Maintaining Topology
in
Geometric Descriptions
with Numerical Uncertainty

Mark G. Segal and Carlo H. Séquin *
Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, CA 94720

June, 1988

Abstract

Algorithms for computer graphics or computational geometry of-
ten infer the topological structure of geometrical objects from numer-
ical data. Unavoidable errors (due to limited precision) affect these
calculations so that their use may produce ambiguous or contradictory
inferences.

An object description associating a tolerance with each of its topo-
logical features (vertices, edges and faces) is introduced. The possible
effects of limited precision on geometric algorithms that operate on
such descriptions are investigated. Methods are given for creating and
manipulating such descriptions that produce topologically consistent
object definitions. The methods minimize the occurrence of ambi-
guities and indicate those situations in which they may occur. These
techniques have been incorporated into a program that computes con-
structive solid geometry (CSG) operations on polyhedral boundaries.

*This research was supported by the Semiconductor Research Corporation and Tek-
tronix, Inc.

1 Introduction

The description of a geometric object in n-dimensions can be thought of
as specifying two types of information: topological data, specifying the
connectivities among various object features, and metric data, specifying
the positions in space of those features. For instance, a three-dimensional
polyhedral boundary is sometimes given by a data structure encoding the
topology of the of vertices, edges, and faces, and a set of coordinates en-
coding their positions. On the other hand, a half-space representation of
the same object may contain no explicit topological information but only
metric data specifying the various bounding planes.

Converting a half-space representation to a boundary representation
requires computing topological data from metric data. Other algorithms
that require this kind of computation include: determining if two lines
intersect in two dimensions, finding the convex hull of a set of vertices
in n dimensions, and boundary-based constructive solid geométry (CSG)
operations[l]. The required computations appear straightforward: inter-
sections among the various features must be found.

The difficulty arises when a topological determination must be made
from inezact metric data. The metric data may be inexact because the
process that creates a geometric object may not supply exact coordinates.
The locations of an object’s features are uncertain if it is scanned-in or
digitized. In addition, roundoff errors may accumulate during computations
that create the object. The resulting uncertainties about the precise values

of coordinates can lead to topological inconsistency. For instance, if a

vertex’s coordinates are uncertain, how can one determine if it lies in the
plane of a particular face?

There are two issues in this context. First, an object’s topology should
be well-defined by its representation. Second, several well-defined objects
may be presented to an algorithm that is to produce a new object (i.e.
the boundary of an object represented as a CSG tree) with well-defined
topology.

Several methods have been proposed to address these issues. One
method, exact rational arithmetic, attempts to represent all metric data
exactly as rational numbers(2], because intersections among features with
rational coordinates have rational coordinates. The difficulty is that some
geometric data cannot be represented exactly with rational coordinates; dis-
tances (which require computation of a square root) and values of trigono-
metric functions (which appear in rotation matrices) are two examples.
This difficulty can be eliminated if one allows an arbitrary symbolic for-
mula for each metric datum(3|[4]. However, at some point the formula
must be evaluated. If the coeflicients and arguments are not given exactly,
topological data derived from such a result may still be ambiguous.

Another approach is to assume the input metric data to be exact[5].
Given sufficient precision, a calculation based on exact data can achieve
any accuracy. The difficulty with this approach is that the output is still
of limited accuracy, so the results from one calculation cannot be used as
input to the next. One possible fix is to place a grid over the computed

object and snap features to it[6]. The problem is that the snapping process

8%

may be forced to incorporate large portions of the grid into the object,
creating many small “stair case” features.

Another method is to overcome roundoff error during algorithm opera-
tion by backing up and increasing the precision of an earlier calculation if it
is later found that its accuracy is not great enough to resolve a topological
determination[7]. Instead of recomputing previous calculations, their re-
sults may instead be perturbed as necessary so that they do not introduce
ambiguity[8][9]. While these methods have been found to reduce the occur-
rence of topological inconsistencies, they do not eliminate them entirely.

Our approach concedes that numerical errors may accumulate during
computation. We give methods, based on interval arithmetic{10], to mea-
sure that accumulation. These methods allow one to locate regions in which
metric uncertainty may lead to topological ambiguity. Heuristics can be ap-
plied in these regions that remove ambiguity if possible and warn the user

otherwise.

2 Definitions

This paper refers mainly to geometric objects in two or three dimensions;
however, most concepts are expressed without reference to dimension, mak-
ing an extension to higher dimensions straightforward. For simplicity we
discuss only polygonal and polyhedral objects, but we believe that the ap-

proach we present can also be applied to curved surfaces.

