece e sresseessnessnessnsssaansnenseas 22
Step Size AIZOTItRIMSooviiiiiiiiiiiiie et cre e e sebe e 25
Augmented Lagrangian Methodccccccoviiiininnniniicienienreeneeeseensreesneans 32
Heuristic Improvement TechniquUescccecceerienirnrenvernreenseenreenreenrreereerneennens 33
TILOS HEULISHC .eoouiiouiiiieiieiiinrirneieseeeneeeeeseessesresaesssesssesssesssessasssanssssssesssnens 35
Comparison of Solution Quality and Running Timesccccccoervveerreervennnen. 36
CONCIUSIONS ..ocuiiitieiiieieieeierie ettt ntteseeestte st et s e ee e e e s sesanesoseansaesesssesssseseen 38
Performance-Based Circuit Modifications ... 39
Split Large TransiStorsccececirrveereerreerscrrieesseesssesessesssaerssesesssaassassssessees 40
Insert BUFErScc.oooiiiiiiiieeicieeenie ettt sreestes st e saaesreesressseessaesnaesaeesseesses 42
Reorder TTanSiStOrSccccoemrrierecrseecrerirenieninesrsesseeseesseeeneessteessesssesssesssesssessne 46
Strategy for Applying Several Circuit Modification Techniques 48
Performance Improvement for a Few Examplesccccocvvvviviiniinuccnnnnnnn. 49
CONCIUSIONS ..cevviuiereriereiieeeeentestreseee et e e e e eeessessasesssnneesssessneseseseesssessees 54
System Architecture and Implementation ... 55
Implementation StrategYcccveevireenireieseeciernreeetrtneetrersessssssressnessnesnnosnes 57
Example FOrmulationccccceveevimninneinicnciinnciienecie e sne e cnneenns 58

Deriving the Performance EQUationscccoccccvvevinniiniininiininninnnnne, 62

54.
5.5.
5.6.
5.7.
5.8.
5.9.

6.

6.1.

7.

8.

Non-Linear Problem Formulation and the Jacobian Matrix
Handling Sequential CirCUItScc.coecivrierresirsieeseeenriereeensnessnesseessaesseeessenseens
Evaluating the Performance EQUationsccccceeeevivviivceninnecnceninnnreneceennenn.
Space/Time Tradeoffccocviiiiiiiniiniiicncentce et et
Implementing Circuit Modificationscocvvviviiriniinicnennieine e
CONCIUSIONS vveeeveeerreerneerrreenreesereeesvesssseesstsssseessuaessueessunssissessnesssesrneesrsecssnnenn

Conclusions and Contributionscocoooveeeeeeeeeevveeennn,
FULUTE RESECATCH cooveeiiiiiieeeeiieieeereeteeesessesssssssssssosossssessnsossessssssnnessssssssnonsessssnsan

REFEIC@IICES ...ttt sa s

Appendix: Generating C Simulation Programs ...

o |

iv

List of Figures

Figure 1.1: Layouts and performance of two inverters.cccccceeceeceerennnes 2
Figure 2.1: Critical path derivation of a CMOS static gate.ccocceevcveenriennnen. 11
Figure 2.2: Total cell area # total tranSiStOr area.ccocevceverveecvenirversuenrennens 14
Figure 2.3: Layout effects of free transistor width.c..ccccevieneerniineeiennenne. 16
Figure 2.4: Free transistor widths for a CMOS adder.cccccoovvreeiveciieeennne, 17
Figure 2.5: Virtual grid model for a generic PLA. ..o, 18
Figure 3.1: Typical performance envelope.cccccomieviriirrenseeseennenreesenessnens 23
Figure 3.2: Layouts for an eight stage inverter chain.ccccoeveerveeveenennnen, 24
Figure 3.3: Example of the Golden section method.ccccocevivieciieciennnnnne, 26
Figure 3.4: Pseudo code for Golden section method.cccccevinvivnriieniecncnnne, 26
Figure 3.5: Example of the Armijo method.cccovvvveiiinieccceeerce e 27
Figure 3.6: Pseudo code for the Armijo method.cccoocvevveecrveceieeiceeeeeeeee, 28
Figure 3.7: Example function for testing step size techniques.ccccceeuenens 29
Figure 3.8: Pseudo code for a steepest descent algorithm.cccccocvvvvervurnnnnnee. 30
Figure 3.9: Comparison of TILOS and augmented Lagrangian methods. 37
Figure 4.1: Example of splitting larger transistors.cccceeeveieereevneerversveeeeenne 41
Figure 4.2: Example of buffer insertion Strategies.cceeeveererverrererrseerrenens 42
Figure 4.3: Layouts before and after transistor Sizing.c.cececcervveeverreeennas 43
Figure 4.4: Layouts for buffer insertion Strate€gies.c.ccceveeeveeveeiveeevverinennens 44
Figure 4.5: Graphs of the fastest inverter chains.cccecrivvevceniierenienriennnn. 45
Figure 4.6: Reordering transistors for a NOR logic gate.coevvercierinvenienene. 46
Figure 4.7: Example of reordering transistors.ccccecceeeervemreeseenereesrenereeneenne 47
Figure 4.8: Pseudo code to apply several heuriStics.c..ccccovreevveeiveenrcenvennen. 48
Figure 4.9: Outlines of the 16 stage adder cells.cccooveiirvivciiineniinieccninnnens 51
Figure 4.10: Layout for the CMOS PLA: pla.cpul.ccccovieviivinninnirniiciccinens 52
Figure 4.11: Layout for one JK flip-flop. .ccccoiveninciiiiiiiiniciccicniciicae 53
Figure 5.1: EPOXY system archit€Cture.cccccoevimvninniinncniincnennesiesiesiennes 56
Figure 5.2: Logic and circuit diagrams for the buffered NAND gate. 58
Figure 5.3: Layout for a standard-cell CMOS buffered NAND gate. 59

Figure 5.4: Net-list file for the buffered CMOS NAND gate.ccccoooviirinenne 60

Figure 5.5: Parameter file for the buffered CMOS NAND gate.c........... 60
Figure 5.6: Additional equations for the buffered CMOS NAND gate. 62
Figure 5.7: False precharge paths in a dynamic CMOS PLA. ..., 65

Figure 5.8: NLP formulation for the buffered CMOS NAND gate. 71

Figure 5.9: Logic and circuit diagrams for an RS-latch and a buffer. 74
Figure 5.10: Critical delay paths through the RS-latch and buffer. 75
Figure 5.11: Equations for the critical path diagrams.ccccocevvvverivrveninene. 76

Table 1.1:

Table 2.1:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:

Table 8.1:
Table 8.2:
Table 8.3:

vi

List of Tables

A comparison of VLSI performance improvement systems. 3
Summary of Crystal time models.cociviviniiniiiiiiniiice 10
Comparison of an area and power OptiMizZation.cceevivrcrnnnnnnes 23
Golden section and Armijo Step SIiZ€ TOULNES.cccccevervrvuesnerennnne 31
Summary of heuristics used by several systems.ccccviienn. 34
Results of several performance optimization problems.c........ 36
Summary of circuit modification techniques.c.ccccceveevirivicenennnen. 39
Performance improvement for 16 stage ripple adder. 50
Performance improvement for a CMOS PLA. ..., 52
Performance improvement for a JK array.ccccccevvinnicnininiiencennen. 53
Equation templates for the electrical models.cccccociiivcinnnneis 64
Input vector for the Jacobian MatriX.ccccccevviviinicrceninseecinnnnenne 72
EPOXY Circuit StatiStiCs. .ceccceverriiveiineerininecrecniinnisecnesnseeessnesssens 72
Equation evaluation techniques and modes in EPOXY. 78
Storage requirements and execution time SAVINGS. ..cc.cccceccvmreceeceeenne 79
Intermediate variable formats.cccceceviemniniinieciincnen e 87
Format of the generated timing analyzer program. ... 88

Format of the C program for NLP routines.c.ccecceccmnveniririennnens 91

1. Introduction

The computer industry is undergoing a rapid evolution. Each successive gen-
eration of computers is faster and more powerful than the previous one. Many of
these improvements can be directly traced to developments in the underlying
integrated circuit (IC) technology. Therefore, a company’s success directly depends
on how effectively these innovations can be rapidly incorporated into new products.

VLSI designers play a crucial role in the development of new products. These
designers are faced with the difficult task of producing layout that meets aggressive
electrical performance and area requirements. The current trend in the design of
VLSI integrated circuits is to start with a functional specification using a high-level
description. Next, a designer selects an architecture of major functional blocks that
satisfies the overall functional requirements and general design strategy. The imple-
mentation of each block is constrained by the performance requirements dictated by
the functional partitioning. Once these requirements are refined to a sufficiently
detailed level, the designer can select a suitable layout generator or library element.

Typical layout generators and standard-cell library elements contain fixed
over-sized or minimum-sized transistors. Often these systems produce only a single
design. This gives a designer little control over the electrical and area performance
of the resulting implementation. Even when transistor sizes can be specified, it is
difficult for a designer, without some assistance, to determine the appropriate sizes
for the large number of transistors to achieve the best implementation. Therefore
automated transistor sizing plays an important role in the overall design process.

Figure 1.1 illustrates how the performance of a small example changes as a
function of transistor widths. The layout implements two static CMOS inverters in
a standard-cell organization. The upper layouts show all interconnect layers, while
only the transistors are shaded in the lower layouts. Layouts on the left represent
the design with all minimum sized transistors. The second inverter for the middle
and right layouts employs wider transistors. As the transistors in the second
inverter are widened, the delay is reduced at the expense of additional power. The
trend continues until the fastest design is achieve. Thereafter, increases in the
transistor widths will cause an undersirable increase in power and delay. The
height and area changes only if the larger transistors cannot fit into the layout.
This example does not adequately illustrate the increased complexity involved in
determining the sizes for a large number of transistors when subject to constraints
on performance.

Transistor sizing alone may not be sufficient for meeting the required perfor-
mance goals for a defined functional block. Even though circuit changes at the
logic level can have a significant impact on the quality of the circuit, most logic
reorganization programs cannot consider the important detailed parasitics which can
have a dramatic effect on the overall performance.

EPOXY, the design tool described in this dissertation, not only sizes transistors
but also considers detailed circuit modifications for meeting the performance goals
and size limitations. The system improves VLSI circuit performance by generating
the equations that model circuit performance, formulating the transistor sizing

1. Introduction 2

metall [] KEY

poly_metall contact
poly
ndiff _metall _contact P&

pdiff_metall _contact

pdiffusion B§
pfetg
inverters
first second
| ———> | —>|
p fets % %
[] L |]
O o o :
[] [) [
[] L I] |]
n fets % %
Delay (ns) 45.0 11.5 7.4
Power uw) 26.4 27.4 28.4
Height () 50 50 67
Width 34 34 34
Area (% 1,700 1,700 2,278

Figure 1.1. Layouts and performance of two inverters. Two static CMOS inverters are imple-
mented by layout in a standard-cell organization. In standard cells, the p- and n-type
transistors (fets.) are grouped into rows. The complete layouts are shown in the top portion
of this figure. Each transistor type is shaded in the lower layouts. The layouts on the left
employ transistors of minimum size. Increasing the transistor widths of the second inverter
decreases the delay (increases the speed) at the expense of additional power and height.

problem as a non-linear program, and then modifying the circuit to improve the
solution further. Therefore, EPOXY can complete the design process by modifying
the layout resulting from logical reorganization.

1. Introduction

VLSI Performance Improvement Systems

System Author Ob;. Constr. Method Model Tech. Mode Comments
- [Glas84] min T m<AA opt. LS RC nMOS batch Single path.
min AA T<k & m<AA
min P T<k & m<AA
- [TeeB4] min T opt. L RC CMOS batch (step 1)
min AA T<k k=minT+AT
- [Mats86] min P T<k opt. Macro nMOS batch
m<AA<k
- [Shyu88a] min AA T<k opt. D RC CMOS b/
AESOP [Hedl87] min T m<AA<k opt. L RC n/CMOS inter. Fixed paths
min P m<AA<k (gate model)
ANDY {Trim83] min T m<AA<k heur., L RC nMOS Wi
min P T=k
APLSTAP [Bray81] min f(n) f(n)<k opt. ASTAP inter. Very general
DELIGHT [Nye88] min f(n) f(n)<k opt. SPICE inter. Very general
EO [Hed184] 1 path (PLAOPT)
EPOXY [Ober88b] min f(n) f(n)<k allt allt allt b/i Also [Ober88a]
LTIME [Ciri87] min P T<k opt. D RC MOS inter. Single path
MOST [Pinc86] min AA T<k heur. LRC CMOS b/i A framework.
OPT [WoIf78]) min P T<k opt. L RC nMOS bawch Place using T & P
PLAOPT [Hedl85] min T m<AA<k opt. L RC nMOS inter. PLA critical path
min P T<k oriented
PLATO [Marp86] min A T<k opt. LS RC CMOS batch Dynamic PLA
cop [Marp87] min P T<k opt. LS RC CMOS batch Static comb,
min T P<k
min A T<k
TILOS [Fish85] min T m<AA<k heurr., D RC CMOS batch Extracts sequential
min AA T<k & m<AA<k and combinational
min AAXT® m<AA<k transistor nets.
TV/IA [Joup83] min AA T<k heur. D RC nMOS inter.
XTRAS [Kao85] min AA T<k heur. LS RC nw/CMOS inter. T = max. all paths.
Key A total design area | T delay L RC Lumped RC model
AA total transistor area | f(n) any function LS RC Lumped Slope RC model
H total design height |c, k, m constants D RC Distributed RC model
W total design width | opt. optimization based | batch batch mode opt.
P power | heur. heuristic inter. interactive opt.
Table 1.1. A comparison of VLSI performance improvement systems. The objective

function and constraints for each program are given under (Obj.) and (Constr.) respec-

tively.

The type of technique used for design improvement is given under (Method).

The model which determines response times (Model) and the technology supported
(Tech.) are then listed. The last two columns give the supported operating modes and
addition comments. (f EPOXY supports a variety of methods, models and technolo-

gies.)

EPOXY'’s major innovation is its efficient flexible open system architecture for
developing and evaluating performance models, non-linear optimization techniques

and circuit changes.
performance by a set equations.

The system delivers these advantages by representing circuit
Each of these issues (performance modeling,

optimization and circuit changes) corresponds to a component in EPOXY.

1. Introduction 4

1.1. Comparison of Performance Improvement Systems

Since the relationship between transistor size (and layout dimensions) and
delay is non-linear even for simple models, the transistor sizing problem can be for-
mulated as a non-linear program (NLP). Even though a transistor sizing tool many
not employ non-linear programming techniques, a transistor sizing program can be
succinctly described by the non-linear program (an objective function and con-
straints) it solves.

The value of any performance improvement tool depends on how well the sys-
tem helps a VLSI IC designer achieve the desired performance goals. However,
these requirements vary radically depending on the intended application. Designers
of high volume parts place chip area at a premium while requiring a sufficient
speed and maximum power dissipation necessary for an application. Alternatively,
advanced specialized parts often require high speed at the expense of additional
area and operating power. Therefore, one metric of comparison of performance
improvement systems is how flexible they are in specifying user constraints and an
objective function, and assisting a user to attain these design requirements.

Table 1.1 summarizes several VLSI MOS performance improvement systems.
The program name and reference for each system is given under the first two
columns. The next two columns define the objective function and corresponding
design constraints each system considers; a separate line is given for each type of
optimization a system performs. The standard constraint, that transistor widths must
be larger than some minimum width as defined by the technology, has been omitted
from this table. The abbreviations for each of the design metrics is given in the
lower portion of the table. The technique that a system uses to improve a circuit’s
performance can be classified as either optimization-based or heuristic. Optimiza-
tion techniques rely on formal mathematical methods to assure converge to a
minima while heuristic techniques encode designer experience in improving designs.
Although heuristic techniques usually do not yield optimal results, they do improve
designs rapidly. The electrical model for circuit response time and the technology
supported by each system is listed in the two subsequent columns. The next
column describes a user’s interaction with each system as either batch or interac-
tive. The final column provides terse comments which detail some unique aspects
or limitations of each system.

Performance improvement systems can also be classified by the level of detail
considered in determining the transistor sizes. The electrical model (Model in
Table 1.1) can be applied at the transistor (e.g.: TILOS) or gate level (e.g.:
AESOP). Gate level models typically reduce the input design space by associating
a single factor with a logic gate. The transistor sizes are assigned based on the
resultant logic gate factor. While gate level models reduce the input design space
and the amount of computation, they often yield inferior results. The single gate
factor cannot encompass significant differences in input arrival times and intermedi-
ate parasitic capacitance that dramatically effect the overall circuit performance.
EPOXY is flexible enough to implement both transistor and gate level models.

1.1. Comparison of Performance Improvement Systems 5

1.2. Unique Aspects of EPOXY

EPOXY offers a unique approach to performance optimization. Most transistor
sizing programs integrate fixed electrical models with a fixed optimization technique
(e.g.: ANDY, COP, OPT, PLATO, TILOS, TV/AI). Performance improvement sys-
tems (e.g.. APLSTAP, DELIGHT) that permit a selection of models and optimiza-
tion algorithms are computationally expensive because these two tasks are handled
by separate programs. Separation of modeling and optimization routines results in
extra storage and communication expense to maintain essentially equivalent informa-
tion. However, EPOXY provides a unique flexibility in selecting, substituting, and
evaluating performance models and optimization algorithms while retaining the com-
putational efficiency of integrated systems.

The flexibility of performance improvement systems can be classified by the
design metrics they consider. Typical design metrics include worst-case response
times (circuit delay), maximum power consumption, total cell height, width, and
area. However, most systems are restricted to minimizing a single predefined
design metric and fixed constraints. TV/IA can provide a user with sensitivity
information so that other design metrics can be taken into account manually. How-
ever, these systems inhibit a user from automatically achieving the desired tradeoff
among other design metrics since they incorporate fixed objective functions and
constraints. EPOXY allows a user to specify the objective function and constraints.

Even at the modeling level, many of the transistor sizing programs quote total
transistor (active) area as an area metric. However, total transistor area does not
accurately represent the overall area required for the design since it does not con-
sider transistor placement and routing effects imposed by larger transistors. Total
transistor area is actually a better measure of worst-case maximum dynamic power
rather than total cell area. Therefore Table 1.1 differentiates between these two
metrics. The only two systems that model the area of the cell are COP and
PLATO. Although COP’s area model considers the relative placement of transis-
tors, it does not take advantage of the significant area underneath the routing chan-
nel. However, PLATO does model details such as snaking transistors for PLA’s.
EPOXY'’s virtual grid area model accurately relates changes in transistor sizes to
changes in the overall cell area for all layout styles.

Matson and Glasser [Mats86] discuss how the parameters for their nMOS gate
model are automatically derived. EPOXY extends this concept by deriving the per-
formance equations symbolically for the entire circuit of interest. Then the partial
differential equations required by most non-linear optimization methods are derived.
Therefore, the sensitivity information can be quickly and accurately provided by
evaluating these differential equations without having to resort to approximations
such as finite differences. In addition, EPOXY can easily incorporate new models
since the underlying derivation and manipulation routines for the equations need not
change. A new performance model need only generate the appropriate equations.
The remaining routines can create the partial derivative equations and evaluate all
of the generated equations.

1.2. Unique Aspects of EPOXY 6

Traditional circuit optimization programs have concentrated on transistor sizing
to improve the speed of a circuit at the expense of increased power and area.
However, if the design goals cannot be met by transistor sizing alone, structural
techniques can be applied. EPOXY considers several circuit changes such as split-
ting large transistors into several smaller ones, inserting buffers, and rearranging
transistors in pull-down or pull-up trees. While circuit changes can be considered
during synthesis as in MIS [Bray86], MTA [Hofm87], and [Mich87], these tools
consider the whole circuit and thus are forced to employ simplified models for per-
formance and area estimation. EPOXY, on the other hand, makes local
modifications at the layout level by examining the circuit in greater detail with
more accurate models.

Global changes in circuit structure such as logic resynthesis are best made ear-
lier in the design process. EPOXY deals with the remaining complexity of detailed
circuit performance improvement given design constraints and performance goals.
Therefore, the limited circuit structural changes that may be necessary can be made
at a level where the performance impact of these changes can be accurately
assessed.

1.3. Goals of this Research

Many of the previous transistor sizing tools tightly couple the electrical models
with an optimization routine that solves a fixed predefined optimization problem.
However, it is difficult for users to determine how much of the performance
improvements come from using less accurate electrical models or from a particular
optimization routine. EPOXY can answer these questions by providing a frame-
work in which the user specifies an objective function and a set of constraints, and
which can substitute the performance models and optimization routines. EPOXY’s
use of performance equations combines the execution speed comparable to
integrated systems with the flexibility of applying different performance models,
optimization routines and circuit modification techniques.

EPOXY is a system for sizing transistors and modifying circuits to help meet
performance constraints. EPOXY’s unique features addresses the concerns of VLSI
circuit designers and design tool developers:

flexible A VLSI designer can specify (1) an objective function to minimize,
and (2) additional performance constraints. Therefore, a designer can
more readily determine the tradeoffs among several of the design
metrics of interest such as area, time, power, etc.

A user can select the appropriate performance models, optimization
routine and circuit modification techniques.

open The effects of model accuracy and speed of evaluation in producing
an optimized design are easily determined. For example, a fair
comparison of several electrical models can be made using the same
optimization algorithm. The results of these tests can also suggest
which models and optimization routines are appropriate for various
technologies and design styles.

Eil

1.3. Goals of this Research 7

architecture Representing the performance by deriving a set of equations is the
key to providing the flexible and open features. This strategy leads
to equations that can be evaluated rapidly, but at the expense of
additional memory. EPOXY provides several basic operations that
support the equation representation of circuit performance:

1. Macros and function calls construct the equations directly in
memory.

2. Circuits with feedback lead to equations that reference each
other in a cycle. These cycles are removed by expanding each
unique path through the cycle.

3. Equations are then ordered so they can be evaluated rapidly.
Some of the possible evaluation modes are:

a. Evaluate all equations.

b. Evaluate only those equations affected by a change in one
variable (incremental evaluation).

c. Evaluate those equations affected by a change in a small

--number .of .variables (a larger-grain incremental evaluation).

A variable whose value has changed is marked so that the
corresponding equations can be re-evaluated.

d. Output the equations symbolically so they can be compiled
for additional speed and storage advantages.

2. New equations can be incrementally inserted in the linear ord-
ering.

3. Partial derivative equations are generated from the performance
equations automatically. These equations form the sparse Jaco-
bian matrix required by several non-linear optimization-based
routines.

4. Macros and function calls can alter the equations and
corresponding node and transistor data structures. These rou-
tines directly manipulate the underlying circuit structure without
re-extracting and rebuilding the entire circuit.

1.4. Organization of this Dissertation

In this dissertation, transistor sizing and local circuit modifications are investi-
gated as a means of improving VLSI circuit performance. Each of these issues
corresponds to a component of EPOXY. EPOXY’s approach to improving VLSI
circuit performance is to derive the equations from the layout which model the cir-
cuit performance, formulate the transistor sizing problem as a non-linear program
(NLP), and then modify the circuit to improve the solution further. A key benefit
to this representation is that clear comparisons can be made between different per-
formance models, optimization routines, and circuit modification techniques.

The first two chapters will examine performance models and optimization algo-
rithms necessary for sizing transistors to meet performance goals. Chapter 2 details

1.4. Organization of this Dissertation 8

the performance models currently available in EPOXY and describes how these
models affect the final optimized results. The choice of models requires a careful
balance between simulation accuracy and evaluation speed. The following chapter
(Chapter 3) describes the optimization algorithms implemented within the tool.
Each optimization algorithm is evaluated by the quality of solutions obtained for
some representative circuits and by the running times to find these solutions. Solu-
tion quality is evaluated by the user specified performance goals.

Chapter 4 describes how several techniques are used to improve the solutions
that fail to meet the design constraints after transistor sizing. Although specific cir-
cuit modifications are evaluated, the technique of how these modifications are
implemented is described so that they may serve as a template for implementing
other kinds of beneficial circuit modifications.

The conflicting requirements of rapid circuit modification and rapid evaluation
speed were satisfied by generating equations that determine the circuit performance.
The equations provide increased flexibility and improve the overall execution speed
at the expense of additional memory. The larger memory requirement, which limits
the maximum circuit size, is evaluated for several representative circuits. A discus-
sion of the implementation strategy for the equations and evaluation of their effec-
tiveness within EPOXY follows in Chapter 5. An example circuit illustrates the
information that a user specifies and the equations that EPOXY generates.

The final chapter (Chapter 6) summarizes the major contributions of this thesis
and outlines several research topics for future investigation.

2. Modeling Circuit Performance

The task of any performance improvement system is to determine an assign-
ment of the input parameters that best satisfies the performance constraints. This
problem has two main components: modeling the circuit performance and selecting
the best implementation (optimization). This chapter will concentrate on the issues
associated with circuit performance modeling.

A designer of integrated circuits is interested in several metrics that character-
ize the quality of layout. For MOS VLSI circuits, these include the response time
(circuit delay), maximum power dissipation, total layout area, cell height and width.
The designer has control over many input parameters such as the placement of
transistors, their width and lengths, and parasitic capacitance. Electrical models
relate these physical parameters to the electrical performance metrics, i.e., delay
(time) and power. The area model provides total height and width and an estima-
tion of layout parasitics. This chapter presents a virtual grid area model that con-
siders detailed layout effects caused by changes in transistor sizes. As illustrated
later in this chapter, this area model is well suited for many layout styles such as
PLA’s and standard cells.

The choice of the appropriate model for each design metric must carefully bal-
ance the conflicting requirements of accuracy in estimating the actual circuit perfor-
mance and computational expense. Since the goal is to produce a quality layout
that meets the desired performance constraints, the crucial issue is how these
models affect the optimization results. The next subsections present models for
each of the typical design metrics of interest to VLSI designers.

2.1. Time

A VLSI designer is faced with many node delays of potential interest. In his
work on ATV [Wall88], an abstract timing verifier, Wallace outlines several timing
models: single numbers, ranges (min-max), and statistical descriptions (mean and
standard deviation), and asymmetric rise/fall versions of these. MOS designers are
usually concermned with the worst-case response times (a single number model) for
their layout as dictated by worst-case input arrival times and required output
response times.

The input arrival times and required output response times are quantities given
to a designer. Therefore, the input node times will be represented as constants in
the problem formulation of the non-linear optimization, while the output node times
will be specified as constraints.

