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Abstract

Program performance can be improved on machines with virtual mem-
ory by reorganizing the program’s address space. We address the question
whether reorganization could benefit programs on machines with instruc-
tion caches. We have performed experiments to determine the efficacy
of restructuring using simple reordering algorithms and profile data, con-
cluding that performance improvement can be obtained relatively cheaply.
Experiments show improvements in miss rates on the order of 30% to 50%,
and sometimes as high as 50% to 80%, by performing a simple algorithm

that relocates only 3% to 8% of the basic blocks of a program.
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1 Introduction

There have been many investigations looking to improve computer performance
by reorganizing programs’ address spaces on machines with virtual memory (1,2,
3,4,5,9,10,11,13,20,22,23]. We address the question whether reorganization can
be beneficial for machines with caches. After all, a cache is just another layer in
the memory hierarchy of a computer system. If an inexpensive way can be found
to reorganize the address space of a program such that a small cache can have
the performance of a larger cache without reorganization, smaller inexpensive
caches would be a more competitive choice.

The research reported here was done in a broader context of what we are
calling profile-driven optimization. The idea is not new. In his paper on the
empirical properties of FORTRAN programs, Knuth [18] proposed an “ideal
system” that would keep profiles associated with source programs and use them
to direct debugging and optimization.

With the memory capacity of today’s desk-top computers matching that of
the supercomputers of the 70’s, compilers will begin to take advantage of more
and varied data to aid in the construction of quality programs. This data will
come from many sources, and one is bound to be the behavior of programs them-
selves. Assuming that a compiler has access to profile data about the program
being compiled, we are looking for simple algorithms th-at will improve compiled
programs’ performance with respect to an instruction cache. In this study, the
only profile-driven optimization we allow the compiler is reorganization of the
instruction space.

Instructions that are executed close together in time are temporally local.
Instructions that are close together in the address space are physically local
(7). A cache turns temporal locality into physical locality by effectively and
transparently changing the hardware address of data or code. We will show
how to utilize information about the runtime behavior of a program to enhance

the performance of an instruction cache.
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Figure 1: The code at block A and the code at block B are the active portions
of a loop. Due to intervening code C that is infrequently executed, A and B are
mapped to the same locations in the direct mapped cache, as shown on the left.
The loop can be made more efficient by moving A and B with respect to one
another so that they do not conflict in the cache, as shown on the right.

There are only two ways to improve the performance of a program in a
cache: (1) decrease the probability that often executed sections of the program
compete for cache resources (Figure 1); and (2) increase the amount of useful

information in the cache (Figure 2).

For a fully associative cache there may be ways of reorganizing a program to
improve its performance with respect to (2); little can be done as far as (1) is
concerned. With direct mapped caches, however, both (1) and (2) suggest easy
ways to gain performance improvement. In a direct mapped cache, contention is
a function of the addresses of the competing program segments, which is easily
controlled by a loader and/or compiler.

While there have been published results for organizing data in memory to
improve cache performance [24] (8], there has been little published regarding

rearranging the instruction space. An exception is a recent report on Scott



Figure 2: Consider the blocks A, B, and C from the previous figure to be of
such a size that A and B could fit in a cache line. The cache lines on the left
represent one way they might fit into a direct mapped cache, with the side-effect
of loading infrequently executed code from block C into both lines. In the cache
on the right the initial cache miss that loads the code from A also loads B,
saving at least one cache miss in the execution of the loop; also, infrequently
executed code from C takes up much less space.

McFarling’s work at Stanford [21]. His work differs from ours by concentrating
on positioning basic blocks based on their frequency counts and with knowledge
of the target cache. Since direct-mapped caches are cheaper and easier to build
[16], we have developed an algorithm for direct mapped caches that uses arc

counts and is independent of the target cache.

2 Greedy Sewing

The basic algorithm is quite simple, and is given in Figure 3 below. We require
a few definitions. A program control-flow digraph is a tuple < B,.4 > where
B is the set of basic blocks and A is the set of directed arcs connecting them.
We will use upper case letters to denote nodes of the basic block digraph. Basic
block A has an arc to basic block B if the flow of control out of A can go to
B either by jumping to B, calling B, or simply falling through to it. Arcs

will be represented by lower case letters or by the basic blocks they connect; if
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repeat
Select a € A such that a. 18 mazimum.
A— A-{a}

s +— s+ a.