2.1 Geometry and Topology

There are three topological features of concern in three dimensions: vertices,
edges, and faces. A vertex is simply a point. An edge is a subset of a line
bounded by vertices. A face is a subset of é plane bounded by a non-self-
intersecting polygonal curve made up of edges lying in that plane. The
subsets need not be connected. Each feature type can be distinguished by
its dimension: a vertex has dimension 0, an edge dimension 1, and a face
dimension 2. The affine subset of three-space corresponding to each feature
(a point for a vertex, a line for an edge, and a plane for a face) is called a
flat of dimension 0, 1 or 2.

A particular feature is specified by giving coordinates that specify its
position with respect to a fixed origin and basis. For instance, a vertex is
usually specified with three coordinates, while an edge’s position might be
specified by providing the coordinates of one endpoint and the coordinates
of a vector giving its direction and length. In general, there are many
ways of providing coordinates that precisely specify a particular topological
feature.

A geometric object consists of an arbitrary set of particular topological
features described in two parts. The first part is a set of coordinates locat-
ing each feature in space. This coordinate information is collectively termed
metric data. The other part is a list of connectivity relations. Each connec-
tivity relation comprises a set of geometric features that intersect (called
the connectivity set), together with a distinguishing feature that represents

the intersection. For instance, several edges may meet at a vertex, several

faces may intersect in an edge, or several vertices may coincide in one ver-
tex. We assume that these connectivity relations are structured so as to
permit obtaining the set of features impinging on a particular feature, or,
given a feature, finding the features it impinges on[11]{12].

An object’s representation is consistent if every intersection among an
arbitrary set of features computed from the metric data is represented ex-
plicitly in connectivity relations, and, conversely, every connectivity rela-
tion represents an intersection computable from the metric information.
Under this definition a half-space representation of a bounded object is not
consistent because the existence of edges and vertices is not given explicitly.

A topological property of a geometric object is a datum that remains
invariant under diffeomorphisms of the coordinate space from which the
metric information is drawn[13]. A diffeomorphism is an everywhere C
(derivatives of all orders are continuous) invertible function whose inverse
is also everywhere C®. Connectivity relations remain fixed under such
deformations, so they represent topological properties.

Conversely, many topological properties can be derived directly from the
connectivity relations (Euler characteristic or genus of a solid, for instance).
In fact, the only topological properties that require metric data are those
relying on orientation (or ordering) information. For instance, determining
whether a point lies inside or outside a certain polygon requires a compu-
tation involving both connectivity relations (to discover how the polygon’s
edges are connected) and metric information (to obtain the point’s position

relative to the edges). The connectivity relations are also used to discover

if the point being tested actually lies on the polygon itself.

Consistency is desirable because the connectivity relations encode most
of an object’s topology. Even more important, an algorithm that refers to
connectivity relations must not have to consult the metric data to ensure the
relations are valid. Such reliance on metric data renders the connectivity
relations useless and greatly increases the computational expense of any

topological determination.

2.2 Numerical Uncertainty

In practice, consistency may be difficult to achieve because an object’s
metric data is represented with limited precision quantities. Computing
an intersection from these inexact quantities (even if the computation is
carried out to arbitrary precision) may lead to ambiguous results.

To account for inaccuracy, and to quantify its effects durihg geometric
computation, we introduce a tolerance[14] t; for each topological feature f;
describing the positional uncertainty of its corresponding flat a;. It is useful
to picture a tolerance as defining a tolerance region about each flat. The
region is composed of those points that lie within a distance of ¢ from the
position of the flat given by its (inexact) coordinates (Figure 1).

To construct the tolerance region for a topological feature of dimension
n, consider its two parts: the corresponding flat and the set of features of
dimension less than n that form the boundary in that flat. (A vertex has
no lower dimensional boundary, so its tolerance region is the same as that

of a point.)

Figure 1. A point and a line and their toler-
ance regions.

The boundary features as specified by their coordinates, when projected
onto the flat, bound a region in that flat (as determined by an orientation
on the boundary). The union of this region with the projection of the
tolerance regions of the boundary features onto the flat is called the ideal
cut-out region. The full cut-out region is obtained by sweeping the ideal
cut-out region in all directions perpendicular to the ideal flat for a distance
equal to the flat’s tolerance. The tolerance region of a connected component
of a feature is the union of the full cut-out region and the tolerance regions
of each of the boundary features. The tolerance region of a topological
feature consisting of several disjoint parts is the union of the tolerance
regions of the connected components.

For instance, the full cut-out region of a connected component of an

edge in three dimensions is a cylinder centered on the ideal line bounded

..

...............................