Worst-case response times can be determined using gate-level or transistor-
level models. Gate level models identify logic gates by grouping the transistors
that drive an output node. All transistor sizes that compose the logic gate are then
related by a single factor. For example, AESOP [Hedl87] scales all of the transis-
tors in a gate using the same factor. The gate factors also determine the response
times. Alternatively, transistor-level models determine node response times by cal-
culating the effects of each transistor on the attached nodes. Optimization programs
based on gate-level models such as AESOP are usually faster since the ensuing

2.1. Time 10

optimization routine considers a much smaller input vector space (the gate factors).
Because several transistors are used to create a single gate, there are many more
transistor sizes than gate factors. Unfortunately, transistor sizing systems based on
gate models produce many over-sized transistors since the single gate factor will
unnecessarily increase the size of transistors that do not participate in any critical
path. These larger transistors will consume more power by loading the output of
the previous logic gate. Therefore, transistor-level models are better suited for pro-
ducing quality optimization results.

RC Model Transistor Evaluation Average
Model Time Error
fets/sec to SPICEt

Lumped Linear 82.3 24%
Lumped Slope 66.0 8%
Distributed Slope 55.8 6%

t =f(t ,R,C) R =1f(w,type)

out in C= f(W,l,g;)

Table 2.1. Summary of Crystal time models. The evaluation time and accuracy for Crystal’s
time models in the first two columns are given by the third and fourth columns. The
evaluation time is the average over 1000 timing analyses for a full 32 bit adder on a stan-
dard Sun-3/140%. (t Data in this column from [Oust85].) The transistor model determines
the transistor’s equivalent on-resistance and capacitance. The RC model combines these
resistances and capacitances to determine the worst-case response times.

Ousterhout has outlined several value-independent (transistor-based) switch-level
models for calculating worst-case delays given layout parasitics and transistor
widths and lengths [Oust85] as described in Table 2.1. These include the lumped
RC, lumped slope RC, and the distributed slope RC models. The lumped and dis-
tributed models differ in how the transistor resistance and capacitance values are
combined to produce a worst-case node time. These models determine the delay
effect of each transistor switching independently from all others. The linear transis-
tor model assigns a single resistance depending on the transistor width, length, and
type (p- or n-type). For most circuits, the linear transistor model is sufficient.
However, slow rising and falling edges cause transistors to switch more slowly than
fast rising edges. The slope transistor model also considers the signal rising and
falling times in determining its resistance. For most logic gates, only one transistor
switches at a time. Therefore the more accurate slope transistor model is used for
the single switching transistor while all others use the simple linearly-interpolated
default transistor model.

Equations for the response time of a node are derived using the template:
Loutput node = MAX(Einpus noge + delay)) where ti, poge is the time the input
changes. EPOXY currently provides a worst-case distributed linear RC electrical

1 Sun-3is a trademark of Sun Microsystems, Inc.

2.1. Time 11

model for delay (), although other models could be substituted. EPOXY is not res-
tricted to RC trees, as Figure 2.1 demonstrates.

vdd
v 4L v w dC
n3 L n4
x 4L 7 4
Path B : ns ns
v "IE J; X ‘{E R RX%
nl A n2 |} Y,
w AC P A z 4[1 Rw% Ca1 CnZJ' Cn5“
GND S T T T

Figure 2.1. Critical path derivation of a CMOS static gate. A static CMOS combinational
logic gate and the corresponding RC equivalent circuit for deriving one possible discharge
path (path A) for node n$ caused by a rising signal on node y, the gate of the transistor (y).
Ry, is the on-resistance of the transistor (fer) and C,,,,, is the total capacitance on the
node.

The equations that determine the worst-case response time of node nS in Fig-
ure 2.1 due to a rising transition on node y are listed below.

(Path A) tfall,nS 2 trise,y +(Ry +Rw)Cn2+(Rx +Ry +Rw)CnS;
(Path B) all,ns 2 trise,y T(Ry +R;)Ch1+ (R, +R, +R,)C,y5;

Since the derivation of these equations involves finding all paths from each
output node through attached transistors to the power supply rails, EPOXY actually
represents these equations using intermediate variables and equations. The equa-
tions that EPOXY generates to determine the response time for node nS are given
below. Note that even a simple circuit fragment can generate a large number of
equations. Several intermediate variables are used in the following equations to
represent the resistance through a path of transistors from a particular node to the
power supply in response to an input transition (rising or falling) on a transistor
(Riransition, node , transistor ,parh) 4nd the inherent delay of the switching transistor and all
transistors between it to the power supply subject to an input transition
(Yransition, transistor - This example illustrates that a simple circuit can generate
several equations. These equations were generated automatically by EPOXY.

Rpatt, n1,fet w,paho = Rpet ws Rpatt 1, for y,pah0 = Rpee y + Rpatt n2, fer 2, path 05
Riait, n2,fet 2,path0 = Rpet 25 Rpat n2, for y,pah0 = Rt y + Rpait n1, fet w,path 0>

2.1. Time

Rfall,n3,fet v,path0 =

R

R

a7 R

fall ,n3, fet y,path0 — Rfet 5

Rfall,nS,fet v,pathQ = Rfet y T Rfall,nl,fet y,path0>
Rpait, ns,fet v,pan1l = Rpat v + Rpgtt a1, for w,pah0s
Riatt, n5, fer x,path0 = Ret x + Rpail n2, fer 7, parh0>
Riatt n5, fer x,path1 = Rfe x + Rpall n2, for y, path0>

Rt ns, fer 7,pain0 = Rpet 7 ¥ Rpatt, n3, fer 5. pasno’

Ristt, ns, fer %,pant = Rpr 7 + Rpgtt, n3, for 7, parn o’

Rt ns,fer 7,pan0 = Rpgt 7+ Rpgii na for 5, pashov

Riatt, ns, et 7.patn1 = Rpee 7+ Rpat na fer . path0*

tatt fer 7 2 CnsRpait ns, for 7. pam1 ¥ Ca3Reant 3, fer 7, parho

Yatt for 7 2 Cn5Rpatt s, for 7.pah0 + CrnaRpay na fer 5. parho
+ CasRput n3, for ¥, patho

tfall,fet w 2 Cn5Rfall,n5,fet x,path0 + C'I3Rfall,n3,fet y,path0
+ CoaRppy na,for w, pashov

Yall for w 2 CnSRfau,ns,fer Fpahl ¥ C’l4RfaII,n4,fet W, path 0’

Leall, fer 2 C,sR

Lall, fer

Leall, fer

Lall, fer

tfall,nS

Yall n5

Yall n5

trise,fet v

Lrise ,Jet w

|

2 CousRpy ns, for %,pan0 * Ca3Rpat n3 fer 5. pashos

2 CusRey ns, fer 7,pah0 + CraRpat na ot 5. pasno’
2 CasRy ns, fer 7.pah’ Yeall fer
rise,v + trise,fez v? tfall,nS
ise ,x + trise,fet x> tfaU,nS

| ¢y

v =i
-~
v =

Lise W

\

Lrise yY

I\
o~

rise,z + trise,fet z>

CnSRfall,nS,fet v,pathl + CanfaII,nl,fet w, path 0>
CnSRfall,nS,fet x,path 1 + Cn2RfalI,n2,fet y,pathQ
+ CarRpait 1, for w,path0>

v v vV

Lrise ,fet w

v

trise,fet x
CasRiait 5, for v,pah0 + Cut Rytt, n1, fer y,path
CasRalt 5, fer x,pan1 + Cn2Ryatt, n2, fer y,paths
CrsRpau,n5, fer v,path0 + Cn1 Rt n1, fet y,path0
+ CoaRyait, n2, fet 2,path 0>

Lise,fer 2 2 CnasRyatl n5, fer x,path0 + Cn2Ryall n2, fet z,parh0s

Lrise, fet y
Lrise Jfet y

v v IV

Lrise fet z

tise,n5 2 tanv t tant for v Yise,ns 2 Yanl
trise,ns 2tz + Hall, for 70 trise,nS 2 a1, 5
tise,ns 2 tgn 7 t o fur 7

-+ R

> C,sR

12

fall ,n4, fet w,path0®

fall,n4, fet w,path0 — Rfet w? Rfall,n4,fet ¥,path0 = Rfet gt Rfall,n3,fe: v,path 0’

fall, nS, fet X,path0’ Yall for & 2 Cn5Rfall,n5,fet x,path1’

fall ,nS, fet 7,path 1’
+ trise,fet w
+ trise,fet y;

Cn5Rfall,n5,fet v, path 0> lrise, fet v 2 CnSRfall,nS,fet v,path 1>

CnsRpit,ns, for x, path0s Yise, fet x 2 Ca5Rpall n5, for x,parh 15

* ol for w
* ol for 5

The transistor model provides the on-resistances and parasitic capacitances for
a given width, length and type (n- or p-channel). EPOXY currently supports a

2.1. Time 13

first-order approximation of a transistor’s resistance and capacitance, the linear
model. The constants, Kryy,,, Kgy,., and Ksdy,,, are automatically determined by
a least squares fit of these modeling equations to SPICE simulations of small
representative circuits. Kry,,, relates the transistor strength (length over width) to
its average resistance subject to a fast switching input signal. The gate oxide capa-
citance per unit area, Kg,,., and the diffusion capacitance per transistor width,
Ksd,,,, can be determined instead from the process parameters for transistors.
Since the source and drains of MOS devices are symmetric, equal values for the
source and drain capacitances (Cyy, 4,) are used.

. Cga’e,fet = thype W fet Ifet;

»

Lo

Wret

R = Kr
ope. et ope [Csd, fe = KSdtype wfet;

Finally, node capacitance is determined by adding the parasitic capacitance and
the capacitance of attached transistor gates, sources, and drains. The variables
appearing in the node capacitance equation are determined by the interconnection of
transistors within the circuit. For the example CMOS circuit, the capacitance of
node nl is given below.

Cnl = Cparasitic n1t Csd,v + Csd,w +'Csd,y;

Although simple models may be sufficient for ordering critical paths, they are
not likely to be accurate enough for optimization that requires absolute comparisons
to delay constraints (e.g., ‘‘critical paths must be less than 20ns’’). Aggressive
designs are typically forced into the region where a designer must balance
minimum delay (maximum speed) with an overall area limitation. A small error in
estimating delay to meet a fixed time constraint can have a large impact on overall
area. That is, if the timing model overestimates the delay, a faster than necessary
design will be produced. The design is larger because it employs larger transistors.
Similarly, a timing model that underestimates the delay will produce designs that do
not meet the timing constraints. To correct the design, substantial additional area
may be required. Figure 2.2 clearly shows that overestimating the delay will pro-
duce larger designs for the minimization of area and power for an eight-stage
CMOS inverter chain (using the MOSIS SCMOS A=0.7um design process). A 1ns
time error results in a 3,956 um® (8,074 A“) error for area minimization and 2,636
pm~ (5,380)»2) error for power minimization. Therefore, if the model underesti-
mates the delay by 16% (1lns), a circuit 100% larger than necessary will be
reported for a minimum area implementation and 50% for a minimum power imple-
mentation. Since the lumped RC model has an average error of 25%, transistor
sizing tools based on this model would exhibit even larger area and power errors.

Some designers are interested producing circuitry that is hazard and race free.
Kohavi [Koha78] describes several conditions that can cause hazards or races. A
hazard is a situation where a change in a single input may cause a momentary
incorrect output. Whether or not an incorrect signal is actually generated depends
on the exact delay associated with the various circuit elements. A race condition
arises when two or more state variables are required to change their value simul-
taneously in a finite state machine. If the final state of the circuit does not depend
on the order in which the input variables change, then the race is noncritical.

2.1. Time 14

N h
4
15-) 5.4 15-1)
1 min a 1 min p
. s.t. t < Time . s.t. £ < Time
10 10
v .
8.1 i
5= 5
Area] Area]
) @]
0 0
IT‘II TTrT'TTlllll'llllllllll 'I'll llllllllllll'llllllTT71
0 5 10 . 30 0O 5 10 . 30
- Time (n9) - Time (os)
1ns ins

Figure 2.2. Total cell area # total transistor area. The graphs indicate the total cell area
(Area) required by an eight-stage inverter chain (MOSIS SCMOS A=0.7um) to achieve a
specific delay (Time). The graph on the left shows the minimum area implementation
while the one on the right gives the minimum power conﬁguratlorL The smallest circuit
that meets a 7.1ns time constraint requires an area of 8, 04412 (3,942 um) The smallest
circuit that meets a 6.1ns time constraint requxres an area of 16,118\° (7,898 um”) There-
fore, a 1ns variation translates into an 8, 07422 (3,956 umz) area difference. Similarly, the
lowest power circuit that meets the 7.1ns tlme constramt requires an area of 10, 73812
(5,262 pm) This translates into a 5, 380}» (2,636 um) difference for a lns variation.
(The output has an additional 1pf capacitance load.)

Designers of asynchronous circuits should avoid both of these difficulties.

Designers can eliminate some of the hazard or race conditions by constraining
the performance problem. Lower bound constraints on some of the delay paths
assure that a signal is stable long enough to avoid generating an incorrect signal.
For asynchronous designs that employ level-sensitive latches, the fastest path though
the combinational logic should not be less than half of the slowest path through the
logic; otherwise, an input signal may feed through the circuit more than once per
cycle. Unfortunately, single number timing models are incapable of generating the
required information. However, a min-max (worst-case/best-case) timing model can
generate the required fastest and slowest response times. A min-max timing model
is easily implemented within EPOXY since the best-case equations are similar to
the worst-case equations already described. The following equations implement a
min-max timing model.

l l

fet | . fet | .
Rmin,type,fet = Krmm type [wfet} ’ Rmax,type,fet = Krmax type [wfet] ’
Cgate,min,fet = Kgmin type Wfet lfet; Cgate,ma.x,fet = Kgmax,type W et lfet;

Csd,min,fet = KSdmm type Wet> Csd,ma.x,fet = KSdmax type Wfet s

2.1. Time 15

Chin,node = Cparasiic + X Coate,min,fr ¥ X Csd,min, for>
attachedfets attachedfets

Cmax,node = Cparasitic + > Cgate,max,fet + > Csd,max,fet;
attachedfets attachedfets

tmin,output node = mln(trru'n,inpwnode + E Rmin,fetcmin,node);
paths

tmax,ouxpu: node = max(tmax,inputnode + Z Rmax,fetcmax,node);

paths

2.2. Power

The IC package imposes an maximum power dissipation limit (constraint) on
the entire design. Total power has dynamic and static components. Static power
usually dominates for nMOS and pseudo-nMOS design styles, while dynamic power
dominates for most other CMOS design styles [West85]. Since dynamic power is a
function of the operating frequency, a maximum operating frequency must be
defined along with the maximum allowable power.

The static component is determined- by the minimum resistance between the
power supply signal lines. For nMOS, the smallest resistance occurs when all the
transistors are on. Since the static current is mainly determined by the depletion-
mode pull-up of each gate, the static maximum power can be approximated by:

v2
— dd -
POWergatic, nMOS = > R——— ’
gates depletion, gate

For CMOS, the small static power consumption is due to reverse bias leakage
between the diffusion regions and substrate. The power due to leakage current can
be described by the diode equation. The maximum dynamic power required by a
circuit is directly related to the capacitance it drives. Since the power to drive the
input nodes comes from external circuitry, the maximum dynamic power a circuit
consumes is related to the internal and output load capacitance (excluding the sup-
ply nodes), whose total will be represented the variable, C,,;,,.,. For the CMOS
example, the total power will be approximated by the maximum dynamic power
component. The following equations result:

~ - 2 .
powercmos =~ POWEr gynamic = Coriven Vi frequency puy;
Cariven = Cp1 + Cp2 + Cuz + Gy + Cpy5;

2.3. Area

There are many possible choices for representing the area design metric. A
VLSI designer usually needs to generate a layout to fit within a given space in an
existing design. Alternatively the aspect ratio (ratio of height to width) of a circuit
must be maintained so that it can be placed in a realistic package. Therefore, an
appropriate area metric for an optimization program should include cell height and
width.

2.3. Area 16

N
N 1
[

lgA—]

AT

N-type
X
L] {] {]
[] [] []
{] [] L]
[1 { L]
P-type
Transistor width 3 (min) 10 (w=wf rce) 20 A
Total Transistor Area 12 40 80 7\.2
Total Cell Area 896 896 1176 A2

Figure 2.3. Layout effects of free transistor width. The effect of transistor widths on total cell
height and width are illustrated by layout fragments of a static CMOS standard-cell invert-
er. The layout on the left contains transistors of minimum width (3 A, 2.1um). As long as
the transistor width falls below the free limit, the layout area will not change (center layout
fragment). The layout on the right illustrates the additional cell area required if the transis-
tors increase well above their free limit.

Most transistor sizing tools (e.g.: [Shyu88b], MOST, TILOS, TV/AI, XTRAS)
do not model the total cell height and width. Instead, they use total active transis-
tor area, which is actually a component of dynamic power rather than a measure of
total cell area. The chapter on optimization techniques will show the difference in
area, delay, and power resulting from a change in the objective function. Typically
this can be as much as 32% for even the simple eight inverter chain.

Another consequence of choosing a realistic area metric is that there is no
longer any need to artificially constrain the maximum size on every transistor as in
AESOP. Instead, transistors take on the appropriate size necessary to meet the
design constraints.

Cell height and width are not determined simply by transistor and routing
dimensions alone. The overlap between routing area and total transistor area,
significantly impacts the overall area and performance. Therefore, an important ele-
ment in characterizing layout is how well the area under the routing channel is util-
ized before the overall dimensions must change. This factor is identified by the
free transistor width, the width that a transistor can grow without affecting the area
of the cell. If a transistor width falls within the minimum and free width, then the

2.3. Area 17

overall cell width will not change. The free transistor width is determined by local
routing and connections.

In a structured design environment such as standard cells, if one transistor has
exceeded its free width, then all transistors in the same row (a track) also benefit
from the additional width. This simple factor can rapidly relate transistor size
changes to cell height and width changes. EPOXY considers splitting of large
transistors into smaller ones [Hill87] in the restructuring section, since width/height
tradeoffs are best made once these large transistors are identified by transistor siz-
ing. Figure 2.3 illustrates the effects of free transistor width on overall cell area.

T hp, channel lv car l‘)’ln
52] 4
= TENT T _ T T B
K* ST H H M NG At
sum LX-
2 A
‘ & | &
‘-—

h
carr
n, channel Yout

Figure 2.4. Free transistor widths for a CMOS adder. The rows of p- and n- type transistors
are highlighted in the standard-cell CMOS layout for a static full adder. The inputs to this
full adder are A, B, and carry, ; the outputs are sum and carry_ . The free width for each
transistor is described by the lighter shading around the transistor. If any transistor exceeds
its free width, the track must be enlarged to accommodate it.

Given a circuit architectural style, total height and width can be used as the
area metric rather than the simple sum of transistor area. The virtual grid area
model takes into account routing effects on each transistor by determining its free
transistor width. Since typical standard-cell layout styles employ columns of n- and
p-channel transistors, the formulation of the area equations is straightforward. Fig-
ure 2.4 illustrates a standard-cell implementation of a static CMOS full adder. The
format of the area equations for a standard-cell layout are listed below. The last
constraint shows that the sizing of power busses to provide sufficient current can be
incorporated into this model.

area = height width,

2.3. Area 18

width = MaAX Wepannels » Wehannel = Winterconnect +Zlfet;

height = thhannels; hchannel = hrou:ing,charmel +hn,channel +hp,channe1;
Piype , channel 2 Wiet ~Wree,fers Mrype, channet 2 0

htype,channel 2 hpawer buss , channel ~ hpower buss , min>

COP [Marp87] estimates total area for standard cells by adding the widths of
the maximum p- and n- channel transistors to the height of the routing channel.
While this is a measure of total cell area, it fails to consider the space available to
larger transistors under the particular routing channel.

The area model based on free transistor width is general enough to accurately
model other layout styles. In essence, this approach results in a virtual grid expan-
sion technique for detailed layout. First, free widths are identified for each transis-
tor. Next, transistors are grouped into tracks (virtual grid lines). When a transistor
exceeds its free width, the layout is expanded along the track line (the virtual grid
line is moved). Transistors that share a track must have the same orientation and
contain layout (routing) which can be expanded perpendicular to the track.

And plane Or plane

E*]E*]PD i !
1 RES R W —|
=N O e P

T
== bk

Input buffers Output buffers

minimum width —E-:] $ fet length

>
fet width free width

Figure 2.5. Virtual grid model for a generic PLA. Transistors and their free widths are
identified in a PLA. If a transistor exceeds its free width, the design is widened along the
corresponding dashed track line in the direction of the arrow. All transistors that share the
track (virtual grid line) have additional space in which to expand. The pull-up (PU) transis-
tors and the pull-down (PD) transistors of dynamic designs may be omitted in static PL.A’s.

2.3. Area 19

PLATO [Marp86] accurately models the height and width of PLAs. Similarly,
EPOXY’s general virtual grid based area model also accurately models the height
and width of PLAs, as Figure 2.5 illustrates. Changes in width of a transistor are
reflected in the overall PLA area if the transistor dominates its virtual grid track.
Unlike standard cells, the virtual grid lines for PLA’s will intersect, since transistors
assume different orientations. Once the virtual grid lines are place, the computation
of overall PLA area is similar to that for standard cells. The only difference is
that transistor widths may effect the PLA cell height and width. PLATO also con-
siders snaking of transistors in the AND and OR planes. The free widths for
transistors and track information can be provided by the PLA template as in MPLA
[Scot85].

2.4. Noise Margins

Digital circuits require immunity from noise in order to produce logic results.
Noise margins specify the allowable noise voltage on the input so that acceptable
logic voltage values appear on all outputs. The noise margin for a gate is directly
related the ratio of the pull up resistance to the pull down resistance [West85].
Since changes in transistor size effect this ratio, a designer may wish to restrict the .
ratio to assure an acceptable noise margin. CMOS circuits are less sensitive to
variations in this ratio than are nMOS circuits.

Rpull up

NM,,;, < < NM s

Rpull down

2.5. Conclusions

This chapter outlines models for determining total cell area, height, width,
maximum power dissipation and worst-case delay. These models are represented by
a set of equations so that they can be easily substituted in order to evaluate their
effect on the optimized results. EPOXY currently represents these models by creat-
ing equations using the following templates:

Distributed linear RC delay model:

R =K lfer . Cgate,fet = thype Wiet Ifet;
type,fer = BTtype | 71 C = Ksd .
fet sd,fet = BSGrype Wer s
Cnode = LCparasitic + Z Cgaxe, Jet + 2 Csd JJet>
attachedfets attachedfets
delay () = Z Rfetcnode;

paths
Youtput node = MAX(Einpur node + delay ()
Maximum dynamic power:

Cdriven = 2 Cnode ;
internainodes

- 2 .
POWerdynamic = Cariven Vida frequency yay;

2.5. Conclusions 20

Total area, cell height and width depend on the transistor orientations:
area = height width;
width = Max W pannels ; Wehannel = Winterconnect +Zlfet;
height = 3 hchannels hehannel = Prouting, channel + Pn, channet + By channets
Piype, channel 2 Wit ~Wee fers Piype, channet 2 0;

This chapter considers and analyzes several alternative models for representing
the design metrics. The key concepts from this chapter are:

1. Accurate timing models are crucial in performance optimization, since a
small error in meeting a time constraint (16%) can typically result in much
larger area (100% more area) and power dissipation (50%) than necessary.

2. The sum of transistor areas is not an appropriate measure of total cell area.
Rather it is a component of dynamic power. The optimization of an
eight-stage inverter chain shows that the minimum power implementation is
32% larger than the one for minimum area for a 10ns time constraint.

3. A virtual grid area model accurately represents the cell height, width and
area by considering the detailed routing using free transistor width. Two
examples demonstrate how the equations are easily derived from standard
cell and PLA layouts.

4. The optimization problem is uniformly formulated using equations. The
flexibility of EPOXY is demonstrated by allowing the user to specify an
objective function and performance constraints so that the user can pursue
a layout with the desired performance tradeoffs. From this information, a
performance envelope that describes the full range of performance imple-
mentations of interest can be derived.

21

3. Optimization and Heuristic Techniques

Systems that improve a design’s performance primarily rely on either
optimization-based or heuristic techniques. Optimization-based algorithms make use
of gradient information (partial derivatives) to indicate specific changes in the input
parameters that lead to better values for the objective function. However, the con-
straint equations limit the changes in the input parameters so that the constraints are
satisfied. On the other hand, heuristic techniques are based on designer experience
that certain changes usually improve the design.

Ideally, a user could select the most appropriate heuristic or optimization tech-
nique for a design problem based on extensive analysis. However, most transistor
sizing programs tightly couple an electrical model with a fixed optimization algo-
rithm to improve the overall execution speed. By representing the performance by
a set of equations, EPOXY allows electrical models and optimization techniques to
be substituted, yet retains the rapid execution comparable to integrated systems.
Chapter 5 explains the advantages of the equation representation within EPOXY.
This chapter describes and compares the results of a few optimization and heuristic
techniques.

The performance design problem can be formulated as a classical optimization
program:
min f{x) subject to g(x) <0

The objective function, f(x), defines the quality of a configuration represented
by the independent vector of variables, x. For transistor sizing problems, a design
is specified by the assigned transistors widths, x. The VLSI design quality is usu-
ally described by the area, delay, or power consumed by the circuit. The constraint
functions, g(x), define requirements on the input variables such as minimum transis-
tor width, overall maximum cell height and width, maximum dynamic power and
delay constraints.

When the design problem is cast as a non-linear program, the performance
models provide the equations and constraints that determine the overall design
metrics. EPOXY automatically generates these core set of equations from the cir-
cuit layout. The non-linear program is complete when the user defines an objective
function and performance constraints.

The task of an optimization routine is to determine the best feasible implemen-
tation, as described by an objective function, that meets all of the performance con-
straints. The performance optimization problem involves non-linear equations, since
delay is a non-linear function of transistor width (a total cell area metric) even for
a simple lumped RC electrical model. This non-linear relationship will appear in at
least one of the constraint equations. In general, non-linear programs (NLP) are
difficult to solve because of many potential local minima.

To simplify the design rules, lambda-based designs [Mead80] restrict transistor
sizes to integer multiples of lambda. However, this arbitrary limitation results in an
integer non-linear program that is much more difficult to solve than the original
NLP. Therefore, as in most transistor sizing programs, the transistors widths are
not restricted to integer multiples of lambda. A user can appropriately round the

[

3. Optimization and Heuristic Techniques 22

transistor widths to achieve the desired integer values. Although an integer-valued
optimization cannot be solved by rounding the corresponding real-valued solution, a
design with performance similar to the real-valued solution can be produced by
rounding the transistor sizes.