If canSew(source(a), sink(a)) then
Stitch(source(a), sink(a))

If isSmallEquiCondl(source(a)) then
ThreadCondl(source(a))

else if isCall(source(a)) then
ThreadCall(source(a))

until s > Sp

Figure 3: (Greedy Sewing Algorithm). This algorithm orders the basic blocks
based on arc traversal frequencies. Its one parameter is a number p in the range
(0,1). A is the set of arcs.

a = A — B then we define source(a) = A and sink(a) = B. Associated with
each arc a (basic block B) in the graph is a positive integer a. (B.) representing
the number of times this arc (basic block) was traversed during the profiled
execution of the program. The count on an arc is also represented as A = B.
Let S =Y ,c4 9 = 2 pes Be be the sum of these counts for all arcs in A and
basic blocks in B.

Stitch(A, B) is a function that juxtaposes two basic blocks contiguously in
memory; in this case we say that the bottom of A has been sewn to the top of
B, and that they are on the same thread. A thread is a sequence of basic blocks
that have been Stilched. The final instructions in 4 are adjusted to maintain
the semantics of the original program, as shown in the example in Figure 1. If
Stitch is called and either the bottom of A or the top of B has already been
Stitched, it returns without effect. The function canSew(A, B), tests for this
condition for basic blocks A and B.

In Figure 3 there are four functions, isSmallEquiCondl, 1sCall, ThreadCondl
and ThreadCall, that handle two situations that arise frequently enough to
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Figure 4: Two threads from if-then-else

warrant special handling. Consider the flow graph in Figure 4. If the path
A — B — D is the more frequently executed path, then the thread ABD will
be formed (1). Since C cannot be sewn to either A or D now, it creates a
singleton thread (2). If it is very infrequently executed, then it makes little
difference where C is placed relative to the thread ABD. However, if the path
A — C — D is only slightly less frequently executed than the path 4 — B — D,
and if the sum of the sizes of 4, B, C, and D are small enough that they would
all fit in a cache, then the single thread ABCD in Figure 4(3) is preferable over
the two threads (1) and (2). Since we want our algorithms to be general and not
depend on any particular cache configuration or size, we cannot know whether
any set of basic blocks will or will not fit in a cache. So isSmallEquiCondl checks
for basic blocks matching exactly this configuration—i.e. the basic block ends
with a conditional instruction, the two arms of the conditional have at most one
basic block in them and are very nearly equi-probable—and creates the longer
thread where possible.

A second common situation is pictured in Figure 5 where a procedure P is

called from a basic block A. When the bottom of A is sewn to the top of Py, we
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Figure 5: Pseudo-inlining

say that procedure P has been pseudo-inlined. A basic block containing a single
jump instruction is inserted between the call and the target to maintain the
semantics of the original code. ! We want to Stitch(P,, B) because the same
considerations that applied to the previous if-then-else example apply here: if
the frequent path through the procedure is small enough such that A, the body
of P, and B could fit in the cache, then we would like to construct the thread
shown on the right of Figure 5. The procedure ThreadCall effectively constructs
the arc P, — B such that P, and B are eventually Stitched. 2

3 Results

We wrote an instrumentation program that inserts code into the Gnu C com-

piler’s assembly language output to collect arc frequencies at runtime. After

1We tried turning the call plus jump sequence into a push return address so A could fall
through to Po; the results were insufficiently interesting to warrant the additional complexity.
Also, this would not work well on CISC machines that combine the call instruction with
register saving.

2 After the results for this paper were generated, we discovered that our implementation of
this heuristic would occasionally incorrectly handle nested procedure calls. The net effect is
that our numbers may show slightly less performance improvement than would be obtained if
the bug were fixed.



trace length
name unreorganized | reorg. p = .80 | reorg. p= .90 | reorg. p= .95
SCRUNCH 9,405,156 9,656,437 9,715,946 9,693,277
TROFF 8,059,174 8,343,440 8,325,470 8,338,350
CC1 8,263,593 8,268,313 8,293,376 8,301,226

Table 1: Summary of traces: number of instruction words fetched

number of number of blocks reorganized
name basic blocks p=.80 p=.90 p=.95
SCRUNCH 1,233 | 22 (1.8%) 27 (2.2%) 32 (2.6%)
TROFF 4,000 { 149 (3.7%) 207 (5.2%) 318 (8.0%)
CcC1 26,407 | 727 (2.8%) | 1,317 (5.0%) | 1,939 (7.3%)

Table 2: Summary of traces: number of basic blocks

profile data has been collected, our program reorgBBs then reads the original

assembly language files and reorganizes them based on that profile.