(2)

Figure 2. (a) An edge and its tolerance region. (b) The
ideal cut-out region of a face.

by planes perpendicular to the ideal line. Each plane is tangent to the
tolerance region of the corresponding bounding vertex. The edge’s tolerance
region is the union of this bounded cylinder and the tolerance regions of the
boundary vertices (Figure 2a). Similarly, the tolerance region of a simple
n-sided polygon comprises a prismatic slab, n cylinders, and n spheres
(Figure 2b).

This method of constructing a feature’s tolerance region is not the only
one possible. Our definition is simple and leads to straightforward algo-
rithms for determining if features intersect. It also minimizes the amount

of tolerance growth required by a geometric algorithm to ensure consistency.

2.3 Intersection

Consider the distance d between two flats a; and a,

d = min{||z, — z;ll> lzy € a1,22 € a2}

where z; € a; means z; is a point of flat a;. Two flats intersect within € if the
distance between them does not exceed e. Two flats f; and f; approzimately
intersect if they intersect within € = ¢; +t;. That is, if the tolerance regions
of two flats intersect, then the flats approximately intersect. Similarly,
approzimate intersection of two features is defined as intersection of the
corresponding tolerance regions. Consistency for inexact objects is the same
as consistency for exact objects with intersection replaced by approximate

intersection.

2.4 Coincidence, Containment, and Alignment

In the exact case, a feature of lower dimension may be contained in a feature
or flat of higher dimension. Two features or flats of the same dimension
may coincide if every point of one is a member of the other. We say that a
feature f; aligns with feature f; if f is contained in the f,’s corresponding
flat. Any feature contained in or coincident with another is also aligned
with it.

A feature fi approzimately aligns with f, if every point of fi’s ideal
cut-out region is within a distance of t; + ¢, of the fa2’s flat. One feature
is approzimately contained in another if it is approximately aligned with
the other feature and if the projection of its ideal cut-out region onto the
other feature’s ideal flat lies entirely within the other feature’s ideal cut-out
region. Two features are approzimately coincident if every boundary feature
of one feature approximately coincides with the corresponding boundary of

the other. Two vertices are approximately coincident if they approximately

intersect.

2.5 Restrictions on Feature Alignments

-

The use of inexact metric data requires some restrictions on the allowable
positions of object features if an object is to make sense under the familiar
rules of (exact) geometry. These restrictions exclude certain feature con-
stellations whose topology would be unclear. Later sections describe how
to convert such a constellation into an allowable constellation.

Consider alignment of features of equal dimension in the exact case.
Such alignment is symmetric and transitive: if ay, az, and a3 are all features
of the same dimension, and if a; aligns with a, then a, aligns with ay;
further, if a, aligns with a3, then a; aligns with a3. This is not automatically
true for approximate alignment as Figure 3 shows.

However, for correspondence with the exact case, we also demand sym-
metry and transitivity of alignment of equal-dimensional features in the
approximate case. Furthermore, to simplify data structures, we require
that equal-dimensional features never approximately align and intersect si-
multaneously; such alignment is represented with a single feature.

Similarly, two features may approximately intersect only if théir full
cut-out regions also intersect. Further, we declare illegal any intersecting
feature tolerance regions if the associated boundary tolerance regions inter-
sect in more than one connected component. Figure 4 shows an example
of the situation that this restriction is designed to exclude.

Finally, if two distinct features are approximately aligned with and in-

10

Figure 3. (a) non-symmetry of approximate
alignment. B aligns with A, but not vice
versa. (b) non-transitivity of approximate co-
incidence. A & B coincide, as do B & C, but

A & C do not.

of edges.

Figure 4. An illegal constellation

11

(2)

Figure 5. (a) An illegal constellation of ver-
tices about an edge. (b) An illegal constella-
tion of edges about a face.

tersect some higher dimensional feature, and if their projections onto the
higher dimensional feature’s ideal flat are approximately aligned (Figure

5), then we require the two features to be approximately aligned.

3 Deformations and Perturbations

Suppose one is presented with an object that is consistent for certain spec-
ified tolerance values. If this object is subjected to perturbations, such as
those that result from the floating point computation of an affine transfor-
mation used to place the object in space, it may no longer be consistent for

any tolerance values. Even the smallest perturbations may ruin approx-

mate consistency because a pair of features in the original object may only
be separated by a distance slightly larger than the associated tolerances,
so that after a perturbation the features’ tolerance regions may intersect.
Similarly, two features may start off intersecting within €, but after a per-
turbation may no longer do so. Therefore, the original object must satisfy
further requirements if it is to retain its consistency under reasonable per-
turbations of its metric data.