The following subsection will describe the design space for a CMOS example
to illustrate the performance tradeoffs. Next, the augmented Lagrangian optimiza-
tion technique and several heuristics will be discussed. The augmented Lagrangian
algorithm has been implemented within EPOXY since it represents one of the clas-
sic optimization techniques whose convergence rate to a local optimum can be
derived. The TILOS-style heuristic will be examined in greater detail since it
rapidly sizes transistors subject to timing constraints. Then the results of several
optimization problems are compared using the augmented Lagrangian optimization
technique and TILOS-style heuristic.

3.1. Performance Envelope

Since a VLSI designer is interested in balancing several performance metrics,
the non-linear program results in a multi-dimensional problem. Unfortunately, it is
difficult to visualize multi-dimensional graphs or to extract numerical information
from them. Therefore, projections of the multi-dimensional boundary onto area-
delay and power-delay graphs bound the region within which lay all designs of
interest. This region, which we call the performance envelope, is illustrated in Fig-
ure 3.1 for a standard-cell layout of an eight-stage CMOS inverter chain. These
curves were generated by substituting a variety of objective functions and con-
straints within EPOXY.

The graph on the left of Figure 3.1 shows the area required to implement a
standard-cell static CMOS eight inverter chain to meet a given time constraint. The
X on the upper left part of the graph marks the performance of the fastest
(minimum time) implementation regardless of power consumption and area. The
lower right X indicates the performance of the implementation with minimum dev-
ice sizes. This configuration needs the smallest area and power. Since the transis-
tor widths can assume any non-integer value, these two points are connected by
continuous curves that give the minimum area and minimum dynamic power imple-
mentations for a given time constraint. For the area versus time graph, there exists
no circuit smaller than the minimum area implementation that meets the time con-
straint (the region below the minimum area curve). Circuits that draw more than
the minimum power implementation would not be of interest (the region above the
minimum power curve). Therefore, the only circuits of interest lie between the two
curves as illustrated by the shaded region. The maximum dynamic power versus
time graph describes a similar situation. Circuits between the two curves represent
a tradeoff between the requirements of area, power, and time.

These graphs clearly show the effects of the more accurate area model. As
the circuit delay decreases, the required area does not change above the minimum
size implementation (the flat portion of the area versus time graph for the minimum
area configurations) until at least one transistor exceeds its free width. At this

3.1. Performance Envelope 23

- min time 40 min time
154 .
Area : 307 min area S.t. time < Time
10: _ Power 7
(k}‘z) i min power S.t. time < Time = o >
5_‘ | @W) miq:pq;rwer 8.t time < Time
- ! X 10— |
i : min grea s.L. time < Time] :
- |] :
O lIIIlllilillll'llilllillllllll Oﬂ'mﬁfm‘rmm
0 5 10 30 0 5 10 30

Time (o) Time (os)

Figure 3.1. Typical performance envelope. These graphs illustrate the area required (left
graph) and dynamic power required (right graph) to implement the minimum dynamic
power (min power) and minimum area (min area) configurations of an eight-stage static
CMOS inverter chain to achieve a specific delay (Time). Only the region between these
curves represents the designs of interest to a VLSI designer. The dashed line highlights the
range of performance for designs that operate at 10ns. The dotted line indicates the fastest
design that still requires the smallest cell area. The output has an additional 1 pf capaci-
tance load.

point (as highlighted by the dotted line at 11.8ns), the other transistors in the circuit
can assume sizes that still meet the required response time, but which draw less
power. Therefore, the curve for the power required by the minimum area imple-
mentations changes slope on the power versus time graph at 11.8ns. Thereafter,
additional area is required for circuits with less delay.

Minimum Constraint A2rea) Power
A (um%) | uW

power time < 10ns | 6188. 3032. | 21.22

area time < 10ns | 4677. 2292 23.48

Table 3.1. Comparison of an area and power optimization. This table gives the area and
maximum dynamic power required (column headers) to implement the minimum area and
minimum power configurations (row headers) of an eight inverter chain. Both optimiza-
tions are subject to a 10ns response time constraint. Figure 3.2 illustrates the layout for
these two designs.

Table 3.1 contains data extracted from the graphs of Figure 3.1. For a 10ns
implementation (as marked by the dashed line in Figure 3.1), the minimum power
implementation is 32% larger than the minimum area implementation. Total
transistor area is closely related to the maximum dynamic power. Therefore if one
uses total transistor area (a power metric) to approximate total cell area, the result-
ing solution may be as much as 32% larger than necessary since the minimum

3.1. Performance Envelope 24

power implementation is 32.3% larger than the minimum area design.

min area min power

Figure 3.2. Layouts for an eight stage inverter chain. This figure illustrates the standard-cell
layouts for an eight-stage static CMOS inverter chain. The left design requires the
minimum cell area to meet a 10ns delay constraint while the right design requires the least
dynamic power to meet this delay constraint. The input is applied at the bottom of each
design at the node marked in. A 10pf load is added to the output node at the top of each
design marked out.

Figure 3.2 contains the layouts for the minimum area and minimum power
implementations subject to the 10ns delay constraint. The eight stage inverter takes
its input at the bottom at the node marked in and produces the output at the top as
marked by the node out. The first stage is fixed to minimum sized devices so that
the loading on the previous stage is constant. The remaining transistors are sized
appropriately. Note that the overall cell width for the minimum power implementa-
tion is larger than the minimum area design since the minimum power configuration
uses larger transistors in the last stages located at the top of the layout. However,
the minimum area design uses larger transistors in the middle of the design than
the minimum power implementation.

3.1. Performance Envelope 25

Graphs of the performance envelope were generated by varying the constraint
values and then solving the optimization problem. However, only a small portion
of the graph is of interest to VLSI designers. Typically, designers must balance the
area and power requirements for a given operating speed. This involves solving a
minimum power and a minimum area constraint problem to determine the max-
imum performance limits. Then a designer can formulate an appropriate objective
function that encodes the tradeoff among the performance metrics. EPOXY facili-
tates this process of exploration that is crucial to a designer in understanding the
incremental tradeoffs on each design constraint so that an appropriate objective
function can be developed and, in turn, a good implementation realized.

EPOXY’s flexible architecture allows a comparison of different optimization
techniques, independent of performance models. An augmented Lagrangian algo-
rithm similar the one used in COP [Marp87] and a TILOS-style heuristic technique
were implemented within EPOXY. These represent different approaches to solving
the NLP. The augmented Lagrangian algorithm is based on classic optimization
techniques with known convergence properties. However, the TILOS-style heuristic
converges rapidly for many typical VLSI design problems. These two techniques
will be described and compared in the following subsections. The next subsection
examines two step size techniques that have a significant influence on the overall
execution speed of the augmented Lagrangian algorithm.

3.2. Step Size Algorithms

The basic format of many optimization-based algorithms involves determining
a suitable search direction vector and then computing an appropriate step length.
The partial derivative information is used to calculate the search direction. Then
the input vector is updated by traversing this search direction vector by an amount
as indicated by the step length. Therefore, the step length calculation plays a
significant role in the running time of most optimization-based techniques.

For a minimization problem, the step length minimizes the function value
along the search direction. COP [Marp87] uses the Golden section method to com-
pute the step length for the augmented Lagrangian method. The Golden section
method derives its name from the Golden ratio known to the early Greeks for solv-
ing a classical problem of dividing line segments or rectangles in a particular way:

= _«13_2—_1_ = 0.6180339887

The Golden section method can be used to find the minimum of a unimodal
function as shown in Figure 3.3. A unimodal function has only one local
minimum over the interval of interest [L, R]. The method begins by determining
two points, / and A, within the interval. The search interval is then restricted to the
point whose functional value is largest. Only one functional evaluation is required
at each iteration. In the example of Figure 3.3, the point r’ is set to the value of
the previous /. The next iteration must only evaluate the function at the new [’
point. The following pseudo code in Figure 3.4 describes the basic steps in the
Golden section method.

3.2. Step Size Algorithms 26

|] | | next iteration
L’ !’ r’ R’

Figure 3.3. Example of the Golden section method. This figure illustrates how the Golden
section method subdivides an interval, [L, R], to located the minimum of a function. Since
the functional value at [is lower than at r,-the search interval is restricted to [L, r]. This
process continues until the interval is less than the prescribed tolerance.

golden_section (L, R) {
| =0.381966"L + 0.618034*R; fl = £(1);
r=0.618034"L + 0.381966"R; fr=1(r);
while (R-L >= error) {
if (fl <=fr) {
R=r; r=l; ff=rl;
| =0.381966"L + 0.618034*R; fi = f(});
step = |;
} else {
L=l; l=r; d=rf;
r=0.618034"L + 0.381966"R; fr ={(r);
step=r;
}
}
return (step);

}

Figure 34. Pseudo code for Golden section method. This figure shows the pseudo code for
implementing a Golden section minimization of a function, f(x). The Golden ratio is
represented by 0.618034 in this code. The 0.381966 figure is the square of the Golden ra-
tio. Note that the Golden ratio and its square total to 1.

Since the Golden section method subdivides the interval by a fixed factor, this
method converges linearly to the overall minimum of a unimodal function with a
convergence ratio equal to the Golden ratio [Luen84]. This techniques makes con-
stant but slow progress toward a minimum value because of the large number of
functional evaluations. The Golden section method is also quite robust. However,
it does not take advantage of any smoothness that a function may possess to

3.2. Step Size Algorithms 27

improve the rate of convergence.

Another step size technique based on the Armijo rule only requires one gra-
dient evaluation. The following equation describes the computation to determine
the step size, ©.

o= =argr;1ea,3c{ﬁ" l f(x)—f(x—B"Vf(x))Z—B"aIIVf(x)llz}

range of acceptable stepsizes
—Bral Vf @)1
F &) - f & =B Vf ()
—I1Vf &)1

Figure 3.5. Example of the Armijo method. This figure illustrates how the Armijo method
selects the appropriate step size. The function describing the left hand side (lhs) of the Ar-
mijo inequality is graphed against various step sizes 6 =[¥. Starting with k=0 (B%, suc-
cessively larger integer values of k (Bk) are evaluated until the function value falls below
—Bkall Vf(x) |2 as the dashed line illustrates. The derivative of the lhs function is
evaluated at a step size of 0 as indicated by the lower dashed line. Since all of the lhs
values lay above this line, a value of & that satisfies the Armijo inequality must exist.

The process by which the step size, o, is determined is shown in Figure 3.5.
The method initially starts with a step size of 1 (k=0) and continues with succes-
sively larger integer & values until the inequality is satisfied. For subsequent
evaluations, the previous value of k is retained as a starting point. If the this value
does not satisfy the constraints, k& is updated as usual. However, if k& all ready
satisfys the constraints, k is decremented. Usually o is chosen close to zero, for
example, 0.3. The scalar B is usually chosen from .5 to 0.1 depending on the qual-
ity of the initial step size. For example, Figure 3.5 illustrates the acceptable range
of step sizes. The Armijo method will select B! as the first value that satisfies the
inequality. An implementation of the Armijo method is described in Figure 3.6.

3.2. Step Size Algorithms 28

int k=0; /* Initial starting point, first time through.*/
double b=1.0,beta=0.5 /" b=betak*/
double alpha = 0.3;

armijo (x) {
df = derivative(x);
obj _base =try_step (0.0); /*f(x)*/

rhs = -1.0 " alpha * b * norm(df);
lhs = try_step (b) - obj_base; I* f(x — b*df) — f(x)*/

if (Ihs > rhs) {
while (ths > rhs) { " While not satisfied, increase k */
k++; b *= beta; rsh *= beta;
ths = try_step (b) — obj_base;
}

} else {
while ((Ihs <= rhs) && (k >= 0)) {/* While sat., decrease k */
k—; b /= beta; rhs /= beta;
Ihs = try_step (b) - obj_base;
}

k++; /* Keep the last valid stepsize.*/
b *= beta;
}

return (b);

}

Figure 3.6. Pseudo code for the Armijo method. This figure describes one possible implemen-
tation of the Armijo step size algorithm. Several of the variables in this example are vec-
tors: e.g., X, df. Therefore, the try_step() subroutine performs the vector calculation neces-
sary to evaluate the objective function at the new X value. Since only successive powers of
beta are required, the intermediate variable b is updated. The actual code restores the up-
dated b value when k=0 or k=1 to avoid excessive round-off errors.

The Armijo method performs an inexact line search since it restricts its step
size to discrete values. However, when combined with a minimization routine, the
Armijo method typically minimizes a function faster than the Golden section
method. The Armijo method converges faster than linear (superlinearly) with a
convergence ratio of f3:

2
[M -—m} <B
M+m
where M and m are the largest and smallest eigenvalues of the Hessian, respec-

tively [Bert82]. The following example illustrates the advantages of the Armijo
method.

3.2. Step Size Algorithms 29

2000

0.7
1000 -

f(x)

-5.33
-1000

-2000
838

-3000

I ¥ Ll 1 1

-10 -5 0 5 10 15
X

Figure 3.7. Example function for testing step size techniques. The example function,

f &) =(x+7)(x+3)(x —4)(x —11) contains a global minimum at x = 8.38 and a local mini-
ma at x =-5.33. The extreme points are labeled on the graph.

Figure 3.7 describes a function with two minima, a global minimum at
x=8.38 and a local minima at x=-5.33. The following paragraphs will compare
the performance of each step size algorithm for the steepest descent algorithm. The
method of steepest descent is one of the oldest and most widely known techniques
for minimizing a function of several variables. The following equations describe
the method of steepest descent in mathematical terms [Luen84].

mxi.nf(X): d(xk) = Vf(xk)T Xl = X — Gk d(xk)

The minimization of a function, f (x), with continuous first partial derivatives
is performed by iteratively updating x until the magnitude of search direction,
d(x;), is nearly zero. The step length, ©;, is the nonnegative scalar minimizing
f&x; —06,d(xy)). In other words, from the point x;, the step size algorithm
searches along the direction of the negative gradient —d(x;) to a minimum point on
this line; the minimum point is taken to be x,.;. Since the example function has
only one input variable, the search direction is simply the negative of the derivative
of the function. Figure 3.8 describes the pseudo code for the steepest descent algo-
rithm for minimizing the example function.

When each of the step size techniques were substituted, this program produced
the information in Table 3.2. Since the function contains two minima, two final x

3.2. Step Size Algorithms 30

steepest_descent (x) {
max_direction_error = 0.025;

direction = — derivative();
/* While we're not close to a local minima */
while (fabs{d) > max_direction_error) {
stepsize = linesearch(x, direction);
X = X + Stepsize * d;
direction = — derivative();

}

return {(x);

}

function () {
function_evaluations ++;
return ((x+7.0)*(x+3.0)"(x—4.0)*(x=11.0));

}

derivative () {

derivative_evaluations ++;

return (4.0"x*x*x = 15.0"x*x — 170.0*x + 125.0);
}

Figure 3.8. Pseudo code for a steepest descent algorithm. This pseudo code executes a
steepest descent minimization of the function f (x) = (x+7)(x+3)(x —4)(x—-11). The
number of function and derivative evaluation are recorded to compare various step size
techniques as implemented by the linesearch function.

values may be produced depending on the starting point and the accuracy of the
intermediate step sizes. When the Golden section and Armijo routines produce
similar final x values, the number of function and derivative evaluations are aver-
aged as listed in Table 3.2. The Armijo method requires less than half the number
of function calls than the Golden section technique. Even though the Armijo rou-
tine requires a slightly large number of derivative evaluations, the large savings in
function evaluations far outweighs these additional derivative calculations.

3.2. Step Size Algorithms 31

Golden section Armijo
starting final func. deriv. final func. deriv.
X X calls eval. X calls eval.
-10.00 | -5.32784 52 5 -5.32781 38 10
-9.00 837772 91 8 -5.32781 38 10
-8.00 | -5.32787 39 4 -5.32789 33 9
-7.00 837772 78 7 -5.32782 33
-6.00 | -5.32784 52 5 -5.32782 33 9
-5.00 | -5.32784 39 4 -5.32789 28 8
—4.00 8.37769 52 5 -5.32778 28 8
-3.00 837768 78 7 -5.32781 35 10
-2.00 | -5.32784 52 5 -5.32789 30 9
-1.00 837774 78 7 -5.32788 24 7
0.00 | -5.32784 39 4 -5.32787 33 10
1.00 837771 65 6 8.37771 28 8
2.00 837775 65 6 8.37768 25 7
3.00 | -5.32785 52 5 8.37768 22 6
4.00 837775 52 5 8.37769 25 7
5.00 | -5.32786 65 6 837772 28 8
6.00 837770 78 7 837770 25 7
7.00 837772 78 7 837777 25 7
800 | -5.32784 52 5 837771 26 7
9.00 837772 78 7 837777 23 6
10.00 | -5.32784¢ 52 5 8.37769 26 7
11.00 | -5.32783 65 6 8.37777 30 8
12.00 837772 65 6 837775 28 7
13.00 | -5.32784 78 7 837777 28 7
14.00 837776 91 8 837771 25 6
Average 60.4 5.6 28.5 7.9

Table 3.2. Golden section and Armijo step size routines. The performance of the Golden sec-
tion and Armijo step size routines are compared for the steepest descent minimization of
fx)=(x+T)(x+3)(x—4)(x—11). Since this function has two minima, two possible final
x values are produced when starting from any x value. The number of function and deriva-
tive evaluations are given when each of the step size routines were substituted. The last en-
try in the table provides the average number of function and derivative evaluations when
both step size routines produce the same approximate final value for x.

3.2. Step Size Algorithms 32

3.3. Augmented Lagrangian Method

Augmented Lagrangian methods convert a constrained minimization problem
into an unconstrained sub-problem [Gill81]. The augmented Lagrangian algorithm
handles non-linear inequality constraints by smoothing the discontinuous derivatives
through the function, L, (x,A,p). The following equations describe the augmented
Lagrangian algorithm as implemented within EPOXY:

min f (x) subject to g;(x)<0 = max min L, (x,A,p)
X

2
li&'(ﬂ*'&zsx-)—, if A; + pg;(x)>0;

LA(x,l,P)‘—'f(x)"'Z* 22
- E, if)’i + pgl(x)SO;
2g—j(icl[k+pg'(x)] if A; +pg;(x)>0;
djz—am+z axj (SRR -1 > (. i ’
o ‘ 0, if A; +pg;(x)<0;

k+1 _ _k _ .
xjiT = xj O'dj,

A +pgix), f A+ pg;(x)>0;

)\,-H'l =
g O: 1f7\.,v+pgl(x)50;

Note that the function, L,(x,A,p), and its gradient (as represented by the
search direction, d;), are continuous at any point where a constraint changes from
active (A; + pg;(x)>0) to inactive (A; + pg;(x)<0). The computation of the
search direction involves evaluating the partial derivative equations. A matrix of
these partial derivatives is called a Jacobian matrix. Associated with each con-
straint equation, g;(x), is an extended Lagrangian multiplier, A;. The parameter p
is a penalty factor.

The inner loop, the minimization of L, (x,A,p) with respect to x, is performed
by an iterative line search that follows the steepest descent direction, d;. PLATO
[Marp86b], a PLA transistor sizing program, and COP [Marp86a][Marp87], a
CMOS standard-cell transistor sizing tool, employ an Golden section line search.
However, the Armijo-based line search [Luen84] provides a better convergence rate
than the Golden section method as described in the previous subsection. EPOXY
provides both of these methods. The input vector, x is updated after each minimi-
zation iteration, k.

3.3. Augmented Lagrangian Method 33

As in PLATO and COP, if the search direction, d;, is too small (nearly a zero
vector) or the traversal in the search direction, o, is too small, an outer iteration,
the maximization of L, (x,A,p), is performed by updating A (iteration count v). If
the rate at which the constraints become satisfied is too slow, the penalty factor, p,
is slightly increased. Similarly, if the average value of A is growing too quickly, p,
is slightly decreased.

The augmented Lagrangian method converges reasonably fast (linearly) to an
optimum solution (if one exists) [Marp86a]. As with all optimization-based algo-
rithms, its primary advantage is that progress toward an optimum solution can be
guaranteed regardless of the initial solution. Although there are newer
optimization-based algorithms that may converge faster such as recursive quadratic
programming and method of feasible directions [Shyu88a] [Shyu88b], these tech-
niques should be examined in context of VLSI design problems to evaluate their
effectiveness.

3.4. Heuristic Improvement Techniques

The minimization problem can be solved by another class of techniques called
heuristics. Heuristics encode design expertise for specific optimization problems.
For example, ““‘if a transistor exceeds its free width, then split the largest transistor
into two smaller ones to reduce the overall cell area.”” Convergence to an optimal
solution cannot be assured; however, they provide rapid improvement toward a
potentially better implementation. Therefore, heuristics can be used to rapidly
locate a feasible solution. Since heuristics are generally problem specific, the types
of objective functions permitted would also be restricted.

Many of the heuristics are based on critical delay path information. A critical
delay path is the series of nodes and transistors along the slowest path or paths
through the circuit. These are the only transistors that may improve the slowest
path. Therefore, many of the heuristics that improve the delay of the circuit con-
centrate on the transistors and nodes along critical delay path.

A description of several performance improvement heuristics used in other sys-
tems are listed in Table 3.3. These techniques usually help meet difficult timing
constraints by reducing the delay through a circuit.

ANDY improves the delay of a circuit in two passes. The first pass assigns
transistor sizes using a ramped driver heuristic. This heuristic is based on the
results of designing drivers for large loads. There is an optimal scale by which
each stage is larger than the previous one to produce the fastest driver. A gate can
be sized only when its load, including the inputs of other gates, is known. There-
fore, the output gate is sized first since its output load is fixed. The remaining
gates are sized from the outputs to the inputs. ANDY’s second pass reduces the
power of the circuit while maintain its speed by resizing the gates that do not lie
on the worst critical delay paths. The gates are slowed by reducing the transistor
widths which also reduces the power consumption for the gate. ANDY runs quite
fast since it uses a simple gate level model; however, it produces sub-optimal
results since the derivation of the optimal scale factor cannot take into account

3.4. Heuristic Improvement Techniques 34

System Heuristic
ANDY Logic stages are resized using the optimal fanout factor for the given
[Trim83] output capacitance (ramped driver heuristic).
After resizing logic stages, power is minimized by slowing (resizing
gates) on non-critical paths.
[Glas84] Buffers can be inserted to make the fanout factor as close to optimal as
(proposed) | possible.
Duplicate buffer stages could be introduced to reduce fanout.
MOST Increase the transistor width by one which contributes most to the de-
[Pinc86] lay.
Identify the transistor width that is most beneficial to the critical delay
path. Increase this transistor width by a varying amount.
Resize one entire critical path using partial derivative information.
TILOS Increase the transistor width that causes the greatest timing improve-
[Fish85] ment (along one of the critical delay paths) with the least impact on the
total active area.
XTRAS Increase the logic gate size (a gate-level delay model) in one micron in-
[Kao85] crements that causes the greatest timing improvement along a critical
path with the least impact on the total active area.

Table 3.3. Summary of heuristics used by several systems. This table describes the heuristics
used by several optimization systems to improve the performance of MOS circuits.

significant fanout capacitances that are highly problem dependent. Nemes
[Neme84] describes two additional effects that influence the optimal scale factor:
nonzero delay of an unloaded inverter and the difference between propagation delay
time and rise time.

Glasser and Hoyte [Glas@4] propose two techniques for reducing the critical
path delay. The first inserts one or more buffer stages between large capacitance
nodes and its driver. This approach is based on the observation that there is an
optimal number of buffer stages to drive a given load capacitance. The other tech-
nique is to decouple the loads on a node by replicating the driver. Since both of
these techniques involve a modification of the circuit structure, their usefulness will
be evaluated in the next chapter.

Pincus [Pinc86] considers and evaluates several transistor sizing strategies for
minimizing the circuit delay. One technique is to increase the transistor width by
one that contributes most the critical path delay. This approach is similar to
TILOS [Fish85]. Another variation of this technique is to change the transistor by
a varying amount. However, this technique usually produces larger transistors than
necessary since the proper size for a transistor cannot be determined before the sur-
rounding transistors reach their final size. MOST also considers sizing the transis-
tors on an entire critical path using partial derivative information. Again, the addi-
tional computation expense for setting the transistors on a particular critical path is
only effective if there are few competing critical paths. A simulated annealing
approach required a much larger execution time than the other heuristics to achieve

3.4. Heunistic Improvement Techniques 35

a similar circuit delay reduction.

XTRAS [Kao85] uses a gate-level delay model to determine the circuit delays.
A logic gate that contributes the most to the total circuit delay/area will be
increased by one micron. This approach is essentially a gate-level version of the
TILOS heuristic. The next section will describe and evaluate the TILOS heuristic
for sizing transistors to reduce the overall circuit delay.

3.5. TILOS Heuristic

TILOS [Fish85] implements one of the more popular heuristics for improving
the delay of a circuit. This transistor sizing program iteratively increases a transis-
tor width along the worst critical delay path. TILOS selects a transistor that can
most significantly reduce the delay while incurring the least total transistor area
increase. The process terminates when all delay constraints are satisfied or when
no transistor exists that will decrease the delay. Since the sum of transistor areas
is a component of total power, TILOS essentially minimizes power subject to delay
constraints.

The advantage of the TILOS heuristic over the others is that it rapidly
improves the circuit response time by increasing transistor widths by a multiplica-
tive factor (TILOS’s bumpsize). A small fixed change in a transistor width has a
large impact on response time when the transistor size is small. This is because
the change is a larger proportion of the small transistor width. TILOS avoids mak-
ing small incremental changes to large transistors since a small change in a large
transistor has little effect on the overall response time. Therefore, TILOS improves
the overall delay faster by only making changes that have a large impact on the
total cell delay.

EPOXY extends the TILOS heuristic for use in other optimization problems by
generalizing the notion of critical paths in terms of the underlying performance
equations. A set of dependent limiting or failing constraints (g;(x)20.0) and the
equations that interrelate them, will be considered a critical path within the general-
ized TILOS-style heuristic. Only the input variables to these critical equations can
improve the failing constraints. Therefore, while there are failing constraints, the
worst failing constraint is identified. The input variable that improves this worst
failing constraint the most will be increased. After all constraints are satisfied, the
input variable that best improves the objective function while maintaining feasibility
(satisfied constraints), will then be increased.

TILOS relies on the general convex nature of the power/delay relationship.
However, the point at which other paths become critical causes discontinuities that
degrade the results TILOS can produce. One way to overcome this problem is to
factor near-critical paths into the sensitivity calculations. For the equation abstrac-
tion, this simply means combining the partial derivatives for the output variable that
are within some € (e.g. g;(x) + € 2 0).