3.1 The Programs and Traces

There were three programs chosen for our experiments and each program had
four versions created: the normal, unreorganized version produced by the Gnu
C compiler, and three reorganized by the algorithm in Figure 3 with p set to
.80, .90, and .95. A summary of the programs, the basic block counts, and trace
sizes is in Tables 1 and 2. We collected a trace of each of these twelve programs
which we then used as input to Hill’s Dinerolll cache simulation program [15].
Each trace was simulated on eleven different cache configurations: 256 bytes
with 4 and 8 byte blocks; 1024 byte cache with 4, 8, and 16 byte blocks; and
4096 byte cache with 4, 8, and 16 bytes, each using single associativity (direct
mapped) and two-way set associativity.

Our first program was scrunch, a Huffman encoding algorithm. A profile
was generated by scrunching a 200K spelling dictionary. A trace was created
by scrunching scrunch.¢, a 42Kb C source file.

A second program, troff, was chosen because of its wide use in UNIX environ-



ments. A profile was generated by {roffing three separate technical documents,
chosen with some hope that they represented typical use of the program. The
first document consisted of 103K bytes after being preprocessed by tbl, egn, and
grn, This included 1933 lines (32K bytes) of troff commands, the remainder
being plain text. The other two documents totalled 228K bytes and contained
4004 lines (73K bytes) of preprocessed troff commands. A trace was created by
troffing a reduced version of the first document of length 7705 bytes, of which
273 lines (2728 bytes) were troff commands.

A third program was the Gnu C compiler itself. A profile was collected of the
compiler compiling three Gnu C source files: toplev.c, loop.c, and recog.c. They
totaled 79K bytes, with 20, 12, and 15 C function definitions, respectively. A
trace was taken while compiling genemit.c, a 6Kb file containing nine function

definitions.

3.2 Miss Rates

Figures 6, 8, and 10 are histograms of the results of running the traces of the
programs through the cache simulator. (Since the reorganization algorithm
didn’t take any cache parameters into account, the same traces are used in all
eleven simulation runs for each program.) They show the miss rates for the
four versions of each program on each of the eleven cache configurations. The
leftmost bar of each group of four is the average miss rate of the unreorganized
program. The other three of the group, from left to right, are the average miss
rates for the reorganized versions for p = 80%, 90%, and 95% respectively. The
cache configuration is noted beneath each group. Figures 7, 9, and 11 show the
improvement in miss rates of the reorganized versions over the miss rates of the

unreorganized versions (i.e. 1 — (M,/R,)/(M./R,); see below).
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Note that there are instances where reorganization can buy the (miss rate)
equivalent of a larger cache. For example, looking at Figures 6, 8, and 10 we
see that the reorganized programs using a 256 byte cache with 8-byte blocks
consistently had as good as or better miss rates than its unreorganized version

running in a 1K cache with 4-byte blocks.

3.3 Performance improvement

What do these improvements in miss rates imply about the running time of the
program? Let R, be the number of instruction fetches on the original, unre-
organized program, and let R, be the corresponding number for a reorganized
version. For the sake of these estimates, we will assume R = R, = R,. We
see from Table 2 that this is not strictly true, but they are sufficiently close for
our purposes here. Let M, be the number of cache misses and H, the number
of hits when the original, unreorganized program is run, and M, and H, be
the corresponding values for the reorganized program. Define the miss rates
my = M,/R and m, = M, /R, and let ma = m, — m, be the difference in miss
rates. Let t5 be the time required to handle a cache hit, and let t,, be the time
required to handle a cache miss. The running time of the original program is
then T, = tyhy + tmmy, and the improved running time is T, = tph, + tmm,.
Finally, define f = t,;ma /7Ty, the fraction of the original program’s time taken
up by cache misses that are turned into cache hits, and K = tn /ta the ratio of
the cost to handle a miss to the cost to handle a hit. Then remember Amdahl’s
Law:
T./T.=(1-f) + f/K. 8
We can now estimate the improvements in performance from reorganization.
We will take as our example, the SPUR memory architecture [14]. In general,
the cost of a miss is very high on multi-processor, shared bus systems due
to bus contention and/or the length of the cache line. SPUR has a 512-byte