To avoid these effects, an object’s features that do not intersect within
¢ must be separated by a minimum distance that is large relative to e. The
minimum distance separating features that do not intersect (as determined
by the connectivity relations) is called the minimum feature separation[6][15]
or p. Suppose ¢ is the largest tolerance among those associated with the
features in some zone of an object and p is the mimm@ feature separation
in that zone. Such an object can withstand perturbations of the coordi-
nates that locate its features in space as long as those changes do not alter
the distances between non-intersecting features by as much as £ — eo.

There is an even stronger reason for maintaining a minimum feature
separation. Most geometric objects locate some of their features implicitly
by referring to other features. For instance, an edge is typically given by
the coordinates of vertices at its endpoints. If the tolerance is € and the
vertices are separated by only a small distance comparable to ¢, then the
edge’s direction is poorly determined. This example shows that the p in

a zone should normally be several orders of magnitude greater than the

tolerances of the features in that zone.

13

4 Geometric Algorithms

In the previous sections we have given rules for ensuring that individual ge-
ometric objects are topologically consistent and discussed the possibility of
maintaining consistency under geometric operations that are not intended
to modify topology. However, many geometric algorithms modify the topol-
ogy of objects presented to them or use these objects to define new objects
with new topology.

To _enerate the connectivity relations, an algorithm must classify groups
of two or more features as intersecting or non-intersecting. The metric data
that must be examined are the distances between pairs of features. If such
a distance is large (on the order of the zone’s minimum feature separation),
the two features do not intersect. However, if the distance between features
is small (about as big as nearby tolerances), the determination is not so
clear because discrete topological determinations must be based on inexact
continuous metric data.

The determination is arbitrary only if a small change in the relative po-
sitions of the two features changes intersection to non-intersection (Figure
6). Disregard for the consequences of this arbitrary decision may cause an
algorithm to produce an object with unexpected or unciesirable topology.

A solitary arbitrary coincidence determination poses no difficulty. The
difficulty comes when one determination is a part of a series. If an algorithm
is building a complex object from a set of vertices some of which may be
coincident (as may happen in a convex hull algorithm, for instance), one

determination may affect the outcome of subsequent ones.

14

[¢Y) @

Figure 6. Two edge-edge intersections in R2.
The first is not sensitive to perturbations, but
in the second, the vertex of one edge is coinci-
dent with the other edge, so a small change in
the position of either edge can make the edges
disjoint.

At any given time, an algorithm may make a topological determination
based on metric data and on previous topological determinations encoded
in the emerging connectivity relations. An ideal topological determination
is independent of exactly which determinations led up to it; in particu-
lar, it is independent of the order in which the determinations are made.
However, a practical numerical topological determination may not possess
this property. We say that a numerical topological determination is am-
biguous if the particular set of previous determinations affects its outcome.
Otherwise it is unambiguous.

A serious problem stemming from ambiguity involves the transitivity
of coincidence. Suppose the tolerance regions of two vertices, A and C,
are found to be disjoint, ruling the vertices non-coincident. Then a third

vertex, B, is examined, and ruled coincident with both A and C (Figure

15

3). This implies that A and C are coincident, contradicting the earlier
determination.

This example implies that an unambiguous determination cannot rely on
previous determinations and may even lead to their revision. It also shows
that the union of tolerance regions provides a useful new tolerance region
for a group of features found to be coincident. The difficulty is that the
shape of the union of tolerance regions can become arbitrarily complicated
as more and more coincident features are added. Keeping track of such
a region is tantamount to using a symbolic approach[16][17] to represent
feature intersections—each feature present in the coincidence adds a term
to the formula representing the union of tolerance regions.

We reject such complex approaches because they do not eliminate the
need to check whether prévious determinations must be reversed as new fea-
tures are considered. Instead, we recognize that ambiguous determinations
can lead to consistent objects as long as the results of such determinations
are properly recorded in the connectivity relations. This fact allows us to
use a simplified tolerance region, described by a single tolerance, for coinci-
dent features. This region has the same basic form as those of the original

features.

5 Practical Solutions

A practical algorithm can be robust in spite of having to make ambigu-
ous topological determinations. However, an algorithm must be carefully

designed if it is to produce sensible results. A solid modeler that always

16

produces a single vertex as output is certainly robust, but not very useful.

We assume that the input objects’ tolerances are much smaller than the
associated minimum feature separations. Similarly, an algorithm’s output
should satisfy the same criterion. If this is impossible, as may occur if an
algorithm is forced to generate a topologically complex region of small size,

the algorithm should generate a warning message.