Since TILOS only increases transistor sizes by a fixed multiple, it usually
overshoots the minimum possible implementation. If the algorithm were general-
ized so that decreasing transistors sizes were considered to improve the overall

3.5. TILOS Heuristic 36

power/delay savings, better solutions should result. However, endless cycling
between increasing and decreasing transistors may result. Unlike optimization-based
algorithms which separately determine the appropriate step size, TILOS uses a fixed
small factor with usually requires more iterations to complete. Even though TILOS
requires more iterations than optimization-based algorithms, the step size computa-
tion for optimization-based techniques is significant. The overall running time for
TILOS is usually less than those for optimization-based algorithms as demonstrated
in the next subsection.

3.6. Comparison of Solution Quality and Running Times

Since VLSI designers are interested in achieving quality results rapidly, the
augmented Lagrangian algorithm and TILOS-style heuristic are best compared by
the solutions produced and the running times required to optimize a few representa-
tive CMOS examples. EPOXY facilities a uniform comparison between optimiza-
tion techniques, since all optimization routines rely on the same evaluation subrou-
tines for the electrical and area models.

Circuit Optimization Performance
Metric Area Height Width Power Delay AL.CPU
Units/Improve | A2 % A % A % uyW % ns % min
inv.8 W=w__ 4,288 134 32.0 19.0 2982 0.00073
C=1pf |min{™" 11,709 173 134 874 173 324 70 6.46 -78 3.3
mina t<7ns | 8331 94 134 622 66 31.6 =77 700 -77 36
minp t<7ns |11,296 163 134 84.3 163 269 41 7.00 -77 4.3
rand20 |w=w_. 7,140 140 51 31.8 26.6 0.00081
C=1pf |{min¢™" 10,276 44 140 737 44 413 30 642 -76 69
mina t<7.11ns| 9,180 29 140 656 29 407 28 7.11 -73 5.51
minp t<7.1lns| 9,709 36 140 694 36 402 26 7.11 73 43
adder.inv.4 |w=w__ 35,378 266 133 108.3 63.6 0.0058
C=1pf |mint™" 40,290 13.9 302.9 139 133 134.5 24.2 17.87 -72 31.3
mina t<30ns (35,684 0.9 2683 09 133 1142 8 2979 -53 20.5
minp t<30ns 35982 17 270.6 1.7 133 1133 4.6 29.84 —53 18.6

Table 34. Results of several performance optimization problems. Results of optimizing
three static CMOS circuits using the augmented Lagrangian technique are given: an uncon-
strained minimization of delay (min t), and time constrained min. of area (min a s.t. t< ...)
and power (min p s.t. t<...). The first row, (w = wmm), gives the performance of the circuit
with all devices of minimum size. Performance is defined as the total cell area (A), height
(H), width (W), power (P), maximum delay (T) and the CPU time (CPU) that the augment-
ed Lagrangian algorithm took to produce the result. The percentage increase or decrease
over the minimum sized implementation for each of the design parameters are also listed.
Values in bold are minimum. An extra load capacitance is added to outputs (C = 1pf). A
maximum frequency of 500 kHz was used to calculate the maximum dynamic power (P)
for each of these examples.

Table 3.4 shows the significant performance improvement transistor sizing
offers. It also illustrates the minimum required sacrifice in the_ other design metrics
to achieve the desired performance. For example, 7,421A° additional area is

3.6. Comparison of Solution Quality and Running Times 37

required to achieve the fastest implementation, 6.46ns. This translates into a 173
percent increase in area and a 70 percent increase in power for a 78 percent
decrease in delay. Aggressive constraint times were chosen to force each design
into the region where the tradeoff between the design metrics is difficult. The run-
ning time increases with problem size, as the four stage adder illustrates. Although
the CPU running times for the adder appear to be quite large, they are comparable
with other transistor sizing programs [Mats86].

Next, a graphical comparison of results for the augmented Lagrangian algo-
rithm and the TILOS-style heuristic is given for minimizing the cell area subject to
timing constraints in Figure 3.9. Since TILOS strictly greedily increases transistor
sizes by a fixed amount, the implementations produced by a TILOS-style heuristic
require more power than those for the augmented Lagrangian algorithm. TILOS
produced larger transistors widths than the augmented Lagrangian method to achieve
some of the same delay times (designs running slower than 30ns). In addition, the
TILOS-style heuristic cannot reduce the delay less than 30ns.

- 140
40 X 40
. b ‘Power
39~] 130 1
Total 1 i (W) i
> : l{\ min p (A.L.) 120
Cell | A |
Area - -\:.\ 1142
i} N v 1101
03 e _
35 mlna(AL) rmna(TlLOS St}’le)
)) LR i) T L) T ¥ L] 1 lm T T 1 T T l; L Ll T LD
0 30 50 60 0 30 50 60
Delay (ns) Delay (ns)

Figure 3.9. Comparison of TILOS and augmented Lagrangian methods. These graphs illus-
trate the area and power required by the minimum area and power configurations for a
CMOS four-bit adder as produced by the augmented Lagrangian algorithm versus a
minimum area TILOS-style heuristic. The area requirements for both minimum area algo-
rithms are similar as shown by the superimposed lines on the left graph. However, the im-
plementations produced by the TILOS-style heuristic require more power (117 uW for
30ns) than produced by the augmented Lagrangian algorithm (114.2 uW for 30ns). Since
the TILOS-style heuristic can only increase transistor sizes, it cannot reduce the delay to
less than 30ns. (A fixed-sized inverter has been added to each input and a 1pf load has
been added to all outputs.)

A comparison of the convergence rates of these optimization techniques for a
particular delay constraint (30ns) for the CMOS four-bit full adder (adder.inv.4)
shows that the TILOS-style algorithm (for min area) met the constraint rapidly
(8.66 CPU min.), requires similar area (35,473 7»2), but more power (117 puWw).
When the results of the TILOS-style heuristic are used as a starting point for the

3.6. Comparison of Solution Quality and Running Times 38

augmented Lagrangian method, results comparable to the original augmented
Lagrangian method are eventually obtained (114.2 puW). For this example, the
combination of both algorithms achieved results of similar quality using fewer itera-
tions (total of 16.8 CPU min) than the augmented Lagrangian alone (20.5 CPU
min. from Table 3.4). However, using the generalized TILOS heuristic for estab-
lishing a initial solution rapidly may not be a good strategy for problems that are
very aggressive since the heuristic tends to over-shoot the optimum solution.

This demonstration illustrates that computation to achieve quality results can be
reduced further by using simple models and heuristics to locate the probable region
of the global minimum. Then accurate models further refine the search. Simple
models are rapidly evaluated and lead to a fast solution since these simple models
can eliminate many of the local minima. Accurate models take longer to evaluate
and represent a more complex design space that may exhibit many local minima.
This approach also avoids getting trapped in local minima early in the optimization.

3.7. Conclusions

A designer must understand the potential performance tradeoffs before an
objective function and constraints are formulated to describe the desired implemen-
tations. The performance envelope illustrates all the designs of interest. This
envelope defines the region of circuit performance available through transistor siz-
ing. Typically, a designer concentrates on the narrow portion between the
minimum area and minimum power configurations that satisfy the timing con-
straints.

VLSI designers are interested in producing layouts that meet the performance
goals rapidly. This chapter has compared the running times and solution quality for
the augmented Lagrangian algorithm and the TILOS-style heuristic on several
CMOS examples. The augmented Lagrangian algorithm was chosen as an example
optimization-based method, since it has been used in another transistor sizing pro-
gram, COP. The TILOS heuristic is one of the more popular transistor sizing tech-
niques despite its non-optimal results. The major conclusions of this comparison
are:

1. The augmented Lagrangian method is slow but produces designs with better
performance characteristics.

2. The TILOS-style heuristic is fast but misses better solutions.

3. When the TILOS-style heuristic provides the initial values to the aug-
mented Lagrangian method, the combined algorithm produces designs with
good performance faster.

The key to this uniform comparison was formulating the design problem as a
standard non-linear optimization problem. Optimization routines are easily substi-
tuted since they all use the same performance evaluation routines. The flexibility
of the approach is demonstrated by deriving performance envelopes which required
several different constraint values.

39

4. Performance-Based Circuit Modifications

Although transistor sizing can dramatically improve the overall circuit perfor-
mance, failing performance constraints may require modifications to the circuit
structure. EPOXY considers several local circuit modifications, such as splitting
large transistors, inserting buffers, and reordering transistors within pull-down or
pull-up transistor networks.

There are many possible places to apply these techniques within the circuit,
some better than others. However, since these circuit modifications have a
significant impact on the signal routing, the original circuit is altered only when
absolutely necessary to meet the required performance goals. This chapter exam-
ines the effects of several circuit modification techniques on several design prob-
lems.

Heuristics provide a useful mechanism for encoding valuable designer exper-
tise. Circuit improvement heuristics determine where the circuit structure should be
altered to help meet some failing design constraint. Many of these heuristics are
motivated by a critical path analysis. Although a critical path usually refers to a
limiting delay path from input to output nodes through transistors, the concept can
be generalized to all design metrics. For example, a transistor width is on a cell
width critical path if an increase in this transistor width changes the overall cell
width. The critical path for power includes all transistor widths and lengths. Since
EPOXY derives the equations that model the electrical performance and cell dimen-
sions, a critical path is easily identified as a list of limiting (or unsatisfied) con-
straints and their variables.

Technique When to apply Possible effects
split large transistors reduce height increase width, area change
reduce width increase height, area change
reduce area height and width changes
insert a buffer:
increase output drive reduce delay increase height, width, area
reduce critical path load | reduce delay increase height, width, area
reorder transistors reduce delay height, width, area changes

Table 4.1. Summary of circuit modification techniques. The potential benefits (when to ap-
ply) and costs (possible effects) are summarized for each technique considered within this
chapter.

EPOXY separates the application of circuit restructuring heuristics from the
transistor sizing aspects (optimization) to reduce the problem complexity. While the
transistor widths can assume non-integer values, application of circuit modifications
involves discrete design decisions. If these integer decisions were combined with
the non-linear transistor sizing problem, a separate integer variable would be needed
to represent each possible circuit modification. This would result in an integer
NLP with a very large input vector space. Unfortunately a larger input vector size

4. Performance-Based Circuit Modifications 40

will dramatically increase the running time of any solution technique. Since typical
design problems only require a few circuit modifications to improve the design per-
formance, many of these integer variables will be zero. Instead, EPOXY postpones
the decision to modify the circuit until it is clear that the design constraints cannot
be met by transistor sizing only. While this approach may not yield the globally
optimal result, most of the performance improvements are achieved rapidly.

Table 4.1 summarizes when to apply these techniques and describes which
design constraints may in turn be affected. In the next subsections, each circuit
modification technique is presented in greater detail.

4.1. Split Large Transistors

Transistor sizing usually produces a few large transistors which dominate the
design and cause an increase in the overall cell dimensions. Depending on how
these large transistors fit into the layout, cell height and width may need to be
adjusted. Large transistors can be split into a few smaller ones to decrease the
overall cell height while potentially increasing the cell width (and vice-versa)
[Hill87]. Figure 4.1 shows the benefits of splitting larger transistors in a standard-
cell buffer.

An area model relates changes in transistor size to changes in the overall cell
height, width, and area. EPOXY employs a virtual grid area model that determines
stretch lines through the layout to accommodate larger transistors. Since these lines
can be stretched, the area model easily relates a change in transistor size to a
potential change in the overall cell.

In EPOXY, larger transistors are split rapidly by directly modifying the under-
lying equations. For example, if the width constraints are satisfied, but the height
constraints are not, the non-zero track heights are examined. The layout for the
standard-cell adder was presented in Chapter 2. Only the non-zero track heights
may affect the cell height. The transistors that determine this track height are
easily identified, since their corresponding track height constraint is limiting. A
constraint is limiting if the equality portion of the constraint is active. If any of
these transistors do not participate in any of the limiting width constraints, splitting
any one of these transistors will reduce the overall cell height without incurring any
extra cell width. Therefore, the transistors that limit the cell height, but produce
the least change in cell width, are split. This process continues until the height
constraints are satisfied or the width constraints are no longer satisfied. For the
CMOS standard-cell structure of the full adder circuit, the equations which deter-
mine the overall cell dimensions are:

hcell s heightdesired h cell™ h n adder.]t hp adder1t ~ 7t Kh

Ry adder12Wet in n adderd = Wfree for fet . Pn adder.120-0

W SWidthggireq Weell2W n adder.] Weell2Wp adder.]

Wn adder.1=1fets innadderit " TK,

4.1. Split Large Transistors 41

P fets

C | [
i
] x 1
i
s]
N fets
555%4 |
Height) 64 44
Width) 34 47
Area (0} 2,176 2,068

Figure 4.1. Example of splitting larger transistors. The transistors in the two instances of a
buffer cell are highlighted. The overall cell height is reduced at the expense of additional
cell width when each of the larger transistors are replace by two smaller transistors in paral-
lel. For this example, the cell area is reduced by splitting the larger transistors.

If the desired cell height is not met, transistors are identified, such as those
whose width (e.g., wp, x) limits A, ,44.,;. The best transistors among these are
those whose length variable, /g, x, minimally affects the limiting constraints for
Ween Splitting a transistor requires duplicating the corresponding 4, 44.,; cON-
straint equation for the new transistor width. The variable for the new transistor
length is also added to the corresponding w, .44, ; constraint. The constant for
this width constraint, K,,, is increased by a worst-case value to account for the
extra routing to connect the new transistor. The value of the variables for the old
and new transistor widths is half that of the original transistor width.

Since the original transistor is larger than a diffusion contact, the additional
parasitic capacitance from the new diffusion contact is small when compared to the
diffusion capacitance of the transistor. Therefore, the overall timing for the circuit
does not substantially change when large transistors are split into smaller ones.
However, incremental evaluation of the circuit timing due to the split transistor
does not entail much computation. EPOXY incrementally updates all the equations
after the large transistors are split.

Ideally, snaking of transistors, local replacement, and re-routing could be con-
sidered. However, these techniques are quite difficult to implement and

4.1. Split Large Transistors 42

computationally expensive to evaluate in all but highly constrained design styles,
such as PLA’s as produced by PLATO [Marp86].

4.2. Insert Buffers

Overall circuit delay may be reduced by inserting buffers (inverter pairs).
However, the added circuitry usually results in an increase in cell area and power
consumption. The only buffer insertions EPOXY considers are those that do not
violate cell size constraints (maximum height, width or area). Glasser and Hoyte
[Glas84] outline two techniques for inserting buffers to reduce critical path delay:
reduce critical path load and increase drive to large loads. These two strategies for
inserting buffers are outlined in the following paragraphs and illustrated in Figure
42,

l 0.15 I 03

c T ‘*-—'v)— 1

g B J w0
Circuit Insert Are% Height Width Time Power
buffer kA A A ns uw
sized none | 16.8 99 169 21.5 169

reduce loading A 21.9 130 169 20.9 171
increase drive B 18.2 135 135 15.4 166
both buffers AB 22.1 162 136 14.5 167

Figure 4.2. Example of buffer insertion strategies. For this fragment of CMOS random logic,
there are two possible locations for inserting buffers to improve the overall response time
(Time). The area, height, width and power requirements are given for the fastest imple-
mentation of each circuit after transistor sizing. The critical timing path through this logic
is highlighted in bold. When a buffer (A) removes the non-critical path load caused by the
two NOR gates, the circuit delay is reduced to 20.9ns. Alternatively, when a buffer (B) iso-
lates the large load on node j, the delay is reduce even further. When both inverters are
present, the fastest design results.

EPOXY starts with the unsized layout as shown in Figure 4.3 for the
standard-cell CMOS random logic example as described Figure 4.2. The overall

4.2. Insert Buffers 43

unsized

layout

555555555955 5.
555035335445 5.

- 25252055555 525555
PNF seiee
25555555542
05550555547,
25250555558
222022040522
055555255555

Figure 4.3. Layouts before and after transistor sizing. This figure illustrates the standard-cell
CMOS layout for the random logic example. Starting with the unsized circuit, EPOXY
sizes the transistors for minimum delay. The layout for the sized circuit results.

4.2. Insert Buffers 44

circuit delay is reduced by sizing the transistors for minimum delay. The perfor-
mance for the sized layout fragment corresponds to the data given in Figure 4.2.
The resulting layout is larger, since the design contains several larger transistors.

increase drive

sized

AN AW AW S

LW T

reduce loading

Figure 4.4. Layouts for buffer insertion strategies. These standard-cell CMOS layouts illus-
trate the results of applying each buffer insertion strategy and then resizing each design as
outlined in Figure 4.2. Note that the sized design requires the least cell height. However,
the design with both buffers requires the least cell width.

Circuit speed can be increased by reducing the capacitance of nodes along crit-
ical delay paths. Nodes along a critical path with a fanout greater than two can be
split such that the inserted buffer drives the non-critical inputs separately. In Fig-
ure 4.2, the non-critical path load of the two NOR gates is removed from the criti-
cal path node k by inserting buffer A. However, if the buffer introduces sufficient
delay to create a new limiting critical path, the buffer is removed. Then the circuit

4.2, Insert Buffers 45

is restored to its original state, and the node is marked to indicate that no beneficial
buffer insertion was possible.

Another buffer insertion strategy is to increase the current drive capability
(sourcing and sinking) of gates with large capacitive loads. In Figure 4.2, the large
load on node j is isolated by inserting buffer B. Several authors, e.g. [Mead80]
[Neme84] [Hede87], have shown that an optimal number of inverter stages and
inverter size ratios are required to drive a large capacitance with minimum delay.
By running EPOXY on several CMOS inverter chains, Figure 4.5 shows that the
load capacitance must be fairly large for the insertion of buffers to reduce the
overall delay. Therefore, only large capacitance loads (> 0.78pf) on a critical paths
are considered for buffer insertion. The inverters are inserted if space permits
(height, width or area restrictions are not exceeded). These results are similar to
those for nMOS [Ober85].

inv.2
15 -
Min Delay | ‘/uinv.s
N A s < inv.6
g :
I .
(ns) .
5
0 T 1T 7r 1r7rryr 1 ¥y r 1t 17T FP 1o 17T 7T 1T 1
0 5 10 - -
Load Capacitance x

Figure 4.5. Graphs of the fastest inverter chains. The graph provides the response time for
the fastest implementations of two, four, six, and eight CMOS invernters to drive a range of
load capacitances. The first inverter in each chain is fixed to minimum sizes. Other stages
are sized for minimum delay for each load capacitance. For small loads, the two inverter
configuration is the fastest. However, above 0.78pf (see vertical line), the larger chain of
four inverters drives the load capacitance fastest. At no point do additional stages help
reduce the overall circuit delay.

The layouts for the standard-cell CMOS fragment, as given in Figure 4.4,
shows that the sized design requires the least cell height. When a buffer is added
to reduce the non-critical path load (Figure 4.2, buffer A) and the circuit is then

4.2. Insert Buffers 46

resized, a faster design results. However, when a buffer is inserted to increase the
output drive (Figure 4.2, buffer B) and this circuit is resized, EPOXY produces an
even faster design with the least cell width. This is design is also the most power
efficient. When both inverters are used, the fastest design results. Which of these
implementations is best depends on the user supplied performance constraints.
Therefore, the decision to apply these buffer insertion techniques must consider the
resulting effects on the performance constraints.

Lee and Soukup [Lee84] consider two optimization problems: minimum delay
and minimum relative area for a single critical delay path. They describe an algo-
rithm for determining the number of logic stages and the size of each logic gate.
EPOXY solves these problems at a more detailed level; individual transistor sizes
and actual cell dimensions are determined and the effects of multiple critical paths
are considered.

4.3. Reorder Transistors

Vdd

early -4 [

late *4

early —”:

late —”:‘

Vdd

late ‘4

int

B

}_

v

out

GND V

Figure 4.6. Reordering transistors for a NOR logic gate. This static CMOS implementation
of NOR logic gate demonstrates the advantage of placing late arriving signals close to the
output node. The delay for the left circuit diagram is determined by the late arriving signal
and the discharge of the parasitic capacitance on nodes int and out. The output node is
discharged a slower rate due to the additional resistance of the early transistor and the extra
capacitance on node int. However, if the late signal is attached to the transistor closer to
the output node as the dashed arrow indicates, the circuit delay is reduced. For the circuit
on the right, the late transistor directly discharges the capacitance on the output node out.
The critical delay path through each circuit is highlighted.

Reordering transistors along a pull-down or pull-up path can dramatically affect
the delay of the output node as shown by MTA [Hofm87]. Transistor inputs (gate
nodes) that switch relatively early should be placed near the supply rails so that the
sources and drains of the remaining transistors can be properly set. Alternatively,

4.3. Reorder Transistors 47

transistor inputs that switch later should be placed near the output nodes, since they
can limit the overall delay of the logic gate. Figure 4.6 illustrates the advantage of
placing late arriving signals near the output node.

A more complex example in Figure 4.7 illustrates that only the latest signal
should be moved. The input signal names and latest response time (in nano-
seconds) are given for each transistor in a static CMOS gate. The transistors and
nodes that lie on the critical delay path are highlighted. Since signal D is the
latest arriving signal to this gate, the transistor it drives is placed closest to the out-
put node, our. The p-channel transistor driven by signal A was not moved because
the gate response time is dominated by the slower signal D.

vdd > vdd
Ad) A A@) H
Cc(@3) A4 D) 4L c@H4 DG
B2 - B2 A
Ad 4L B@ A o DG) o
ca A A@ B (2)
DG) c3® -
GND GND
—_—
Original gate Reorder gate

Figure 4.7. Example of reordering transistors. The input signal names and latest response
time (in nano-seconds) are given for each transistor in a static CMOS gate. The transistors
and nodes that lie on the critical delay path are highlighted. Since signal D is the latest ar-
riving signal to this gate, the transistor it drives is placed closest to the output node, out.
The p-channel transistor driven by signal A was not moved because the gate response time
is dominated by the slower signal D.

Rearrangement of transistors must preserve the logical function of the gate
(i.e., series and parallel groups). However, the re-routing of signals to these transis-
tors may require additional height or width. Therefore, EPOXY only reorders those
transistors that effect the overall response time. Only the latest arriving inputs to
the logic gate are moved closer to the output nodes since they determine the overall
gate delay. Figure 4.7 illustrates which transistors should be reorder to improve the
response time of the example logic gate.

Dynamic gates impose a restriction on the maximum parasitic capacitance on
the non-output nodes to avoid potential charge sharing problems. EPOXY currently
does not impose restrictions on the maximum parasitic capacitance; however, this
effect is minimal when considering static logic based standard-cell layout. One
way to support dynamic gates within EPOXY is to simply increase the capacitance

4.3. Reorder Transistors 48

on the output node by enlarging the transistors that this node drives. Therefore, the
effects of charge sharing with the internal nodes to the logic gate will be reduced.

4.4. Strategy for Applying Several Circuit Modification Techniques

There are many possible ways to apply circuit modification techniques to
improve overall performance. The decision to apply a modification can be encoded
as an integer selection problem. Unfortunately, the underlying transistor-sizing sub-
problem is non-linear and computationally intensive. Therefore, any strategy for
selecting a good set of modifications should reduce the number of circuit implemen-
tations for transistor sizing.

One way to reduce the number of modifications is first to apply these tech-
niques to parts of the design where they provide the most benefit. Heuristics pro-
vide a convenient mechanism for encoding this designer knowledge. Since these
heuristics many not accurately predict a sufficient improvement, EPOXY applies the
performance improvement heuristics in a greedy manner with a single backtracking
level if the design is not improved. Therefore, if a circuit cannot meet some
design constraint by sizing the transistors, then the circuit structure will be altered.
The pseudo code in Figure 4.8 describes the current implementation of circuit res-
tructing within EPOXY.

improve_design ()
{ size transistors;
while (failing or limiting constraints && heuristics to apply) {
if (failing or limiting height, width, area) {
consider (splitting large transistors);
}

if (failing or limiting delay) {
consider (increasing drive on large loads);
consider (reducing critical path load by inserting buffers);
consider (reordering transistor within logic gates);

}

consider (heuristic)
{ try heuristic;

resize transistors;
if (failing or limiting constraints reduced) {accept modification;}
else {undo heuristic;

mark heuristic failure;
resize transistors;}

}

Figure 4.8. Pseudo code to apply several heuristics. This pseudo code describes how each of
these circuit modification techniques can be combined to improve the performance of a
design. Each of the techniques is considered in a greedy manner with a single level of
backtracking if the resized circuit was not improved. The appropriate element is marked to
prevent reapplication of the technique.

L W

4.4. Strategy for Applying Several Circuit Modification Techniques 49

EPOXY first tries to meet the design goals by transistor sizing alone since
transistor sizing has the least impact on the layout. While there are any failing
performance constraints and there are places in the design where these techniques
can applied, each heuristic is considered. Splitting of large transistors is considered
only if there are failing height, width or area constraints. This technique does little
in the way of altering the overall circuit timing.

While there are failing delay constraints, buffers may be inserted to increase a
gate’s output drive for large loads or to reduce the critical path load capacitance by
isolating non-critical path loads. The increased drive technique is considered before
reducing critical path load capacitance since the increased drive usually improves
the overall timing the most. Transistors within logic gates are reordered if they
improve the overall timing as well.

When a heuristic is considered, the best candidate area of the design is
selected. Then the change is made and the transistors are resized. If a better solu-
tion results, this new configuration is accepted. Otherwise, the component of the
circuit is marked so that this change will only be considered once. These marks
prevent reapplication of circuit changes that do not improve the design.

The section that considers circuit changes does not keep track of the entire
previous circuit configuration and simulation values. Rather, only the components
that are affected by the modification are marked. These aid in restoring the circuit
to its previous configuration, if its performance has not been improved. Also, the
marks require much less storage than a copy of the entire design, and the restored
circuit can be quickly resimulated using the incremental circuit simulation mode.

4.5. Performance Improvement for a Few Examples

The value of these circuit modification techniques is best demonstrated by a
few VLSI design examples. A CMOS 16-bit ripple adder shows that splitting large
transistors can reduce cell height at the expense of cell width. Inserting buffers and
reordering transistors further reduces operating delay. As described in Chapter 2,
the CMOS dynamic PLA shows that the area model is not restricted to standard-
cell style layout. The only inherent difference in the area model between these lay-
out styles is that the stretch lines for the tracks intersect for the PLLA’s while these
lines run strictly parallel for standard-cell designs. Due to the PLA’s structured
design, all of the beneficial design changes for the PLA were made to the input
and output buffers. An array of JK flip-flops illustrates the timing improvements
that result from application of all of the the circuit modifications.