on-chip cache and 128Kb off-chip cache. A miss in the on-chip cache costs
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three times as much as a hit, assuming the instruction to be in the off-chip
memory cache [16]. Let us assume the on-chip cache shows a normal miss
rate of about 20%, and that we can improve that to 15% by reorganizing.
Then f = 3 %.05/(3 » .20 + .80) = .107. Plugging this into (1) above, we
get T, /T, = .929, i.e. the program executes in only 92.9% of the time of the
original, a 7.1% improvement. The maximum possible improvement is 29.6%
assuming the unattainable miss rate of 0%.

For the SPUR architecture, an off-chip cache miss will cost 12 to 20 times
that for handling a cache hit. SPUR therefore has a very large mixed cache to
combat this penalty. If we assume that reorganization can reduce SPUR’s miss
rate by an absolute 0.25% (e.g. from 1% to 0.75%), then, assuming K = 17
[17), f = 17 %.0025/(17 * .01 + .99) = .0366. Plugging this into (1) above, we
get T, /T, = .966, a 3.4% improvement in performance. This is in addition to
the performance improvement for the on-chip cache noted above. With these
assumptions, we predict reorganization can improve SPUR’s performance by
about 10%.

Figures 12, 13, and 14 show the theoretical improvement in execution per-
formance of the reorganized versions over the original unreorganized versions
when the cost factor K = 2, 3, 4, 5, 6, 7, 10, 15, 20, and 25. Each graph has
a column for each of the eleven cache configurations. A line within a column
plots the expected performance of the indicated program on that cache when
reorganized with the three values p = .80,.90,.95 moving from left to right.
K = 2 is the very top line in each column, and K = 25 is the bottom-most line
in each column, yielding a range in which we expect reorganization to improve
the performance of the programs. So we see that for a 1K cache with 4-byte
blocks and K = 2, a version of scrunch reorganized with p = 80% would take
about 97% as long as the unreorganized version (the left end of the topmost
line in the third column from the left). It would take only about 77% as long if
K = 25 (the left end of the bottom line in that column), and only about 38%

14
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as long when K = 25 and p = 95% (the rightmost end of the bottom line in

that column).

4 Arc Counts

We have chosen to use arc counts instead of simply counting the number of times
each basic block is entered. Most profiling tools count the latter rather than
the former. However, this is not quite what is desired, since it is too easy for
basic block counts to mislead a reorganizer. For example, consider the following

fragment of a program control flow graph:

There is no way, given only basic block counts, to recov;ar the traversal counts
for the arcs. Without the traversal arcs, there is no way of knowing whether,
for example, D should follow A or B. By rearranging the picture and adding
the arc C — A, we see that this is not a rare construct. In fact, this construct
appeared several times in code generated by the MIPS-X Pascal compiler for a

program that solved boolean equations.

To know whether to stitch B — C or B — D requires knowing whether C;

comes from the loop or from B falling through to C. Basic block counts cannot
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make that distinction. Conversely, if the arc counts are available, basic block
counts are easily derived by propagating frequencies along the arcs and through
the basic blocks. The conclusion is that collecting only basic block counts is
insufficient for reorganization.

Collecting arc counts is more expensive than simply counting basic block
executions..In our implementation, the-instrumented subject programs’ execu-- .
tion times went up anywhere from 25% to 100% over the uninstrumented form,
depending on the density of conditional branches. We did not attempt optimal
instrumentation, although there are results in that area [19].

We do have an idea for a reasonably efficient method for profile collection
that will give arc frequency counts, although some of them will only be ap-
proximate. Some profiling tools use the technique of interrupting the program
at regular intervals and sampling the pc to derive a statistical estimate of the
execution frequency of basic blocks. If the compiler located the (small) set of
arcs whose instrumentation was necessary to recover all arc counts, i.e. just
precisely those arc counts needed to resolve ambiguous instances like the one
noted above, then that information could be combined with the statistical data
from pc sampling to propagate estimates of execution frequency to all arcs and
basic blocks. Furthermore, since this set of arcs is not a unique set, the compiler
can actually use profile data from previous runs to determine which infrequently
traversed arcs to instrument, thereby reducing the amount of instrumentation
overhead. Graham et al. [12], note that the pc sampling technique adds about
five to thirty percent overhead, so we can hope to increase that very little, if at

all, and obtain arc counts at a more reasonable cost.