5.1 Tolerance Handling

Our method treats geometric objects consisting of vertices, edges, and faces.
A set of coordinates is kept for each feature determining the location in
space of the feature’s associated flat: a position for a vertex, a parametric
line equation for an edge, and an implicit plane equation for a face. In ad-
dition, a single tolerance is kept with each feature to quantify the accuracy
of its metric data. This tolerance defines a spherical region about a vertex’s
approximate position, a cylindrical region about an edge’s position, and a
slab about a face’s position.

Generating the connectivity relations from metric data means determin-
ing those pairs of features that intersect. In principle this means checking
whether their associated tolerante regions intersect.

If a pair of features have been determined to intersect, appropriate mod-
ifications must be made to the geometric object. In the case of a non-aligned
intersection, a new feature (with an associated tolerance) must be created
to represent it. In the case of an alignment, the tolerances of the coinciding

features may have to be adjusted. For a coincidence, the pair of features is

17

Figure 7. The tolerance region assigned to a
computed intersection. Vertex X (the inter-
section) must be found coincident with vertex
Y.

replaced with a single feature with a suitable tolerance.

5.1.1 Intersection

To compute the intersection of a pair of non-aligned features, an accurate
computation[5][18] using the approximate coordinates of each member of
the pair is employed to find the best approximate coordinates for the inter-
section feature. The tolerance for the new feature is made large enough so
that the corresponding tolerance region encloses the intersection of the two
original tolerance regions. Approximate consistency requires a region of
this size because if another feature intersects both of the original features’
regions, then it impinges on their regions’ intersection so that it must also
impinge on the computed intersection feature (Figure 7). In addition,

if the roundoff error associated with the intersection computation is not

18

small relative to the computed intersection tolerance, then the intersection
tolerance is increased by an appropriate error estimate to account for the
inaccuracy.

As an example, consider finding the intersection of an edge with a face.
The first step is to check that the edge or any of its boundary vertices are not
contained in the face’s plane (see below). If the edge itself is not coincident
with the face’s plane but one of its bounding vertices is, then the edge
intersects the face’s plane at that vertex. Otherwise, the intersection point
of the edge’s ideal line with the face’s ideal plane is found using an accurate
computation (typically accomplished by substituting the line’s parametric
equation into the plane’s parametric equation and solving for the parameter
value). If the computed point lies outside the edge (as determined by its
bounding vertices and the corresponding tolerance regions) the edge does
not intersect the plane. Otherwise, the point is assigned a tolerance large
enough so that the corresponding region encloses the intersection of the
line’s and plane’s tolerance regions. Next, a test must be made to see if the
point lies in the face’s interior or on its boundary. As the point is checked
against each edge in the boundary, a test is also made for containment of

the point within that edge or coincidence with one of its bounding vertices.

5.1.2 Alignments

We distinguish four ways that a feature f; with tolerance t; may align and

intersect with a feature f; with tolerance t;:

19

1. The ideal cut-out region of f; lies within a distance of ¢; 4+ #; of fa’s

ideal flat. This case covers approximate alignment.

o

Neither feature is a vertex, their tolerance regions intersect, and the
cosine of the angle between their flats is on the order of %’-, where
p is the minimum feature separation of the input. (In higher dimen-
sions, the cosine of the angle is replaced with the condition number
of the intersection computation.) This case is designed to detect in-
tersections that, if computed, would require an unacceptably large
tolerance region. Exactly how large is unacceptable depends on the

application.

3. Each feature approximately intersects and aligns with a higher dimen-
sional feature f3, and f;’s projection onto f;’s ideal flat approximately
aligns with f,’s projection onto it. This case is designed to remedy

illegal feature constellations such the ones shown in Figure 5.

4. If a feature of dimension d is approximately contained in a feature of
dimensién d + 1, and the d + 1 dimensional feature is approximately
contained in a feature of dimension d + 2, then the d dimensional fea-
ture is also approximately contained in the d + 2 dimensional feature.
In three dimensions, a vertex may be contained in a face by being

contained in one of the face’s bounding edges.

If a lower dimensional feature aligns with a higher dimensional one, the
intersection of the features is found by projecting the lower dimensional

feature’s tolerance region onto the higher dimensional feature’s flat and

20

carrying out the intersection computation in that flat (see above). Once
the intersection is known, an appropriate entry is made in the connectivity
relations. This includes some relations that are not always considered;
for instance, a vertex impinging on a face’s interior creates a degenerate
contour in that face.

The tolerance values of the associated features are left unchanged if
the alignment results from case (1). Otherwise, the tolerance of the lower
dimensional feature is increased so that its full cut-out region intersects the
full cut-out region of the higher dimensional feature.