Table 4.2 summarizes the performance improvements by applying EPOXY to a
static CMOS 16-bit ripple adder. Data path designs typically require a strict cell
pitch so that other predefined cells directly abut. A common example is in a pro-
cessor design where the registers are predefined by a layout generator. For this
example, the starting cell size will be used as the height constraint (cell Height <
1064). The goal is to produce the fastest implementation that drives a 16 bit bus
with 5pf loads. The 16-bit ripple adder contains 514 transistors and 292 nodes.
EPOXY required 4.9 Mbytes of SUN-3/140 storage to complete this example.

4.5. Performance Improvement for a Few Examples 50

Circuit: adder.16
Optimization: min Time subject to Height < 1064

B Times Area Height Width Time Power

applied 2 A A ns uw

unsized circuit - 134 1064 126 116.7 1190
transistor sizing 1 136.7 1085 126 57.4 1482
split large trans. 5 1532 1064 144 574 1482
insert buffer/load 0 - - - - -
insert buffer/drive 2 202.2 1105 183 49.7 1543
reorder transistors 2 136.7 1084 126 51.1 1447
optimize () 1 2139 1064 201 441 1524

Table 4.2. Performance improvement for 16 stage ripple adder. The fastest implementation
of a 16 stage ripple adder subject to a predefined height constraint (1064 A) is desired. The
first two rows give the performance improvement resulting from transistor sizing over the
original unsized circuit. Since the resized circuit does not meet the height restriction, each
of the heuristics are considered. The next few lines list the performance resulting from ap-
plying each heuristic repeatedly. As expected, splitting large transistors reduces the cell
height at the expense of the cell width. For this example, it was not beneficial to insert
buffers to reduce the critical path load; however, two buffers were used to isolate the Spf
loads on the last adder stage. The final entry gives the fastest implementation when all
heuristics are considered as outlined by the pseudo-code. This implementation satisfies the
difficult height constraint while improving the worst-case response time by 23% over the
version produced by transistor sizing alone. The maximum dynamic power at 1MHz is
given in the last column.

Rather than replicating 16 instances of the CMOS standard-cell adder as given
in Chapter 2, the outline of each cell is shown in Figure 4.9. All the transistors in
the leftmost design are minimum size (unsized). The design (sized) that results
from transistor sizing for minimum delay alone is illustrated using a dotted outline.
Note that most of the individual cells are still minimum size since most transistors
fit within their free width. The results of applying each circuit modification indivi-
dually are illustrated in the next three cell outlines: splitting large transistors, insert-
ing buffers to increase the output drive, and reordering transistors. When all of
these techniques are employed, the rightmost cell outline results in Figure 4.9.

4.5. Performance Improvement for a Few Examples 51

1064\
[t -| — -1

A 1 meh ! [N I ! [[['
L ———d by F-==-=a-4 F=-=-=-4 r_---:-:--:-_-,r__'
| 1 | i i] | | | H
=== t i == It i &
o] R L___2 L___ I
i i i i i i i i
L d L_o__J L---J | -4
| t 1 I 1 I 1 1 i |
R N SO e — - =d | I | _—-—d I
I 1 | 1 1 I 1 | i |
{datit B S g F-- - [nta | r-- = r--=d
I 1 | [| | | [| !
r--~-5 rUeeth [QT T QT T T T
| | I | | I | [S | -——d
! 1 } I I 1 I i 1 |
——— _——- ---d - —-- [——
| 1 1 | | 1 ! ! | I
r—--A r-—-n" r-——-1 r---n r——--
! ! P __ 4 o] L Lo __]
[T i -0 i I i I i
[| (I | L-—--4J Lo d Lt
| | [1 1 I I I | !
e I - - - F-—-d
| I [| | | 1 ! i 1
| ity | r==-=-" r——-" re -0 r- ="
L L___1 Lo - L___J
] 1 | | I ! | i I [

vy Isb L I L " n L L 4]
unsized sized split inc. drive reorder optimize

Figure 4.9. Qutlines of the 16 stage adder cells. This figure illustrates the outlines for the
CMOS standard-cell layouts of the 16 stage adder cell as given in Figure 4.8. The bold
lines indicate the maximum height pitch. The least significant bit is at the bottom of the ar-
ray and the most significant bit is produced at the top. The result of transistor sizing alone
(sized) is shown using dotted lines in the outlines to the right. The results of apply each
technique are shown using the dashed cell outlines: splitting large transistors, inserting
buffers to increase the output drive, and reordering transistors. The rightmost design shows
the result of applying all the techniques as outline in the pseudo code for optimize().

Table 4.3 gives the performance improvements for a PLA with 12 inputs, 10
outputs and 17 product terms. The dynamic CMOS implementation required 213
transistors and 80 nodes. A 5pf load was added to each output. Due to the res-
tricted circuit structure of PLAs, two of the heuristics were not applied: inserting a
buffer to reduce critical path load and reordering transistors within logic gates.

Due to the highly regular structure of the PLA, all improvements were limited
to the output buffers. Essentially, all delay paths through the PLA are limited to
either four or five gates levels (1 or 2 for the input buffer, 1 for the and-plane, 1
for the or-plane, and 1 for the output drivers). The ramped driver heuristic indi-
cates that the last stage that drives a large load capacitance should be enlarged
before any of the others. For a PLA driving a large load, this means that all
changes are essentially limited to the output drives. The situation changes when
the delay due to the capacitive load of the and-plane transistors dominates the
overall delay through the PLA. Then the resulting problem mainly involves resiz-
ing the input drivers.

4.5. Performance Improvement for a Few Examples

52

Circuit: pla.cpul
Optimization: min Area subject to Time < 24ns
Times Area Height Width Time Power

applied 2 A A ns LW
unsized circuit - 94.7 266 356 105.6 7529
transistor sizing 1 1423 266 535 266 7745
split large trans. 20 126.6 298 425 266 7745
insert buffer/load 0 - - - - -
insert buffer/drive 10 218.7 428 511 240 8121
reorder transistors 0 - - - - -
optimize () 1 1849 460 402 240 812.1

Table 4.3. Performance improvement for a CMOS PLA. The organization of the perfor-
mance data is identical to the previous table. For this circuit a Spf load was added to each

output.

Figure 4.10. Layout for the CMOS PLA: pla.cpul. This figure shows the CMOS layout for a
dynamic PLA with minimum sized transistors except for the clock signals (clk1 and clk2).
The 12 inputs are applied along the lower left side and the 10 outputs are produce on the
lower right side. The center PLLA core contains 17 product terms as represented by the hor-

izontal metal lines.

4.5. Performance Improvement for a Few Examples 53

Circuit: jk.4
Optimization: min Time subject to Height <385\
and Time < 16.0ns
Times Area Height Width Time Power
Applied kA2 A A ns uw
unsized circuit - 42.1 324 130 35.2 368.8
transistor sizing 1 53.0 408 130 19.7 4920
split large trans. 8 585 380 154 19.7 4920
insert buffer/load 4 614 391 157 19.1 5914
insert buffer/drive 4 60.8 387 157 16.8 5664
reorder transistors 8 514 395 130 194 4920
optimize () 1 68.8 380 181 152 5774

Table 4.4. Performance improvement for a JK array. The organization of the performance
data is also identical to the previous table. Each output has an additional 2pf load.

V{qu»: z ‘ % ><]

S

; | ¥ §] s i N
ey B A X
4 L 3 4 N
€ Ik rese A

: NS] 7

d i 4 i . P

i I i
& L i e halE 7 G @ D t:fii i

Figure 4.11. Layout for one JK flip-flop. This figure shows the CMOS layout for one element
of the static JK flip-flop array. The jk.4 array is composed of four of these cells stacked
vertically.

The performance for an array of CMOS JK flip-flops driving 2pf loads is
given in the following table, Table 4.4. The layout for one element of the vertical
array is shown in Figure 4.11. The response time is the maximum delay through
each flip-flop. The height constraint was satisfied by splitting large transistors.
Inserting buffers to reduce the loading on non-critical nodes improves the circuit

4.5. Performance Improvement for a Few Examples 54

preformance slightly. However, inserting buffers to increase the drive on the output
nodes improves the delay response further. Reordering some of the transistors mar-
ginally improves the circuit performance. The circuit that results from considering
all these techniques satisfies the height and timing constraints, at the expense of
additional cell width and area.

4.6. Conclusions

EPOXY provides an effective environment for developing and applying circuit
modification heuristics in conjunction with transistor sizing. Transistor sizing can
decrease circuit delay; however, the circuit may still not meet the design con-
straints. EPOXY applies circuit modification heuristics to alter the layout dimen-
sions and to further improve the electrical performance. Since EPOXY takes
advantage of previous sizing information after applying a circuit modification
heuristic, the transistors are rapidly resized.

An advantage of representing design performance by equations is that limited
circuit modifications result in limited changes in the equations. Therefore, circuit
modifications are quick, and costly layout resynthesis and performance extraction
are avoided. The next chapter will describe and evaluate the advantages of
representing the performance by equations.

Global structural decisions should be made at the design synthesis level. Since
EPOXY deals with the remaining optimization at the detailed layout level, this sys-
tem only considers local circuit modifications. These heuristics have improved the
16-bit adder delay by a factor of 2.6 over the initial design and 23% over transistor
sizing alone. Similarly, the speed of a dynamic CMOS PLA was improved by 10%
and an array of CMOS JK flip-flops by 23%. In addition, the height constraints for
these circuits could only be satisfied by applying the circuit modification techniques.

o

55

5. System Architecture and Implementation

EPOXY provides a unique flexible environment for evaluating the effects of
circuit modification heuristics, optimization algorithms, and different electrical and
area models. Modeling the circuit performance as a set of symbolic equations is
the key to delivering the advantages of this flexible open environment for rapid per-
formance improvement. This chapter describes how these equations are generated,
evaluated, and modified. First, the advantages of representing circuit performance
by static symbolic equations are presented. These equations tie together the major
aspects of EPOXY: performance modeling, optimization and circuit modifications.

The goal of transistor sizing programs is to produce the best performance as
defined by an objective function, subject to constraints on some of the design
metrics. Many of these programs require sensitivity information to determine which
transistor sizes may improve the overall circuit performance. Once these transistors
sizes are changed, the circuit must be reevaluated. Therefore, solving the non-
linear performance optimization problem involves repeated evaluation of the circuit
performance and sensitivity information.

Circuit optimization programs spend most of their time in the analysis portion,
since many devices must be reevaluated for each major circuit change. Crystal
[Oust85] determines worst-case node delays by constructing RC paths through the
circuit dynamically. After a node delay is determined, the data structures
corresponding to the RC path are released. Therefore, performance optimization
tools built directly into Crystal (such as AESOP [Hedl87]) would constantly recreate
and destroy the same data structures.

EPOXY takes a different approach. It sratically builds the symbolic equations
that model the circuit performance and sensitivity information. Although this
approach requires more memory, the computation involved in evaluating the circuit
performance is significantly reduced. The tradeoff between evaluation speed and
storage requirements will be discussed in greated detail later in this chapter.

Most transistor sizing programs integrate fixed electrical models with a fixed
optimization algorithm to improve overall running time. Typically, these systems
improve only a single design metric while considering only a few predefined con-
straints. Unfortunately, this approach restricts the types of improvements a user can
automatically pursue. Therefore, another advantage of representing the circuit per-
formance as a set of static symbolic equations is that EPOXY can combine a user
specified objective function and constraints at run-time.

Since all of the non-linear optimization techniques implemented within EPOXY
handle the same representation of symbolic equations, optimization algorithms are
substituted easily. Therefore, alternative optimization techniques can be compared
and evaluated on typical design problems. A user then can select or combine the
most appropriate techniques to solve the performance optimization problem of
interest.

EPOXY is composed of three major parts: performance modeling, optimization,
and circuit restructuring, as Figure 5.1 illustrates. A design’s performance is based
on electrical information derived from a net-list and layout. From this information,

5. System Architecture and Implementation 56

EPOXY constructs symbolic equations that model the circuit’s performance. The
optimization techniques use these equations to resize the transistors. If the overall
design constraints are still not satisfied, structural changes to the circuit are con-
sidered (e.g., inserting buffer stages). The information describing the improved cir-
cuit is output as a new net-list and modified layout.

Modeling Optimization Restructuring
net—list —» Electrical: J _
time N g augmented buffer insert
—> Lagrange
params. - power g grang rearrange fets
i TIL lit f
layout - Area) g o5 Spit fets
more Eq i l l
equations — x v
model library User monitor | program net-list layout

Figure 5.1. EPOXY system architecture. The net-list, layout, and circuit parameters are con-
verted into symbolic equations. Also, a user can supply additional equations. Next, equa-
tions that describe the sparse Jacobian matrix, as described later in this chapter, are derived.
An optimization technique is applied to these equations to produce feasible numerical
values while minimizing the user specified objective function. Circuit modifications are
made by altering the symbolic equations and internal net-list. The optimal numeric values
(transistor sizes) and modified circuit layout are returned. Alternatively, the performance
equations can be compiled (as a separate object module) for faster evaluation.

Modeling, the first section, derives the symbolic equations that compute a
circuit’s electrical performance and area. EPOXY currently applies an accurate area
model for standard-cell layout and the distributed RC worst-case electrical model.
This area model is based on a virtual grid strategy for minimally expanding com-
pacted layout. A user can supply additional performance equations and constraints.

The next stage, optimization, attempts to find an assignment for the input vari-
ables of the equations to meet the constraints while minimizing the user defined
objective function. The optimization problem is formulated so as to find an assign-
ment for the transistor sizes that satisfies the specified performance requirements.
However, the relationship between size and delay is non-linear even for the simple
lumped RC model. Since the underlying relationship between delay and area is
non-linear, the optimization problem is formulated as a non-linear program (NLP).
The system can make use of several different non-linear optimization algorithms
with varying convergence rates and accuracy.

The final stage, restructuring, alters the optimization problem by making lim-
ited circuit changes. The circuit changes are made by directly modifying the sym-
bolic equations and transistor net-list. These circuit modifications include inserting
or removing buffer stages, rearranging transistors within a pull-down or pull-up tree,

5. System Architecture and Implementation 57

and splitting large transistors so that cell height and width can be traded off. This
level handles the discrete decisions of proposing circuit alternatives while the two
other levels determine the best possible implementation for this alternative.

5.1. Implementation Strategy

The chapter on modeling has presented typical equations that determine the
performance of the design. To obtain quality results quickly, all optimization algo-
rithms require rapid performance evaluation. In addition, other optimization tech-
niques require partial derivative information. Since EPOXY determines the circuit
performance and partial derivatives from equations, the primary concern in the
design of the underlying data structures is to provide fast equation evaluation.

Another goal of EPOXY is to determine the effects of circuit modifications on
performance and to select the best set of circuit changes. Therefore, the data struc-
tures must also support rapid modifications to reflect changes in the circuit struc-
ture. Later sub-sections will evaluate the memory requirements to achieve rapid
circuit evaluation and modification.

All of the performance equations and constraints described in the modeling
chapter, Chapter 2, are represented by signomials. Signomials are simply the sum
of several terms that are composed of the product of a constant coefficient and
variables raised to some integer powers [Ecke80]. Therefore, the data structures in
EPOXY support this basic equation form. Also, primitives for function calls can be
employed so that more accurate and complex models can be incorporated, such as
the slope transistor model.

Many optimization techniques rely on information derived from a Jacobian
matrix. An entry in the Jacobian matrix is defined by a partial derivative equation
for a constraint equation with respect to an input variable. Another advantage of
representing circuit performance by a set of symbolic signomial equations is that
the equations that determine the Jacobian matrix can be symbolically derived in
closed form and evaluated along with the performance equations. The expense of
computing finite difference approximations of the Jacobian matrix is avoided since
the partial derivative equations are szatically derived.

The Jacobian matrix for typical design problems has many zero entries. For
each performance equation, the partial derivative equations are created. Therefore
the Jacobian matrix is never explicitly stored; rather it is represented by these
derived partial derivative equations. This approach results in a sparse representa-
tion of the Jacobian matrix.

As illustrated in Figure 5.1, the parameter file specifies information used in the
derivation of the Jacobian matrix such as declared input and output nodes, and
transistors of fixed size.

The next subsection will describe how the implemented data structures help
attain these system goals by considering a small example.

5.1. Implementation Strategy 58

5.2. Example Formulation

Many of the design decisions for the internal data structures in EPOXY are
best explained in context of a small example. This section will examine a static
NAND gate whose inputs are buffered by single inverters. These inverters will be
fixed in size to assure that the loading on the input nodes, ba and bb, is fixed.
Without this realistic restriction, the resulting design problem may not have a solu-
tion, since every increase in the input gate would always improve the output
response time. The task is to determine the size of the transistors for the NAND
gate that offers the best improvement in the objective function while satisfying the
performance constraints.

a Logic
ba -l >0—
bb —{>o———— >3 c Diagram

b
Vdd Circuit
g,4° 2,d° g,d° g,d° Diagram
—q[@4s-62 (@545 a=<[@5-20 b4 45.28)
d d d d Key:
a b C , .
transistor locations
d as (x,y)
3,24 .
ba bb a ;{ Le.2 circuit nodes
S
d d d d transistor terminals:
—[e6n —Hle~45 b-Le29 gate
g g g source
5 s s drain

GND

Figure 5.2. Logic and circuit diagrams for the buffered NAND gate. The top portion shows a
logic diagram for a two-input NAND gate with inverters placed at each of its inputs. The
lower circuit diagram describes a static CMOS implementation of this logic diagram. The
node names are given in bold and the MOS transistor terminals are labeled in script (gate,
source and drain). The location of the lower left hand comer for each transistor in the lay-
out is given as (x, y) pairs.

The system diagram for EPOXY shows that the equations for the response
times and dynamic power are derived from a net-list file and an input parameter
file. The area equations are extracted from layout. A user can specify additional
equations for EPOXY’s consideration. These input files to EPOXY (the layout,
parameter file, and additional equations) were created to correspond with the logic
and circuit diagrams in Figure 5.2. However, the transistor locations (as specified
by the lower left hand corner of the active area) were added to the circuit diagram
after the layout was completed.

5.2. Example Formulation 59

Key:
D metall
% poly_metall _contact

poly

ndiff_metall_contact

AN

NAND gate

inverter ndiffusion

nfet

inverter .
pdiff_metall contact

—
o

pdiffusion

(=]

pfet

N fets P fets

>

Figure 5.3. Layout for a standard-cell CMOS buffered NAND gate. This standard-cell style
layout implements a NAND gate whose inputs are buffered by single inverters. The
transistors that form each of the basic static CMOS gates are indicated by the region (on the
right of the layout) bracketed by the arrows. Each of the lower two inverters drives the
NAND gate above. As in a standard-cell implementation, the n-type and p-type transistors
are arranged in columns as indicated. Signal names are listed near each of the correspond-
ing small crosses. Lengths and widths for this layout are measured in A units.

A static CMOS implementation of the buffered NAND gate is given in Figure
5.3. For this rotated standard-cell style layout, the n-type and p-type transistors are
placed in parallel columns. The ground line runs vertically on the left side of the
cell and Vdd lies on the right side. Various signals are also routed vertically using
metall. For this example, two of the lines are tied to ground to simulate an
increased parasitic capacitance between the vertical signal lines and horizontal
polysilicon lines that run to each of the transistors. Connections between the hor-
izontal polysilicon lines and the vertical merall signal lines are made using
polysilicon/ metall contacts. Several signals of interest are labeled in the layout.

From this layout, a net-list description is extracted by using MAGIC and
ext2sim [Scot85]. The following file in Figure 5.4 results. This file also gives
location of each transistor as well as its width (2 A) and length (3 A).

The input parameter file, as shown in Figure 5.5, contains information for
specifying the performance optimization problem as a non-linear program. Output
electrical nodes of interest (such as node c) should be declared. This requirement
arises from the technique used to derive the delay times for each node. As in the
timing analyzer Crystal, delay times for all transistor gates are determined by con-
sidering all conduction paths to Vdd or Gnd. Delay times for nodes whose only

5.2. Example Formulation

File: bnand.1.sim {continued)

| units: 70 tech:scmos | Cab 1
nbaaGND233-62 CVddc1
pbaaVdd2345-62 | CdGND3
nbbbGND233-45 | CcGND40
pbbbVdd2345-45 | CbbGND9
paVddc2345-20 CbGND 40
nacd233-24 C Vdd GND 45
nbdGND 233-28 CbaGND 6
pbcVdd2345-28 CaGND48

Figure 5.4. Net-list file for the buffered CMOS NAND gate. The net-list file was extracted
from the corresponding layout for the static CMOS buffered NAND gate. The transistor
lines list the transistor type, gate, source and drain nodes, transistor length and width and
absolute position (lower left corner) of the transistor as x and y. Significant parasitic resis-
tances and capacitances are also provided. The capacitance value is given by the lumped

parasitic capacitance (in fempto-farads) between two nodes.

connections are transistor sources or -drains are not-derived-since these node times
are not needed in computing the node delay times of any transistor gate. For the
buffer NAND gate example, the delay to node d in the circuit diagram is not
derived, since it was not requested (by the parameter file) and this node delay is

not required in the derivation of any other node delay.

File: bnand.1.prm

Parameter file for bnand.1

input variables “w_f
output variables “t[rf]_n[c]$

For general formulation:
output variables “obj$

output nodes c

Declare input and constants name templates
variable_style Cc

constants I_f 'K "Cp_n °F

constants "{rfl_n[b[a-b]]$

constants ‘w_f{3_n62]$ "w_f[3_nd5]$
constants ‘w_{{45_n62]$ "w_{[45_n45]$

Const declarations override input declarations.

Figure 5.5. Parameter file for the buffered CMOS NAND gate. The parameter file contains
information that specifies how to set up the performance optimization as a non-linear pro-
gram. Lines beginning with "#" are comments. Note that variables are described using
regular expression syntax. Several variables can be declared on each line as this example

illustrates.

5.2. Example Formulation 61

Variables referenced by any symbolic equation that are not set by an equation
(via =) must be declared as a constant or are assumed to be inputs to the Jacobian
matrix. Variable names are declared using regular expression syntax as described
in the UNIX{ manual pages on ed (see also regex() [Kare84]). The advantage of
this kind of description is that a large number of string matches can be made using
a small descriptive string. The "’ specifies the start and ’$’ indicates the end of a
character string. Therefore, 'l f matches all variables that start with 'l f* (all
transistor lengths). Characters in square brackets match the characters specified
(e.g. ’[rf]’ matches only ’r’ or ’f) or a character range when separated by a dash
(e.g. ’[a-b]’ matches any letter, a through b inclusive). Since the square brackets
have special meaning, a backslash '\’ must be used to suppress the regular expres-
sion expansion (e.g.: \[matches the '[’ character only).

The parameter file specifies certain variables as constant or inputs to the circuit
simulator (evaluation routines) and the Jacobian matrix. A variable is a Jacobian
input if it is declared as an input in the parameter file, or if the variable is con-
strained by an equation (< or 2). Variables assigned to a fixed value by "=" can-
not be Jacobian inputs for the Jacobian matrix. Variables that are not defined as
constants are assumed to be Jacobian inputs for the Jacobian matrix (default action).
The circuit evaluation routines will not change the values for input or constant vari-
ables.

The objective function for the non-linear program is specified by a single vari-
able in the parameter file. For the buffered NAND example, the variable obj will
serve as the objective function.

The last input file contains equations that a user wishes to add explicitly.
Typically, the user declares the objective function and overall constraints in this
file. For the buffered NAND gate example, a general objective function is defined
as shown in Figure 5.6. Note that the values of the various constants that begin
with F dictate which variables affect the objective function. Therefore, setting Fa
to 1 and the remaining constants to O will result in a strict area minimization. In
addition, upper-bound constraints are declared for each of the major design metrics
(area, output delay, maximum dynamic power, overall height and width). The
overall cell area is the scaled (by 0.001) product of the cell width and height.
Finally, the overall circuit response time is the larger of the rising and falling
worst-case output times on node c.

Currently the area equations are generated from layout by a separated external
program. EPOXY is actually a composite of several programs and program
modules. The output of this external program is a set of equations as shown in the
latter half of Figure 5.6.

t UNIX is a trademark of Bell Laboratories.

5.2. Example Formulation 62

File: bnand.1.more.eq {continued)
/* Additional equations for bnand.1 */ w_n>= w_f[3_n62] +-12;
obj>= Fa*a+Fp*p+Ft*t+Fw*w+Fh*h; | w_n>= w_f{3_n45] +-12;
w_n>= w_{[3 n24] +-12;
a<= Ka; w_n>= w_{[3_n28] +-12;
t<= Kt; W_PpPo>= 0;
p<= Kp; w_p>= w_{{[45_n62] + -16;
w<= Kw; w_p>= w_{f{[45_nd5] + -10;
h<= Kh; w_p>= w_{{45_n20] + -16;
w_p >= w_{[45_n28] + -20;
a»>= 0.001*w*h; W>= W_N+w_p+51;
t>= tr_n[c];
t>= tf_nc]; h>= 49 +|_f[3_n62] + |_f{3_n45]
+ _f[3_n24] + |_f[3_n28];
/* Area equations follow */ h>= 49 +1_{[45_n62] + |_f[45_n45]
w_n>= 0; +|_f[45_n20] + |_f{45_n28];

Figure 5.6. Additional equations for the buffered CMOS NAND gate. A user may specify
additional equations for the simulator and optimization programs. Typically, the objective
function and additional performance constraints are defined. Note that C-style comments
are permitted.

5.3. Deriving the Performance Equations

The equations that model the circuit performance are either derived from or
provided by the input files, as described in the previous section. An advantage of
this approach is that a user can estimate the circuit performance without having to
actually implement it. That is, a set of equations can be created to estimate some
circuit aspect. However, by default, EPOXY will automatically provide equations
that model the circuit performance metrics for area, height, width, worst-case delay
and maximum dynamic power as described in the chapter on modeling. The fol-
lowing paragraphs in this subsection will illustrate how each of these models are
implemented.

Throughout this dissertation, the equations that model circuit performance can
be described using several representations. In the modeling section, subscripted
variables are used to describe the general format of the equations. Another variable
format similar to arrays within the C language more accurately represent how these
variables are actually implemented. Instead of numeric array values, descriptive
symbolic names for the nodes and transistors will be employed. The following
equations demonstrate the various representations of an equation that specifies the
rise time of node ¢ in response to a falling signal on the gate of the transistor at
location (3, -28).