5 Limitations

We have not considered many of the parameters of engineering a cache that are

obviously relevant for system design. For example, we have not considered the
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increase in bus contention caused by going to a larger block size. Nor have we
considered alternative cache designs such as sub-block placement. Our goal was
simply to explore improving the performance of the cheapest of these design
alternatives with compiler modifications.

We have not considered cache effects such as cold start misses or cache

‘flushes due to system interrupts or context switches. As noted above we did
not consider any parameters of the target caches when reorganizing code. One
reason for this elision was that it was not clear at the beginning how much the
parameterization of the algorithms by the cache characteristics would benefit
the program’s performance; hence we went for the simple solution first.

We haven’t solved the problem of case statements satisfactorily. Currently,
it is possible for the reorganizer to move the code around to such an extent
that the jump table can end up quite a distance away from one or more of its
targets. On the 68020, this presents a practical problem since jump tables with
half-word pc-relative entries are much faster than full word entries. If an item
of e; case is a “hot spot”, it is very difficult to relocate it and still satisfy the
distance constraint of jump tables. The only program that gave us real problems
was the Gnu C compiler, for which we generated full-word jump table entries.
This does not change any of our miss rate results significantly, but in real life,
it would be an unacceptably slow implementation due to the slower execution
of the table jump.

Finally, there are architectures which present difficulties for our algorithm.
An example is the MIPS-X instruction set [6], which has non-orthogonal con-
ditional branch instructions. Due to the nature of the MIPS-X pipeline, each
conditional branch instruction is followed by two instructions that are fetched
before the CPU has determined whether the branch will be taken. Each con-
ditional branch instruction also has a squash bit that, if ‘on’, prevents the exe-
cution of these two instructions if the branch is not taken. Both of these delay

slot instructions are always executed whenever the branch is taken: there is no



way to squash their execution when the branch is taken. This makes sense if
all programs follow the pattern of code generated by most compilers, where the
conditional test is at the ‘bottom’ of the loop and the conditional branch is,
therefore, almost always taken. .

However, the reorganization we are describing here turns those statistics
upside down:" the greedy sewing algorithm almost guarantees that the head and
tail of a frequently executed loop will be made contiguous, and that execution
will almost always fall through the conditional test to the head of the loop:
the conditional branch is almost always never taken. This leaves three options:
(1) fill the delay slots as is currently done by MIPS-X compilers, followed by a
jump instruction to the infrequent target (normally the loop-exit); (2) reverse
the sense of the conditional and try to fill the delay slots with instructions that
don’t have to be squashed when the branch is not taken (because there is no
squash bit for this direction); or, (3) punt and put no-ops in the delay slots.

Option (1) puts infrequently executed instructions right in the middle of
high-frequency basic blocks, working against one of the aims of reorganization
(better cache utilization in high frequency code). Option (2) sounds plausible,
but it is difficult to find instructions that can always be executed no matter
which way the branch goes. It may be possible to generate instructions to un-
do the effects of the delay-slot instructions when the branch is finally taken,
but this begins to get complicated and presents the possibility of really slowing
down a frequently executed inner loop. Option (3) is an obvious loss.

Due to the fact that the available compilers filled the delay slots before
emitting assembly language code, we could not apply our algorithms to MIPS-
X code. We cannot say precisely how badly our algorithms are hurt by the
non-orthogonality of the conditional branch instructions. McFarling [21] im-
plemented option (1), and reports that the size of repositioned code increases

about 14%.
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6 Conclusions

Profile driven code reorganization definitely improves the performance of pro-

grams. In envisioned programming environments where profile data is a per-

manent part of the information manipulated by both programmer and com-

piler, these improvements would come simply and cheaply. In the contemporary .
compile-a-file world, reorganization should be made available to programmers

optimizing a working program for speed. Our experiments have shown improve-

ments in miss rates on the order of 30% to 50%, and sometimes as high as 50%

to 80%. These figures were obtained by relocating only 3% to 8% of the basic

blocks of typical programs.
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