If one feature intersects and aligns with another of the same dimension,
they are merged into a single feature. A new flat is created whose coordi-
nates are simply the average of the coordinates of the two aligned features.
The two original features partition one another into disjoint regions. The
boundaries of these regions are computed by projecting the tolerance re-
gions of both features into the newly created flat (for a pair of vertices, there
are no boundaries so there is no partitioning) and finding intersections in
that flat. These partitioned boundary features form the boundary features
of the new feature. All references to the two features in the connectivity
relations are replaced with references to the new feature. The tolerance for
the new feature is made large enough so that the corresponding tolerance
region encloses the union of the aligned tolerance regions. Figure 8 shows
how two collinear edges are converted into a single multi-segment edge.

Consider discovering if a vertex is contained in a particular face. In this

example, case (2) cannot arise and we start with a check for case (4). First

4

Figure 8. Merging collinear edges into a single
edge with multiple boundary vertices.

we check whether the vertex approximately intersects any of the vertices in
the face’s boundary. Next we check for approximate containment in any of
the face’s edges. If the vertex is contained in an edge, it must be re-checked
for possible coincidence with the edge’s bounding vertices under case (3). If
none of these tests indicate that the vertex lies on the face’s boundary, the
vertex’s distance from the plane is found by substituting its coordinates into
the face’s plane equation. If the vertex does not approximately intersect the
face’s plane, then it does not lie within the face. If it does approximately
intersect the plane, it may still coincide with one of the boundary features
under case (3). This case is checked for by projecting the boundary feature’s
(vertices and edges) tolerance regions onto the face’s plane and checking if
any intersect the projection of the vertex’s tolerance region onto the plane.

A vertex that approximately intersects the face’s plane but does not lie
on a face boundary is contained in the face if it is in the face’s interior (case
(1)). The test is carried out in the same way as for an intersection point

of an edge with a face’s plane. A clever algorithm can interleave most of

S
o

these tests, requiring only one pass over the face’s boundary features.

A vertex found intersecting a boundary feature has its tolerance ad-
justed so that its tolerance region intersects both that of the feature and
that of the face (as required by case (4)). A vertex intersecting the face

but not its boundary needs no tolerance adjustment.

5.2 Backtracking

The techniques presented to determine intersections and to adjust toler-
ances provide a comprehensive method to produce consistent connectivity
relations in many cases. However, some constellations of features require
more complex techniques to ensure consistency.

Difficulties arise from the growth of the tolerance regions of intersecting
or coincident features because previously non-intersecting features may in-
tersect after tolerances have been increased (Figure 9). If no information is
kept about the relative separation of features, then anytime an intersection
is found, all features previously considered as possibly intersecting either
member of the intersecting pair must be re-examined to determine if any
of their tolerance regions intersect the new tolerance region. If at least one
does, then this other intersection has to be accounted for and the search
process repeated, possibly leading to a long chain of re-testing previously
considered features. The required checking considerably increases the cost
of intersection determination.

The average cost can be radically decreased by keeping a number with

each feature representing the smallest distance between it and all other fea-

Figure 9. Revision of a coincidence deter-
mination. Vertex C becomes coincident with
vertices A and B only after A and B are found
coincident.

tures that have been determined not to intersect it. When two features are
checked for intersection, the minimum distance stored with each feature is
compared to the computed distance and updated as appropriate. When two
features are found to intersect, the stored minimum distances are compared
to the tolerance value for the computed intersection. If the stored distance
is larger than the new tolerance, no backtracking is required. Otherwise,
the previously examined features are re-examined as already described. If
o of the individual objects is large relative to tolerances, backtracking will
be required rarely, if at all.

Another advantage of saving the minimum non-intersecting feature dis-

tance is that the u of the final object can be obtained by taking the mini-

mum over all features of the stored distances at the end of the computation.

6 Implementation

We have implemented a solid modeling algorithm that incorporates these
methods[19]. The algorithm accepts two boundary representations of poly-
hedra and produces the boundary representation of the regularized union,
difference, or intersection. Boundaries are vertex based; the locations of
edges and faces are derived from vertex coordinates. However, during the
algorithm’s operation, coordinates are kept for each feature, be it vertex,
edge, or face. Each feature also has an associated tolerance. Vertex toler-
ances are assigned an arbitrary small value when a boundary is read in; an
edge tolerance is derived from the tolerances of its bounding vertices. Face
tolerances are computed so that each face tolerance region contains all the
tolerance regions of the vertices that lie within it. The minimum feature
- size for the input objects is assumed to be large relative to the tolerances.
The algorithm operates by considering two faces, one from each bound-
ary, at a time. The faces are first checked to see if they are aligned. If they
are not, the vertices from one face are considered relative to the other face.
If two vertices at either end of an edge lie on opposite sides of the face’s
plane, a vertex representing the intersection of the edge with the face’s
plane is computed and a tolerance assigned. After all the edges of one face
have been checked against the other, the faces’ roles are reversed.
Eventually all the intersections of each face’s boundary with the other’s