5.3. Deriving the Performance Equations 63

Equation template:
Yise fet node = Cnode ® Rfet node path + Crode * Rjet node path
Example equation:
Yise fet at [3,-28] snode ¢ =Crode ¢ * Rpet at [3,—28] node ¢ path 0
+Crode d * Rt at [3,-28] node d path 0
C-style symbolic representation:

tr f n[3 n28][c] =C_n[c] *R_f n_i[3_n24]{c][0]
+C n[d] *R_f _n_i[3 n28][d][0];

Each array entry for the C-style representation corresponds to a subscript in
the original equation. The performance models in EPOXY use a naming conven-
tion that helps describe the type of each subscript. The base name for the variable
contain letters that are separated by an underscore ’ ’. These letters correspond to
the type of subscript (fet, node or integer). The position of the transistor within the
layout (and its name) are described by concatenating the x and y values. Negative
signs are converted to the character 'n’ since C does not allow negative signs in
specifying variable names. The advantage of this C-style description is that these
equations can actually be compiled provided that the symbolic names for each of
the subscripts are assigned unique integers. The technique of creating a C program
to rapidly evaluate the performance equations will be discussed later in this chapter.

Area information is either derived directly from layout or provided as addi-
tional input equations. Area equations relate a change in transistor size to a poten-
tial change in the overall size of the layout. The first step in deriving these equa-
tions is to determine the free transistor width. Next, the transistors that can share
the additional width are grouped. These transistor widths determine how much the
design should be locally expanded to accommodate all the transistors within the
group. This expansion factor is represented by a track width variable. For the buf-
fered NAND gate, two such variables were generated: w_n and w_p. The effects
of a change in transistor length is described by the height constraints. These equa-
tions are included in the latter half of the additional equations file, bnand.1.more.eq,
presented in the previous section.

The worst-case timing model is composed of two parts: the transistor model
and the model that combines the equivalent resistances and capacitances. EPOXY
currently supports a linear transistor model (RC model) and the distributed RC
model (RP_model) similar to the distributed model within Crystal (a timing
analyzer). The distributed RC model is based on the equations developed by J.
Rubinstein and P. Penfield [Rubi83]. Table 5.1 describes the templates used to
generate the worst-case response times.

As in Crystal, EPOXY also supports flow statements given in the net-list file.
These flow labels at the source or drain of a transistor restrict the signal flow direc-
tion considered in delay analysis. For example, s=Cr:In, specifies that the only sig-
nal path considered through the transistor is into the source as an imput. These

5.3. Deriving the Performance Equations 64

RC_model(): Description

For each fet:

w_ff] >= Kwmin{fet-type} Minimum size constraint

R_ff] = Kr{type} * 1 fIf] * w_{If]"-1 Linear transistor resistance model

Cg_flf] = Kg{type} * 1_fIf] * w_fIf] Transistor gate capacitance

Csd fIf] = Ksd{type} * w fTf] Source and drain transistor capacitance

For each node:

Cg_n[n] = Cg_{Tf] + Cg_fIf] + ... Total fet gate capacitance for the node

Csd_n[n] = Csd_f[f] + Csd_f[f] +... Total fet source and drain cap. for node

C n[n] =Cp nfn] + Cg n[n] + Csd n[n] Total capacitance for the node

RP_model (): Description

For each path (numbered i) to GND or Vdd:

Ri_f n_i[f][n][i] = R_fIf] Resistance through fet from a node via path i

Ri_f_n_i[f][n][i] = R_flf] + Ri_f n_i{f1][n][i1] Paths can references other paths

tr_f n{f][n] >=C n[n] *Ri_{ n_i[fin][1] Rise time on node due to resistance
+C_n[n1] *Ri_f n_iff][n](2] + ... and capacitance above fet

tf £ n{f][n] >=C_n{n] *Ri_r_n_i[f][n]{1] Fall time on node due to resistance
+ C_n[n1] *Ri_r_n_i[f][n]{2] + ... and capacitance below fet

tf n[n] >=u_nnl] + &_f nif][n] Fall time on node due to rise on n1 (gate of f)

tr n[n] >= tf n{n1] + tf f n{f]{n] Rise time on node due to fall on n1 (gate of f)

Table 5.1. Equation templates for the electrical models. This table describes the templates for
creating the equations that determine the worst-case response times for the nodes of in-
terest. The RC model generates the equations for the transistor resistances and node capa-
citances from the net-list (sim file). The RP model combines these resistances and capaci-
tances to determine the worst-case node times.

labels effectively remove many pull-down or pull-up paths that do not make physi-
cal sense. In addition to classic example of networks of pass gates, there are also
many such illegal pull-up paths in the and and or planes of dynamic PLA’s. For
example, Figure 5.7 illustrates one pull-up path that does not occur in practice.
This problem arises because of the value-independent nature of critical path
analysis. For this small example, there are 9 separate pull-up paths for node andl
by traversing every combination of transistor pairs from and2 to andl. Therefore,
there are a total of 18 illegal pull-up paths (9 for each of the and nodes) in the
and plane alone for this small example.

Equations for maximum dynamic power are derived by creating an equation
that totals the capacitance of all internal and output nodes (C_driven). The driven
nodes are those that are not declared as inputs. Presumably the power to charge
(or discharge) the input nodes comes from external circuitry.

The units for each of the various input metrics are determined by the selected
electrical model and input values. Given an assignment of units for the input
parameters, the electrical models must adhere to a consistent set of units. That is,
if the resistance values are given in ohms and the capacitance values are supplied
in pico-farads, then the product (all circuit node times) must be in nano-seconds.
However, the electrical model provides several constants that convert between unit

5.3. Deriving the Performance Equations 65

AND plane

anddischarge | '~ 4 - - -+ - - - je" F[‘{ F‘{ :

dis1-C dis1C dis1-

|
i GND

I

(From input buffers) in1 in2 in3 in3 in4

Figure 5.7. False precharge paths in a dynamic CMOS PLA. Due to the value-independent
nature of critical path analysis, certain precharge (and discharge) paths may be considered
that do not make electrical sense. For a fragment of a PLA, one such path is highlighted by
the dashed line. During normal operation, node and1 cannot be pulled high via node and2
since prel will be off and anddischarge will not allow and2 to pull and1l high. There are
9 such unique similar paths from and2 to andl alone. A similar situation (dotted line) in
the or plane is prevented by declaring the proper signal flow direction (s=Cr:In) on
transistor FET.

values. For example, the constant Krn converts between the n-type transistor area
and its resistance. The value and units for Krn are determined such that the
appropriate unit conversion takes place. Since the transistor width and length are
given in lambda units and the transistor resistance is quoted in ohms, Krn’s units
correspond to ohms per square lambda.

5.4. Non-Linear Problem Formulation and the Jacobian Matrix

EPOXY solves the performance problem of interested by constructing and then
solving a non-linear optimization program (NLP). Besides the performance equa-
tions, the partial derivatives are created since many of the optimization techniques
rely on this information.

The augmented Lagrangian algorithm requires data from a Jacobian matrix to
numerically solves the NLP: minf subject to g(x)<0. An entry in the Jacobian
matrix is specified by the partial derivative of each constraint with respect to each

Jacobian input variable: For a NLP with n constraints and m Jacobian

=
axj '
input variables, this results in a n x m Jacobian matrix.

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 66

Since the objective function and constraints are represented by symbolic signo-
mial equations, the derivation of the signomial partial derivative equations is
straightforward. However, since many of these constraints reference only a few of
the Jacobian input variables, the Jacobian matrix has many zero entries. Instead of
creating an explicit matrix, the Jacobian matrix will be represented by the attached
partial derivatives to each of the original equations.

EPOXY’s formulation of the NLP also contains several equations involving
equal signs. Each of these equations could be converted into two constraint equa-
tions (one for an upper-bound and one of a corresponding lower-bound constraint).
However, this approach would unnecessarily increase the size of the Jacobian
matrix and the computation to evaluate it. Instead, the partial derivatives for this
equation are created similar to those for constraint equations. That is, the partial
derivatives for the constraint equations reference the partial derivative results of the
equations with equal signs.

To simplify the code to generate the partial derivative information, EPOXY
restricts the formulation of the objective function as an upper-bound constraint. In
this way, the partial derivative equations for the objective function can be generated
along with the other constraints, without the need for additional code-to handle the
objective function separately.

Rather than store the constraint equations in NLP standard form (g (x)<0),
EPOXY employs a formulation that is better suited for evaluating the performance
of the circuit. Each set of constraints determines the value of a single variable.
For example, these two constraint equations determine the worst-case falling time
on node ¢ are:

tf n[c] >=tr_n[a] + tr_f n[3 n24][c];
tf n[c] >=tr_n[b] + tr_f n[3 n28][c];

In effect, the constraints are viewed as min and max operations:
tf_n[c] = max ((tr_n[a] + tr_f n[3_n24][c]), (tr_n[b] + tr f n[3 n28][c]));

Therefore, this formulation determines performance of the circuit given a particular
assignment of the input variables (transistor sizes and input node times) by simply
evaluating each of the constraint equations.

The conversion of the constraints between a performance evaluation formula-
tion and the NLP standard form is quite easy. For example, the first constraint is
converted to standard form:

tf n[c] >=tr n[a] + tr f n[3_n24][c]; (performance constraint)
tr_nfa] + tr f n[3 n24][c] - tf n[c] <=0; (standard form)

The single variable on the left of the constraint is moved to the right hand side (by
subtraction). This leaves the necessary 0 on one size of the equation. If necessary,
the equation is converted from a upper-bound to a lower-bound constraint by sim-
ply multiplying each side by —1.

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 67

Figure 5.8 shows the gradient equations below each of the performance equa-
tions for the buffered CMOS NAND gate example. The results of the partial
derivative equations are stored in a special variable D. The first subscript for this
derivative variable is the variable name whose value is determined by the
corresponding constraint. The second subscript is an input variable (Jacobian input)
to the constraint equations. Therefore, the results of the partial derivative constraint
equations are stored in a two-dimensional sparse array, whose indexes are the con-
straint equation and Jacobian input variable. Constraints without comments are con-
stant with respect to the Jacobian matrix.

min obj
subject to:
w_f{45_n28] >= Kwminp; (Jacobian constraint 0) Width of p-type fet in nand gate
w_{[3_n28] >= Kwminn; (Jacobian constraint 1) Width of n-type fet in nand gate
w_{[3_n24] >= Kwminn; (Jacobian constraint 2) Width of n-type fet in nand gate
w_f{45_n20] >= Kwminp; (Jacobian constraint 3) Width of p-type fet in nand gate
w_{f{45_nd5] >= Kwminp; Fixed size fets for input inverters
w_f{3 nd5] >= Kwminn; Fixed size fets for input inverters
w_{f{45_n62] >= Kwminp; Fixed size fets for input inverters
w_f[8_n62] >= Kwminn; Fixed size fets for input inverters
h <= Kh; (Jacobian constraint 4) cell height
h >=|_fl3_n28] + |_fi3_n24] + I_f]3_n45] + |_f[3_n62] + 49; (Jacobian constraint 5)
h >= |_fl45_n28] + |_f{45_n20] + I_fl45_n45] + |_H{45_n62] + 49; (Jacobian constraint 6)
w_n >= 00; (Jacobian constraint 7) N-type fet track width
w_n >= -12 + w_{{3_n62]; (Jacobian comstraint 8)
w_n >= -12 + w_f{3_n45]; (Jacobian constraint 9)
w_n >= -12 + w_f{3_n24]; (Jacobian constraint 10)

Diw_n]w_fl3_n24] = 1; Partial derivative of w_n to fet (3,-24) width
w_n >= -12 + w_f{3_n28]; (Jacobian conmstraint 11)

Diw_n]w_fl3_n28]] = 1;
Csd _f[3_n62] = Ksdn * w_{{3_n62]; Source or drain cap. for fet (3,~62)
Cg_f{3_n62] = Kgn * |_f{3_n62] * w_{{3_n62]; Gate cap. for fet (3,-62)
R_fl3_n62] = Km * I_f]3_n62] * (1w_f[3_n62)); Resistance of fet (3,-62)
w_p >= 00; (Jacobian constraint 12) P-type fet track width
w_p >= -16 + w_{[45 n62]; (Jacobian constraint 13)
w_p >= -10 + w_{{45_nd5]; (Jacobian constraint 14)
w_p >= -16 + w_{[{45_n20]; (Jacobian constraint 15)

Diw_p]lw_f{45_n20]] = T{;
w_p >= -20 + w_{{45_n28]; (Jacobian constraint 16)

Dlw_pl[w_f{45_n28]] = f1;
Csd_f{45_n62] = Ksdp * w_f[45_n62];
Cg_f[45_n62] = Kgp * |_f{45_n62] * w_f{45_n62];
R_f45_n62] = Krp * 1_fl45_n62] * (1/w_f{45_n62));
Csd_f[3_nd5] = Ksdn * w_f{3_n45];
Cg_f{3_n45] = Kgn * | f[3_n45] * w_f[3_n45];
R_f3_n45] = Km * I_fl3_n45] * (1w_f{3_nd5));
Csd_f[45_nd5] = Ksdp * w_{[45_n45];

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 68

Cg_f{45_nd5] = Kgp * |_fl[45_n45] * w_fl45_n45];
R_fl45_nd5] = Krp * |_fl45_nd5] * (1/w_f{45_n45]);

Csd_fl[45_n20] = Ksdp * w_f{45_n20]; Width of fet at (45,-20) is an input
Di{Csd_f{45_n20]j[w_fl45_n20]] = Ksdp; So, there’s a partial derivative
Cg_fl45_n20] = Kgp * I_fl45_n20] * w_f{45_n20];
DiCg_f{45_n20])[w_fl45_n20]] = I_f{45_n20] * Kgp;
R_fl45_n20] = Krp * |_fl45_n20] * (1/w_f{45_n20]);
D{R_fl45_n20}llw_f{45_n20]] = =1 " (1/(w_f{45_n20]'w_f{45_n20])) * i_fl45_n20] * Krp;
Csd_f{3_n24] = Ksdn * w_f{3_n24];
D[Csd_f{3_n24]jlw_f{3_n24]] = Ksdn;

Cg_f[3_n24] = Kgn * I_f{3_n24] * w_f[{3_n24];
D{Cg_f[3_n24]]lw_f[3_n24]} = |_f3_n24] * Kgn;

R_fl3_n24] = Km * |_fl3_n24] * (1w_fl3_n24));
DIR_fl3_n24]llw_fl3_n24]] = -1 * (1/w_fi3_n24]'w_f{3_n24])) * |_fi3_n24] * Km:

Csd_f{3_n28] = Ksdn * w_f[3_n28};
D[Csd_f{3_n28]][w_f{3_n28]] = Ksdn;

Cg_f3_n28] = Kgn * I_f[3_n28] * w_f[3_n28];
DICg_f(3_n28]liw_fi3_n28]] = |_f3_n28] * Kgn;

R_f[3_n28] = Km * I_f3_n28] * (1w_f[3_n28));
D[R_fl3_n28]lw_f[3_n28]] = -1 * (1/(w_fi3_n28]"'w_f]3_n28])) * |_fl3_n28] * Km;

Csd_f45_n28] = Ksdp * w_f[45_n28];
D[Csd_f{45_n28]|jw_fl45_n28]] = Ksdp;

Cg_f[45_n28] = Kgp * I_f[45_n28] * w_f{45_n28];

D[Cg_f[45_n28]jlw_{{45_n28]] = | fl45_n28] * Kgp:;
R_fl45_n28] = Krp * |_fl45_n28] * (1/w_fl45_n28]);
D{R_fl45_n28))lw_fl45_n28]] = -1 * (1/(w_f[45_n28]'w_fl45_n28])) * |_f45_n28] * Krp;
R_f_n_i[45_n28]{c]l0] = R_fl45_n28]; Res. of node c to Vdd through fet (45,-28)
D[R_f_n_i{45_n28][c][0])w_f[45_n28]] = D{R_fl45_n28]){w_f{45_n28]};
Cg_n[b] = Cg_f[3_n28] + Cg_f{45_n28); Total gate cap. on node b
D{Cg_nlb]][w_fi3_n28]] = D[Cg_f[3_n28]][w_{[3_n28]);
D[Cg_n[b]lw_fl45_n28]] = D{Cg_fl45_n28])[w_f{45_n28]];
Csd_nfc] = Csd_fl45_n20] + Csd_fl3_n24] + Csd_f{45_n28]; Total source/drain cap. on node b

D[Csd_nic])lw_f{45_n20]] = D[Csd_f[45_n20]}iw_f{45_n20}];
D[Csd_n{clllw_f{3_n24]] = D[Csd_f]3_n24]jlw_f{3_n24]};
D[Csd_n|c])[w_f{45_n28]] = D[Csd_fl45_n28]}iw_fl45_n28]];

R_f_n_i[3_n28][d][0] = R_f{3_n28];

D[R_f_n_i[3_n28][d][0])lw_f[3_n28]) = D[R_f{3_n28]j{w_f[3_n28]];

Csd_n[d] = Csd_f{3_n24] + Csd_f{3_n28];
D(Csd_n[d]llw_f{3_n24]] = D(Csd_f{3_n24])[w_fl3_n24]];
D{Csd_n[d]lw_f{3_n28]] = D{Csd_f[3_n28}j[w_f{3_n28]];

Cg_nfa] = Cg_f{45_n20} + Cg_f3_n24];
D[Cg_n[a]llw_f{45_n20]] = D[Cg_f[45_n20]jlw_f45_n20];
D[Cg_n{a])jw_f[3_n24]] = D[Cg_f{3_n24]|[w_f[3_n24]];

R_t_n_i{45_n20][c}{0] = R_fl45_n20];
D[R_{_n_i[45_n20][c]{0]l(w_{[45_n20]] = D[R_f{45_n20]][w_f{45_n20]];

R_f_n_i[45_n45][b]{0] = R_f{45_n45];

Cg_n[bb] = Cg_f[3_nd45] + Cg_fl45_n45);
Csd_n[b] = Csd_f{3_n45] + Csd_f{45_n45);
R_f_n_i[3_n45][b}[0] = R_f[3_n45];

R_f_n_i[45_n62)[a)[0] = R_f45_n62);

5.4, Non-Linear Problem Formulation and the Jacobian Matrix 69

Cg_njba] = Cg_fl3_n62] + Cg_f{45_n62);
Ced_nja] = Csd_f{3_n62] + Csd_f{45_n62];

w <= Kw; (Jacobian comstraint 17) Cell width
w>= 51 +w.p+wn (Jacobian comstraint 18)
Diw]lw_p] = 1;
Diw]iw_n] = 1;
R_f _n_i[3_n62)a][0] = R_f[3_n62];
a <= Ka; (Jacobian constraint 19) Cell area
a>= 0001 *h’*w, (Jacobian constraint 20)
D(a][h] = 0.001 “w,
Dla}{w] = 0.001 * h;
C_n[a] = Csd_n[a] + Cg_n{a] + Cp_n(a}; Total cap. on node a
D[C_nla]}lw_f[45_n20]] = D[Cg_n[a]}{w_fl45_n20]];

D{C_n[a]}{w_f{3_n24]] = D[Cg_n[a]){w_{{3_n24]);
C_n[ba] = Cg_n[ba] + Cp_n[ba];

C_n[b] = Csd_n[b] + Cg_n{b] + Cp_n[b];
D[C_n[b])w_f{3_n28]] = D[Cg_n[blllw_f{3_n28]];
D(C_n[b])iw_f{45_n28]] = D[Cg_n[b]}{w_fl45_n28]];

C_n[bb] = Cg_n{bb] + Cp_n[bb];

C_n[d] = Csd_n[d] + Cp_nl[d];
D[C_n[d]][w_f{3_n24]] = D[{Csd n[d]liw_f{3_n24]]; - -
DiC_n(d]]iw_f{3_n28]] = D{Csd _n[d]}[w_f{3_n28]};

R_f_n_i[3_n24][c][0] = R_f[3_n24] + R_f_n_i[3_n28](d}[0];
DIR_f_n_i[3_n24][c]lO]llw_f[3_n24]] = D{R_f{3_n24]j[w_f{3_n24]];
DIR_f_n_i[3_n24][c][0]]lw_f(3_n28]] = D[R_f_n_i[3_n28)d)[O]}iw_{i3_n28]];

C_nfc] = Csd_n[c] + Cp_n|c];
D[C_n{c]}iw_f{45_n20]] = D[Csd_nl[c])iw_{{45_n20]];
D[C_nic]liw_f[3_n24]] = D{Csd_n[c]l[w_f{3_n24]];
D[C_n|[c]){w_f{45_n28]] = D[Csd_n|c]|[w_f{45_n28]};

C_driven = C_n[d] + C_nlc] + C_n[b] + C_n{a]; Total cap. this circuit drives
D[C_driven][w_f[45_n20]] = D[C_nfa]lfw_fl45_n20]} + D{C_n{c]]w_f{45_n20]];
D[C_driven]lw_f[3_n24)] = D[C_nfajliw_fl3_n24]] + D{C_n[c])iw_f[3_n24]] + D[C_n[d]llw_f{3_n24]];
D[C_driven}iw_f{3_n28]] = D[C_nib]liw_f3_n28]] + D[C_n[d]]w_f{3_n28]];
D[C_driven]iw_f{45_n28]] = D[C_n[bJl[w_fi45_n28]] + D[C_n[c]]lw_{{45_n28]];

tf_f_n{45_n20}{c] = C_n[c] * R_f _n_i[45_n20][c][O}; Rising delay on node c due to falling input
D[tf_f_n{45_n20][c]]lw_f[45_n20]]= D{R_f_n_i[45_n20][c}[O]]lw_fl45_n20]] * C_nc];to fet (45,~20)
+ DIC_n[c]llw_f{45_n20]] * R_f_n_i[45_n20]ic][0];
Ditf_f_n{45_n20][c]llw_f{3_n24]] = D{C_n[c]lw_f{3_n24]] * R_f_n_i[45_n20}[c][0];

D{tf_f_n[45_n20][c]liw_f{45_n28]]= D[C_nlc]liw_{{45_n28]} * R_f n_i[45_n20][c][O];
tt_f_n{45_n28}{c] = C_nc] * R_f_n_i[45_n28}[c}{0};

D[tf_f_n[45_n28}[c]lw_f{45_n20]]= D[C_n(c]liw_f{45_n20]] * R_{_n_i[45_n28][c][O0];

D{tf_f_n[45_n28][c]jiw_f(3_n24]] = D[C_nc]lw_f[3_n24]] * R_t_n_i{45_n28](c](O];

DI[tf_f_n[45_n28][cljiw_f[45_n28]]= D{R_f_n_i[45_n28][c][O]]iw_f[45_n28]] * C_nic]
+ DIC_n[c]lw_fl45_n28]] * R_f_n_i(45_n28](c][0];

r_f_n{3_n24]lc] = C_n[c] * R_t_n_i[3_n24]{c][0}; Falling delay on node ¢ due to rising input

Ditr_f_n[3_n24]{c]]lw_f{45_n20]] = D{C_n[c)}iw_f{45_n20]] * R_f_n_i[3_n24)[c][O]ito fet (3,-24)
Ditr_f_n{3_n24]ic]llw_f[3_n24]] = D[R_f_n_i[3_n24][c][O]lw_f[3_n24]] * C_n[c]

+ D[C_n[c]lw_f{3_n24]] * R_f n_i[3_n24](c][0];
Ditr_f_n[3_n24][c]llw_f[3_n28]] = D[R_f_n_i[3_n24][c][O]}lw_f{3_n28]] * C_n[c];
Ditr f ni3_n24][c]liw_f[45_n28]] = D[C_n[c]liw_f{45_n28]] * R_{_n_i[3_n24]c][0];

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 70

tr_f n{3_n28J[c] = C_nic] * R_t _n_i[3_n24}ic][0] + C_n[d] * R_f_n_i[3_n28}{d}{0];
Ditr_f_n{3_n28][c]}{w_f{45_n20]] = D[C_n[c]liw_f{45_n20]] * R_f_n_i[3_n24jic}{0];
Ditr_t n{3_n28]iclilw_fi3_n24]] = D[C_n(d])iw_f{3_n24]] * R_{_n_i{3_n28}{d)[0)
+ D[R_f_n_i[3_n24]{c]{O]lw_f{3_n24]] * C_nic]

+ D[C_n[cllw_fi3_n24]] * R_{_n_i{3_n24jic}[0];
Ditr_f_n{3_n28][c])w_fi3_n28]] = D[R_f_n_i[3_n28](d]O]Jiw_f]3_n28]] * C_n{d]
+ D[C_n[d]]iw_fi3_n28]] * R_f_n_i[3_n28)(d][0]

+ D[R_f_n_i{3_n24][c][0])lw_fi3_n28]] * C_n[c];
Ditr_f_n[3_n28][c]}iw_f{45_n28]] = D[C_n[c]liw_f{45_n28]] * R_f_n_i[3_n24jic][0];

tf_f_n[45_n45][b] = C_n[b] * R_f_n_i{45_n45](b]0];
DItf_f_n[45_n45][b]]w_f[3_n28]} = D[C_n(b]liw_f[3_n28]] * R_f n_i{45_ndS]{bj0];
D{tf_f_n[45_na5][b]jiw_fl45_n28]}= D[C_n{b]liw_f[45_n28]] * R_t_n_i[45_n4S}(b][O);

tr_f_n[3_nd5][b] = C_n[b] * R_f_n_i[3_n45][bj{O};
Ditr_f_n[3_nd5]b]Jw_f[3_n28]] = D[C_n[b]lw_f[3_n28]} * R_f n_i{3_ndS][b](0};
D{tr_f_n[3_na5][b]jiw_f{45_n28]] = D[C_n[b]]lw_f[45_n28]] * R_f_n_i[3_n4S)[b][0];

tf_f_n[d45_n62]la] = C_nfa] * R_f n_i[45_n62]a][0];
D{tf_f_n[45_n62][a]lw_fl45_n20]]= D{C_n(a]llw_f{45_n20]] * R_f n_i[45_n62][a}{0);
D{tf_f_n[d5_n62][a]]w_f[3_n24]] = D[C_n[a]llw_f[3_n24]] * R_f_n_i[45_n62][a}{0);

tr_f n[3_n62)fa] = C_nfa] * R_f_n_i[3_n62){a][0];
Ditr_f_n[3_n62][a]}iw_f{45_n20]] = D[C_n{al}iw_fi45_n20]] * R_f_n_i{3_n62)a][0];

Ditr_t_n{3_n62](a]Jw_fi3_n24]] = D[C_nfa]llw_f(3_n24]} * R_f n_i[3_n62}{aliO];

tf_n[a] = tr_n{ba] + tr_f_n[3_n62][a]; Falling time for node a due to rise
Dtf_n[a]liw_f{45_n20]] - = D[tr. £ n{3_n62][a]][w_fl45_n20]]; .. .on node ba .
D[tf_n[a]llw_f{3_n24]] = D[tr_f_n[3_n62][a]}fw_{{3_n24]];

tr_n{a] = tf_nba] + tf_f n({45_n62](a}; Rising time for node a due to fall
D(tr_n[a]}{w_f{45_n20}} = D[tf_f_n[45_n62]{a]l[w_f{45_n20]]; on node ba

Dltr_n[a]){w_fl3_n24]] = D[tf_t_n[45_n62][a]llw_f[3_n24]];

#f_n{b] = tr_njbb] + tr_f_n{3_nd5|[b];
D{tf_n[b]}w_fl3_n28]] = D[tr_f_n[3_n45][b]jlw_f(3_n28]];
DItf_n[bljiw_fl45_n28]] = Dftr_f_n[3_ndS]{b]J{w_fl45_n28]];

tr_n{b] = ti_n[bb] + tf_f_n[45_n45][b];
Ditr_n{b]lw_fi3_n28]} = D[tf_f_n[45_n4S][bJ]lw_f|3_n28]];
Ditr_n[b]lw_f|45_n28]] = D[tf_f_n[d5_nd5]{b]l[w_f45_n28[};

p <= Kp; (Jacobian constraint 21) Total dynamic power
p >= 12,5 * C_driven; (Jacobian comstraint 22)

Dip]iw_f{45_n20]) 12.5 * D[C_driven]{w_f{45_n20]);

Dipllw_f{3_n24]] 12.5 * D{C_driven]iw_f[3_n24]};

D{p]lw_f{3_n28]] 12.5 * D[C_driven](w_{{3_n28]];

D(pliw_f{45_n28]] 12.5 * D[C_driven]iw_{{45 n28]};

t_nfc] >= tr_nfa] + tr_f n{3 n24)[c]; (Jacobian constraint 23)
D{tf_n[c]l[w_f{45_n20]] = Djtr_f_n[3_n24][c]liw_{{45_n20]] + Ditr_n{a]]iw_f[45_n20]];
Dit_nlc]liw_fI3_n24]] = Ditr_t_n[3_n24][c]]lw_f[3_n24]] + Ditr_n[a]}iw_f[3_n24]);
Ditf_nic]lw_f[3_n28]] = D{tr_f_n[3_n24][c]][w_f[3_n28]};
D{tf_n{c]lfw_f{45_n28]} = Dftr_f_n[3_n24][c]liw_fl45_n28]);

tf_nic] >= tr_n[b] + tr_f n[3_n28B][c]; (Jacobian constraint 24)
Dftf_n{c])iw_f{45_n20] = Dftr_f_n[3_n28][clliw_f{45_n20]];
D{tf_n{c]llw_f{3_n24]] = D[tr_f_n[3_n28][c]l{w_{[3_n24]];
Ditf_n{c]liw_fi3_n28]] = D{tr_f_n{3_n28][c]liw_f{3_n28]] + Dtr_n|bljiw_f{3_n28]];
D{tf_n[c]lfw_f{45_n28]} = Dftr_f_n[3_n28]{c]liw_f{45_n28]] + Ditr_n[b]}liw_f{45_n28]];

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 71

tr_nic] >= tf_n{a] + t_f_n{45_n20][c]; (Jacobian constraint 25)

Ditr_nifc]l{w_f{45_n20]] = D[tf_f_n[45_n20][c]}{w_fi45_n20]} + Ditf_n[a]][w_f45_n20]);
Ditr_n[clllw_f[3_n24]] = D[tf_f_n[45_n20])[c]){w_f{3_n24]] + D(tf_n[a]llw_f{3_n24]};
D{tr_nic]}iw_f{45_n28]} = D[tf_f n{45_n20][c]){w_{{45_n28]};

tr_nfc] >= tf_n[b] + ff_f n{45_n28][c]; (Jacobian constraint 26)
D[tr_nic]liw_fl45_n20]] = D[tf_f_n[45_n28}{c])iw_f{45_n20]];

D(tr_n[c]J[w_f]3_n24]] = D[tf_{f n[45_n28)[c]l[w_f[3_n24]);
Ditr_n[c]l[w_fi3_n28]] = D[tf_n[b]jiw_{[3_n28]};

Ditr_n[c]llw_f{45_n28]] = D[tf_f n[45_n28]c]][w_f{45_n28]] + D{tf_n[b]}{w_fl45_n28]};
t <= Kt; (Jacobian constraint 27) Delay of the entire circuit
t >= tr_n[c]; (Jacobian constraint 28)

Dltlir_n[ell= 1;
t >= tf_nfc}; (Jacobian constraint 29)

Ditlitf_n[c]]= 1;
obj>=h*"Fh+w*'Fw+t*Ft+p*Fp+a” Fa (constraint for objective function)

Dlobj]lh] = Fh;

Dlobjjlw] = Fw;

Dlobjlit] = Ft;

Dlobjlle] = Fp;

Dlobjlfa] = Fa;

Figure 58. NLP formulation for the buffered CMOS NAND gate. EPOXY generates
these performance -equations and partial derivative equations from the input files to
formulate the performance design problem as a non-linear program. If an equation or
constraint references an Jacobian input variable, the corresponding partial derivative
equations follow (D[...][...] = ...). These equations (and partial derivative equa-
tions) are ordered such that they may be consecutively (linearly) evaluated. That is, a
variable’s value is defined before it is needed. Each constraint equation is assigned a
unique number corresponding to the first entry in the sparse Jacobian array:
J[constraints}[inputs].

The partial derivative variables, D{ ...][...], do nor exactly represent the
sparse representation of the Jacobian matrix because the original equations were not
in standard NLP form. However, the creation of a Jacobian matrix from these vari-
ables is also straightforward. The technique is similar to the conversion of the ori-
ginal performance equations to NLP standard form. For each of the performance
equations, the partial derivative for the left-hand side variable should be added (the
standard D[x][x] = 1; equation). The partial derivative results of the corresponding
upper-bound constraint are negated since the original equation would have been
multiplied by —1. The code that determines the search direction modifies the partial
derivative data to conform with the standard NLP formulation.

The size of the Jacobian matrix is the number of constraints times the number
of Jacobian inputs. Figure 5.8 provides the unique numbering for the constraint
equations. Table 5.2 describes the Jacobian input vector for the Jacobian matrix.

EPOXY also provides several statistics when circuits are evaluated. Table 5.3
describes several circuits and the number of constraint equations and variables
created to evaluate their performance and Jacobian matrix. The "eqs" entry in the
table counts each constraint equation separately. For example, the w_n variable
requires 5 performance equations to determine its value for the buffered NAND
example (bnand.1). The Jacobian matrix is represented by deriving the partial

Py

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 72

The sparse Jacobian matrix: J {constraint}{input]
Jacobian input vector:
Input | Variable Description

0 w_p extra width needed by the channel of p-type transistors
1 w_n extra width needed by the channel of n-type transistors
2 h overall cell height
3 w overall cell width
4 t overall response time for the circuit
5 p maximum dynamic power
6 a overall cell area
7 tr_n[c] worst-case rising time for node ¢
8 tf n[c] worst-case falling time for node ¢
9 w_fl45 n20] | width of p-type transistor at (45, —20)

10 w_f[3_n24] width of n-type fet at (3, —24)

11 w_f[3 _n28] width of n-type fet at (3, -28)

12 w_f[45 n28] | width of p-type fet at (45, —28)

Table 5.2. Input vector for the Jacobian matrix. The entries for the input vector of the Jacobi-
an matrix are described in this table. Each Jacobian input is assigned a unique number by
EPOXY. Note that several intermediate variables (in the performance analysis) are inputs
to the Jacobian matrix (e.g.: w_p). Therefore, the Jacobian input vector can include many
more variables than the performance analysis input vector. The previous figure provides
the numbering for the constraints.

Circuit Statistics

Circuit | Nodes Fets | Performance Jacobian matrix

vars eqgs | vars eqs | Jin cnstr. %nzle
bnand.1 8 8 113 94 9 103 | 13 30 26.4
inv.8 11 16 191 169 373 387 21 44 41.9
inv.10 13 20| 231 207 513 531 25 52 40.8
rand20 16 20| 236 211| 280 309 | 25 60 20.6
adder.1 22 34| 359 360] 898 1242 | 59 129 16.3
adder.§ 131 224 | 2249 2366 | 5678 7953 | 437 947 0.2

Table 5.3. EPOXY Circuit Statistics. This table gives the number of nodes and transistors
(fets) for several example circuits. EPOXY constructs a number of equations (eqs) and
variables (vars) to evaluate circuit performance using the worst-case distributed RC electri-
cal model and the standard-cell area model. Partial derivatives (variables and equations)
for these performance equations are derived to represent the Jacobian matrix. The table
describes the size of the Jacobian matrix by the number of Jacobian input variables (Jin)
and the number of constraints (cnstr.). The last column is a measure of the sparsity of the
Jacobian matrix as the maximum percentage of entries (%nzJe) that can be non-zero (i.e.,
have defining equations).

5.4. Non-Linear Problem Formulation and the Jacobian Matrix 73

derivative equations from the performance equations. The number of variables and
equations to represent the Jacobian matrix are also listed. Next, the number of
Jacobian inputs and constraints describe the size of the Jacobian matrix. The last
column illustrates that only a small number of entries in the Jacobian matrix can
assume a value other than O (i.e., the Jacobian matrix is sparse). Circuits that con-
tain inverters require fewer constraint equations than circuits with multi-input gates.
Therefore, circuits with more inverters require more equations to represent a smaller
sparse Jacobian matrix. The larger the circuit, the sparser the matrix will become.

The TILOS-style algorithm requires different partial derivative information. As
in circuit analysis, the effects on upper-bound constraints by a change on the input
variables must be determined. The lower-bound constraints are eliminated by the
max operation. Therefore, the information for the TILOS-style algorithm is derived
from the partial derivative information in the Jacobian matrix by using the chain
rule. For example, the partial derivative of the cell width with respect to one of
the input variables, the width of the transistor at (3, —24), is:

ow - ow awn channel
ana at [3,_24] W, channel aert at [3,—24]

In C-style notation:
D[w]{w_f[3 n24]] = D[w][w_n] * D[w_n][w_f[3 n24]]

5.5. Handling Sequential Circuits

The previous section presented equations that determine the performance of a
buffered CMOS NAND gate. These equations were sequentially ordered so that
they can be quickly re-evaluated by a single pass. However, if the circuit contains
feedback, these equations cannot be linearly ordered. In addition, the partial deriva-
tive equations cannot be determined by a single evaluation pass either.

Timing analyzers solve this problem by traversing the feedback circuitry
several times, until the response times on all the nodes can be fixed. In particular,
Crystal propagates critical delay paths from the input nodes in a depth first manner.
Delay paths are restricted to traversing circuitry only once. A critical path is ter-
minated if a previous critical path can set the node response times to a larger value
(a later response time). In this way, signals traverse the feedback circuitry at most
once.

Crystal’s restriction that critical paths can traverse the same circuitry at most
once makes physical sense as well. Multiple cycles through the same circuit indi-
cate the presence of an oscillator.

Rarely do performance optimization tools consider circuitry with feedback
because of the implementation complexity in resolving feedback and the additional
computation involved in evaluating the circuit performance when compared to com-
binational logic. While not much can be done to reduce the inherent computation,
EPOXY’s use of equations helps resolve the implementation complexity. Circuits
with feedback will produce equations that reference each other cyclically. The

5.5. Handling Sequential Circuits 74

algorithm within EPOXY removes cycles of equations by replacing them with
another set of equations that involve traversing all of these equations at most once.
Since EPOXY deals with feedback at a high level of abstraction (as equations),
EPOXY analyzes circuits with feedback independent of the electrical models

chosen.
DD e S
b5>ﬁ f

Vdd
—dlas.1n dles9) Hles.29 Hlassy —dlas 59 —dlas 6
a c | d e | f
W -
6,13 —— @3, 63) J——
b
nl n2
—le.17 6.2 YHlesy “—le)
GND :)

Figure 5.9. Logic and circuit diagrams for an RS-latch and a buffer. The upper logic di-
agram shows an NAND gate implementation of a RS-latch with two extra inverters (a
buffer) inserted before one of its outputs. The lower circuit diagram describes a CMOS im-
plementation of this logic diagram using static logic gates. The node names are given in
bold and the location of the lower left hand comer for each transistor in the layout is given

by (x, y) pairs.

The details of how the performance equations for circuits with feedback are
modified is best illustrated by another example. Figure 5.9 shows an RS-latch with
a buffer inserted before one of its outputs. The inverter pair was inserted to
demonstrate the implications (additional equations) of simple circuit modifications
on a design with feedback. Constraints for the overall response time ¢ are added.
The response time is the maximum of the rise and fall times on nodes e and f.

While examining all the delay paths through the portion of the circuit that
involves feedback, the following potential critical paths result as illustrated in Fig-
ure 5.10. All critical paths through the original circuit are represented on this criti-
cal path diagram. Equations that define the values for variables in the graph are

5.5. Handling Sequential Circuits 75
tr_g[a] tf_g[c} tr: g[d] t{ n[e]
o ey
tf n(b] tr_aff]
tr_n(a] tf n[c][0] tr n[d][0] tf n[e][O]
tr nfa] tf n[c] & n[d tf nfe]) o o o
° >0 ° \
\I o >
o tf_n[b] tr_n[f][0] ot
tf n[b] tr_nf} ot tf n[a] tr n[c] tf n[d] tr nfe]
tf nfa] tnlc] ¢ nfd t nfe] ° -0 ° >
(o} g°) +0
\I Lo} >
o tr_n[b] tf_n[f]
tr_n[b] tf_n(f] tf nfa] tr n[c][0] tf n[d][0] tr_n[e][0)
L. . . © (o] o (o]
a.) Original circuit
(o] o
tr_n[b] tf_n[f][0]
b.) Circuit delay times
tr n[a) tf nfc] tr_n[d] tf_nfe] tf n[c] tr_n(d] tf nle]
o)
tr_n[f] tf_n[b] tr_nf]
° Py
tf n(f] tr_n{b] tf nl[f]

¢.) Circuit hold times

Figure 5.10. Critical delay paths through the RS-latch and buffer. These graphs illustrate ail
of the critical paths through the RS-latch and buffer. A node in the original circuit pro-
duces two nodes in these graphs corresponding to the worst-case rising and falling times.
The arcs show the signal flow within the circuit. They also indicate that the equation for
the variable at the head of the arc references the variable at the tail of the arc. (E.g.: the
equation for tf_n[c] references the variable tr_n{a].) The graph for the original circuit (part
a) contains two cycles. These cycles are removed by traversing each node only once for
each critical path (part b). The 4 cycles that are removed represent the hold-time require-
ments on the RS-latch and buffer circuit (part ¢).

replaced by another set of equations that represent all the critical paths as illustrated
in part b. The variable ¢ is assigned the worst-case response time for all paths
through the circuit with feedback by traversing each circuit component no more

than once.

Part ¢ contains the critical path cycles that were removed from the

graph for part b. These cycles represent the hold times necessary to latch a value

into the RS-latch and buffer.

Currently, EPOXY does not generate the equations

for the hold times, since the overall delay through the additional circuit is much
larger than the hold time for the latch.

5.5. Handling Sequential Circuits

Equations for the expanded

critical delay paths.

Equations for the critical delay paths
in the original circuit.

tf_nlc] = tr_nfa] + tr_f n[3_17][c];
ff_n[c] = tr_nff] + tr_f n[3 13][c];
tr_nfd] = tf_n[c] + tf_f n[45_24]d];
tf_nfe] = tr_n[d] + tr_f_n[3_52]];
tr_nif] = H#_nle] + tf_f_n[45_59](f];
tr_nf] = tf_nb] + #_f_n[45_67][f];
tr_n[c] > t_n[a] + tf_f n[45_17]c];
tr_nfc] = tt_n[f] + tf_f_n{45_9]c];
tf_n(d] = tr_nfc] + tr_f_n[3_24){d]
tr_nfe] = t_n[d] + ti_f n[45_52]e];
tt_n[f] > tr_nle] + tr_f n[3_59|[f];
tf_nif] > tr_nb] + tr_f_n[3_63]f];
t < Kt;

t > tr_nfe];

t 2 tf_nfe];

t 2> tr_nff];

t > tf_n[f];

tr_nlc] = tf_n[a]
tf_n[f][0] = tr_n[b]
tr_n[c](0] = t#_n[f])[0]
tr_n[c][0] = tf_n[a]
tf_n(d] = tr_n[c]
tr_nfe] = tf_n[d]
tf_n[d][0] = tr_n{c][0]
tr_n[e][0] = tf_n[d][0]
tt_n[f] = tr_n[b]
tt_nff] = tr_nfe]
tf_nfc] = tr_n[a]
tr_n[f][0] = tf_n[b]
tf_n{c){0] = tr_n{f][0]
tf_n{c)[0] = tr_n[a]
tr_n[d] = tf_n[c]
tf_nfe] = tr_n[d]
tr_n[d][0] = tf_n[c]{0]

| tf_n{e]{o] = tr_n(d][0]-

tr_n[f] 2> tf_n[b]
tr_nff] 2 tt_nle]

IA

Kt;

2 tr_nfe);
2 tr_n[e][0];
tf_nle}];
tf_n[e][0];
tr_n[f];
tt_n{f];

— e e e
I

VIV IV IV

tf_f_n[45_17][c]; |

+

+ tr_f_n[3_63]f];
+ tf_f_n[45_9]c];
+ tf_
+

f_n{45_17][c];

tr_f_n[3_24](d];

+ t_f_n[45_52][e};

+ tr_f_n[3_24][d];

+ tt_f n[45_52][e];

+ tr_f _n[3_63]f];
+ tr_f_n[3_59]f];

+ tr_f_n[3_17}[¢c];

+ tt_f n[45_67][f];
tr_f_n[3_13][c];
tr_f_n[3_17][c];
tf_f n[45_24][d];
tr_f_n[3_52][e];
tf_f_n[45_24](d];
tr_{_n[3_52]fe];
tf_f |

tf f

<+
+
+
+
+
+
+
+

Figure 5.11. Equations for the critical path diagrams. The delay equations are listed for the
critical delay paths in the original RS-latch and buffer circuit and the equivalent non-cyclic
replacement. An additional numerical subscript is added to the new variables to differen-
tiate between each of the unique critical paths. Note that the resuitant expanded equations

are ordered for sequential evaluation.

Figure 5.11 describes the equations that correspond to the critical delay graph
of the original circuit with feedback (Part a of Figure 5.10) and the replacement
equations for the non-cyclic critical paths through the circuit (Part b of Figure
5.10). These are the actual equations produced by EPOXY. The extra numerical
subscript is used to differentiate between each of the critical paths.

76

Note that a

few additional equations resulted from removing the cycles from the original circuit.

However, the same delay times inherent to the gate, as represented by the tf f n[][]

and tr f n[][] variables, are still referenced by all critical path equations.

5.5. Handling Sequential Circuits 77

5.6. Evaluating the Performance Equations

The key to delivering rapid circuit analysis is a mechanism for providing quick
evaluation of the underlying symbolic performance equations. Once the perfor-
mance equations are created within EPOXY, they are ordered for sequential evalua-
tion. If the equations cannot be ordered, the cycle of referenced equations
representing the feedback path is identified and removed as described in the previ-
ous section. The result is a set of symbolic equations that can be sequentially
evaluated. The equations are ordered by rebuilding the linked list of all equations.

EPOXY can also evaluate the symbolic equations incrementally. If a few
input variables change, EPOXY can evaluate only those equations that can be
effected. Incremental evaluation entails additional computation for recursively
traversing the data structure that indicates every equation that references the
modified variable. Therefore, if a large number of inputs is changed, evaluation of
all the equations is faster.

Even within the realm of incremental evaluation, EPOXY supports two dif-
ferent techniques. The first is best suited for updating the equations as a result of
a change in a very few input variables. This technique recursively traverses the
data structure that lists the equations that reference this variable (a reference list).
The process terminates when no other equations need to be examined. If the
equation’s value is not modified, the search process is also terminated. Since the
basic structure of node delay times involves a max operation, a change in an input
variable does not often cause a change in the output node delay time. For rapid
circuit evaluation, EPOXY provides incremental evaluation that is both structural
and value dependent.

EPOXY’s other incremental evaluation technique efficiently supports changes in
a several variables. When variables are modified, the equations that reference this
variable are marked. After all the variables values are modified, all equations are
examined sequentially (as previously ordered). If the equation is marked, it is
evaluated. If the result changes the variable on the left-hand side of the equation,
the equations that reference this variable are also marked. Since all equations are
sequentially ordered, the referenced equation must follow the recently evaluated
equation. The present equation is then unmarked (since is has been updated), and
the next equation is examined. If this equation is unmarked, it is ignored. There-
fore, this incremental evaluation technique is also both structural and value efficient,
since setting and testing the equations marks involves little overhead and only a
single pass is needed to examine the effected equations.

Since EPOXY stores the symbolic equations in a format more suitable for
evaluating the circuit performance, EPOXY provides another set of evaluation rou-
tines needed by algorithms that solve non-linear programs (NLP). The data values
that the NLP formulation requires differ from those for performance evaluation.
Therefore, EPOXY evaluates the equations differently to account for the fact that
the symbolic equations and their gradients were not derived in NLP standard form.
That is, evaluation of each constraint equation results in a slack value (g(x)) rather
than setting the variable on the left hand side of the constraint.

5.6. Evaluating the Performance Equations 78

Each of the equation evaluation techniques in EPOXY are listed in Table 5.4.

Evaluation techniques Evaluation modes

Circuit analysis All equations

Circuit analysis and gradient evaluation Incremental, one input changes
NLP constraint and Jacobian matrix evaluation | Incremental, several input changes

Table 54. Equation evaluation techniques and modes in EPOXY. Three basic evaluation
techniques are available for circuit analysis and NLP problems in EPOXY. For each of
these techniques, three evaluation modes provide rapid evaluation.

During the course of evaluating the equations to determine circuit performance,
the equation that sets the value of the constraint must be determined (which equa-
tion is the smallest upper-bound constraint or the largest lower-bound constraint).
The constraint or constraints that determine the value of the variable are marked as
limiting. Since the equations relating the input response times to output response
times form a forest of potential delay paths, a critical delay path is simply the set
of connected limiting constraints from an input to an output delay equation (z_...[][]
2 ...). However, the critical paths are more easily identified by traversing the limit-
ing equations from a limiting output to a limiting input, since reference lists are
maintained for all variables.

Limiting constraint marks are generated as a simple byproduct of evaluating
the circuit response time. Therefore, critical path information is easily provided.
Circuit modification techniques, such as those presented in Chapter 4, use critical
path information to determine the region of a circuit most suitable for structural
changes.

One advantage of the C-style representation of the symbolic equations is that
these equations can be compiled into an object module for even faster evaluation.
The following section compares the evaluation of the internal data structures of
EPOXY with the compiled equations.

5.7. Space/Time Tradeoff

Most of the computation in circuit optimization involves evaluating the circuit
performance and gradient equations. Some programs spend unnecessary time in
dynamically allocating and freeing data structures for each circuit analysis. Instead,
EPOXY builds a static set of performance equations for the circuit by constructing
internal data structures. The models for EPOXY can be built dynamically (once)
and interpreted or compiled to form an executable binary. The decision to stati-
cally derive the equations instead of a dynamic derivation results in an increase in
storage for a decrease in evaluation time.

The next table, Table 5.5, shows the execution time savings and extra storage
requirements for determining the worst-case delay times (circuit analysis) for several
circuits. The listed execution times are for simulating each static CMOS circuit
1,000 times, using Crystal and EPOXY’s full equation evaluation mode.

5.7. Space/Time Tradeoff 79

A Comparison of Crystal and EPOXY

Circuit ||Crystal EPOXY

interpret compile

build run | total build cc run | total
kby sec llkby| sec sec | sec |kby| sec sec sec | sec
inv.8 48 754) 46| 09 38.3| 39.2) 33| 1.1 82 3.0] 123
inv.10 || 56 97.5| 54} 1.1 47.4| 48.5)f 33| 14 9.8 3.7| 149
rand.20|| 32 87.4(55| 1.4 48.2} 49.6| 41| 1.8 108 3.9| 165
adder.1|| 32 360.6| 88| 2.7 86.9| 89.6| 41| 3.4 214 7.7| 325
adder.8{/104 7328 {441| 7.6 508.6(516.2{115|11.6 151.7 45.9{209.2

Table 5.5. Storage requirements and execution time savings. All times (sec) are for a Sun-
3/140 with a 68881 co-processor and 8Mbytes of memory runing Sun UNIX 4.2 Release
3.2. Crystal only lists the maximum heap storage for the circuit. Therefore, the number of
kbytes reported is rounded to the nearest block size. The interpreted version gives the allo-
cated storage (kbytes) for the circuit and the time to build (build) and run (run) the exam-
ple. The compiled .version produced by EPOXY gives the size of the executable binary
(kbytes), time to produce the C file (build), time to compile (cc) and run (run) the program.
The total running times (total) are listed for the compiled and interpreted versions.

Since Table 5.5 shows that EPOXY always runs faster than Crystal (average of
56 times faster for compiled and 5 times faster for interpreted), the decision to stat-
ically derive the equations is indeed justified. It also shows that compiling the per-
formance equations is always desirable even when the construction (build) and com-
pile (cc) times are included. Compile time can be substantially reduced if object
modules are available for frequently used circuits. However, the current version of
EPOXY produces a C program that does not support changes in the circuit struc-
ture.

5.8. Implementing Circuit Modifications

EPOXY considers local modifications to the circuit structure to improve the
overall performance or meet some difficult failing constraint. Modifications are
made by directly manipulating the data structures associated with the circuit net-list
and symbolic equations. Although these circuit changes are quick, unfortunately
they are tied to the implementation technology, MOS.

Several support routines ease the difficulty in implementing the effects of cir-
cuit modifications on the underlying net-list and symbolic equation structures. For
example, a buffer is inserted into a circuit by creating new nodes and transistors.
Then the RC_model and RP_model routines are used to create the appropriate sym-
bolic equations for these nodes and transistors. The new nodes are given sub-
scripted versions of the original node name since these new nodes represent the
same logical value as the original node. A similar technique is used in the creation
of new transistors. Therefore, the naming convention helps locate inserted circuitry.

5.8. Implementing Circuit Modifications 80

After the symbolic equations for the new circuitry are created, the partial
derivative equations are also generated. Then these are inserted into the linked list
of equations so they will be evaluated in the correct order.