plane are located. This includes vertices of one face’s boundary that are

[]
[¥1

found coincident with the other’s plane. These points are sorted into order
along the computed ideal intersection line, and the information is used to
determine the actual intersection spans of the two faces so that appropri-
ate modifications can be made to the face’s boundaries. The sorting also
allows identification of intersection points that coincide with one of the
faces’ boundaries. Once coincidence determination and partitioning have
been completed for all face pairs, the solid modeling result is obtained by
selecting the appropriate portions of the partitioned faces.

The algorithm uses tolerances to generate the connectivity relations
that define the partitioned boundaries. However, the current implemen-
tation does no backtracking. Instead, it is assumed that backtracking is
unnecessary as long as tolerances remain small relative to the minimum
feature separation in the input objects. If a computed tolerance exceeds a
user settable threshold, the algorithm generates a warning message and con-
tinues its operation. Further, upon termination, the algorithm abandons
individual sets of coordinates for each feature type and describes output
objects in terms of vertex coordinates only.

Even with this simplified approach, the algorithm has been found to be
robust. On the rare occasions that the algorithm has produced inconsistent
output (because of the lack of backtracking), it has always produced a
warning message. For example, if an attempt is made to compute the
intersection of two congruent cubes, one rotated by a small angle about
some axis relative to the other[20], a correct result is obtained for angles

greater than about 0.01°. For angles less than about 0.0005° the reasonable

DD

Figure 10. Output of solid modeling algo-
rithm given two congruent cubes, one rotated
slightly from the other. In (a), the angle is
0.0001° and the algorithm produces a single
cube as result. In (c), the angle is 0.05°.
In (b), the angle is 0.001°; with the nominal
tolerances the algorithm reported errors and
failed to produce the boundary of a solid as
output. The tolerances were decreased to pro-
duce the scene pictured here. For comparison,
(d) shows the result with an angle of 15°.

result of a single cube is produced. For angles between 0.0005° and 0.01°
an incorrect result is sometimes created, but not before warnings have been
produced. After appropriately adjusting the default tolerance values, the
algorithm can be rerun to produce an acceptable result (with no warnings
reported) for angles within the given range (Figure 10).

Although backtracking would eliminate any inconsistency, large toler-
ances are still a reason for concern because they imply that the location of
a computed feature is poorly defined. Whenever an algorithm produces a
large tolerance for a computed feature, a warning is appropriate to alert the
user to possible inaccuracies in the computed object. Large inaccuracy may

indicate unexpected topology, such as the reduction of a complex region to

27

a single vertex.

A serious drawback of the algorithm as implemented is that there is no
provision to discover the minimum feature separation of the output bound-
ary. If the algorithm were to become a part of a solid modeling tool in which
the output of one modeling operation were used as the input to another, this
information would be essential. It could also ensure that outputting metric
data in terms of vertex coordinates only does not introduce perturbations

large enough to jeopardize consistency.

7 Conclusion

A method for constructing geometric representations that are consistent in
the face of moderate numerical inaccuracy has been presented. Suitable
rules governing the use of these representations can lead to robustness in
geometric algorithms. Complete robustness (in the sense of an algorithm
producing a geometric result that adheres to the same constraints as its
inputs) may only be possible at the expense of simplification of and unde-
sirable alterations to small, topologically complex regions. However, the use
of tolerances precisely quantifies the effects of nume_rical inaccuracy on geo-
metric representations and provides a basis for reliable methods to extract
topological data where this is possible without ambiguity. Our method de-
tects ambiguity and identifies situations in which the numerical data could
lead to unexpected topological changes.

The tolerance model could be extended in several ways to reduce the

number of instances of zones that are determined to be topologically am-

28

biguous. One idea is to use a relaxation method in an attempt to reduce
tolerances of geometric objects. Smaller tolerances in individual objects
would decrease the likelihood of an algorithm creating an unacceptably
large tolerance region when several objects are combined. Features’ coor-
dinates could be perturbed as to reduce an objective function made up of
a weighted sum of all the features’ tolerance values. The reason that re-
laxation is a promising method to achieve tolerance reduction is that the
perturbations required to reduce a single feature’s tolerance are restricted
to the coordinates of nearby features.