Implementing the effects of splitting transistors is also straightforward. A new
transistor is created with an additional subscript (unique integer). The additional
subscript denotes that this transistor resulted from a circuit modification. Equations
that reference the transistor’s parameters (width and length) are replicated. The
new variables names are then substituted for the original transistor’s parameters; the
corresponding references lists are also updated to reflect this substitution. Then the
resulting new equations are simply placed after each of the original equations since
these original equations were correctly ordered.

Reordering of transistors within logic gates requires the same types of opera-
tions as in the last two circuit modifications. Transistors are moved individually,
because the changes are localized to the corresponding terms within a set of equa-
tions. In addition to the performance equations, the terms for the partial derivative
equations are also moved.

5.9. Conclusions

This chapter illustrates many of the advantages of representing design perfor-
mance by a set of static symbolic signomial equations. EPOXY automatically gen-
erates these equations from a net-list and layout. Then the selected optimization
techniques solve the resulting non-linear optimization problem as specified by the
user supplied parameter file. The design may be improved further by altering the
circuit structure. The symbolic representation of circuit performance offers many
advantages to each part of EPOXY. The most significant of these are:

1. The performance and derivative equations are evaluated rapidly.

2. The performance and derivative equations can be compiled for even faster
evaluation.

3. Two forms of model independent incremental evaluation of the equations
can be selected.

4. A user can specify the objective function, constraints and additional equa-
tions.

5. Electrical models are easily substituted.

6. Circuits with feedback are analyzed independent of the selected electrical
model.

7. Critical paths, used by circuit modification techniques, are easily identified
as a byproduct of symbolic performance evaluation.

8. The equations for the sparse Jacobian matrix are analytically derived.

Most of the computation for improving a design’s performance involves
evaluating the circuit performance and corresponding gradient equations. Crystal
dynamically allocates the data structures for evaluating one RC path. Once this
path is evaluated the data structures are again freed. Alternatively, EPOXY creates
the symbolic equations statically that represent the circuit performance. When these

5.9. Conclusions 81

equations are interpreted, EPOXY is (on average) 5 times faster than Crystal.
However, when these equations are compiled, EPOXY achieves an average speedup
factor of 56 over Crystal. For the present implementation, a circuit with 1000
transistors adequately fits within 8 Mbytes of memory on a Sun-3/140 workstation.

Alternatively, these equations can be compiled into an optimized object module
for each circuit. When common circuit blocks are used, the compiled equations
can be rapidly evaluated since the object module can be executed directly.

Abstracting circuit performance by symbolic equations also reduces computa-
tion. Two incremental evaluation techniques can be selected for further speed
improvements. These incremental techniques are both structural and value sensitive.
Any update in the input variables triggers evaluation of only the affected equations
thereby providing model independent incremental analysis. The other incremental
technique is more efficient when updating equations in response to a change in
several variables.

Most transistor sizing programs provide a fixed electrical model with a fixed
optimization problem as defined by a predetermined objective function and con-
straints. This approach restricts a user from attaining the most desirable implemen-
tation. Since EPOXY formulates the non-linear program using a general signomial
equation abstraction, a user can specify the objective function and additional con-
straints and equations.

Since all electrical models implemented within EPOXY produce symbolic
equations, these electrical models are easily substituted. Effects of modeling accu-
racy on the resulting optimization are easily evaluated. Therefore, the tradeoff
between model complexity (equation size) and numerical accuracy can be measured.

The performance of circuits with feedback are evaluated independent of the
chosen electrical model. Feedback is removed by replacing the original (cyclicly
referenced) equations with a larger set of equations that represent all feasible paths
through the original circuit.

As a natural byproduct of evaluating the performance equations, limiting con-
straints are marked. A critical path is determined by traversing the marked equa-
tions from a limiting output to an input. Since reference lists are maintained for
each variable, a depth first search of these equations marks is very fast.

Finally, the expense of computing finite difference approximations of the Jaco-
bian matrix are avoided since the partial derivative equations are statically derived.
Since many of the entries in the Jacobian matrix are fixed to O or 1, the entire
Jacobian matrix is stored using a sparse representation. The optimization routines
that reference the Jacobian matrix only evaluate those entries that have defining
equations.

82

6. Conclusions and Contributions

EPOXY is a flexible open architecture for transistor sizing and circuit restruc-
turing to meet performance constraints. This system represents a unique and
powerful approach to solving the performance design problems for VLSI IC
designers and evaluating the effectiveness of performance models, optimization tech-
niques, and circuit modifications.

The design of the EPOXY system was motivated by the typical needs and
concerns of VLSI IC designers in producing layout that meets electrical perfor-
mance and area constraints. EPOXY integrates transistor sizing and circuit level
changes in one complete system. An advantage of this approach is that circuit
modifications can be made quickly without having to produce layout and re-extract
the resulting design. Moreover, EPOXY can capitalize on these local changes by
incrementally re-evaluating the circuit timing analysis and reducing the size of the
optimization problem by selecting only the transistor widths that have changed.

EPOXY also provides a uniform platform for comparing performance models,
optimization algorithms and circuit modifications. Representing the performance by
polynomial equations is the key to delivering these features. Symbolic equations
are an effective and powerful abstraction in providing a flexible environment for the
rapid evaluation and improvement of circuit performance. Some of the key results
drawn from this research are:

1. The entire desirable range of circuit performance can be represented by a
performance envelope. A designer alters the constraint values and objec-
tive function parameters to balance among the design metrics to select a
design within this envelope.

2. Accurate time models are crucial for designs with aggressive timing
requirements since a small error in estimating circuit speed has a very
large impact on the overall circuit area and power requirements.

3. While other transistor sizing programs use the total transistor area to
represent the overall cell area, EPOXY represents the total circuit area
more accurately by employing a virtual grid model. Total transistor area
is actually a better measure of maximum dynamic power rather than total
circuit area.

4. The combined strategy of applying the TILOS heuristic and then the Aug-
mented Lagrangian optimization algorithm provides faster convergence
than either of the two methods when run separately.

5. Circuit modifications, such as splitting large transistors, inserting buffers,
and rearranging transistors within static logic gates, can substantially
improve a circuit’s performance (10 to 23% over transistor sizing alone).

6. The partial derivative equations that represent the sparse Jacobian matrix
are derived in closed form. Therefore, the Jacobian matrix can be
quickly evaluated without the need for finite difference approximations.

6. Conclusions and Contributions 83

6.1. Future Research

The flexibility of implementing and combining performance models, optimiza-
tion techniques and circuit modifications within one complete system opens the door
to further evaluation and development. The only missing component in producing a
transistor sizing program for other technologies, such as Gallium-Arsenide and bipo-
lar, are the performance models. Once these performance models are complete, any
of the optimization routines can be applied. In addition, other optimization tech-
niques, such as recursive quadratic programming algorithms, should be evaluated to
determine their effectiveness in solving the performance optimization problems.
Similarly, new circuit modifications can be evaluated and applied within one com-
plete system.

Since EPOXY represents the circuit performance by a set of equations, they
can be written as a C program and compiled for a large savings in overall execu-
tion time. Appendix I describes the format of the C program that EPOXY pro-
duces. The present program format should be improved so that the circuit
modifications outlined in Chapter 5 can be supported.

The virtual grid area model within EPOXY can be expanded to consider more
complex transistor geometries. Snaking of large transistors can further reduce the
cell area when a few large transistors are present.

A graphical user interface for EPOXY would more clearly demonstrate the
performance improvement and layout impact during the optimization process.
Something like a VLSI designer’s cockpit would help a user visualize and control
the optimization process. In addition, the overall system interaction could be

simplified by using a menu driven selection process, as demonstrated by Shyu
[Shyu88a].

84

7. References

[Bert82]

[Bray381]

[Bray86]

[Ciri87]
[Ecke80]

[Fish85]

[Gill81]
[Glas84]

[Hede87]

[Hed184]
[Hed185]
[Hed187)
(Hill87]

[Hofm87]

{Joup83]

[Kao85]

D. Bertsekas, ‘‘Projected Newton Methods for Optimization Problems
with Simple Constraints’’, SIAM Journal on Control and Optimization,
Vol. 20 , 1982, pp. 221-246.

R. Brayton, G. Hachtel and A. Sangiovanni-Vincentelli, ‘‘A Survey of
Optimization Techniques for Integrated-Circuit Design’’, Proc. of the
IEEE, Vol. 69, No. 10, October 1981, pp. 1334-1362.

R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N.
Phillips, R. Rudell, R. Segal, A. Wang, A. Yung and A. Sangiovanni-
Vincentelli, ‘‘Multiple-Level Logic Optimization System’’, [EFE
ICCAD, pp. 326-328, November 1986.

M. A. Cirit, ““Transistor Sizing in CMOS Circuits’’, 24th ACM/IEEE
DAC Conf., pp. 121-124, June 1987.

J. G. Ecker, ‘‘Geometric Programming: Methods, Computations and
Applications’’, SIAM Review, Vol. 22, No. 3, July 1980, pp. 338-362.

J. P. Fishbum and A. E. Dunlop, ‘‘“TILOS: A Posynomial Programming
Approach to Transistor Sizing’’, IEEE ICCAD, pp. 326-328, November
1985.

P. E. Gill, W. Murray and M. H. Wright, ‘‘Practical Optimization’’,
Academic Press, London, New York, 1981.

L. A. Glasser and L. P. J. Hoyte, ‘‘Delay and Power Optimization in
VLSI Circuits’’, 21st ACM/IEEE DAC Conf., June 1984.

N. Hedenstierna and K. O. Jeppson, ‘*‘CMOS Circuit Speed and Buffer
Optimization’’, IEEE Transactions on CAD, Vol. CAD-6, No. 2, March
1987, pp. 270-281.

K. Hedlund, ‘‘Models and Algorithms for Transistor Sizing in nMOS
Circuits’’, Int. Conf. on CAD, 1984.

K. S. Hedlund, “‘Electrical Optimization of PLAs”, 22nd ACM/IEEE
DAC Conf., pp. 681-687, June 1985.

K. Hedlund, ‘‘Aesop: A Tool for Automated Transistor Sizing’’, 24th

IEEE DAC Conf., pp. 114-120, June 1987.

D. Hill, ““A Switch Level Synthesis System’’, ICCD, pp. 560-563, Oct.
1987.

M. Hofmann and J. K. Kim, ‘‘Delay Optimization of Combinational
Static CMOS Logic’’, 24th ACM/IEEE DAC Conf., pp. 125-132, June
1987.

N. Jouppi, ‘“Timing Analysis for nMOS VLSI’’, Proc. 20th IEEE DAC,
pp. 411-418, June 1983.

W. H. Kao, N. Fathi and C. Lee, ‘‘Algorithms for Automatic Transistor

Sizing in CMOS Digital Circuits’’, 22nd ACM/IEEE DAC Conf., pp.
781-784, June 1985.

7. References 85

[Kare84]

[Koha78]
[Lee84]
[Luen84]

[Marp86a]

[Marp86b]

[Marp87]

[Mats86]

[Mead80]
[Mich87]
[Neme84]

[Nye88]

[Ober85]

[Ober88a)

[Ober88b]

[Oust85]

{Pinc86]

M. J. Karels, S. J. Leffler, W. N. Joy and M. K. McKusick, ‘‘UNIX
Programmer’s Manual, Reference Guide’’, 4.2 Berkeley Software
Distribution, Virtual VAX-11 Version, March, 1984.

Z. Kohavi, ‘‘Switching and Finite Automata Theory’’, McGraw-Hill,
New York, NY., 2nd Edition, 1978.

C. M. Lee and H. Soukup, ‘‘An Algorithm for CMOS Timing and Area
Optimization’’, IEEE JSSC, Vol. SC-19, No. 5, October 1984.

D. G. Luenberger, ‘“Linear and Nonlinear Programming’’, Addison-
Wesley, Reading, Mass., 2nd ed., 1984.

D. P. Marple and A. E. Gamal, ‘‘Area-Delay Optimization of
Programmable Logic Arrays’’, Advanced Research in VLSI, Proc. of the
4th MIT Conference, pp. 171-196, April 1986.

D. P. Marple, Performance Optimization of Digital VLSI Circuits, Ph.D.
Thesis, Stanford, September 1986.

D. P. Marple and A. E. Gamal, ‘‘Optimal Selection of Transistor Sizes
in Digital VLSI Circuits’’, Advanced Research in VLSI, Proc. of the
1987 Stanford Conference, pp. 151-172, March 1987.

M. Matson and L. Glasser, ‘‘Macromodeling and Optimization of
Digital MOS VLSI Circuits’’, IEEE Trans. on CAD, Vol. CAD-5, No.
4, October 1986, pp. 659-678.

C. Mead and L. Conway, ‘‘Introduction to VLSI Systems’’, Addison-
Wesley, Reading, Mass., 1980.

G. D. Micheli, ‘‘Performance-Oriented Synthesis of Large-Scale Domino
CMOS Circuits’’, IEEE ICCAD, pp. 751-765, September 1987.

M. Nemes, ‘‘Driving Large Capacitances in MOS LSI Systems’’, IEEE
Journal of Solid-State Circuits, Vol. sc-19, No. 1, February 1984.

B. Nye, D. Riley, A. Sangiovanni-Vincentelli, J. Spoto and A. Tits,
“DELIGHT.SPICE: An optimization-Based System for the Design of
Integrated Circuits’’, JEEE Trans. on CAD, Vol. 7, No. 3, April 1988,
pp. 501-519.

F. W. Obermeier and R. H. Katz, ‘“‘PLA Driver Selection: An Analytic
Approach’’, Proc. 22th IEEE DAC, pp. 798-802, June 1985.

F. W. Obermeier and R. H. Katz, ‘‘An Electrical Optimizer that
Consider Physical Layout’’, Proc. 25th IEEE DAC, pp. 453-459, June
1988.

F. W. Obermeier and R. H. Katz, ‘““Combining Circuit Level Changes
with Electrical Optimization’’, IEEE ICCAD, pp. 218-221, November
1988.

J. K. Ousterhout, ‘“A Switch-Level Timing Verifier for Digital MOS
VLSI”’, IEEE Transactions on CAD, Vol. CAD-4, No. 3, July 198S.

J. Pincus and A. M. Despain, ‘‘Transistor Sizing Using Simulated
Annealing’’, 23nd ACM/IEEE DAC Conf., pp. 690-695, June 1986.

7. References 86

[Rubi83]

[Scot85]

[Shyu88a]

[Shyu88b]

[Trim83]

[Wallg8]

[West85]

[Wolf78]

J. Rubinstein, P. Penfield and M. A. Horowitz, ‘‘Signal Delay in RC
Tree Networks’’, I[EEE Transactions on CAD, Vol. CAD-2, No. 3, July
1983, pp. 202-211.

W. S. Scott, R. N. Mayo, G. Hamachi and J. K. Ousterhout, ‘“1986
VLSI Tools: Still More Works by the Original Artists’’, UCB/Computer
Science Dpt. 86/272, University of California at Berkeley, Computer
Science Division (EECS), December 1985.

J. Shyu, ‘‘Performance Optimization of Integrated Circuits’’,
UCB/Electronics Research Lab. MB88/74, Ph.D Thesis, Unversity of
California at Berkeley , November 22, 1988.

J. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishbum and A. E. Dunlop,
“‘Optimization-Based Transistor Sizing’’, IEEE Journal of Solid-State
Circuits, pp. 400-409, April 1988.

S. Trimberger, ‘‘Automated Performance Optimization of Custom

Integrated Circuits’’, Proc. International Symposium on Circuits and
Systems, pp. 194-197, 1983.

D. E. Wallace, ‘‘Abstract Timing Verification for Synchronous Digital
Systems’’, UCB/Computer Science Dpt. 88/425, Ph.D. Thesis, University
of California at Berkeley, Computer Science Division (EECS), June 27,
1988.

N. Weste and K. Eshraghian, ‘‘Principles of CMOS VLSI Design, A
Systems Perspective’’, Addison-Wesley, Reading, Mass., 1985.
P. K. Wolff, A. E. Ruehli, B. J. Agule, J. D. Lesser and G. Goertzel,

“‘Power/Timing: Optimization and Layout Techniques for LSI Chips’’,
Computer Science Press, 1978.

87

8. Appendix: Generating C Simulation Programs

One advantage of representing circuit performance by a set of equations is that
these equations can be compiled for rapid evaluation. Since compiling the sym-
bolic equations as an object module offers a tremendous speed advantage, the struc-
ture of the C program, that EPOXY currently produces, will be examined in greater
detail. EPOXY can create two basic programs: one for simulating the circuit by
evaluating all the performance equations, and another for evaluating the constraints
and Jacobian matrix for non-linear optimization programs. For each of the main
program types, several versions can be generated, each with various features. The
overall format of each program type are discussed below. Although the current
program formats do not support changes in the circuit structure, they illustrate the
design considerations in producing fast-running C programs.

In addition to selecting the basic program type, a user can choose the format
of the intermediate variables EPOXY uses in these programs. However, the format
of the input and output variables and constants is fixed so that other programs can
reference the variables using a consistent set of names. Table 8.1 lists all the vari-
ous styles of intermediate variables that EPOXY can produce. The inputs, outputs
and constraints are restricted to the long readable style except when the associative
array style is selected. For example, an input variable, "w_f[3 n28]", is printed
using the associative array style; while "w_f 3 n28" is the corresponding long
readable style. Therefore, when the associative array style is chosen, the resulting
code will not compile unless all the potential array arguments are declared as either
a constant (e.g.: #define 3 n28 12) or an enumerated type (e.g.: typedef enum { ..,
3 n28, ..}). The associative array mode is meant as a very readable version of
the original code.

Intermediate variable formats

Flag Style Example Advantages Disadvantages

X hex address v531b8 terse description overloads string table
1 long readable R fni3nd5 b0 readable worse string table

n numbered array v[22] fast compile and reference unreadable

a associative array R _f n_i{3_nd45][b][0] readable can’t compile

Table 8.1. Intermediate variable formats. A user can select the format of the intermedi-
ate variables for the simulator or NLP program generated by EPOXY. An example
of each variable format is given in the third column. The next two columns describe
the advantage and disadvantage of each representation.

The first format, hex address, creates the intermediate variables using a terse
unique name (its internal address in hexadecimal notation). The advantage of this
naming strategy is that the size of the program is reduced since each variable name
is fairly short (faster compile times). However, this format may cause the C com-
piler to run out of string table space for large input files (i.e., large circuits). This
problem arises from an unfortunate limitation in the standard C compiler (cc): all
variables names are stored in a fixed sized table. However, GNU CC 1 does not

8. Appendix: Generating C Simulation Programs 88

suffer from this limitation.

The next format, long readable, produces variables names that are human read-
able, but require more string table storage than the hex address format. The num-
bered array format provides the fastest compilation (only a single variable array
must be declared) and tersest representation. The last variable format, associative
array, has been used throughout this dissertation since it is the most readable. The
type of each array entry is contained in the base name of the array (e.g.; f for fet,

n for node, i for unique integer). However, this format will not compile as valid C
code unless the array arguments are specially declared (as described above).

/* C program format for the simulator */

/* All variables are declared globally. */
double <vars>; /* See formats of <vars>.*/
double max; /* Temporary variable */

initialize() {
/* Set various constants and inputs. */
1f328=20;

}

simulate () {
double _le, ge, temp;

R_f 45 120 = Krp * 1 f 45 n20 * (I/w_f 45 n20);

_temp = Kh;

_le=_temp;

temp=1f3 n28 +1f3 n24 +1f3 nd45 +1f 3 n62 +49;
_ge=_temp;

_temp =11 45 n28 + 1 f 45 n20 + 1 f 45 n45 + 1 f 45 n62 + 49 ;
if (_temp >= _ge) ge= temp;

h = _ge;

}

output () {
printf ("obj = %If0, obj);
}

Table 8.2. Format of the generated timing analyzer program. EPOXY can automati-
cally generate a C program that declares all the necessary variables and evaluates the
performance equations. Note that the constraints (for h >= ..) are mapped into several
statements that effectively produce the maximum of all lower-bound constraint equa-
tions. The upper-bound constraint is ignored in this calculation. These example
equations were taken from the bnand.1 example.

t Copyright © 1988 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
(617) 876-3296.

8. Appendix: Generating C Simulation Programs 89

EPOXY can produce C code for a circuit-specific performance analyzer by
evaluating all of the performance equations. This program can be compiled and
linked with a small program to call this simulation procedure. The result is a self-
contained timing analyzer. The execution speed of this program format was quoted
in the table on storage requirements and execution speeds. Alternatively, this pro-
gram could be compiled and dynamically linked to EPOXY. Subsequent calls to
the simulator within EPOXY would result in identical (rapid) execution speeds.
Table 8.2 demonstrates the overall format of the simulator program.

The timing analyzer provides three subroutines; one for initializing the con-
stants and inputs, another for evaluating the performance equations, and one for
printing the results. An external program can access the input variables by
referencing the input variables that are declared globally.

EPOXY can also generate a program suitable for the needs of non-linear
optimization programs. The format for this program structure is given in Table 8.3.

Note that the user specifies the format of the variable names for both the internal
variables and temporary gradient variables (D[][]).

C program format for non-linear optimization programs.

/* C program format for non-linear optimization programs.*/
#include <stdio.h>

#include "nlps.h"

int g_count, f count, j_count; /* Counts for statistics.*/

#ifdef DEFINE_NAMES

NLP_ NAME nlp_input_names{] = { "w_p", "w_n", ... }

NLP_NAME nlp_constraint_names{] = { "g_v_i[w_f[45 n28]]{0]", ... }
#endif

double <vars>; /* Intermediate simulation variables. See formats of <vars>.*/
double <gradient vars>; /* Temporary gradient variables (see formats).*/

extern double Cp n_c; /* List of parasitic output node capacitance. */
int number_output_nodes = 1;
double *C p outputsf] = { &Cp nc };

/* Sparse representation of Jacobian matrix */
/* Constraint for: w_f[45_n28] */
static NLP_ARRAY _INPUT ji0[] = { 12, /* input w_f{45_n28] */

13}

/* Data vector for partial derivative of constraint */

static NLP_DATA jaon = {-1.0%

static NLP_SPARSE jsparse[] = { {ji0, jd0}, {jil, jd1}, ... }

init_problem ()
{ nlp_inputs = 13;
nlp_constraints = 30;
init_constants();
/* allocate storage for input (x[J) and constraint (g[]) arrays.*/

8. Appendix: Generating C Simulation Programs

C program format for non-linear optimization programs.

{

int

{

init_constants () { /* Set various constants and inputs. */ }

set_g ()

double _temp, le, _ge, tempople; /* Temporary variable.*/
g count++; /* For statistics.*/

g.v.a[0] = Kwminp — x.v.a[12]; /* w_f[45 n28] <= Kwminp */

}
double f() /* The objective function */
{ f count++;
return (x.v.a[2] * Fh + x.v.a[3] * Fw + x.v.a[4] * Ft + x.v.a[5] * Fp + x.v.a[6] * Fa);
}
set_df () /* Negative of the partial derivative of the objective function */
{ dwv.a[2] = - (Fh);
d.v.a[3] = — (Fw);
d.v.a[4] = — (Ft);
d.v.a[5] = - (Fp);
d.v.a[6] = — (Fa);
}
set j O
{ double tempople; /* Temporary variable.*/
j_count++;
/* constraint number: 23 *
j.v.s[23].d[1] = v5a944 + v5b730; /* J(23,9) input var: w_f[45 n20] */
}

#ifdef SIMULATOR

simulate_errors;

simulate()

double _temp, le, _ge; /* Temporary variable.*/
simulate_errors=0;

_temp = Kh;

_le=_temp;

temp=1f3n28 +1f3n24 +1f3nd45+1f3n62+ 49 ;
_ge=_temp;

_temp =1 f 45 n28 + 1 f 45 n20 + 1 f 45 nd45 + 1 f 45 n62 + 49 ;
if (_temp >= _ge) _ge=_temp;

if (le < _ge) le ge err("x.v.a[2]", _le, _ge); else x.v.a[2] = _ge;

90

8. Appendix: Generating C Simulation Programs 91

C program format for non-linear optimization programs.

_le ge emr(v, _le, ge)

char *v;

double _le, ge;

{ if (not_silent) { /* Complain if can’t assign legal values */
fprintf(stderr,"Can’t assign legal value for %s:",v);
fprintf(stderr,"between %If and %If.0, le, ge);

}
simulate_errors++;
}
#endif

Table 8.3. Format of the C program for NLP routines. This figure describes the general for-
mat of the program generated by EPOXY for non-linear optimization programs. The Jaco-
bian matrix is declared using a sparse representation that is rapidly compiled and executed.
The supporting routines for setting the constraint matrix, Jacobian matrix and simulator all
reference this representation.

The program formulation incorporates several advantageous implementation
techniques. The static storage and access of the Jacobian matrix uses an efficient
sparse representation. The rows of Jacobian matrix are defined and initialized by
the automatically defined arrays: ji# and jd#. The first array (ji{constraint#}[index]
= {input number}) gives the numeric index of the Jacobian inputs defined in
corresponding data array (jd{constraint#}[index] = data). For example, jiO[1] gives
the numeric index (12) of the Jacobian input, w_ff45 n28], for the constraint equa-
tion, w _f[45 n28] >= Kwminp. The data storage for this sparse matrix entry
(JIOI[1]) is provided by the second array: jdO[1]. The index data is only used by
programs that may need to traverse the structure of this matrix. All defined equa-
tions reference the exact address of the data entry (&(jdO[1])) directly. Therefore,
accesses to the data storage only requires one address mode calculation: one base
(&jd) plus the offset ([1]). Most CPU’s provide a single instruction for this pur-
pose. Since there are new array entrys and they are relatively short, the storage for
the string table is not easily exhausted either.

Procedures are available for evaluating the objective function (f()) and con-
straints (set_g()) as well as their partial derivatives (set_df() and set_j()). The con-
straint equations are evaluated in the appropriate NLP standard form (g(x)<= 0.0).
In addition, the user can direct EPOXY to generate additional code to evaluate all
the constraints as performance equations (simulate()). Also, a subroutine
(_le_ge _err()) is called during performance evaluation to verify that the data does
indeed fall within the upper and lower-bound constraints.

The optimization routines were written to handle equations as internal data
structures within EPOXY or as a separate external program. The data structures
specified by the file "nlp.h" describe the Jacobian input, constraint and objective
function gradient vectors as either, a full array (external program format) or linked
list (internal format). Similarly, the Jacobian matrix are represented using the
sparse representation (external program format) or as a linked list (internal format).