However, roundoff errors do accumulate during consecutive computa-
tions, and there are cases in which tolerances cannot be reduced. Figure
11 shows an object whose boundary is made of quadrilateral faces. These
faces are non-planar—the twisted nature c;f the object does not admit pla-
nar quadrilateral faces. No amount of local perturbation of vertex positions
can alter this fact.

Tolerance methods can in principle be extended to cover topological
determinations on curved objects. The principles are essentially the same:
a curve or surface is endowed with a tolerance that defines a small region
about it, and this region is used to test for intersection with other features.
How the shape of this region must vary over the extent of the curve or
surface must be considered before an appropriate tolerance model can be
developed. For instance, computation of the intersection curve of two sur-
faces is typically carried out numerically, so the tolerance of the intersection

curve depends not only on the tolerances of the intersecting surfaces, but

Figure 11. An inexact object whose tolerances
cannot be reduced. p is about 0.5, while the
maximum face tolerance (with vertex toler-

ances of zero) is about 0.033; the ratio of u to
tolerances is thus only about 15.

30

possibly on the accuracy of the algorithm used to compute the piecewise

linear approximation to the intersection curve as well.

31

References

[1]

[10]

Martti Mantyli. Boolean operations of 2-manifolds through vertex
neighborhood classification. ACM Transactions on Graphics, 5(1):1-
29, January 1986.

W. Randolph Franklin, Peter Y.F. Wu, and Sumitro Samaddar. Prolog
and geometry projects. IJEEE CG & A, 6(11):46-535, November 1986.

John Francis Canny. The Complezity of Robot Motion Planning. PhD
thesis, MIT, 1987. ¢

Dennis S. Arnon. Topologically reliable display of algebraic curves. In
Proceedings of SIGGRAPH, pages 219-227, 1983.

Thomas Ottmann, Gerald Thiemt, and Christian Ullrich. Numerical
stability of geometric algorithms. In Proceedings of the Third ACM
Symposium on Computational Geometry, pages 119-125, Waterloo,
Ontario, 1987.

Mark Segal and Carlo H. Séquin. Consistent calculations for solid mod-
eling. In Proceedings of the First ACM Symposium on Computational
Geometry, pages 29-38, 1985.

David Dobkin and Deborah Silver. Recipes for geometry & numerical
analysis—part I: an empirical study. In Proceedings of the Fourth
ACM Symposium on Computational Geometry, pages 93-105, Urbana,
Illinois, 1988.

Cristoph M. Hoffmann, John E. Hopcroft, and Michael S. Karasick.
Robust Set Operations on Polyhedral Solids. Technical Report 87-875,
Computer Science Dept., Cornell University, 1987.

Cristoph M. Hoffmann, John E. Hopcroft, and Michael S. Karasick.
Towards implementing robust geometric computations. In Proceed-
ings of the Fourth ACM Symposium on Computational Geometry,
pages 106-117, Urbana, Illinois, 1988.

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag, New York, 1980.

32

[11] B. G. Baumgart. Geometric Modelling for Computer Vision. Techni-
cal Report STAN-CS-74-463, Stanford AI Lab, 1974.

[12] Kevin Weiler. Edge-based data structures for solid modeling in curved-
surface environments. IEEE CG & A, 5(1):21-40, January 1985.

[13] V. Guilleman and A. Pollack. Differential Topology. Prentice-Hall,
Englewood Cliffs, NJ, 1974.

[14] Aristides A. G. Requicha. Toward a theory of geometric tolerancing.
International Journal of Robotics Research, 2(4):45-60, Winter 1983.

[15] Victor Milenkovic. Verifiable implementations of geometric algorithms
using finite precision arithmetic. In International Workshop on Geo-
metric Reasoning, Oxford, England, July 1986.

[16] Herbert Edelsbrunner and Ernst Peter Micke. Simulation of simplic-
ity: a technique to cope with degenerate cases in geometric algorithms.
In Proceedings of the Fourth ACM Symposium on Computational Ge-
ometry, pages 118-133, Urbana-Champaign, 1988.

[17] Chee-Keng Yap. A geometric consistency theorem for a symbolic per-
turbation scheme. In Proceedings of the Fourth ACM Symposium on
Computational Geometry, pages 134-142, Urbana, Illinois, 1988.

(18] G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins
Press, Baltimore, MD, 1983.

[19] Mark Segal and Carlo H. Séquin. Partitioning polyhedral objects into
non-intersecting parts. JEEE CG & A, 8(1):53-67, January 1988.

[20] David H. Laidlaw, W. Benjamin Trumbore, and John F. Hughes. Con-
structive solid geometry for polyhedral objects. In Proceedings of SIG-
GRAPH, pages 161-170, 1986.

33

